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Problem description 

The considerable growth of new energy sources in Europe, in particular wind and solar 

power, is challenging for the operation of the power system as it leads to great 

variability in production. One way to solve this issue is by establishing better options 

for energy storage. Storage of electricity in large volumes, however, is very expensive, 

but an alternative is storage in reservoirs. Norwegian hydropower is suitable for this 

purpose for several reasons. 

The aim of this thesis is to optimize the scheduling of a Norwegian pumped storage 

power plant with a view to Norway as a future large-scale exporter of pumped storage. 

In this context, the German energy market is a decisive factor. The student is therefore 

supposed to develop a stochastic description of the German spot price, and use the 

model as an input for a Norwegian pumped storage power plant. 
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Export of Norwegian pumped storage 

Ivar Gåsvatna*1, Olav Bjarte Fossoa 

aNorwegian University of Science and Technology, O. S. Bragstads plass 2E, 7491 Trondheim, Norway 

Abstract 

The increased use of renewable energy sources in Continental Europe, in particular Germany, has led to a great variability in 

power production and prices. One proposed way to remedy the Continent’s power balance – which is also economically viable 

in a free power market – is by the means of Norwegian pumped storage. However, the profitability in such an environment is 

highly dependent upon the extent of price variation in the market. 

 

In this paper, it has therefore been sought to find a stochastic price model in which the spot price is allowed to fluctuate around 

a sound forecast. With historical data from the German power market as the point of departure, a deterministic price curve with 

seasonal and daily patterns has been obtained through linear regression. This curve has been adjusted to the market expectations 

contained in power futures contracts. By contrasting the updated deterministic price curve with the actual spot price, it has been 

possible to obtain a time series model on the basis of deviations that are mainly stochastic. 

 

The time series model has been used to generate multiple spot price scenarios that serve as an input for a representative 

Norwegian pumped storage power station. Simulations show that both the power station’s production planning and revenues 

are dependent on which scenario that is under consideration. Nonetheless, the production patterns under both the different 

scenarios and the real spot price are comparable, in particular with regards to the daily and weekly patterns. Similarly, the total 

profits depend upon the variance of the price scenarios, but all scenarios, including the actual spot price, has been shown to 

yield significant revenues. 
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1. Introduction 

New awareness of climate change and the preference for energy independency, has led many countries across 

Europe to adopt green energy policies. Germany has by far been the leading actor in the transition from fossil to 

renewable energy sources. The installed capacity of the two most prominent renewable energy sources in Germany, 

namely solar and wind power, now amounts to 70 MW, which is more than 40 per cent of the country’s total 

installed capacity [1]. With the complete phase-out of nuclear power plants by 2020 and a continuation of 

substantial incentives for these renewables, this share is only thought to increase in the foreseeable future [2]. 

The major challenge with solar and wind power plants is their inherent property of intermittency; at times they 

can nearly cover Germany’s entire energy demand, at others they produce literally nothing. Sufficient energy 

storage solutions is therefore vital for the transition to a green energy market. The only affordable, large scale 

storage solution to this date is pumped storage. However, since the geography of Germany does not allow for many 

such facilities, it has been proposed that Norwegian pumped storage could play a major part in Germany’s 

“Energiewende” [3]. 

Pumped storage has both the property of handling vast amounts of excess energy, while at the same time being 

an economically self-sufficient solution. As long as the difference in price during the day, or over the week, is 

above a relatively minor threshold, marginal profit will be made for the plant’s owner. 

This paper will deal with the contribution margin in relation to export of Norwegian pumped storage; the 

investment costs of such a plant is beyond its scope. Furthermore, it will take German (day-ahead) spot prices, 

rather than Norwegian, for given. This enables us to explore the possibilities of pumped storage in an environment 

with stronger market connection to the European mainland. 

The article will attempt to establish a stochastic model for the German day-ahead spot price that is parsimonious 

in its description, but still being comparable to a fundamental model in its accuracy. It tries to achieve this by first 

constructing a shape curve on the basis of historical data from 2009-2013, and then adjusting this curve to the 

market expectations given at the German futures exchange. The stochasticity of the model will be introduced by 

modelling the deviations between the adjusted curve and the actual spot price as an ARMA/GARCH process. This 

model will then be used to simulate 25 different price scenarios over three weeks in January 2014. Finally, these 

scenarios will serve as an input to a model of a medium sized Norwegian pumped storage power station. The article 

concludes by making economically as well as production planning assessments on the model’s results. 

Nomenclature 

Pt German day-ahead spot price at hour t 

Ft
d daily factor, weighting the spot price at hour t to the mean price of the associated day d 

Fd
y yearly factor, weighting the mean price of day d to the mean price of the associated year y 

Ht,i, binary explanatory variable at hour t and instance i for hours 

Dd,i, Md,i binary explanatory variables at day d and instance i for days and months respectively 

st shape curve of the German day-ahead spot price at time t 

α, β, γ parameters in the regression models 

εd, εt error terms in the daily and yearly regression models respectively 

ft hourly price forward curve (HPFC) for the German day-ahead spot price at time t  

F(TS,TE) price of forward contract with start date TS and end date TE 

yt time series given by Pt - ft 

φ, κ, θ parameters in the time series model 

zt independent white noise process 

2. Stochastic modeling of the German day-ahead spot price 

This chapter will deal with the construction of a stochastic model of the spot price in the German day-ahead 

market. The first section shows how a deterministic price curve that resembles the characteristic shape of the 

German spot price can be established through simple linear regression in two steps. First by using the time of year 

and day of the week as regression variables, then by regressing on the particular hours of the day. 
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The second section outlines how the resulting shape curve can be adjusted through the market expectations 

inherent in futures contracts. The adjusted price curve will provide a basis for a stochastic time series model in the 

last section of this chapter. 

Establishing a shape curve through linear regression 

The purpose of this section is to establish a shape curve that resembles the same seasonal pattern, both yearly 

and daily, as the German spot price. Emphasis will therefore be placed on relative prices, rather than absolute. The 

section follows the same line of thought as in [4]. 

First, we introduce a yearly factor, 𝐹𝑦, that will be the response variable of its explanatory variables, i.e. 

weekdays and months, according to (1). To ensure that each month is approximately within the same price level, 

the breakdown of the year do not follow the exact calendar months. In particular, the summer and Christmas 

holidays are treated separately, thus giving rise to one additional month. 

 

𝐹𝑑
𝑦

=

1
24

∑ 𝑃𝑡𝑡𝜖𝑑

1
8760

∑ 𝑃𝑡𝑡𝜖𝑦

= 𝛼 + ∑𝛽𝑖𝐷𝑑,𝑖

6

𝑖=1

+ ∑ 𝛾𝑖𝑀𝑑,𝑖 + 𝜀𝑑

12

𝑖=1

 

 

(1) 

Second, a daily factor, 𝐹𝑑, serves as the regressand for the individual hours of the day. Since the daily price 

patterns change both during the seasons and over the week, each quarter of the year is assigned seven unique days. 

This amounts to 28 different classes, each comprised of 24 different hourly parameters, which is indicated by 

marking the parameters and regressors in Eq. (2) with a c: 

The two preceding equations ascribes to the different hours of the year a specific weight, relative to the daily 

and yearly mean respectively. An absolute value of a particular hour can then be obtained by multiplying the two 

regressed factors belonging to that hour with a yearly average price, so that 𝑠𝑡 = 𝐹𝑑
𝑦

⋅ 𝐹𝑡
𝑑 ⋅ 𝑃�̅� . The resulting values 

of this equation will constitute what we henceforth shall denote as the shape curve. 

The shape curve constructed in this paper is based upon spot price data from EPEX SPOT in the period from 

2009 through 2013 [5]. The parameters that specifies the two factors are determined by the ordinary least squares 

estimator, i.e. by minimizing the sum of the squared residuals in Eq. (1) and (2). 

Adjusting the shape curve to market expectations  

The shape curve that was established in the previous section is only based on historical data. Its accuracy is 

therefore dependent on whether the time interval it is describing is near its historical mean value or not. In order 

to make the shape curve reasonable for all hours, we will in this section explain a method that aligns the curve to 

the market expectations. The approach is also described in [6] and [7]. 

The idea of this method is that, over a delivery period, [TS, TE], the price of a fixed forward contract should 

equal the mean of a function, f(t), often denoted as the hourly price forward curve (HPFC): 

In our case, f(t) is comprised of the shape curve, s(t), and an error term, e(t). To ensure that the HPFC upholds 

its seasonal pattern given from the shape curve, any adjustments on the HPFC is done on the error term. 

Furthermore, e(t) is defined as a polynomial spline function of the fifth order, which entails a maximum 

smoothness property as described in [8]. The interval of the splines are determined by the start and end dates of 

the settlement periods of the future contracts. The parameters of the polynomial splines are finally given by 

minimizing the integral of the squared, double differentiated error term. This yields the smoothest possible curve 

on the interval [TS, TE] [9]. 

