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Abstract

To describe the damped resonant sloshing in a circular base container, the
nonlinear modal equations by Faltinsen et al. (2016) are equipped with lin-
ear damping terms associated with the logarithmic decrements of the natural
sloshing modes. The damping coefficients express a cumulative effect of di-
verse dissipative phenomena. The surface tension is neglected, the container
performs a prescribed periodic sway/surge/pitch/roll motion, the forcing fre-
quency is close to the lowest natural sloshing frequency, and the mean liquid
depth - to the tank radius ratio h & 1.2. An asymptotic steady-state solu-
tion of the modal equations is derived; its stability is analysed by the linear
Lyapunov method. The dominant amplitudes and the phase-lags of the two
primary excited natural sloshing modes are governed by four (secular) non-
linear algebraic equations whose structure is the same as if the container were
to perform an elliptic orbital horizontal translatory motion. The steady-state
response curves are studied versus the semi-axes ratio of the horizontal ellip-
tic orbit; a line segment (horizontal longitudinal) and a circle (rotary forcing)
are two limiting cases. For the longitudinal forcing, planar (standing) and
swirling steady-state waves are possible, otherwise, only swirling occurs. A
focus is on the phase-lags, which are piecewise functions along the contin-
uous amplitude response curves in the undamped case, but they become of
the non-constant character when the damping matters. A comparison is done
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with measurements of the phase-lag by Royon-Lebeaud et al. (2007) (longi-
tudinal forcing) to show that, if the damping rates are associated with the
boundary layer at the wetted tank surface and the bulk viscosity, a satisfac-
tory agreement is established with lower wave amplitudes but the cumulative
damping effect must be larger to fit the experiments with increasing ampli-
tudes. For elliptic forcing, stable swirling can be co- or counter-directed with
the forcing direction. However, damping makes the counter-directed swirling
impossible as the elliptic forcing orbit tends to a circle.

Keywords: Steady-state sloshing, multimodal method, damping, response
curves, phase-lags.

1. Introduction

Steady-state resonant nonlinear sloshing in a circular base container caused
by harmonic horizontal longitudinal excitations with the forcing frequency
close to the lowest natural frequency has been studied by diverse authors,
theoretically and experimentally, starting from the 60’s. Recent reviews5

are given by Royon-Lebeaud et al. (2007) and Lukovsky and A.N.Timokha
(2017). In analytical studies, viscous damping is normally neglected, which
has been supported by experimental data for industrial containers whose ge-
ometric dimensions count in metres. However, experimental works by Ikeda
et al. (2012), Kim and Kizito (2009), Weheliye et al. (2013), Reclari (2013),10

Ducci and Weheliye (2014), Reclari et al. (2014) showed that the damping
may matter for laboratory tanks (incl. bioreactors) whose horizontal dimen-
sion is relatively small. Reasons are the larger viscosity of bioliquid and/or
the dynamic contact angle effect (Shukhmurzaev, 1997). Keulegan (1959)
showed that the dynamic contact angle effect matters for rectangular tanks15

with about 15 cm horizontal width and length. Additional dissipative factors
can be surface-wave phenomena including contamination and wave breaking
(Miles, 1994; Royon-Lebeaud et al., 2007).

For the sway/surge/pitch/roll periodic tank forcing, the most violent res-
onant sloshing occurs when the forcing frequency is close to the lowest natural20

sloshing frequency. Faltinsen et al. (2016) studied the undamped steady-
state resonant sloshing due to an elliptic type forcing by using the nonlinear
multimodal method in the Narimanov–Moiseev approximation. This ana-
lytical approach is rather accurate for circular base tanks when the mean
liquid depth to the tank radius h & 1.2. For lower liquid depths, the derived25

2



Narimanov–Moiseev-type modal equations have a limited applicability due to
the secondary resonance phenomenon (Faltinsen and Timokha, 2009, Chs. 8,
9). The theoretical steady-state wave regimes, maximum wave elevations
and hydrodynamic forces were in satisfactory agreement with experiments
including those by Royon-Lebeaud et al. (2007). However, the experimental30

phase-lag (between the longitudinal sinusoidal forcing and the wave compo-
nent in the excitation plane) was not correctly predicted, even qualitatively,
within the framework of the undamped sloshing theory. According to Faltin-
sen et al. (2016), this phase-lag must be equal to either 0 or π but the
measured values were clearly not these constants.35

The present paper accounts for damping in the Narimanov–Moiseev-type
equations by Faltinsen et al. (2016) and constructs the corresponding asymp-
totic periodic solution to classify the damped resonant steady-state wave
regimes.

In § 2, we give the necessary introductory facts about the natural slosh-40

ing modes, their frequencies and logarithmic decrements (damping ratios) as
well as write down the nonlinear Narimanov–Moiseev-type modal equations
by Faltinsen et al. (2016), which couple the free-surface generalised coordi-
nates. The equations are equipped with linear damping terms expressing a
cumulative effect of various dissipative phenomena including the boundary45

layer at the wetted tank surface and the bulk viscosity. The damping ratios
caused by the two aforementioned physical factors are theoretically evaluated
by Miles and Henderson (1998), asymptotically, in terms of δ = Ga−1/4 � 1
where Ga is the Galillei number. The modal equations neglect surface ten-
sion (the Bond number & 100). For tap water, this requires the tank radius50

r0 & 0.05 m.
The Narimanov–Moiseev-type modal equations by Faltinsen et al. (2016)

couple the O(ε1/3) (dominant), O(ε2/3) and O(ε) free-surface generalised co-
ordinates, where O(ε) � 1 is associated with the nondimensional forcing
amplitude. Because these equations neglect the o(ε) terms, the linear damp-55

ing coefficient ξ11 for the two lowest(-order) natural sloshing modes should
be of the order O(ε2/3) but the linear damping terms for the higher modes
can be neglected in our asymptotic analysis.

An analytical asymptotic periodic solution of the modal equations is con-
structed in § 3.1. Even though arbitrary prescribed sway/surge/roll/pitch60

periodic tank excitations are postulated, the necessary solvability conditions
(secular equations) coupling the lowest-order amplitude components a, b̄ and
ā, b (sin t and cos t harmonics of the two lowest-order free-surface generalised
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coordinates) have the same structure as if the tank performs an elliptic orbital
horizontal motion.65

The present analysis focuses on the damped steady-state wave regimes and
their stability, the lowest-order amplitudes A =

√
a2 + ā2, B =

√
b̄2 + b2 and

the phase-lags ψ, ϕ versus the semi-axes ratio 0 ≤ δ ≤ 1 of the ‘elliptic’ orbit,
whose limit values 0 and 1 correspond to horizontal longitudinal and rotary
tank motions, respectively. The secular system has an analytical solution for70

the undamped case given by Faltinsen et al. (2016), but it does not in the
studied case. A possible reason is that ψ and ϕ are constants when damping
is zero, which significantly simplifies the analysis.

In § 3.2, we examine the response curves for the horizontal longitudi-
nal periodic excitations. The damped and undamped amplitude (associated75

with A and B) response curves are compared to show that damping weakly
affects stability ranges of planar standing waves and swirling (steady-state
waves existing for this excitation type). The frequency range of irregular
waves (chaos) also remains approximately the same as in the undamped case
by Faltinsen et al. (2016). In contrast, the phase-lags qualitatively change,80

becoming complex functions of the forcing frequency and the response am-
plitude. Measurements of ψ by Royon-Lebeaud et al. (2007) for swirling are
used for validation. By assuming the damping rates are basically caused by
the boundary layer at the wetted tank surface and the bulk viscosity, a sat-
isfactory consistency is found in a neighbourhood of the primary resonance85

where the wave amplitude is relatively low. To fit the experimental values of
ψ with increasing wave amplitudes, one should increase the damping rates.
One reason is a significant wave breaking effect in these experiments.

