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ABSTRACT
Plunging breaking waves that occur in the vicinity of off-

shore structures can lead to high impulsive slamming loads,
which are significant for the structural loading. The occurrence
of plunging breaking waves is usually identified based on criteria
that are derived from theoretical analyses and experimental stud-
ies. Given a large amount of data, detecting plunging breaking
waves can be treated as a typical classification problem, which
can be solved by a machine learning approach. In this study, lo-
gistic regression algorithm is used together with the experimental
data from the WaveSlam project to train a classifier for the de-
tection. Three normalized dimensionless features are introduced
based on the measured data for the training. A classifier with
respect to four wave parameters (i.e. water depth, wave height,
crest height and wave period) is then explicitly developed for
detecting plunging breaking waves. It is found that the trained
classifier has an accuracy of 98.7% and F1 score of 99.2% for
the tested data. Among the three dimensionless parameters, the
ratio of wave height to water depth, H/d, is the most decisive
factor for the detection of plunging breaking waves.

INTRODUCTION
A breaking wave is a wave whose amplitude reaches a

critical level at which it becomes unstable and dissipates large
amounts of wave energy into turbulent kinetic energy. It may
occur anywhere if the amplitude is sufficient, including in mid-
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ocean. However, it is particularly common in shallow water, e.g.
on beaches. There are four basic types of breaking waves, i.e.
spilling, plunging, collapsing and surging [1]. Among them, the
plunging breaking wave is most relevant to slamming loads on
offshore structures, for instance offshore wind turbine support-
ing structures.

A large amount of efforts has been devoted to identify the
criteria for the occurrence of wave breaking and plunging break-
ing waves. The state-of-the-art wave breaking criteria and plung-
ing criteria have been reviewed in [2]. These criteria are achieved
by theoretical analyses, numerical simulations or experimental
studies. The present study also deals with the detection of plung-
ing breaking wave events, but without applying any existing cri-
teria. A machine learning based approach is proposed and ap-
plied to detect the plunging breaking waves.

Machine learning is the field of study that gives comput-
ers the ability to learn without being explicitly programmed [3].
During the last decades, modern machine learning techniques
have been proposed to train models that can provide good em-
pirical models [4]. In the field of ocean engineering, machine
learning has been employed to deal with a range of tasks, for
instance predicting scour depth [5], wave forecasting [6–8] etc.

Machine learning has also been applied to predict the wave-
breaking characteristics. Deo et al. [9] employed a neural net-
work approach to predict the breaking wave height and water
depth for waves transforming over a range of simply sloped bot-
toms. Akoz et al. [10] also employed artificial neural network to
predict the geometrical properties of so-called perfect breaking
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wave (i.e. a wave breaks on a vertical wall with an almost vertical
front face) on composite breakwaters. Kouvaras and Dhanak [11]
extended the Deo et al. [9] approach to predict other characteris-
tics of wave breaking, including the type of wave breaking, the
position of breaking, the wave setup, and the rate of dissipation
of wave energy.

All these studies [9–11] used the neural network approach.
The neural network model used in [9] was trained using em-
pirical graphs and equations. The neural network models used
in [10, 11] were trained and tested by laboratory observations of
regular breaking waves in small scale wave flumes. However,
only a limited number of regular breaking waves were recorded
and used in the studies by [10, 11], which implies that the train-
ing data set might be limited and thus might affect the prediction
accuracy if the trained model is applied to predict the character-
istics of breaking waves that are not within the range of training
data set. Additionally, the neural network model does not pro-
vide a regression equation relating inputs and outputs.

In this study, a machine learning approach is used to detect
the plunging breaking waves. Based on a series of measured reg-
ular breaking waves in a large wave flume, a logistic regression
model is trained and used to identify breaking waves. Perfor-
mance of the developed model is also evaluated.

DATA DESCRIPTION
The experimental data from the WaveSlam project 1 [12] are

used for the analysis in this study. The project aims to study
the slamming forces from plunging breaking waves on jacket
structures, through experiment with a 1:8 scale model of a typ-
ical jacket structure used in offshore wind industry. The exper-
iment was conducted using the Large Wave Flume facilities at
the Coastal Research Centre (Forschungszentrum Küste, FZK) 2,
Hannover, Germany.