 
𝐹𝑡

𝑑 =
𝑃𝑡

1
24

∑ 𝑃𝑡𝑡𝜖𝑑

= 𝛼𝑐 + ∑𝛽𝑖
𝑐𝐻𝑡,𝑖

𝑐

23

𝑖=1

+ 𝜀𝑡 

 

(2) 

 
𝐹(𝑇𝑆, 𝑇𝐸) =

1

𝑇𝐸 − 𝑇𝑆
∫ 𝑓(𝑡) 𝑑𝑡

𝑇𝐸

𝑇𝑆
 

 

(3) 
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In this paper, we have dealt with base power contracts, named Phelix Futures on the German energy exchange 

EEX, that were traded in 2013 [10]. Although being an exchange with a considerable turnover, the shortest time 

window with satisfactory liquidity is to this date weekly contracts. Therefore, data from each Friday during the 

year has been used to establish a new HPFC for the following week. Next, these HPFCs have been combined to 

give an adjusted shape curve for the whole year. When compared to the initial shape curve, the adjusted curve 

gave a rise in R2 from 0,49 to 0,65. Figure 1 gives an example of an adjusted HPFC for a week in May. 

Developing a stochastic time series model 

Time series models are very common when describing stochastic behavior in power markets as well as in most 

other financial markets. Within this category, we find the ARMA class of models, which are based on the 

assumption that the series have an internal structure of autocorrelation. In its simplest form, it states that the time 

series can be properly described by a linear combination of its lagged values and lagged error terms in addition to 

a random error term, assumed to be independent and normally distributed [11]. 

Here, we are not interested in the autocorrelation of the spot price as such, but rather in the spot price’s 

deviations from the adjusted forward curve. We will initially presuppose that 𝑃(𝑡) − 𝑓(𝑡) = 𝑦𝑡  ~ 𝑁(0, 𝜎2). 

Our sample data is the constructed HPFC for 2013 and its associated spot price. From the autocorrelation 

function (ACF) in Figure 2, we can observe the series’ strong autocorrelation. However, the partial autocorrelation 

function (PACF) indicates that the dependency is only significant for its two first lags and for the corresponding 

hour the previous day, thereby suggesting a multiplicative autoregressive model on the form AR(2)×(24). 

It is clear from the ACF plot on the left in Figure 3 that the inferred residuals from the AR(2)×(24) model do 

not exhibit any significant autocorrelation, thus indicating that the model is of the right order. However, the ACF 

plot of the squared residuals on the right side of Figure 3 reveals strong autocorrelation. This implies that the 

variance of the series is not independent, but rather conditional on its previous values. We have therefore chosen 

to model the error term as a GARCH(1,1) process. This decision is supported by the Akaike information criterion 

(AIC), which decreased in value, from 5.13 ⋅ 104 to 4.92 ⋅104.   

Fig. 1. Adjustment of the shape curve to futures contracts for a week in May 2013 

Fig. 2. (a) autocorrelation function for P(t)-f(t); (b) partial autocorrelation function for P(t)-f(t). 

Fig. 3. (a) autocorrelation function for the residuals; (b) autocorrelation function for the squared residuals. 
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Upon examining the standardized residuals, we could also discern that its distribution had excess kurtosis 

compared to the standard normal distribution. This motivated the use of Student’s t distribution for the innovation 

process. Here, we gained a further decrease in AIC to 4.78 ⋅ 104. Our final model is described in Eq. (4). 

3. A Norwegian pumped storage power plant 

In developing the power station model, we have sought to make it resemble a medium sized Norwegian power 

plant. Its physical properties and constraints are listed in Table 1. 

          Table 1. Physical properties and constraints of the pumped storage power station. 

Property Value Constraint Lower constraint Upper constraint 

Upper reservoir initial / end level 

Lower reservoir initial / end level 

Plant head 

Effiency power station / pump 

1 000 000 m3 

1 000 000 m3 

100 m 

0.84 / 0.90 

Upper reservoir 

Lower reservoir 

Discharge capacity 

Relift capacity 

0 m3 

0 m3 

0 m3/s 

0 m3/s 

2 000 000 m3 

2 000 000 m3 

100 000 m3/h 

40 000 m3/h 

A natural choice for modelling production planning in this environment is through linear programming, in 

which the spot price times the power produced/consumed serves as the objective function. Detailed mathematical 

description and solving strategies of such a problem can be found in [12]. In our approach, we will simplify the 

analysis by disregarding start-up costs and environmental constraints, and use mean values for efficiency and head. 

4. Simulations and results 

In order to assess the export potential of Norwegian pumped storage in a European pricing regime, we have 

taken the German spot price to be a fixed input variable for the modelled power plant. Based on the constructed 

HPFC from the second chapter, 25 different price scenarios for a period of three weeks in January 2014 have been 

attained through Monte Carlo simulation. The scenarios are plotted against the HPFC and actual spot price in 

Figure 4. 

The economic analysis reveals that every scenario yields significant revenues over these three weeks. Though 

ranging from 16 000 € to 29 500 €, they generate a mean net revenue of 21 400 € a week. When scheduling the 

production after the real spot price, however, the profits are somewhat smaller, amounting to a net income of 

16 800 € a week. Similar calculation for other periods of 2014 indicates that this is a representative figure. The 

reason for this slight divergence is to be found in the price scenarios. It can be seen from Figure 4 that the scenarios 

have a greater degree of volatility than the real spot price. Since pumped storage plants takes advantage of precisely 

such variations, we should expect the simulated price scenarios to give greater revenues. The assessment thereby 

emphasizes the economic potential in a market with high volatility. 

  

𝑦𝑡 = 𝑐 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + 𝜑3𝑦𝑡−24 + 𝜀𝑡 = 𝑐 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + 𝜑3𝑦𝑡−24 + 𝑧𝑡√𝜅 + 𝜃1𝜎𝑡−1
2 +𝜃2𝜀𝑡−1

2  

 

(4) 

   Fig. 4. Upper reservoir volume under different price scenarios. The mean scenarios and the actual spot price scenario are highlighted. 
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In the same way as the power station’s bottom line is conditional on the scenarios, so is the associated 

production planning. Figure 5 depicts the upper reservoir’s content corresponding to the different price profiles 

during the three weeks. As is evident, the volume levels of the reservoir varies significantly with the scenarios. 

However, they exhibit the same daily and weekly pattern; the reservoirs are on the whole discharged during the 

weekdays and refilled in the weekend, and are producing in the day and pumping during the night. 

5. Conclusion 

With the purpose of exploring the opportunities for Norwegian pumped storage in a European pricing regime, 

this paper has sought to find a simple yet accurate description of the German day-ahead spot price. This has been 

achieved by establishing a shape curve through linear regression and then adjusting this curve to market 

expectations inherent in futures contracts. Futures adjustments made for 2013 yielded a significant increase in 

explained variance, from 49 to 65 per cent. A stochastic model could consequently be constructed on the basis of 

the curve’s deviations from the actual spot price. The model specification process showed that the stochasticity 

was well accounted for with a parsimonious ARMA/GARCH description. 

The stochastic model allowed for simulation of price variations around the adjusted shape curve. These 

simulations have been used as an input for a modelled Norwegian pumped storage power plant. The economic 

analysis revealed that all scenarios generated significant revenues, including the real spot price scenario. However, 

the differences in profits clearly demonstrates the importance of price variations. Production planning also showed 

to be dependent on the scenario. Nevertheless, a common daily and weekly pattern could be identified. 

Furthermore, the mean scenario lay very close to the production path of the spot price. The results thus indicate 

that both economic and production related assessments can be made on the grounds of the developed price model. 
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1 Introduction 

Some of the topics of the paper has, as a consequence of being limited to six pages, 

been treated rather superficially. This second part of the thesis will therefore give a 

more comprehensive review of these subjects. In particular, it will deal with some of 

the theoretical background the paper is built upon. Also, it will give more insight into 

the methods and provide justification for their application. 

In order to give a more natural course through the topics, the main part of this 

documentation is a merger of method and results. Furthermore, the structure is 

organized in the same way as in the paper, thus making the transition between the two 

main parts more seamless. The documentation ends with a chapter providing a 

discussion and suggestions for further work. 
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2 Method and results 

2.1 Establishing a shape curve through linear regression 

This chapter will deal with the first part of constructing a stochastic model of the 

German spot price, namely to make a shape curve of the price that resembles its 

characteristic seasonal patterns. Multiple linear regression, formulated as an ordinary 

least squares problem, has been the chosen method for achieving this [1]. 

