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Samandrag
To stokastiske optimeringsalgoritmar kalla Genetiske algoritmar (GA) og Par-
tikkelsvermoptimering (PSO) vert nytta til å seinka kostnadane til ein synkro-
ngenerator med permanentmagnetar og konsentrerte viklingar. Generatoren er
tenkt nytta til elektrisitetsproduksjon fr̊a tidevatn. Kostnadsreduksjon av elek-
triske maskinar er ein veg å g̊a for å gjera tidevassenergi meir konurransedyktig
i forhold til tradisjonell elektrisitetsproduksjon.

Hybride optimeringsmetodar som kombinerer PSO eller GA med tradisjonelle,
gradientbaserte algoritmar ser ut til passa godt til design av elektriske maski-
nar. Optimeringsresultat fr̊a Matlab indikerer at hybrid-GA oppn̊ar betre de-
signforslag enn hybrid-PSO for denne typen problemstillingar. Hybrid-GA viser
betre konvergens, mindre varians og kortare køyretid.

Hybrid-GA konvergerte mot ein gjennomsnittskostnad for generatoren som var
5,2 % l̊agare enn gjennomsnittskostnaden hybrid-PSO kom fram til. Variansen
til resultata fr̊a hybrid-GA er 98,6 % l̊agare enn variansen til hybrid-PSO. Over-
gangen fr̊a vanleg GA til hybridversjonen reduserte snittkostnaden til genera-
toren med 31,2 %.

Parallellprosessering gjer det mogleg å redusera køyretida til kvar optimering
med opp til 97 % for store problem. Køyretida for GA med 2500 individ vart
redusert fr̊a 12 timar til 21 minutt ved å g̊a fr̊a ein einkjernemaskin til ein
datamaskin med 48 prosessorkjernar. Tida det tok å optimera med 400 partiklar
og 100 iterasjonar med PSO gjekk fr̊a 18,5 timar til 74 minutt. Dette svarar til
ein reduksjon p̊a 93 %.





Summary
Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) are used
to reduce the cost of a permanent magnet synchronous generator with concen-
trated windings for tidal power applications. Reducing the cost of the electrical
machine is one way of making tidal energy more competitive compared to tra-
ditional sources of electricity.

Hybrid optimization combining PSO or GA with gradient based algorithms
seems to be suited for design of electrical machines. Results from optimization
with Matlab indicate that hybrid GA performs better than Hybrid PSO for
this kind of optimization problems. Hybrid GA shows better convergence, less
variance and shorter computation time than hybrid PSO.

Hybrid GA managed to converge to an average cost of the generator that is 5.2
% lower than what was reached by the hybrid PSO. Optimization results show
a variance that is 98.6 % lower for hybrid GA than it is for hybrid PSO. Moving
from a pure GA optimization to the hybrid version reduced the average cost
31.2 %.

Parallel processing features are able to reduce the computation time of each
optimization up to 97 % for large problems. The time it took to compute a
GA problem with 2500 individuals was reduced from 12 hours to 21 minutes
by switching from a single-processor computer to a computer with 48 processor
cores. The run time for PSO with 400 particles and 100 iterations went from
18.5 hours to 74 minutes, a 93 % reduction.
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Abstract—Particle Swarm Optimization (PSO) and Genetic Algo-
rithms (GA) are used to reduce the cost of a permanent magnet
synchronous generator with concentrated windings for tidal
power applications. Reducing the cost of the electrical machine
is one way of making tidal energy more competitive compared to
traditional sources of electricity. Hybrid optimization combining
PSO or GA with gradient based algorithms seems to be suited
for design of electrical machines. Results from optimization with
MATLAB indicate that hybrid GA performs better than Hybrid
PSO for this kind of optimization problems. Hybrid GA shows
better convergence, less variance and shorter computation time
than hybrid PSO. Hybrid GA managed to converge to an average
cost of the generator that is 5.2 % lower than what was reached
by the hybrid PSO. Optimization results show a variance that is
98.6 % lower for hybrid GA than it is for hybrid PSO. Moving
from a pure GA optimization to the hybrid version reduced the
average cost 31.2 %. Parallel processing features are able to
reduce the computation time of each optimization up to 97 %
for large problems. The time it took to compute a GA problem
with 2500 individuals was reduced from 12 hours to 21 minutes by
switching from a single-processor computer to a computer with
48 processor cores. The run time for PSO with 400 particles
and 100 iterations went from 18.5 hours to 74 minutes, a 93 %
reduction.

Keywords—Hybrid Optimization, Genetic Algorithms, Particle
Swarm Optimization, Electrical Machine Design, Parallel Process-
ing.

I. INTRODUCTION

A. Background

Tidal energy extraction has the potential to become an im-
portant source of renewable electricity production [1] [2]. For
tidal energy to become competitive with traditional sources of
electric energy, the cost per kWh must be reduced. One way
of achieving this is to minimize the cost of the generator.

This paper is a continuation of the work on optimization
presented in [3]. Design of electrical machines using stochastic
optimization runs back to the late 1960s [4]. Different stochas-
tic optimization algorithms have been used during the design
process, including Tabu Search [5], Simulated Annealing [6],
Genetic Algorithms (GA) [7], Differential Evolution [8] and
Particle Swarm Optimization (PSO) [9].

Various studies have been made to investigate how one can
combine the global search capability of stochastic optimiza-
tion algorithms and local optimization using gradient based
methods. Hybrid algorithms have been used on design of

both induction motors [10] and permanent magnet synchronous
generators [11].

Several studies on hybrid optimization have been published
using GA [12] [13] and PSO [14] [15] as global search method.

This paper will focus on Genetic Algorithms and Particle
Swarm Optimization in combination with gradient based meth-
ods. Genetic algorithms exploit the principles of natural se-
lection and survival of the fittest in order to select the best
design configuration. Particle swarm optimization mimics the
behaviour of social swarms who shares collective knowledge
in the search for desirable features.

B. Scope and limitations

The scope of this paper is to investigate if either Particle
Swarm Optimization or Genetic Algorithms is better suited for
design of electrical machines. Different methods for improving
the optimization process will be evaluated.

In the next section, the theoretical foundations of general
optimization problems are outlined along with a description
of Particle Swarm Optimization and Genetic Algorithms. In
Section III, the details of the permanent magnet synchronous
machine model used in this paper are introduced.

Implementation of Particle Swarm Optimization in MATLAB
is described in Section IV. GA and parallel computing solu-
tions available in MATLAB are presented. One method for
hybrid optimization is also introduced and described.

Section V presents the results from optimizing the synchronous
generator model with PSO, GA and hybrid optimization.
Results from the use of parallel computing are given.

Genetic Algorithms and Particle Swarm Optimization are
compared in Section VI based on their demand for compu-
tational resources and on how efficiently each method con-
verges towards the optimal solution. The usefulness of hybrid
optimization and the savings in computational resources when
using parallel processing are discussed. Section VII draws
conclusions from the work presented in this paper.
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II. OPTIMIZATION TECHNIQUES

A. General formulation of optimization problems

A basic optimization problem can be formulated in the follow-
ing way:

min
x

Z(x) (1)

Subject to

gi(x) ≤ bi (2)

hj(x) = dj (3)

L ≤ x ≤ U (4)

for i = 1 : p inequality constraints and j = 1 : q equality
constraints.

Eq. 1 is the objective function and is needed to measure the
quality of a solution relative to other possible solutions. The
feasible region is defined by the inequality constraints in Eq.
2, the equality constraints in Eq. 3 and the upper and lower
limits of the independent variables given by Eq. 4.

Most engineering problems involve some sort of nonlinear
formulation either in the formulation of objective functions
or in constraints to the feasible region of solutions. Nonlinear
optimization algorithms are the response to this challenge [3],
but they have one important drawback.

Gradient based, nonlinear algorithms are generally unable to
reach the global optimum as they get trapped in local optima
[16]. They are however, from a given starting point, quite
efficient at finding the nearest optimal solution as they use
the gradient of the objective function to find the best search
direction [16].

Integer variables are needed when electrical machines are to be
optimized. Poles, stator slots and the number of base windings
are some of the variables that must be integers. Gradient based
methods can not optimize problems with integer variables [17].
Other optimization algorithms should be investigated.

Stochastic optimization algorithms like Genetic Algorithms
and Particle Swarm Optimization are sophisticated search
methods. They search through the feasible region to find good
solutions [16]. The solution from such stochastic algorithms
can not generally be guaranteed to be the optimal solution.

B. Particle Swarm Optimization

PSO has become increasingly popular in the field of elec-
tromagnetics and electrical machine design and was first
suggested by Kennedy and Eberhart in [18] and [19]. This
presentation is a modified version of what was presented in
[3].