The setup of the experiment is shown in Fig. 1. The wave
flume is approximately 300m long, 5m wide and 7m deep. The
waves were generated by the wave board at the left end of the
flume, went over a 1:10 slope, then reached the jacket model on
a plateau. The breaking waves were supposed to break at or close
to the jacket model. The water depth at the jacket model was set
to 2.0m or 1.8m.

A global coordinate system is defined as following: The ori-
gin is positioned at the middle position of the wave board (x =
0), at the bottom of the channel (z = 0) and at the south side of
the flume, namely the right side when following the flow (y =
0). The x-axis is positive in the wave direction. The z-axis is
positive upwards. The y-axis forms a right hand system with the
other axes.

Wave gauges were installed at 15 different locations along

1http://hydralab.eu/research--results/ta-projects/project/19/; January 2018
2https://www.fzk.uni-hannover.de/; January 2018
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FIGURE 1. Setup of the experiment.

TABLE 1. Location of the used wave gauge.

Channel name Description x [m] y [m] z [m]

WG S9 WG front column 198.37 0.60 7.00

the wave flume, and the motions of the wave paddle were
recorded. The measurement of Wave Gauge S9 (WG S9) is used.
This wave gauge is the first available one above the plateau af-
ter the slope, where the breaking waves were fully developed.
The wave gauge is located in the plane of the front legs of the
jacket model, and between the model and the south wall of the
wave flume. The location of the gauge in the global coordinates
is show in Table 1 and illustrated in Fig. 1. There were two more
wave gauges located above the plateau, one after the front legs
and the other at the back legs. However, the measurements from
these two gauges were more prone to the disturbance from the
jacket model, so they are not used.

A list of regular wave test cases used in the analysis is given
in Table 2. There are 66 test cases and in each test, more than one
run may be conducted. These test cases consist of different com-
binations of wave height, wave period and water depth. Wave
height varies from 0.75 m to 1.9 m, and wave period ranges from
3.0 s to 5.55 s. It should be noted that the wave height and wave
period given in Table 2 are inputs to the wave paddle. The wave
height experienced by the WG S9 and the structure are expected
to be larger than that at the wave paddle due to the slope.

For each test, whether the regular waves are breaking or not
is also highlighted in Table 2. They are identified based on visual
observations from the experiment. The sampling frequency of
wave gauges was 100 Hz or 200 Hz, depending on wave cases.

METHODS
Plunging breaking waves, which can cause slamming loads

on offshore structures, have an on/off feature. Therefore, it
is a typical binary classification problem in supervised ma-
chine learning, to distinguish plunging breaking waves and non-
breaking ones. Classification refers to the problem to classify
examples into given set of categories. The two categories here
are breaking and non-breaking.
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TABLE 2. Selected regular wave test cases. The wave height and period are inputs to the wave paddle. The water depth is also nominal at the wave
paddle. The water depth at the structure equals to the nominal water depth at the wave paddle minus the height of the plateau 2.3m. Each run of Tests
64-66 has 10 waves. Each run of the other tests has 20 waves. In each run of each test, there is one wave that is not used for the analysis (see Section
Data pre-processing).

Test No. No. of runs Wave height [m] Wave period [s] Depth [m] Breaking? Test No. No. of runs Wave height [m] Wave period [s] Depth [m] Breaking?

