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Abstract

By introducing a new averaged quantity with a fast decay weight to perform

Sideris’s argument [15] developed for the Euler Equations, we extend the formation

of singularities of classical solution to the 3D Euler Equations established in [10,

15] for the initial data with compactly supported disturbances to the spherically

symmetric solution with general initial data in Sobolev space. Moreover, we also

prove the formation of singularities of the spherically symmetric solutions to the

3D Euler-Poisson Equations, but remove the compact support assumptions on the

initial data in [12, 13]. Our proof also simplifies that of [7] for the Euler Equations

and is undifferentiated in dimensions.

1 Introduction

It is well-known that Sideris [15] first proved the important fact that the C1 solution to

the three-dimensional Euler equations for compressible fluids must develop singularity in

finite time. His proof consists of two critical ingredients, one is the the finite propagation

of compactly supported disturbances of the solution, the other is the evolution of certain

averaged quantities formed out of the solution. In the proof, he assumes that the initial

density ρ0 is positive on the entire space (inf ρ0 > 0) and has a positive background state

outside a ball (ρ0 = ρ̄, Bc
R), and the initial velocity u0 is compactly supported on the same

ball. This design makes sure that, on the one hand, the Euler equations may be written as

a positive definite, symmetric hyperbolic system by the usual symmetrization, and thus
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possess a unique, local C1 solution (ρ − ρ̄, u) via the theory [4, 9], on the other hand,

by the local energy estimates [14], the solution (ρ − ρ̄, u) is supported on a ball, whose

radius is determined by the sound speed corresponding to the background state ρ̄, and

thus has linear spreading rate. To prove the first main result [15], Sideris introduced an

averaged quantity, the radial momentum
∫
ρux dx, whose evolution connects with some

other averaged quantities, for example, the mass, energy and moment of inertia
∫
ρ|x|2 dx

(refer to [17] for an exhaustive account). The crucial idea is to estimate the upper bound

of the moment of inertia which heavily relies on the finite propagation speed. The sign

of relative total pressure mainly depends on the convexity of the pressure but may be

independent of the finite propagation speed (see [18]). Finally, the radial momentum

obeys a Riccati type inequality which forces the lifespan of the solution to be finite if

the initial velocity is supersonic in some region. By studying other alternative averaged

quantities, in the third main result, Sideris established the formation of singularities

without any condition of largeness on the initial velocity, which also provides an upper

bound of the lifespan in exponential type exp(C/ε2), if the initial data has a perturbation

of order ε from the positive background state. In another paper [16], Sideris refined

the upper bound exp(C/ε2) of the lifespan to the order exp(C/ε) for irrotational initial

velocity, which was based on a key observation that the linear operator of acoustics is

invariant under the Lorentz transformations for irrotational velocity fields.

As the initial density is surrounded by vacuum, it does not seem yet to be straightfor-

ward to apply the theory [4,9] directly to the Euler equations via the usual symmetrization

for lack of positive definiteness. Makino, Ukai and Kawashima [10] made use of the sound

speed as an independent variable in place of the density which together with the orig-

inal velocity symmetrized the Euler equations to a positive definite hyperbolic system,

and thus the well-posedness of classical solution follows. Then, under the further com-

pact support assumptions on the initial density and velocity, the authors showed that the

support of the solution does not change with respect to time as long as the solution is

tame. This fact gives rise to the the moment of inertia an upper bound independent of

the time, however, whose lower bound spreads quadratically with respect to time. This

obvious contradiction implies that the blowup must occur in finite time for the tame solu-

tion. Makino and Ukai [11] continually applied the same symmetrization [10] to establish

the local solvability of three-dimensional Euler-Poisson equations with the gravitational

forces by a fixed point argument, the idea in which is also effective in the presence of the

electrostatic forces.

If the initial data are spherically symmetric and have compact support, for the three-
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dimensional Euler-Poisson equations with gravitational forces, Makino and Perthame [12]

proved that the support of the tame solution does not spread over time with the aid

of the sign of the gravitational force, which presents a similar blowup result of classical

to [10]. When the external forces are the electrostatic force, Perthame [13] showed that the

support of spherically symmetric tame solution grows quadratically. This means that the

moment of inertia is sandwiched between a pair of quadratic functions whose coefficients

consist of the total energy, mass and so on. By comparing the coefficients of the two

quadratic functions, the blowup of classical solution follows if the initial energy is large

in comparison with the initial mass.