In this class of regression problems, the dependent variable is set to be linearly 

dependent on its explanatory variables. In order to evalute the dependent variables 

seperately, the explanatory variables have been treated nominally, that is to say as 

categories. By introducing dummy variables for each category, i.e. hours, days and 

months, the dependent variables, in this case the spot price, can be explained effectively 

by the time at which it occurs. The variables and parameters that have been used in 

the regression analysis are summarized in table 2.1. 

 

Table 2.1: Variables and parameters in the regression model 

Dependent variables  

 Ft
d Price at time t relative to the mean of the corresponding day, d 

 Fd
y Mean price at day d relative to the mean of the corresponding year, y 

Independent variables  

 Ht,i Binary explanatory variables at time t and instance i for hours 

 Dt,i Binary explanatory variables at time t and instance i for days 

 Mt,i Binary explanatory variables at time t and instance i for months 

Parameters  

 α Constant parameter 

 βi, γi Linear parameters for instance i 

 ε Error term of the regression model 

 
The chosen method is comprised of two steps. The first gives the shape curve its 

yearly seasonality by regressing on the dummy variables for days and months. Six 

binary variables have been used to explain the effect given by the days from Tuesday 

through Sunday. Since a dummy variable can not be in a linear relation the other 

categories, Monday is therefore not given by a separate variable, but rather accounted 
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for by the constant parameter. Furthermore, the price characteristics of a specific day 

are likely to begin first at 4 am and end 24 hours later. The daily variables are therefore 

assigned the hours from 0400 through 0300. This also ensures that the seasonality curve 

connects more smoothly, since the lowest price usually occurs at the forth hour of the 

day.  Likewise, the monthly variables have been assigned prices for periods with similar 

price levels. The breakdown of the year originates with the summer and Christmas 

holydays being given precedence. The rest of the year are divided so that each period 

are of comparable length as an ordinary month. Figure 2.1 illustates how this division 

is done. The two holidays give rise to an additional period, yielding a total of twelve 

variables. Similarly as above, the first period is accounted for by the constant 

parameter. Table 2.2 summarizes the different categories for the first step of the shape 

curve regression. 

Table 2.2: Categories for the variables of the yearly regression 

Daily variables (each day are counted from 0400 that day till 0300 the next) 

 Dt,1 Tuesday Dt,4 Friday 

 Dt,2 Wednesday Dt,5 Saturday 

 Dt,3 Thursday Dt,6 Sunday 

Monthly variables  

 Dt,1 05-Feb – 05-Mar Dt,8 29-Jul – 18-Aug (summer vacation) 

 Dt,2 06-Mar – 03-Apr Dt,9 19-Aug – 18-Sep 

 Dt,4 04-Apr – 02-May Dt,10 19-Sep – 19-Oct 

 Dt,5 03-May – 31-May Dt,11 20-Oct – 19-Nov 

 Dt,6 01-Jun  – 29-Jun Dt,11 20-Nov – 19-Dec 

 Dt,7 30-Jun – 28-Jul Dt,12 20-Dec – 06-Jan (Christmas holiday) 

The regrassand for the above variables, 𝐹𝑑
𝑦, is defined as the average price of the 

 

Figure 2.1: Breakdown of the year into ‘monthly’ periods. The spot price of the sample (from 
2009 through 2013) are plotted in the background. 
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day which hour t belongs to, divided by a yearly mean. The regression model for the 

first part then becomes: 

 

𝐹𝑑
𝑦

=

1
24

∑ 𝑃𝑡𝑡𝜖𝑑

1
8760

∑ 𝑃𝑡𝑡𝜖𝑦

= 𝛼 + ∑𝛽𝑖𝐷𝑡,𝑖

6

𝑖=1

+ ∑𝛾𝑖𝑀𝑡,𝑖 + 𝜀𝑡

12

𝑖=1

 
 

(2.1) 

 

where 𝑃𝑡 is the German day-ahead spot price at time t. In short, the model in 2.1 gives 

a particular day of the year a relative weight that is explained by the weekday and 

month it is ascribed to. 

The second step of the method aims to provide the shape curve with a daily pattern. 

However, the price patterns varies both over the year and during the week. Each 

weekday has therefore been treated separately, while the year has been divided in four. 

The latter is a obviously a coarser grouping than is the case for the monthly variables 

above, but has been considered necessary in order to give a sufficiently large sample. 

Table 2.3 provides an overview of the classification. 

 

Table 2.3: Classes for the variables of the daily regression 

 Winter (Dec-Feb) Spring (Mar-May) Summer (Jun-Aug) Autumn (Sep-Nov) 

Monday 𝐻𝑡,𝑖
1  𝐻𝑡,𝑖

7  𝐻𝑡,𝑖
13 𝐻𝑡,𝑖

19 

Tuesday 𝐻𝑡,𝑖
2  𝐻𝑡,𝑖

8  𝐻𝑡,𝑖
14 𝐻𝑡,𝑖

20 

Wednesday 𝐻𝑡,𝑖
3  𝐻𝑡,𝑖

9  𝐻𝑡,𝑖
15 𝐻𝑡,𝑖

21 

Thursday 𝐻𝑡,𝑖
4  𝐻𝑡,𝑖

10 𝐻𝑡,𝑖
16 𝐻𝑡,𝑖

22 

Friday 𝐻𝑡,𝑖
5  𝐻𝑡,𝑖

11 𝐻𝑡,𝑖
17 𝐻𝑡,𝑖

23 

Saturday 𝐻𝑡,𝑖
6  𝐻𝑡,𝑖

12 𝐻𝑡,𝑖
18 𝐻𝑡,𝑖

24 

(each class, 𝐻𝑡,𝑖
𝑐  is comprised of 23 hourly binary variables) 

 

The second part of the model can thereby be formulated as follows: 
 

 

Likewise as in Eq. 2.1, 𝑃𝑡 is the German spot price at time t, while the dependent 

variable, 𝐹𝑡
𝑑, represents the weight of the price relative to the day’s mean. 

The estimates for the yearly and daily factor, �̂�𝑡
𝑑 and �̂�𝑑

𝑦
 respectively, are 

proportional numbers that, when multiplied, yields the shape of the price curve. To 

attain a shape curve, 𝑠𝑡, in absolute numbers, the factors must be multiplied  with a 

mean price level. This is done according to Eq. 2.3. 
 

The sample data used in the regression analysis has been obtained at the European 

 

𝐹𝑡
𝑑 =

𝑃𝑡

1
24

∑ 𝑃𝑡𝑡𝜖𝑑

= 𝛼𝑐 + ∑𝛽𝑖
𝑐𝐻𝑡,𝑖

𝑐

23

𝑖=1

+ 𝜀𝑡 

 

(2.2) 

 𝑠𝑡 = �̂�𝑑
𝑦
 ⋅ �̂�𝑡

𝑑 ⋅ 𝑃�̅� (2.3) 
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Power Exchange (EPEX) [2], and comprises of German spot prices from 2009 through 

2013. Over this time period the framework of the power exchange has largely been 

unchanged, including negative pricing, which was introduced in September 2008. 

To illustrate how the shape curve is constructed, the estimated (in-sample) yearly 

and daily factors have been plotted in Figure 2.2 and 2.3, respectively. Furthermore, 

in Figure 2.4 the calculated shape curve has been plotted against the actual spot price 

for January, 2013. (The mean of the whole sample serves as the mean price level, 𝑃�̅�.) 

It can be seen from the figure that much of the price’s behaviour is explained by the 

shape curve. However, at the end of the month, one can notice a greater divergence. 

At this point the German power grid were fed with substantial amounts of wind power, 

leading to very low prices and, thus, a considerable departure from historical mean 

prices. This points to the need for making adjustments on the curve, as will be dealt 

with in the next chapter. 

  

Figure 2.2: Estimated yearly factor for 2013. 

Figure 2.3: Estimated daily factor for January, 2013. 
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Nonetheless, the shape curve estimated for 2013 yielded an explained variance of 49 

per cent. Furthermore, as is illustrated in Figure 2.5 and 2.6, much of the initial 

seasonality of the spot price has been taken into account by the shape curve. From 

Figure 2.5 it can be seen that the price series exhibits significant autocorrelation (the 

concept of autocorrelation will be elaboretad upon in chapter 2.3, for now it suffice to 

interpret it as a measure of seasonality). The autocorrelation of the shape curve’s 

deviation from the spot price depicted in Figure 2.6, however, makes clear that the 

diurnal seasonality is greatly reduced. Moreover, it can be noticed that the diurnal 

peaks’ are levelled, thus illustrating that the regression model has succeeded in 

differentiating on the distinct daily patterns.  

Figure 2.4: Estimated shape curve for January, 2013, plotted aginst the actual spot price. 