In § 3.3, we numerically study the response curves associated with A,B
and ψ versus the semi-axes ratio of the elliptic forcing orbit. Because the sec-90

ular system does not have analytical solutions for the studied damped case,
a numerical-analytical scheme is adopted. For small non-zero δ, the branch-
ing splits so that co-directed (with forcing) swirling belongs to one branch,
which has no joint points with another loop-type branch corresponding to the
counter-directed swirling. When the forcing orbit tends to a circle (δ → 1),95

the counter-directed swirling disappears so that the rotary (circular) excita-
tions in § 3.4 lead only to co-directed swirling with A = B. The response
curves are of the hard-spring character as reported by Reclari (2013) and
Reclari et al. (2014). Unfortunately, we were not able to compare with the
latter experimental measurements because these were done for h = 1.04100

where the adopted nonlinear modal equations are not applicable due to the
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Fig. 1. The liquid domain Q(t) is confined by the free surface Σ(t) and the wetted
tank surface S(t). Sloshing is considered in the tank-fixed coordinate system Oxyz whose
coordinate plane Oxy coincides with the mean (hydrostatic) free surface Σ0; Oz is the
symmetry axis. Small-magnitude periodic tank excitations are governed by the generalised
coordinates η1(t) (surge), η4(t) (roll), η2(t) (sway), and η5(t) (pitch).

secondary resonance phenomenon.

2. Statement of the problem. Modal equations

An incompressible liquid partly fills an upright circular rigid tank of radius
r0. The tank performs a small-magnitude prescribed periodic sway/surge/105

roll/pitch motion, which is furthermore described by the r0-scaled periodic
generalised coordinates η1(t), η2(t), η4(t) and η5(t) as shown in figure 1. The
yaw and heave tank motions are not considered. Figure 1 shows the time-
dependent liquid domain Q(t) with the free surface Σ(t) (governed by the
single-valued function z = ζ(r, θ, t)) and the wetted tank surface S(t).110

Henceforth, the resonant sloshing is studied using a nondimensional state-
ment, which is based on the characteristic size r0 and time 1/σ, where σ
is the circular forcing frequency. A small parameter 0 < ε � 1 is intro-
duced, which is associated with the nondimensional forcing magnitude, i.e.
|ηi(t)| = O(ε), i = 1, 2, 4, 5.115

2.1. The natural sloshing modes and frequencies, their damping rates

Linear standing waves in a motionless circular base tank are a superposi-
tion of the natural sloshing modes ϕMi, which are the eigenfunctions of the
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spectral boundary problem (Faltinsen and Timokha, 2009, Ch. 5)

∇2ϕMi = 0 in Q0,
∂ϕMi

∂n
= 0 on S0,

∂ϕMi

∂n
= κMiϕMi on Σ0,

∫
Σ0

ϕMi dS = 0,

(1)
Q0 is the mean (hydrostatic) liquid domain confined by the mean free surface
Σ0 and the wetted tank surface S0 (figure 1); σMi are the natural sloshing
frequencies.

The spectral problem (1) has the analytical solution (Faltinsen and Tim-
okha, 2009, Sect. 4.3.2.2)

ϕMi(r, θ, z) = αMiJM(kMir)ZMi(z) cos
sin (Mθ), M = 0, . . . ; i = 1, . . . , (2)

ZMi(z) =
cosh(kMi(z + h))

cosh(kMih)
, (3)

where JM(·) is the Bessel function of the first kind, the radial wave numbers
kMi are determined by the transcendental equation J ′Mi(kMi) = 0, h is the
r0-scaled mean liquid depth, and we adopt, as in Faltinsen et al. (2016), the
normalising multipliers αMi from the orthogonality condition

αMjαMi

∫ 1

0

r JM(kMir) JM(κMir) dr = δij, i, j = 1, . . . , (4)

where δij is the Kronecker delta. The dimensional natural sloshing frequen-
cies are

σMi =
√
κMi g/r0, κMi = kMi tanh(kMih), (5)

where g = 9.81 m/s2 is the dimensional gravity acceleration; according to our120

normalisation, σ̄Mi = σMi/σ are the nondimensional sloshing frequencies.
Using this analytical solution and the multimodal method facilitate con-

structing the analytical solution of any linear sloshing problem in the up-
right circular cylindrical tank (Faltinsen and Timokha, 2009, Sect. 5.4.4).
The derivation suggests the generalised Fourier representations for the free
surface and the velocity potential:

ζ(r, θ, t) =

Iθ,Ir∑
M,i

αMiJM(kMir) cos(Mθ) pMi(t)

+

Iθ,Ir∑
m,i

αmiJm(kmir) sin(mθ) rmi(t), (6a)
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Φ(r, θ, z, t) = η̇1(t) r cos θ + η̇2(t) r sin θ + F (r, z)[−η̇4(t) sin θ + η̇5(t) cos θ]

+

Iθ,Ir∑
M,i

αMiJM(kMir)ZMi(z) cos(Mθ)PMi(t)

+

Iθ,Ir∑
m,i

αmiJm(kmir)Zmi(z) sin(mθ)Rmi(t), (6b)

where integers Iθ, Ir → ∞, ZMi(z) are defined by (3) and F (r, z) comes
from the so-called linear Stokes-Joukowski potentials, which is reported by
Faltinsen et al. (2016) as

F (r, z) = rz −
∞∑
n=1

2Pn
k1n

J1(k1nr)
sinh(k1n(z + 1

2
h))

cosh(1
2
k1nh)

; Pn =

1∫
0

r2 J1(k1nr) dr.

(7)
Here, the time-dependent functions pMi(t) and rmi(t) play the role of the

free-surface generalised coordinates but PMi(t) and Rmi(t) are interpreted as
the generalised velocities. All capital summation letters imply changing from
zero to Iθ but the lower case indices mean changing from one to either Iθ or
Ir. Faltinsen and Timokha (2009, Sect. 5.4.4, eq. (5.155)) showed that the
modal solution (6) analytically satisfies the governing Laplace equation and
all boundary conditions of the linear sloshing problem, if and only if, the gen-
eralised coordinates are, within the framework of the adopted normalisation,
the solution of the ordinary differential equations

p̈Mi + 2ξMiσ̄MiṗMi + σ̄2
MipMi = −δM1(η̈1 − ḡη5 − Siη̈5)κMiPi,

r̈mi + 2ξmiσ̄miṙmi + σ̄2
11rmi = −δm1(η̈2 + ḡη4 + Siη̈4)κmiPi,

(8)

where σ̄Mi = σMi/σ, ḡ = g/(r0σ
2), Si = 2 tanh(kMih/2)/kMi, and, in addi-

tion to Faltinsen and Timokha (2009, eq. (5.155)), we introduced the linear
framed damping terms expressing the energy dissipation.

According to (8) with the framed terms, the damped free-standing (the125

right-hand side is zero) waves exponentially decay and the damping ratios ξMi

are associated with the logarithmic decrements of the natural sloshing modes.
Normally, the damping ratios are small nondimensional values. They express
a cumulative effect of various dissipative phenomena which are, primarily, the
boundary layer at the wetted tank surface and the bulk viscosity (Miles and130
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Henderson, 1998). For laboratory tanks, additional important dissipative
phenomena may be the dynamic contact angle effect (Keulegan, 1959), the
free-surface contamination (Miles, 1994) as well as, for violent sloshing, wave
breaking (Royon-Lebeaud et al., 2007). When ξMi are relatively small, σ̄Mi

can be accepted equal to those for the undamped case by (5).135

Following Miles and Henderson (1998), the damping ratios ξMi due to
the boundary layer at the wetted tank surface and the bulk viscosity can
asymptotically be expressed in terms of the Galilei number (Barnyak and
Leschuk, 2008), Ga (regarded as a ratio between gravity and viscous forces),
or, more precisely, by

δ = Ga−1/4 =

√
ν/(g1/2r

3/2
0 )� 1, (9)

where ν is the kinematic viscosity. The lowest-order asymptotic contribution,
ξsurfMi = O(δ), is associated with the laminar boundary layer on the wetted
tank surface; ξsurfMi is accurately approximated by using the Keulegan analyt-
ical technique (Keulegan, 1959). The second-order asymptotic contribution,
ξbulkMi = O(δ2), is due to the bulk viscosity. According to Martel et al. (1998)
and Miles and Henderson (1998),

ξMi = ξsurfMi + ξbulkMi (10)

provides a satisfactory agreement with experiments when the aforementioned
additional dissipative phenomena are negligible. By adopting an alternative
analytical scheme, we re-derived Miles’ formulas for the used notations as
follows

ξsurfMi = δ
µ

(1)
Mi + 1

2
J2
Mi(kMi)(µ

(2)
Mi + µ

(3)
Mi)

2
√

2κ
5/4
Mi µ

(0)
Mi

, (11a)

ξbulkMi = δ2

[
2k2

Mi

κ
1/2
Mi

− J2
Mi(kMi)µ

(2)
Mi

2κ
3/2
Mi µ

(0)
Mi

]
, (11b)
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where

µ
(0)
Mi =

1∫
0

rJ2
Mi(kMir)dr, µ

(1)
Mi =

1∫
0

rk2
MiJ

′2
Mi(kMir)dr +M2

1∫
0

J2
Mi(kMir)

r
dr,

µ
(2)
Mi = M2

(
tanh(kMih)

kMi

+
h

cosh2(kMih)

)
,

µ
(3)
Mi = k2

Mi

(
tanh(kMih)

kMi

− h

cosh2(kMih)

)
.