In [15], the maximum propagation speed of a front into a constant state is a-priorily

determined by the positive background state. In [10, 12, 13], the maximum propagation

speed of compact support is also a-priorily determined by the initial data. However it is

not clear how the support of the general spherically symmetric solution in Sobolev space

propagates, especially, as the presence of non-local terms in the compressible Euler-Poisson

equations. To overcome the difficulty caused by the lack of the finite speed propagation,

one needs to consider some new averaged quantities which may localize the far field for

applying Sideris’s argument [15]. Starting from the formulation that, as observed in [15],

the Euler equations may be written as a quasi-linear wave-type equation in terms of

density with inhomogeneous terms involving the velocity, Lei, Du and Zhang [7] studied

the evolutions of some new averaged quantities with fast decay weights which led to some

formation of singularities of spherically symmetric solutions to the Euler equations in two

and three spatial dimensions, in which the authors removed the compactly supported

disturbances assumptions on the initial data. The proofs present delicate differences

between the two and three spatial dimensions due to the different weights.

There are extensive studies on the formation of singularities of the one-dimensional

Euler equations and Euler-Poisson equations which are most closely related to the method

of characteristics, also developed at the background of hyperbolic systems of conservation

laws in one spatial dimension. However we cannot exhaust all of them and here only list

some of them for the reader’s reference convenience [2,6,8,20], one may also refer to [1,3]

for a fairly complete list of the references.

This work in the present paper is devoted to the investigation of the formation of

singularities of spherically symmetric solutions with general initial data in Sobolev space

to the three-dimensional Euler equations and Euler-Poisson equations with gravitational

force or electrostatic force. However it seems that the method of [7] doesn’t apply di-

rectly to the Euler-Poisson equations. Different from [7], we study the equation of the
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velocity and work with spherical coordinates instead of Eulerian coordinates, which leads

us to find a very simple weight exp(−r) that is effective to both the Euler equations and

Euler-Poisson equations. On the other hand, our proof simplifies that of [7] and is also

undifferentiated between the two-and three-dimensional Euler equations. Specifically, we

introduce a simple averaged quantity F (t) with the new weight exp(−r), which is efficient

in performing Sideris’s argument [15] to the Euler-Poisson equations, as well as the Euler

equations. Due to the good sign of the gravitational forces, we may handle the Euler

equations and Euler-Poisson equations with gravitational forces at the same time. Fol-

lowing Sideris’s argument [15], we study the evolution of F (t) that yields a middle term,

the weighted kinetic energy Q(t), which may bound F (t) from above, but independent

of the time. On the occasions of the Euler-Poisson equations with electrostatic forces,

no good sign to use, we have to employ the weighted Hardy inequality to treat with the

high singularity near r = 0. However one still can control the other middle term coming

from the electrostatic forces, but in terms of the initial mass and physical energy instead,

and all the estimates are independent of the time. Finally F (t) satisfies a Riccati type

inequality and thus the singularity forms in finite time. The above formation of singular-

ities of the Euler equations and Euler-Poisson equations with gravitational forces provide

an upper bound for the lifespan to a time of the order C/ε, this together with the lower

bound C/ε from [10,11], yields a by-product, the sharp bound of the lifespan in these two

situations.

Section 2 contains the reformulation of the problem, as well as some necessary pre-

liminaries. In Section 3 we revisit the local well-posedness of classical solutions to the

three-dimensional Euler equations and Euler-Poisson equations with gravitational forces

or electrostatic forces. We establish the formation of singularities for spherically symmet-

ric solutions in Sobolev space in Section 4. Section 5 presents some examples to justify

the conditions in the formation of singularities.

2 Reformulation of the problem

We consider here the Euler equations for an isentropic ideal fluid in three-dimension

which are governed by

 ∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p = 0.

(2.1)
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Here ρ, u = (u1, u2, u3) and p = p(ρ) denote the density, velocity and pressure, respectively.

