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accordance with the expectations of the market. These adjustments are more 

conspicuous than the weekly reshaping, since the price level of the shape curve initially 

is only determined by historical data. As can be seen from figure 2.7, the first 

adjustment, made for the first week of July 2012, makes considerable changes on the 

shape curve; the HPFC is clearly more in line with the actual spot price. It can also be 

noticed how the constraints in the above section ensures the smoothness of the 

adjustment function. 

As the shape curve are consistently being updated with monthly and quarterly data, 

the long term price level will be more in agreement with the market expectations. 

However, adjustments still need to be done on a short term basis, so as to capture 

transient influences on the price such as outside temperature or wind speed. Because 

of their intermittency, however, their effect may only be reflected in the prices for a 

particular day, or even for a few hours. As the shortest delivery periods in the sample 

Figure 2.7: Adjusted shape curve plotted against the actual spot price for the three first weeks of 
July. The adjustment function indicates how the shape curve is altered. 

Figure 2.8: Adjusted shape curve plotted against the actual spot price for the last week of 
January, 2013. The adjustment function is most influential in the beginning of the period. 

.  
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are weeks, the limitations of the model are most clearly seen here. Figure 2.8 illustrates 

this issue. It shows the HPFC for the last week in January. Expactations of considerable 

amounts of wind power on the grid made the futures prices for this week significantly 

lower than the following weeks. What the model failed to take into account, was that 

the excessive wind levels were mainly apparent from Tuesday to early Friday. As a 

consequence of its smoothing properties, the adjustment function altered the first day 

of the week the most, a day that were quite well described by the shape curve. The 

following days, on the other hand, were much less adjusted than they ought te be. 

However, such divergency are to be expected until a more comprehensive derivative 

market are in place. At any rate, the explained variance were evidently increased for 

the week in question. 

As a whole, the hourly price forward curve for 2013, gave a considerable better fit 

than the initial shape curve; R2 were improved from 0,49 to 0,65, i.e. a 16 per cent 

increase in explained variance. The improved fit can also be appreciated by 

investigating the correlation of the deviation from the spot price (less correlation points 

towards a better fit). Figure 2.9 depicts the autocorrelation of the divergence between 

the shape curve and the spot price, while Figure 2.10 compares the latter with the 

HPFC. It is evident from the figures that the correlation is significantly less when the 

adjusted shape curve is considered, especially for correlations that are more than 24 

hours back in time. This last aspect indicates that while the spot price are strongly 

correlated within the same day, its long term correlation is not that obvious and can 

be accounted for by the constructed HPFC. 

  

Figure 2.9: Autocorrelation of the spot price subtracted by the initial shape curve. 
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2.3 Developing a stochastic time series model 

This chapter will deal with the last step in constructing a stochastic model of the 

German day-ahead spot price. As accounted for in the two previous sections, thus far 

an hourly price forward curve has been attained, constructed on the grounds of 

historical prices and market expectations. This curve, together with the actual spot 

price, are the sample data that will be used here. The chapter are organised so as to 

give an introduction of time series modelling in the two first parts, and then providing 

a motivation for the choice of a particular model in the last section. 

2.3.1 Time series models 

Time series are employed in a number of different fields, including the modus operandi 

of the marketplace. While the underlying mechanisms may be very complex, the time 

series they generate can be readily analysed. A typical time series contains 𝑇 

observations of a variable, 𝑦, observed at equal intervals over a period of time, such 

that 

Time series models are characteristic in the sense that 𝑦 is sought explained by past 

observations. In other words, 𝑦𝑡 has a conditional mean so that 

 𝑌 = {𝑦1, … , 𝑦𝑡, … , 𝑦𝑇} (2.15) 

 𝜇𝑦𝑡
= E(𝑦𝑡|𝐻𝑡−1) (2.16) 

Figure 2.10: Autocorrelation of the spot price subtracted by the HPFC. 
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where 𝐻𝑡 represents the information known at time t. In addition, they also have in 

common a stochastic element that accounts for uncertainty, or lack of sufficient 

information.  

