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Abstract. In recent work by Zimmer it was proved that if Ω ⊂ Cn is a
bounded convex domain with C∞-smooth boundary, then Ω is strictly
pseudoconvex provided that the squeezing function approaches one as
one approaches the boundary. We show that this result fails if Ω is only
assumed to be C2-smooth.

1. Introduction

We recall the definition of the squeezing function SΩ(z) on a bounded
domain Ω ⊂ Cn. If z ∈ Ω, and fz : Ω→ Bn is an embedding with fz(z) = 0,
we set

(1.1) SΩ,fz(z) := sup{r > 0 : Br(0) ⊂ fz(Ω)},

and then

(1.2) SΩ(z) := sup
fz

{SΩ,fz(z)}.

A guiding question is the following: which complex analytic properties of
Ω are encoded by the behaviour of SΩ? For instance, if SΩ is bounded
away from zero, then Ω is necessarily pseudoconvex, and the Kobayashi-,
Carathéodory-, Bergman- and the Kähler-Einstein metric are complete, and
they are pairwise quasi-isometric (see [8]). Recently, Zimmer [9] proved that
if

(1.3) lim
z→bΩ

SΩ(z) = 1

for a C∞-smooth, bounded convex domain, then Ω is necessarily strictly
pseudoconvex1. In this short note we will show that this does not hold for
C2-smooth domains.
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1Added in proof: Zimmer has subsequently improved his results to convex domains

with C2,α-boundary.
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Theorem 1.1. There exists a bounded convex C2-smooth domain Ω ⊂ Cn
which is not strongly pseudoconvex, but

(1.4) lim
z→bΩ

SΩ(z) = 1,

where SΩ(z) denotes the squeezing function on Ω.

For further results about the squeezing function the reader may also con-
sult the references [1], [2],[3],[4],[5],[6],[7], [8], [9]. In the last section we will
post some open problems.

2. The construction

2.1. The construction in Rn and curvature estimates. We start by de-
scribing a construction of a convex domain Ω in Rn with a single non-strictly
convex point. Afterwards we will explain how to make the construction give
the conclusion of Theorem 1.1 for each n = 2m, when we make the identifi-
cation with Cm.

Let x = x1, ..., xn denote the coordinates on Rn. For any k ∈ N we let Bk
denote the ball

(2.1) Bk := {x ∈ Rn : x2
1 + · · ·+ x2

n−1 + (xn − k)2 < k2}.
On some fixed neighbourhood of the origin, each boundary bBk may be
written as a graph of a function
(2.2)

xn = ψk(x
′) = ψk(x1, ..., xn−1) = k −

√
k2 − ‖x′‖2 =

1

2k
‖x′‖2 +O(‖x‖3).

Fix a smooth cut-off function χ(x′) = χ(|x′|) with compact support in {|x′| <
1} which is one near the origin. We will create a new limit graphing function
f(x′) by subsequently gluing the functions ψk and ψk+1 by setting

(2.3) gk(x
′) = ψk(x

′) + χ(
x′

εk
)(ψk+1(x′)− ψk(x′)),

where the sequence εk will converge rapidly to zero, and the boundary of
our domain Ω will be defined (locally) as the graph Σ of the function f
defined as follows: start by setting fk := ψk for some k ∈ N. Then define
fk+1 inductively by setting fk+1 = fk for ‖x′‖ ≥ εk and then fk+1 = gk for
‖x′‖ < εk. Finally we set f = limk→∞ fk.

To show that the limit function f is C2-smooth (if the εk’s converge
rapidly to zero), we need to show that the sequence {fk} is a Cauchy-
sequence with respect to C2-norm, i.e., we need to estimate the derivatives

(2.4) σkij(x
′) :=

∂2

∂xi∂xj
(χ(

x′

εk
)(ψk+1(x′)− ψk(x′))).

Note first that

(2.5) ψk+1(x′)− ψk(x′) =
−1

2k(k + 1)
‖x′‖2 +O(‖x‖3).
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We see that

|σkij(x′)| = (
1

ε2k
O(‖x′‖2) +

1

εk
O(‖x‖)) 1

2k(k + 1)

+
1

ε2k
O(‖x′‖3) +

1

εk
O(‖x′‖2),

and so for ‖x′‖ < εk we have that

(2.6) |σkij(x′)| ≤ C ·
1

2k(k + 1)
+O(εk),

where the constants are independent of any particular choice of εk. So if εk
is small enough we see that |σkij | is of order of magnitude 1/k2, which shows

that {fk} will be a Cauchy-sequence.

To ensure that Ω is convex we will need to estimate the curvature of Σ,
and estimates of the curvature of the partial graphs Σk = {x, gk(x)} will be
necessary to prove Theorem 1.1. Informally our goal is to show the following:
There exist N,m ∈ N, N > m, such that if k ≥ N and if εk is sufficiently
small (depending on k), then Σk curves, at every point and in all directions,
more than bBk+m and less than bBk−m.