For the ideal polytropic gas, the equation of state is given by p = Aργ with the adiabatic

index γ > 1 and a constant A > 0. When considering gas motion under self-gravitation

or describing the dynamics of a plasma, these physical phenomenon may be modeled by

the Euler-Poisson system
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p = ±ρ∇φ,

∆φ = 4πGρ,

(2.2)

where we use the signs ”± ” to distinguish electrostatic forces ” + ” and self-gravitational

forces ” − ”. We set both the constant A and universal gravitational constant G to be

unit for simplicity. One can solve the Newtonian potential φ from the elliptic equation in

(2.2) in terms of ρ to reduce (2.2) to a much simpler system ∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p = ±ρ∇G ∗ ρ,
(2.3)

in which G stands for the three-dimensional Green’s function (factoring out a constant)

which is given by G(x) = −1/|x|. We denote by s(ρ) the local sound speed which is

determined by the formula s(ρ) =
√
pρ(ρ). Denote ζ = 2

γ−1s(ρ), as an independent

variable instead of ρ together with velocity, which may symmetrize the Euler equations

(2.1) and Euler-Poisson equations (2.3) to

∂tV +
n∑
i=1

Ai(V )∂xiV + δB(V ) = 0. (2.4)

Here δ takes the values 0, 1,−1 which are corresponding to the Euler equations, Euler-

Poisson equations with electrostatic forces and with gravitational forces, respectively. The

notations in the system (2.4) are specifically as follows

V =

ζ
u

 , B(V ) =

 0

−
[ (γ−1)2

4γ

] 1
γ−1∇G ∗ ζ

2
γ−1

 ,
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A1(V ) =



u1
(γ−1)ζ

2
0 0

(γ−1)ζ
2

u1 0 0

0 0 u1 0

0 0 0 u1


,

A2(V ) =



u2 0 (γ−1)ζ
2

0

0 u2 0 0

(γ−1)ζ
2

0 u2 0

0 0 0 u2


,

A3(V ) =



u3 0 0 (γ−1)ζ
2

0 u3 0 0

0 0 u3 0

(γ−1)ζ
2

0 0 u3


.

For notational convenience, we define the partial and total energy functionals as

E (k)(t) = ‖V (k)(t, ·)‖2L2(R3)

and

E(t) =
3∑

k=0

E (k)(t),

respectively. Here the maximum index in the above summation is to make sure that the

solutions constructed under these energy functionals are classical via Sobolev embedding.

We denote by XT the Sobolev space

C
(
[0, T );H3(R3)

)
∩ C1

(
[0, T );H2(R3)

)
for simplicity which will be frequnetly used in the well-posedness and singularity formation

theories.

We are interested in studying formation of singularities of classical solutions with

conservative mass and physical energy to the three-dimensional Euler equations and Euler-

Poisson equations with gravitational forces or electrostatic forces. We use M(t) and Eδ(t)

6



to denote the mass and physical energy respectively which are defined by

M(t) =

∫
R3

ρ dx

and

Eδ(t) =

∫
R3

(1

2
ρu2 +

1

γ − 1
ργ − δ

2
ρG ∗ ρ

)
dx.

Here δ has the same meaning as (2.4). We should mention that E1(t) is always nonnegative

due to the negative sign of G(x). However E−1(t) may be nonnegative or negative, whose

sign depends on initial setup.

The notation C always denotes a nonnegative universal constant which may be differ-

ent from line to line but is independent of the parameters involved. Otherwise, we will

specify it by the notation C(a, b, . . . ). We write f . g (f & g) when f ≤ Cg (f ≥ Cg),

and f h g when f . g . f . The notation ε always stands for a sufficiently small positive

number throughout the paper.

3 Local Well-Posedness

In this section we will revisit the well-posedness of classical solutions to the Euler

equations and Euler-Poisson equations with electrostatic forces or gravitational forces

established in [10, 11]. To avoid the trivial cases we always assume in the present paper

that the initial data satisfy

ρ0 ≥ 0, 0 < E(0),M(0), Eδ(0) <∞.

We first state the well-posedness of the Euler equations (δ = 0).

Proposition 3.1 If 1 < γ ≤ 5
3
. Then there exist a positive number

T & E−
1
2 (0) (3.1)

and a unique solution (ρ, u) ∈ XT of the Euler equations (2.1) with (ρ, u)|t=0 = (ρ0, u0)

satisfying ρ ≥ 0, which possesses the conservations of total mass and energy.

Proof. Since the system (2.4) is a positive definite hyperbolic system, the standard

theory [4, 9] applies to show that the system (2.4) is locally well-posed in XT for some

positive time T . Moreover E(t) satisfies the energy estimate

d

dt
E(t) . E

3
2 (t),
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which provides a lower bound T & E− 1
2 (0). One solves the first equation of (2.4) to deduce

ζ ≥ 0.