(12)

Whereas the Galileo number Ga = gr3
0/ν

2 is regarded as a ratio between
gravity and viscous forces, the Bond number Bo = ρgr2

0/Ts (ρ is the liquid
density and Ts is the surface tension) expresses the ratio of gravitational
forces to surface tension forces. The surface tension can be neglected when
100.Bo (Faltinsen and Timokha, 2009, Ch. 4). For tap water at Earth140

conditions with ρ = 103 kg/m3 and Ts = 0.073 N/m, this inequality leads
to 0.05 m. r0. Because the Narimanov-Moiseev–type model equations by
Faltinsen et al. (2016) neglect surface tension, the forthcoming analysis im-
plicitly assumes the later restriction on r0.

2.2. The Narimanov-Moiseev–type modal equations145

Faltinsen et al. (2016) used the nonlinear multimodal method to derive
a system of nonlinear ordinary differential equations (instead of (8)), which
describes the resonant sloshing in a circular base tank when the forcing fre-
quency is close to the lowest natural sloshing frequency, the sway/surge/roll/
pitch magnitude is small relative to the tank radius, and there are no sec-150

ondary resonances (h & 1.2).
Using the Bateman–Luke variational formalism (Ch. 7 by Faltinsen and

Timokha, 2009), the modal representation (6), assumptions of the Narimanov-
Moiseev–type asymptotic theory

p11 ∼ r11 = O(ε1/3), p0j ∼ p2j ∼ r2j = O(ε2/3),

r1(j+1) ∼ p1(j+1) ∼ p3j ∼ r3j = O(ε), j = 1, 2, . . . , Ir; Ir →∞ (13a)

σ̄2
11 − 1 = O(ε2/3), σ̄Mi = σMi/σ, (13b)
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Faltinsen et al. (2016) obtained the following nonlinear approximate modal
equations of the Narimanov-Moiseev type with respect to the free-surface
generalised coordinates

p̈11+ 2ξ11σ̄11ṗ11 +σ̄2
11p11+P11(p11, r11; p0j, p2j, r2j) = −(η̈1−ḡη5−S1η̈5)κ11P1,

(14a)

r̈11+ 2ξ11σ̄11ṙ11 +σ̄2
11r11+R11(p11, r11; p0j, p2j, r2j) = −(η̈2+ḡη4+S1η̈4)κ11P1;

(14b)

p̈2k + 2ξ2kσ̄2kṗ2k + σ̄2
2kp2k + P2k(p11, r11) = 0, (15a)

r̈2k + 2ξ2kσ̄2kṙ2k + σ̄2
2kr2k +R2k(p11, r11) = 0, (15b)

p̈0k + 2ξ0kσ̄0kṗ0k + σ̄2
0kp0k + P0k(p11, r11) = 0; (15c)

p̈3k + 2ξ3kσ̄3kṗ3k + σ̄2
3kp3k + P3k(p11, r11; p0j, p2j, r2j) = 0, (16a)

r̈3k+ 2ξ3kσ̄3kṙ3k + σ̄2
3kr3k+R3k(p11, r11; p0j, p2j, r2j) = 0, k = 1, ..., Ir; (16b)

p̈1n+ 2ξ1nσ̄1nṗ1n +σ̄2
1np1n+P1n(p11, r11; p0j, p2j, r2j) = −(η̈1−ḡη5−Snη̈5)κ1n Pn,

(17a)

r̈1n+ 2ξ1nσ̄1nṙ1n +σ̄2
1nr1n+R1n(p11, r11; p0j, p2j, r2j) = −(η̈2+ḡη4+Snη̈4)κ1nPn,

(17b)
n = 2, ..., Ir, where the nonlinear terms PMi,Rmi are presented in Appendix
A. We also see that only generalised coordinates with M = 0, 1, 2, 3 are in-
cluded into the modal equations. The generalised coordinates with M,m ≥ 4
are described by homogeneous linear modal equations from (8); these gen-155

eralised coordinates are not excited and, therefore, do not contribute on the
long-time scale due to the damping. The system of ordinary differential equa-
tions needs either initial or periodicity conditions. The latter describes the
steady-state wave regimes.
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Specifically, the third-order generalised coordinates in (16), (17) are ’driven’,160

namely, p3n, r3n, r1(n+1), p1(n+1), n ≥ 1 are not present in other equations
and only linearly included in (16), (17). This means that with a solution of
(14), (15), one can easily derive the aforementioned driven generalised coor-
dinates. The focus should therefore be on (14), (15) where only equations
(14) contain the forcing (non-zero right-hand side).165
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Fig. 2. The theoretical damping rates 2ξMi by (10)–(12) for M = 0, 1, 2, 3. Tap water
with ν = 10−6 m2/s and g = 9.81 m/s2. The second index is used to mark the curves.

A novelty consists of the framed linear damping terms, which were not
considered by Faltinsen et al. (2016). Because the Narimanov-Moiseev–type
equations have an asymptotic character suggesting (13a) for the free-surface

11



generalised coordinates and neglecting the o(ε) terms, including the framed
terms into (14)–(17) implies, implicitly,

ξ11 = O(ε2/3), ξ2i ∼ ξ0i ∼ ξ3i ∼ ξ1n = O(1), i ≥ 1, n ≥ 2, (18)

where the order O(1) for the higher-order generalised coordinates looks un-
physical and inconsistent with our assumptions that the damping rates are
small non-dimensional parameters.

Let us suggest that the damping ratios are basically contributed by the
boundary layer at the wetted tank surface and the bulk viscosity and are170

numerically evaluated by (10), (11) for tap water versus the tank radius r0.
The result is presented in figure 2. It shows that all these damping rates
are indeed small parameters tending to zero with increasing r0. A particular
conclusion is that this kind of damping (boundary layer and bulk viscosity)
can be neglected for large industrial tanks. However, for smaller r0 (labo-175

ratory containers), the damping ratio ξ11 = O(ε2/3) should most probably
be accounted for in the sloshing analysis, especially, if we assume that the
above-discussed additional dissipative factors (dynamic contact angle, con-
tamination, wave breaking, etc.) may sufficiently increase ξ11 relative to its
estimate (from below) by (10), (11).180

3. Asymptotic periodic solution and steady-state wave regimes

3.1. Steady-state (periodic) solution and its stability

We assume an arbitrary sway/surge/pitch/roll periodic tank forcing of
the order O(ε), i.e.,

ηi(t) =
∞∑
k=1

[
η

(k)
ia cos(kt) + µ

(k)
ia sin(kt)

]
, η

(k)
ia ∼ µ

(k)
ia = O(ε), (19)

where the lowest-order Fourier harmonics are not zero, i.e.∑
i=1,2,4,5

|η(1)
ia |+ |µ

(1)
ia | 6= 0. (20)

When discussing the Narimanov-Moiseev–type equations, we pointed out
that one can omit the driven generalised coordinates but focus on the sub-
system (14), (15) where only two equations (14) have a non-zero right-hand
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side. Substituting (19) into these right-hand sides gives

P1κ11

∞∑
k=1

[
(kη

(k)
1a − (kS1 − ḡ)η

(k)
5a ) cos(kt) + (kµ

(k)
1a − (kS1 − ḡ)µ

(k)
5a ) sin(kt)

]
,

P1κ11

∞∑
k=1

[
(kη

(k)
2a + (kS1 − ḡ)η

(k)
4a ) cos(kt) +(kµ

(k)
2a + (kS1 − ḡ)µ

(k)
4a ) sin(kt)

]
,

(21)

in which, due to the Moiseev detuning condition (13b), neglecting the o(ε)
terms replaces ḡ = g/(r0σ

2)→ ḡ = g/(r0σ
2
11).