Time series models that describe linear systems, fall into two categories; namely 

autoregressive (AR) and moving average (MA). The combination of these two models 

are given the acronym ARMA, and have the following mathematical description [7]:  

 

𝑦𝑡 = 𝑐 + ∑ 𝜑𝑚𝑦𝑡−𝑚 + 𝜀𝑡 + ∑ 𝜃𝑛𝜀𝑡−𝑛

𝑞

𝑛=1

𝑝

𝑚=1

 
 

(2.17) 

Following a constant term, c, the first summation in Eq. 2.17 accounts for the 

autoregressive part of the ARMA model. It makes 𝑦𝑡 regress to previous values by 

weighting these values with an associated parameter 𝜑𝑚. The third term gives the 

model its stochasticity; 𝜀𝑡 is an innovation process with mean zero and variance 𝜎2, 

assumed to be normally distributed. The last summation term provides the model with 

a moving average based on previous innovation terms. Its name derives from the 

isolated effect of producing a time series that moves around an average value. 𝑝 and 𝑞 

indicates the order of the autoregressive and moving average part respectively. A 

combined model is therefore denoted as ARMA(p,q), or simply AR(p) or MA(q) if they 

are sepearate processes. 

In addition, many time series exhibit a seasonal pattern. If this is the case, the 

process should be described by a seasonal multiplicative model. Such a model shares 

the same properties as an ordinary ARMA description, but lagged values are added at 

certain intervals, thus capturing effects that occur periodically. This is indicated by 

writing ARMA(p,q)x(P,Q), where P and Q represents the time intervals at which the 

correlation is apparent. 

As implied earlier, the innovation process is assumed to be heteroscedastic, i.e. with 

constant variance. However, it is often the case that the variance changes throughout 

the series. This is particularly prevalent in financial markets, but also applies to 

markets for non-storable commodities, such as electricity. Such volatility clustering can 

be accounted for by introducing a conditional variance model, which asserts that 

where 𝐻𝑡 again represents the known history of the process at time t. It must be noted, 

however, that this model does not presuppose any correlation between the innovation 

terms; serial correlation is explained by the ARMA model. Rather, it states that the 

variance of the innovation terms are correlated and that the series thereby are serially 

dependent. 

 𝜎𝑡
2 = Var(𝜀𝑡|𝐻𝑡−1) (2.18) 



 

 28 

The most common conditional variance model is known as GARCH (generalized 

autoregressive conditional heteroscedastic). In this model the innovation process is 

given by 

 

where 𝑧𝑡 is a random variable, standardized with independent and identical 

distribution. In the case of normality, 𝑧𝑡 will be drawn from the standard normal 

distribution. The conditional variance of a GARCH process is described in a similiar 

fashion as the ARMA model; it is given by a linear combination of past variances and 

squared innovation terms: 
 

 

𝜎2 = 𝜅 + ∑ 𝛼𝑚𝜎𝑡−𝑚
2 + ∑ 𝛽𝑛𝜀𝑡−𝑛

2

𝑞

𝑛=1

𝑝

𝑚=1

 

 

(2.20) 

 

2.3.2 Model selection 

It is not straightforward to determine the order of a time series model. First of all, the 

time series sample may very well be non-ideal, making it necessary to make qualitative 

judgements. Second, if the time series originates from a mixed process, the inclusion of 

a new model into an excisting description, e.g. by adding a moving average into a auto-

regressive model, may infer with the original model and thus invalidate its basis. Third, 

overparameterizing will, in addition to the model being needlessly complicated, make 

the model more receptive to noise. 

An important tool when conducting a qualitative analysis of the time series is the 

autocorrelation function (ACF), which describes the series’ autocorrelation as a 

function of lags: 
 

 

𝑟(𝜏) =
𝑐(𝜏)

𝑐(0)
=

1
𝑇

∑ (𝑦𝑡 − 𝑦̅)(𝑦𝑡−𝜏 − 𝑦̅)𝑇
𝑡=𝜏+1

1
𝑇

∑ (𝑦𝑡 − 𝑦̅)2𝑇
𝑡=1

,     𝜏 = 1, 2, … 

 
(2.21) 

 

A graphical represenatation of the ACF can illuminate the characteristic properties of 

a sample. First, it immidately detects if the sample has any serial correlation at all. 

Secondly, it can also be used to detect the order of the series’ process. For pure AR 

processes, the function will gradually tail off. This makes it hard to see whether 𝑦𝑡 

actually are linearly dependent on its lagged values, or if the correlation simply 

propagates backwards. For a pure MA process, however, the ACF will exhibit a 

characteristic cut-off for 𝜏 > 𝑞, making it easy to decide its order. 

A closely related concept is the partial autocorrelation function, or PACF.  The 

function treats the time series as if it originated from an AR process, and plots the 

 𝜀𝑡 = 𝜎2𝑧𝑡 (2.19) 
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estimated parameters for such a model. For every lag, 𝜏, a new model, AR(𝜏), is 

assumed  and  its  parameters  estimated.  The  last  parameter  in  the  model, 𝜑𝜏, is  

extracted, and is plotted against the lag, 𝜏. In this way one can attain the partial 

correlation between the different observations in the series. The properties of the PACF 

are reversed from the ACF; it shows a clear cut-off if the series is autoregressive, while 

tailing off when examining an MA process. 