PSO emulates the behaviour of a flock of birds or a swarm of
bees [19] where each individual in the population is searching
through the solution space for the best possible position.
Individuals are utilizing both their own memory and the
collective memory of the swarm. Each individual is racing
through the solution space with a given velocity and direction
in search for a better location. The direction of each individual
is determined by the best position recorded by the swarm and
the best position recorded by the individual.

For each iteration every individual in the swarm is moved into
a new position where a new fitness value is calculated. The
fitness value is compared to the best recorded position of both
the individual and the swarm. If a better position is found, then
the memory is updated. This is repeated until the algorithm
reaches a predefined stopping criteria. A graphical presentation
of the algorithm can be found in Figure 1.

Fig. 1. Basic flow chart for Particle Swarm Optimization
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Fig. 2. Graphical representation of the position calculation

According to [20], the updated velocity and position along
each dimension for each particle can be formulated using Eqs.
5 and 6 together with Table I. A graphic presentation is given
in Figure 2.

vn = w · vn + c1 · r() · (xpbn − xn) + c2 · r() · (xgbn − xn) (5)

xn = xn + ∆t · vn (6)

TABLE I.
PSO PARAMETER VALUES

∆t 0.1
c1 2
c2 2
w ∈ [0.4, 0.9]

A linearly decreasing inertial weight is proposed in [21] on
the form of Eq. 7. The method of using a decreasing inertial
weight is utilized in the standard PSO that is implemented for
this paper.

w(i) = wmax − (
wmax − wmin

imax
) · i (7)

wmax is the initial value of the inertial weight and wmin is
the final value. imax is the maximum number of iterations and
i is the current iteration.

Boundary conditions can be implemented by applying different
constraints to the solution space. Three different methods for
dealing with boundary conditions have been proposed in [20].
In this paper, absorbing walls have been chosen. This method
sets the velocity component of a particle in the direction of
the wall to zero when the particle hits the wall.

There are many suggested ways of improving the performance
of the PSO. A few of them are presented in [22], [23] and
[24]. Two suggestions that will be investigated are called PSO
with centroid (CPSO) [25] and improved PSO (IPSO) [26]. A
detailed description on how to implement the IPSO and CPSO
is presented in Appendix A.

C. Genetic Algorithms

Genetic Algorithms, or evolution programs, are sophisticated
search methods. This section is based on modifications to the
presentation of Genetic Algorithms in [3]. Along with methods
like Simulated Annealing and Particle Swarm Optimization,
Genetic Algorithms will search through a vast solution space to
come up with a solution that is as close to the global optimum
as possible. The method of Genetic Algorithms exploit the
features of genetic evolution in nature. This process can be
summarized, according to [27], by Figure 3.

Fig. 3. Basic flow chart for genetic algorithms

There are several selection algorithms that can be utilized
together with genetic algorithms. Tournament selection [28]
will be used based on recommendations from [3].

Selection processes must be able to favour individuals with
higher fitness values in order to converge on the global optima.
According to [28] this is called selection pressure. Tournament
selection has the advantage that it can be organized to give a
relatively high selection pressure.

By utilizing a tournament selection algorithm you will get
higher fitness values for each individual that will form the
foundation for the next generation. Genetic algorithms will
converge faster as a result of this. The drawback of this method
is that it requires more computational resources. This can be
solved by parallel processing.

Genetic operators are utilized in order to create new individuals
for the next generation in GA. The most commonly used
operators are crossover-, mutation- and elite operators [29].
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Crossover operators use two parent individuals and creates an
offspring for the next generation. These operators creates the
individual by combining one part of one parent’s vector of
variable values and one part of the other parent’s vector of
variable values. The main concept is to generate a point in
the vector containing the values of each variable where the
variable values before this point is filled with the equivalent
values from the first parent, and the variable values after this
point is filled with the equivalent values from the other parent.

Mutation operators are often applied after the crossover op-
erator has created the next generation. Their function is to
randomly change one or more values in the vector of variable
values of one individual. This is done to increase diversity and
to improve the convergence process [30].

An elite operator can be used to send the most fit individual of
one generation on to the next without any changes. A global
optimum may be reached faster by implementing this operator.

III. TIDAL POWER GENERATOR MODEL

A permanent magnet synchronous generator with concentrated
windings is optimized in this paper. It is designed for tidal
power applications, and the machine model is implemented
and optimized with gradient methods by Astrid Røkke for her
PhD studies [17]. This paper will apply stochastic optimization
techniques to the same model.

A. Variables and design specifications

TABLE II.
DESIGN SPECIFICATIONS

Pshaft Turbine power 1.5 MW
n Mechanical speed 80 rpm
Np Number of poles 22 · nbase
Ns Number of slots 24 · nbase
Nph Number of phases 3

V Line-to-line voltage (rms) 3300 V

This permanent magnet synchronous generator is designed to
be used for tidal power applications. Rated mechanical speed
is therefore set to be 80 rpm with a rated power of 1.5 MW.
All design specifications are listed in Table II, where initially
the number of poles is kept as listed.

The generator model is using the variables listed in Table III.
All the geometric variables are presented graphically in Figure
4. In chapter 2.11 of [31], base windings are defined in the
following way:

”The smallest independent symmetrical section of a winding
is called a base winding. When a winding consists of several
base windings, the current and voltage of which are due to
geometrical reasons always of the same phase and magnitude,
it is possible to connect these basic windings in series and in
parallel to form a complete winding”.

TABLE III.
INDEPENDENT MACHINE VARIABLES

Douter Outer diameter of stator lamination [m]
ds,yoke Thickness of stator yoke [m]
dslot slot depth [m]
wslot slot width [m]
lm length of magnets [m]
αm Magnet width / pole pitch (wmτp )

dr,yoke Thickness of rotor yoke [m]
J Current density [A/mm2]

nbase Number of base windings

Fig. 4. Graphic representation of independent machine variables, taken from
”Gradient based optimization of permanent magnet generator design” by A.
Røkke [17]

B. Constraints and limitations

Boundaries are applied to the independent machine variables.
These are presented in Table IV and are modelled as one vector
of lower bounds and one vector of upper bounds.

TABLE IV.
CONSTRAINTS ON MACHINE VARIABLES

Parameter Lower constraint Upper constraint

Outer diameter 3 m 3.5 m
Stator yoke thickness 15 mm 60 mm

Slot depth 20 mm 75 mm
Slot width 15 mm 50

Magnet length 2 mm 30 mm
Magnet width / pole pitch 0.8 0.98

Rotor yoke thickness 10 mm 60 mm
Current density 1.5 A/mm2 4 A/mm2

Base windings 1 13

A set of parameter constraints on the machine is defined in
Table V. Constraints are used to ensure that the machine meets



MASTER’S THESIS SPRING 2014 - DEPARTMENT OF ELECTRIC POWER ENGINEERING, ENERGY CONVERSION GROUP 5

operational requirements on parameters like power factor,
efficiency and torque production.

Variables, boundaries, constraints and machine details are
implemented in a form that makes the model compatible to the
functionality of the optimization toolboxes of MATLAB. This
makes comparison between different optimization algorithms
straight forward.

TABLE V.
PARAMETER CONSTRAINTS

Parameter Lower constraint Upper constraint

Machine length 0 6 m
Tooth width 5 mm ∞

Magnet width 0 2·π·Rinner
Np

+ 1 mm
Inner radius 0 ∞

Winding width 1 mm ∞
Winding diameter 0 ∞
Tooth flux density 0 1.5 T

Stator yoke flux density 0 1.1 T
Rotor yoke flux density 0 0.9 T

Current loading 0 35 kA/m
Air gap torque Trequired ∞
Efficiency (η) 0.97 1.0
Power factor 0.85 1.0
Frequency 0 200 Hz

Mech. time constant (τmech) 0 30 µ s

C. Model details

A magnetic circuit model, see Figures 5 and 6, is used to
analytically calculate the air gap flux density in the machine.
Air gap length is modified using the Carter coefficient [32]. Air
gap flux is used together with the stator current to calculate the
working torque. Torque is calculated with Eq. 8. Stator current
is calculated using winding theory presented in [32] and [31].

T =
3

2

Np
2
LφmIs

√
2 (8)

T is the produced torque, φm is the flux linkage from the
rotor field and Is is the stator current. The efficiency of the
machine is found after copper-, magnet-,rotor- and stator yoke
losses have been calculated. Other aspects of the machine that
are modelled are the power factor and the mechanical torque
relationship. For a more detailed description of the model of
this machine, see [17].

Fig. 5. No-load magnetic circuit model for air gap flux density calculations
[17].

