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PATH-FOLLOWING METHOD TO DETERMINE THE FIELD OF
VALUES OF A MATRIX WITH HIGH ACCURACY\ast 

S\'EBASTIEN LOISEL\dagger AND PETER MAXWELL\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We describe a novel and efficient algorithm for calculating the field of values bound-
ary, \partial W(\cdot ), of an arbitrary complex square matrix: the boundary is described by a system of ordinary
differential equations which are solved using Runge--Kutta (Dormand--Prince) numerical integration
to obtain control points with derivatives, then finally Hermite interpolation is applied to produce
a dense output. The algorithm computes \partial W(\cdot ) both efficiently and with low error. Formal error
bounds are proven for specific classes of matrix. Furthermore, we summarize the existing state of the
art and make comparisons with the new algorithm. Finally, numerical experiments are performed to
quantify the cost-error trade-off between the new algorithm and existing algorithms.
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1. Introduction. For a complex matrix A \in \BbbC n\times n, the field of values or nu-
merical range W(A) is the image of the unit sphere under the Rayleigh quotient of
the matrix:

W(A) := \{ \bfitx \ast A\bfitx : \bfitx \in \BbbC n, \bfitx \ast \bfitx = 1 \} .

The field of values encloses the set of eigenvalues and can be used in a similar
manner as the set of eigenvalues, e.g., to estimate the magnitude of matrix functions
[10]; see also [44, p. 167]. Our interest is in finite-dimensional complex matrices.
However, W(A) can also be defined in a similar manner when A is an operator acting
on a general Hilbert space [21, p. 1].

The problem of calculating the field of values boundary, \partial W(A), has a long history,
with the canonical algorithm surely being that of Johnson [26], but see also [36] and
[28], [14]. We now briefly outline Johnson's algorithm. For a given matrix A \in \BbbC n\times n,
define H(eitA) := 1

2 (e
itA+ e - itA\ast ). H(eitA), being Hermitian, has real eigenvalues.

Let \lambda max(t) denote the largest eigenvalue of H(eitA), and let \bfitu max(t) denote a cor-
responding unit eigenvector. Then, Johnson's function \zeta (t) = \bfitu max(t)

\ast A\bfitu max(t) is
a parametrization of \partial W(A) for t \in [0, 2\pi ). Although \partial W(A) is continuous with at
most n points of discontinuous first derivative (see subsection 2.2), continuity does not
necessarily hold for the parametrization \zeta (t); indeed, this was alluded to in Johnson's
paper [26], e.g., Theorem 3. If, for a given value of t = tk, the eigenvalue \lambda max(tk)
is nonsimple, then there are multiple linearly independent choices of \bfitu max(tk), each,
possibly, producing a different value of \zeta (tk). Therefore, there can be a jump discon-
tinuity at tk where \zeta (tk) is not well-defined but each of the one-sided limits \zeta (t+k ) and
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PATH-FOLLOWING METHOD TO DETERMINE FIELD OF VALUES 1727

Fig. 1.1. A plot of the field of values of the matrix A = delsq(numgrid('S',20))+

0.1*randn(324) generated by the path-following algorithm. The red asterisks are the eigenvalues
of A, and the solid black line is the boundary of W(A). (Figure in color online.)

\zeta (t - k ) are well-defined; these tk correspond to, possibly degenerate, flat segments on
\partial W(A). We show in Theorem 7.2 that there can be only finitely many such tk.

Johnson's algorithm is to sample \zeta (t) at discrete values tk = (k  - 1)(2\pi /m), k =
1, 2, . . . ,m, and approximate \partial W(A) by the polygon whose vertices are \{ \zeta (tk)\} mk=1,

where m \geq 3 is the number of vertices; we denote by \^\zeta (t) the piecewise linear approx-
imation of \zeta (t) produced by Johnson's algorithm. Provided that one has an accurate
and robust eigenvalue solver, Johnson's algorithm is able to approximate \partial W(A) for

sufficiently largem. The piecewise linear approximation \^\zeta (t) of \zeta (t) is exact at the ver-
tices, with \scrO (m - 2) error between the vertices. Therefore, achieving approximations
of higher accuracy rapidly becomes prohibitively expensive. Several other algorithms
and strategies have been proposed to calculate the field of values boundary \partial W(A),
e.g., Marcus and Pesce [34], Braconnier and Higham [4], and Uhlig [46].

Our main new idea is to use a ``path-following"" algorithm to efficiently compute
a high order near-interpolant \^\xi (t) of \zeta (t). This is possible because, from eigenvalue
perturbation analysis, one can show that \zeta (t) is piecewise analytic. We derive a system
of differential equations for the parametrized eigenvalue problem H(eitA)\bfitu max(t) =
\lambda max(t)\bfitu max(t) and, using a suitable ODE solver with dense output, obtain a high

order interpolant \^\xi (t) which approximates \zeta (t). Care must be taken to stop and
restart the ODE solver at points where \zeta (t) is less smooth, which we do in an efficient
manner. This feature makes our algorithm attractive compared to applying a high
order interpolant directly to Johnson's algorithm: without knowledge of where \zeta (t)
is not smooth, the interpolant cannot achieve the anticipated accuracy. Johnson
observes a similar result in his analysis at [26, p. 600]: he notes that ``flat"" portions
of \partial W(A) were not considered and may lead to slow convergence. An example of
the piecewise polynomial approximation of \partial W(A) produced by the path-following
algorithm can be seen in Figure 1.1; this is a 324 \times 324 matrix and the tolerance of
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1728 S\'EBASTIEN LOISEL AND PETER MAXWELL

the ODE integrator was set to 10 - 10.
The principal feature of our algorithm is that it computes W(A) more efficiently

than previous algorithms when the sought tolerance is small. Our analysis and nu-
merical experiments reveal that the path-following algorithm is more efficient than
existing algorithms in practical settings at moderate accuracy and is also asymptot-
ically faster. Indeed, at high accuracy, our algorithm is at least an order of magni-
tude faster. We also posit that our algorithm may have more generic applicability
particularly in relation to Sturm--Liouville problems; this is discussed further in the
conclusions.

1.1. Related results using computational perturbation methods. Our
path-following algorithm inherently adopts a perturbative or continuation approach.
For context and without any aim of completeness, we make a very terse summary of
related results that the reader may find useful.

Lui [32] derives continuation methods based on inverse iteration and Lanczos for
calculation of pseudospectra. A homotopy method for solving the eigenproblem of
large sparse real nonsymmetric matrices is given by Lui, Keller, and Kwok in [33].

In [19], Guglielmi and Overton describe an algorithm to calculate the pseudospec-
tral abscissa and pseudospectral radius by using the rightmost eigenvalue of a sequence
of rank-1 updates Bk+1 = A+\varepsilon \bfity k\bfitx 

\ast 
k, where \bfitx and \bfity are the leading ``RP-compatible""

left and right eigenvectors of Bk. In [17], [18], Guglielmi and Lubich observe that
Guglielmi and Overton's algorithm is an iterative algorithm on the manifold of nor-
malized rank-1 matrices, \scrM = \{ \bfitu \bfitv \ast : \bfitu ,\bfitv \in \BbbC , \| \bfitu \| = \| \bfitv \| = 1 \} . By reframing the
problem as a continuous dynamical system on \scrM , a differential equation can be used
to solve for E(t) on \scrM such that the real part of the leading eigenvalue of A+ \varepsilon E(t)
tends to the pseudospectral abscissa. In [29], Kressner and Vandereycken extend the
results of Guglielmi and Overton by using a subspace acceleration method.

In [3], Beyn and Th\"ummler create a predictor-corrector continuation method for
invariant subspaces (invariant pairs) of the quadratic eigenvalue problem with large
sparse matrices depending on a single real parameter; they include several relevant
and instructive practical applications. In [2], Beyn, Effenberger, and Kressner analyze
invariant pairs for nonlinear eigenproblems which are entrywise holomorphic functions
in the eigenvalue parameter and describe a pseudoarclength predictor-corrector tech-
nique for continuation of the invariant pairs.

Due to the philosophical relevance to the work herein, we also mention Sirkovi\'c
and Kressner's result in [42] for approximating the smallest eigenvalue of a parameter-
dependent Hermitian matrix.

1.2. Organization of the paper. Our paper is organized as follows. In sec-
tion 2, we briefly recall the basic properties of the field of values and then review
existing algorithms in section 3. In section 4, we give a brief overview of our new
algorithm and clarify some properties of the Johnson parametrization in section 5.
We fully specify the path-following algorithm in section 6. We provide analyses of
expected eigenvalue crossings and error estimates in section 7. In section 8, we numer-
ically compare the running time and accuracy of our new algorithm against several
existing algorithms, including Johnson's algorithm. We end with some conclusions.

