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Problem description

When designing an electric machine one wants to find the number of slots, and
their placement, that gives the largest flux density in the air gap. Or even
more the shape of the magnets to give the highest torque in a given permanent
machine. In some cases the problem is even extended by the need of optimizing
the size of cooling channels for a fluid to provide the most efficient cooling. For
all these cases a FEM-based optimization would be the best choice to get the
wanted result. Doing such optimizations is possible today, but except for simple
cases this will take a lot of time.

The goal of this thesis is to prove that the above is possible with today’s
solutions. In other words, to find a way of doing optimizations based on FEM
simulations, and further try to parallelize to decrease the execution time. If
proven possible the difficulty setting up these simulation and the expected de-
crease in runtime are expected to be evaluated. The goal can be summarized in
the following title:

Parallel processing of optimization algorithms - A faster way to
optimize electric power problems that utilize FEM-simulations

It is also expected that the student gives a good description of the procedure
and setup of scripts used.

Supervisor:

Prof. Robert Nilssen





Abstract

The aim of this thesis was to find a way of doing optimizations based on FEM-
simulations and further to parallelize the computations in order to decrease the
execution time. If proven possible the difficulty setting up these simulation and
the expected decrease in runtime, would to be evaluated.

Optimizations of magnet field strength and torque utilizing FEM simulations
were conducted by using the particle swarm optimization (PSO) algorithm and
the Matlab “partial differential equation toolbox” (PDE-toolbox). Two cases
were optimized with and without parallel processing, and runtimes were measu-
red for all runs. The aim was to run all simulations 10 times on three different
computers. This was achieved to the majority of the simulations, results there-
fore had a good statistical confidence.

The optimization results were consistent with the theory: the higher number
of iterations and particles used in the PSO, the better solution and smaller
deviations. The runtime was found to be linear with the product of iterations
and particles. This fits the expectations and the theory since the product of
iterations and particles equals the total number of FEM calculations done. The
FEM-simulation was the most time consuming when executing the code.

The simplest case took up to 7 hours without parallel processing. The same
simulation was down to 20 minutes using 12 parallels. The speedup was pro-
portionally alike to the number of cores for the 50/50 simulation in case 1.
Case 2 had a lower speedup, but this was also linear. The same tendency was
found for sets with fewer particles/iterations, but in these cases deviations were
significant.

Setting up the model in the PDE-toolbox from command line was deman-
ding. This may also be due to lack of example cases, even Internet searches
turned out empty for similar simulation setups. But worth while when conside-
ring the reduced runtime one achieved. To prepare the optimization algorithm
for parallel processing was however easy and took very little time.





Sammendrag

Målet med denne masteroppgaven var først og fremst å vise at er mulig å kjøre
optimaliseringer basert p̊a elementmetode-beregninger (FEM). Videre skulle pa-
rallell prosessering av optimeringsalgoritmen bli brukt for å redusere kjøretiden.
Hvis dette viste seg å være mulig skulle vanskelighetsgraden ved å sette opp
slike simuleringer og den forventede reduksjonen i kjøretid bli evaluert.

Magnetisk feltstyrke og moment ble optimalisert ved hjelp av elementmetode-
beregninger av magnetfeltet. Partikkel-sverm-optimering (partical swarm opti-
mization, PSO) ble brukt sammen med Matlabs “partial differential equation
toolbox” (PDE-toolbox) for å kjøre optimaliseringen. Alle simuleringer ble gjort
p̊a to forskjellige optimaliseringsproblemer. Begge problemene ble optimert b̊ade
med og uten bruk av parallellprosessering. Målet var å kjøre alle simuleringer ti
ganger og p̊a tre ulike datamaskiner. For de aller fleste simuleringene ble dette
ogs̊a gjort, s̊a de fleste resultatene hadde dermed et godt statistisk grunnlag.

Resultatene fra optimeringene stemte godt overens med teorien; jo flere ite-
rasjoner/partikler, jo bedre ble løsningen og jo mindre ble avviket. Det ble
funnet at kjøretiden var en lineær funksjon av produktet av iterasjoner ganget
med antall partikler. Partikler ganget med iterasjoner utgjorde antallet FEM-
simuleringer simuleringer som ble kjørt, og det var FEM-simuleringene som tok
mest av tid n̊ar under optimeringene.

Det enkleste av testoppsettene tok opp til 7 timer å optimere uten bruk av
parallellprosessering. Den samme optimeringen nede i 20 minutter da 12 paral-
leller kjørt. For simuleringen med 50/50 (iterasjoner/partikler) var reduksjonen
i kjøretid nesten proporsjonalt lik antallet paralleller kjørt for det enkleste te-
stoppsettet. For det andre testoppsettet var sammenhengen ogs̊a lineær, men
reduksjonen i kjøretid var lavere. Tendensen var den samme for settene med
færre iterasjoner/partikler, men her fikk man ogs̊a store avvik.

Det var krevende å f̊a satt opp modellen i PDE-toolbox fra kommandolinja i
Matlab. Selv ikke ved grundige internettsøk fant man eksempler p̊a tilsvarende
oppsett som det som ble brukt her. Ved å muliggjøre parallell kjøring av FEM-
simuleringene i optimeringsalgoritmen ble kjøretiden kraftig redusert, s̊a det var
uansett verdt tiden det tok å sette det opp. N̊ar b̊ade FEM-simuleringene og
optimeringsalgoritmen først fungerte, viste det seg å være lett å endre koden til
å kjøre i parallell.
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Abstract—The aim of this thesis was to find a way of doing
optimizations based on FEM-simulations and further to paral-
lelize the computations in order to decrease the execution time.
If proven possible the difficulty setting up these simulation and
the expected decrease in runtime, would to be evaluated.

Optimizations of magnet field strength and torque utilizing
FEM simulations were conducted by using the particle swarm op-
timization (PSO) algorithm and the Matlab “partial differential
equation toolbox” (PDE-toolbox). Two cases were optimized with
and without parallel processing, and runtimes were measured for
all runs. The aim was to run all simulations 10 times on three
different computers. This was achieved to the majority of the
simulations, results therefore had a good statistical confidence.

The optimization results were consistent with the theory: the
higher number of iterations and particles used in the PSO, the
better solution and smaller deviations. The runtime was found to
be linear with the product of iterations and particles. This fits the
expectations and the theory since the product of iterations and
particles equals the total number of FEM calculations done. The
FEM-simulation was the most time consuming when executing
the code.

The simplest case took up to 7 hours without parallel pro-
cessing. The same simulation was down to 20 minutes using 12
parallels. The speedup was proportionally alike to the number
of cores for the 50/50 simulation in case 1. Case 2 had a
lower speedup, but this was also linear. The same tendency was
found for sets with fewer particles/iterations, but in these cases
deviations were significant.

Setting up the model in the PDE-toolbox from command line
was demanding. This may also be due to lack of example cases,
even Internet searches turned out empty for similar simulation
setups. But worth while when considering the reduced runtime
one achieved. To prepare the optimization algorithm for parallel
processing was however easy and took very little time.

Index Terms—Matlab, Parallel processing, techila, PSO, FEM,
Optimization

I. INTRODUCTION

When designing an electric machine the aim is to find the
number of slots and their placements, which give the largest
flux density in the air gap. It is even better to the shape of
the magnets to give the highest torque in a given permanent
machine in addition. The problem is in some cases extended
by the need of optimizing the size of cooling channels for
a fluid to provide the most efficient cooling. A FEM-based
optimization would be the best choice for all these cases to
achieve the wanted result. Such optimizations are possible
today, but will take a lot of time apart from in simple cases.

Finite element method simulations (FEM-simulations) are
used to solve equations with no universally valid solution. Op-
timization algorithms helps us to find the best set of parameters
or the most efficient configuration. Parallel processing can be

used to speed up independent loops and make things go much
faster. Is it possible to utilize the strengths of all these tools
at the same time?

The aim of this study was to prove that the above was
possible with today’s solutions. In other words, try to find
a way of running FEM based optimizations, and further try
to parallel process the simulation in order to decrease the
execution time. If proven possible, the difficulty setting up
these simulations, and the decrease in runtime were expected
to be evaluated. The aim of this thesis can be summarized in
the following title:

Parallel processing of optimization algorithms - A faster
way to optimize electric power problems that utilize FEM-
simulations

II. DEFINITIONS AND SCOPE

The results presented here are limited to the use of the
Matlab and Comsol software packages. The only focus has
been to prove the concept and make the simulations work. In
most of the simulations only the runtime of the simulations
have been measured. How good the of algorithm itself was
has only been discussed briefly.

A list of words, abbreviations and terms used are listed in
table I.

TABLE I
ABBREVIATIONS AND TERMS

PDE partial differential equation
FEM finite element method
PSO Particle swarm optimization
runtime time measured from pushing execute to results are returned.
machine used about electrical machines/motors. PC or computer is

consistently used in that intent.
cores used about computer cores. Not necessarily the same as

number of processors.

Italic has been used for Matlab commands or functions and
bold for variables and matrices throughout the report.

III. THEORY

This section is meant to give the reader necessary theory
to understand the results presented later in this report. Most
equations and tools used in the later chapters, are presented
here. The reader is expected to know the basics of magnetic-
and electrical fields, and the laws which apply. It is also
assumed that the reader is familiar with differential equations,
and systems of these.



A. Electromagnetism

The only cases used in this study are electro-magnetical.
Maxwell’s equations together with the definition of vector
potential are all needed to calculate the magnetic field. Only
two of Maxwell’s equations are relevant [1, p14]:

∇×
−→
H =

−→
J +

∂
−→
D

∂t
(1)

∇ ·
−→
B = 0 (2)

where the following applies for linear materials

−→
B = µ

−→
H (3)

The definition of vector potential is [1][p14]:

−→
B = ∇×

−→
A (4)

These relations are already implemented in the software
used. By defining the permeability (µ) in each domain, the
currents (

−→
J ) and the boundary conditions, the software sets

up the needed set of PDEs automatically.
In the plane case (assuming ∇ ·A = 0 and that the current

density is perpendicular to the plane) the following PDE arise
[2]:

−∇ ·
(

1

µ
∇A
)

= J (5)

It is worth noting that in the plane case (2D), the magnetic
field density can be calculated from A:

B =

(
∂A

∂y
,−∂A

∂x
, 0

)
(6)

The momentarily torque is most certainly of interest in
electrical machine cases. The magnetic stress tensor have to
be found first to find the torque [3, p197]. For the 2D case the
tensor is:

T =

[(
B2
x − 1

2 |B|
2
)

BxBy

ByBx
(
B2
y − 1

2 |B|
2
)] (7)

The force can be found from equation (8) when the stress
tensor is known. (Equation (8) is given for the 3D case.)

f =
1

µ

∮
S

T · dS (8)

In equation (8) S is the surface of the entire air gap.
Assuming the length in z direction is 1, the surface integral
simplifies to a line integral where dS is the outward normal.