Fig. 6. Section of armature reaction circuit for calculation of electric loading
and magneto-motive force [17].

D. Objective function

One of the main challenges for renewable electricity generation
is cost reduction. Total cost is therefore an integral part of the
objective function for optimizing a machine for tidal energy
conversion.

Z(x) = Ms,yoke · Clamination +Mconductor · Ccopper
+Mr,yoke · Csteel +Mpm · Cpm

(9)

TABLE VI.
COST COEFFICIENTS

Clamination Ccopper Csteel Cpm

4 e/kg 11 e/kg 6 e/kg 85 e/kg

M is the mass of each material and C is the cost per unit of
mass in Eq. 9. A list of unit costs for each material is given
in Table VI. Another possible objective function may be total
mass instead of total cost.

IV. MATLAB BASED OPTIMIZATION TOOLS

A. Particle swarm optimization

The Particle Swarm Optimization algorithm that is imple-
mented for this paper uses four input parameters. Population
size and the number of iterations must be set to govern the
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optimization process. Two vectors must be defined to set
the upper and lower boundaries of the independent variables.
Constraints are given directly by the script containing the
objective function.

When the population for a PSO problem is created, two things
need to be taken into consideration. First, all variables are
randomly given a value within a given range. Second, each
individual is evaluated to make sure that the suggested solution
is within the feasible design space set by inequality constraints.

This paper has selected the following method for creating
the initial population; a set of variable values are randomly
drawn and then the solution is checked for feasibility. The
script moves on to create another particle in the population
if the suggested particle is feasible. Otherwise a new particle
is drawn and checked until a feasible combination is found.
Global best position and personal best position for each particle
are calculated after the initialization is completed, and at the
beginning of each iteration.

Velocity and position for the standard version of PSO is
calculated in each iteration according to Eqs. 5 and 6. Inertial
weight is calculated using Eq. 7 and the rest of the parameters
of the standard PSO is given in Table I.

In centroid PSO Eq. 5 is substituted with Eqs. 19, 20 and 21
while improved PSO uses Eq. 13 to update velocity. Parameters
and details are given in Appendix A.

The details of the code used in this report can be examined in
Appendix C.

B. Genetic algorithms

The Global Optimization Toolbox of MATLAB [33] provides
a complete package of genetic algorithm features. The toolbox
is used to optimize the machine model presented in Section
III and compare it to the implementation of Particle Swarm
Optimization.

An objective function, a function with constraints, the size of
the problem and boundaries for the independent variables must
be supplied by the user. A detailed procedure for the setup of
GA in MATLAB is presented in Appendix B.

C. Hybrid optimization

Population based, stochastic algorithms are good at escaping
local minima but not as good at finding the exact global
optimum. Gradient based optimization is, on the other hand,
unable to escape local minima [16].

Combining stochastic and gradient methods into a hybrid
solution will prevent both inability to converge, and premature
convergence tendencies. The method outlined in this paper
focuses on the use of MATLAB and its associated toolboxes
[33] [34] as the vehicle for the optimization process.

In MATLAB, the standard optimizer for constrained nonlinear
problems is called fmincon [34]. Four different algorithms are

included for fmincon; Trust Region Reflective Algorithm, Active
Set Algorithm, Interior Point Algorihtm and SQP Algorithm.

Constrained, nonlinear optimization with fmincon has some
limitations. First, fmincon is gradient based and therefore made
for problems with continuous objective functions, continuous
constraints and continuous first derivatives. This excludes the
option of using integer variables when this solver is applied.
Stochastic optimization is not dependent on gradients. Integer
variables are therefore not a problem. GA has implemented
integer optimization options and PSO is easily modified to
take integer constraints into account.

Astrid Røkke [17] has tested all four versions of fmincon on the
generator model presented in Section III, and found that Trust
Region Reflective Algorithm cannot use nonlinear constraints.
It is therefore not applicable to models of electrical machines.
Optimizing with Interior Point Algorihtm gave both more
robust and faster answers than the remaining two algorithms
[17]. All three methods reached similar optimization results.

Interior Point Algorithm solves a problem as a sequence of
approximate minimization problems as defined in Eqs. 10, 11
and 12. This is done by changing the inequality constraints
into equality constraints by introducing slack variables [34]:

min
x,s

fµ(x)− µ
∑
i=1

ln(si) (10)

Subject to

h(x) = 0 and g(x) + s = 0 (11)

µ→ 0⇒ f(x)→ f(x)∗ (12)

Where µ is a positive constant and each s is a slack vari-
able representing a non-binding constraint. The Interior Point
Algorithm computes each step with one of two built-in meth-
ods. First, it tries to solve the KKT-conditions with a linear
approximation of the reformulated problem. KKT-conditions
are requirements for solutions of nonlinear optimization prob-
lems. For more details on nonlinear optimization and KKT-
conditions, see [3]. The first step is called the Direct step or
Newton step approach. Second, if the Newton step fails the
algorithm will solve the problem with a Conjugate Gradient
step using a trust region approach [34].

The method for hybrid optimization used in this paper runs
either PSO or GA with a population of 25 individuals in
order to search for the global optimal region. The output
vector containing the values of the independent variables from
stochastic optimization is fed as input to the fmincon-solver.

Variables that are set to be integer numbers are handled
by setting the lower and upper boundary for that particular
variable to the output from stochastic optimization. The rest
of the boundaries and constraints are imported in the same
way as with PSO and GA, see Figure 7.
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[X fval exitflag output population scores] = ga(
@iTool_fun,10,[],[],[],[],LB,UB,@iTool_con,
options);

options = optimset('Algorithm','interior-point','
MaxFunEvals',1500,'TolCon',1e-10,'TolX',1e-12,'
ObjectiveLimit',0); % run interior-point
algorithm

[X2,fval,exitflag,output] = fmincon(@iTool_fun,X
,[],[],[],[],LB,UB,@iTool_con,options);

Fig. 7. Setup of hybrid GA in MATLAB

GA, as implemented in MATLAB has options for hybrid
optimization for unconstrained and constrained problems [33].
Constrained problems are handled in the same way as dis-
cussed in this section. Output from GA is sent to fmin-
con after the final step is reached in GA. Using the auto-
matic option is not possible for problems with integer vari-
ables. Hybrid optimization is set in GA by adding ’Hybrid-
Fcn’,{@fmincon,hybridopts} to the options declaration for the
ga-function [33]. hybridopts must be declared before it is used.

D. Parallel computing solutions

One challenge with stochastic optimization is the amount of
computational resources needed. In order to efficiently work on
problems with more than a handful of independent variables,
it is desirable to utilize parallel processing tools.

One definition of parallel processing is to use more than one
computer processor to perform work on a problem. Indepen-
dent tasks are performed simultaneous on several processors
[35]. MATLAB offers the possibility for parallel computing
on machines with more than one processor core. This is done
through the Parallel Computing Toolbox [36].

For a problem to be suitable for parallel computing, it must
be made up of tasks that can be processed independently.
The number of tasks must be large enough to defend the
administration costs of distributing each task to independent
processing units. Stochastic optimization seems to be well
suited for parallel processing. The main reason for this is
that the problem consists of independent sub-problems, i.e.
particles or individuals. Numerous operations are executed
iteratively.

In the PSO-algorithm that has been implemented for this paper,
see Appendix C-B, only the initialization part has been mod-
ified for parallel computing. Initialization is done by drawing
a random particle configuration and checking if it is a feasible
solution. If the proposed particle is infeasible, a new random
configuration is drawn. By using parallel computing, this can
be changed into a structure called parfor, see Appendix C-E.
With parfor each iteration of the for-loop is distributed to the
available number of parallel workers [36].

Parallel computing with Genetic Algorithms in MATLAB is
done by enabling the ’UseParallel’,’always’ option for the
ga-function, see Appendix B. To enable parallel computing
in MATLAB, the command parpool(’local’) must be given.
By telling MATLAB to use the setting ’local’, it will use
the available number of processor cores. One can specify the
number of cores one will utilize by giving the number instead
of ’local’ when starting parpool, e.g. 12 or 24.

Parallel computing software using clusters of computers in
cloud solutions are presently being tested at NTNU [37]. One
can get access to up to 168 processor cores. Techila Distributed
Computing Solution can be used to perform computationally
intensive MATLAB applications on distributed work stations
by utilizing unused computer processors, e.g. computer labs.
This solution has been tested in the master’s thesis of Anne-
Siri Borander at the Department of Electric Power Engineering
during the spring of 2014 [38]. Techila Distributed Computing
does not need the Parallel Computing Toolbox [37].