2. Basic properties of the field of values. The fundamental properties and
results concerning the field of values are more than adequately described in other
sources [21], [24], [28], [14]. Nevertheless, we make use of some of these results herein,
which shall be restated briefly without proof. The properties and results summarized
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PATH-FOLLOWING METHOD TO DETERMINE FIELD OF VALUES 1729

in this section are in the context of our restricted finite-dimensional case only and
may not hold in a more general setting.

Definition 2.1 (Hermitian and skew-Hermitian parts of a matrix). For nota-
tional convenience, we define

H(A) :=
1

2
(A+A\ast ) and S(A) :=

1

2
(A - A\ast )

as the Hermitian and skew-Hermitian parts of the matrix, A. A matrix A can be
written as A = H(A) + S(A).

Definition 2.2 (extremal eigenvalues). For Hermitian K \in \BbbC n\times n, we denote
the least and greatest eigenvalues by \lambda min(K) and \lambda max(K). For scalar t and square
matrix A, we define \lambda max(t) as the greatest eigenvalue of H(eitA).

2.1. Fundamental properties. Let A,B \in \BbbC n\times n.

Property 2.3.
(a) The eigenvalues of A are contained within W(A), \sigma (A) \subseteq W(A);
(b) the field of values is linear with respect to scaling and translation, W(\alpha A +

\beta I) = \alpha W(A) + \beta for all \alpha , \beta \in \BbbC , \alpha \not = 0;
(c) unitary similarity invariance, W(U\ast AU) = W(A) for all unitary U \in \BbbC n\times n;
(d) W(A) is compact (image of a compact set under a continuous function) [21,

p. 4], [24, p. 1];
(e) W(A) is a convex set, cf. the Toeplitz--Hausdorff theorem [23], [43], and also

[11], [12], [20], [24], [37], [39];
(f) \partial W(A), where n = 2 is a, possibly degenerate, ellipse, cf. elliptical range

theorem as described in [21, p. 3], Theorem 1.3.6a of [24, p. 23], and [31];
(g) W(A) \subset \BbbR if and only if A is Hermitian, in other words W(A) is an inter-

val on the real line whenever A is Hermitian and, furthermore, \Re [W(A)] =
W(H(A)) = [\lambda min(H(A)), \lambda max(H(A))];

(h) if A is normal, then W(A) = Co(\sigma (A)), in other words if A is normal, then
the field of values is the convex hull of the eigenvalues (the converse is, in
general, not true for n > 4, cf. [25], [35]);

(i) for A1 \oplus A2 =
\bigl[ 
A1 0
0 A2

\bigr] 
, A1 \in \BbbC n1\times n1 , A2 \in \BbbC n2\times n2 , then W(A1 \oplus A2) =

Co(W(A1)
\bigcup 

W(A2) ), the field of values of a direct sum of matrices is the
convex hull of the union of the field of values of those matrices; and

(j) for a multi-index, \bfitalpha = \{ \alpha 1, \alpha 2, . . . , \alpha k\} , define the principal submatrix of A as
A(\bfitalpha ) being the rows and columns of A indexed by \bfitalpha then W(A(\bfitalpha )) \subseteq W(A).

2.2. ``Corners"" or ``sharp points"" of \bfpartial W(\bfitA ). Consider A \in \BbbC n\times n. \partial W(A)
is smooth except possibly at a finite number of so-called ``sharp points"" or ``corners""
which have nonunique tangents [24, p. 50], [21, p. 19] or, equivalently, where \partial W(A)
is not a differentiable arc [12]. A sharp point of \partial W(A) must be an eigenvalue of A
although the converse does not necessarily hold; cf. Theorem 1 of [12] and Theorem
1.5-5 of [21, p. 20]. Therefore, there are at most n sharp points on \partial W(A). Herein,
we adopt the formal definition of a sharp point used in [24, p. 50].

Definition 2.4 (sharp point). A point \alpha \in \partial W(A) is a sharp point if there are
t1 and t2 with 0 \leq t1 < t2 < 2\pi for which

\Re (eit\alpha ) = max\{ \Re (\beta ) : \beta \in W(eitA)\} for all t \in (t1, t2).

Sharp points can be characterized by Theorem 1.6.6 in [24] or Theorem 5 in [8].
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1730 S\'EBASTIEN LOISEL AND PETER MAXWELL

Theorem 2.5. Let A \in \BbbC n\times n and \alpha \in \partial W(A). Then \alpha is a sharp point if and
only if A is unitarily similar to \alpha Im \oplus A1 with A1 \in \BbbC (n - m)\times (n - m) and \alpha /\in W(A1).
In this case \alpha is the intersection of two flat line portions on \partial W(A).

3. Existing algorithms. There are only a handful of existing algorithms for
computing the field of values boundary of a general complex matrix. The n = 2 case
can be trivially handled using the elliptical range theorem, Property 2.3 (f).

3.1. Johnson's algorithm. There is almost a de facto standard, published by
Johnson in 1978 [26], for computing the field of values of a general complex square
matrix. The concept behind this method---taking advantage of the convexity property
Property 2.3 (e) of W(A) by successively applying a scalar rotation Property 2.3 (b) to
the matrix A then using the Hermitian projection property Property 2.3 (g) to bound
the field of values set between the least and greatest eigenvalues---has been expressed
at least as far back as Murnaghan's terse result in 1932 [36] and Kippenhahn's more
comprehensive results in 1951 [28], [14]. However, Johnson's result is the first instance
of the method being used to create a convergent computational algorithm.

We will make use of this methodology, so we shall briefly recap the result from [26].
Note that the Hermitian projection property Property 2.3 (g) states that \Re [W(A)] =
[\lambda min(H(A)), \lambda max(H(A))]. Denote by \bfitu max an associated unit eigenvector for \lambda max.
The line L = \{ \lambda max(H(A)) + is : s \in \BbbR \} defines a vertical support line tangent to
\partial W(A). The intersection L \cap \partial W(A) may not be a single point as W(A) can have a
straight line or ``flat"" segment along its boundary. Furthermore, where L and \partial W(A)
intersect is also not necessarily on the real axis. The point

(3.1) p := \bfitu \ast 
maxA\bfitu max \in L \cap \partial W(A)

is on \partial W(A) with Figure 3.1a depicting this arrangement. Note, furthermore, that
e - itW(eitA) = W(A). By successively applying a rotation by angle tk to A as eitkA
for k = \{ 1, . . . ,K\} , collecting the pk points for corresponding tk, and calculating the
convex hull will produce a piecewise linear inner boundary approximation for \partial W(A).
Johnson takes this further by calculating an outer boundary using the supporting
hyperplanes. This constrains \partial W(A) between an inner and outer boundary so that
an error bound can be calculated. This arrangement is depicted in Figure 3.1b.

3.2. Marcus--Pesce algorithm. An alternative method was described by Mar-
cus and Pesce in 1987 [34] which involves using multiple random orthonormal ma-
trix compressions of the form V \ast AV \in \BbbC 2\times 2 for V \in \BbbC n\times 2. For a matrix V =\bigl[ 
\bfitv 1 \bfitv 2 . . . \bfitv k] \in \BbbC n\times k, where the \bfitv i \in \BbbC n vectors form an orthonormal basis for V
and A \in \BbbC n\times n, the (matrix) compression of A is defined as

AV := V \ast AV,

where AV \in \BbbC k\times k. By using Property 2.3 (c) and Property 2.3 (j), it can be seen
that W(V \ast AV ) \subseteq W(A). Using the elliptical range theorem, Property 2.3 (f), when
k = 2, then W(V \ast AV ) is a, possibly degenerate, ellipse. In Theorem 1 of [34], it is
proven that the field of values is equal to the union over all 2\times 2 matrix compressions
using V = [\bfitv \bfone \bfitv \bftwo ], where \bfitv \bfone ,\bfitv \bftwo are real and orthonormal,

W(A) =
\bigcup 
V

W(V \ast AV ).

Marcus and Pesce's computation strategy is essentially to pick a reasonable num-
ber of random real orthonormal vector pairs, compute the resulting set of elliptical
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PATH-FOLLOWING METHOD TO DETERMINE FIELD OF VALUES 1731

(a) Bounding of \partial W(A) using Hermitian part
of matrix. Shown without rotation (t =
0). The vertical bounding support line is in
dashed blue; the p point is marked with a red
asterisk; and \partial W(A) in solid black.

(b) Illustration of an inner and outer Johnson
boundary for six rotation increments. Inner
boundary is in dashed blue; outer boundary
is in dash-dotted magenta; outer supporting
hyperplanes in dotted faint grey; eigenvalues
of A are shown with red asterisks; and exact
\partial W(A) is in solid black.

Fig. 3.1. Plots showing how the Johnson algorithm bounds \partial W(A). (Figure in color online.)