1 2 1.00 3.00 4.3 N 34 1 1.80 5.55 4.3 Y

2 1 1.10 3.00 4.3 N 35 1 1.50 5.55 4.3 Y

3 1 1.20 3.00 4.3 N 36 1 1.40 5.55 4.3 Y

4 1 1.30 3.00 4.3 N 37 1 1.30 5.55 4.3 Y

5 1 1.35 3.00 4.3 Y 38 1 1.45 4 4.3 Y

6 1 1.35 4.00 4.3 Y 39 1 1.55 4 4.3 Y

7 1 1.45 4.00 4.3 Y 40 1 1.65 4 4.3 Y

8 1 1.55 4.00 4.3 Y 41 1 1.70 5.55 4.3 Y

9 1 1.65 4.00 4.3 Y 42 1 1.70 5.2 4.3 Y

10 1 1.60 4.00 4.3 Y 43 1 1.65 4.9 4.3 Y

11 1 1.40 4.6 4.3 Y 44 1 1.35 4.6 4.3 Y

12 1 1.50 4.6 4.3 Y 45 1 1.70 4.6 4.3 Y

13 1 1.30 4.6 4.3 Y 46 5 1.70 5.2 4.3 Y

14 1 1.60 4.6 4.3 Y 47 5 1.50 4.9 4.3 Y

15 1 1.65 4.6 4.3 Y 48 5 1.40 4.6 4.3 Y

16 2 1.70 4.6 4.3 Y 49 1 1 4 4.3 N

17 1 1.75 4.6 4.3 Y 50 1 1 4.6 4.3 N

18 1 1.45 4.9 4.3 Y 51 1 1 4.9 4.3 N

19 1 1.30 4.9 4.3 Y 52 1 1 5.2 4.3 N

20 1 1.40 4.9 4.3 Y 53 1 1 5.55 4.3 N

21 1 1.50 4.9 4.3 Y 54 1 0.75 4 4.3 N

22 1 1.60 4.9 4.3 Y 55 1 0.75 4.6 4.3 N

23 1 1.70 4.9 4.3 Y 56 1 0.75 5.2 4.3 N

24 1 1.75 4.9 4.3 Y 57 1 0.75 5.55 4.3 N

25 1 1.80 4.9 4.3 Y 58 3 1.4 3 4.1 Y

26 1 1.40 5.2 4.3 Y 59 3 1.7 4 4.1 Y

27 1 1.30 5.2 4.3 Y 60 3 1.8 4.6 4.1 Y

28 1 1.50 5.2 4.3 Y 61 3 1.8 4.9 4.1 Y

29 1 1.60 5.2 4.3 Y 62 2 1.85 5.2 4.1 Y

30 1 1.70 5.2 4.3 Y 63 3 1.85 5.55 4.1 Y

31 1 1.80 5.2 4.3 Y 64 2 1.8 5.2 4.3 Y

32 1 1.60 5.55 4.3 Y 65 5 1.9 5.2 4.3 Y

33 1 1.70 5.55 4.3 Y 66 5 1.9 5.55 4.3 Y

A typical classification problem is demonstrated by Fig. 2.
Labeled training data are first fed into a machine learning algo-
rithm to obtain a classification rule. Then, the classification rule
is applied to new data to make predictions.

For our investigated problem specifically, the work flow is
illustrated in Fig. 3. The major blocks of the work flow are ex-
plained in detail below.

Data pre-processing

The measured wave elevation is first pre-processed. For each
run in each test, a band-pass filter is applied to remove the high-
frequency noise in the measured wave elevations. During each
run, 20 (or 10) regular waves were recorded; however, only 19
(or 9) regular waves are found to have similar wave height, and
are thus selected for further analysis. As a result, a total of 1780
regular waves are extracted from the measured data.
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FIGURE 2. Illustration of classification problem.

Feature extraction
A perfect regular wave can be represented by water depth d,

wave height H, crest height ηp, trough height ηt , and wave pe-
riod T . However, the measured regular waves are not “perfect”,
since the measured regular waves in the same run differ slightly.
A representative measured wave elevation at WG S9 is illustrated
in Fig. 4. The following procedure is used to extract the key pa-
rameters for each regular wave. For the ith regular wave, the
crest height ηpi and wave period estimated from two neighbor-
ing troughs Tti are marked in Fig. 4. The wave period estimated
from neighboring peaks is estimated by Tpi = (Ti +Ti+1)/2, and
the trough height estimated from neighboring troughs is calcu-
lated by ηti = (ηi +ηi+1)/2. The wave height is thus expressed
as Hi = ηpi +ηti . Therefore, the features extracted from each
regular wave are water depth d, wave height H, crest height ηp,
trough height ηt , wave peak period Tp and wave trough period
Tt .

Labeling
Each wave sample is labeled as positive class 1 or negative

class 0, representing breaking or non-breaking, respectively, ac-
cording to the wave cases described in Table 2.