V. OPTIMIZATION RESULTS

A. Particle swarm optimization

The best design found using a hybrid Particle Swarm Opti-
mization algorithm with gradient optimization in the final stage
is presented in Table VII. This design proposal is the final
result of optimizing with PSO.

TABLE VII.
DESIGN PROPOSAL FROM PARTICLE SWARM OPTIMIZATION

Cost 115 900 e
Total weight 15056 kg

Independent variables:
Douter Outer diameter of stator lamination 3.5 m
ds,yoke Thickness of stator yoke 38 mm
dslot slot depth 62 mm
wslot slot width 30 mm
lm length of magnets 6 mm
αm Magnet width / pole pitch (wmτp ) 0.972

dr,yoke Thickness of rotor yoke 35 mm
J Current density 2.57 A/mm2

nbase Number of base windings 4

Machine parameters:
l Length 0.957 m
η Efficiency 97 %
pf Power factor 0.85

Current loading 21016 A/m
wCu Copper weight 920 kg
wmagn Magnet weight 420 kg
wFe Iron weight 9103 kg

Moving from 25 particles and 25 iterations to 25 particles
and 200 iterations gave a 1.15 % reduction in the variance
of the optimization results. Mean value increased with 0.3
%. Optimizing with 100 particles and 25 iterations instead of
25 particles and 25 iterations reduced both mean value and
variance with 11.6 % and 19.1 % respectively. The above
mentioned results are presented in Figure 8.
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Fig. 8. Particle Swarm Optimization results after 100 runs of each configu-
ration

Every configuration was run 100 times in order to get statistical
data to analyse. Figures 9, 10, 11 and 12 display how the
optimization results fluctuates from one run to the other.
Variance is used to present the amount of fluctuation for each
configuration.

Fig. 9. Plot of standard PSO results

Fig. 10. Plot of improved PSO results

Fig. 11. Plot of centroid PSO results

Fig. 12. Plot of hybrid PSO results

PSO has been evaluated in three different versions. Compar-
isons have been made using 25 particles and 200 iterations.
The versions are labelled standard-, improved- and centroid
PSO. Results are presented in Figure 13.

Improved PSO gave a mean value that was 3.45 % higher than
the standard version and a variance that was 354.8 % higher.
Centroid PSO gave a 0.39 % higher mean value and a variance
that was 143 % higher than the standard version.
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Fig. 13. Different versions of Particle Swarm Optimization

Fig. 14. Standard versus hybrid PSO

Including gradient optimization in the final stage of the op-
timization was tested. Data from testing the hybrid version
are presented in Figures 12 and 14. Output from hybrid PSO
indicates that a gradient step at the end of the optimization
process improves the result. Mean value was reduced with 42.5
% and variance went down 73.2 %.

B. Genetic Algorithms

A hybrid version of the Genetic Algorithms similar to the
hybrid version of PSO has been used to find an optimal design

proposal for the permanent magnet synchronous machine. The
design configuration is presented in Table VIII and is similar
to the proposal from Particle Swarm Optimization presented
in Table VII.

TABLE VIII.
DESIGN PROPOSAL FROM GENETIC ALGORITHMS

Cost 115 889 e
Total weight 15062 kg

Independent variables:
Douter Outer diameter of stator lamination 3.5 m
ds,yoke Thickness of stator yoke 38 mm
dslot slot depth 63 mm
wslot slot width 30 mm
lm length of magnets 6 mm
αm Magnet width / pole pitch (wmτp ) 0.9719

dr,yoke Thickness of rotor yoke 36 mm
J Current density 2.55 A/mm2

nbase Number of base windings 4

Machine parameters:
l Length 0.953 m
η Efficiency 97 %
pf Power factor 0.85

Current loading 21054 A/m
wCu Copper weight 924 kg
wmagn Magnet weight 419 kg
wFe Iron weight 9124 kg

100 optimizations with 25 individuals and 200 optimizations
with 250 individuals have been run with three different
crossover fractions. This was done to examine the possibility
for correlation between population size, crossover fraction,
mean value and variance.

GA with populations of 25 individuals seems, according to
Figure 15, to give increasingly better results when crossover
fraction is changed from 0.8 via 0.6 to 0.4. A change of
crossover fraction from 0.8 to 0.6 reduced the mean value from
187 540 e to 184 370 e or 1.7 %. Variance was reduced 13.2
%. Changing the crossover fraction to 0.4 reduced the mean
value to 174 330 e, a 7 % reduction from the initial value.
Variance was 29 % lower for this crossover fraction, something
that can be seen when comparing Figures 17, 18 and 19.

For the case with 250 individuals, it seems to be better to use
a crossover fraction of 0.6 if focus is solely on mean value.
A crossover fraction of 80 % gives a mean cost of 145 650 e
with a 3.6 % and 2.1 % reduction when crossover fraction is
lowered in steps of 20 percentage points. The first reduction in
crossover fraction seems to increase the variance 408 % while
the second reduction in crossover fraction moves the variance
down to a 206.4 % increase from the initial value.
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Fig. 15. 100 runs of GA with different configurations and 25 individuals

Fig. 16. 200 runs of GA with different configurations and 250 individuals

By comparing Figures 15 and 16, one can see that the mean
value from a crossover fraction of 0.4 is reduced from 174
330 e to 142 610 e when population size is changed from
25 to 250. This corresponds to a 18.2 % reduction in the
mean cost of the machine. Similarly, the variance of the 250
individual optimization is 41.1 % lower than when the number
of individuals is 25.

Fig. 17. Plot of GA with crossover fraction equal to 0.8 and 25 individuals

Fig. 18. Plot of GA with crossover fraction equal to 0.6 and 25 individuals

Fig. 19. Plot of GA with crossover fraction equal to 0.4 and 25 individuals
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Fig. 20. Plot of Hybrid GA with 25 individuals

Optimizing with 25 particles and a crossover fraction of 40
%, see Figure 19, is compared to the hybrid version in Figure
20. The comparison is displayed in Figure 21 and shows that
hybrid GA gives a mean machine cost that is 31.2 % lower
than standard GA. Variance is 99.97 % smaller for hybrid GA
compared to the initial results of the standard version.

Fig. 21. Standard versus hybrid GA

In all optimizations presented to this point, the number of base
windings has been set to three, based on the initial results
from gradient optimization and PSO. A study of how sensitive
the generator cost is to the number of base windings has
been run. Results are presented in Figure 22, and one can see
that generator cost is reduced substantially when the design is
changed from one to two base windings. Further cost reduction
is achieved when changing to four base windings as one can
see from Figure 22-B. More than four base windings leads to
a more expensive machine.

Fig. 22. Plot of mean minimum cost versus number of base windings

TABLE IX.
OPTIMIZING WITH PSO VS GA

Mean: Variance
Hybrid PSO 1.2386 · 105 1.5482 · 108

Hybrid GA 1.1745 · 105 2.1917 · 106

Hybrid PSO and hybrid GA with 25 individuals are compared
in Table IX. Hybrid GA, with the number of base windings
set to four, produced an average machine cost that is 5.2 %
lower than the average generator from hybrid PSO. Results
from hybrid GA have a variance that is 98.6 % lower than the
results from hybrid PSO.

A final modification was made to the model and the GA
in order to take advantage of the integer variable features
that are implemented in GA by MATLAB. The number of
base windings was allowed to vary between one and 13. In
addition, the number of poles in the machine was allowed
to vary between a given upper and lower boundary. Results
from the last run of optimizations are presented in Figure 23.
By opening these two variables for optimization, the mean
result from the hybrid GA was reduced to 101 660 e, which
corresponds to a 13.4 % reduction. The variance increased
to 1.1578 · 108 e2. Constraints on the rest of the machine
parameters were kept the same.

The optimal design proposal presented in Table VIII has a
harmonic spectrum that is presented in Figure 24 with a
generator cost of 115 889 e. Optimization with number of
poles and number of base windings as integer variables came
up with a design proposal presented in Table X that costs
91 200 e. This machine has 84 poles and 96 slots while the
former has 88 poles and 96 slots. The harmonic spectrum of
the new design proposal is presented in Figure 25. There is no
visible difference between the harmonic spectrum in Figure 25
and Figure 24, only that the absolute amplitude of the main
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harmonic is 1821 for the 84 pole machine and 1434 in the 88
pole machine.