When the force is known the torque can be obtained from
[4, p6]:

τ = F ∗ r (9)

In equation (9) r is the distance between the center of
rotation and the point where the force is applied. Equation
(9) is valid when the force is perpendicular to r.

The torque in electrical machine can be determined by
knowing the magnet field density in the air gap, and the

geometry. By adding a virtual circle in the air gap, one can
integrate along this line and thus approximate the torque quite
well.

B. Finite element method

The finite element method (FEM) is a mathematical method
for solving partial differential equations approximately. The
basic idea is that a larger problem can be divided into many
smaller problems, and the solution for each subproblem can
be approximated by i.e. linearization. A complex region is
discretized into simple geometric shapes which are called finite
elements. Properties, f.i. material properties, are considered
over these elements, and given as functions of the unknown
in the corners. The approximate solution is obtained by solving
these equations for all the corner points, based on the given
boundary conditions [5, p1]. It is common to use triangles
as these elements, as shown in figure 1. This dividing into
triangles and the resulting “net” is often referred to as meshing
and mesh respectively.

Fig. 1. Example of a mesh

FEM simulations are often used to calculate the magnetic
or the electric field in geometries in power electronics. I
will not go further in detail about the finite element method
here, since the understanding of the underlying mechanism
of this is not crucial to understand the results presented.
Readers interested are referred to literature on the subject, for
instance “Introduction to Finite Elements in Engineering” by
Chandrupatla and Belegundu [5].

C. Particle swarm optimization

The particle swarm optimization (PSO) algorithm was first
described by J. Kennedy and R. Eberhart back in 1995 [6],
but using it in electromagnetics was first done in 2004 by J.
Robinson and Y. Rahmat-Samii [7]. They describe the PSO
the following way:

“Imagine a swarm of bees in a field. Their goal is to find
in the field the location with the highest density of flowers.
Without any knowledge of the field a priori, the bees begin in
random locations with random velocities looking for flowers.



Each bee can remember the locations that it found the most
flowers, and somehow knows the locations where the other
bees found an abundance of flowers. Torn between returning
to the location where it had personally found the most flowers,
or exploring the location reported by others to have the most
flowers, the ambivalent bee accelerates in both directions
altering its trajectory to fly somewhere between the two points
depending on whether nostalgia or social influence dominates
its decision.” [7]

All bees will approach the global best field with the highest
density of flowers in the end.

The PSO algorithm for optimizing engineering problems
works the same way. A solution space for the problem has
to be defined. In this study this is done by setting upper
and lower limits for all parameters. An expression for, or
a value, to optimize with object to is also required. This
function or expression denotes the fitness. The population of
particles (corresponding to the bees) have to be initialized
before starting the optimization.

In PSO all particles have a position and a velocity. The
velocity is some function of current velocity, personal best
and global best. (see figure 2).

Fig. 2. Visualization of the PSO algorithm [7, fig. 3]

The new velocity can be calculated using equation (10) [7].
c1=c2=2 have been proven to work for many applications [8].

vn = w∗vn+c1∗rand()∗(pbest,n−xn)+c2∗rand()∗(gbest,n−xn)
(10)

The position can then be calculated using [7]:

xn = xn + ∆t ∗ vn (11)

The last consideration is how to deal with particles that
cross the given boundaries. Robinson and Rahmat-Samii [7]
describe three ways of dealing with boundary conditions;
absorbing walls, reflecting walls and invisible walls. When
using absorbing walls the velocity to a particle crossing the
border is set to zero. It will then be accelerated back into

the solution space in the next iteration. Reflecting walls, does
as the description says, just send the particle back with the
same velocity into the solution space. Using invisible walls,
the velocity is unaffected, but the position is not updated
for particles outside the borders. This way these particles
inevitable will be accelerated back into the solution space.

An overview of all key terms used when describing PSO is
shown in table II.

TABLE II
KEY TERMS IN DESCRIPTION OF PSO (BASED ON A SIMILAR TABLE

FOUND IN [7]

Particle One single individual in the swarm
Position the particle’s N-dimensional coordinates which rep-

resents a solution to the problem.
Population/swarm The entire collection of particles.
Fitness A single number representing the goodness of a

given solution.
pbest The location in parameter space of the best fitness

returned for a specific agent.
gbest The location in parameter space of the best fitness

returned for the entire swarm.

D. Parallel processing

“Parallel processing is information processing that uses
more than one computer processor simultaneously to perform
work on a problem. This should not be confused with mul-
titasking, in which many tasks are performed on a single
processor by continuously switching between them, a common
practice on serial machines.” [9].

Parallel processing is thus a way to speed up the executions
of code. Parallel computing have been used in a wide range of
engineering applications e.g. optimization problems with great
success [10, p4-5]. To enable the process to be run in parallel,
the code must consist of portions which can be performed
concurrently [10, p85]. A for loop will often qualify, as one
knows how many times the code shall run. Another important
requirement for parallelizing a loop, is that the results have to
be independent of the order in which the iterations are done
[11, p37]. This implies that in many applications the code is
not suited for parallel processing.

There are many types of software that support and utilize
parallel processing, among them Matlab. There is a function
in the “parallel computing toolbox” in Matlab, parfor, which
runs the simulation on as many cores as possible/specified
[12]. There was a limit on 12 parallels until Matlab version
2013b, but this limit was removed in the newest version 2014a
[13]. From an end user perspective, using parfor in Matlab is
almost identical to the normal for loop in the Matlab code.

The expected speed up using parallel processing is not
conclusive. It might seem reasonable to assume that if using
twice the hardware resources, the execution time will be
halved. This is however rarely the case [10, p195]. This can
be due to overhead communication in the computer(s), or that
some of the parallels take more time than others. The result is
that the rest stand idle for some time waiting. A third cause is
that one have to renounce to a less effective algorithm in order
to make parallelization possible. The theoretical speedup can
never exceed the number of parallels [10, p200]. This means



that if a given algorithm takes Ts seconds to execute, when
parallelizing over ns cores, the greatest speedup possible is
Ts/ns. The more time the execution of one loop takes relative
to the total execution time, the greater the speedup.

10 iterations will, in theory, go equally fast using 12 and
25 cores since (in both cases) every core just have to deal
with one iteration. However, with 13 iterations, the 25 parallel
computer can (theoretically) be twice as fast. The number of
iterations each computer have to handle is referred to as “steps
per worker”.

Another way of parallelize Matlab code is using the soft-
ware techila. From a end user perspective techila works the
same way as parfor, but instead of dividing the jobs onto cores
on the current computer, it is divided and distributed to several
computers [14].

IV. DESCRIPTION OF THE SIMULATION EXPERIMENTS

The aim in this work, as stated earlier, was to apply
FEM-simulations in optimization algorithms, and then try to
decrease runtime using parallel processing. Two models were
first set up for the FEM simulations. Both had a changeable
geometry. These models were further used for optimization of
the geometry that gave the highest magnetic field strength/-
torque (respectively for the two cases). The next step was to
rewrite the Matlab function to run in parallel using parfor and
cloudfor.

A. Description of test cases

Two different cases were used. The first case was a simple
one, to prove the concept. The second was a more complex
case, a model of a small electric machine. In the first case
the goal was to optimize the magnetic flux density in a
certain point in the figure, and the second case the torque
was optimized. Both were simulated statically, so there was
no function of time or movement in the models.

Case 1 consisted of one magnet and stator with a stator
tooth, and can be seen in figure 3. The stator and tooth
(indicated in red) were iron with µr = 4000. The magnet
was removed from the geometry (hence white) and boundary
conditions (magnetic flux) were given. The rest in the figure
(colored blue) was air with µr = 1. All permeability values
µr was obtained from the Comsol material library. Magnetic
insulation around the outer border and magnetic field at
6.67
µ A/m at the two vertical edges of the magnet, was the

boundary conditions. All measurements were in centimeters,
but this could easily be scaled.

The magnetic flux density at the corner of the tooth (as
indicated in figure 3) was the object of optimization, and the
goal was to get this as high as possible within the given limits.

Case 2 consisted of a stator and rotor (both in iron), 2
magnets and 12 slots as shown in figure 4. Each slot had a
current density of ±2 and ±4A/mm2. The slots had an area
of 0.5 ∗ 0.5mm2. There were 4A/mm2 in the two uppermost
slots. The two pairs on each side of the uppermost slots had
2A/mm2. The rest were negatively mirrored around the x axis.
There were hence three phases, r, s and t, with 120 degrees
between each phase. There were +2A/mm2 in phases r and s

Fig. 3. Test case 1. Blue is air and red is iron, the magnet is shown as
white. The yellow circle indicate where the measurements of the B field for
the optimization was done.

Fig. 4. Test case 2. The red is iron, the blue is magnets and air (both
µr = 1), and the white is the magnets. The dots are copper with different
current density. The orange ones have ±4A/mm2 and the green ones have
±2A/mm2. The current are positive in the 6 uppermost slots, and negative
in hte other 6.

and −4A/mm2 in phase t. There were copper with µr = 1 in
the slots. All outer borders had magnetic insulation as in case
1. The magnets were given a magnetic potential equal 1.2∗x.
This meant that the magnetic potential only was dependent on
x. Hence the growth in A, from left to right, was not perfectly
steady, but due to some practical issues (will be discussed
later) this had to be sufficient. The result was that the magnet
field density was not uniform over the magnet surface, but was
steady enough for this purpose.

The second case the aim was to get as high torque as
possible by changing the magnets’ height and width.