Figure 2.5: Autocorrelation of the German day-ahead spot price in 2013. 
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2.2 Adjusting the shape curve to market expectations 

The shape curve established in the previous section is only a product of the spot price’s 

historical values. While it reproduces the seasonality of the German spot price, both 

the daily and yearly pattern, it will not necessarily reflect the right price level. This 

chapter will therefore provide a means for adjusting the shape curve such that it 

resembles the market expectations found in futures contracts. The advantage of this 

approach is that the accuracy is comparable to fundamental models, without having to 

analyze the production and demand in the power market. The first section will account 

for the theoretical background, while the second section deals with the practical 

application.  

2.2.1 Hourly price forward curves 

The method of hourly price forward curves (HPFC) originates from the concept of 

yield curves, in which the yields, or interst rates, gives an upward sloping relation with 

the corresponding contract lengths. This notion is closely related to forward curves, 

where it is the price of the forward, or futures, contracts that is compared to their 

respective maturity dates. The nature of the curve is wholly dependent on the 

expectations of the future development of the underlying, namely the spot price. Hourly 

price forward curves are a further extension of this concept. HPFCs are constructed on 

the basis of forward curves, but are extended to include hourly steps [3]. The idea  is 

summarized in Eq. 2.3. 

𝐹(𝑇𝑆, 𝑇𝐸) =
1

𝑇𝐸 − 𝑇𝑆
∫ 𝑓(𝑡) 𝑑𝑡

𝑇𝐸

𝑇𝑆

 

 

(2.3) 

Figure 2.6: Autocorrelation of the German day-ahead spot price in 2013 subtracted by the 
corresponding shape curve. 
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The equation above states that the price of the financial contract with delivery 

period from 𝑇𝑆 to  𝑇𝐸, is given by the mean of the HPFC, 𝑓(𝑡), over this period. The 

formula implies that contracts are settled in  𝑇𝐸. Furthermore, it is constructed on the 

basis of risk-neutral probability. This entails that there is an absence of arbitrage, i.e. 

the derivative’s price equals the discounted expected value of the underlying. 

The HPFC can be composed into two parts, a seasonal component s(t) and an 

adjustment function ε(t). The seasonal component will simply be the shape curve 

established in the section 2.1. As the name implies, the adjustments made on the HPFC 

will be done on ε(t). In this way the HPFC maintains the seasonal character given from 

the shape curve, while its average value equals the price of the financial contract. This 

is crucial since the price pattern is likely to be similar in a period with e.g. high infeed 

of wind power as under normal conditions, but the price level will quite certainly be 

different. 

A maximum smoothness critera, which have been applied in earlier work done on 

yield curve fitting [4], will be the guideline for fitting the adjustment function: 
 

In this context, the best choice for ε(t) is a polynomial spline of the forth order [5]. 

The i’th piece of the spline is defined according to Eq. 2.5. 

 

In a financial market, the derivatives will often have overlapping delivery periods. 

The approach will therefore be to divide these intervals into new sub-intervals, each 

accounted for by a unique polynomial as given in Eq. 2.5. The parameters of the 

resulting spline are determined by the qriteria in Eq. 2.4, and for that reason involves 

solving a quadratic programming problem. 

To ensure connectivity and smoothness between the knots of the spline, the 

following constraints are applied for 𝑡1, 𝑡2 …𝑡𝑛: 

Additionally, the adjustment function will also encompass a risk premium given by 

the risk attitudes of market participants. The market price of risk will be time-varying, 

and short-time information such as weather conditions can influence this measure. 

 
𝑚𝑖𝑛 ∫ (𝜀′′(𝑡))2

𝑡𝑛

𝑡0

 𝑑𝑡 
 

(2.4) 

 𝜀𝑖(𝑡) = 𝑎𝑖𝑡
4 + 𝑏𝑖𝑡

3 + 𝑐𝑖𝑡
2 + 𝑑𝑖𝑡 + 𝑒𝑖 , 𝑡𝑖−1 < 𝑡 < 𝑡𝑖 (2.5) 

 𝜀𝑖+1(𝑡𝑖) = 𝜀𝑖(𝑡𝑖) 

𝜀𝑖+1′(𝑡𝑖) = 𝜀𝑖′(𝑡𝑖) 

𝜀𝑖+1′′(𝑡𝑖) = 𝜀𝑖′′(𝑡𝑖) 

(2.6) 

(2.7) 

(2.8) 
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However, at the long end of the curve, i.e. several years ahead, the market’s assessment 

of risk will approach a constant value, thus leading to the last constraint of the problem: 

The general minimizing problem can be formulated as 

subjected to the equality constraint 

The solution vector x contains the 5n parameters of the polynomial spline, ε(t), 

while H is a 5n x 5n matrix that accounts for the parameters coefficients. The latter 

has not a straightforward formulation, so its structure will be outlined in the following 

paragraph. 

For the i’th piece of the spline, the function subject to minimization, according to 

Eq. 2.4, is: 

As suggested by Eq. 2.12, H can be formulated symmetrically: 

𝑯 =

[
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where 

𝛥𝑖
𝑘 = 𝑡𝑖

𝑘 − 𝑡𝑖−1
𝑘 . 

 𝜀𝑛′(𝑡𝑛) = 0 (2.9) 

 
min 

𝑥
 
1

2
𝒙𝑇𝑯𝒙, (2.10) 

 𝑨𝒆𝒒𝒙 = 𝒃𝒆𝒒. (2.11) 

 
∫ (𝜀1

′′(𝑡))2
𝑡𝑖

𝑡𝑖−1

 𝑑𝑡 = ∫ (12𝑎𝑖𝑡
2 + 6𝑏𝑖𝑡 + 2𝑐𝑖)

2
𝑡1

𝑡𝑖−1

𝑑𝑡  

 

 
 

 

(2.12)   = [
144

5
𝑎𝑖

2𝜏5 + 12𝑏𝑖
2𝜏3 + 4𝑐𝑖

2𝜏 + 2 ⋅ 18𝑎𝑖𝑏𝑖𝜏 + 2 ⋅ 8𝑎𝑖𝑐𝑖𝜏 + 2 ⋅ 6𝑏𝑖𝑐𝑖𝜏]
𝜏=𝑡𝑖−1

𝜏=𝑡𝑖
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The equality constraint in Eq. 2.11 are formulated with less effort. Aeq will quite 

simply include the constraints listed from Eq. 2.6 -2.9, in addition to the futures price 

contidion in Eq. 2.3. All constraints are linear in relation to x, and thus fits the 

description in Eq. 2.11. Furthermore, by introducing Lagrange multipliers for the 

constraints, Eq. 2.10 and 2.11 takes the form of a unconstrained minimazation problem: 

The optimal solution can then finally be found by solving the following linearized 

problem formulation: 

The program script used in this work is adopted from a restricted code developed 

by Florentina Paraschiv at the University of St. Gallen. However, the solution 

procedure follows the outlined theory above accurately. Equation 2.14 is solved in 

Matlab using LU (Lower Upper) factorization with partial pivoting. 

 

2.2.2 Describing the German spot price as an HPFC 

Futures contracts for the German market area are traded on the European Energy 

Exchange (EEX) with delivery periods stretching from days to years [6]. However, the 

liquidity for days and weekends are still insufficient for the purpose of establishing 

forward curves. Thus, the shortest time window that have been used here is contracts 

of weekly lengths. Moreover, futures are sold as base load, peak load and off-peak 

contracts. It has been natural to use the first type of contract (properly named as 

Phelix base future) as the input variable, since in this case it is the average price of the 

whole day that constitutes the underlying. 

On this basis, data has therefore been gathered for base load contracts every Friday 

through 2013. Then, an HPFC has been calculated, starting on the following Monday 

and ending on the last date of the furthest yearly contract, at most seven years ahead. 

However, only the first week of the HPFC have been stored; the rest of curve serves as 

a shape curve of the next calculation. This procedure has been repeated for each week, 

and a HPFC for 2013 could eventually be obtained. Some pre-2013 HPFCs have also 

been calculated so that the shape curve’s price level for 2013 could be more in 

 
min 
𝑥,𝜆

 
1

2
𝒙𝑇𝑯𝒙 + 𝝀𝑇(𝑨𝒆𝒒𝒙 − 𝒃) 

 

(2.13) 

 
[

𝑯 𝑨𝒆𝒒
𝑻

𝑨𝒆𝒒 𝟎
] [

𝒙
𝝀
] = [

𝟎
𝒃
] 

 

(2.14) 
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accordance with the expectations of the market. These adjustments are more 

conspicuous than the weekly reshaping, since the price level of the shape curve initially 

is only determined by historical data. As can be seen from figure 2.7, the first 

adjustment, made for the first week of July 2012, makes considerable changes on the 

shape curve; the HPFC is clearly more in line with the actual spot price. It can also be 

noticed how the constraints in the above section ensures the smoothness of the 

adjustment function. 

As the shape curve are consistently being updated with monthly and quarterly data, 

the long term price level will be more in agreement with the market expectations. 