Data splitting
The processed and labeled data are randomly shuffled and

divided into two data sets: training set, which is composed of
70% of the total data, and testing set, which is composed of 30%
of the total data.

Feature normalization
The extracted features might be combined (e.g. divided,

multiplied) into new features to be used in the machine learning
algorithm. The scale of the various features can vary largely. Us-
ing features with large difference in scale may cause instability
in the learning algorithm. Therefore, it is important to normalize
the features.

Feature normalization is carried out separately for the train-
ing set and for the testing set. Assuming there are m samples
(waves) and n features in a data set (training set or testing set),
we introduce x(i)j to represent the value of the jth feature of the
ith sample. The values of the jth feature from all the samples are
written in a vector form as

xj =
[
x(1)j x(2)j . . . x(m)

j

]T
(1)

The normalized values of the jth feature from all the samples are
written as

λj = [λ
(1)
j λ

(2)
j . . . λ

(m)
j ]T (2)

which is calculated by

λj =
xj −µ j

σ j
(3)

where µ j and σ j are the mean and the standard deviation calcu-
lated from xj of the training set, respectively. The same values
are applied to the normalization of the corresponding features in
the testing set.

For each data set, the aforementioned labels are also written
in a vector form as

y(i) =
[
y(1) y(2) . . . y(m)

]T
(4)

Training
Commonly used machine learning algorithms for classifi-

cation problems include logistic regression, support vector ma-
chine, decision tree and more advanced artificial neutral network.
We tested support vector machine with linear and Gaussian ker-
nels, decision tree, logistic regression, as well as some ensemble
learnings. The logistic regression algorithm [13] is found to de-
liver as accurate results as the more advanced algorithms for our
purpose in this study, and it is a well studied linear algorithm,
which is simple, straight forward and transparent. So it is se-
lected for our further analysis.

The hypothesis of the logistic regression is

h = g(Λθ) (5)

where

g(z) =
1

1+ e−z (6)
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FIGURE 3. Work flow of detecting plunging breaking waves based on machine learning.
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FIGURE 4. A representative time series of measured wave elevation.

is logistic function, in which

z = Λθ (7)

The matrix

Λ =


1 λ

(1)
1 λ

(1)
2 . . . λ

(1)
n

1 λ
(2)
1 λ

(2)
2 . . . λ

(2)
n

...
...

...
. . .

...

1 λ
(m)
1 λ

(m)
2 . . . λ

(m)
n

 (8)

is composed of a column of ones and the normalized features
λ
(i)
j , where j = 1,2, ...,n and i = 1,2, ...,m.

θ =
[
θ0 θ1 . . . θn

]T
(9)

is the parameter vector of the hypothesis.
The cost function of logistic regression is

J(θ) =
1
m

(
−yT log(h)− (1−y)T log(1−h)

)
(10)

Since m � n (The number of samples is much larger than the
number of features), the trained model is not likely to be overfit-
ted. Therefore, no regularization term is included in Eq. 10.

The parameter vector θ is estimated by minimizing the cost
function. The Matlab function fminunc is used for the minimiza-
tion.

Once the parameter vector is obtained, Eq. 5 can be used
as the learned classifier to predict the results on new data sets.
Given a threshold δ between 0 and 1, for h ≥ δ , the prediction p
is 1, implying a plunging breaking wave; for h < δ the prediction
p is 0, indicating a non-breaking wave. A typical value δ = 0.5
is used in this study.

Testing
The learned classifier is applied to the feature normalized

testing data set to make predictions. The predicted results are
then compared to the actual labels for evaluation.

The first indicator of evaluation is accuracy, which is defined
as the ratio of correct predictions to all predictions. The predicted
results fall into four categories as shown in Fig. 5. Two more
indicators of evaluation are defined based on the categories:

Precision =
True positives

True positives+False positives
(11)

Recall =
True positives

True positives+False negatives
(12)
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FIGURE 5. Four categories of the predicted results.