(a) 12 ellipses: the Marcus--Pesce boundary
is a poor approximation of \partial W(A).

(b) 1000 ellipses: the Marcus--Pesce bound-
ary is still showing high error.

Fig. 3.2. Figures akin to Uhlig's figure [46, Fig. 5] showing Marcus and Pesce's randomly
generated eigenvectors for matrix compressions. The matrix compression ellipses are shown with
thin black lines; the generated boundary in dashed blue; and exact \partial W(A) in solid black. (Figure in
color online.)

field of values sets, and then plot (or compute the convex hull and plot). This works
reasonably well for very small matrices but selecting vectors at random fails to ap-
proximate the boundary accurately for matrices with n > 4; see Figure 3.2.

3.3. Uhlig's optimization of Marcus--Pesce. The strategy adopted by Uhlig
[46] is faster and more accurate compared to the Marcus--Pesce method. Instead of
picking random pairs of real orthonormal vectors, Uhlig proposes first calculating a
small number of ordered boundary points pk = \bfitu \ast 

kA\bfitu k using Johnson's method and
then using successive eigenvector pairs from this list for the matrix compressions so
that each ellipse is more likely to constrain the boundary. In particular, Uhlig starts
by constructing a so-called Bendixson box : for a particular tk, the greatest and least
eigenvalues from both the Hermitian and skew-Hermitian parts are used, which creates
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1732 S\'EBASTIEN LOISEL AND PETER MAXWELL

(a) Uhlig's method quickly constrains the
boundary: the generated boundary in
dashed blue is close to \partial W(A).

(b) A zoomed-in plot so that the generated
and true boundaries can be distinguished.

Fig. 3.3. Calculation of \partial W(A) using Uhlig's method for a random matrix A of size n = 5.
Matrix compression ellipses can be seen internal to W(A). \partial W(A) is shown in solid black whereas
the boundary generated from the matrix compressions is in dashed blue. Eigenvalues are denoted
with red asterisks. (Figure in color online.)

a rectangular bounding box from the four initial eigenpairs. This initial list of four
vectors is then expanded by the judicious choice of further Johnson calculations, each
returning two additional vectors---corresponding to the desired \lambda min and \lambda max---to
merge into the list. Uhlig proposed four rationales to choose these additional points
[46, sect. 2.1]. Assuming the order of the vectors is maintained properly to represent
either a clockwise or anticlockwise ordering, then once a suitable number of vectors are
collated, matrix compressions can be performed along the boundary. The algorithm
successively creates matrices Vk by picking the kth and (k + 1)th vector pair, with k
running over the full list, orthonormalizes the pair, calculates the matrix compression
AVk

, and then calculates a suitable number of points on the resulting field of values
ellipse. Finally, a convex hull is calculated on all the collected ellipse points to achieve
a boundary approximation as shown in Figure 3.3.

3.4. Braconnier--Higham approach. Braconnier and Higham applied a spe-
cific implementation of the Lanczos algorithm for computing the field of values using
Johnson's method [4]. Their work focuses on optimizing the eigenproblem solves and
applying a continuation method. In this context, continuation means that when per-
forming an eigenproblem solve using a Krylov subspace method one can often use the
eigenvector from the previous result as the starting vector for the next computation
in order to reduce the number of iterations required.

4. Algorithm overview. The strategy behind the new algorithm is to deter-
mine \partial W(A) by ``tracking"" the dominant eigenpair of the Hermitian part of eitA as
a function of t in an analogous manner to Johnson's method as described in subsec-
tion 3.1. This can be expressed as

(4.1) H(eitA)\bfitu (t) = \lambda (t)\bfitu (t),

where \{ \bfitu (t), \lambda (t)\} is the dominant eigenpair for t within a suitable interval. The next
step is to take the derivative of (4.1) and rearrange

H(eitA)\bfitu \prime (t) - \lambda \prime (t)\bfitu (t) - \lambda (t)\bfitu \prime (t) =  - iS(eitA)\bfitu (t).(4.2)
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PATH-FOLLOWING METHOD TO DETERMINE FIELD OF VALUES 1733

By inspection, H(eitA) is elementwise comprised of analytic functions of the single
real variable t and is thus differentiable in the usual matrix sense. Due to an elegant
result of Rellich [40, Chap. 1] for a Hermitian matrix A whose elements are analytic
functions of some real parameter t, say, the eigenvalues can be considered analytic
functions of t if suitably ordered. Furthermore, there exists an orthonormal basis
of eigenvectors which are also elementwise comprised of analytic functions of t, and
therefore the eigenvectors are differentiable in the usual vector sense.

Whilst the previous results are general with respect to eigenvalue multiplicity,
a more prosaic problem arises: when attempting to track the dominant eigenvalue
through a nonsimple eigenvalue---a so-called level-crossing [1, p. 350] or exceptional
point [27, p. 74]---the ordering may impose that the tracked eigenvalue is no longer the
dominant eigenvalue after the crossing. Therefore, it is assumed that the eigenvalue
\lambda (t) is simple for t \in (t1, t2). In other words, the algorithm cannot process intervals
within which the dominant eigenvalue is nonsimple for some values of t.

Note that (4.2) is underdetermined. We choose the eigenvectors of H(eitA) to be
orthonormal and use the identity

(4.3) \bfitu (t)\ast \bfitu (t) = 1

as the required additional constraint. Differentiating (4.3), we obtain \Re [\bfitu (t)\ast \bfitu \prime (t)] =
0. Note that \bfitu (t) is a unit eigenvector and so is ei\theta \bfitu (t) for any ``phase parameter""
\theta \in \BbbR . In order to fix the phase parameter so that \bfitu (t) is uniquely defined, we further
impose the ODE \Im [\bfitu (t)\ast \bfitu \prime (t)] = 0. Combining these two ODEs together produces
\bfitu (t)\ast \bfitu \prime (t) = 0 (requiring that the derivative, \bfitu \prime (t), be orthogonal to \bfitu (t)). Including
the constraint \bfitu (t)\ast \bfitu \prime (t) = 0 gives

(4.4)

\Biggl\{ 
H(eitA)\bfitu \prime (t) - \lambda \prime (t)\bfitu (t) - \lambda (t)\bfitu \prime (t) =  - iS(eitA)\bfitu (t),

\bfitu (t)\ast \bfitu \prime (t) = 0,

which after rearranging can be written in matrix form as

(4.5)

\biggl[ 
H(eitA) - \lambda (t)I  - \bfitu (t)

 - \bfitu (t)\ast 0

\biggr] \biggl[ 
\bfitu \prime (t)
\lambda \prime (t)

\biggr] 
=

\biggl[ 
 - iS(eitA)\bfitu (t)

0

\biggr] 
.

As intimated by an anonymous referee, our proposed method is an ODE on a manifold.
A comparison may be made with [17].

The general approach, within a given interval (t1, t2) with midpoint tmid, is to
calculate the dominant \{ \bfitu (tmid), \lambda (tmid)\} pair by solving an eigenvalue problem, and
then use (4.5) to numerically integrate \{ \bfitu \prime (t), \lambda \prime (t)\} along t both forwards and back-
wards to generate a solution \{ \bfitu (t), \lambda (t)\} for the whole interval. The numerical inte-
grator must be able to detect whether the dominant eigenvalue becomes nonsimple.
Using the parlance of numerical integration, this is denoted as an event ; cf. [22, Chap.
II.3]. The integrator calculates along intervals until it either reaches the end point
or encounters an event, whereupon it stops. The integration can be restarted on the
other side of the nonsimple eigenvalue and the two solutions then joined together.
Since the output from the Dormand--Prince integrator [13, p. 23] has both values and
derivatives, Hermite interpolation can be performed to create a dense output.

5. Observations on the Johnson parametrization \bfitzeta (\bfitt ). In the introduc-
tion, we described Johnson's function \zeta (t) = \bfitu max(t)

\ast A\bfitu max(t) as a parametrization
of \partial W(A). From a computational standpoint, this is the most natural choice, yet it
is not as regular as might be expected.

D
ow

nl
oa

de
d 

01
/1

6/
19

 to
 1

29
.2

41
.1

91
.2

30
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1734 S\'EBASTIEN LOISEL AND PETER MAXWELL

(a) \partial W(B) boundary shown
with a black line. The John-
son points corresponding to all
eigenvalues---not only the dom-
inant eigenvalue as is usual---
are shown with small magenta
crosses. The sharp point at
3i is marked with a blue cir-
cle. The flat segments where
\lambda max(eitkB) is nonsimple are
shown in thick dashed red with
plus signs indicating the extent
of those segments.