Furthermore, because of the Narimanov-Moiseev approximation (13), in
which only the first harmonics, being of the order O(ε), excites the O(ε1/3)
order components while the others contribute O(ε), one can concentrate on
the amplitudes at the lowest harmonics, cos t and sin t, in (14a) and (14b):

εx = P1κ11(η
(1)
1a − [S1 − ḡ]η

(1)
5a ), ε̄x = P1κ11(µ

(1)
1a − [S1 − ḡ]µ

(1)
5a ),

ε̄y = P1κ11(η
(1)
2a + [S1 − ḡ]η

(1)
4a ), εy = P1κ11(µ

(1)
2a + [S1 − ḡ]µ

(1)
4a ),

(22)

where εx and ε̄x imply the lowest-harmonic forcing components in the Ox185

direction, but ε̄y and εy correspond to the cos t and sin t harmonics along the
Oy axis.

An important fact is that the same cos t and sin t right-hand sides in (14a)
and (14b) appear when the tank performs the horizontal translatory motion

η1(t) = −η̂(c)
1a cos t− η̂(s)

1a sin t

= −(η
(1)
1a − [S1 − ḡ]η

(1)
5a ) cos t− (µ

(1)
1a − [S1 − ḡ]µ

(1)
5a ) sin t, (23a)

η2(t) = −η̂(c)
2a cos t− η̂(s)

2a sin t

= −(η
(1)
2a + [S1 − ḡ]η

(1)
4a ) cos t− (µ

(1)
2a + [S1 − ḡ]µ

(1)
4a ) sin t. (23b)

This artificial translatory tank motion occurs along an elliptic trajectory in
the Oxy plane, clock- or counterclockwise. Without loss of generality, one can
focus on the counterclockwise case. Furthermore, using a time phase-shift
t := t + t1 and rotating Oxy around the cylinder axis (the major semi-axis
of the elliptic orbit should coincide with Ox) make it possible to arrive at

εx > 0, εy ≥ 0, ε̄y = ε̄x = 0 (24)
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in (22). We assume that (24) is satisfied in the forthcoming analysis. Phys-
ically, this means that, without loss of generality, we concentrate on elliptic
counterclockwise horizontal tank excitations by (23) with the major semi190

axis η̂
(c)
1a = η1a � 1 belonging to the Ox axis and the minor semi-axis

η̂
(s)
2a = η2a � 1 (η̂

(s)
1a = η̂

(c)
2a = 0).

To find an asymptotic steady-state solution of the modal equations, we
use the Bubnov–Galerkin procedure by Faltinsen et al. (2016) by posing the
lowest-order components of the primary excited modes as

p11(t) = a cos t+ ā sin t+O(ε), r11(t) = b̄ cos t+ b sin t+O(ε), (25)

where the nondimensional amplitude parameters a, ā, b̄, and b have the lowest
order O(ε1/3). Inserting (25) into (15) yields the second-order generalised
coordinates

p0k(t) = s0k(a
2 + ā2 + b2 + b̄2)

+ s1k

[
(a2 − ā2 − b2 + b̄2) cos 2t+ 2(aā+ bb̄) sin 2t

]
+ o(ε), (26a)

p2k(t) = c0k(a
2 + ā2 − b2 − b̄2)

+ c1k

[
(a2 − ā2 + b2 − b̄2) cos 2t+ 2(aā− bb̄) sin 2t

]
+ o(ε), (26b)

r2k(t) = 2c0k(ab̄+ bā)+2c1k

[
(ab̄− bā) cos 2t+(ab+ āb̄) sin 2t

]
+o(ε), (26c)

where

s0k = 1
2

(
d10,k − d8,k

σ̄2
0k

)
, s1k =

d10,k + d8,k

2(σ̄2
0k − 4)

,

c0k = 1
2

(
d9,k − d7,k

σ̄2
2k

)
, c1k =

d9,k + d7,k

2(σ̄2
2k − 4)

,

(27)

but substituting (25) and (26) into (14), (16) and (17) gives the actual peri-
odic asymptotic solution of the model equations (Faltinsen et al., 2016).

Gathering the first harmonic terms, cos t and sin t, in (14) yields the
necessary solvability condition appearing as the following (secular) system of

14



nonlinear algebraic equations
1© : a

[
(σ̄2

11 − 1) +m1(a2 + ā2 + b̄2) +m3b
2
]

+ ā[(m1 −m3)b̄b+ ξ] = εx,

2© : ā
[
(σ̄2

11 − 1) +m1(a2 + ā2 + b2) +m3b̄
2
]

+ a[(m1 −m3)b̄b− ξ] = 0,

3© : b
[
(σ̄2

11 − 1) +m1(b2 + b̄2 + ā2) +m3a
2
]

+ b̄[(m1 −m3)āa− ξ] = εy,

4© : b̄
[
(σ̄2

11 − 1) +m1(b2 + b̄2 + a2) +m3ā
2
]

+ b[(m1 −m3)āa+ ξ] = 0

(28)
with respect to a, ā, b̄ and b; here, ξ = 2ξ11, coefficients m1 and m3 are
computed by the formulas

m1 =−1
2
d1 +

Ir∑
j=1

[
c1j

(
1
2
d

(j)
3 − 2d

(j)
4

)
+s1j

(
1
2
d

(j)
5 − 2d

(j)
6

)
−s0jd

(j)
5 −c0jd

(j)
3

]
,

(29a)

m3 = 1
2
d1 − 2d2

+
Ir∑
j=1

[
c1j

(
3
2
d

(j)
3 −6d

(j)
4

)
+s1j

(
−1

2
d

(j)
5 +2d

(j)
6

)
−s0jd

(j)
5 +c0jd

(j)
3

]
(29b)

and are functions of h and the nondimensional forcing frequency σ̄11. Utilis-195

ing (13b) shows that the latter dependence can be neglected by substituting
σ = σ11 into (29). Dependence on σ remains only in the (σ̄2

11 − 1)-quantity
of (28). Specifically, repeating the previous derivations with accounting for
all Fourier harmonics of (21) will lead to the same secular equations (28),
namely, the higher harmonics do not affect the solvability (secularity) con-200

dition but may only slightly correct the highest-order components of the
steady-state waves.

One should remark that, according to the lowest-order approximation
(25), the free-surface steady-state waves are defined as the superposition of
the two out-of-phase angular modes,

ζ(r, θ, t) = J1(k11r)
[
(a cos θ + b̄ sin θ) cos t+ (ā cos θ + b sin θ) sin t

]
+ o(ε2/3),

(30)
which determines a swirling wave (angular progressive wave, see definition
of swirling in Faltinsen and Timokha, 2009) unless (a cos θ + b̄ sin θ) and
(ā cos θ + b sin θ) constitute two congruent patterns, which happens, if and
only if,

a b = ā b̄. (31)
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The condition (31) means that a standing steady-state wave occurs.
Our main task consists of classifying the steady-state wave regimes which

means description of when stable/unstable standing/swirling waves are re-205

alised and what is the direction (clock- or counterclockwise) of swirling. The
linear Lyapunov method and the multi-timing technique is employed to study
stability of the constructed asymptotic steady-state solution as described in
Appendix B.