F1 score is one way to combine precision and recall. It is defined
as [14]

F1 = 2
Precision×Recall
Precision+Recall

(13)

RESULTS AND DISCUSSIONS
Analysis of features

Scatter distributions of the extracted features are investi-
gated in this section to identify representative features. Figs. 6
and 7 show the scatter plots of measured wave height versus crest
height and trough height, respectively. Generally speaking, both
the crest height and trough height vary linearly with the wave
height for the considered regular waves. The linear behavior be-
tween the wave height and the crest height is better than that
between the wave height and the trough height. The wave height
H and crest height ηp are thus selected as representative features.

Figure 8 presents the scatter plot of estimated wave peak pe-
riod and wave trough period for all samples. It can be found that
the estimated wave peak periods usually deviate from the wave
trough periods. Since the wave peaks are likely to be more ac-
curately detected than the wave troughs from the measured time
series, the wave peak period Tp is selected as another representa-
tive feature.

As a whole, four representative features, i.e. water depth d,
wave height H, crest height ηp and wave peak period Tp, are used
for further analysis. Three dimensionless features are derived
from these four representative features, as follows:

x1 =
ηp

H
(14)

0.5 1 1.5 2 2.5

H [m]

0

0.5

1

1.5

2

p
 [

m
]

y = 1

y = 0

FIGURE 6. Measured wave height versus crest height for all sam-
ples. The blue and red color indicate breaking and non-breaking waves,
respectively.

x2 =
H
d

(15)

x3 =

√
gT 2

p

H
(16)

where g is the gravitational acceleration. These three dimension-
less features (x1,x2,x3) are then normalized to achieve three nor-
malized dimensionless features, denoted by λ1, λ2 and λ3, as
described in the previous section. Hereinafter, the detection of
plunging breaking waves are conducted with respect to λ1, λ2
and λ3. From the training data set, the mean values and standard
deviations of the three dimensionless features are estimated, as
given in Table 3.

TABLE 3. The mean values µ and standard deviations σ of the three
dimensionless features x1, x2 and x3. They are calculated from the train-
ing data set and are used to calculate the corresponding normalized di-
mensionless features λ1, λ2 and λ3 for both training set and testing set.

µ σ

x1 0.675 0.036

x2 0.846 0.168

x3 11.567 1.639
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FIGURE 7. Measured wave height versus trough height for all sam-
ples. The blue and red color indicate breaking and non-breaking waves,
respectively.

2 3 4 5 6 7 8

T
p
 [s]

2

3

4

5

6

7

8

T
t [

s]

y = 1

y = 0

FIGURE 8. Measured wave peak period versus wave trough period
for all samples. The blue and red color indicate breaking and non-
breaking waves, respectively.

Parameter vector and decision boundary
The parameter vector θ is calculated by applying the training

algorithm, and it is

θ =
[
θ0 θ1 θ2 θ3

]T
=
[
8.591 1.819 6.330 −1.571

]T
(17)

The parameter vector reveals the relative importance of λ1,
λ2 and λ3 on the hypothesis h, which indicates the probability
of breaking. Among θ1, θ2 and θ3, θ2 has the highest absolute

4 2 05 -2 -4

2

0

1

3

20

-5

10

0

-10

-20

y = 1

y = 0

Decision boundary

FIGURE 9. The decision boundary with training data set. The blue
and red color indicate breaking and non-breaking waves, respectively.

value, so λ2 has the highest impact on h, which means that H/d
is the most decisive factor for the breaking detection.

The values θ1 and θ2 are both positive, so both λ1 and λ2
have a positive correlation with h. A larger value of λ1 corre-
sponds to a larger ηp/H, i.e. a more nonlinear wave, which is
thus more likely to break. Breaking waves are more likely to oc-
cur in shallower water with a larger value of H/d. The value of
θ3 is negative, so λ3 has a negative correlation with h. A larger

value of λ3 corresponds to a larger
√

gT 2
p

H , i.e. a more flat wave,
which is less likely to break.

The parameter vector also gives the decision boundary of
the classifier, as shown in Fig. 9. The decision boundary can be
explicitly expressed as

zθ (λ ) = 8.591+1.819λ1 +6.330λ2 −1.571λ3 = 0 (18)

When zθ (λ ) ≥ 0, prediction p = 1; when zθ (λ ) < 0, prediction
p = 0.