(b) Eigenvalues of H(eitB)
shown in thin dotted magenta.
The dominant \lambda max(eitB)
is shown with a black line.
Nonsimple eigenvalues of
\lambda max(eitB) are denoted
with red plus signs; at these
points the first derivative of
\lambda max(eitB) is discontinuous
due to a change of order of
eigenvalue. The sharp point---a
normal eigenvalue---is shown
with a dashed-blue overlay.

(c) The real part of \zeta (t) shown
in dashed blue; the imagi-
nary part of \zeta (t) shown in
dash-dotted green. The posi-
tions of the nonsimple eigenval-
ues of \lambda max(eitB) are indicated
with vertical red dotted lines.
Note the constant region where
\Re (\zeta (t)) = 0 and \Im (\zeta (t)) = 3,
which corresponds to the sharp
point in (a) at 3i.

Fig. 5.1. Plots of \partial W(B) and the eigenvalues of H(eitH) for example matrix B. Note that
on (b), the normal eigenvalue path can be written \alpha eit, and when it is the dominant eigenvalue,
it corresponds directly with Definition 2.4: it maps the whole interval to the single sharp point on
\partial W(B). Observe that the nonsimple eigenvalue at \pi /2 generates the flat segment on the bottom of
the \partial W(B) and that the two other nonsimple eigenvalues generate the flat segments at the sides of
\partial W(B). (Figure in color online.)

Due to the possibility of nonsimple eigenvalues on \lambda max(H(eitA)), \zeta (t) can be
undefined at finitely many tk which correspond to flat segments on \partial W(A). We
prove this in Lemmas 5.1 and 5.2 and Theorem 5.3 below; also see Theorem 1 in [7].
Furthermore, \lambda max(H(eitA)) may have discontinuous first derivative whenever it is a
nonsimple eigenvalue due to the change in order of dominant eigenvalues.

Using Definition 2.4, it can be immediately observed that \zeta (t) is not, in general,
injective: for a sharp point \alpha \in \partial W(A), \zeta (t) maps some interval t \in (t1, t2), t1 <
t2 to the single point \alpha . Again from Definition 2.4 and perhaps counterintuitively,
\lambda max(H(eitA)) is continuous for t \in (t1, t2). Furthermore, from Theorem 2.5, it is
clear that the existence of one or more sharp points necessarily requires the existence
of nonsimple eigenvalues on \lambda max(H(eitA)).

These properties are illustrated in Figure 5.1 for a carefully constructed matrix,
B, composed of the direct product of two 2\times 2 ellipse matrices and one normal point.

Lemma 5.1. Let A \in \BbbC n\times n be such that for some t0 \in [0, 2\pi ), the greatest eigen-
value \lambda max(H(eit0A)) has algebraic and geometric multiplicity m > 1, and, further-
more, that \lambda max(H(eitA)) is simple for t in a neighborhood of t0. Define the rotated
matrix as A0 := eit0A. Choose \bfitu 1, . . . ,\bfitu m to be m distinct linearly independent unit
eigenvectors of H(A0) for \lambda max(H(A0)) and denote the associated Johnson points of
A0 as \{ pj = \bfitu \ast 

jA0\bfitu j \} mj=1. Furthermore, let \mu j = \Im (pj) and assume the ordering of
\bfitu 1, . . . ,\bfitu m is such that \mu 1 \leq \cdot \cdot \cdot \leq \mu m.

(A) Then \zeta (t0) is well-defined if and only if \mu 1 = \mu m.
(B) If \mu 1 \not = \mu m, then t0 in the Johnson parametrization corresponds to a flat

segment on \partial W(A0) which is a vertical line in the complex plane.
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Proof. (A) Note that by definition, \Re (pi) = \Re (pj) for i, j \in 1 . . .m. Then

\zeta (t0) is well-defined \Leftarrow \Rightarrow p1 = \cdot \cdot \cdot = pm \Leftarrow \Rightarrow \mu 1 = \mu m.

(B) Assume \mu 1 \not = \mu m. Then the line L = \{ \Re (p1)+i(s\mu 1+(1 - s)\mu m) : s \in [0, 1] \} 
is a vertical flat segment on \partial W(A0). From inspection, all other pj also lie on L.

Lemma 5.2. Let A \in \BbbC n\times n be such that there is a flat segment on \partial W(A). Let
t0 \in [0, 2\pi ) be the angle so the flat segment on \partial W(eit0A) is arranged to be a vertical
line rightmost to W(eit0A). Then \lambda max(H(A0)) has multiplicity m > 1.

Proof. Let p1 and p2 be two distinct points on the flat segment of \partial W(A0). Then,
by using Lemma 1.5.7 from [24], we can choose distinct unit eigenvectors \bfitu 1 and \bfitu 2 of
H(A0) such that p1 = \bfitu \ast 

1A0\bfitu 1 and p2 = \bfitu \ast 
2A0\bfitu 2 and \lambda max(H(A0)) = \Re (p1) = \Re (p2).

Therefore, the eigenspace for \lambda max(H(A0)) has dimension at least 2, so multiplicity
m > 1.

Theorem 5.3. Let A \in \BbbC n\times n. A flat segment exists on \partial W(A) if and only if there
exists a t0 \in [0, 2\pi ) such that \lambda max(H(eit0A)) has multiplicity m > 1 and for which
there exists distinct unit eigenvectors, \bfitu 1,\bfitu 2 with \Im (\bfitu \ast 

1e
it0A\bfitu 1) \not = \Im (\bfitu \ast 

2e
it0A\bfitu 2).

Proof. The result follows from Lemmas 5.1 and 5.2.

6. Full algorithm specification. Recapping from section 4, the essential fea-
ture of the algorithm is to calculate a high order near-interpolant \^\xi (t) of \zeta (t) by nu-
merically integrating a system of ODEs to obtain the path of the dominant eigenvalue
and eigenvector of H(eitA), from which an approximation of \zeta (t) can be calculated.

Definition 6.1 (matrix MA). We define the matrix-valued function

MA(z,\bfitu , \lambda ) :=

\biggl[ 
H(zA) - \lambda I  - \bfitu 

 - \bfitu \ast 0

\biggr] 
.

For notational convenience, we define \bfitv (t) := [ \bfitu (t)\ast \lambda (t)\ast ]\ast and \bfitf (t,\bfitv (t)) :=
\bfitv \prime (t) = [ \bfitu \prime (t)\ast \lambda \prime (t)\ast ]\ast , where unless otherwise stated, \lambda (t) is understood to be the
dominant eigenvalue parametrized by t, and \bfitu (t) is an eigenvector for \lambda (t). Given a
candidate \bfitv (t), a linear solver can be used to obtain \bfitv \prime (t) from (4.5),

(6.1) \bfitf 

\biggl( 
t,

\biggl[ 
\bfitu (t)
\lambda (t)

\biggr] \biggr) 
=

\biggl[ 
\bfitu \prime (t)
\lambda \prime (t)

\biggr] 
=

M - 1
A (eit,\bfitu (t),\lambda (t))\underbrace{}  \underbrace{}  \biggl[ 

H(eitA) - \lambda (t)I  - \bfitu (t)
 - \bfitu (t)\ast 0

\biggr]  - 1 \biggl[  - iS(eitA)\bfitu (t)
0

\biggr] 
.

In subsection 6.1 we show that for simple \lambda max(t), the matrix MA is invertible and so
\bfitf is well-defined.

We use the Dormand--Prince RK5(4)7M method [13, p. 23] with the Hermite in-
terpolation strategy of Shampine [41, p. 148] (an extra row in the Butcher tableau
is used to calculate a midpoint without any additional \bfitf (\cdot ) evaluations). This in-
tegrator produces a solution which is 5th order accurate, i.e., whose error term is
\scrO (h5) with a degree 4 Hermite interpolant for its dense output. For a given inte-
gration step on an interval [tk, tk+1] with midpoint tmid, we obtain output vectors
\{ \widetilde \bfitv k, \widetilde \bfitv \prime 

k, \widetilde \bfitv k+1/2, \widetilde \bfitv k+1, \widetilde \bfitv \prime 
k+1\} , where tilde quantities represent the solutions obtained

from the numerical integration. For brevity, we write \widetilde \bfitv k to mean \widetilde \bfitv (tk), and \widetilde \bfitv k+1/2

is taken to mean \widetilde \bfitv (tmid).
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1736 S\'EBASTIEN LOISEL AND PETER MAXWELL

(a) Plot at full scale. (b) Zoomed-in plot.

Fig. 6.1. Plot of \partial W(A) approximation created by new algorithm for random n = 5 matrix at

tolerance 10 - 7. Black continuous boundary is the Hermite interpolant \^\xi (t). The blue crosses show
the locations of the control points, \xi k, from each stage of the Dormand--Prince integration. (Figure
in color online.)