We make this more precise. The surface Σk has a defining function
ρk(x) = gk(x

′) − xn. If vp is a tangent vector to Σk at p = (x′, gk(x)),
the curvature of Σk in the direction of vp is defined as

(2.7) κΣk
p (vp) :=

Hρk(p)(vp)

‖∇ρk(p)‖‖vp‖2
,

where ∇ρk is the gradient, and Hρk is the Hessian of ρk (which is equal to
the Hessian of gk). The curvature (2.7) depends only on the direction of vp,
and the curvature of bBk is 1

k at all points and in all directions. The precise
statement of our goal stated above is

Lemma 2.1. Let ψk and χ be defined as above for k ∈ N. There exist
N,m ∈ N, N > m, such that if each εk is sufficiently small (depending on
k), and k ≥ N , then

(2.8)
1

k +m
≤ κΣk

p (vp) ≤
1

k −m
,

for all vp tangent to Σk.

It is now easy to see that if εk ↘ 0 sufficiently fast, then Ω is convex,
and strictly convex away from the origin. If we let Ωk denote the domain
whose boundary near the origin is given by the graph of fk, we see that Ωk

is strictly convex, the Hessian being positive definite everywhere. Morover
Ω = ∪kΩk, and so Ω is convex.
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Proof. (of Lemma 2.1) When we estimate the curvature we may assume that
the functions gk are simply

(2.9) gk(x
′) = ψk(x

′)− χ(
x′

εk
)(

1

2k(k + 1)
)|x′|2 =: ψk(x

′) + σk(x
′),

since the higher order terms missing in this expression of gk can be made
insignificant by choosing εk small enough. Because of the |x′|2-term it is
easy to see that

(2.10) dgk(x
′) = dψk(x

′) +4k(x
′),

and

(2.11) Hgk(x
′) = Hψk(x

′) + hk(x
′),

where the coefficients in both 4k and hk are of order of magnitude 1
k2

independently of k and of the choice of a small εk.

Fix a point x′ and a vector v ∈ Rn−1 with ‖v‖ = 1. Then a tangent vector
vp at the point (x′, gk(x

′)) is given by

(2.12) vp = (v, dgk(x
′)(v)) = (v, dψk(x

′)(v) +4k(x
′)(v)).

Estimating the curvature we see that

κΣk
p (vp) =

(Hψk(x
′) + hk(x

′))(vp)

‖∇ρk(p)‖‖vp‖2

=
(Hψk(x

′))((v, dψk(x
′)v) + (0′,4k(x

′)(v)))

‖−en +∇ψk(p) +∇σk(x′)‖‖(v, dψk(x′)(v)) + (0′,4k(x′))‖2

+O(
1

k2
)

=
(Hψk(x

′))((v, dψk(x
′)v))

‖ − en +∇ψk(x′)‖(1 +O( 1
k2

))‖(v, dψk(x′)(v))‖2(1 +O( 1
k2

))2

+O(
1

k2
)

=
(Hψk(x

′))((v, dψk(x
′)v))

‖ − en +∇ψk(x′)‖‖(v, dψk(x′)(v))‖2
+O(

1

k2
)

=
1

k
+O(

1

k2
),

where the term 1
k comes from the fact that the expression above is the

formula for the curvature of a ball of radius k. From this it is straightforward
to deduce the existence of an m such that the lemma holds. �

2.2. The squeezing function on Ω. We will now explain why the squeez-
ing function goes to one uniformly as we approach bΩ provided that the εk’s
decrease sufficiently fast. Let N,m be as in Lemma 2.1, and start by setting
fk = ψk for some k > N .

Fix some small δk > 0. By Lemma 2.1, if εk is small enough, we can for
each p = (x′, xn) ∈ bΩk, ‖x′‖ < δk, find a ball B of radius k +m containing
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Ωk such that p ∈ bB. By the same lemma we can for each such p also find a
local piece of a ball of radius k−m touching p from the inside of Ωk, and the
size of the local ball is uniform. So using Lemma 3.1 we may find a tk > 0
small enough such that

(2.13) SΩk(x′, xn) ≥ 1− m

(k +m)

if xn ≤ tk.
Next, again by Lemma 2.1, we find a δk+1 < δk such that if εk+1 is small

enough, then for each p = (x′, xn) ∈ bΩk+1 with ‖x′‖ < δk+1, we may
oscillate with balls of radius k+ 1−m and k+ 1 +m respectively. So there
is a tk+1 < tk such that

(2.14) SΩk+1
(x′, xn) ≥ 1− m

(k + 1 +m)

if xn ≤ tk+1. Furthermore, by further decreasing εk+1 we can keep the
estimate (2.13) with Ωk replaced by Ωk+1. The reason is the following.
First of all, by [5] there exists a constant Ck such that

(2.15) SΩk(z) ≥ 1− Ck · dist(z, bΩk),

and near any compact K ⊂ bΩk away from 0, this estimate is not going to
be disturbed by a small perturbation of bΩk near the point 0; the estimate
is obtained by using oscillating balls at points of K whose boundaries will
stay bounded away from 0. Furthermore, on any compact subset of Ωk we
have that SΩk+1

→ SΩk as εk+1 → 0.