Inserting Eq. 3 to Eq. 18 with the values of µ and σ given in
Table 3 and x1, x2, x3 defined in Eqs. 14 to 16, we get

zθ (d,ηp,H,Tp)= 50.415
ηp

H
+37.703

H
d
−0.958

√
gT 2

p

H
−46.253= 0

(19)
The derived Eq. 19 can be directly applied to detect plung-
ing breaking waves, once the four parameters (d,ηp,H,Tp) are
known. According to Eq. 19, the (plunging) breaking criterion
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can be written as

1.337
ηp

H
+

H
d
−0.025

√
gT 2

p

H
−1.227 ≥ 0 (20)

Evaluation
For both training data set and testing data set, the labels are

predicted by applying the learned classifier to the data. The pre-
dicted results p are evaluated against the given labels y. The
evaluation results are summarized in Table 4 and visualized in
Figs. 10 and 11. The evaluation results from the training set and
the testing set are very similar, and the values of all the evalua-
tion indicators are higher than 98%. So the learned classifier is
neither overfitted nor underfitted. At least for the wave data with
similar properties as the training data set, the classifier is reliable
for the detection of plunging breaking waves.

The above results are obtained by using the threshold δ =
0.5. The selection of the threshold can affect the predicted re-
sults. This effect can be illustrated by the receiver operating char-
acteristic (ROC) curve [15], as shown in Fig. 12. The ROC curve
shows the relationship between the true positive rate and the false
positive rate that are calculated by using different thresholds.
Ideally, a larger true positive rate and a smaller false positive rate
are desired. However, they increase or decrease at the same time,
when δ is changed. One needs to compromise between these two
rates to get a reasonable classifier according to the application of
the classifier. Since breaking waves are dangerous for offshore
structures, a larger true positive rate is prioritized. Therefore, the
classifier with the threshold δ = 0.5 as marked in Fig. 12 seems
reasonable for our purpose.

TABLE 4. Result evaluation. The results by the McCowan breaking
criterion [16] are estimated for the testing data set.

Training Testing McCowan criterion

True positive 1048 454 416

False positive 6 2 0

False negative 7 5 43

True negative 185 73 75

Accuracy 99.0% 98.7% 91.9%

Precision 99.4% 99.6% 100.0%

Recall 99.3% 98.9% 90.6%

F1 score 99.4% 99.2% 95.1%

The performance of the learned classifier is compared to that
of the classical McCowan breaking criterion [16] (i.e. H/d ≥
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FIGURE 10. Evaluation result of the training data set shown in three
directions. (a) λ1 versus λ2 (b) λ1 versus λ3 (c) λ2 versus λ3. The legend
corresponds to four categories defined in Fig. 5.
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FIGURE 12. The receiver operating characteristic (ROC) curve (for
training set only). The current classifier with the threshold δ = 0.5 is
marked on the curve.

0.78) with respect to the testing data set. The comparison is
also given in Table 4. The precision of the breaking criterion
is slightly higher than that of the learned classifier. However, the
recall of the breaking criterion is lower by about 8%, which im-
plies that a significant amount of breaking waves are not detected
by the breaking criterion. The learned classifier has also a higher
F1 score, a higher accuracy and thus a better performance than
the McCowan breaking criterion in general.

CONCLUSIONS
The detection of plunging breaking waves based on wave el-

evation data is investigated by using a supervised machine learn-
ing approach in this study.

The investigated problem is a typical binary classification
problem. Based on a large amount of experimental data from the
WaveSlam project, a classifier is trained by using logistic regres-
sion algorithm.

Three normalized dimensionless features are introduced
based on the measured data for the training. A classifier with
respect to four wave parameters (i.e. water depth, wave height,
crest height and wave period) is then explicitly developed for de-
tecting plunging breaking waves.

It is found that the learned classifier has an accuracy of
98.7% and F1 score of 99.2% for the tested data. Among the
three dimensionless parameters, the ratio of wave height to water
depth, H/d, is the most decisive factor for the detection.

Compared to the classical McCowan breaking criterion, the
learned classifier has a better performance that is indicated by a
higher F1 score, a higher accuracy and a higher recall.

More work should be done in the future to test the applica-
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bility of the classifier under different wave conditions.
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