Each output vector is (n+1)-dimensional but we are only interested in the calcu-

lation of a 1-dimensional parametrized approximation \^\xi (t) of \zeta (t). We use Johnson's
expression, (3.1), to calculate the (inner) boundary points \xi k, \xi k+1/2, and \xi k+1,

(6.2) \xi k = \widetilde \bfitv \ast 
k

\biggl[ 
A 0
0 0

\biggr] \widetilde \bfitv k = \widetilde \bfitu \ast 
kA\widetilde \bfitu k.

In a similar fashion, the derivatives \xi \prime k and \xi \prime k+1 can be calculated as

(6.3) \xi \prime k = \bfitf (tk, \widetilde \bfitv k)
\ast 
\biggl[ 
A 0
0 0

\biggr] \widetilde \bfitv k + \widetilde \bfitv \ast 
k

\biggl[ 
A 0
0 0

\biggr] 
\bfitf (tk, \widetilde \bfitv k).

Thus, we obtain a set of \xi k, \xi 
\prime 
k, and \xi k+1/2 upon which Hermite interpolation can be

performed. The obtained solution curve \^\xi (t) is a scalar-valued piecewise polynomial
function of t. After calculation of all the \xi k, \xi 

\prime 
k, and \xi k+1/2 points to a given toler-

ance, any number of evaluations of \^\xi (t) can be computed efficiently by performing
1-dimensional interpolation. This results in an appreciable \scrO (n) gain in performance
when the dimension n is large. This arrangement is demonstrated in Figure 6.1.

Events are detected by using the method in subsection 6.2. The algorithm is
described by the pseudocode in Algorithm 6.1.

6.1. Linear solver. For \bfitf to be well-defined, MA(e
it,\bfitu (t), \lambda (t)) must be an

invertible matrix.

Definition 6.2 (matrix DA). Let \eta 1(t) \leq \eta 2(t) \leq \cdot \cdot \cdot \leq \eta n(t) be the eigenvalues
of H(eitA), t \in [0, 2\pi ). For a given eigenpair \{ \bfitu (t), \lambda (t)\} of H(eitA), let j be such
that \eta j(t) = \lambda (t). Let \bfitalpha = \{ \alpha 1, \alpha 2, . . . , \alpha n - 1\} be the multi-index

(6.4) \alpha k =

\Biggl\{ 
k for k < j,

k + 1 for k \geq j.
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Algorithm 6.1. Field of values path-following algorithm.

1: Initialize L = \{ J\} , where J is some interval of length 2\pi 
2: while L is not empty: do
3: Remove an interval [tmin, tmax], with midpoint tmid, from L.
4: Compute the exact dominant eigenpair \{ \bfitu max(t), \lambda max(t)\} of (4.1) for t = tmid.
5: Using initial values t = tmid and [ \bfitu max(t)

\ast \lambda max(t)
\ast ]\ast :

6: numerically integrate \bfitf (\cdot ) forward on [tmid, tmax] by solving (6.1), and
7: numerically integrate \bfitf (\cdot ) backward on [tmid, tmin] by solving (6.1).
8: if qA(\cdot ) event triggered (Definition 6.4) then
9: Calculate event location(s) using rA(\cdot ) (Definition 6.5).

10: Denote by [t0, t1] the interval of integration until the event(s).
11: Insert [tmin, tmax] \setminus [t0, t1] into L.
12: end if
13: Compute the relevant \xi k, \xi 

\prime 
k, \xi k+1/2 using (6.2) and (6.3).

14: end while
15: The curve \^\xi (t) is computed using Hermite interpolation of the corresponding

\xi k, \xi 
\prime 
k, \xi k+1/2.

We denote by DA(t,\bfitu (t), \lambda (t)) the unitary transform of MA(e
it,\bfitu (t), \lambda (t)) such that

DA(t,\bfitu (t), \lambda (t)) := U(t)\ast MA(e
it,\bfitu (t), \lambda (t))U(t)

=

\left[       
\eta \alpha 1(t) - \lambda (t)

. . .

\eta \alpha n - 1(t) - \lambda (t)
0  - 1
 - 1 0

\right]       .

Lemma 6.3. Assume that \bfitu (t) and \lambda (t) are close to the solution curve. Denote
by \eta 1(t) \leq \eta 2(t) \leq \cdot \cdot \cdot \leq \eta n(t) = \lambda (t) the eigenvalues of H(eitA), and DA(t,\bfitu (t), \lambda (t))
the unitary transform of MA(e

it,\bfitu (t), \lambda (t)) as defined in Definition 6.2. Furthermore,
assume \eta n - 1(t) < \eta n(t). Then, MA(e

it,\bfitu (t), \lambda (t)) is invertible.

Proof. By observation from DA(t,\bfitu (t), \lambda (t)), the eigenvalue of MA(e
it,\bfitu (t), \lambda (t))

with the smallest magnitude is either \eta n - 1(t)  - \eta n(t) if that quantity is small or \pm 1
from the lower-right 2\times 2 block.

The case \eta n - 1(t) = \eta n(t) is an event that stops integration, as described in the
next subsection.

6.2. Event detection within Dormand--Prince integrator. We require a
method to detect whether there has been an event within an integration step and, if
so, to calculate its location. From Lemma 6.3, we see that the eigenvalues of H(eitA)
and MA(e

it,\bfitu (t), \lambda (t)) are closely related, by a shift of \lambda (t), except possibly for the
two eigenvalues \pm 1 of MA(e

it,\bfitu (t), \lambda (t)).

Definition 6.4 (event function qA(\cdot )). Given an eigenpair \{ \bfitu (t), \lambda (t)\} of H(eitA),
define the function qA(t,\bfitu (t), \lambda (t)) to be equal to the smallest magnitude eigenvalue of
DA(t,\bfitu (t), \lambda (t)) excluding the \pm 1 eigenvalues arising from the lower-right 2\times 2 block of
DA. If qA(t,\bfitu (t), \lambda (t)) < 0, then \lambda (t) is the dominant eigenvalue; if qA(t,\bfitu (t), \lambda (t)) =
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1738 S\'EBASTIEN LOISEL AND PETER MAXWELL

0, then \lambda (t) is nonsimple; and, if qA(t,\bfitu (t), \lambda (t)) > 0, then \lambda (t) is no longer domi-
nant.

At each integration step, if qA(t,\bfitu (t), \lambda (t)) < 0, then no event has occurred. Oth-
erwise, an event has occurred and we must determine the location, which is equivalent
to finding a zero of qA(\cdot ). We assume the integration step size small enough so that
only one event may occur within a step.

Definition 6.5 (event location rA(\cdot )). Given continuous eigenpair \{ \bfitu (t), \lambda (t)\} ,
for t \in [t1, t2] and qA(t1,\bfitu (t1), \lambda (t1)) qA(t2,\bfitu (t2), \lambda (t2)) < 0, we define rA(t1, t2,\bfitu (t),
\lambda (t)) as equal to t0 \in (t1, t2) such that qA(t0,\bfitu (t0), \lambda (t0)) = 0.

6.2.1. Calculating \bfitq \bfitA (\cdot ) using the inverse iteration with Aitken accel-
eration. qA(t,\bfitu (t), \lambda (t)) can be computed from MA(e

it,\bfitu (t), \lambda (t)) by performing an
inverse iteration and orthonormalizing with respect to [\bfitu (t)\ast 0 ]\ast and [ 0 . . . 0 1 ]\ast 

at each iteration. This guarantees that we will compute the smallest magnitude
eigenvalue of \eta \alpha 1

(t)  - \lambda (t), . . . , \eta \alpha n - 1
(t)  - \lambda (t). The inverse iteration is defined by

\bfitv (k+1) = M - 1
A \bfitv (k), where \bfitv (0) is drawn randomly according to a standard normal

distribution. We also perform Aitken delta-squared acceleration [38, p. 275], [6, p.
399] so that convergence is quadratic. We make the following definitions:

\bullet \rho k = [\bfitv (k)]\ast \bfitv (k)

[\bfitv (k)]\ast \bfitv (k+1) (the Rayleigh quotient);

\bullet \mu k = \rho k+2  - (\rho k+2 - \rho k+1)
2

\rho k+2 - 2\rho k+1+\rho k
(Aitken acceleration); and

\bullet ek = | \mu k  - \rho k| (the approximate error).
We stop the inverse iteration if any of the following conditions are satisfied, where c0
is a suitable constant (in our implementation c0 = 1.1):

\bullet \mu k + c0ek < 0, in which case, we conclude that \lambda is indeed the dominant
eigenvalue of H(eitA);

\bullet \mu k  - c0ek > 0, here we conclude that \lambda is no longer the dominant eigenvalue
of H(eitA) and an event has occurred; or

\bullet a division by zero has occurred in the calculation of \mu k or ek is smaller than
some tolerance, in which case the two largest eigenvalues of H(eitA) are
almost exactly equal.