If the time series originates from a mixed process, or the process in question is non-

ideal, the model selection becomes more intricate. Nonetheless, a thorough use of these 

two functions in combination can bring to light a process’ most apparent qualitative 

properties. 

2.3.3 A time series model of the German spot price 

When developing a time series model, the first thing to consider is the time series itself. 

In this case, the sample is to be constructed on the basis of the deviations between the 

expected spot price, i.e. the HPFC, and the actual spot price. In doing this, several 

options are possible. The first time series to be tested in this thesis were a log-normal 

transform of the series on the form 

The choice were motivated by the anticipation of the series being normally distributed. 

However, this representation proved to be unfavorouble for several reasons. First of all 

it requires 𝑃𝑡 and 𝑓𝑡 to have equal sign, which is not always the case. Furthermore, 

since the inverse transform of the series can only yield positive values, a realistic 

simulation of the German spot price, which at times is negative, is unobtainable. 

Regardless of these minor issues, what rendered the series inadequate were the excessive 

price fluctuations yielded under simulation, caused by the exponential inverse 

transform. Figure 2.11 shows the outcome of such a simulation. The extreme variations 

 
𝑦𝑡 = 𝑙𝑛

𝑃𝑡

𝑓𝑡
 (2.22) 

Figure 2.11: Simulated price scenarios for the third week in January. The simulations are made 
with a model built on the series yt = ln(Pt) - ln(ft), and exhibit extensive price fluctations. 
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further made the power plant optimization unrealistic, especially with regards to the 

economic results. These concerns motivated a new time series description. 

The second choice to be examined, were the same relationship as in Eq. 2.22, but 

without the log transform, so that 

This option still entails the same important quality as the former, namely that price 

fluctuation are treated relative to the price’s absolute value. A simulation of a month 

with a high price level, e.g. January, will then be more likely to give higher prices than 

a month with lower prices, e.g. July, which is a realistic characteristic. However, also 

this option proved to fail on the same part as the former; the simulation yielded prices 

that had, though not that excessive as the former, still too much fluctuations. 

Since the previous alternative did not solve the problem of price variations, a new 

alternative was formulated; this time as a mere difference: 

As suggested above, this series lacks the quality of producing simulations that varies 

according to the price level. However, the series showed to give much more realistic 

price scenarios.  

With a time series in place, the next step is to choose a suitable model description. 

As explained in the above section, the autocorrelation function (ACF) is central at this 

stage. Figure 2.12 shows the ACF for the first 30 lags of the series in Eq. 2.24. The 

figure underlines the significant correlation within the series. Hence, a time series model 

is demonstrably well suited for the modelling. However, it is difficult to discern whether 

the series actually are serially correlated for so many lags as the figure indicates, or if 

the correlation merely propagates through the lags. At any rate, the series does not 

 
𝑦𝑡 =

𝑃𝑡

𝑓𝑡
 (2.23) 

 𝑦𝑡 = 𝑃𝑡 − 𝑓𝑡 (2.24) 

Figure 2.12: ACF plot of Pt-ft. 
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come from a pure MA process, as found in many other financial applications (e.g. 

Brownian   motion). 

To better understand the nature of the process, the partial autocorrelation function 

(PACF) is plotted in Figure 2.13. In examining the plot, it becomes evident that the 

correlation is only really significant for the two first lags; the function shows a clear 

cut-off after the second lag. As noted in the previous section, this points towards an 

autoregressive process. While partial correlations for lags greater than two are not 

significant, correlations for 25 hours back in time are apparent. However, it is wise to 

model this behaviour after a more basic model is established, so as to avoid inference 

between the parameters [8]. For this reason an AR(2) model is constructed as the point 

of departure. 

    

Figure 2.14 shows the ACF plot of the inferred residuals of the AR(2) model. As 

the figure illustrates, practically all of the initial autocorrelation have been accounted 

for by the simple model. Indeed, most correlations lie within two standard deviations 

Figure 2.13: PACF plot of Pt-ft. 

Figure 2.14: ACF plot of the inferred residuals of the AR(2) model. 
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of the mean (a 95 % confidence interval is marked with blue lines on the figure). 