Fig. 23. Optimizing with number of poles and number of base windings as
integer variables

Fig. 24. Harmonic spectrum of machine with 88 poles and 96 slots

Fig. 25. Harmonic spectrum of machine with 84 poles and 96 slots

TABLE X.
DESIGN PROPOSAL FOR GENERATOR WITH 84 POLES AND 96 STATOR

SLOTS

Cost 91 201 e
Total weight 10889 kg

Independent variables:
Douter Outer diameter of stator lamination 3.5 m
ds,yoke Thickness of stator yoke 29 mm
dslot slot depth 61 mm
wslot slot width 32 mm
lm length of magnets 7 mm
αm Magnet width / pole pitch (wmτp ) 0.9701

dr,yoke Thickness of rotor yoke 41 mm
J Current density 3.11 A/mm2

nbase Number of base windings 4

Machine parameters:
l Length 0.686 m
η Efficiency 97 %
pf Power factor 0.85

Current loading 26682 A/m
wCu Copper weight 738 kg
wmagn Magnet weight 374 kg
wFe Iron weight 6318 kg

C. Computational efficiency

One key parameter for comparing different optimization algo-
rithms is computational efficiency, e.g. the amount of resources
that is needed to perform each optimization. Time is chosen
as a measurement on resource usage in this paper. Different
configurations of each optimization method is compared and
the algorithms are compared to each other. The effect of in-
troducing parallel computing solution on multi-core machines
is investigated.

Computation times for the PSO algorithm presented in Figure
26 indicates that the PSO as implemented for this paper needs
from 67 minutes to 18.5 hours with populations that span from
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25 to 400 particles. 12 processor cores are used in Figure 26.
The number of iterations does not seem to have any significant
weight on the computation time.

Fig. 26. Time consumption for Particle Swarm Optimization

Computation times recorded from running the GA are in the
range from 4 minutes to 12.2 hours with populations that
spans from 25 to 2500 individuals. Genetic Algorithms have
been measured to be 16.75 times faster than Particle Swarm
Optimization when both algorithms operated with a population
of 25 individuals. GA needed 34 % less computation time with
2500 individuals than what PSO needed to optimize with 400
particles.

TABLE XI.
AVERAGE COMPUTATION TIME STANDARD PSO

25 particles, 25 iterations 779 s
25 particles, 200 iterations 800 s
100 particles, 25 iterations 2026 s

Parallel processing with 12 cores was tested on different
configurations of PSO and presented in Table XI. Mean run
time for 25 particles was reduced to around one seventh of the
run time for the single-core processor. When optimizing with
100 particles, the average time needed for the optimization was
reduced to one eight of the single-core case. This corresponds
to a 3.9 hour reduction in computation time.

TABLE XII.
AVERAGE COMPUTATION TIME OF PSO VARIATIONS

Standard PSO 800 s
Improved PSO 1052 s
Centroid PSO 1323 s
Hybrid PSO 1231 s

Data from optimizing with different versions of Particle Swarm
Optimization presented in Table XII indicate that the standard
version is faster than the other three that was tested. It seems

to be 24 % faster than the improved version, 40 % faster than
Centroid PSO and 35 % faster than the hybrid version.

Fig. 27. Mean computation time for hybrid GA with different number of
base windings

TABLE XIII.
AVERAGE COMPUTATION TIME OF GA VARIATIONS

Standard GA, 25 individuals 79 s
Standard GA, 250 individuals 408 s

Hybrid GA, 25 individuals 213 s

Running the optimization on 12 cores with GA yielded,
according to Table XIII, a computation time that is three
times faster than with one processor core for problems with
25 individuals. Parallel processing with 250 individuals on 12
cores was 6.3 times faster than with one core. Hybrid GA
increased the computation time with 134 seconds for problems
with 25 individuals on the same 12 core computer.

Figure 27 indicates that computation time for the GA is
proportional to the number of base windings. Optimizing with
few base windings seems to be faster than optimization with
more base windings. Table XIII and Table XII presents a 17
minute difference in run time for the hybrid GA versus hybrid
PSO, with the hybrid GA being 5.8 times faster.
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Fig. 28. Parallel processing with varying number of cores

Parallel processing seems to be very useful in reducing the
time it takes to run stochastic optimization algorithms. Figure
28 presents the benefit that can be gained by using 12, 24 and
48 processor cores instead of one for PSO.

The largest case that has been run with PSO is 400 particles
and 100 iterations. Moving from 12 to 24 cores reduced the
time consumption 34 %. Doubling the number of processor
cores to 48 gave an additional 19.8 % reduction. Running on
48 cores was 15 times faster than running on one. The smaller
25 particle population problem was made 6.8 times faster with
24 parallels which amounts to a reduction from 67 minutes to
10. The run time for the larger case went from 18.5 hours to
74 minutes.

Fig. 29. Parallel processing with varying number of cores

The results from optimizing with GA on multi-core machines
are displayed in Figure 29. Large problem formulations may
become up to 35 times faster with 48 cores. This was the
case when a population of 2500 individuals was optimized.
Computing this case 35 times faster reduced the computation
time from more than 12 hours to 21 minutes.

Figures 28 and 29 indicates that 48 cores are slower than 24
cores for PSO populations with less than 40 particles, and
slower than both 24 and 12 cores for GA populations smaller
than 70 individuals.

VI. DISCUSSION OF RESULTS

A. Particle Swarm Optimization versus Genetic Algorithms

Both PSO and GA are able to find the optimal region of the
design space. They managed to find the same optimal solution
with the aid of gradient optimization, see Tables VII and VIII.
A standard population size of 25 was selected for comparing
the algorithms.

PSO with 25 particles and 200 iterations gave an average
generator cost of 215 460 e over 100 optimization runs.
The corresponding GA configuration with 25 individuals, a
crossover fraction of 40 % and three base windings gave a
mean cost of 174 330 e. This means that GA is able to find
a machine design that is 19.1 % cheaper on average for a
population size of 25. PSO results had a variance of 5.78 ·108

e 2 while the variance of the GA optimization was 2.78 · 109

e 2. This is a 380 % increase from PSO to GA.

PSO with 25 particles and 200 iterations gives a mean value
of the cost that is 0.3 % higher than for the case with 25
iterations. 200 iterations instead of 25 iterations gave a 1.15
% reduction in the variance of the results.

Two modifications to the PSO was tested, but they only
resulted in higher mean results and more variance. Mean values
for the modified PSO algorithms were 0.4 % and 3.45 % higher
than for the standard version. Variance for the optimization
results increased with 355 % and 143 % respectively. Based on
these results, standard PSO seems to be a better optimization
algorithm for models of electrical machines.

Increasing the population size for the standard version of PSO
from 25 to 100 particles while keeping the number of iterations
at 25 yielded better results. Mean generator cost was lowered
11.9 % to 189 860 e and variance went down 18.2 % to
4.73 ·108 e 2. This indicates that larger population sizes gives
better convergence towards the global minimum.

Anne-Siri Borander has used a modified version of the PSO
from [3] in her Master’s thesis [38]. PSO was used to optimize
the height and width of permanent magnets in an electrical
machine using Finite Element Analysis (FEA) in order to
maximize the torque of the machine.

Results presented by Anne-Siri Borander [38] indicates that
more particles may be more efficient than more iterations in
order to increase convergence. These findings reinforce the
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results already discussed in this section and contradicts the
initial findings made in [3] where data indicated that increasing
the number of iterations were more efficient than increasing
the population size.

Population size was increased to 250 for the GA while the
other parameters remained unchanged. Average generator cost
went down 18.2 % to 142 610 e as a result of this. Variance
decreased 41 % to 1.64 · 109 e 2.

Stochastic optimization algorithms like PSO does not gener-
ally guarantee convergence to the global optimum [23], [39].
The problem of premature convergence, that the population
converges too fast to a suboptimum, is a known challenge for
the GA as well [27].

All data from standard PSO and GA points to premature
convergence, as neither method is capable of reaching the same
results as gradient optimization managed to do in [17].

B. Hybrid optimization methods

Convergence of gradient optimization techniques are generally
good [14], while convergence towards local optima is one of
the main challenges of these methods. Global search with PSO
and GA are used as a first stage of the hybrid optimization that
has been tested in this paper. The Interior Point Algorithm
in MATLAB was added as a final stage in the optimization
process on both PSO and GA.

Changing GA into a hybrid version with gradient end-
optimization, made the mean output value from the optimiza-
tion 31.2 % lower. At the same time the variance was reduced
to one 3400th of the initial value from the standard GA. These
results indicates that hybrid GA may be a good and reliable
optimization tool for problems involving electrical machine
design.

Hybrid GA managed to reach an average generator cost of 117
450 e. This was 5.2 % less than the mean value of 123 860
e that was reached by the hybrid PSO. Variance with hybrid
GA was 70.6 times smaller than the variance of hybrid PSO.
At the end of the gradient step of the hybrid optimization, the
variance of the PSO and GA are down to 1.55 · 108 e 2 and
2.19·106 e 2 respectively. Hybrid GA gives better convergence
towards the optimum solution with a variance that is several
orders of magnitude lower than the hybrid PSO. It seems that
hybrid GA is a better optimization algorithm than hybrid PSO
for machine design problems.