Since ζ belongs to XT , so does ρ if 1 < γ ≤ 5
3
. This is a consequence of ρ = C(γ)ζ

2
γ−1

(the definition of the sound speed). Then Sobolev embedding yields (ρ, u) ∈ C1([0, T )×
R3), which implies that the inverse map of (ρ, u) 7→ (ζ, u) is continuously differentiable.

So (ρ, u) solves the Cauchy problem of (2.1). Since we have shown (ρ, u) ∈ XT , which

guarantees the integration by parts in proving the conservations of mass. 2

The well-posedness of the Euler-Poisson equations (δ = ±1) may be stated as follows.

Proposition 3.2 If 1 < γ ≤ 5
3
. Then there exist a positive number

T & max{E−
1
2 (0), E

γ−3
2(γ−1) (0)} (3.2)

and a unique solution (ρ, u) ∈ XT of the Euler-Poisson equations (2.3) with (ρ, u)|t=0 =

(ζ0, u0) satisfying ρ ≥ 0, which possesses the conservations of total mass and energy.

Proof. We here give only an a priori estimate. Applying Dk, 0 ≤ k ≤ 3 to (2.4), then

multiplying it by DkV and using integration by parts to get

d

dt
E(t) . E

3
2 (t) +

3∑
k=0

‖Dk(∇G ∗ ζ
2

γ−1 )‖L2(R3)‖DkU‖L2(R3). (3.3)

Note that |∇G| = 1/|x|2, we employ Hardy-Littlewood-Sobolev inequality from Ap-

pendix to deduce

‖Dk(∇G ∗ ζ
2

γ−1 )‖L2(R3) = ‖∇G ∗Dk(ζ
2

γ−1 )‖L2(R3) . ‖Dk(ζ
2

γ−1 )‖
L

6
5 (R3)

. ‖Dk(ζ
2

γ−1 )‖
2
3

L1(R3)‖D
k(ζ

2
γ−1 )‖

1
3

L2(R3).
(3.4)

The Gagliardo-Nirenberg inequality shows

‖Dk(ζ
2

γ−1 )‖L1(R3) . ‖ζ
2

γ−1‖
3

3+2k

L1(R3)‖D
k(ζ

2
γ−1 )‖

2k
3+2k

L2(R3). (3.5)

Then substituting (3.5) to (3.4) yields

‖Dk(∇G ∗ ζ
2

γ−1 )‖L2(R3) . ‖ζ
2

γ−1‖
2

3+2k

L1(R3)‖D
k(ζ

2
γ−1 )‖

1+2k
3+2k

L2(R3). (3.6)

Note that 1 < γ ≤ 5
3
, each term Dk(ζ

2
γ−1 ), k = 0, 1, 2, 3 may be bounded by the norm

H3(R3) of ζ via Sobolev embedding. Thus one can estimate (3.6) continually to obtain

‖Dk(∇G ∗ ζ
2

γ−1 )‖L2(R3) . ‖ζ
4−2γ
γ−1 ‖

2
3+2k

L∞(R3)‖ζ
2‖

2
3+2k

L1(R3)‖ζ‖
2(1+2k)

(γ−1)(3+2k)

H3(R3) . ‖ζ‖
2

γ−1

H3(R3). (3.7)
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Inserting (3.7) into (3.3) gives

d

dt
E(t) . E

3
2 (t) + E

γ+1
2(γ−1) (t),

which in view of Grönwall’s inequality yields (3.2). The rest is akin to the corresponding

part in the proof of Proposition 3.1.

2

4 Formation of Singularities

In this section we study the formation singularities of spherically symmetric solutions

to the three-dimensional Euler equations and Euler-Poisson equations with gravitational

forces or electrostatic forces. For spherically symmetric motions, the solution to (2.1) or

(2.3) established in Section 3, emanating from spherically symmetric initial data

ρ0(x) = ρ0(r), u0(x) =
x

r
v0(r), r = |x|, (4.1)

possess the spherically symmetric form

ρ(t, x) = ρ(t, r), u(t, x) =
x

r
v(t, r), (4.2)

which also satisfies  ∂tρ+ 1
r2
∂r(r

2ρv) = 0,

ρ(∂tv + v∂rv) + ∂rp = δ 4πρ
r2

∫ r
0
ρ(t, l)l2 dl.