However, adjustments still need to be done on a short term basis, so as to capture 

transient influences on the price such as outside temperature or wind speed. Because 

of their intermittency, however, their effect may only be reflected in the prices for a 

particular day, or even for a few hours. As the shortest delivery periods in the sample 

Figure 2.7: Adjusted shape curve plotted against the actual spot price for the three first weeks of 
July. The adjustment function indicates how the shape curve is altered. 

Figure 2.8: Adjusted shape curve plotted against the actual spot price for the last week of 
January, 2013. The adjustment function is most influential in the beginning of the period. 

.  
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are weeks, the limitations of the model are most clearly seen here. Figure 2.8 illustrates 

this issue. It shows the HPFC for the last week in January. Expactations of considerable 

amounts of wind power on the grid made the futures prices for this week significantly 

lower than the following weeks. What the model failed to take into account, was that 

the excessive wind levels were mainly apparent from Tuesday to early Friday. As a 

consequence of its smoothing properties, the adjustment function altered the first day 

of the week the most, a day that were quite well described by the shape curve. The 

following days, on the other hand, were much less adjusted than they ought te be. 

However, such divergency are to be expected until a more comprehensive derivative 

market are in place. At any rate, the explained variance were evidently increased for 

the week in question. 

As a whole, the hourly price forward curve for 2013, gave a considerable better fit 

than the initial shape curve; R2 were improved from 0,49 to 0,65, i.e. a 16 per cent 

increase in explained variance. The improved fit can also be appreciated by 

investigating the correlation of the deviation from the spot price (less correlation points 

towards a better fit). Figure 2.9 depicts the autocorrelation of the divergence between 

the shape curve and the spot price, while Figure 2.10 compares the latter with the 

HPFC. It is evident from the figures that the correlation is significantly less when the 

adjusted shape curve is considered, especially for correlations that are more than 24 

hours back in time. This last aspect indicates that while the spot price are strongly 

correlated within the same day, its long term correlation is not that obvious and can 

be accounted for by the constructed HPFC. 

  

Figure 2.9: Autocorrelation of the spot price subtracted by the initial shape curve. 
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2.3 Developing a stochastic time series model 

This chapter will deal with the last step in constructing a stochastic model of the 

German day-ahead spot price. As accounted for in the two previous sections, thus far 

an hourly price forward curve has been attained, constructed on the grounds of 

historical prices and market expectations. This curve, together with the actual spot 

price, are the sample data that will be used here. The chapter are organised so as to 

give an introduction of time series modelling in the two first parts, and then providing 

a motivation for the choice of a particular model in the last section. 

2.3.1 Time series models 

Time series are employed in a number of different fields, including the modus operandi 

of the marketplace. While the underlying mechanisms may be very complex, the time 

series they generate can be readily analysed. A typical time series contains 𝑇 

observations of a variable, 𝑦, observed at equal intervals over a period of time, such 

that 

Time series models are characteristic in the sense that 𝑦 is sought explained by past 

observations. In other words, 𝑦𝑡 has a conditional mean so that 

 𝑌 = {𝑦1, … , 𝑦𝑡, … , 𝑦𝑇} (2.15) 

 𝜇𝑦𝑡
= E(𝑦𝑡|𝐻𝑡−1) (2.16) 

Figure 2.10: Autocorrelation of the spot price subtracted by the HPFC. 
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where 𝐻𝑡 represents the information known at time t. In addition, they also have in 

common a stochastic element that accounts for uncertainty, or lack of sufficient 

information.  

Time series models that describe linear systems, fall into two categories; namely 

autoregressive (AR) and moving average (MA). The combination of these two models 

are given the acronym ARMA, and have the following mathematical description [7]:  

 

𝑦𝑡 = 𝑐 + ∑ 𝜑𝑚𝑦𝑡−𝑚 + 𝜀𝑡 + ∑ 𝜃𝑛𝜀𝑡−𝑛

𝑞

𝑛=1

𝑝

𝑚=1

 
 

(2.17) 

Following a constant term, c, the first summation in Eq. 2.17 accounts for the 

autoregressive part of the ARMA model. It makes 𝑦𝑡 regress to previous values by 

weighting these values with an associated parameter 𝜑𝑚. The third term gives the 

model its stochasticity; 𝜀𝑡 is an innovation process with mean zero and variance 𝜎2, 

assumed to be normally distributed. The last summation term provides the model with 

a moving average based on previous innovation terms. Its name derives from the 

isolated effect of producing a time series that moves around an average value. 𝑝 and 𝑞 

indicates the order of the autoregressive and moving average part respectively. A 

combined model is therefore denoted as ARMA(p,q), or simply AR(p) or MA(q) if they 

are sepearate processes. 

In addition, many time series exhibit a seasonal pattern. If this is the case, the 

process should be described by a seasonal multiplicative model. Such a model shares 

the same properties as an ordinary ARMA description, but lagged values are added at 

certain intervals, thus capturing effects that occur periodically. This is indicated by 

writing ARMA(p,q)x(P,Q), where P and Q represents the time intervals at which the 

correlation is apparent. 

As implied earlier, the innovation process is assumed to be heteroscedastic, i.e. with 

constant variance. However, it is often the case that the variance changes throughout 

the series. This is particularly prevalent in financial markets, but also applies to 

markets for non-storable commodities, such as electricity. Such volatility clustering can 

be accounted for by introducing a conditional variance model, which asserts that 

where 𝐻𝑡 again represents the known history of the process at time t. It must be noted, 

however, that this model does not presuppose any correlation between the innovation 

terms; serial correlation is explained by the ARMA model. Rather, it states that the 

variance of the innovation terms are correlated and that the series thereby are serially 

dependent. 

 𝜎𝑡
2 = Var(𝜀𝑡|𝐻𝑡−1) (2.18) 
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The most common conditional variance model is known as GARCH (generalized 

autoregressive conditional heteroscedastic). In this model the innovation process is 

given by 

 

where 𝑧𝑡 is a random variable, standardized with independent and identical 

distribution. In the case of normality, 𝑧𝑡 will be drawn from the standard normal 

distribution. The conditional variance of a GARCH process is described in a similiar 

fashion as the ARMA model; it is given by a linear combination of past variances and 

squared innovation terms: 
 

 

𝜎2 = 𝜅 + ∑ 𝛼𝑚𝜎𝑡−𝑚
2 + ∑ 𝛽𝑛𝜀𝑡−𝑛

2

𝑞

𝑛=1

𝑝

𝑚=1

 

 

(2.20) 

 

2.3.2 Model selection 

It is not straightforward to determine the order of a time series model. First of all, the 

time series sample may very well be non-ideal, making it necessary to make qualitative 

judgements. Second, if the time series originates from a mixed process, the inclusion of 

a new model into an excisting description, e.g. by adding a moving average into a auto-

regressive model, may infer with the original model and thus invalidate its basis. Third, 

overparameterizing will, in addition to the model being needlessly complicated, make 

the model more receptive to noise. 

An important tool when conducting a qualitative analysis of the time series is the 

autocorrelation function (ACF), which describes the series’ autocorrelation as a 

function of lags: 
 

 

𝑟(𝜏) =
𝑐(𝜏)

𝑐(0)
=

1
𝑇

∑ (𝑦𝑡 − �̅�)(𝑦𝑡−𝜏 − �̅�)𝑇
𝑡=𝜏+1

1
𝑇

∑ (𝑦𝑡 − �̅�)2𝑇
𝑡=1

,     𝜏 = 1, 2, … 

 
(2.21) 

 

A graphical represenatation of the ACF can illuminate the characteristic properties of 

a sample. First, it immidately detects if the sample has any serial correlation at all. 

Secondly, it can also be used to detect the order of the series’ process. For pure AR 

processes, the function will gradually tail off. This makes it hard to see whether 𝑦𝑡 

actually are linearly dependent on its lagged values, or if the correlation simply 

propagates backwards. For a pure MA process, however, the ACF will exhibit a 

characteristic cut-off for 𝜏 > 𝑞, making it easy to decide its order. 

A closely related concept is the partial autocorrelation function, or PACF.  The 

function treats the time series as if it originated from an AR process, and plots the 

 𝜀𝑡 = 𝜎2𝑧𝑡 (2.19) 
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estimated parameters for such a model. For every lag, 𝜏, a new model, AR(𝜏), is 

assumed  and  its  parameters  estimated.  The  last  parameter  in  the  model, 𝜑𝜏, is  

extracted, and is plotted against the lag, 𝜏. In this way one can attain the partial 

correlation between the different observations in the series. The properties of the PACF 

are reversed from the ACF; it shows a clear cut-off if the series is autoregressive, while 

tailing off when examining an MA process. 

If the time series originates from a mixed process, or the process in question is non-

ideal, the model selection becomes more intricate. Nonetheless, a thorough use of these 

two functions in combination can bring to light a process’ most apparent qualitative 

properties. 