The inclusion of a gradient step to the PSO reduced the mean
value of the generator cost with 42.5 % and the variance with
73.2 %. Hybrid PSO has a convergence that seems to make it
a viable method for design of electrical machines. However, in
comparison to the results from hybrid GA, the mean resulting
value of the objective function and the variance are higher.
This makes the hybrid GA a more suitable method.

GA, PSO and hybrid versions of both have been used to
optimize an induction machine in [10]. In [10], the objective

function was reduced 19.6 % using a hybrid GA and 23.6 %
using a hybrid PSO. These results stand in contrast to what has
been discussed in this paper. One reason why the PSO found
design proposals that were worse than the proposals GA found
may be that GA is implemented by MATLAB by professional
programmers, while PSO has been implemented by the author.

The significant improvements in both convergence and accu-
racy that has been reached, by combining stochastic techniques
with gradient methods, are in line with other findings from
studies done on benchmark cases for both GA [13] and PSO
[14].

Integer variable optimization was allowed for the GA. This was
done by allowing the number of base windings and the number
of poles in the generator model to be optimized. Expanding the
number of independent variables to 10 increased the feasible
region and reduced the average value of the objective function
to 101 660 e. This is down 42.7 % from the initial value
from the standard GA. Allowing the number of poles to be
optimized as an independent variable made no visible change
to the harmonic spectrum.

C. Parallel processing solutions

Parallel processing of PSO and GA has reduced the compu-
tation time from hours to minutes. Optimizing on computers
with up to 48 processor cores has made it possible to perform a
quantitative analysis that would otherwise have been infeasible
due to the high demand for computational resources.

Time consumption was reduced from 12 hours to 21 minutes
for a run of GA with 2500 individuals using 48 processor
cores. Using the 48 core computer on a PSO problem with 400
particles and 100 iterations reduced the computation time from
18.5 hours to 74 minutes compared to running it on a single-
core computer. Similar results were obtained in [38] where
computation time was reduced from 13 hours to less than one
hour using 25 processor cores.

Series of 100 optimizations on each parameter configuration
was run on a 12 core computer. Standard PSO with 25 particles
and 200 iterations used on average 800 seconds per run. GA
without gradient optimization used 79 seconds on average for
populations of 25 individuals.

Hybrid PSO and hybrid GA used 1231 seconds and 213
seconds respectively. This implies that hybrid GA is 5.8 times
faster, on average, than hybrid PSO for the given configura-
tions.

Another promising parallel processing tool has been tested by
Anne-Siri Borander in [38]. The method called Techila Dis-
tributed Computing uses idle computer processors connected
in a cloud solution to process the optimization algorithm [37].
This seems to be a good solution in cases where large multi-
core computers are not available.

Optimizing the FEA problems in [38] using PSO yielded
computation times that was up to 25 times faster with Techila
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than on single-processor machines. Reductions in run time
were in line with what was observed using the 48 core
machine. Techila seems to be a good solution for cases with
many particles and few iterations.

Parallel processing tools have proven efficient at reducing the
need for computational resources for performing stochastic
optimization. An obvious next step to the refinement of the
process of designing electrical machines is to combine FEA
and algebraic models of electrical machines to gain more ac-
curate results. Expanding the number of independent variables
to include winding layout as presented in [29] and [30] should
be explored in combination with parallel processing in order
to make it feasible. Techila Distributed Computing and other
cloud solutions should be tested more extensively.

VII. CONCLUSIONS

Tidal energy extraction has the potential to become an im-
portant source of renewable electricity production. For tidal
energy to become competitive with traditional sources of
electric energy the cost per kWh must be reduced. One way
of achieving this is to minimize the cost of the generator.

Genetic Algorithms (GA) have proven to be more useful than
Particle Swarm Optimization (PSO) in design of electrical
machines. A permanent magnet synchronous generator was
optimized on cost. GA managed, on average, to find design
proposals that yielded 19.1 % cheaper machines than PSO with
populations of 25 individuals. Both PSO and GA performed
better with increased population sizes.

Stochastic algorithms like PSO and GA are in general good
at finding the optimal region of the design space. They are,
however, poor instruments for finding the optimal point on
their own. Hybrid optimization, where gradient methods are
included as a final step in the optimization should be used
to overcome the phenomenon of premature convergence in
stochastic algorithms.

Hybrid GA managed to converge to an average cost of the
generator that is 5.2 % lower than what was reached by the
hybrid PSO. Optimization results show a variance that is 98.6
% lower for hybrid GA than it is for hybrid PSO. Moving
from a pure GA optimization to the hybrid version resulted in
a 31.2 % reduction in the average cost and a variance that was
99.97 % lower. Including the gradient step in PSO lowered the
mean generator cost 42.5 %. Variance became 73.2 % smaller.

Parallel computing on multi-core computers has proven very
useful for optimization and should be utilized as much as
possible. Parallel processing features are able to reduce the
computation time of each optimization up to 97 % for large
problems. The run time for GA with 2500 individuals was
reduced 35 times from 12 hours to 21 minutes when changing
from a single processor computer to a computer with 48
processor cores. The run time for PSO with 400 particles and
100 iterations went from 18.5 hours to 74 minutes, a 93 %
reduction.

VIII. FURTHER WORK

The next step of the process of designing electrical machines
is to combine Finite Element Analysis (FEA) and algebraic
models of electrical machines to gain more accurate results.
More exact loss calculations should be made by integrating
FEA-models of the generator. This could be done using
programs like COMSOL Multiphysics.

One possible point of departure for any one wishing to
continue this work could be to combine the work done in
this paper with the work presented in the master’s thesis of
Anne-Siri Borander [38].

Expanding the number of independent variables to include
winding layout as presented in [29] should be explored in com-
bination with parallel processing in order to make it feasible.
Including the stator winding layout in the optimization process
could produce better design proposals.
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Machines, 1st ed. John Wiley & Sons, 2008.

[32] D. Hanselmann, Brushless Permanent-Magnet Motor Design.
McGraw-Hill, 1994.

http://www.sciencedirect.com/science/article/pii/S0377042706007552
http://www.sciencedirect.com/science/article/pii/S1568494611003206
http://dx.doi.org/10.1155/2013/384125
http://iaesjournal.com/online/index.php/TELKOMNIKA/article/view/2947
http://iaesjournal.com/online/index.php/TELKOMNIKA/article/view/2947
http://dx.doi.org/10.1007/978-3-642-00267-0_11


MASTER’S THESIS SPRING 2014 - DEPARTMENT OF ELECTRIC POWER ENGINEERING, ENERGY CONVERSION GROUP 18

[33] MathWorks. (2013) MATLAB - Global Optimization Toolbox - User’s
Guide - R2013b. http://www.mathworks.com/help/pdf doc/gads/gads
tb.pdf. MathWorks. [Online]. Available: http://www.mathworks.com/
help/pdf doc/gads/gads tb.pdf

[34] ——, “MATLAB - Optimization Toolbox - User’s Guide - R1013b,”
http://www.mathworks.com/help/pdf doc/optim/optim tb.pdf, nov
2013.

[35] E. Rasmussen. (2002) Parallel processing. Computer Sciences. Re-
trieved June 05, 2014 from Encyclopedia.com.

[36] MathWorks, “MATLAB - Parallel Computing Toolbox - User’s Guide -
R2013b,” http://www.mathworks.com/help/pdf doc/distcomp/distcomp.
pdf, des 2013.

[37] J. Floan, “Techila Distributed Computing Solution - Norwegian Univer-
sity of Science and Technology - Presentation,” https://www.hpc.ntnu.
no/display/hpc/Techila+Distributed+Computing+Solution, nov. 2013.

[38] A.-S. Borander, “Parallel processing of optimization algorithms,” Mas-
ter’s thesis, Department of Electric Power Engineering, Norwegian
University of Science and Technology, 2014.