(4.3)

Here δ has the same meaning with (2.4) and r > 0. Let (ρ, u) ∈ XT . As observed in [7],

we see from (4.2) that each component of u is an odd function, so the velocity u should

satisfy u(t, 0) = 0 which in turn implies v(t, 0) = 0. Since the density ρ is radial, thus

the characteristic curve always maps the center r = 0 to itself as long as the solution

is smooth, or there must be at least two characteristic curves intersecting at r = 0. It

follows from the mass equation of (2.1) or (2.3) that ρ(t, 0) = 0 if the initial density is

imposed on ρ0(0) = 0. In the following we will study formation singularities of spherically

symmetric solutions with the initial data ρ0(0) = 0. For convenience, we formulate the

above observation as

ρ(t, 0) = 0, v(t, 0) = 0. (4.4)
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The mass and physical energy defined in Section 3 may be transfered into the following

corresponding to spherically symmetric solutions to (4.3) as

M(t) = 4π

∫ ∞
0

ρ(t, r)r2 dr

and

Eδ(t) = 4π

∫ ∞
0

(1

2
ρv2 +

1

γ − 1
ργ)(t, r)r2 dr

+ 8π2δ

∫ ∞
0

∫ ∞
0

K(l, r)ρ(t, l)ρ(t, r)l2r2 dldr,

where the kernel K(l, r) is defined by

K(l, r) =

 1/l if r ≤ l,

1/r if r ≥ l.

We should emphasize that the mass and physical energy are only used in the formation

of singularities of Euler-Poisson equations with electrostatic forces (δ = 1).

Apart from the mass and physical energy, we further introduce the weighted total

radial velocity

F (t) = −
∫ ∞
0

v(t, r) exp(−r) dr,

which will play a crucial role in studying formation of singularities afterwards. It is clear

that the functional F (t) is well defined as long as the solution (ρ, u) stays in XT via

Sobolev embedding.

Let (ρ, u) ∈ XT be the solution to (2.1) or (2.3) with the spherically symmetric initial

data (4.1).

We first state singularity formation of the Euler equations (δ = 0).

Theorem 4.1 If the initial data (ρ0, u0) satisfy

ρ0(0) = 0, F (0) > 0.

Then, the lifespan T ∗ of the classical solution (ρ, u) to (2.1) with (4.1) is bounded above

by

T ∗ ≤ 2

F (0)
. (4.5)
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Proof. We will prove that the lifespan T ∗ is finite by contradiction. Assume T ∗ =∞. It

follows from the momentum equation of (4.3) that

d

dt
F (t) =

∫ ∞
0

[
v∂rv +

γ

γ − 1
∂r(ρ

γ−1)
]

exp(−r) dr. (4.6)

Integrating by parts in view of (4.4), one has∫ ∞
0

v∂rv exp(−r) dr =
1

2

∫ ∞
0

v2 exp(−r) dr (4.7)

and ∫ ∞
0

γ

γ − 1
∂r(ρ

γ−1) exp(−r) dr =
γ

γ − 1

∫ ∞
0

ργ−1 exp(−r) dr. (4.8)

Inserting (4.7) and (4.8) into (4.6) yields

d

dt
F (t) =

1

2

∫ ∞
0

v2 exp(−r) dr +
γ

γ − 1

∫ ∞
0

ργ−1 exp(−r) dr

≥ 1

2

∫ ∞
0

v2 exp(−r) dr =: Q(t),

(4.9)

in which we have used the fact that ρ is non-negative in the last inequality.

To control F (t) in terms of Q(t), we employ Cauchy-Schwartz inequality to deduce

F 2(t) ≤
∫ ∞
0

v2 exp(−r) dr

∫ ∞
0

exp(−r) dr = 2Q(t). (4.10)

We conclude from (4.9) and (4.10) that

d

dt
F (t) ≥ 1

2
F 2(t).

It follows that

F (t) ≥ F (0)

1− F (0)
2
t
.

This implies that F (t) will develop singularity no later than the time 2
F (0)

. This contra-

diction ends the proof. 2

Remark 4.1 The Euler equations in general dimension may be written in spherical co-

ordinates as  ∂tρ+ 1
rn−1∂r(r

n−1ρv) = 0,

ρ(∂tv + v∂rv) + ∂rp = 0.