2.3.3 A time series model of the German spot price 

When developing a time series model, the first thing to consider is the time series itself. 

In this case, the sample is to be constructed on the basis of the deviations between the 

expected spot price, i.e. the HPFC, and the actual spot price. In doing this, several 

options are possible. The first time series to be tested in this thesis were a log-normal 

transform of the series on the form 

The choice were motivated by the anticipation of the series being normally distributed. 

However, this representation proved to be unfavorouble for several reasons. First of all 

it requires 𝑃𝑡 and 𝑓𝑡 to have equal sign, which is not always the case. Furthermore, 

since the inverse transform of the series can only yield positive values, a realistic 

simulation of the German spot price, which at times is negative, is unobtainable. 

Regardless of these minor issues, what rendered the series inadequate were the excessive 

price fluctuations yielded under simulation, caused by the exponential inverse 

transform. Figure 2.11 shows the outcome of such a simulation. The extreme variations 

 
𝑦𝑡 = 𝑙𝑛

𝑃𝑡

𝑓𝑡
 (2.22) 

Figure 2.11: Simulated price scenarios for the third week in January. The simulations are made 
with a model built on the series yt = ln(Pt) - ln(ft), and exhibit extensive price fluctations. 
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further made the power plant optimization unrealistic, especially with regards to the 

economic results. These concerns motivated a new time series description. 

The second choice to be examined, were the same relationship as in Eq. 2.22, but 

without the log transform, so that 

This option still entails the same important quality as the former, namely that price 

fluctuation are treated relative to the price’s absolute value. A simulation of a month 

with a high price level, e.g. January, will then be more likely to give higher prices than 

a month with lower prices, e.g. July, which is a realistic characteristic. However, also 

this option proved to fail on the same part as the former; the simulation yielded prices 

that had, though not that excessive as the former, still too much fluctuations. 

Since the previous alternative did not solve the problem of price variations, a new 

alternative was formulated; this time as a mere difference: 

As suggested above, this series lacks the quality of producing simulations that varies 

according to the price level. However, the series showed to give much more realistic 

price scenarios.  

With a time series in place, the next step is to choose a suitable model description. 

As explained in the above section, the autocorrelation function (ACF) is central at this 

stage. Figure 2.12 shows the ACF for the first 30 lags of the series in Eq. 2.24. The 

figure underlines the significant correlation within the series. Hence, a time series model 

is demonstrably well suited for the modelling. However, it is difficult to discern whether 

the series actually are serially correlated for so many lags as the figure indicates, or if 

the correlation merely propagates through the lags. At any rate, the series does not 

 
𝑦𝑡 =

𝑃𝑡

𝑓𝑡
 (2.23) 

 𝑦𝑡 = 𝑃𝑡 − 𝑓𝑡 (2.24) 

Figure 2.12: ACF plot of Pt-ft. 
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come from a pure MA process, as found in many other financial applications (e.g. 

Brownian   motion). 

To better understand the nature of the process, the partial autocorrelation function 

(PACF) is plotted in Figure 2.13. In examining the plot, it becomes evident that the 

correlation is only really significant for the two first lags; the function shows a clear 

cut-off after the second lag. As noted in the previous section, this points towards an 

autoregressive process. While partial correlations for lags greater than two are not 

significant, correlations for 25 hours back in time are apparent. However, it is wise to 

model this behaviour after a more basic model is established, so as to avoid inference 

between the parameters [8]. For this reason an AR(2) model is constructed as the point 

of departure. 

    

Figure 2.14 shows the ACF plot of the inferred residuals of the AR(2) model. As 

the figure illustrates, practically all of the initial autocorrelation have been accounted 

for by the simple model. Indeed, most correlations lie within two standard deviations 

Figure 2.13: PACF plot of Pt-ft. 

Figure 2.14: ACF plot of the inferred residuals of the AR(2) model. 
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of the mean (a 95 % confidence interval is marked with blue lines on the figure). 

Furthermore, the autocorrelation is now most significant for a lag of 24 hours. This is 

a more reasonable result than the 25 hour lag indicated above, and thereby underpins 

the principle of building a model successively. When this feature is included into an 

multiplicative autoregressive model on the form AR(2)x(24), very much of the series 

autocorrelation is accounted for. As can be seen from Figure 2.15, some diurnal 

correlation remains. However, including a parameter for lag 23 makes the model more 

vulnerable to noice, without gaining any significantly better fit. 

 

While most of the serial correlation is accounted for, the series may still encompass 

serial dependency. In Figure 2.15, the autocorrelation of the squared residuals are 

depicted. If the innovation term’s variance is conditional on earlier innovations, the 

squared residuals will exhibit autocorrelation. Provided that serial correlation allready 

is well described, the ACF plot will provide an unformal justification for asserting a 

Figure 2.15: ACF plot of the inferred residuals of the AR(2)x(24) model. 

 

Figure 2.16: ACF plot of the squared residuals of the AR(2)x(24) model. 
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GARCH process for the innovation term. This is clearly indicated in the above plot, 

where the correlation between lagged squared residuals are significant.        

A more formal test of conditional variance is the Engles ARCH test. The null 

hypothesis of no ARCH effects is soundly recected in favour of an ARCH(2) model. 

This model has the same local properties as a GARCH(1,1), and the latter is preferred 

because of greater flexibility. The Akaike information criterion (AIC) underpins this 

description; a decrease in value from 5,13⋅104 to 4,92⋅104 is obtained when a 

GARCH(1,1) models is compared with the pure AR model. It is more complex to make 

a qualitative assessment of the GARCH description than with an ARMA model, 

however, many studies points towards the adequacy of the GARCH(1,1) model and it 

is therefore retained on this basis [9]. 

The initial assumption of a time series model is that its innovation terms are 

independent and normally distributed. As became clear in the previous paragraph, the 

innovation process are clearly not independent. The next question that arises is if the 

normality assumption holds. By infering the conditional variances, modelled after a 

GARCH(1,1) process, the standardized residuals can be found as follows for the i’th 

observation: 

where ri denotes the raw residuals inferred from the AR(2)x(24) process. A standard 

normal distribution would require to have 95 per cent of its innovations within an 

absolute value of two, and virtually all within an absolute value of three. In Figure 2.17 

however, where the standardized residuals are plotted, a large number of the 

observations lie outside this range. This is in conflict with the assumption of normality, 

and thereby motivated the use of a Student’s-t distribution for the innovation process. 

When simulated with the Student’s-t distribution, its shaping parameter, the degree 

of freedom (𝜈), was settled at 3,7, thus indicating a considerable departure from 

 𝑠𝑡𝑖 =
𝑟𝑖
𝜎𝑖

 (2.25) 

Figure 2.17: Standardized residuals inferred from the AR(2)x(24) /GARCH(1,1) model. 
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normality. The qualitative assessment was further supported by the AIC, which yielded 

an additional decrease from 4,92⋅104 to 4,78⋅104. 

With this last modification, the final model of the time series could be written on 

the form: 

where zt is an i.i.d. random variable from the Student’s t distribution. The parameter’s 

value, along with their t-statistic, are listed in Table 2.4. As can be seen from the t-

statistics, all parameters are statistically significant. 

Table 2.4: Parameter values of the time series model 

 Parameters  Value   t-statistic  

 c   0, 1602  4, 88 

 φ1   1, 0352  90, 02 

 φ2  -0, 1463  -13, 12 

 φ3   0, 2761  37, 59 

 κ  7, 67657  13, 88 

 α1  0, 2596  8, 33 

 β1  0, 4278  12, 29 

 ν 
 

3, 6573 
 

22, 99 

 

The stochastic model developed in the previous sections have been used to simulate 

25 different price scenarios. Three weeks in January 2014 (from January 13 to February 

2) have been chosen as the simulation period. Furthermore, the last futures adjustment 

has been done on the preceding Friday, such that the performance of the price model 

is tested coincidentally. Figure 2.16 depicts the 25 simulated scenarios together with 

the HPFC and spot price. 

 
     Figure 2.18: Simulated price scenarios plotted together with the HPFC and spot price. 

 
𝑦𝑡 = 𝑐 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + 𝜑3𝑦𝑡−24 + 𝑧𝑡√𝜅 + 𝜃1𝜎𝑡−1

2 +𝜃2𝜀𝑡−1
2  (2.26) 
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2.4 A Norwegian pumped storage power plant 

2.4.1 Building a Norwegian pumped storage power plant 

This section will consider the modelling of a Norwegian pumped storage power plant. 

The approach draws on earlier work on hydro power scheduling [10]. However, for the 

purpose of lucidity, some simplifications have been made on the model used here. 

Constraints on production, such as start-up costs and environmental concerns, and 

non-linearities have not been adressed. Moreover, mean values have been used with 

regards to plant head and efficiency. The properties and constraints of power plant are 

summarized in table 2.5. 
 