Furthermore, the autocorrelation is now most significant for a lag of 24 hours. This is 

a more reasonable result than the 25 hour lag indicated above, and thereby underpins 

the principle of building a model successively. When this feature is included into an 

multiplicative autoregressive model on the form AR(2)x(24), very much of the series 

autocorrelation is accounted for. As can be seen from Figure 2.15, some diurnal 

correlation remains. However, including a parameter for lag 23 makes the model more 

vulnerable to noice, without gaining any significantly better fit. 

 

While most of the serial correlation is accounted for, the series may still encompass 

serial dependency. In Figure 2.15, the autocorrelation of the squared residuals are 

depicted. If the innovation term’s variance is conditional on earlier innovations, the 

squared residuals will exhibit autocorrelation. Provided that serial correlation allready 

is well described, the ACF plot will provide an unformal justification for asserting a 

Figure 2.15: ACF plot of the inferred residuals of the AR(2)x(24) model. 

 

Figure 2.16: ACF plot of the squared residuals of the AR(2)x(24) model. 
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GARCH process for the innovation term. This is clearly indicated in the above plot, 

where the correlation between lagged squared residuals are significant.        

A more formal test of conditional variance is the Engles ARCH test. The null 

hypothesis of no ARCH effects is soundly recected in favour of an ARCH(2) model. 

This model has the same local properties as a GARCH(1,1), and the latter is preferred 

because of greater flexibility. The Akaike information criterion (AIC) underpins this 

description; a decrease in value from 5,13⋅104 to 4,92⋅104 is obtained when a 

GARCH(1,1) models is compared with the pure AR model. It is more complex to make 

a qualitative assessment of the GARCH description than with an ARMA model, 

however, many studies points towards the adequacy of the GARCH(1,1) model and it 

is therefore retained on this basis [9]. 

The initial assumption of a time series model is that its innovation terms are 

independent and normally distributed. As became clear in the previous paragraph, the 

innovation process are clearly not independent. The next question that arises is if the 

normality assumption holds. By infering the conditional variances, modelled after a 

GARCH(1,1) process, the standardized residuals can be found as follows for the i’th 

observation: 

where ri denotes the raw residuals inferred from the AR(2)x(24) process. A standard 

normal distribution would require to have 95 per cent of its innovations within an 

absolute value of two, and virtually all within an absolute value of three. In Figure 2.17 

however, where the standardized residuals are plotted, a large number of the 

observations lie outside this range. This is in conflict with the assumption of normality, 

and thereby motivated the use of a Student’s-t distribution for the innovation process. 

When simulated with the Student’s-t distribution, its shaping parameter, the degree 

of freedom (𝜈), was settled at 3,7, thus indicating a considerable departure from 

 𝑠𝑡𝑖 =
𝑟𝑖
𝜎𝑖

 (2.25) 

Figure 2.17: Standardized residuals inferred from the AR(2)x(24) /GARCH(1,1) model. 
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normality. The qualitative assessment was further supported by the AIC, which yielded 

an additional decrease from 4,92⋅104 to 4,78⋅104. 

With this last modification, the final model of the time series could be written on 

the form: 

where zt is an i.i.d. random variable from the Student’s t distribution. The parameter’s 

value, along with their t-statistic, are listed in Table 2.4. As can be seen from the t-

statistics, all parameters are statistically significant. 

Table 2.4: Parameter values of the time series model 

 Parameters  Value   t-statistic  

 c   0, 1602  4, 88 

 φ1   1, 0352  90, 02 

 φ2  -0, 1463  -13, 12 

 φ3   0, 2761  37, 59 

 κ  7, 67657  13, 88 

 α1  0, 2596  8, 33 

 β1  0, 4278  12, 29 

 ν 
 

3, 6573 
 

22, 99 

 

The stochastic model developed in the previous sections have been used to simulate 

25 different price scenarios. Three weeks in January 2014 (from January 13 to February 

2) have been chosen as the simulation period. Furthermore, the last futures adjustment 

has been done on the preceding Friday, such that the performance of the price model 

is tested coincidentally. Figure 2.16 depicts the 25 simulated scenarios together with 

the HPFC and spot price. 

 
     Figure 2.18: Simulated price scenarios plotted together with the HPFC and spot price. 

 
𝑦𝑡 = 𝑐 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + 𝜑3𝑦𝑡−24 + 𝑧𝑡√𝜅 + 𝜃1𝜎𝑡−1

2 +𝜃2𝜀𝑡−1
2  (2.26) 
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2.4 A Norwegian pumped storage power plant 

2.4.1 Building a Norwegian pumped storage power plant 

This section will consider the modelling of a Norwegian pumped storage power plant. 