B. Setting up the models for FEM simulation

The FEM simulation part was done both by using Comsol
and Matlab’s PDE-toolbox. First all the geometries had to be
drawn, either using GUI or by Matlab script. It was possible
to choose a magneto static mode both in Comsol and in the
PDE-toolbox which made some corresponding assumptions.
(The equation to be solved is the one shown in equation (5)
as an example). Magnetic permeability and current density
(perpendicular to the xy plane) were given for all subdomains.
“Magnetic insulation” were used as border conditions for the
outer border. The magnet was also modeled using border
conditions.



In order to be able use the models in the optimization they
had to be provided as Matlab command line scripts. This was
easily done by saving the file as Matlab m-file in Comsol.
The only requirement was to couple Comsol and Matlab. This
coupling was automatically established by using “COMSOL
with MATLAB” from the start menu. There was no export
function in the PDE-toolbox, so the Matlab m-function for
the models had to be written manually. Appendix B contains
a thorough guide for writing the Matlab code for setting up
the FEM-simulation in the PDE-toolbox using command line
functions.

C. Initial FEM-simulation

An initial simulation was run, both in Comsol and the PDE-
toolbox, in order to make sure that the simulations gave the
same results and that the models behaved as intended. For the
PDE-toolbox the initial simulation was done both using the
GUI and command line functions from Matlab.

D. Optimization

The object of optimization in case 1 was the magnetic
flux density in the lower, left corner of the stator tooth. The
torque was should be optimized for case 2. A reference should
be determined for both cases using a parametrical sweep
in Comsol. The solution from the optimizations was later
compared with this reference solution.

The lower, left corner of the magnet was used as the input
for the magnet’s placement in case 1. The boundaries of the
magnet’s placement was set to 0.01 from the walls and bottom
of the tooth respectively. This gave a solution space with x
between −0.99 and 0.39 and y between −0.79 and −0.11.

In case 2 the heigh and width of the magnets were used
as input parameters. The boundaries of the magnets were set
so that the height could be between 0.05 and 1.949, width
between 0.3 and 15.41. Note that by rounding off to two
digits the resulting solution can cross the given limit at 1.949
(1.949 ≈ 1.95).

PSO was used for the optimization part in this study. PSO
was chosen for it’s simplicity and and sufficient for this
purpose. It was also possible to take advantage of my fellow
student Erlend Engevik’s work in his specialization project
[15] from fall 2013.

The following parameters were used for the PSO:
• c1=c2=2
• ∆t/dt=0.2 (if not other specified)
Absorbing walls were used to deal with boundary condi-

tions. The initial population was distributed randomly through-
out the solution space.

The Matlab implementation of PSO was based on Erlend
Engevik’s implementation. The initial population was pro-
duced. Then the FEM-simulation was executed to determine
the fitness of the current position. This value was returned to
Matlab, which compared the results with the current global-
and personal bests for each particle, and if necessary updated
the entries. The magnet(s) position(s) were updated based on
the global- and personal bests and the velocity to each particle.

These calculate- and update steps were repeated until the de-
sired number of iterations was reached. The global best magnet
position was printed and the best configuration was plotted
with the resulting magnetic field and magnet(s) position(s).
The complete Matlab code can be found in appendix E.

PSO was tested for different number of iterations and
particles. It was first tested with different combinations of
10, 20 and 50 particles/iterations. All simulations were run
10 times and the mean values were used. The deviation were
given as a ±% value which represented the difference between
the mean value and the result with the highest deviation from
the mean.

All tests were run using PDE-toolbox. Two sets of runs were
in addition executed using Comsol.

Some tests were executed with different tuning of dt, and
had a significant effect on the accuracy of the result. These
simulations were initially not in the scope of this study, but
the results were too interesting to omit.

E. Parallelizing

The optimal magnet placement was found as described
above, but another goal for this study was to speed up these
optimizations. Two ways of parallelizing were tested, namely
the earlier mentioned parfor and cloudfor. Both these were
tested to a good extent with combinations of 10 and 50 (48
for case 2) iterations/particles, and a few runs with even higher
numbers of iterations/particles. Also here all simulations were
run 10 times.

The only thing which had to be changed in the code
for both parfor and cloudfor was to use actually parfor /
cloudfor instead of a normal Matlab for loop. Both needed
some additional code to run efficient, but even those extra
configurations meant about 10 lines and the optimization was
ready to parallel process. It was recommended for parfor to
start a matlabpool (initialize workers) in advance of running
the code. The standard was to use 12 workers or all workers
available. If the computer had more than 12 cores that had to
be configured. Techila also needed some additional parameters
to run efficient. These can be found in appendix C.

Using parfor, you can chose how many of the available
cores you want to use. The simulations were run on three
different computers and using different number of parallels.
The aim was to be able to identify some general aspects with
parallelizing this type of code. The following computers were
used:
• mac: My personal computer. Could run maximum 4

parallels on two 2.9GhZ processors.
• eelk1734: A terminal server which most of the master

students at the institute have access to. Could theoretically
run 48 parallels on four 2.2GhZ processors, but had not
Matlab 2014a installed.

• eelk1728: A terminal server similar to eelk1734. Only a
handful of students have access. Had Matlab 2014a so it
could run 48 parallels.

• techila: Used Computer lab PCs with possibility to run
4 parallels on each. Else wise the specifications were
unknown.



The techila solution is new to NTNU so this study was
among the first run tests of this kind. There were therefore
obviously some startup problems, but once they were solved,
implementing and using techila was straight forward. Some
tips are included together with the techila parameters in
appendix C. Techila was always set up to use as many cores
as particles or if exceeded 32 (number of cores I had access
to) a multiple of the number of particles when running the
simulations. Due to the nature of parallelizing a for-loop, the
expectations were that the speedup might be proportional to
the number of cores.

The outline of the complete data- and work flow are
sketched in the figure found in appendix A.

V. RESULTS

A. Initial FEM-simulations

The initial simulations were done in the PDE toolbox, both
in the GUI and in the Matlab command line. The command
line functions should in theory not be that hard to use, but it
took many tries and long time to make them work. The contour
plots of the two solutions for case 1 are given in figure 5 and
6. The corresponding plots for case 2 are given later in figure
8 and 9.

Fig. 5. Counterplot for case 1. Initial simulation of the magnetic field density
(B) from the Matlab script using command line functions.

Fig. 6. Counterplot for case 1. Initial simulation of the magnetic field density
(B) from the PDE toolbox GUI

When checking the value of the magnet field strength (B-
field) in the desired lower, left corner of the machine tooth in
case 1, they were 1.388T and 1.747T for the script and the
PDE-toolbox respectively.

The same was done in Comsol, which gave the results
shown in figure 7(case 1) and in figure 10(case 2). For case
1 the value in the lower, left corner of the machine tooth was
1.518 T in Comsol.

Fig. 7. Counterplot for case 1. Initial simulation of the magnetic field density
(B) from Comsol.

There were some difficulties setting the border conditions
for the magnet equally in Comsol and the PDE-toolbox, both
for case 1 and 2, but the plots and behavior was the same even
though the magnitudes measured was different.

Fig. 8. Counterplot for case 2. Initial simulation of the magnetic field density
(B) from the Matlab script using command line functions.

The value of the torque for case 2 from the command line
function. The torque from the command line function was
775N ∗ m when it was checked. It was not possible to get
the torque from the PDE-toolbox GUI. In Comsol the torque
was 22N ∗m.

There were big differences the B field/torque in the these
initial simulations, but the plots were very similar. The torque
in case 2 was about 40 times higher using the PDE-toolbox
than using Comsol. Because the aim in this project was to
optimize B-field (case 1)/torque (case 2) as a function of
magnet(s) placement, these differences were accepted since all



Fig. 9. Counterplot for case 2. Initial simulation of the magnetic field density
(B) from the PDE toolbox GUI

Fig. 10. Counterplot for case 2. Initial simulation of the magnetic field
density (B) from Comsol

models behaved the same when tested with different values.
Behaving the same, the optimal magnet(s) placement would
also be the same.

B. Optimization case 1

Several runs were performed to test the PSO algorithm,
using different numbers of particles and maximum iterations.
These would later be evaluated to see whether or not there
was a better set of parameters.

1) Reference solution: A parameter sweep with finer mesh
just around the optimum was run to set the reference solution
for the case. The result are presented in figure 11. From visual
inspection of figure 11, it is clear that the maxima was in the
upper, left corner of the figure. The readout showed that the
optimal placement of the magnet was with xmagn = −0.99
and ymagn = −0.11 (variables representing lower, left corner
of the magnet). This implies that the maximum is found at
the boundaries (x = −0.99, y = −0.11). The B-field with
this magnet placement was 40.13T . Figure 12 shows what the
optimum solution was.

Fig. 11. B field as function of x and y, based on parameter sweep in Comsol

Fig. 12. The optimal solution for case 1

2) PSO solution: The results obtained with PSO and the
PDE toolbox are presented in table III. All simulations were
run 10 times and the deviation was the difference between the
mean and the value with the largest deviation given as percent
of the mean. There was for some reason a spike at xmagn =
−0.20 in the script. Neither Comsol or tests with the script
indicated that there should be a spike in this position. I did
not find the reason, but all evaluations for xmagn = −0.20
were escaped from the PSO evaluation.

TABLE III
THE RESULTS FROM OPTIMIZING CASE 1, MEAN VALUES OF 10 RUNS.

Part.
Iter. 10 20 50

10
x = −0.51± 123% −0.66± 50% −0.79± 58.1%
y = −0.12± 52% −0.11± 0% −0.11± 0%
B = 12.20± 112% 17.04± 50% 20.48± 58%

20
x = −0.86± 61% −0.66± 50%
y = −0.11± 1% −0.11± 1%
B = 22.66± 63% 17.14± 52%

50
x = −0.92± 64% −0.99± 0.1%
y = −0.11± 1% −0.11± 1%
B = 24.44± 65% 26.17± 5%

As seen in table III, it is clear that the accuracy increased
with more iterations and/or particles. If looking at the numbers
in the upper, right cell and the ones in the lower, left cell, it
was clear that the solution with more particles was much closer
to the reference solution. The solution using 50 particles and



10 iterations does not differ much from the solution obtained
with 50 iterations, but the deviation does. The deviation was
the same at roughly 60% in both the 50/10 (iterations/particles)
and 10/50 runs. A deviation of 60% meant that at least one
of the runs gave a position roughly 0.05 higher/lower than
the mean. With a total solution space of 1.98 ∗ 0.68 the
deviation of 0.05 was significant. From this it may seem that
more particles compared to iterations gave better solutions,
and higher number of particles gave smaller deviations.