               Table 2.5: Properties and constraints of the pumped storage power plant 

Property  Value  

 Upper reservoir initial /end level 1 000 000 m3   

 Lower reservoir initial /end level 1 000 000 m3   

 Plant head 100 m   

 Efficiency power station /pump 0,84 /0,90   

Constraint  Lower constraint  Upper constraint  

 Upper reservoir 0 m3 2 000 000 m3 

 Lower reservoir 0 m3 2 000 000 m3 

 Discharge capacity 0 m3/h 100 000 m3/h 

 Relift capacity 0 m3/h 40 000 m3/h 

 

The values of the properties and constraints has been chosen such that they 

resemble a medium sized Norwegian pumped storage power plant. In particular, the 

efficiency parameters are such that the combined efficiency of the cycle approximates 

0,75 (B. Mo, Sintef Energy Research, conversation, May 21 2014). 

Optimal scheduling of water releases can be formulated as a transportation problem 

[11], where water can be seen as a commodity ‘sent’ from one time period to the next. 

This enables both the reservoir levels and the upper and lower reservoir to be coupled 

through the time steps. The conditions can be formulated as follows: 

   Upper reservoir: 

      𝑋𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑠,𝑡 = 𝑋𝑢𝑝𝑝𝑒𝑟 𝑟𝑒𝑠,𝑡−1 − 𝑋𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑢𝑝𝑝𝑒𝑟,𝑡 + 𝑋𝑟𝑒𝑙𝑖𝑓𝑡,𝑡                 (2.26) 

   Lower reservoir:  

      𝑋𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑠,𝑡 = 𝑋𝑙𝑜𝑤𝑒𝑟 𝑟𝑒𝑠,𝑡−1 + 𝑋𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑢𝑝𝑝𝑒𝑟,𝑡 − 𝑋𝑟𝑒𝑙𝑖𝑓𝑡,𝑡 − 𝑋𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑙𝑜𝑤𝑒𝑟,𝑡     (2.27) 

   Production: 

      𝑋𝑝𝑟𝑜𝑑 𝑢𝑝𝑝𝑒𝑟,𝑡 = 𝑋𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑢𝑝𝑝𝑒𝑟,𝑡 ⋅ 𝜂𝑝𝑟𝑜𝑑            (2.28) 

       𝑋𝑝𝑟𝑜𝑑 𝑙𝑜𝑤𝑒𝑟,𝑡 = 𝑋𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑙𝑜𝑤𝑒𝑟,𝑡 ⋅ 𝜂𝑝𝑟𝑜𝑑            (2.29) 

   Pumping:          

      𝑋𝑝𝑢𝑚𝑝,𝑡 = 𝑋𝑟𝑒𝑙𝑖𝑓𝑡,𝑡 ⋅ 𝜂𝑝𝑢𝑚𝑝                     (2.30) 
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Since the cost function and all the constraints are linear on the solution vector, the 

optimal allocation of the power plant can be found through linear programming: 

 

𝑚𝑎𝑥 [

0
⋮

𝑷𝒕

−𝑷𝒕

]

𝑇

𝒙 

 

𝑠. 𝑡.  𝑨𝒙 = 𝒃 

𝑎𝑛𝑑 𝒙 ≥ 𝟎 

 

The objective function is formulated such that both electricity sold (by production) 

and bought (for pumping) is traded on the spot market without transaction costs. The 

constraints from Eq. 2.26 through 2.30 is accounted for by the A-matrix, while the b-

vector is an empty matrix. Additionally, initial and end levels of the reservoir are 

retained by imposing upper and lower bounds on these variables. More detailed 

description of the optimization problem can be found in Appendix B. The problem is 

solved in Matlab by an interior point method. 

2.4.2 Scheduling in a European price regime 

The simulated price scenarios from the previous chapter serves as a deterministic, fixed 

input for the modelled power plant. It is thereby assumed that all information regarding 

the price is known on beforehand. This is of course a gross simplification. Nonetheless, 

the assumption renders it possible to make rigorous assessments on the adequacy of 

the price model, and moreover, the economic potential of Norwegian pumped storage. 

One of the most interesting aspect, especially from a production planning 

perspective, is the scheduling of water in the reservoirs. For this purpose, the upper 

reservoir content profiles, corresponding to each of the simulated price scenarios, are 

depicted in Figure 2.19. The mean of these profiles are plotted as well. Aditionally, the 

optimal production profile for the spot price (also assumed to be known in advance) 

and the HPFC scenario are illustrated in the figure. 

It is clear from the figure that the content profiles corresponding to the price 

scenarios cover a wide solution space. However, the mean of these scenarios are in close 

proximity to the spot price scenario. In fact, the mean scenario actually performs better 

than the HPFC scenario, on which the simulations are based upon. So while the mean 

price simulations are approximately equal to the HPFC, the mean content scenario 

diverges considerably from the HPFC scenario. In other words there is a non-linear 

relation between the price simulations and content scenarios. This extends the usage 

of the price model. While the HPFC can make a good forecast of the spot price, the 

stochastic component contributes to a more accurate scheduling of the reservoirs. 



 

 37 

The economic results for the simulation period shows, as suggested by Figure 2.18, 

a significant spread. Ranging from 16 000 € to 29 500 € a week, the simulations yielded 

a mean of 21 400 €. The average weekly return for the actual spot price scenario were 

16 800 €, and thus clearly in the lower end. As the price scenarios are variations around 

the HPFC, the scanarios are expected to yield greater revenues. Hence, they clearly 

demonstrates the importance of price variations. 

 
Figur 2.19: Reservoir content for the 25 price scenario plotted together with the mean scenario, 
and the spot price and HPFC scenario. 
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3 Discussion and further work 

This thesis has sought to explore the opportunities for Norwegian pumped storage in a 

European pricing regime. Its main emphasis has therefore been on the modelling of the 

German spot price, so as to provide a sound basis for the power plant. The point of 

departure has been historical price records, and through linear regression, a mean price 

curve with seasonal properties could be established. Furthermore, this curve has been 

adjusted to give an updated curve more in align with the market expectations. The 

model has thus combined information from the past with expectations of the future in 

order to make price predictions. Moreover, the adjusted price curve has made it possible 

to develop a stochastic price model, which in turns, has been the basis for the power 

plant analysis. The following paragraphs will provide an assessment of the results from 

the previous chapter, as well as making suggestions for further work. 

 The shape curve established in chapter 2.1 is crucial for the following chapters. 

First of all, the curve’s goodness of fit is imperative for the accuracy of the final adjusted 

curve; without a realistic description of the seasonality of the price, the futures 

adjustments will be in vain. Second, the seasonality, both daily and weekly, of the 

shape curve, is decisive in a pumped storage setting. Since the power plant takes 

advantage of differences in price during the day and over the week, the shape of the 

curve will be a direct contributor to the plant’s profitability. Therefore, care has been 

taken so that the shape curve could give an accurate description of the price. Decisions 

regarding the scope of the explanatory variables have been taken as a trade-off between 

accuracy and sufficient sample size. This trade-off were important when the daily 

regression model were made. On the one hand, a breakdown into many classes are 

obviously desirable, on the other, the sample of each hour within a class could not be 

too small. The choice were made on four classes of the year, amounting to 65 

observation per class. This led to a robust fitting, but also had as a consequence that 

the daily price patterns at times, especially at the beginning and end of a period, were 

inaccurate. This issue could be solved by dividing the year into monthly classes and 

compensate for the reduced sample by making a more qualitative assessment, e.g. by 

imposing certain rules for outliers. 

With regards to the yearly regression model, a qualitative judgement were made 

with respect to the ‘monthly’ variables, especially concerning the vacation periods. 

However, the same holds here; en even finer breakdown of the year would clearly be 

advantageous. A remedy in this case could be to include a sinusoidal function in the 

regression model, and thus avoid the discontinuity between the periods. However, this 

part of the model is not that crucial, since the futures adjustment can accommodate 

for these inaccuracies.  

The second part of the price modelling involved adjusting the shape curve to market 

expectations. As explained in chapter 2.2, the shortest time window with sufficient 
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liquidity were a week. This obviously restrained the precision of the adjustment. For 

example, as illustrated in Figure 2.8, the shape curve might need adjustments for some 

days within the week, while describing the price well for others, nevertheless leading 

the adjustment function to alter the price level for the whole week. The validity of 

hourly price forward curves will unquestionably be significantly increased when futures 

with daily maturities are traded large-scale. Nevertheless, an increase in explained 

variance by 16 per cent is a considerable improvement. Hence, including futures 

adjustments in future work on this field, even with the same conditions as today, can 

clearly be recommended. 

The stochastic price description were modelled on the basis of the spot price’s 

deviations from the adjusted shape curve. This allowed for price simulations around 

the HPFC. As outlined in chapter 2.3, the greater part of the autocorrelation, both for 

the series itself and its variance, were accounted for by an ARMA/GARCH description.  