[39] D. ping Tian, “A Review of Convergence Analysis of Particle Swarm
Optimization,” International Journal of Grid and Distributed Comput-
ing, vol. 6, no. 6, pp. 117–128, 2013.

http://www.mathworks.com/help/pdf_doc/gads/gads_tb.pdf
http://www.mathworks.com/help/pdf_doc/gads/gads_tb.pdf
http://www.mathworks.com/help/pdf_doc/gads/gads_tb.pdf
http://www.mathworks.com/help/pdf_doc/gads/gads_tb.pdf
http://www.mathworks.com/help/pdf_doc/optim/optim_tb.pdf
http://www.mathworks.com/help/pdf_doc/distcomp/distcomp.pdf
http://www.mathworks.com/help/pdf_doc/distcomp/distcomp.pdf
https://www.hpc.ntnu.no/display/hpc/Techila+Distributed+Computing+Solution
https://www.hpc.ntnu.no/display/hpc/Techila+Distributed+Computing+Solution


MASTER’S THESIS SPRING 2014 - DEPARTMENT OF ELECTRIC POWER ENGINEERING, ENERGY CONVERSION GROUP 19

APPENDIX A
MODIFICATIONS TO THE PARTICLE SWARM OPTIMIZATION

ALGORITHM

A. Improved PSO

This section presents the details of the modification to Particle
Swarm Optimization called Improved PSO in the paper Im-
proved Particle Swarm Optimization in Constrained Numerical
Search Spaces [26].

TABLE XIV.
IMPROVED-PSO PARAMETER VALUES

∆t 1
c1 2.7
c02 2.5
w 1
k 0.729

The original velocity and position calculations are replaced
with Eqs. 13 and 14.

vn = k · [vn + c1 · r() · (xpbn −xn) + c2 · r() · (xgbn −xn)] (13)

xn = xn + vn (14)

Factors k and c2 are varied based on the iteration counter as
listed in Eqs. 16 and 17.

y =
i

imax
(15)

kt+1 = k · y4 (16)

ct+1
2 = c2 · y4 (17)

For each iteration i a fraction p given by Eq. 18, of the
population will use the initial values of k and c2. The rest
of the population will use the dynamic values given by Eqs.
16 and 17.

p = k +
sin(4πy)

10.3
(18)

B. Centroid PSO

Another modification to the PSO that has been tested is what
is called Particle Swarm Optimization with Centroid (CPSO)
[25]. This version extends the traditional PSO algorithm by
introducing the geometric centre, or centroid, of the swarm
population as one of the points that each particle is drawn
towards.

TABLE XV.
CENTROID-PSO PARAMETER VALUES

∆t 1
c1 1.4
c2 1.4
c3 1.4
w ∈ [0.4, 0.9]
α 0.5

Eqs. 19 and 20 gives the expressions for the centroid of the
swarm and for the centroid of personal best locations of the
swarm respectively.

xcn =
1

M

M∑
i=1

xin (19)

xpbcn =
1

M

M∑
i=1

xpbin (20)

The modified velocity function is given in Eq. 21. Position is
calculated as for the IPSO.

(21)vn = w · vn + c1 · r() · (xpbn − xn) + c2 · r() · (xgbn − xn)

+ c3 · rand · (α · xcn + (1− α) · xpbcn − xn)

APPENDIX B
SETUP OF GENETIC ALGORITHMS IN MATLAB

In this section, a detailed description is given for how to use
the Genetic Algorithms in MATLAB.

Boundaries for independent variables are defined as vectors
LB and UB for upper and lower bounds. These are included
in the settings for GA optimization using the ’PopInitRange’
command. LB and UB must be included in the function call
to the GA as presented at the bottom of the code presented in
Figure 30.

Population size and number of generations are set using the
’Generations’ and ’PopulationSize’ command in the code.
Each set of parent individuals is selected through tournament
selection. This procedure was chosen based on the results
presented in [3].

Constraints are included in the optimization process through
the call to ’iTool con’ which returns the constraint vector from
the machine model called iTool. iTool is developed by Astrid
Røkke, PhD candidate at the Department of Electric Power
Engineering, and is therefore not included in the appendices
of this paper.
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% Performing the optimisation using the built-in
function ga in matlab

options = gaoptimset('FitnessScalingFcn',{
@fitscalingrank }, ...
'PopInitRange',[LB ; UB],...% Decides the range

of variables for the initial population
'StallGenL',10,...
'Generations',30, ... %Sets the number of

generations
'PopulationSize',25,...% Sets the population

size
'EliteCount',2, ... %Number of individes that

goes directly to next generation with out
crossover and mutation

'CrossoverFraction',0.4,... % Sets the
percentage of next generation that is
created by crossover, e.g. 40%

'UseParallel','always',... %Enables parallel
computing

'MigrationInterval',10,...
'MigrationFraction',0.1,...
'MigrationDirection','both', ...
'PopulationType','doubleVector',...
'SelectionFcn', { @selectiontournament [] });

... %Selects the selection function

%Setup for use of the function ga for continuous
variables

[X fval exitflag output population scores] = ga(
@objective_fun,nVar,[],[],[],[],LB,UB,
@constraint_fun,options);

%Setup for use of function ga for integer variables
intcons = [9,11]; % Example for when variable 9 and

11 are integers

[X fval exitflag output population scores] = ga(
@objective_fun,nVar,[],[],[],[],LB,UB,
@constraint_fun,intcons,options);

Fig. 30. Setup of Genetic Algorithms in MATLAB

The crossover fraction and the number of elite individuals are
set by ’EliteCount’ and ’CrossoverFraction’ in Figure 30.
Setting ’UseParallel’ to ’always’ enables the use of built-in
parallel processing features in the Genetic Algorithms.

Genetic Algorithms as implemented in the Global Optimiza-
tion toolbox [33] allows for integer variables in the problem
configuration. Integer GA uses a special creation-, crossover-
and mutation function [33]. It tries to minimize a penalty
function instead of the fitness function. In addition it uses a
special binary tournament selection procedure.

The implication of this is that the line specifying the selection
function, named ’SelectionFcn’, must be removed. A vector
intcons must be included in the call to the GA function as
presented in figure 30.

APPENDIX C
MATLAB SCRIPTS

A. Setup of PSO in Matlab

function object = PSO_setup

%%Defining upper and lower boundaries and startpoint
for all variables

% Variables:
% x(1) Outer diameter of active material[m]
% x(2) stator yoke thickness [m]
% x(3) slot depth [m]
% x(4) slot width [m]
% x(5) magnet length (in magnetisation direction)[m]
% x(6) magnet width/pole pitch
% x(7) rotor yoke thickness [m]
% x(8) current density [A/mmˆ2]
% x(9) number of base windings

UB_1 = 3.5;
LB_1 = 3;
UB_2 = 60e-3*10;
LB_2 = 15e-3*10;
UB_3 = 75e-3*10;
LB_3 = 20e-3*10;
UB_4 = 50e-3*10;
LB_4 = 15e-3*10;
UB_5 = 30e-3*10;
LB_5 = 2e-3*10;
UB_6 = 0.98;
LB_6 = 0.8;
UB_7 = 60e-3*10;
LB_7 = 10e-3*10;
UB_8 = 4;
LB_8 = 1.5;
UB_9 = 13;
LB_9 = 1;
LB_10 = 0.9;
UB_10 = 1.0;

efficiency=0.97;
popSize = 25;
imax = 200;

LB = [LB_1 LB_2 LB_3 LB_4 LB_5 LB_6 LB_7 LB_8 LB_9
efficiency];

UB = [UB_1 UB_2 UB_3 UB_4 UB_5 UB_6 UB_7 UB_8 UB_9
efficiency];

%Call to standard version of PSO:
[xGb, gb ] = PSOfunction(popSize,imax, LB, UB);
%Call to improved version of PSO:
[xGb, gb ] = IPSOfunction(popSize,imax, LB, UB);
%Call to centroid version of PSO:
[xGb, gb ] = CPSOfunction(popSize,imax, LB, UB);

%Setup of gradient step when hybrid PSO is used:
LB = [LB_1 LB_2 LB_3 LB_4 LB_5 LB_6 LB_7 LB_8 xGb

(1,9) efficiency];
UB = [UB_1 UB_2 UB_3 UB_4 UB_5 UB_6 UB_7 UB_8 xGb

(1,9) efficiency];
options = optimset('Algorithm','interior-point

','MaxFunEvals',1500,'TolCon',1e-10,'TolX'
,1e-12,'ObjectiveLimit',0); % run interior
-point algorithm

[X,fval,exitflag,output] = fmincon(@iTool_fun,
xGb,[],[],[],[],LB,UB,@iTool_con,options);

object = fval;

end
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B. Particle Swarm Optimization Algorithm

function [xGb,gb] = PSOfunction(popSize,imax,LB,UB)

c1 = 2; %Governs how much a particel is pulled
%towards the personal best position

c2 = 2; %Governs how much a particel is pulled
%towards the global best position

dt = 0.01; %Governs how position is updated
fitness = zeros(popSize,1);

%The call to initialPop creates the
%initial population.
[x,values] = initialPop(popSize,LB,UB);
count = zeros(popSize,1);
fitness = values;