To determine whether an event has occurred within an integration step, we do not
need an accurate approximation of qA(\cdot ); just the sign is sufficient. So, only a few
iterations of the inverse iteration suffice in this situation. In the case where an event
has occurred, we must find the location. Assuming that the step size \delta t of the ODE
solver is small, then too shall \eta n - 1(t) - \lambda (t) be small and hence only a few iterations
are required.

One might expect that a subspace method such as Lanczos would be more efficient
than the inverse iteration for this purpose. Indeed, MATLAB's eigs() implements
Lanczos and was tested as a replacement for the inverse iteration with a variety of
tolerance and subspace dimension choices. It was consistently slower than our custom
implementation of the inverse iteration. This is likely due to the small number of
iterations required.

6.2.2. Calculating the event location \bfitr \bfitA (\cdot ). The precise location of an
event can be found by using a nonlinear root finding algorithm applied to the qA(\cdot )
event function. We use MATLAB's fzero(). An anonymous referee points out that
fzero() can have a moderately large computational cost. This calculation is neces-
sary because we must find, to high accuracy, the location of any nonsimple eigenvalues;
without this information, the path-following algorithm may become unstable. The al-
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gorithm underlying fzero() is Brent's modification of Dekker's algorithm; see [5] and
[15]. It is guaranteed to converge and for continuously differentiable functions (assum-
ing negligible rounding error), the convergence is superlinear. It posed no problems
in our numerical experiments.

7. Analysis. The performance characteristics of the algorithm are essentially
predicated on two properties: the number of eigenvalue problems that must be solved
and the error bounds for a Runge--Kutta step of size h. These are characterized in
the subsections below.

7.1. Expectation of eigenvalue crossings. In sections 4 and 6, it was ex-
plained that numerical integration can only proceed along an arc whilst the dominant
eigenvalue \lambda max(t) is simple. If a nonsimple eigenvalue is encountered, a new arc
must be computed on the other side of the eigenvalue crossing thus requiring another
eigenvalue solve. Since eigenvalue solves are the most computationally expensive step
in the path-following algorithm, it is desirable to know a priori the expected number
of eigenvalue crossings and also an upper bound.

Recalling our earlier description of the problem in (4.1), we are concerned with the
eigenvalues of a Hermitian matrix parameterized by a single real variable, H(eitA) =
(eitA+ e - itA\ast )/2. For a general random Hermitian matrix parametrized by a single
real variable, von Neumann and Wigner argued in their celebrated 1929 paper [48],
[47] that, without special structure, eigenvalue crossings are highly unlikely to occur.
Further explanation can be found in [30, p. 140]. We provide numerical results in
subsection 8.3 which support von Neumann and Wigner's heuristic result that for
randomly generated matrices, eigenvalue crossings do not occur. However, the result
only holds for randomly generated matrices. Normal matrices, for example, exhibit
eigenvalue crossings, and so it is desirable to have a strict upper bound. We prove in
Theorem 7.2 that the number of eigenvalue crossings is upper bounded as 2n(n - 1).
This situation is illustrated in Figures 7.1 and 7.2. Matrix J is defined as

(7.1) J = JA \oplus JB =

\left[    
 - 1 + i 1 0 0

0  - 1 + i 0 0
0 0 1 - i 1
0 0 0 1 - i

\right]    .

Definition 7.1 (discriminant and resultant of H(zA)). Let A \in \BbbC n\times n. Con-
sider the family of matrices H(zA) = (zA + z - 1A\ast )/2, parametrized by z \in \BbbC \setminus \{ 0\} .
The characteristic polynomial can be written pH(zA)(\lambda ) = pn(z)\lambda 

n + \cdot \cdot \cdot + p0(z). The
discriminant of H(zA) can be written in terms of the resultant [9], [16],

Disc\lambda 
\bigl( 
pH(zA)

\bigr) 
:= ( - 1)n(n - 1)/2 1

pn(z)
Res

\biggl( 
pH(zA)(\lambda ),

\partial 

\partial \lambda 
pH(zA)(\lambda )

\biggr) 
.

Let q(z) be the Laurent polynomial obtained by writing the resultant as the deter-
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1740 S\'EBASTIEN LOISEL AND PETER MAXWELL

(a) Eigenvalues of H(eitA) for a random ex-
ample matrix A, parametrized by t. First
appearances suggest the eigenvalues cross.

(b) Zooming in shows that the eigenvalues
actually do not cross---an avoided crossing.

Fig. 7.1. Eigenvalue avoided crossings.

(a) Eigenvalues of H(eitJ) for matrix J
parametrized by t.

(b) This time the eigenvalues do indeed cross.

Fig. 7.2. Eigenvalue level crossings.

minant of a (2n - 1)\times (2n - 1) Sylvester matrix,

q(z) = det

\left[             

pn(z) . . . . . . p0(z)
. . .

. . .

pn(z) . . . . . . p0(z)
npn(z) . . . p1(z)

. . .
. . .

. . .
. . .

npn(z) . . . p1(z)

\right]             
\underbrace{}  \underbrace{}  

Q

.(7.2)

Note that the discriminant, Disc\lambda 
\bigl( 
pH(zA)

\bigr) 
, is zero if and only if the characteristic

polynomial has a repeated root.

Theorem 7.2. Assume the family of matrices, H(zA), discriminant, and resul-
tant as defined in Definition 7.1. Assume that for some z \in \BbbC \setminus 0, all the eigenvalues of
H(zA) are simple. Then, the eigenvalues of H(zA) have algebraic multiplicity higher
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than 1 for at most finitely many z \in \BbbC . Moreover, if the number of such z is denoted
as l, then l \leq 2n(n - 1).

Proof. Since we are only interested in whether the discriminant is zero, the scalar
factor can be dispensed with and only the resultant q(z) need be considered.

Each pk(z) is a rational function of z, so the discriminant is a rational function
of z. Furthermore, q(z) = 0 if and only if pH(zA)(\lambda ) has repeated roots. Since H(zA)
has only simple eigenvalues for a certain value of z, q(z) cannot be zero everywhere.
By the fundamental theorem of algebra, q(z) has at most finitely many roots.

Moreover, it can be seen that each pk(z) is a Laurent polynomial, pk(z) = amzm+
am - 1z

m - 1 + \cdot \cdot \cdot + a - (m - 1)z
m - 1 + a - mz - m with m = n  - k. By computing the

determinant of Q, noting the maximum power of z in each term, it can be seen that
the terms of q(z) have maximum degree n(n - 1) in z. By applying the fundamental
theorem of algebra again, q(z) has at most 2n(n - 1) roots and l \leq 2n(n - 1).

7.2. Error estimates. For clarity, we denote by \zeta (t) Johnson's parametrization

of \partial W(A) and by \^\xi (t) the numerical approximation obtained from our Runge--Kutta
solver. For certain classes of matrix, formal estimates are derived in relation to the
step size, h \ll 1.

Consider the set E \subset \BbbC n\times n \times \BbbC of matrices and scalars (A, z) \in \BbbC n\times n \times \BbbC such
that H(zA) has repeated eigenvalues. This is precisely the set such that q(z) = 0,
where q(z) is the discriminant polynomial (7.2). Since q(z) is a Laurent polynomial,
we must have that E is Zariski closed and, in particular, E has Lebesgue measure
zero. By the Fubini--Tonelli theorem, the restriction of E along almost any curve of
real codimension 1 also has Lebesgue measure zero, so the set of (A, z) \in \BbbC n\times n \times \BbbT 
such thatH(zA) has repeated eigenvalues is of measure zero. In other words, repeated
eigenvalues and events in the ODE solver are ``exceptional""; for randomly generated
matrices, such exceptional events will almost never occur.

Definition 7.3 (arc). Denote by m(z) \geq 1 the algebraic multiplicity of \lambda max

(H(zA)). We distinguish the following cases.
1. We say that A is type 1 if m(z) = 1 for all z \in \BbbT . In this case, we define the

only arc to be T1 = \BbbT .
2. We say that A is type 2 if m(z) > 1 for all z \in \BbbT . This implies that the

resultant q(z) = 0 for all z, so the set of all type 2 matrices is Zariski closed.
We do not define any arcs in this situation.

3. We say that A is type 3 if it is neither type 1 nor type 2. We define \{ zk =
eitk\} Kk=1 as the finitely many values of z where m(zk) > 1. The arcs are then
of the form Tk = (tk, tk+1) for k = 1, . . . ,K, where k is understood modulo
K, and t is understood modulo 2\pi .