The approach draws on earlier work on hydro power scheduling [10]. However, for the 

purpose of lucidity, some simplifications have been made on the model used here. 

Constraints on production, such as start-up costs and environmental concerns, and 

non-linearities have not been adressed. Moreover, mean values have been used with 

regards to plant head and efficiency. The properties and constraints of power plant are 

summarized in table 2.5. 
 

               Table 2.5: Properties and constraints of the pumped storage power plant 

Property  Value  

 Upper reservoir initial /end level 1 000 000 m3   

 Lower reservoir initial /end level 1 000 000 m3   

 Plant head 100 m   

 Efficiency power station /pump 0,84 /0,90   

Constraint  Lower constraint  Upper constraint  

 Upper reservoir 0 m3 2 000 000 m3 

 Lower reservoir 0 m3 2 000 000 m3 

 Discharge capacity 0 m3/h 100 000 m3/h 

 Relift capacity 0 m3/h 40 000 m3/h 

 

The values of the properties and constraints has been chosen such that they 

resemble a medium sized Norwegian pumped storage power plant. In particular, the 

efficiency parameters are such that the combined efficiency of the cycle approximates 

0,75 (B. Mo, Sintef Energy Research, conversation, May 21 2014). 

Optimal scheduling of water releases can be formulated as a transportation problem 

[11], where water can be seen as a commodity ‘sent’ from one time period to the next. 

This enables both the reservoir levels and the upper and lower reservoir to be coupled 

through the time steps. The conditions can be formulated as follows: 

   Upper reservoir: 

      𝑋𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑠,𝑡 = 𝑋𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑠,𝑡−1 − 𝑋𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑢𝑝𝑝𝑒𝑟,𝑡 + 𝑋𝑟𝑒𝑙𝑖𝑓𝑡,𝑡                 (2.26) 

   Lower reservoir:  

      𝑋𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑠,𝑡 = 𝑋𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑠,𝑡−1 + 𝑋𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑢𝑝𝑝𝑒𝑟,𝑡 − 𝑋𝑟𝑒𝑙𝑖𝑓𝑡,𝑡 − 𝑋𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑙𝑜𝑤𝑒𝑟,𝑡     (2.27) 

   Production: 

      𝑋𝑝𝑟𝑜𝑑 𝑢𝑝𝑝𝑒𝑟,𝑡 = 𝑋𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑢𝑝𝑝𝑒𝑟,𝑡 ⋅ 𝜂𝑝𝑟𝑜𝑑            (2.28) 

       𝑋𝑝𝑟𝑜𝑑 𝑙𝑜𝑤𝑒𝑟,𝑡 = 𝑋𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑙𝑜𝑤𝑒𝑟,𝑡 ⋅ 𝜂𝑝𝑟𝑜𝑑            (2.29) 

   Pumping:          

      𝑋𝑝𝑢𝑚𝑝,𝑡 = 𝑋𝑟𝑒𝑙𝑖𝑓𝑡,𝑡 ⋅ 𝜂𝑝𝑢𝑚𝑝                     (2.30) 
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Since the cost function and all the constraints are linear on the solution vector, the 

optimal allocation of the power plant can be found through linear programming: 

 

𝑚𝑎𝑥 [

0
⋮

𝑷𝒕

−𝑷𝒕

]

𝑇

𝒙 

 

𝑠. 𝑡.  𝑨𝒙 = 𝒃 

𝑎𝑛𝑑 𝒙 ≥ 𝟎 

 

The objective function is formulated such that both electricity sold (by production) 

and bought (for pumping) is traded on the spot market without transaction costs. The 

constraints from Eq. 2.26 through 2.30 is accounted for by the A-matrix, while the b-

vector is an empty matrix. Additionally, initial and end levels of the reservoir are 

retained by imposing upper and lower bounds on these variables. More detailed 

description of the optimization problem can be found in Appendix B. The problem is 

solved in Matlab by an interior point method. 

2.4.2 Scheduling in a European price regime 

The simulated price scenarios from the previous chapter serves as a deterministic, fixed 

input for the modelled power plant. It is thereby assumed that all information regarding 

the price is known on beforehand. This is of course a gross simplification. Nonetheless, 

the assumption renders it possible to make rigorous assessments on the adequacy of 

the price model, and moreover, the economic potential of Norwegian pumped storage. 