However, the normality assumption seemed unjustified when examining the 

standardized residuals. A Student’s t distribution were introduced for the innovation 

process so that the heavy kurtosis of the residuals could better be explained. This 

improved the goodness of fit according to the Akaike information criterion. On the 

other hand, the simulations showed a fair amount of price fluctuations; when optimized 

in the pumped storage setting, these price scenarios yielded considerably more revenues 

than the actual spot price. The issue here is twofold. First, an HPFC with more detailed 

information would have followed the spot price more accurately. This in turn would 

have led to smaller residuals and, consequently, to less variance in the GARCH model. 

Second, the heavy tailed distribution of the residuals obliges the Student t’s distribution 

to take a low value for its shaping parameter, thus giving rise to innovations that are 

unwarranted. For these reasons, the main challenge for further work will be to find an 

adjusted shape curve that better fits with the spot price. Furthermore, alternatives for 

the distribution of the innovation terms should be explored. In this context however, 

the variations within the price scenarios cast light upon the opportunities for Norwegian 

pumped storage in a more volatile pricing regime. 

In developing the pumped storage power plant model, it was sought to include 

typical parameters found at a Norwegian hydropower plant. However, some 

simplifications were made, especially with regards to start-up costs. The latter leads to 

a high utilization of the plant, evident from the reservoir optimization in chapter 2.4. 

Nonetheless, the simulation showed reasonable results; the daily and weekly production 

patterns were especially noticeable. Furthermore, the hourly price forward curve 

yielded a sensible production pattern. In particular, the mean of the simulated price 

scenarios were very close to the optimal production plan. In this way, the stochastic 

price model could possibly be a simple, yet powerful tool in production planning. 

Further work might include simulating over different periods of the year and adding 

new constraints to the established power plant model.  
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Appendix A 

Source code for the second regression model. 

hours2009_2013=zeros(24*(365+365+365+366+365),24*7*4); 

hours_day=dummyvar(1:24); 

 

date=datenum('01-Jan-2009')-1; 

 

for i=1:(365*4+366) 

    date=date+1; 

    [year month]=datevec(date); 

    weekday=weekday(date); 

 

    if month==12 || month==1 || month==2 

 

        if weekday==2 

            hours2009_2013(1+24*(i-1):24*i,1:24)=hours_day; 

        elseif weekday==3 

            hours2009_2013(1+24*(i-1):24*i,25:48)=hours_day; 

        elseif weekday==4 

            hours2009_2013(1+24*(i-1):24*i,49:72)=hours_day; 

        elseif weekday==5 

            hours2009_2013(1+24*(i-1):24*i,73:96)=hours_day; 

        elseif weekday==6 

            hours2009_2013(1+24*(i-1):24*i,97:120)=hours_day; 

        elseif weekday==7 

            hours2009_2013(1+24*(i-1):24*i,121:144)=hours_day; 

        else weekday==1; 

            hours2009_2013(1+24*(i-1):24*i,145:168)=hours_day; 

        end 

 

    elseif month==3 || month==4 || month==5 

 

        if weekday==2 

            hours2009_2013(1+24*(i-1):24*i,169:192)=hours_day; 

        elseif weekday==3 

            hours2009_2013(1+24*(i-1):24*i,193:216)=hours_day; 

        elseif weekday==4 

            hours2009_2013(1+24*(i-1):24*i,217:240)=hours_day; 

        elseif weekday==5 

            hours2009_2013(1+24*(i-1):24*i,241:264)=hours_day; 

        elseif weekday==6 

            hours2009_2013(1+24*(i-1):24*i,265:288)=hours_day; 

        elseif weekday==7 
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            hours2009_2013(1+24*(i-1):24*i,289:312)=hours_day; 

        else weekday==1; 

            hours2009_2013(1+24*(i-1):24*i,313:336)=hours_day; 

        end 

 

    elseif month==6 || month==7 || month==8 

 

        if weekday==2 

            hours2009_2013(1+24*(i-1):24*i,337:360)=hours_day; 

        elseif weekday==3 

            hours2009_2013(1+24*(i-1):24*i,361:384)=hours_day; 

        elseif weekday==4 

            hours2009_2013(1+24*(i-1):24*i,385:408)=hours_day; 

        elseif weekday==5 

            hours2009_2013(1+24*(i-1):24*i,409:432)=hours_day; 

        elseif weekday==6 

            hours2009_2013(1+24*(i-1):24*i,433:456)=hours_day; 

        elseif weekday==7 

            hours2009_2013(1+24*(i-1):24*i,457:480)=hours_day; 

        else weekday==1; 

            hours2009_2013(1+24*(i-1):24*i,481:504)=hours_day; 

        end 

 

    else month==9 || month==10 || month==11; 

 

        if weekday==2 

            hours2009_2013(1+24*(i-1):24*i,505:528)=hours_day; 

        elseif weekday==3 

            hours2009_2013(1+24*(i-1):24*i,529:552)=hours_day; 

        elseif weekday==4 

            hours2009_2013(1+24*(i-1):24*i,553:576)=hours_day; 

        elseif weekday==5 

            hours2009_2013(1+24*(i-1):24*i,577:600)=hours_day; 

        elseif weekday==6 

            hours2009_2013(1+24*(i-1):24*i,601:624)=hours_day; 

        elseif weekday==7 

            hours2009_2013(1+24*(i-1):24*i,625:648)=hours_day; 

        else weekday==1; 

            hours2009_2013(1+24*(i-1):24*i,649:672)=hours_day; 

        end 

    end 

end 
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Appendix B 

Source code for the pumped storage power plant model. 

function [revenues, production, pump, reservoir_upper, reservoir_lower, sum_profit, 

X] = pump_power_plant(initial_reservoir_upper, end_reservoir_upper, 

initial_reservoir_lower, end_reservoir_lower, max_discharge, efficiency_prod, 

max_pump, efficiency_pump, spot_price) 

 

[hours, profiles]=size(spot_price); 

 

 

%%Establishing matrices: 

A_reservoir_balance1=zeros(hours,6*hours+2); 

A_reservoir_balance2=zeros(hours,6*hours+2); 

A_prod_balance=zeros(hours*2,6*hours+2); 

 

head=100; 

energy_eq_prod=9.81/3600*head*efficiency_prod; 

energy_eq_pump=9.81/3600*head/efficiency_pump; 

 

for i=1:hours 

 

    A_reservoir_balance1(i,1+3*(i-1):1+3*i) = [1, -1, 1, -1]; 

 

    A_reservoir_balance2(i,2+3*(i-1):3*i) = [1, -1]; 

    A_reservoir_balance2(i,(1+3*hours)+i:(1+3*hours)+(i+1))=[1, -1]; 

 

    A_prod_balance(i,2+3*(i-1))=energy_eq_prod; 

    A_prod_balance(i,(2+4*hours)+i)=-1; 

    A_prod_balance(hours+i,3*i)=energy_eq_pump; 

    A_prod_balance(hours+i,(2+5*hours)+i)=-1; 

 

end 

 

A=[A_reservoir_balance1;A_reservoir_balance2;A_prod_balance]; 

 

b=zeros(4*hours,1); 

 

%%Constraints on X: 

lb=zeros(6*hours+2,1); 

lb(1)=initial_reservoir_upper; 

lb(2+3*hours)=initial_reservoir_lower; 

 

ub=inf(6*hours+2,1); 
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ub(1+3*hours)=end_reservoir_upper; 

ub(2+4*hours)=end_reservoir_lower; 

for i=1:hours 

    ub(2+3*(i-1))=max_discharge; 

    ub(3*i)=max_pump; 

end 

 

%%Linear programming: 

F=zeros(6*hours+2,profiles); 

X=zeros(6*hours+2,profiles); 

for i=1:profiles 

    F(4*hours+3:5*hours+2,i)=spot_price(:,i); 

    F(5*hours+3:end,i)=-spot_price(:,i); 

    X(:,i)=linprog(-F(:,i),[],[],A,b,lb,ub); 

end 

 

%%Output variables: 

reservoir_upper=zeros(hours+1,profiles); 

reservoir_lower=zeros(hours+1,profiles); 

for i=1:profiles 

    for j=1:hours+1 

        reservoir_upper(j,i)=X(1+3*(j-1),i); 

        reservoir_lower(j,i)=X(1+3*hours+j,i); 

    end 

end 

 

revenues=zeros(hours,profiles); 

for i=1:profiles 

    for j=1:hours 

        revenues(j,i)=(X(2+4*hours+j,i)-X(2+5*hours+j,i))*spot_price(j,i); 

    end 

end 

 

production=X(4*hours+3:5*hours+2,:); 

 

pump=X(5*hours+3:end,:); 

 

sum_profit=sum(F.*X); 

 

end 

 