C. Solutions using Comsol

The same simulations were then run using Comsol as the
FEM-software (on the mac). The results are presented in table
IV

TABLE IV
THE RESULTS FROM OPTIMIZING CASE 1 WITH COMSOL, MEAN VALUES

OF 10 RUNS.

Particles
Iterations 10 20

10

x = −0.66± 112%
y = −0.12± 17%
B = 16.85± 72%
t = 388s± 2%

20

x = −0.80± 56%
y = −0.11± 0%
B = −23.46± 57%
t = 1552s± 5%

Compared to the results presented above, the results using
Comsol were similar to the ones using the PDE-toolbox. In
these runs, it seemed like the results were a bit closer to the
correct solution. However if comparing the runtime with the
PDE-toolbox runtimes presented later in section V-F, Comsol
takes longer time to execute.

D. Influence of different tuning

For the set of 20 iterations and 10 particles another result
was discovered: about half the runs showed the solution to
be at the local maxima with xmagn = −0.33 instead of the
global maxima at xmagn = −0.99. This may be because the
numbers of iterations/particles were to small and/or because
of badly tuning. In order to test this the same simulation were
run 3 times with different tuning, dt = 0.1, 0.2 and 0.5.
All the results can be found in table V. The results were
quite different in the three sets. dt = 0.5 seemed to be the
best in this test. But using this value would in turn give less
differences in the optimization results. Which, in this case
actually was wanted. It would be easier to evaluate the impact
of number of particles/iterations when having larger deviations
on the optimization results. All the rest of the simulations were
therefore done using dt = 0.2.

E. Optimization case 2

Case 2 was then optimized and the corresponding results as
in case 1 were found (except that torque and not B-field was
the object of optimization). The absolute value of the torque
was used as the fitness function in PSO. It had no impact
whether the motor turned clockwise or anti clockwise.

TABLE V
RESULTS FOR XMAGN WITH DIFFERENT TUNING. 20 ITERATIONS, 10

PARTICLES

dt=0.1 dt=0.2 dt=0.5
-0.33 -0.99 -0.99
-0.33 -0.33 -0.99
-0.33 -0.99 -0.99
-0.77 -0.99 -0.99
-0.99 -0.33 -0.99
-0.99 -0.33 -0.99
-0.33 -0.33 -0.99
-0.99 -0.33 -0.99
-0.99 -0.99 -0.99
-0.34 -0.99 -0.99

mean
-0.64 -0.66 -0.99

1) Reference solution: The optimum was found using com-
sol in this case as well. This time the optimum was found using
a parameter sweep of combinations of width and hight of the
magnets.

Fig. 13. Torque as function of width and hight of magnet, based on parameter
sweep in Comsol. Mark that the model in Comsol is scaled by a factor of
100.

The maximum torque value was −15.26N ∗m and appeared
with height of magnets at 0.0195 (equal 1.95 in the pde-
toolbox model) and magnet width at 0.1230 (equal 12.30 in
the pde toolbox model). The optimal torque seemed thus to
appear outside the set borders, but that was because the border
was given with 3 decimals and then the value rounded up.

Figure 14 shows the optimum geometry giving the highest
torque.

2) PSO solution: The same set of simulations were run
for case 2. 48 iterations/particles were used instead of 50, but
otherwise the simulations were similar to the ones performed
for case 1.

As for case 1, there was rather large deviations (∼ 60%)
in the 10/10 run and the solution was far from the opti-
mum. The deviation decreased with increasing number of
iterations/particles as for case 1. Unlike in case 1, both
50/10 (iterations/particles) and 10/50 gave approximately the
same solution and had the same deviation. So there was no
difference on running more iterations or particles in this case.
It was actually the 48/10 run that was closest to the reference
solution. The deviation between the 48/48 solution and the



Fig. 14. Solution for highest torque exported from Comsol

TABLE VI
THE RESULTS FROM OPTIMIZING CASE 2, MEAN VALUES OF 10 RUNS.

W=WIDTH MAGNET AND H=HIGHT MAGNET.

Part.
Iter. 10 20 48

10
w = 11.31± 66% 12.3± 39% 12.25± 38%
h = 1.87± 32% 1.94± 2% 1.94± 2%
τ = 3370± 60% 4367± 18% 4993± 29%

20
w = 12.40± 39% 12.81± 2%
h = 1.94± 2% 1.95± 0.5%
τ = 3965± 25% 4912± 15%

48
w = 11.27± 33% 12.75± 0.0%
h = 1.94± 3% 1.95± 0.3%
τ = 4197± 27% 5641± 7%

reference solution was not significant, but it was larger than
for the 48/10 run.

F. Parallelizing the optimizations case 1

Four combinations of iterations/particles were ran in the
main optimization tests: 10/10, 10/50, 50/10 and 50/50 (itera-
tions/particles). Table VII shows the measured runtime for all
these simulations. As for the FEM-simulations all simulations
were run 10 times and the mean was used. The deviation still
represented the run with the largest deviation from the mean.
Some of the simulations taking the longest time were only
run a one or a few times for practical reasons. 77% of the
simulations were run 10 times, 9% were run 2 times or more
so the majority of the results had a good statistical confidence.

The results will be visualized and plotted in the final
subsection of this chapter, after presenting all results for both
cases.

TABLE VII
MEASURED RUNTIME FOR CASE 1 WITHOUT/WITH PARALLELIZING.
MEAN VALUES OF 10 RUNS. NUMBERS IN BRACKETS BEHIND THE

COMPUTER NAME IS NUMBER OF WORKERS USED.

Machine
iter/par 10/10 50/10 10/50 50/50

fo
r mac 205s ± 13.2% 1291s ± 6% 1110s ± 5% 8244s1

eelk1734 3090s ± 14% 7607s ± 34% 7312s ± 40% 26134s ± 27%
eelk1728 458s ± 16% 2334s ± 7% 1911s ± 5% 14491s1

pa
rf

or

mac (2) 153s ± 22% 986s ± 5% 774s ± 9% 4906s1

eelk1734 (12) 57s ± 9% 286s ± 13% 242s ± 17% 1131s ± 6%
eelk1728 (12) 49s ± 8% 263s ± 4% 201s ± 5% 1127s ± 6%
eelk1728 (25) 49s ± 17% 256s ± 18% 146s ± 13% 667s ± 17%

cloudfor techila on 338s ± 10% 814± 3% 390± 8% 864s± 10%lab PCs

It is first worth noting that there were huge differences
between computers without parallelizing (the uppermost box
in table VII). The runtimes for the runs of 50/10 and 10/50
(iterations/particles) are almost the same for all the simula-
tions. The 50/10 run took some minutes longer time than the
other (except for techila). The runtime for techila could so
far seem to be a function of the number of particles only.
When comparing the runtimes in the uppermost box in table
VII (using for loop) with the results in the two next boxes it
clearly showed that there was much to gain by using parallel
processing. Note: the two computers eelk1734 and eelk1728
used about the same time when using parfor, but they did not
with the normal for.

G. Parallelizing the optimizations case 2

The same optimizations were run for case 2. In addition
some simulations with a higher number of iterations/particles
were run.

All simulations for case 1 were run on three different
computers. Unfortunately the eelk1734 server was taken down
for reinstallation by the time these simulations were run. Two
computers were found to be sufficient for case 2.

TABLE VIII
MEASURED RUNTIME FOR CASE 2 WITHOUT/WITH PARALLELIZING.

MEAN VALUES OF 10 RUNS.

Machine
iter/par 10/10 48/10 10/48 48/48

fo
r mac 2258± 9% 11102± 18% 10337± 0.2%2 51007s3

eelk1728 3506± 9% 17659± 2%4 16113s3 72527s3

pa
rf

or mac (2) 1639s± 10% 8801± 11± 8082s± 6% 37110s3

eelk1728 (12) 458s± 10% 2301s± 10%5 1799s± 7%6 147953

eelk1728 (25) 467± 10% 2356± 13% 1571s± 7% 7562s± 18.7%

cloudfor techila on
495s± 8% 1642± 19% 682s± 6% 2101± 2%lab PCs

As for case 1 it was clear that higher number of iterations/-
particles took more time. Parallel processing showed the same
tendency of shorter execution time as in case 1. The drop in
execution time for the 10/48 run versus the 48/10 run also
appeared here.

Two sets of simulations, using 48 parallels and techila, were
run in addition to the above. These results are found in table
IX. Figure 15 shows the results presented in table IX.

TABLE IX
SOME RUNS WITH HIGHER NUMBER OF ITERATIONS/PARTICLES, ONLY

ONE RUN OF EACH. CASE 2.

Machine
iter/part 1000/5 500/5 5/5 5/500 5/1000

eelk1728, 48 workers 41748s 16306s 196s 7496s 15192s
techila on lab PCs 31831s 16697s 427s 1857s 3348s

Techila performed surprisingly best for most sets in these
simulations, except for the ones with few iterations and rela-
tively low number of particles were they performed equally.

1Simulation run once
2Simulation run 2 times
3Simulation run once
4Simulation run 5 times
5Simulation run 6 times
6Simulation run 7 times



Fig. 15. Runtime for some simulations with techila and eelk1728 using 48
parallels.

This meant that the difference in runtime between techila and
a many core computer was dependent on the actual execution
time of each iteration.

H. Results from the parallelizing part combined

In this section the results from the parallel processing
parts are combined and plotted for visualization of trends and
comparison.

Fig. 16. Runtime as function of iterations and particles using normal for
loop (without parallelization). The red ones are case 1 on different computers,
and the blue ones are case 2 on the same computers.

The product of iterations and particles is in practice the
number of FEM evaluations done during the optimization. Fig-
ure 16 shows a linear relationship between number of FEM-
evaluations and the runtime. One can see the same tendency
in figure 17, but it is not as clear as without parallelization.

There is a drop between the second point and the third
point marked on the graphs in both figure 16 and 17. The
point are given in the same order as in the tables VIII and VII
for all graphs, which means that the 2nd point is 50(48)/10
(iterations/particles) and the 3rd is 10/50(48). The set of
more iterations and fewer particles are hence slower than the
simulation with few iterations and many particles, even though
the total number of FEM executions were the same.

The two figures 18 and 19 shows the speedup as a function
of number of cores for the two sets with 50/48 particles and
both 10 and 50 iterations.