For (28) with ξ = 0 (damping is neglected), Faltinsen et al. (2016) proved
that ā = b̄ = 0 for 0 ≤ εy/εx < 1 and showed how to find analytically a and
b. As long as ξ 6= 0, the amplitude parameters ā and b̄ are generally not
zero and, therefore, this solution method cannot be extended to the damped
sloshing. Following Faltinsen and Timokha (2017), we rewrite (28) in a more
physically-relevant form in terms of the integral lowest-order amplitudes A,B
and the phase-lags ψ, ϕ defined by

A =
√
a2 + ā2 and B =

√
b̄2 + b2 > 0, (32a)

a = A cosψ, ā = A sinψ, b̄ = B cosϕ, b = B sinϕ. (32b)

Inserting (32) into expressions ā 1© − a 2©, b̄ 3© − b 4©, a 1© + ā 2© and
b 3©+ b̄ 4© of (28) yields the following alternative secular equations{

1 :A[Λ +m1A
2 + (m3 −F)B2] = εx cosψ, 3 :A[DB2 + ξ] = εx sinψ,

2 :B[Λ +m1B
2 + (m3 −F)A2] = εy sinϕ, 4 :B[DA2 − ξ] = εy cosϕ,

(33a)

F = (m3 −m1) cos2(α) = (m3 −m1)/(1 + C2),

D = (m3 −m1) sin(α) cos(α) = (m3 −m1)C/(1 + C2),
(33b)

where

Λ = σ̄2
11 − 1, α = ϕ− ψ, C = tanα, 0 ≤ εy ≤ εx 6= 0,

(F(α) and D(α) are the π-periodic functions of the phase-lag difference α).210

The secular systems (28) and (33) are mathematically equivalent, i.e., getting
known A,B, ψ, ϕ from (33) determines a, ā, b, b̄ and vice versa.

In terms of (32) and (33), when AB > 0, the standing wave condition
(31) is equivalent to

sinα = 0 ⇔ C = 0. (34)
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3.2. Longitudinal periodic tank excitations along the Ox axis (εy = 0)
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Fig. 3. The wave amplitude response curves in the (σ/σ11, A,B)-space for the longitudinal
horizontal forcing in the Oxz-plane, h = 1.5, the nondimensional forcing amplitude η1a =
0.01 (η2a = 0). The branches are computed by using (35) for planar (B = 0) and (36) is
used for swirling (B > 0) waves. The bold lines mark stable solutions. The undamped
sloshing (ξ = 0) is presented in (a) and the damped case with ξ = 0.02 is shown in
(b). There is no stable steady-state sloshing between E1 and E2 where irregular (chaotic)
waves are predicted. Curves belonging to the (σ/σ11, A) plane correspond to the planar
steady-state wave regime. The non-zero damping causes the response curves, which do
not go to infinity due to the bifurcation point P , where swirling emerges from the planar
wave branching, and H2, which restricts swirling to finite amplitudes when following along
the H branch with increasing σ/σ11.

The undamped (ξ = 0) steady-state sloshing for the longitudinal har-
monic forcing (εy = 0) was analysed by Faltinsen et al. (2016). They mathe-215

matically proved that εy = ξ = 0⇒ ā = b̄ = 0 and there exist two physically-
different steady-state solutions of the modal system corresponding to planar
standing (b = 0 and (31) is satisfied) and swirling (a b 6= 0 in (31)) waves. In
terms of definitions (32) and (33) with ξ = 0, the planar steady-state waves
imply A > 0, B = 0, sinψ = 0, C = 0 (the phase-lag ϕ is not defined) but220

swirling means AB > 0, sinψ = cosϕ = 0 (C = ±∞). Swirling consists of
two identical angular progressive waves occurring in either counter- or clock-
wise directions, the directions correspond to C = +∞ and −∞ (α = π/2
and α = −π/2), respectively.

When ξ > 0, (33) has physically the same solutions. The planar standing
wave corresponds to B = 0, A > 0 and C 6= 0. The phase-lag ψ (ϕ is not
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defined) is not a piecewise function anymore. Using 1
2 + 3

2 =

= A2 [(Λ +m1A
2)2 + ξ2] = ε2x; 0 < A ≤ εx

ξ
; ψ = arccos

A(Λ +m1A
2)

εx
, (35)

gives the necessary expressions for computing A and ψ. The steady-state
swirling suggests AB > 0, C 6= 0, which can be computed by rewriting (33)
in the form

A

[
Λ +m1A

2 +
m1 +m3C

2

1 + C2
B2

]
= εx cosψ;

A

[
(m3 −m1)C

1 + C2
B2 + ξ

]
= εx sinψ;

B2 = − 1

m1

[
Λ +

m1 +m3C
2

1 + C2
A2

]
> 0; A2 =

ξ (1 + C2)

(m3 −m1)C
> 0,

(36)

where
Pl(C) = q3C

3 + q2C
2 + q1C + q0 = 0, (37)

with

q3 = ξ3 (m1 +m3)2 > 0, q2 = 2ξ2Λ (m2
3 −m2

1),

q1 = ξ
[
4 ξ2m2

1 + Λ2 (m1 −m3)2
]
, q0 = ε2xm

2
1 (m1 −m3).

Illustrative response curves for the undamped (a) and damped (b) steady-225

state sloshing are shown in figure 3. The computations were made with
h = 1.5, the forcing amplitude is η1a = 0.01 (η3a = η2a = η4a = 0), and
the damping coefficient ξ = 2ξ11 = 0.02. Choosing this value of ξ suggests
0.05 m ≤ r0 ≤ 0.1 m, the boundary layer and bulk viscosity damping ef-
fect and, possibly, a non-negligible contribution of dissipative phenomena230

mentioned above.
The branching in figure 3 is computed by using (35) for planar waves

(B = 0), and (36) is used for swirling (B > 0). The branches belonging to
the (σ/σ11, A) plane are responsible for planar waves. The bold lines mark
stable solutions. We see that the stable planar standing-wave sloshing is235

expected to the left of E1 and to the right of E2; it becomes unstable in
a neighbourhood of the primary resonance σ/σ11 = 1 where stable swirling
(to the right of H [H1]) and irregular waves (there is no stable steady-state
sloshing) between E1 and H [H1] are predicted. Direct numerical simulations
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Fig. 4. The same as in figure 3 (b) but for the phase-lag ψ/π. When ξ = 0, ψ/π takes
the two discrete values 0 and 1 depending on the steady-state wave regime and the forcing
frequency σ/σ11.

Fig. 5. Experimental values of ψ by Royon-Lebeaud et al. (2007) (marked by circles)
for stable swirling (correspond to the subbranch H1H2 in figure 3 b) and their theoretical
predictions made with different ξ = ξi starting from the lower bound ξ1 = 0.005 by
(10) and (11); h = 1.5 and η1a = 0.045, η2a = 0 (the longitudinal horizontal harmonic
forcing). The comparison shows that the actual damping rate increases with the wave
amplitude response (along H1H2) that can be explained by additional dissipative factors
(Royon-Lebeaud, Hopfinger and Cartellier, 2007, reported a strong wave breaking).
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and experimental observations on what happens in those zones of instability240

are discussed, e.g. by Miles (1984a,b) and Ikeda et al. (2012) but not for
elliptic forcing. Due to the damping effect, the stable swirling frequency
range has an upper bound associated with H2.

The undamped response curves in figure 3 (a) were already discussed
by Faltinsen et al. (2016). Figure 3 (b) shows that a non-zero ξ removes245

infinitely-located points on this branching but stability ranges of planar waves
and swirling are weakly affected by ξ = 0.02 so that positions of E1, E2 and
H1 (replaces H) determining these ranges remain almost the same. This
explains the good agreement with experiments on the stability ranges estab-
lished using the undamped model. A novelty in (b) is two points H2 and250

P , which can be treated as bifurcation points where swirling emerges from
the planar standing-wave sloshing. The swirling branching constitutes an
arc, which is pinned at P and E1; its stable subbranch H1H2 is close to the
corresponding undamped subbranch in (a) when it exists. This explains why
the experimental maximum steady-state wave elevations by Royon-Lebeaud255

et al. (2007) are satisfactory predicted by Faltinsen et al. (2016) within the
framework of the undamped sloshing model.