Continuing in this fashion, we obtain a decreasing sequence 0 < tj <
tj+1, j = k, k + 1, ..., and an increasing sequence of domains Ωj , such that
for each j we have that

(2.16) SΩj (x
′, xn) ≥ 1− m

(k + i+m)

for tk+i ≤ xn ≤ tk+i−1, for i ≤ j. The result now follows from Lemma 3.2.

3. Lemmata

Let 0 < s < 1/2, 0 < d < r < 1, and set Bs = B(s, 1 − s), the ball of
radius 1− s centred at (s, 0′). Furthermore we set

(3.1) Bs,d = Bs ∩ {(z1, z
′) ∈ Bn : Re(z1) > d}.

Lemma 3.1. If Bs,d ⊂ Ω ⊂ Bn, and if r > 1− sd
4 , then SΩ(r, 0) > 1− s.

Proof. Set µ = 1− s and η = d
2 , and then

(3.2) Bµ
η = {(z1, z

′) ∈ Cn : |z1 − (1− η)|2 +
η

µ
|z′|2 < η2}.
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Then certainly Re(z1) > d on Bµ
η , and we also have that Bµ

η ⊂ Bs. To see
the latter, we translate the two balls sending (1, 0′) to the origin, where they
are defined by

(3.3) B̃s = {(z1, z
′) : 2µRe(z1) + |z|2 < 0},

and

(3.4) B̃µ
η = {(z1, z

′) : 2ηRe(z1) + |z1|2 +
η

µ
|z′|2 < 0}.

And

2ηRe(z1) + |z1|2 +
η

µ
|z′|2 < 0⇒ 2ηRe(z1) +

η

µ
|z1|2 +

η

µ
|z′|2 < 0

⇔ 2µRe(z1) + |z|2 < 0.

According to Lemma 3.5 in [5] we have that

(3.5) SΩ(r, 0) ≥ √µ
√

1− 2(1− r)1

η
=

√
(1− s)(1− 4(1− r)

d
),

from which the lemma follows easily. �

Lemma 3.2. Let Ωj ⊂ Ωj+1 for j ∈ N, set Ω = ∪jΩj, and assume that Ω is
bounded. Let z ∈ Ω, and assume that SΩj (z) > 1− δ for all j large enough
so that z ∈ Ωj. Then SΩ(z) ≥ 1− δ.

Proof. Let fj : Ωj → Bn be an embedding such that fj(z) = 0 and B1−δ(0) ⊂
fj(Ωj). By passing to a subsequence we may assume that fj → f : Ω→ Bn
u.o.c., with f(z) = 0. Setting gj = f−1

j : B1−δ(0)→ Ω we may also assume

that gj → g uniformly on compact sets. Then f |g(B1−δ(0)) = g−1, from which
the result follows. �

4. Some open problems

Problem 4.1. Does Zimmer’s result hold for pseudoconvex domains of class
C∞?

Problem 4.2. How much smoothness is needed for Zimmer’s result hold
for pseudoconvex domains?

Problem 4.3. Let Ω ⊂ C2 be a bounded pseudoconvex domain of class
C∞. Is SΩ(z) bounded away from zero?

Yeung [8] showed that the answer is yes for strongly convex domains in
Cn, and Kim-Zhang [6] and Deng-Guan-Zhang [3] showed that the answer
is yes for strictly pseudoconvex domains. On the other hand, Fornæss-Rong
[4] showed that the answer is no for n ≥ 3.

Quantifying the asymptotic behaviour of the squeezing function, Fornæss-
Wold [5] showed that

(i) SΩ(z) ≥ 1− Cdist(z, bΩ), and
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(ii) SΩ(z) ≥ 1− C
√

dist(z, bΩ),

for strongly pseudoconvex domains of class C4 and C3 respectively. Diederich-
Fornæss-Wold [1] showed that if the the squeezing function approaches one
essentially faster than (i), then Ω is biholomorphic to the unit ball.

Problem 4.4. What is the optimal estimate for the squeezing function for
strictly pseudoconvex domains of class Ck with k < 4?

Let φ : B2 → C2 be defined as φ(z1, z2) := (z1,−z2 log(z1 − 1)). Then
Ω := φ(B2) is of class C1, and (1, 0) is a non-strictly pseudoconvex boundary
point of Ω. So SΩ being identically equal to one does not even imply strict
pseudoconvexity in the case of C1-smooth boundaries.

Problem 4.5. Let φ : Bn → Ω be a biholomorphism, and assume that Ω is
a bounded C2-smooth domain. Is Ω strictly pseudoconvex?
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