Fig. 17. Runtime as function of iterations times particles, this time for the
parallelized runs. The red ones are case 1 on different computers, and the
blue ones are case 2 on the same computers.

Fig. 18. Speedup for the 50/50 case as function of cores. The two graphs
for mac (case 1 and 2) were identical and hence only one of them is seen in
the plot.

Fig. 19. Speedup for the 10 iteration and 50 particles case as function of
cores. The two graphs for mac were also here (case 1 and 2) identical and
hence only one of them is seen in the plot.

VI. DISCUSSION

A. The FEM simulations

Both results from the the initial FEM simulations and from
the optimizations were as expected, and matched the physical
understanding of the cases. The magnitude of the torque in
the PDE-toolbox simulation was about 400 times higher than
the Comsol simulation in case 2. Which was suspected to be



due to some extension problem (i.e. cm vs. m). The models
behaved the same way, and from the optimization results the
optimal height and width of magnets were the same (the PSO
solution matched the reference solution). The difference in the
B field in case 1 was in comparison small. If the aim had been
to find and evaluate the B-field/torque, this would be a great
uncertainty. But since only the placement of the magnet(s) was
of interest in this study thus the Comsol solution could be used
as reference for the magnet(s) placement anyway. It was not
put much effort into finding the reason for this difference since
the models behaved the same way.

There were problems when using trigonometric functions in
the boundary conditions of the magnets in case 2. The function
for the magnetic field at the boundary therefore ended up of
just being a function of x instead of a function of both x and
y. As for the deviation in the magnitudes of the B-field and
torque, this was found to be bearable. It might have affected
the optimal solution, but were the same for all simulations of
case 2. This means that they were valid anyway.

B. The difficulty setting up the FEM simulations

The PDE-toolbox GUI was used to set up the model in
both case 1 and 2. This was the easiest, but also simplest of
the three ways to set up the FEM simulation. Setting up the
model from command line was, in contrast, as difficult as the
GUI was easy. Especially setting up the boundary conditions
from script was challenging. I ascribe this partly to the lack of
examples, even not thorough Internet searches turned up empty
when looking for similar examples. To my knowledge there is
little documentation of setting up PDE-toolbox models from
scripts, especially in optimization applications. Setting up the
model in Comsol was straight forward, having used Comsol in
other studies in advance. If not, this might also be challenging.
A note with the workarounds found, and a guide is attached
in appendix B.

It may cause problems setting up the model in the PDE-
toolbox, if one wants to set up a similar case without removing
the magnet from the geometry

C. PSO results

The optimization results matched the expectations quite
well. As did the simulation results match the reference so-
lution. For both cases the PSO simulation worked and gave
expected results.

Even though it was not the aim of this study to evaluate how
to run the PSO for the most accurate solution, some work was
done on this as well. The reason was that it was expected to
be some relation between iterations/particles and accuracy. It
would be interesting to see if that matched the relation between
runtime and iterations/particles. Erlend Engevik found in his
specialization project that it seemed to be better with more
iterations than more particles [15]. The results presented here
do not entirely match. In the case 1 it was in fact the opposite.
More particles gave a better solution than more iterations. In
case 2, the results were almost the same with more iterations
and more particles. Most simulations done however had a
relative small number of both particles and iteration. It must

also be taken into account that there was a local optimum
present and that as few as 10-50 particles can be “trapped”
there even with a large number of iterations.

As mentioned earlier the result was affected by dt to a great
extent. Almost all results were equal to the correct solution
when using dt = 0.5, whereas about half the runs hit the
local maxima when using dt = 0.1. dt = 0.2 was used partly
because it made it easier to compare different sets of runs
and the quality of the solution. Setting dt = 0.5 made the
algorithm quite aggressive, which may have causes the swarm
to gather around one location too early (before all the solution
space is checked) and hence the tendency to hit a local maxima
would increase for some problems.

It is important to emphasize that it was exactly the same
implementation that was used in all cases. The quality of the
results were therefore the same regardless whether for, parfor
or cloudfor were used in the optimization.

D. The difficulty setting up PSO

The PSO implementation used in this study, was based on
Erlend Engevik’s earlier implementation of PSO. Setting up
the PSO, was therefore not difficult since only a minimal of
editing was needed to make it work for this purpose. Most
optimization algorithms are much more complex, but many
of them are pre-implemented in software. PSO has not to
my knowledge been pre-implemented in any software. Matlab
is not shipped with the PSO, but has other algorithms such
as the genetic algorithm which is one of the alternatives
to PSO. If using an algorithm already implemented in the
software used, the difficulties of setting up the optimization
drops dramatically, especially in situations with no access to
earlier implementations of the algorithm.

E. Runtime of optimization without parallelization

The optimizations based on FEM simulations without par-
allelization took a long time. The longest simulations for the
two cases used about 7 and 13 hours respectively. There was
also big differences between the different computers, f.i. for
case 1 the mac used about 2.5 hours for the 50/50 simulation,
while eelk1734 used 7 hours. The mac was definitely fastest
on all simulations without parallelizing (as one can see from
tables VII and VIII). This was because the mac has higher
frequency on the CPU than the two other computers.

It was clear that the runtime increased linearly with in-
creasing number of iterations and particles as shown in figure
16 and 17 (presented in the previous section). The product
of iterations times particles is equal to the number of FEM
simulation calls executed. This linearity implicates that every
FEM evaluation took the same time, which seems logical.

It seemed like the set with more iterations were a bit slower
than the same set with more particles for all runs. All graphs
went down from the point with 48 iterations/10 particles to
the ones with the opposite as shown in figure 16 and 17. This
fall is suspected to be because more iterations which means
that the loop comparing and updating the personal- and global
bests have to be executed far more times, which again takes
more time.



There are always many sources to errors when measuring
runtime: load on the computer, other users, faults in the code,
and how well the code is written for mention some. All
the computers used have simultaneously run other programs
and/or simulations while running the simulations for this study.
This will necessarily have an impact the runtime measured.
The computer eelk1734 got twice the theoretical speedup in
case 1 (will be discussed in the next section). This is because
the reference runs without parallel computing was slow. The
server could have been heavily loaded at the time and hence
the execution took an extraordinary long time. Since the rest of
the results (except the ones considering speedup for eelk1734)
are consistent, I am certain that the results found here, and
the tendencies detected are correct. The sources to errors
discussed here are the same for the next section about runtime
using parfor. Overall the deviations in the measured runtimes
were quite small. Only the discussed eelk1734 had deviation
above 10%. The large deviations in the runtimes measured for
eelk1734 (highest at 40%) supports the suspicion that there
was heavy load and that the computer did not have a steady
performance.

F. Decreased runtime using parfor

The correlation between total number of FEM evaluation
and the runtime discussed above, also seemed to be valid when
using parfor. It will therefore not be discussed further here.

The speedup using parfor cannot theoretically exceed the
increase in number of cores. Which means that for the 12
workers computers, the best possible runtime will be one
twelfth of the runtime without parallelization. For the com-
puter eelk1734 this speedup was exceeded to a good extent,
with 12 parallels the speedup was almost 30 times in the 10/50
case. For eelk1734 there were similar tendencies in the other
simulations. This must have been due to heavily loading on
the server, as discussed above.

I see in retrospect that the sets of particles/iterations chosen
was not the best suited to the number of cores on the available
servers. The numbers of iterations/particles should have been
a multiple of the number of workers in order to get even better
results. The correlation between runtime and number of cores
would then have been clearer for the parallelized simulations.
It can be deduced from a theoretical point of view that the
best speedup is dependent on the number of steps per worker
(using PSO this equals the number of particles). This applies
both to parfor and cloudfor.

The speedup was proportionally alike to the number of cores
for the 50/50 simulation in case 1. Case 2 had a lower speedup,
but this was also linear. The same tendency was found for sets
with fewer particles/iterations, but in these cases deviations
were significant. So it would be expected that even more cores
would decrease the runtime even more.

It was not possible to parallelize using Comsol, as men-
tioned in section IV-D. The optimization ran just fine using
the for loop and Comsol, but when trying to use parfor errors
erupted. I could not find any other explanation than it was
some licensing issue. The hope was to find a solution at some
stage, but unfortunately it was not.

G. Decreased runtime using cloudfor

Techila is a cloud solution that use idle lab PCs to execute
the parallels. Since it have to compile the code and distribute
it to vacant computers, it used more time initializing for every
cloudfor (In PSO this means for every iteration) than parfor.
Therefore cloudfor is even more dependent on the runtime of
the FEM simulation. In advance it was expected that techila
would not be good unless the number of particles were high,
there was only a few iterations and the FEM simulation took
quite some time.

For case 1 each FEM simulations took so little time that the
difference to the simulations without parallelization was not
noticeable until the 50/50 run, techila was then 10 times faster
than the mac. Techila was at least 10 times faster compared to
eelk1734 for all simulations run for case 1, but as discussed
earlier it must have had quite heavy load. For case 2, techila
was 5-25 times faster (depending on the number of FEM-
simulations) than the simulations without parallel processing.
Techila hence performed much better than expected.

When discussing the possibility of using comsol to the
FEM-simulations, techila would require comsol installed on
all nodes. If comsol is installed on all nodes, there should
be no problem with the licensing as the one discussed above,
since only one comsol instance will be active per worker. This
limits however techila to only use one of the available workers
per node (only one of the parallels on each lab PC).

H. Comparison of parfor and cloudfor

The resulting runtime for techila ended up between the
runtimes on the mac with 2 workers and the runtimes of
the servers with 12 workers in most cases. However, techila
seems to have access to faster CPUs since it almost managed
to compensate for the time used initializing, compilation and
communication even for small numbers of iterations/particles.
Techila is also more flexible when concerning number of
cores/computers. If for example techila is extended with 4
cores, it will mean one more idle lab PC. For a 48 cores
server to extend with 4 cores is both costly and difficult.

The trend identified in this study shown that simulations
where the FEM-simulation took as little time as in case 1,
techila was mostly slower than parfor using 12 or more
workers. The longer time every FEM-simulation took the
better techila performed, and for case 2 techila performed
overall best. For number of parallels exceeding the number of
cores on the supercomputer (in this study 48 or above) techila
is expected to perform even better. However I had only access
to 32 parallels on techila so I did not manage to test it in this
project.