The damping plays a significant role for the phase-lags. As we pointed
out, the undamped sloshing is characterised by piecewise values of ψ and ϕ,
i.e., sinψ = 0 (ϕ is not defined) for planar and sinψ = cosϕ = 0 for swirling260

(along the response curves in figure 3 a). When ξ > 0, the phase-lags be-
come complex functions and vary along the response curves, which, for planar
waves, are determined in (35) but, for swirling, C = tanα = tan(ϕ− ψ) ≥ 0
(the inequality follows from the last equality of (36), in which m3 > m1) com-
puted from the cubic equation (37). For swirling, ψ determines two different265

phase-lags ϕ1 = ψ + α and ϕ2 = ψ + α ± π, which imply two physically-
identical angular waves occurring in clockwise and counterclockwise direc-
tions, respectively. Figure 4 shows ψ/π corresponding to the response curves
in figure 3 (b). The graphs demonstrate that the phase-lag ψ is not a piece-
wise function.270

The non-constant phase-lag ψ was detected in experiments by Royon-
Lebeaud et al. (2007) who quite logically concluded that this is due to the
damping. Figure 5 compares their experimental data (circles) with theoreti-
cal predictions (swirling, the frequency range corresponds to the subbranch
between H1 and H2 in figure 3 b); the theoretical curves are drawn for ξ from275

ξ = ξ1 = 0.005 till ξ = ξ9 = 0.045. Royon-Lebeaud et al. (2007) adopted a
rigid circular base tank with r0 = 0.15, h = 1.5 and the rather large forcing
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amplitude η1a = 0.045. They reported strong wave breaking that means a
non-negligible damping due to this free-surface phenomenon. As matter of
fact, the boundary-layer and bulk viscosity effect (an estimate is ξ1 = 0.005280

by (10) and (11)) determines only a lower bound of the cumulative damping,
i.e. ξ ≥ ξ1. Figure 5 confirms the latter fact. The theoretical curve (dashed
line) with ξ1 looks like an estimate from below of the experimental ψ-values.
To fit the experimental ψ, one should assume that the cumulative damping
rate ξ increases with increasing wave amplitude from H1 to H2. This is con-285

sistent with the fact that the wave breaking becomes stronger with increasing
the wave amplitude (Royon-Lebeaud et al., 2007).

As discussed by Miles (1984a,b), types of bifurcation points for the lon-
gitudinal forcing are similar to those appearing for the damped spherical
pendulum (Miles, 1962). Readers who have an interests in what are the290

bifurcation points in Figs. 3 and 4 are therefore referred to Miles (1962,
1984a,b).

3.3. Elliptic tank excitations (0 < δ = εy/εx < 1)

As we remarked above, the undamped sloshing due to the elliptic forcing
is characterised by ā = b̄ = 0 (Faltinsen et al., 2016), which means sinψ =
cosϕ = 0 and cosα = 0, sinα = ±1. As a consequence, 3 and 4 become
identities, but A = |a| and B = |b| and 1 and 2 read as

A2[Λ +m1A
2 +m3B

2] = ε2x, B2[Λ +m1B
2 +m3A

2] = δ2ε2x. (38)

This system with respect to A2 and B2 can be analytically solved as described
in Faltinsen et al. (2016).295

For damped sloshing with ξ 6= 0, the phase lags ϕ and ψ become rather
complicated functions of the input parameters. Both A, B and ϕ, ψ should
be found from the nonlinear system (33a). To exclude ϕ and ψ and decrease
dimension of (33a), we insert ϕ = ψ + α into the right-hand sides of 2 and
4 and substitute εx cosψ and εx sinψ taken from 1 and 3 . The result is

the following linear system of homogeneous equations
(δA)[cosα(D(C)B2 + ξ) + sinα(Λ +m1A

2 + (m3 −F(C))B2)]

−B[Λ +m1B
2 + (m3 −F(C))A2] = 0,

(δA)[cosα(Λ +m1A
2 + (m3 −F(C))B2)− sinα(D(C)B2 + ξ)]

−B[D(C)A2 − ξ] = 0,
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Fig. 6. Response curves for the steady-state resonant sloshing due to an elliptic coun-
terclockwise periodic horizontal forcing with η1a = 0.01, η2a = δη1a and δ = 0.05. The
panel (a) corresponds to the undamped amplitude response curves (ξ = 0) but the panel
(b) is drawn for ξ = 0.02. The panel (c) depicts ψ/π versus σ/σ11. All response curves
correspond to swirling but some subbranches in (a,b) are close to the (σ/σ11, A)-plane
that means that sloshing behaves as an almost standing (planar) wave. The bold lines
correspond to the stable sloshing. The branch in (b,c) containing E1, H1, and H2, E2

implies swirling, which co-directed with the elliptic forcing orbit but the loop-like branch
with R1 and R2 marks the counter-directed swirling.

with respect to δA and B. The system must have a nontrivial solution. This
leads to the zero-determinant condition

ξ(A2 −B2)D(C)−F(C)[ξ2 + (Λ +m1(A2 +B2))2]/(m3 −m1)

+ A2B2D2(C) = 0, (39)
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Fig. 7. The same as in figure 6 but for δ = εy/εx = 0.2.

which couples A2, B2 and C. Another two equations with respect to A2, B2

and C come from 1
2 + 3

2 and 2
2 + 4

2 and take the form{
A2[(Λ +m1A

2 + (m3 −F)B2)2 + (DB2 + ξ)2] = ε2x,

B2[(Λ +m1B
2 + (m3 −F)A2)2 + (DA2 − ξ)2] = δ2ε2x.

(40)

The system (39), (40) is a base for getting the response curves in the
(σ/σ11, A,B) space. One can prove that C 6= 0 since C = 0 leads to (39) ⇒
ξ2+(Λ+m1(A2+B2))2 = 0 and (40)⇒ A2[ξ2+(Λ+m1(A2+B2))2] = ε2x 6= 0,
simultaneously. Physically, C 6= 0 means that there are no standing wave
regimes for the elliptic forcing. All steady-state sloshing regimes are swirling.300

Our numerical experiments show that C > 0 as (m3 −m1) > 0. We do
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Fig. 8. The same as in figure 6 but for δ = εy/εx = 0.3.

not know how to get an analytical solution of (39), (40). A numerical scheme
is used. After defining F and D as functions of 0 < β < 1,

F(β) = (m3 −m1)β, D(β) = (m3 −m1)
√
β(1− β), C > 0, (41)

a simple analysis shows that

0 < A <
εx
ξ
, 0 < B2 ≤ min

[
1

D(β)

(εx
A
− ξ
)
,

δ2ε2x
(D(β)A2 − ξ)2

]
, (42)

which determines the fixed interval for A but the interval for B2 is determined
by A and β. The first equation of (40) computes the two real Λ1,2 for any
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Fig. 9. The same as in figure 6 but for δ = εy/εx = 0.45.

given 0 < β < 1 and A,B2 satisfying (42) as follows

Λ1,2 = −m1A
2 − (m3 −F(β))B2 ±

√
ε2x
A2
− (D(β)B2 + ξ)2. (43)

Furthermore, to solve (39), (40) for any fixed A belonging to the correspond-
ing interval of (42)

1) we introduce a mesh 0 < β1 < β2 < ... < βk < ... < βK < 1;

2) for any fixed βk ∈ {βn}, we solve the two equations (follow from the
second equation of (40))

[Λj +m1B
2 + (m3−F(β))A2]2 + [D(β)A2− ξ]2 =

δ2ε2x
B2

, j = 1, 2, (44)
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Fig. 10. The same as in figure 6 but for δ = εy/εx = 0.5.

(associated with + and − in expression (43), respectively) with respect
to B2 on the interval by (42); the result is a set of positive roots B2

k,j,i =305

B2
i (A, βk, j), j = 1, 2, for each A and βk;

3) each root Bi(A, βk, j) is subsequently substituted into (39):

ξ(A2 −B2
i,k,j)D(βk)−F(βk)[ξ

2 + (Λj +m1(A2 +B2
i,k,j))

2]/(m3 −m1)

+ A2B2
i,k,jD2(βk) = 0 (45)

to detect the mesh interval (βk, βk+1), where the left-hand side of (45)
changes the sign;

4) an iterative procedure is used to compute β ∈ (βk, βk+1) and the cor-
responding Bi(A, β, j).310
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The algorithm computes numerical solutions for any fixed A. Varying A in
the interval by (42) outputs response curves in the (σ/σ11, A,B) space. The
results are presented in figures 6–11 for several values of 0 < δ < 1.