The proof of Theorem 4.1 can be applied uniformly here and the same result follows. Our

proof also simplifies that of [7].
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The following is the formation singularity result for the Euler-Poisson equations in the

presence of gravitational forces (δ = −1).

Theorem 4.2 If the initial data (ρ0, u0) satisfy

ρ0(0) = 0, F (0) > 0.

Then, the lifespan T ∗ of (ρ, u) to (2.3) (δ = −1) with (4.1) is bounded above by

T ∗ ≤ 2

F (0)
.

Proof. One calculates from the momentum equation of (4.3) that

d

dt
F (t) =

∫ ∞
0

[
v∂rv +

γ

γ − 1
∂r(ρ

γ−1) +
4π

r2

∫ r

0

ρ(t, l)l2 dl

]
exp(−r) dr

≥
∫ ∞
0

[
v∂rv +

γ

γ − 1
∂r(ρ

γ−1)

]
exp(−r) dr.

The rest is same as the proof of Theorem 4.1. 2

In contrast to the gravitational forces case, without good sign to use, the blowup

formation in the case of the electrostatic forces (δ = 1) is slightly more complicated.

Theorem 4.3 Let σ ∈ (0, 1
2
) and 3−σ

2−σ < γ ≤ 5
3
. If (ρ0, u0) satisfy

ρ0(0) = 0

and

1

4
F 2(0) ≥ c1

(
M(0) + (γ − 1)E1(0)

)
+ c2, (4.11)

where

c1 =
2− σ
3− σ

( 3− σ
3− 3σ + σ2

) 3−σ
2−σ , c2 =

4πe−1(1 + σ)

σ(3− σ)
.

Then the lifespan T ∗ of (ρ, u) to (2.3) (δ = 1) with (4.1) is bounded above by

T ∗ ≤ 4

F (0)
.

Proof. It follows from the momentum equation of (4.3) that

d

dt
F (t) =

∫ ∞
0

[
v∂rv +

γ

γ − 1
∂r(ρ

γ−1)− 4π

r2

∫ r

0

ρ(t, l)l2 dl

]
exp(−r) dr. (4.12)
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Denote

R(t) = 4π

∫ ∞
0

1

r2

∫ r

0

ρ(t, l)l2 dl exp(−r) dr.

There is too much singularity near r = 0 in the integrand ofR(t), which can not be handled

by weighted Hardy inequality directly. To get round this difficulty, by compensating a

power of rσ, via Young inequality and weighted Hardy’s inequality from Appendix, one

has

R(t) = 4π

∫ ∞
0

1

r2

∫ r

0

ρ(t, l)l2−σlσ dl exp(−r) dr

≤ 4π

∫ ∞
0

1

r2−σ

∫ r

0

ρ(t, l)l2−σ dl exp(−r) dr

≤ 4π

∫ ∞
0

1

r1−σ

[
2− σ
3− σ

(
1

r

∫ r

0

ρ(t, l)l2−σ dl

) 3−σ
2−σ

+
1

3− σ

]
exp(−r) dr

≤ 4π(2− σ)

3− σ

∫ ∞
0

1

r1−σ+
3−σ
2−σ

(∫ r

0

ρ(t, l)l2−σ dl

) 3−σ
2−σ

dr +
4π

3− σ

∫ ∞
0

exp(−r)
r1−σ

dr

≤ 4π(2− σ)

3− σ
( 3− σ

3− 3σ + σ2

) 3−σ
2−σ

∫ ∞
0

ρ
3−σ
2−σ (t, r)r2 dr +

4πe−1(1 + σ)

σ(3− σ)
,

(4.13)

and the first term in (4.13) may be continuously estimated as∫ ∞
0

ρ
3−σ
2−σ (t, r)r2 dr

=

∫
(0,∞)∩{ρ(t,r)≤1}

ρ
3−σ
2−σ (t, r)r2 dr +

∫
(0,∞)∩{ρ(t,r)>1}

ρ
3−σ
2−σ (t, r)r2 dr

≤
∫
(0,∞)∩{ρ(t,r)≤1}

ρ(t, r)r2 dr +

∫
(0,∞)∩{ρ(t,r)>1}

ργ(t, r)r2 dr

≤
∫ ∞
0

ρ(t, r)r2 dr +

∫ ∞
0

ργ(t, r)r2 dr

≤ 1

4π

[
M(0) + (γ − 1)E1(0)