For large numbers of iterations and only a few particles
techila was expected to be very much slower than the super-
computer (using 25/48 workers), but the runtime was in the
same range. In the opposite case techila was superior, for 1000
particles and 5 iterations it was almost 20 times faster even
though it had 16 workers less than the supercomputer. This
clearly shows that for some cases, where every iteration takes
a lot of time and the number of iterations are low, techila
would be preferred.



I. The difficulty parallelizing

It was surprisingly easy to go from the non-parallelized for
loop to parfor or cloudfor. It took less than 1 hour work to
change to parfor. Techila was a new solution, even to the
IT department, so setting it up and making the simulation run
required several trials, and many errors had to be solved. Once
getting the configuration right, both in my- and the server’s
end, all simulations ran without any problems at all. Next time
setting up techila will be as easy as parfor was this time.

J. The overall difficulty of setting up the test cases

The only real difficulty met when setting up the optimization
and parallelizing, was the set up of the model in the PDE-
toolbox. Much time was also used to get the model- and PSO
parameters right, but that is another matter. Going from normal
for loop to parfor/cloudfor was, as discussed above easy. The
time used setting up the simulations was in my opinion worth
while the reduced runtime.

Comsol was much easier to set up than the PDE-toolbox
(from command line). Comsol is also a more advanced FEM-
simulation software. Concerning speedup the PDE-toolbox
performed best in the few tests done here.

K. Means for further speedup

From the above discussion, more cores will give an even
higher speedup (given that the increase in number of cores
make less steps per worker). A quite fine mesh was used in
these simulations, which slowed down the FEM-simulations.
A fine mesh gives a more accurate result, but it may not always
be necessary.

No stop criteria was used in the PSO algorithm, which could
speed up the optimization. A stop criteria could stop execution
when a given accuracy on the solution was obtained, even
though the number of iterations not jet was reached. Then the
PSO would not use more iterations than necessary to get the
required accuracy, and hence finish faster.

There have been little focus on optimize the PSO imple-
mentation. There might also be time saved by making the
implementation more efficient.

L. Other optimization algorithms

The results found in this study indicates that there is much
to gain using parallel processing. As long as the code have
for loop(s) which are able to run for itself, parallel processing
can be utilized. In the PSO code used here, the loop was split
up to be able to parallelize. There is the same opportunity in
many other optimization algorithms. Erlend Engevik did some
testing utilizing parallelization, both applied to PSO and the
genetic algorithms, and found that the genetic algorithm was
both better and faster than PSO in his simulation cases [16].

VII. CONCLUSIONS

The aim of this thesis was to prove that it is possible to
utilize FEM-simulations in optimizations of electric power
problems. It was expected that parallel processing would be
required to be able to run these simulations within reasonable

time. This was proven right. Even a small and simple model
has shown to use up to 7 hours without parallelizing. The
same simulation was done in about 18 minutes when using
terminal servers with 12 cores. The simulation was done in
about 10 minutes when using 25 parallels. This is actually
a speedup just below the theoretical maximum. This also
indicate that more cores can be utilized for larger problems.
A more complex model was also tested, and then the speedup
was lower from 13 hours down to less than one hour. In both
cases the speedup was linearly dependent on the number of
parallels. All simulations were run 10 times and the deviation
was less than 20% for all computers except for one, but it is
suspected that computer was heavily loaded at the time the
first simulations were run.

Initially both Comsol and the PDE-toolbox were tested for
the FEM-simulations, mostly the PDE-toolbox was used due
to difficulties running Comsol in parallel. Comsol was by far
the easiest of the two to set up from the Matlab command
line, but again, it proved to be a bit slower in the few tests
computed. The boundary conditions proved to be very difficult
to set up in the PDE-toolbox, but that may be due to lack of
examples. Setting up the rest of the model was also difficult.
Relative to the speedups already discussed it was worth the
effort.

The cloud solution techila was also tested and gave similar
results as the 48 cores machine. Techila performed much better
than expected, and may be the best choice for parallelization
in the future, even for a quite small number of iterations.
Techila can also utilize idle lab PCs which is a great advantage
over using supercomputers. It can easily be scaled up to as
many parallels as you wish without necessarily the costs of a
supercomputer able to run the same number of parallels.

In this study a new way of optimizing power electric
problems have been tested, and I think such optimizations will
be seen more to in the future.

VIII. FUTURE WORK

Other optimization algorithms applied the cases used in
this study, is a natural continuation of this work. Also will
optimizations using Comsol and parallelized, give a good con-
tribution to the results found. Comsol also has an optimization
toolbox which can be tested and evaluated against a Matlab-
based optimization. Off course testing whether tendencies
found in this study also applies to other cases will be important
in order to verify the results found.
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Fig. 20. Overall flow chart

APPENDIX B
NOTE ABOUT HOW TO SETUP MODEL FOR PDE TOOLBOX

FROM COMMAND LINE

This note contains all about setting up a magneto static
model for the PDE-toolbox found during the work with
this study. In addition I recommend using Matlab’s online
documentation [17]. Since all work in this master thesis have
been in 2D, all description below are for the 2D case. Also note
that for all parameters there are different formats and ways of
obtaining them that are approved, but I will only describe the
method I have used.

Table X shows an overview of the different variables.
By actually setting up the model using the GUI, all these
variables can be exported to the Matlab workspace. Figure
21 shows how to export the mesh, all other variables are
similar. From the experience from the work with this thesis it
is recommended to set up the simulation in the GUI before
making the script. That way one gain two big advantages:
firstly it is possible to copy in most variables in the beginning
and generate them by scripting later, and secondly you can
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use them as reference for your own. If one of the matrices/-
variables are unchanged and then the imported from the GUI,
it can be used in the simulation.

Fig. 21. Screenshot explaining how to export mesh in the GUI

TABLE X
TABLE OF PDE TOOLBOX VARIABLES

g the geometry matrix
b the boundary condition matrix. Has one column for each

column in g.
p one of the three mesh matrices. Containing the position of all

nodes
e second of the mesh matrices. Containing information of all

geometry edges (note! not all triangle edges)
t third of the mesh matrices. Contains all triangle numbers and

indices to all three corner nodes
f information about the current density (J)
c material properties
a seems to be zero for all magnetostatic problems
u the solution vector. Contains the vector potential (A) in all

nodes

Below I will go through all steps required to make a model
from a matlab script. Bold will be used for matlab variables/-
matrices and italic will be used for matlab commands.

1) Geometry: I found it easiest to make the geometry by
first making a so called gdm matrix and then use decsg to
make g. In gdm there is a coloumn for each drawn figure.
The top row contains a number the tells what kind of figure it
is, the next rows containes properties as corner points, center
and radius according to [18][paragraph “Geometry Description
Matrix”], and last zeros until the column length equals that of
the largest of the vectors. For examples see lines about 35-
55 in appendix G. decsg also requires an expression for the
geometry, for examples see line 15 in appendix F and line 56
in appendix G.

2) Meshing: This is quite straight forward. I have just used
initmesh and the only things I have specified are Hmax and
MesherVersion (see line 19 in appendix F). I recommend
taking a look at the specifications in the GUI and find what
settings that are used there.

Fig. 22. Screenshot of mesh settings in the GUI

The command initmesh returns the three meshing matrices;
p, e and t. If ever referring to a point/boundaries in the ge-
ometry (f.i. for setting up boundary conditions) it is important
to understand the relations between these matrices and the
solution. p is the easiest; it contains x and y coordinates
to all nodes in the geometry. e contains all edges in the
geometry, so all triangle edges that lies “on top” of the “drawn”
geometry has a column in e. The first two rows in e contains
the indices to the starting and stopping node, these indices
are equal to the indices to the row i p. Rows 3 and 4 in e
contains parameter values at the starting and stopping point.
Row 5 has the boundary segment number, which is the one
needed to specify boundary conditions. Last rows 6 and 7 has
the subdomain numbers to both sides of the edge. Choose
“Show Edge Labels” and “Show Subdomain Labels” from
the “Boundary”-menu in the toolbox and what subdomain
numbers and boundary segment number is will hopefully be
easy understandable. The last meshing matrix t contains the
indices to the three corner nodes in all triangles in row 1-3,
the triangle numbers in the 4th row.

3) PDE specifications: The specifications are given by the
three variables f, c and a. I used the same format as if exported
from the GUI. That means a string with the value of f, c and
a as text divided by exclamation mark (!). If having one entry
for each geometric figure, in the same order as in the geometry
matrix gdm, I got it working. If comparing to the GUI (see
screenshot in figure 23) f equals J, c equals mu and a is zero.
See line 25-27 in appendix F and line 115-139 in appendix G
for examples.

4) Boundary conditions: First of all, boundary conditions
can only be specified for borders between geometry and



Fig. 23. Setting up PDE specifications in the GUI

surroundings. Go to “Boundary mode” in the GUI to see which
boundaries you can specify conditions to in the geometry in
question. One can choose between Dirichlet and Neumann
boundary conditions (or both). Equation (12) describes the
Dirichlet boundary conditions and Equation (13) describes the
Neumann boundary conditions.

h ∗A = r (12)

n

µ
∗ ∇A+ q ∗A = g (13)

In the first equation h is explained as “weight” and r
as “magnetic potential” in the GUI (see figure 24). Using
Neumann as conditions type g is “Magnetic field” and q is
a constant. Note that q, g, h and r is expressed in strings.

Fig. 24. Setting up PDE specifications in the GUI

The b matrix was the one most difficult to understand. For
each column in the decomposed geometry matrix g there is a
column in b. There is one column for all distinct edge labels
(which is the same label as in the 5th row in e). I’ve concluded
for myself that every column have to correspond to one line
segment (the line between two points, either corners and/or a
point where two drawn lines cross) in the drawn geometry (as
can be seen in “Draw mode” in the GUI). I have not found
anywhere this is said, but my interpretation have seemed to
work.

The first row in b has the number of PDEs, this can be
set to zero for edge segments that is not borders. For a 2D
case there is usually only one PDE. The second row contains
the number of Dirichlet conditions. The GUI only accepts one
boundary condition (either Dirichlet or Neumann), but using
the command line there is no limit as far as I have found.
The next rows contains the lengths of the strings containing
q, g, h and r respectively. The next rows contain q, g, h and
r character by character according to the above number of
characters.