Figure 6 illustrates changing the response curves in figures 3 and 4 due
to a relatively small perturbation of εy, the ratio δ = εy/εx = 0.05. This315

almost longitudinal horizontal forcing causes splitting the arc PH1H2E2 in
figure 3 (b), whose points determine two physically identical co- and counter-
clockwise swirling waves, into two different branches. The first branch con-
tains the points E1, H1, H2, E2; it exists far from the primary resonance zone,
where the co-directed stable swirling wave is close to a standing planar wave.320

The corresponding subbranches are to the left of E1 and to the right of the
Poincaré bifurcation point E2. Another stability subbranch is H1H2. The
second loop-like branch with R1 and R2 implies swirling, which is counter-
directed to the forcing. This swirling is stable on R1R2. There is the fre-
quency range between E1 and H1 where the theory does not predict any325

stable steady-state sloshing and irregular (chaotic) waves are expected.
Increasing the semi-axes ratio δ decreases the loop-like R branch respon-

sible for the counter-directed swirling. Figures 7, 8 and 9 illustrate this fact.
Decreasing the R-branch means that the linear damping makes the counter-
directed swirling impossible when δ tends to 1. In contrast, the theoretical330

undamped analysis by Faltinsen et al. (2016) shows that the counter-directed
propagating wave exists and may be stable in a frequency range for any
0 < δ < 1. The R branch disappears at a certain δ. When ξ = 0.02, this
happens for δ slightly lower then 0.5. As a consequence, we do not see this
branch in figure 10.335

In figures 8–10, we also see extra islands of stability H3H4 and R3R4.
After the vanishing of the R branch, the island H3H4 grows, eventually con-
necting to stable subbranches.

Figure 11 shows what happens when the elliptic forcing orbit approaches
a circular shape. Here, the difference between the undamped (a) and damped340

(b) cases is especially serious for both the amplitude (A,B) response curves
and the phase-lag ψ. The damping allows (for any forcing frequency) only
stable swirling, which is co-directed with the forcing. The corresponding
branching has hard-spring type behaviour.

Even though our stability analysis method allows for classifying the types345

of bifurcation points in Figs. 6-11, we think that this classification should be
subject of a dedicated paper. First, the present section has other goals,
which are basically associated with estimating the stability ranges and types
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Fig. 11. The same as in figure 6 but for δ = εy/εx = 0.95.

of swirling modes caused by the elliptic forcing. Secondly, our numerical
tests showed that position of several bifurcation points in Figs. 6-11, e.g.,350

associated with ‘local islands’ H3H4 may change with the forcing amplitude
and the damping rate.

3.4. Rotary (circular) orbital forcing with δ = εy/εx = 1

In the undamped case (Faltinsen et al., 2016), the rotary (orbital circular)
forcing yields steady-state swirling in both angular directions. To study the
damped sloshing by using the secular system (39), (40) with δ = 1 and ξ 6= 0,
we recall that C 6= 0 but the limit C → +∞ is possible. This limit implies
the co-directed rotary wave. It transforms (39) to A2 = B2 and the two
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confirmed by Reclari (2013) and Reclari et al. (2014).

equations (40) become equivalent

A = B > 0; A2(Λ + (m1 +m3)A2)2 + ξ2) = ε2x, (46)

D = F = 0, that makes it possible to restore ψ and ϕ−ψ = π/2. Numerical
experiments confirmed that (39), (40) with ξ 6= 0 have no solution except355

(46).
The corresponding response curves are illustrated in figure 12. They are

qualitatively consistent with experimental data by Reclari (2013) (unfortu-
nately, the experiments were done with the lower liquid depth, h = 1.04,
when the Narimanov-Moiseev–type modal equations have a limited applica-360

bility due to the secondary resonance). The wave-amplitude branching has
the hard-spring type behaviour that is also consistent with the experiments.

4. Conclusions and discussion

The nonlinear multimodal theory by Faltinsen et al. (2016) is modified
by adding linear damping terms, which reflect the linear damping rates (re-365

sponsible for the logarithmic decrements) of the natural sloshing modes. The
damping rates express a cumulative effect of diverse dissipative sources in-
cluding the boundary layer at the wetted tank surface and the bulk viscos-
ity. The damping rates may significantly increase when the dynamic con-
tact angle, free-surface contamination, wave breaking, etc. matter. The370
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latter increase typically happens for laboratory tanks (bioreactors). The
original multimodal theory neglects surface tension (for tap water, the tank
radius r0 & 0.05 cm) and assumes that the circular base container performs a
prescribed periodic sway/surge/pitch/roll motion with the forcing frequency
close to the lowest natural sloshing frequency; the mean liquid depth-to-the375

tank radius ratio is h & 1.2 to avoid the secondary resonance phenomena.
The asymptotic steady-state solution of the modal equations is derived.

Its stability is analysed by using the linear Lyapunov method and the multi-
timing technique. The asymptotic procedure introduces two dominant, lowest-
order wave amplitudes and related phase-lags, which are governed by four380

(secular) nonlinear algebraic equations. These equations have the same struc-
ture as if the container performs an elliptic horizontal translatory orbital mo-
tion. This makes possible to concentrate on the steady-state wave regimes
occurring due to these elliptic excitations with different semi-axes ratios δ.
The longitudinal horizontal harmonic tank forcing and the circular (rotary)385

forcing are two limiting cases.
The undamped and damped steady-state sloshing due to longitudinal

horizontal harmonic forcing leads to either planar or swirling waves. Intro-
ducing the linear damping leads to extra bifurcation points on the ampli-
tude response curves where swirling emerges from the planar wave regime.390

Each point on the swirling-related branch implies two physically identical but
counter-directed progressive angular waves. For a non-zero δ, the branching
splits into two disconnected curves, one of which corresponds to swirling,
which is co-directed with the forcing, but the other implies a counter-directed
swirling. Increasing the semi-axes ratio makes the second response curve395

(counter-directed swirling) decrease until it finally vanishes at a certain δ.
This is opposite to the undamped case (Faltinsen et al., 2016), when the
counter-directed swirling was co-existing for any 0 < δ ≤ 1.

A focus has been on the phase-lag, which is a piecewise constant function
along the amplitude response curves in the undamped case, but it becomes400

of the non-constant character when the damping is not zero. A comparison
is done with measurements of the phase-lag by Royon-Lebeaud et al. (2007)
(longitudinal forcing) to show that, if the damping rates are associated with
the boundary layer at the wetted tank surface and the bulk viscosity, a
satisfactory agreement for lower wave amplitudes can be achieved but the405

cumulative damping must be larger to fit the experiments with increasing the
wave amplitude. The reason is a strong wave breaking reported by Royon-
Lebeaud et al. (2007). For elliptic excitations with relatively small semi-
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axes ratio, the theory detects a frequency range where no stable steady-state
solutions exist. For the longitudinal case, expected wave patterns, including410

chaotic ones, are extensively simulated and discussed by Miles (1984a,b) and
Ikeda et al. (2012). What happens for elliptic excitations needs a dedicated
study.

For the circular (rotary) orbital forcing, the amplitude response curves
have the hard-spring type behaviour. That is qualitatively consistent with415

observations and measurements by Reclari (2013) and Reclari et al. (2014).
While the resonant wave patterns occurring due to longitudinal excita-

tions are well analysed and visualised by using the multimodal theories (see,
e.g., Gavrilyuk et al., 2000), a question whether the present theory could
play the same role for elliptic excitations appears. The authors think that420

this question deserves a dedicated study.
The presented modified theory cannot describe the mean vortical flow (a

mean liquid rotation around the container axis) reported in experiments by
Prandtl (1949), Hutton (1964), Royon-Lebeaud et al. (2007), Reclari (2013),
Reclari et al. (2014), Bouvard et al. (2017). In part, the latter phenomenon425

can be explained by the angular Stokes drift (Faltinsen and Timokha, 2009,
Sect. 9.6.3). One must consider a viscous rotational flow model to quantify
it in a mathematical way. The effect of viscosity, in general, and the bound-
ary layer force, in particular, can correct the potential flow description and,
moreover, affect the stability results as it is reported by Vega et al. (2001),430

Knobloch et al. (2002) and Martin et al. (2002).
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Appendix A. Nonlinear terms of the modal equations (14)-(17)