]
,

(4.14)

where we have used 3−σ
2−σ < γ ≤ 5

3
. Substituting (4.14) into (4.13) gives

R(t) ≤ c1

(
M(0) + (γ − 1)E1(0)

)
+ c2, (4.15)

in which c1 = 2−σ
3−σ

(
3−σ

3−3σ+σ2

) 3−σ
2−σ and c2 = 4πe−1(1+σ)

σ(3−σ) . It follows from (4.12) and (4.15) that

d

dt
F (t) ≥ Q(t)− c1

(
M(0) + (γ − 1)E1(0)

)
− c2. (4.16)
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We conclude from (4.10) and (4.16) that

d

dt
F (t) ≥ 1

2
F 2(t)− c1

(
M(0) + (γ − 1)E1(0)

)
− c2.

In view of (4.11), by a bootstrap argument one shows that F (t) is increasing and thus

satisfies

F (t) ≥ F (0)

1− F (0)
4
t
,

which shows that F (t) will breakdown before the time 4
F (0)

. This is a contradiction.

2

5 Sharp Bound and Example

Let (ρ, u) ∈ XT be solution to (2.1) or (2.3) with the spherically symmetric initial

data (4.1). Based on the local well-posedness in Section 3 and formation of singularities

in Section 4 we can obtain a sharp bound on the lifespan of the solutions to the Euler

equations and Euler-Poisson equations with gravitational forces by choosing a special

scale relation between the initial density and initial velocity. We also give an example to

justify the conditions of the formation of singularity of the Euler-Poisson equations with

electrostatic forces.

We have the following sharp bound on lifespan of the solutions to the Euler equations

and Euler-Poisson equations with gravitational forces.

Theorem 5.1 Assume that the initial density ρ0 and velocity u0 satisfy the scaling rela-

tion (ρ0, u0) = (ε
2

γ−1%, εw). If the initial data (ρ0, u0) also satisfy

ρ0(0) = 0, F (0) > 0. (5.1)

Then, the lifespan T ∗ of (ρ, u) to (2.1) with (4.1) satisfies

T ∗ h
1

ε
. (5.2)

Proof. A direct calculation gives

E(0) h ε2, F (0) h ε.

The conclusion (5.2) follows from (3.1) and (4.5). 2
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Theorem 5.2 Assume that the initial density ρ0 and velocity u0 satisfy the scale relation

(ρ0, u0) = (ε
2

γ−1%, εw). If the initial data (ρ0, u0) also satisfy

ρ0(0) = 0, F (0) > 0.

Then, the lifespan T ∗ of (ρ, u) to (2.3) (δ = −1) with (4.1) satisfies

T ∗ h
1

ε
.

Remark 5.1 Let

%(x) = |x|2 exp(−|x|2), w(x) = −x|x|2 exp(−|x|2). (5.3)

It is clear that (ρ0, u0) belong to H3(R3) and satisfy (5.1).

We finally give an example to justify (4.11). Taking (%, w) of (5.3) and setting

(ρ0, u0) = (ε%, ε−1w), one calculates that

M(0) h ε, F (0) h ε−1

and

E1(0) h ε−1 + εγ − ε2 h ε−1.

Consequently, for given σ ∈ (0, 1
2
), let ε go to zero, one has

F 2(0)

c1

(
M(0) + (γ − 1)E1(0)

)
+ c2

h ε−1 � 1.

This implies that (4.11) holds.

6 Appendix

We state here the Hardy-Littlewood-Sobolev inequality and weighted Hardy inequality

for references convenience, whose proofs can be found in [19] and [5], respectively.

Lemma 6.1 Given 0 < λ < d and 1 < q1 < q2 <∞ with 1
q2

= 1
q1
− λ

d
. Let Iλ be the Riesz

potential of order λ on Rd which is defined by

Iλf(x) = C(d, λ)

∫
Rd

f(y)

|x− y|d−λ
dy.

Then

‖Iλf‖Lq2 (Rd) ≤ C(d, λ, q1)‖f‖Lq1 (Rd).
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Lemma 6.2 Given 1 < µ, q <∞. Then∫ ∞
0

1

rµ

(∫ r

0

f(l) dl

)q
dr ≤ C(µ, q)

∫ ∞
0

f q(r)rq−µ dr,

where the best constant C(µ, q) =
(

q
µ−1

)q
. In particular, it is the classical Hardy’s in-

equality as µ = q.
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