So if you all in all have one PDE, one set of Diriclet
boundary condition and one set of Neumann condition and
the border conditions can be expressed as the following
1 ∗A = 2 ∗x and n

µ ∗∇A+ (y+x) ∗A = 100, then q=’y+x’,
g=’1045’, h=’11’ and r=’x’.

· 1 (number of PDEs) ·
· 1 (one Dirichlet condition) ·
· 3 (number of chars in q) ·
· 4 (number of chars in g) ·
· 2 (number of chars in h) ·
· 1 (number of chars in r) ·
· ′y′ (1st char in q) ·
· ′+′ (2nd char in q) ·
· ′x′ (3rd char in q) ·
· ′1′ (1st char in g) ·
· ′0′ (2nd char in g) ·
· ′4′ (3rd char in g) ·
· ′5′ (4th char in g) ·
· ′1′ (1st char in h) ·
· ′1′ (2nd char in h) ·
· ′x′ (1st char in r) ·



(14)

The length of the vector is determined by the longest col-
umn. All values below those specifying the boundary condition
is zero. See lines 93-113 in appendix G for examples. More
about the b matrix can be found at Mathwork’s webpage [19].

5) Solution: The solution u is magnetic potential in all
nodes, corresponding to p. The pde is solved by using the
Matlab command assempde. Useful functions when the so-
lution are obtained is pdegrad that evaluates the gradient in
triangle midpoint and pdeprtni that interpolates from triangle
midpoint to nodes. Note that the B-field can be found from
the gradient of u (for a 2D case) from equation (6). In code:
B=[uy,-ux]

6) Problems: During this work I have encountered quite
some problems. The first one was how to get only one index
from each query in the process finding the labels for the
boundary condition. The solution I found that worked was
to multiply all x and y values with 1e4, round off and then
scale back. This way I could get an accuracy of four digits,
but one difference in the 15th decimal did not matter. For
values around zeros I used absolute value < 0.01 instead. This
approach seemed to work with other problems as well, as with
geometry problems. In the end I had an unsolved problem with
geometry/meshing, but there seemed to be no system about it
and the simulations ran most times so this is still unsolved.



APPENDIX C
NOTE ABOUT SETTING UP TECHILA AND CONFIGURE CODE

TO USE CLOUDFOR

Techila is quite straight forward to both setup and use.
7) Installation: In the HPC wiki [20] there are information

about how to sproceed to set up techila at NTNU. After doing
the installation it is important to add the new techila folder to
your Matlab path.

8) Techila parameters: All simulations done in this thesis
is done by using the following set of parameters in the code:

1 numCores=32;
2 stpw=ceil(popSize/numCores);
3

4 cloudfor mm=1:popSize
5 %cf:stepsperworker=stpw
6 %cf:peach LocalCompile=false
7 %cf:peach RemoteCompile=true
8 %cf:peach CompilationPlatforms= {{’Windows’,

’amd64’, ’mcc_64’}}
9 [loop content]

10 cloudend

It can be confusing that the techila parameters looks like
comments, but the rule is that all lines preceding cloudfor that
starts with %cf: is techila parameters. The stepsperworker
says how many iteration each core should do. I had maximum
32 cores available, so for instance if I should simulate 64
particles stepsperworker would be 2. The next three lines
tells techila that I want remotely compilation and that I want
to run the code on Windows machines. At NTNU, windows
compilation automatically means using idle computer lab PCs
to execute the code.

9) Problems running code: If you don’t manage to run
your code, try put it into the /lib/Matlab/ folder (in the techila
folder), that solved it for me. Also try to delete all files created
automatically by techila during execution (techila tmp-folder,
techila *.mat for instance).

APPENDIX D
NOTE WITH INFORMATION ABOUT RESOURCES AT NTNU

These are some of the resources I’ve located at NTNU
during the work with this thesis. I have not been in contact or
used all, but it is included in the hope to help other students
at NTNU working with the same topic. This was written in
may 2014, and I do not guarantee the correctness of any of it.

TABLE XI
RESOURCES AT NTNU

The techila solution Cloud software for parallel computing.
Tested in this report, and can be used to-
gether with, amongst others, Matlab. It is
possible to run hundreds of parallels using
techila at NTNU, but in that case one need
to get into an contract with the the section
for Scientific Data Processing.

48 cores computers The department of Electric Power Engineer-
ing have three such machines. eelk1734 and
eelk1728 are two of these. Anders Gytri and
Kurt Salmi administrate these machines. At
least to eelk1728 supervisor has to request
access on behalf of the student.

100 cores computers with
1TB memory

There is one such computer at NTNU, I am
not sure where but I guess it is at IDI. Heard
about it from Anders Gytri.

Powerful graphical work
stations

There are four of these placed in F312 that
belong to the department of Electric Power
Engineering. Supervisor has to request ac-
cess on behalf of the student.

The section for Scientific
Data Processing

Part of the IT department at NTNU. In this
project John Floan from this department has
helped me a lot.

Full license Comsol There is a full license on eelk1728. It is also
possible to require a license, supervisor has
to file this request.



APPENDIX E
PSO CODE

1 function res = PSO_function(popSize,imax, LB, UB)
2 % popSize = number of particles
3 % imax = number of iterations
4 % LB = lower boundrary (in 2D LB=[xmin ymin])
5 % UB = upper boundrary (in 2D UB=[xmax ymax])
6

7 % starting timer
8 tic
9

10 % initilizing of variables
11 c1 = 2;
12 c2 = 2;
13 nvar = 2; %dimention of the problem
14 dt = 0.2; %tuning, how "aggressive" the algorithm

is
15 fitness = zeros(popSize,1);
16

17 % creates the initial population
18 x = PSO_initialPop(popSize,nvar,LB,UB);
19

20 % finding the result for the initial population
21 % this loop was later changed to parfor/cloudfor
22 for i = 1 : popSize
23 fitness(i,1) = pde_model_commandline(x(i,1),x(i

,2));
24 end
25

26 % initilation more variables
27 pb = fitness; %personal best for all particles
28 xPb = x; %the corresponding x,y placement for pb
29 v = zeros(popSize,length(LB)); %current velocity
30 [gb,iGB]=max(fitness); %starting global best (gb)
31 xGb = x(iGB,:); %starting global best position
32

33 % doing the iterations
34 for i =1:imax
35 [w = PSO_inertialWeight(i,imax)
36

37 % finding current solution for all particles
38 % this loop was later changed to parfor/

cloudfor
39 for j = 1 : popSize
40 fitness(j,1)=pde_model_commandline(x(j,1),x(j

,2));
41 end
42

43 % compare current to personal- and global bests
44 for j = 1 : popSize
45 % compares present position to personal best
46 if fitness(j,1) > pb(j,1)
47 pb(j,1) = fitness(j,1); %updates p. best

value
48 xPb(j,:) = x(j,:); %updates p. best

position
49 end
50 % compares current postition to the global

best
51 if fitness(j,1) > gb
52 gb = fitness(j,1); %updates global best

value
53 xGb = x(j,:); %updates gb position
54 end
55 end
56

57 % updating velocity and position
58 for k = 1 : popSize
59 v(k,:) = w*v(k,:) + c1*rand*(xPb(k,:) - x(k

,:)) + c2*rand*(xGb - x(k,:)); %new
velocity

60 x(k,:) = x(k,:) + dt*v(k,:); %new position
61

62 % dealing with particles outside boundries
63 for m = 1 : length(LB)

64 if (x(k,m) < LB(m))
65 x(k,m) = LB(m);
66 v(k,m) = 0;
67 elseif (x(k,m) > UB(m))
68 x(k,m) = UB(m);
69 v(k,m) = 0;
70 end
71 end
72 end
73 end
74

75 % stopping timer
76 time=toc;
77

78 % plotting final solution
79 pde_model_commandline(xGb(1),xGb(2),i,1);
80

81 % returning runtime and the global best values
82 res=[time gb xGb(1) xGb(2)]
83

84 end

APPENDIX F
PDE TOOLBOX MODEL CASE 1

1 function Bfield = pde_model_commandline(xmagn,
ymagn, i, ifPlot)

2

3 % Material parameters
4 mu_0=4*pi*1e-7; %Permeability vakuum
5 mu_iron=4000*mu_0; %Permeability iron
6

7 % Geometry description, defining the different
objects

8 area = [3 4 -1 1 1 -1 0.5 0.5 -0.8 -0.8];
9 iron_1 = [3 4 -1 1 1 -1 0.5 0.5 0.45 0.45];

10 iron_2 = [3 4 -0.4 0.4 0.4 -0.4 0.45 0.45 0.2
0.2];

11 magnet = [3 4 xmagn xmagn+0.6 xmagn+0.6 xmagn
ymagn+0.3 ymagn+0.3 ymagn ymagn];

12

13 %making the geometry matrix and plots it
14 gdm = [area; iron_1; iron_2; magnet]’;
15 g = decsg(gdm, ’R1-R4+R3+R2’, [’R1’; ’R2’; ’R3’;

’R4’]’);
16

17 % Mesh generation
18 hmax=0.02;
19 [p,e,t]=initmesh(g,’Hmax’,hmax,’MesherVersion’,’

R2013a’);
20

21 % Boundary conditions (b was exported from gui)
22 b=[0 0 0 1 1 1 1 ... 41 0 0 0];
23

24 % PDE coefficients
25 f=’0!0!0’;
26 c=strcat(num2str(1/mu_iron),’!’,num2str(1/mu_iron

),’!’,num2str(1/mu_0));
27 a=’0.0!0.0!0.0’;
28

29 %Solving PDE
30 u = assempde(b, p, e, t, c, a, f); %u is magnetic

potential
31

32 %finding gradient to u at triangle MIDPOINT
33 [ux,uy] = pdegrad(p,t,u);
34

35 %Making the B-field at triangle midpoint
36 B=[uy;-ux];
37

38 %compute gradient of A in NODES
39 ux_node=pdeprtni(p,t,ux);
40 uy_node=pdeprtni(p,t,uy);
41



42 %absolute value of B is the length of vector at
NODES

43 absB=sqrt((ux_node.ˆ2)+(uy_node.ˆ2));
44

45 %Plotting solutions
46 if ifPlot==1
47 %plot geometri og contour-plot
48 figure(1)
49 set(gcf,’name’,’Contour plot of B-field’)
50 hold on
51 pdegplot(g, ’subdomainLabels’,’on’);
52 pdeplot(p,e,t,’xydata’,absB,’contour’,’on’,’

levels’,15);
53 hold off
54 [more plotting]
55 end
56

57 %finding solution in (-0.4,0.2)
58 index=intersect(find(p(2,:)==0.2),(find(p(1,:)