One of the most interesting aspect, especially from a production planning 

perspective, is the scheduling of water in the reservoirs. For this purpose, the upper 

reservoir content profiles, corresponding to each of the simulated price scenarios, are 

depicted in Figure 2.19. The mean of these profiles are plotted as well. Aditionally, the 

optimal production profile for the spot price (also assumed to be known in advance) 

and the HPFC scenario are illustrated in the figure. 

It is clear from the figure that the content profiles corresponding to the price 

scenarios cover a wide solution space. However, the mean of these scenarios are in close 

proximity to the spot price scenario. In fact, the mean scenario actually performs better 

than the HPFC scenario, on which the simulations are based upon. So while the mean 

price simulations are approximately equal to the HPFC, the mean content scenario 

diverges considerably from the HPFC scenario. In other words there is a non-linear 

relation between the price simulations and content scenarios. This extends the usage 

of the price model. While the HPFC can make a good forecast of the spot price, the 

stochastic component contributes to a more accurate scheduling of the reservoirs. 
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The economic results for the simulation period shows, as suggested by Figure 2.18, 

a significant spread. Ranging from 16 000 € to 29 500 € a week, the simulations yielded 

a mean of 21 400 €. The average weekly return for the actual spot price scenario were 

16 800 €, and thus clearly in the lower end. As the price scenarios are variations around 

the HPFC, the scanarios are expected to yield greater revenues. Hence, they clearly 

demonstrates the importance of price variations. 

 
Figur 2.19: Reservoir content for the 25 price scenario plotted together with the mean scenario, 
and the spot price and HPFC scenario. 
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3 Discussion and further work 

This thesis has sought to explore the opportunities for Norwegian pumped storage in a 

European pricing regime. Its main emphasis has therefore been on the modelling of the 

German spot price, so as to provide a sound basis for the power plant. The point of 

departure has been historical price records, and through linear regression, a mean price 

curve with seasonal properties could be established. Furthermore, this curve has been 

adjusted to give an updated curve more in align with the market expectations. The 

model has thus combined information from the past with expectations of the future in 

order to make price predictions. Moreover, the adjusted price curve has made it possible 

to develop a stochastic price model, which in turns, has been the basis for the power 

plant analysis. The following paragraphs will provide an assessment of the results from 

the previous chapter, as well as making suggestions for further work. 

 The shape curve established in chapter 2.1 is crucial for the following chapters. 

First of all, the curve’s goodness of fit is imperative for the accuracy of the final adjusted 

curve; without a realistic description of the seasonality of the price, the futures 

adjustments will be in vain. Second, the seasonality, both daily and weekly, of the 

shape curve, is decisive in a pumped storage setting. Since the power plant takes 

advantage of differences in price during the day and over the week, the shape of the 

curve will be a direct contributor to the plant’s profitability. Therefore, care has been 

taken so that the shape curve could give an accurate description of the price. Decisions 

regarding the scope of the explanatory variables have been taken as a trade-off between 

accuracy and sufficient sample size. This trade-off were important when the daily 

regression model were made. On the one hand, a breakdown into many classes are 

obviously desirable, on the other, the sample of each hour within a class could not be 

too small. The choice were made on four classes of the year, amounting to 65 

observation per class. This led to a robust fitting, but also had as a consequence that 

the daily price patterns at times, especially at the beginning and end of a period, were 

inaccurate. This issue could be solved by dividing the year into monthly classes and 

compensate for the reduced sample by making a more qualitative assessment, e.g. by 

imposing certain rules for outliers. 

With regards to the yearly regression model, a qualitative judgement were made 

with respect to the ‘monthly’ variables, especially concerning the vacation periods. 

However, the same holds here; en even finer breakdown of the year would clearly be 

advantageous. A remedy in this case could be to include a sinusoidal function in the 

regression model, and thus avoid the discontinuity between the periods. However, this 

part of the model is not that crucial, since the futures adjustment can accommodate 

for these inaccuracies.  

The second part of the price modelling involved adjusting the shape curve to market 

expectations. As explained in chapter 2.2, the shortest time window with sufficient 
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liquidity were a week. This obviously restrained the precision of the adjustment. For 

example, as illustrated in Figure 2.8, the shape curve might need adjustments for some 

days within the week, while describing the price well for others, nevertheless leading 

the adjustment function to alter the price level for the whole week. The validity of 

hourly price forward curves will unquestionably be significantly increased when futures 

with daily maturities are traded large-scale. Nevertheless, an increase in explained 

variance by 16 per cent is a considerable improvement. Hence, including futures 

adjustments in future work on this field, even with the same conditions as today, can 

clearly be recommended. 