%If all particles have feasible solutions
%initially, then all future recordings
%of personal best positions will be
%feasible solutions.

pb = fitness;
xPb = x;
v = zeros(popSize,length(LB));

gb = fitness(1,1);
xGb = x(1,:);

for m = 2 : popSize
if ((fitness(m,1) < gb) && (fitness(m,1) >

0))
gb = fitness(m,1);
xGb = x(m,:);

end
end

i = 1;
while i < imax

w = inertialWeight(i,imax);
for j = 1 : popSize

y = x(j,:);
[f,c,ceq,ms]=iTool(y);
count(j,1) = 0;

for k = 1:length(c)
if (c(k) <= 0)

count(j,1) = count(j,1) +1;
end

end

if (count == length(c))
fitness(i,1) = f;

end
%The following section compares the current
%poition to the personal best of the
%particle and the global best of
%the swarm.

if fitness(j,1) < pb(j,1)
pb(j,1) = fitness(j,1);
xPb(j,:) = x(j,:);

end
if fitness(j,1) < gb

gb = fitness(j,1);
xGb = x(j,:);

end

end

%A particle that reaches the outer boundary
%in one direction will have its velocity
%component in that given direction
%set to zero.

for k = 1 : popSize
v(k,:) = w*v(k,:) + c1*rand*(xPb(k

,:) - x(k,:)) + c2*rand*(xGb -
x(k,:));

x(k,:) = x(k,:) + dt*v(k,:);
for m = 1 : length(LB)

if (x(k,m) < LB(m))
x(k,m) = LB(m);
v(k,m) = 0;

elseif (x(k,m) > UB(m))
x(k,m) = UB(m);
v(k,m) = 0;

elseif (m == 9)
temp = x(k,m);
x(k,m) = round(temp);

end
end

end
i = i + 1;

end
end

C. Improved Particle Swarm Optimization Algorithm

function [xGb,gb] = IPSOfunction(popSize,imax,LB,UB)

%CPSOfunction.m is a modification to PSOfunction
%based on what is presented in Appendix A.

c1 = 2.7;
c20 = 2.5;
kon0 = 0.729;
fitness = zeros(popSize,1);

[x, values] = initialPop(popSize,LB,UB);
count = zeros(popSize,1);
fitness = values;

pb = fitness;
xPb = x;
v = zeros(popSize,length(LB));

gb = fitness(1,1);
xGb = x(1,:);

for m = 2 : popSize
if ((fitness(m,1) < gb) && (fitness(m,1) >

0))
gb = fitness(m,1);
xGb = x(m,:);

end
end

i = 1;
while i < imax

for j = 1 : popSize
y = x(j,:);
[f,c,ceq,ms]=iTool(y);
count(j,1) = 0;
for k = 1:length(c)

if (c(k) <= 0)
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count(j,1) = count(j,1) +1;
end

end

if (count == length(c))
fitness(i,1) = f;

end

if fitness(j,1) < pb(j,1)
pb(j,1) = fitness(j,1);
xPb(j,:) = x(j,:);

end
if fitness(j,1) < gb

gb = fitness(j,1);
xGb = x(j,:);

end
end

y = i/imax;
kon = kon0*(yˆ4);
c2 = c20*(yˆ4);
p = kon0 + ((sin(4*pi*y))/10.3);

for k = 1 : popSize
d = rand;

if(d < p)
v(k,:) = kon0*(v(k,:) + c1*rand*(

xPb(k,:) - x(k,:)) + c20*rand
*(xGb - x(k,:)));

x(k,:) = x(k,:) + v(k,:);
for m = 1 : length(LB)

if (x(k,m) < LB(m))
x(k,m) = LB(m);
v(k,m) = 0;

elseif (x(k,m) > UB(m))
x(k,m) = UB(m);
v(k,m) = 0;

elseif (m == 9)
temp = x(k,m);
x(k,m) = round(temp);

end
end
else

v(k,:) = kon*(v(k,:) + c1*rand*(
xPb(k,:) - x(k,:)) + c2*
rand*(xGb - x(k,:)));

x(k,:) = x(k,:) + v(k,:);
for m = 1 : length(LB)

if (x(k,m) < LB(m))
x(k,m) = LB(m);
v(k,m) = 0;

elseif (x(k,m) > UB(m))
x(k,m) = UB(m);
v(k,m) = 0;

elseif (m == 9)
temp = x(k,m);
x(k,m) = round(temp);

end
end
end

end
i = i + 1;

end
end

D. Particle Swarm Optimization with Centroid Algorithm

function [xGb,gb] = CPSOfunction(popSize,imax,LB,UB)

%CPSOfunction.m is a modification to PSOfunction
%based on what is presented in Appendix A.

c1 = 1.4;
c2 = 1.4;
c3 = 1.4;
alpha = 0.5;
fitness = zeros(popSize,1);

[x, values] = initialPop(popSize,LB,UB);
count = zeros(popSize,1);
fitness = values;

pb = fitness;
xPb = x;
v = zeros(popSize,length(LB));

gb = fitness(1,1);
xGb = x(1,:);

for m = 2 : popSize
if ((fitness(m,1) < gb) && (fitness(m,1) >

0))
gb = fitness(m,1);
xGb = x(m,:);

end
end

i = 1;
while i < imax

xc = zeros(1,length(LB));
xpc = zeros(1,length(LB));

for d = 1 : length(LB)
for f = 1 : popSize

xc(1,d) = xc(1,d) + x(f,d);
xpc(1,d) = xpc(1,d) + xPb(f,d);

end
xc(1,d) = xc(1,d)./popSize;
xpc(1,d) = xpc(1,d)./popSize;

end

w = inertialWeight(i,imax);
for j = 1 : popSize

y = x(j,:);
[f,c,ceq,ms]=iTool(y);
count(j,1) = 0;
for k = 1:length(c)

if (c(k) <= 0)
count(j,1) = count(j,1) +1;

end
end

if (count == length(c))
fitness(i,1) = f;

end

if fitness(j,1) < pb(j,1)
pb(j,1) = fitness(j,1);
xPb(j,:) = x(j,:);

end
if fitness(j,1) < gb

gb = fitness(j,1);
xGb = x(j,:);

end
end



MASTER’S THESIS SPRING 2014 - DEPARTMENT OF ELECTRIC POWER ENGINEERING, ENERGY CONVERSION GROUP 23

for k = 1 : popSize

v(k,:) = w*v(k,:) + c1*rand*(xPb(k
,:) - x(k,:)) + c2*rand*(xGb -
x(k,:)) +c3*rand*(alpha*xc +

(1-alpha)*xpc - x(k,:));
x(k,:) = x(k,:) + v(k,:);
for m = 1 : length(LB)

if (x(k,m) < LB(m))
x(k,m) = LB(m);
v(k,m) = 0;

elseif (x(k,m) > UB(m))
x(k,m) = UB(m);
v(k,m) = 0;

elseif (m == 9)
temp = x(k,m);
x(k,m) = round(temp);

end
end

end
i = i + 1;

end
end

E. Initialization of PSO

function [x_sum, values] = initialPop(popSize,LB,UB)

%parpool('local')

values_temp = zeros(1,1,popSize);
values = zeros(popSize,1);
x_temp = zeros(1,length(LB),popSize);
x_sum = zeros(popSize,length(LB));
b = zeros(1,length(LB),popSize);

parfor i = 1 : popSize

count = 0;
while(count < 16) %Number of constraints =

16 at this point.
v = zeros(1,length(LB));

for j = 2 : (length(LB)+1)
if (j-1) == (9)

v(j-1) = randi([LB(j-1),UB(j-1)],1);
elseif j == 10

v(j-1) = LB(j-1);
else

v(j-1) = rand*UB(j-1);
if (LB(j-1) == UB(j-1))

v(j-1) = LB(j-1);
elseif (v(j-1) < LB(j-1))

v(j-1) = LB(j-1);
end

end
end

b(:,:,i) = v;

% count = 0;
y = b(:,:,i);

[f,c,ceq,ms]=iTool(y);

ctemp = 0;
for k = 1:length(c)

if (c(k) <= 0)
ctemp = ctemp + 1;

end
end
count = ctemp;

if (count == length(c))
values_temp(1,1,i) = f;
x_temp(:,:,i) = b(:,:,i);

end
end

end

for m = 1:popSize
x_sum(m,:) = x_temp(:,:,m);
values(m,1) = values_temp(1,1,m);

end

end

F. Calculation of inertial weight

function w = inertialWeight(i,imax)
wmax = 0.9;
wmin = 0.4;
w = wmax - ((wmax-wmin)/imax)*i;

end
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