==-0.4))); %index in solution vector
59

60 if isempty(index)
61 Bfield=0;
62 elseif xmagn==-0.2
63 Bfield=0;
64 else
65 Bfield=absB(index);
66 end
67 end

APPENDIX G
PDE TOOLBOX MODEL CASE 2

1 function Torque = pde_model_CaseII_commandline_2(
hmagn, wmagn, i, ifPlot)

2

3 %parameters for the geometry
4 r_rotor=5; %radius rotor
5 dr_airgap=2; %width airgap
6 dr_stator=3; %width stator
7 width_slot=4; %in degrees
8 depth_slot=0.5;
9 ant_slots=12; %number of slots

10 %radius for torque-calculation circle
11 r_circle_torque=r_rotor+dr_airgap-0.03;
12 %at what degrees the slots are placed
13 grader_slot=[15 45 ... 345];
14

15 %the currents in the three phases r, s and t
16 curr_r=2e3;
17 curr_s=4e3;
18 curr_t=2e3;
19

20 %input boundary conditions
21 q_neumann=’0’; %q, Neumann
22 g_neumann=’0’; %g, Neumann
23 h_dirichlet=’1’; %h, Dirichlet
24 r_dirichlet_magnet=’1.20000*x’; %r, Dirichlet
25 r_dirichlet_outer=’0’; %r, Dirichlet
26

27 % Material parameters
28 mu_0=4*pi*1e-7; %Permeability vakuum
29 mu_iron=4000*mu_0; %Permeability iron
30 mu_copper=mu_0; %Permeability copper
31

32 % Geometry description:
33

34 % Defining all the circles
35 area_rotor = [4 0 0 r_rotor r_rotor 0 0 0 0 0 0

0];
36 [similar for the other circles]
37

38 % Defining all the slots
39 slots=zeros(12,ant_slots);
40 slots(1,:)=2;

41 slots(2,:)=4;
42 slots(3,:)=cosd(grader_slot-(width_slot/2))*(

r_rotor+dr_airgap-0.001);
43 slots(7,:)=sind(grader_slot-(width_slot/2))*(

r_rotor+dr_airgap-0.001);
44 [row 4-6,8-10 contains x,y for rest of the

corners]
45

46 % The polynoms to make the magnet widht
47 %angle in rad from x-axis to magnet "start"
48 ang_magn=((pi*r_rotor-wmagn)/r_rotor)/2;
49 y=sin(ang_magn)*(r_rotor+dr_airgap+dr_stator);
50 x=cos(ang_magn)*(r_rotor+dr_airgap+dr_stator);
51 area_neg_tri = [2 5 0 -x -10 -10 -x 0 y y -y -y];
52 area_pos_tri = [2 5 0 x 10 10 x 0 y y -y -y];
53

54 % Making the geometry matrix
55 gdm = [area_rotor’ area_air’ area_stator’

circle_torque’ slots area_magnet’
area_neg_tri’ area_pos_tri’];

56 [g, bt] = decsg(gdm, ’(E3+P1+P2+P3+P4+P5+P6+P7+P8
+P9+S1+S2+S3+E2+E5)-(E4-E1-T1-T2)’,[’E1’; ’E2
’; [labels corresponding to gdm] ; ’T2’]’);

57

58 % Mesh generation:
59 hmax=0.2;
60 [p,e,t]=initmesh(g,’Hmax’,hmax,’MesherVersion’,’

R2013a’);
61

62 %Get edge labels for outer circle and magnet
63 %find index in p to a known point at all outer

boundaries
64 index_outer_1=intersect(find(p(2,:)==10),(find(

abs(p(1,:))<0.01)));
65 [dping the same for p(1,:) and -10]
66

67 %find index in p to a known point at all long
sides of magnets

68 index_bottommagn_bottom=intersect(find(p(2,:)==-
r_rotor),(find(p(1,:)<0.001)));

69 index_bottommagn_top=intersect(find(round(p(2,:)
*100000)==-(round((r_rotor+hmagn)*100000))),(
find(abs(p(1,:))<0.01)));

70 [same for top magnet]
71

72 %find index in p to a known point at all long
sides of magnets by finding index to center
and recognicing that the short sides always
has same boundary number plus/minus 1 as the
four that meats in the center

73 index_center=intersect(find(p(2,:)==0),(find(p
(1,:)==0)));

74

75 %finding boundary labels to the edges by finding
the index in the first or second row of the e
matrix. the label is in row 5.

76 %labels outer circle
77 label_outer_1=e(5,(find(e(1,:)==index_outer_1)));
78 label_outer_2=e(5,(find(e(1,:)==index_outer_1)));
79 [similar for index_outer_2, ..._3 and ..._4]
80

81 %labels long sides magnets (must have two since
the long sides divide into two segments when
long)

82 label_topmagn_bottom=e(5,(find(e(1,:)==
index_topmagn_bottom)));

83 label_topmagn_bottom_2=e(5,(find(e(2,:)==
index_topmagn_bottom)));

84 [similar for the rest of the indices]
85

86 %labels short sides magnets
87 label_center1=e(5,(find(e(1,:)==index_center)));
88 label_center2=e(5,(find(e(2,:)==index_center)));
89

90 label_topmagn_3=label_center1(1)+1;
91 [similar for the 3 others]
92



93 %making boundary condition matrix b (doc pdebound
)

94 ne = size(g,2); % number of edges
95

96 N=1;%number of PDEs
97 M=1;%number of Dirichlet conditions
98

99 %assume only Dirichlet boundary contitions
100 b=zeros((6+numel(q_neumann)+numel(g_neumann)+

numel(h_dirichlet)+numel(r_dirichlet_magnet))
,ne);

101 for k = 1:ne
102 switch k
103 %setting boundary conditions for outer

circle
104 case {[any of labels for outer circle]}
105 b(:,k)=[1;1;1;1;1;1;’0’;’0’;’1’;’0’

;0;0;0;0;0;0;0;0];
106 %setting boundary conditions for magnets
107 case {[any of labels for magnets]}
108 b(:,k)=[1;1;1;1;1;length_r;’0’;’0’;’1

’;r_dirichlet_magnet(1);...;
r_dirichlet_magnet(9)];

109 %setting the rest of the edges to having
none

110 otherwise
111 b(:,k)=[0;1;1;1;1;1;’0’;’0’;’0’;’0’

;0;0;0;0;0;0;0;0];
112 end
113 end
114

115 % Setting up PDE coefficients
116

117 %same order as in gdm
118 current=[0 0 0 0 curr_t curr_t ... -curr_r 0 0

0];
119 f_temp=bt*current’;
120

121 %material constants
122 iron=1/mu_iron;
123 air=1/mu_0;
124 copper=1/mu_copper;
125

126 %same order as in gdm
127 material=[iron air iron ... iron];
128 c_temp=bt*material’;
129

130 %making the f and c variables. Did not find a
better way to do this.

131 f=num2str(f_temp(1));
132 c=num2str(c_temp(1));
133

134 for i=2:length(f_temp)
135 f=strcat(f,’!’,num2str(f_temp(i)));
136 c=strcat(c,’!’,num2str(c_temp(i)));
137 end
138

139 a=0; %seems to be 0 for all magnetostatic
problems

140

141 %Solving PDE (u is magnetic potential)
142 u = assempde(b, p, e, t, c, a, f);
143

144 %find gradient to u at triangle MIDPOINT
145 [ux,uy] = pdegrad(p,t,u);
146

147 %compute gradient of A in NODES
148 ux_node=pdeprtni(p,t,ux);
149 uy_node=pdeprtni(p,t,uy);
150

151 %Making the B-field at triangle midpoint ref[1]
152 B=[uy;-ux];
153

154 %absolute value of B at node points
155 absB=sqrt((ux_node.ˆ2)+(uy_node.ˆ2));
156

157 %Plotting solutions

158 if ifPlot==1
159 %plot geometri og contour-plot
160 figure(1)
161 set(gcf,’name’,’Contour plot of B-field’)
162 hold on
163 pdegplot(g);
164 pdeplot(p,e,t,’xydata’,absB,’contour’,’on’,’

levels’,20);
165 hold off
166

167 [more plots]
168 end
169

170 % Calsulating magnet area
171 TotalMagnetArea=(((hmagn+r_rotor)ˆ2*((pi/2)*

ang_magn))-(r_rotor)ˆ2*((pi/2)*ang_magn))*2;
172

173 %finds all boundary labels to the "torque circle"
174 index_temp=intersect(find(round(p(1,:)*100)==

round(0*100)),find(round(p(2,:)*100)==round(
r_circle_torque*100)));

175 label_circle_torque_1=e(5,(find(e(1,:)==
index_temp)));

176 label_circle_torque_1x=e(5,(find(e(2,:)==
index_temp)));

177 [similar in the three other directions as well]
178

179 %finds index i p to all nodes at the "torque
circle"

180 node_points_circle_torque=[];
181 for k = 1:length(e(1,:))
182 switch e(5,k)
183 case {label_circle_torque_1 ...

label_circle_torque_4x}
184 node_points_circle_torque=[

node_points_circle_torque e(1,k)
];

185 end
186 end
187

188 %calculation of tensor and force
189 sum_f=0;
190 for n=(node_points_circle_torque);
191 %tensor
192 T=[(Bx(n)ˆ2-0.5*absB(n)ˆ2) Bx(n)*By(n); By(n)

*Bx(n) (By(n)ˆ2-0.5*absB(n)ˆ2)];
193 %force in each point
194 f=(1/mu_0)*T*[(p(1,n)/r_circle_torque);(p(2,n

)/r_circle_torque)];
195 %force causing axial torque
196 df=sqrt((dot(tS,f)*[nS(2);-nS(1)](1))ˆ2+(dot(

tS,f)*[nS(2);-nS(1)](2))ˆ2);
197 %summing up force contributions
198 sum_f=sum_f+df;
199 end
200 %multiplying with average length between nodes
201 F=sum_f*((r_circle_torque*2*pi)/length(

node_points_circle_torque));
202 Torque=F*r_circle_torque*1e-4; %due to scaling
203 end
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