The stochastic price description were modelled on the basis of the spot price’s 

deviations from the adjusted shape curve. This allowed for price simulations around 

the HPFC. As outlined in chapter 2.3, the greater part of the autocorrelation, both for 

the series itself and its variance, were accounted for by an ARMA/GARCH description.  

However, the normality assumption seemed unjustified when examining the 

standardized residuals. A Student’s t distribution were introduced for the innovation 

process so that the heavy kurtosis of the residuals could better be explained. This 

improved the goodness of fit according to the Akaike information criterion. On the 

other hand, the simulations showed a fair amount of price fluctuations; when optimized 

in the pumped storage setting, these price scenarios yielded considerably more revenues 

than the actual spot price. The issue here is twofold. First, an HPFC with more detailed 

information would have followed the spot price more accurately. This in turn would 

have led to smaller residuals and, consequently, to less variance in the GARCH model. 

Second, the heavy tailed distribution of the residuals obliges the Student t’s distribution 

to take a low value for its shaping parameter, thus giving rise to innovations that are 

unwarranted. For these reasons, the main challenge for further work will be to find an 

adjusted shape curve that better fits with the spot price. Furthermore, alternatives for 

the distribution of the innovation terms should be explored. In this context however, 

the variations within the price scenarios cast light upon the opportunities for Norwegian 

pumped storage in a more volatile pricing regime. 

In developing the pumped storage power plant model, it was sought to include 

typical parameters found at a Norwegian hydropower plant. However, some 

simplifications were made, especially with regards to start-up costs. The latter leads to 

a high utilization of the plant, evident from the reservoir optimization in chapter 2.4. 

Nonetheless, the simulation showed reasonable results; the daily and weekly production 

patterns were especially noticeable. Furthermore, the hourly price forward curve 

yielded a sensible production pattern. In particular, the mean of the simulated price 

scenarios were very close to the optimal production plan. In this way, the stochastic 

price model could possibly be a simple, yet powerful tool in production planning. 

Further work might include simulating over different periods of the year and adding 

new constraints to the established power plant model.  
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Appendix A 

Source code for the second regression model. 

hours2009_2013=zeros(24*(365+365+365+366+365),24*7*4); 

hours_day=dummyvar(1:24); 

 

date=datenum('01-Jan-2009')-1; 

 

for i=1:(365*4+366) 

    date=date+1; 

    [year month]=datevec(date); 

    weekday=weekday(date); 

 

    if month==12 || month==1 || month==2 

 

        if weekday==2 

            hours2009_2013(1+24*(i-1):24*i,1:24)=hours_day; 

        elseif weekday==3 

            hours2009_2013(1+24*(i-1):24*i,25:48)=hours_day; 

        elseif weekday==4 

            hours2009_2013(1+24*(i-1):24*i,49:72)=hours_day; 

        elseif weekday==5 

            hours2009_2013(1+24*(i-1):24*i,73:96)=hours_day; 

        elseif weekday==6 

            hours2009_2013(1+24*(i-1):24*i,97:120)=hours_day; 

        elseif weekday==7 

            hours2009_2013(1+24*(i-1):24*i,121:144)=hours_day; 

        else weekday==1; 

            hours2009_2013(1+24*(i-1):24*i,145:168)=hours_day; 

        end 

 

    elseif month==3 || month==4 || month==5 

 

        if weekday==2 

            hours2009_2013(1+24*(i-1):24*i,169:192)=hours_day; 

        elseif weekday==3 

            hours2009_2013(1+24*(i-1):24*i,193:216)=hours_day; 

        elseif weekday==4 

            hours2009_2013(1+24*(i-1):24*i,217:240)=hours_day; 

        elseif weekday==5 

            hours2009_2013(1+24*(i-1):24*i,241:264)=hours_day; 

        elseif weekday==6 

            hours2009_2013(1+24*(i-1):24*i,265:288)=hours_day; 

        elseif weekday==7 
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            hours2009_2013(1+24*(i-1):24*i,289:312)=hours_day; 

        else weekday==1; 

            hours2009_2013(1+24*(i-1):24*i,313:336)=hours_day; 

        end 

 

    elseif month==6 || month==7 || month==8 

 

        if weekday==2 

            hours2009_2013(1+24*(i-1):24*i,337:360)=hours_day; 

        elseif weekday==3 

            hours2009_2013(1+24*(i-1):24*i,361:384)=hours_day; 

        elseif weekday==4 

            hours2009_2013(1+24*(i-1):24*i,385:408)=hours_day; 

        elseif weekday==5 

            hours2009_2013(1+24*(i-1):24*i,409:432)=hours_day; 

        elseif weekday==6 

            hours2009_2013(1+24*(i-1):24*i,433:456)=hours_day; 

        elseif weekday==7 

            hours2009_2013(1+24*(i-1):24*i,457:480)=hours_day; 

        else weekday==1; 

            hours2009_2013(1+24*(i-1):24*i,481:504)=hours_day; 

        end 

 

    else month==9 || month==10 || month==11; 