P11(p11, r11; p0j, p2j, r2j) = d1p11

(
p̈11p11 + r̈11r11 + ṗ2

11 + ṙ2
11

)
+ d2 [r11(p̈11r11 − r̈11p11) + 2ṙ11(ṗ11r11 − ṙ11p11)]

+
Ir∑
j=1

[
d

(j)
3 (p̈11p2j + r̈11r2j + ṗ11ṗ2j + ṙ11ṙ2j) + d

(j)
4 (p̈2jp11 + r̈2jr11)

+d
(j)
5 (p̈11p0j + ṗ11ṗ0j) + d

(j)
6 p̈0jp11

]
, (A.1a)

R11(p11, r11; p0j, p2j, r2j) = d1r11

(
p̈11p11 + r̈11r11 + ṗ2

11 + ṙ2
11

)
+ d2 [p11(r̈11p11 − p̈11r11) + 2ṗ11(ṙ11p11 − ṗ11r11)]

+
Ir∑
j=1

[
d

(j)
3 (p̈11r2j − r̈11p2j + ṗ11ṙ2j − ṗ2j ṙ11) + d

(j)
4 (r̈2jp11 − p̈2jr11)

+d
(j)
5 (r̈11p0j + ṙ11ṗ0j) + d

(j)
6 p̈0jr11

]
, (A.1b)

P2k(p11, r11) = d7,k(ṗ
2
11 − ṙ2

11) + d9,k(p̈11p11 − r̈11r11), (A.2a)

R2k(p11, r11) = 2d7,kṗ11ṙ11 + d9,k(p̈11r11 + r̈11p11) = 0, (A.2b)

P0k(p11, r11) = d8,k(ṗ
2
11 + ṙ2

11) + d10,k(p̈11p11 + r̈11r11); (A.2c)

P3k(p11, r11; p0j, p2j, r2j) = d11,k

[
p̈11(p2

11 − r2
11)− 2p11r11r̈11

]
+ d12,k

[
p11(ṗ2

11 − ṙ2
11)− 2r11ṗ11ṙ11

]
+

Ir∑
j=1

[
d

(j)
13,k(p̈11p2j − r̈11r2j)

+ d
(j)
14,k(p̈2jp11 − r̈2jr11) +d

(j)
15,k(ṗ2j ṗ11 − ṙ2j ṙ11)

]
, (A.3a)
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R3k(p11, r11; p0j, p2j, r2j) = d11,k

[
r̈11(p2

11 − r2
11) + 2p11r11p̈11

]
+ d12,k

[
r11(ṗ2

11 − ṙ2
11) +2p11ṗ11ṙ11] +

Ir∑
j=1

[
d

(j)
13,k(p̈11r2j + r̈11p2j)

+ d
(j)
14,k(p̈2jr11 + r̈2jp11) +d

(j)
15,k(ṗ2j ṙ11 + ṙ2j ṗ11)

]
; (A.3b)

P1n(p11, r11; p0j, p2j, r2j) = d16,n(p̈11p
2
11 + r11p11r̈11)

+ d17,n(p̈11r
2
11 − r11p11r̈11) + d18,np11(ṗ2

11 + ṙ2
11) + d19,n(r11ṗ11ṙ11 − p11ṙ

2
11)

+
Ir∑
j=1

[
d

(j)
20,n(p̈11p2j + r̈11r2j) + d

(j)
21,n(p11p̈2j + r11r̈2j)

+d
(j)
22,n(ṗ11ṗ2j + ṙ11ṙ2j) + d

(j)
23,np̈11p0j + d

(j)
24,np11p̈0j + d

(j)
25,nṗ11ṗ0j

]
, (A.4a)

R1n(p11, r11; p0j, p2j, r2j) = d16,n(r̈11r
2
11 + r11p11p̈11)

+ d17,n(r̈11p
2
11 − r11p11p̈11) + d18,nr11(ṗ2

11 + ṙ2
11) + d19,n(p11ṗ11ṙ11 − r11ṗ

2
11)

+
Ir∑
j=1

[
d

(j)
20,n(p̈11r2j− r̈11p2j)+d

(j)
21,n(p11r̈2j−r11p̈2j) + d

(j)
22,n(ṗ11ṙ2j − ṙ11ṗ2j)

+d
(j)
23,nr̈11p0j + d

(j)
24,nr11p̈0j + d

(j)
25,nṙ11ṗ0j

]
, n = 2, ..., Ir, (A.4b)

where the nondimensional hydrodynamic coefficients are functions of h (Faltin-
sen et al., 2016).

Appendix B. Stability analysis by the linear Lyapunov method

The linear Lyapunov method and the multi-timing technique is employed
to study stability of the constructed asymptotic steady-state solution. This
procedure suggests introducing the slowly varying time τ = 1

2
ε2/3t and ex-

pressing the perturbed solutions as

a1 = (a+ α(τ)) cos t+ (ā+ ᾱ(τ)) sin t+ o(ε1/3),

b1 = (b̄+ β̄(τ)) cos t+ (b+ β(τ)) sin t+ o(ε1/3),
(B.1)
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where a, ā, b and b̄ come from (28). Inserting (B.1) into the modal equations,
gathering terms of the lowest asymptotic quantities order and keeping lin-
ear terms in α, ᾱ, β and β̄ lead to the following linear system of ordinary
differential equations

s′ + ξs + S s = 0, (B.2)

where s = (α, ᾱ, β, β̄)T , the prime is the differentiation by τ , and the matrix
S has the following elements

s11 = −2m1aā− (m1 −m3)bb̄; s13 = −2m1āb− (m1 −m3)ab̄,

s12=−(σ̄2
11−1)−m1(a2 +3ā2 +b2)−m3b̄

2; s14 =−2m3āb̄− (m1−m3)ab,

s21 = (σ̄2
11−1)+m1(3a2 + ā2 + b̄2) +m3b

2; s22 = 2m1aā+ (m1 −m3)bb̄,

s23 = 2m3ab+ (m1 −m3)āb̄; s24 = 2m1ab̄+ (m1 −m3)āb,

s31 = 2m1ab̄+ (m1 −m3)bā; s32 = 2m3āb̄+ (m1 −m3)ab,

s33 = 2m1bb̄+(m1−m3)aā; s34 = (σ̄2
11 − 1) +m1(b2 + 3b̄2 + a2) +m3ā

2,

s41 = −2m3ab− (m1 −m3)āb̄; s42 = −2m1āb− (m1 −m3)ab̄,

s43 =−(σ̄2
11− 1)−m1(3b2 + b̄2 + ā2)−m3a

2; s44 =−2m1bb̄−(m1−m3)aā.

The fundamental solution s = exp(λτ)a of (B.2) follows from the spectral
matrix problem [(λ + ξ)I + S]a = 0, where λ are the unknown eigenvalues,
a are the corresponding eigenvectors and I is the identity matrix. Compu-
tations give the following characteristic biquadratic equation

(λ+ ξ)4 + s1(λ+ ξ)2 + s0 = 0, (B.3)

where s0 is the determinant of S and s1 is a complicated function of the440

elements of S. The eigenvalues λ can be expressed as −ξ ± √x1,2, where

x1,2 = 1
2
(−s1 ±

√
s2

1 − 4s0) are two solutions of the quadratic equation x2 +
s1x + s0 = 0. The fixed-point solution (associated with a, ā, b and b̄) is
asymptotically stable (α, ᾱ, β and β̄ exponentially decay with τ) if and only
if the real component of λ is strictly negative.445

In the limiting case ξ → 0, the stability condition (<[λ] < 0) takes the
following form

s2
1 − 4s0 ≥ 0 & s0 ≥ 0 & s1 ≥ 0. (B.4)

For O(ε2/3) = ξ > 0, the stability condition can be written as the alter-
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native

either s2
1 − 4s0 ≥ 0 & − s1 +

√
s2

1 − 4s0 ≤ 0 (⇔ s0 ≥ 0 & s1 ≥ 0) ,

or s2
1 − 4s0 ≥ 0 & − s1 +

√
s2

1 − 4s0 > 0 &

√
1
2

(
−s1 +

√
s2

1 − 4s0

)
< ξ,

or s2
1 − 4s0 < 0 &

√
2
√
s0 − s1 < ξ. (B.5)
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