As noted in the introduction, \zeta (t) can be discontinuous at finitely many points \{ tk\} Kk=0,
corresponding to values of tk where the eigenvalue \lambda max(tk) is nonsimple. However,
when A is either type 1 or type 3, the choice of \bfitu max(t) is unique up to rescaling
inside each arc Tk = (tk, tk+1). The choice of \bfitu max(t) is nonunique at the vertices
\{ tk\} and at those points, \zeta (tk) is, in general, not well-defined.

Consider an explicit Runge--Kutta method of order p for computing an approxi-
mation \^\bfitv (t) of the dominant eigenpair \bfitv (t) for t in an arc. We analyze two cases: A
being of type 1, and A being a normal matrix of type 3.

Theorem 7.4. If A is of type 1, then \| \^\bfitv (t) - \bfitv (t)\| = \scrO (hp).

Proof. Recall (6.1). From [40, Chap. 1], it can been seen that the eigenvalue
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1742 S\'EBASTIEN LOISEL AND PETER MAXWELL

\lambda (t) and the eigenvector \bfitu (t) are both analytic functions of t. Denote by \eta 1(t) \leq 
\eta 2(t) \leq \cdot \cdot \cdot \leq \eta n(t) = \lambda (t) the eigenvalues of H(eitA) and by DA(t,\bfitu (t), \lambda (t)) the
unitary transform of MA(e

it,\bfitu (t), \lambda (t)) as defined in Definition 6.2. Since, by as-
sumption, \lambda (H(eitA)) is simple for all t, then \eta n - 1(t) < \eta n(t), and so the eigenvalue
of MA(e

it,\bfitu (t), \lambda (t)) with the smallest magnitude is either \eta n - 1(t)  - \eta n(t) if that
quantity is small or \pm 1 from the lower-right 2 \times 2 block of DA(t,\bfitu (t), \lambda (t)). Either
way, since \eta n - 1(t)  - \eta n(t) is nonzero for every eit \in \BbbT and since \BbbT is compact, it
must be that the modulus of the spectrum | \sigma (MA(e

it,\bfitv max(t), \lambda max(t)))| is uniformly
bounded below on \BbbT and henceM - 1

A (eit,\bfitu (t), \lambda (t)) is smooth in a neighborhood of the
solution curve. From the standard theory of Runge--Kutta methods, e.g., Theorem
II.3.4 in [22], we obtain the result.

We now show that when A is normal, and \partial W(A) is, therefore, a polygon, our
algorithm computes \partial W(A) exactly with no error. We begin with a technical lemma
which shows that Runge--Kutta integrators preserve invariant subspaces.

Lemma 7.5. Consider a Runge--Kutta solver with S stages, with Butcher tableau
B, c and step size h; in other words,

\bfity (s) = F

\left(  \bfitx (0) + h

s - 1\sum 
j=1

Bsj\bfity 
(j)

\right)  for s = 1, . . . , S and \bfitx (1) = \bfitx (0) + h

S\sum 
k=1

ck\bfity 
(k).

Say there is a matrix V such that \bfitx \in spanV =\Rightarrow F (\bfitx ) \in spanV , where spanV
denotes the column space of V . Then, if the initial data \bfitx (0) is in the column span of
V , all subsequent iterates \bfitx (k) shall also be in the column space of V .

Proof. Clearly, \bfity (0) = F (\bfitx (0)) \in spanV , and hence, by induction, \bfity (1), . . . ,\bfity (S) \in 
spanV . Finally, \bfitx (1) is a linear combination of vectors in spanV .

Theorem 7.6. Assume that A is a normal matrix with distinct eigenvalues and
denote the solution generated by Algorithm 6.1 as \^\xi (t), the Runge--Kutta approxima-

tion of the Johnson function \zeta (t). Then, \^\xi (t) = \zeta (t) for all t \in 
\bigcup 

k Tk, where Tk are
the arcs as defined in Definition 7.3, i.e., there is no error.

Proof. Due to the spectral theorem, Property 2.3 (c), Property 2.3 (h), and The-
orem 3 from [26], without loss of generality we may assume that A = diag(a1, . . . , an)
with a1, . . . , an \in \BbbC . Then, H(eitA) = diag(\Re [eita1], . . . ,\Re [eitan]), and so the differ-
ential equation is \biggl[ 

\bfitu \prime (t)
\lambda \prime (t)

\biggr] 
= P (t)Q(t)

\biggl[ 
\bfitu (t)
\lambda (t)

\biggr] 
= F

\biggl( \biggl[ 
\bfitu (t)
\lambda (t)

\biggr] \biggr) 
,

where

P (t) :=

\left[       
\Re [eita1] - \lambda (t)  - u1(t)

. . .
...

\Re [eitan - 1] - \lambda (t)  - un - 1(t)
\Re [eitan] - \lambda (t)  - un(t)

 - u1(t) . . .  - un - 1(t)  - un(t) 0

\right]       
 - 1

and

Q(t) :=

\left[     
i\Im [eita1]

. . .

i\Im [eitan]
0

\right]     .D
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Clearly,

F

\left(       
0
...
0
\ast 
\ast 

\right)       =

\left(       
0
...
0
\ast 
\ast 

\right)       , hence V =

\left[       
0 0
...

...
0 0
1 0
0 1

\right]       
is an invariant subspace for F . As per Algorithm 6.1, the initial value is the domi-
nant eigenpair of H(eitA)\bfitu (t) = \lambda (t)\bfitu (t) so that \lambda (t) = \Re [eitan] and hence \bfitu (t) =
[ 0 . . . 0 1 ]\ast = \bfite (n). In particular, the initial point \bfitx (0) is in the column space of V
and hence, by Lemma 7.5, all the Runge--Kutta steps are in the column space of V .
This means that \^\bfitu max(t) is some multiple of \bfitu max(t) = \bfite (n), and \^\xi (t) = \zeta (t).

7.3. Discussion. We have proven the accuracy of our algorithm in the following
cases:

\bullet Type 1 matrices such that \lambda max(H(zA)) has multiplicity 1 for all z \in \BbbT : our
algorithm produces an approximation \^\xi (t) of \zeta (t) that has \scrO (hp) accuracy.

\bullet Type 2 matrices such that \lambda max(H(zA)) has multiplicity 2 or higher for all
z \in \BbbC : our algorithm does not work for those matrices.

\bullet Type 3 matrices: if A is normal, then \^\xi (t) = \zeta (t) and the numerical solution
is exact. We were not able to analyze the nonnormal case when nonsimple
eigenvalues are present.

Another way of expressing the above is to state the amount of work required to
obtain a solution to the accuracy of a specific tolerance, \sigma . An important component
of this required work is the number of times we must perform an eigenproblem solve.
For type 1 matrices, we need \scrO (\sigma 1/p) Runge--Kutta steps and the solution of one
eigenproblem to produce initial conditions, while for normal matrices of type 3, we
need \scrO (1) steps of the Runge--Kutta solver and one eigenproblem solve per arc. Each
Runge--Kutta step requires SI linear solves to compute the SI stages, plus a small
number of linear solves SL for event detection. Thus, for fixed S = SI + SL and in
the cases we have analyzed, we predict \scrO (nA(\sigma 

1/pSTL + TE)) work, where nA is the
number of arcs, TL is the running time of a linear solve, and TE is the running time of
an eigenproblem solve. It is assumed that TE > TL. In our numerical experiments, nA

was often quite small. By comparison, Johnson's algorithm, which solves an eigenvalue
problem at m values of t, requires \scrO (mTE) work. Since Johnson's algorithm has
accuracy \scrO (m - 2), we arrive at the following running times:

\bullet Our algorithm: \scrO (nA(\sigma 
 - 1/pSTL + TE)).

\bullet Johnson's algorithm: \scrO (\sigma  - 1/2TE).
As we can see, for small \sigma and when nA is not too large, our algorithm is many orders
of magnitude faster than Johnson's algorithm. Apart from the difference in order
\sigma  - 1/p versus \sigma  - 1/2, there is another trade-off that becomes obvious. Our algorithm
requires many fewer eigenvalue solves, and in exchange we require some linear solves.
This is especially appealing when A is a sparse matrix in very high dimensions, where
sparse linear solvers may run faster than eigenvalue solvers.

Our algorithm does not apply to type 2 matrices, but this did not have a negative
impact for our numerical experiments. We were also not able to completely analyze
nonnormal matrices of type 3 (when \lambda max(t) can be nonsimple). These limitations
to our analysis are to be expected: even for the problem of computing eigenvalues,
state-of-the-art eigenvalue solvers fail for some matrices.
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8. Numerical tests. To provide a practical characterization of the new algo-
rithm performance, numerical tests were performed to measure the error-cost trade-off
in comparison with the existing algorithms.

8.1. Methodology for numerical tests. The most straightforward method to
draw a fair comparison for practical use is to execute each algorithm within a range of
parameters, record the runtime and error, and then compare the results. This ensures
that what is measured is the trade-off between computational cost and error tolerance
for each algorithm or parameter set. We considered a randomly generated complex
matrix A of size n = 250 with \| A\| = 1 for the numerical tests.