 

        if weekday==2 

            hours2009_2013(1+24*(i-1):24*i,505:528)=hours_day; 

        elseif weekday==3 

            hours2009_2013(1+24*(i-1):24*i,529:552)=hours_day; 

        elseif weekday==4 

            hours2009_2013(1+24*(i-1):24*i,553:576)=hours_day; 

        elseif weekday==5 

            hours2009_2013(1+24*(i-1):24*i,577:600)=hours_day; 

        elseif weekday==6 

            hours2009_2013(1+24*(i-1):24*i,601:624)=hours_day; 

        elseif weekday==7 

            hours2009_2013(1+24*(i-1):24*i,625:648)=hours_day; 

        else weekday==1; 

            hours2009_2013(1+24*(i-1):24*i,649:672)=hours_day; 

        end 

    end 

end 
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Appendix B 

Source code for the pumped storage power plant model. 

function [revenues, production, pump, reservoir_upper, reservoir_lower, sum_profit, 

X] = pump_power_plant(initial_reservoir_upper, end_reservoir_upper, 

initial_reservoir_lower, end_reservoir_lower, max_discharge, efficiency_prod, 

max_pump, efficiency_pump, spot_price) 

 

[hours, profiles]=size(spot_price); 

 

 

%%Establishing matrices: 

A_reservoir_balance1=zeros(hours,6*hours+2); 

A_reservoir_balance2=zeros(hours,6*hours+2); 

A_prod_balance=zeros(hours*2,6*hours+2); 

 

head=100; 

energy_eq_prod=9.81/3600*head*efficiency_prod; 

energy_eq_pump=9.81/3600*head/efficiency_pump; 

 

for i=1:hours 

 

    A_reservoir_balance1(i,1+3*(i-1):1+3*i) = [1, -1, 1, -1]; 

 

    A_reservoir_balance2(i,2+3*(i-1):3*i) = [1, -1]; 

    A_reservoir_balance2(i,(1+3*hours)+i:(1+3*hours)+(i+1))=[1, -1]; 

 

    A_prod_balance(i,2+3*(i-1))=energy_eq_prod; 

    A_prod_balance(i,(2+4*hours)+i)=-1; 

    A_prod_balance(hours+i,3*i)=energy_eq_pump; 

    A_prod_balance(hours+i,(2+5*hours)+i)=-1; 

 

end 

 

A=[A_reservoir_balance1;A_reservoir_balance2;A_prod_balance]; 

 

b=zeros(4*hours,1); 

 

%%Constraints on X: 

lb=zeros(6*hours+2,1); 

lb(1)=initial_reservoir_upper; 

lb(2+3*hours)=initial_reservoir_lower; 

 

ub=inf(6*hours+2,1); 
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ub(1+3*hours)=end_reservoir_upper; 

ub(2+4*hours)=end_reservoir_lower; 

for i=1:hours 

    ub(2+3*(i-1))=max_discharge; 

    ub(3*i)=max_pump; 

end 

 

%%Linear programming: 

F=zeros(6*hours+2,profiles); 

X=zeros(6*hours+2,profiles); 

for i=1:profiles 

    F(4*hours+3:5*hours+2,i)=spot_price(:,i); 

    F(5*hours+3:end,i)=-spot_price(:,i); 

    X(:,i)=linprog(-F(:,i),[],[],A,b,lb,ub); 

end 

 

%%Output variables: 

reservoir_upper=zeros(hours+1,profiles); 

reservoir_lower=zeros(hours+1,profiles); 

for i=1:profiles 

    for j=1:hours+1 

        reservoir_upper(j,i)=X(1+3*(j-1),i); 

        reservoir_lower(j,i)=X(1+3*hours+j,i); 

    end 

end 

 

revenues=zeros(hours,profiles); 

for i=1:profiles 

    for j=1:hours 

        revenues(j,i)=(X(2+4*hours+j,i)-X(2+5*hours+j,i))*spot_price(j,i); 

    end 

end 

 

production=X(4*hours+3:5*hours+2,:); 

 

pump=X(5*hours+3:end,:); 

 

sum_profit=sum(F.*X); 

 

end 

 