In [26], Johnson estimates the error by calculating the area of the inner and outer
boundaries which act as a lower and upper bound on the actual area; the difference
can provide a suitable error measure for the number of boundary points calculated.
However, if testing to high-precision, it is desirable to adopt an alternative error
measure. Instead of using an area estimate, we attempt to calculate a ``maximum
distance"" error between the exact boundary and the interpolant produced by each
algorithm. In other words, we calculate the maximum over the minimum distance
between all points on the exact field of values boundary and the candidate interpolant.

Let \^\gamma (\cdot ) denote any generic parametrized boundary approximation (the interpo-
lated output from a provided candidate algorithm). For a given exact Johnson point
pk = \zeta (tk) on \partial W(A), we define the error for a candidate algorithm at point pk as

\epsilon (pk) := min
t
\| pk  - \^\gamma (t)\| ,

and the error for K Johnson points, pk, k \in \{ 1, . . . ,K\} as

E(K) := max
k\in \{ 1,...,K\} 

\epsilon (pk),

and we seek to estimate

E := lim
K\rightarrow \infty 

E(K) = lim
K\rightarrow \infty 

max
k\in \{ 1,...,K\} 

min
t
\| pk  - \^\gamma (t)\| .

So that a valid comparison can be made with the analysis in section 7, we do
not include in our measurements the time taken to compute the interpolant for each
algorithm. For Johnson's algorithm and our path-following algorithm, these are es-
sentially \scrO (1) operations and are not interesting. For Uhlig's algorithm, matters are
slightly more involved.

Using new notation for clarity, in Uhlig's algorithm, for each of the me compres-
sion ellipses one must calculate le boundary points, say. At the end of the algorithm's
processing, a convex hull of the total mele points must be calculated (the results of
which can be piecewise linearly interpolated similar to Johnson's algorithm). Cal-
culating points on the ellipse is very lightweight but calculating the convex hull is
\scrO (mele logmele). Uhlig's algorithm as it stands also does not directly make use of
the higher-order interpolation available from the ellipses.

With a view toward making our analysis clearer, we define an Uhlig-lite variant.
Rather than calculating a set of boundary points from each ellipse, we instead only
perform the eigensolves and matrix compressions. This is obviously always faster than
Uhlig's full algorithm and so represents a lower bound on computational cost, i.e.,
Uhlig's full algorithm is always worse. To calculate E(K), we calculate the minimum
distance from each candidate pk point to the nearest exact ellipse boundary (using a
root solver). The effect of this is to determine the best-case asymptotic performance
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of the matrix compression approach if perfect interpolation on the relevant ellipse
could be done at no computational cost.

The eigenproblem solves for Johnson's algorithm, Uhlig's algorithm, and Uhlig-
lite, and the path-following algorithm use QR decomposition. The Braconnier--Higham
method is approximated by a version of Johnson's algorithm with MATLAB's eigs()
implementation of Lanczos using the previous eigenvector for the new start vector
(continuation). Many of the enhancements that Braconnier and Higham proposed for
use in Lanczos (e.g., selective reorthonormalization and restarts) have been incorpo-
rated or improved upon by the ARPACK library that underpins MATLAB's eigs(),
so we have implemented a modern version of Braconnier--Higham by combining John-
son's algorithm with MATLAB's eigs() solver.

The candidate algorithms are as follows: the path-following algorithm, Johnson's
algorithm, Johnson's algorithm using Lanczos with continuation (as per Braconnier--
Higham), Uhlig's algorithm, and the Uhlig-lite variant. For each algorithm, we ap-
proximate E to near machine precision by taking a suitably large K, picking each pk
randomly distributed over the boundary, and calculating the associated \epsilon (pk) values.
This E(K) will almost certainly not achieve the maximum E unless we are very lucky
in our choice of pk. So we therefore pick the J \ll K largest \epsilon (pk) points labeling them
pj , j \in \{ 1, . . . , J\} , choose a small arc around each pj , create new pk points along each
arc and add to the list so that K grows, and finally re-evaluate E(K) using these new
points. This divide-and-conquer approach is repeated until successive E(K) estimates
converge to within machine precision, i.e., it has converged to E.

8.2. Numerical test results. The algorithms were tested for a reasonable range
of parameters, e.g., for Johnson's algorithm we varied the number of eigensolves be-
tween 28 and \approx 213. The parameter choices are not particularly important other than
forcing each algorithm to take longer to produce a more accurate result; it is the
error-cost relationship that we are interested in. The results are shown on a log-log
plot in Figure 8.1. A linear fit has been applied so that the asymptotic complexity of
each algorithm can be ascertained. This was not done for Uhlig's full algorithm.

Johnson and Johnson using Lanczos with continuation reduce error as predicted
in [26], as \scrO (m - 2). Uhlig-lite reduces error approximately as \scrO (m - 3). The new
algorithm reduces error approximately as \scrO (m - 5). This is a significant improvement
on existing algorithms in terms of asymptotic performance.

For the test matrix used, the path-following algorithm is faster in absolute terms
than all existing algorithms for accuracy better than around 10 - 4 (this excludes Uhlig-
lite because it does not count the computation time for the ``exact"" interpolation
used). Notably, the performance of Uhlig's algorithm deteriorates and becomes slower
than Johnson's algorithm around 10 - 9 accuracy.

Although the asymptotic results should hold in general, some caution has to be
advised when attempting to draw conclusions about practical use cases. Factors such
as matrix size, matrix structure, regularity of \partial W(A), and CPU all have an influence
on the results. In particular, if a test matrix is structured such that computation of
linear solves are appreciably faster than eigenproblem solves, then the performance of
the path-following algorithm improves significantly.

8.2.1. Additional details on test implementation. There are some per-
tinent details concerning the implementation of the numerical tests which deserve
further explanation.

As mentioned in subsection 3.3, Uhlig described four methods [46, sect. 2.1] for
selecting new edge-points. After tests using Uhlig's wberell2.m code [45], method
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Fig. 8.1. Log-log plot of computation time against error of the different algorithms. The
asymptotic error in Johnson's algorithm is of order \scrO (m - 2), Uhlig-lite \scrO (m - 3), and our new
algorithm \scrO (m - 5). Note that Uhlig-lite is a theoretical lower bound for Uhlig where we do not
count the interpolation costs and is not in itself a practical algorithm.

4 was generally the most efficient, and this is what was used in our numerical tests.
The number of points per ellipse is selected for adaptively in the wberell2.m code
and constrained to only those points likely to be on the boundary.

MATLAB's eig() (QR) was chosen as the default over eigs() (Lanczos) due to
it being more efficient for the matrix size used. As seen in the results, this situation
changes when continuation can be used but the distinction is marginal.

A matrix size of n = 250 was chosen as it was the largest size which could be
practically tested with available computing resources: the runtime of each algorithm is
relatively quick, but to precisely determine the error required several days runtime on a
multicore system. Due to the limitations of double word precision used by MATLAB,
we could not test any algorithm more accurately than approximately 10 - 14.

8.3. Eigenvalue crossings. We tested 10, 000 random matrices of size n =
100 and the same number of size n = 10 and could not record a single eigenvalue
crossing. This is in accordance with von Neumann and Wigner's result as described
in subsection 7.1. It is, however, trivial to deliberately craft matrices which do exhibit
eigenvalue crossings, e.g., the matrix specified by (7.1).

8.4. Discussion. The numerical tests support the claim that the new algorithm
has better asymptotic performance than the Johnson, Braconnier--Higham, and Uhlig
algorithms. For the matrix tested, the new algorithm was faster in absolute terms
for error tolerance better than \approx 10 - 4. For randomly generated matrices, we can
be confident that the path-following algorithm will only require one eigenvalue solve
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irrespective of the required accuracy. Given that this is the dominant factor in com-
putational cost, the path-following algorithm should compare favorably to other al-
gorithms which are heavily dependent on eigenvalue solves.

9. Conclusions and future work. We have presented a new algorithm for
calculating the field of values boundary for complex matrices. At high accuracy, our
algorithm is at least an order of magnitude faster than all previous algorithms. There
are open questions on finding optimal parameter sets and opportunities for further
analysis of nonnormal type 3 matrices which may form the subject of future efforts.

As mentioned in the introduction, we believe that the path-following algorithm we
have presented has more generic applicability. Indeed, one of the authors is currently
developing a minor alteration of the algorithm for use in calculating dispersive proper-
ties of ocean waves. As a result of this ongoing work, it appears our algorithm---with
suitable adjustments---has broad applicability for efficient solution of Sturm--Liouville
problems parametrized by a single real variable.
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