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1 NORSK SAMMENDRAG 
Translasjonsmedisinske studier av hypertensiv nefropati: Prevalens, diagnose og 

patofysiologi 

Kronisk nyresjukdom defineres som nedsatt nyrefunksjon (estimert glomerulær filtrasjonsrate 

(eGFR) <60 mL/min/1,73m2), og/eller avvik i urinfunn (proteinuri, hematuri) eller 

bildediagnostikk av nyrene, som varer i mer enn 3 måneder. Kronisk nyresjukdom finnes hos 

rundt én av ti voksne i industrialiserte land. Tilstanden utgjør en byrde på samfunn og 

helsevesen, spesielt på grunn av den økte risikoen for hjerte-/karsjukdom og slag som følger 

med kronisk nyresjukdom. Tidlig diagnose og behandling, med vekt på blant annet blodtrykk, 

proteinlekkasje i urin og kolesterol, bremser forverringa av nyrefunksjonen. Dagens 

diagnoseverktøy med blod- og urinprøver gir utslag først når nyrefunksjonen er moderat 

redusert, og nyresjukdommen er etablert. Vi trenger bedre diagnoseredskaper for å finne de som 

har tidlig nyresjukdom, og skille ut de som gradvis forverres til endestadium nyresvikt. Vi 

trenger også mer kunnskap om hvilke sjukdomsmekanismer som er viktigst i utviklinga av 

nyresvikt, for å kunne finne nye behandlinger. 

Den vanligste årsaken til endestadium nyresvikt i Norge er nyresjukdom på grunn av høgt 

blodtrykk, såkalt hypertensiv nefropati. Etter sukkersyke er det den vanligste årsaken til 

endestadium nyresvikt i industrialiserte land. Sjøl om tilstanden er godt kjent, er det paradoksalt 

nok debatt rundt både definisjonen, utbredelsen, årsakene og de grunnleggende 

sjukdomsmekanismene bak sjukdommen.  

Hypertensiv nefropati har ofte vært antatt årsak til kronisk nyresjukdom hos individer med 

langvarig høgt blodtrykk, kun sparsomme urinfunn (lite blod eller protein i urinen), og som 

ikke har tegn til andre sjukdommer som kan gi nyreskade (for eksempel sukkersyke, cystenyrer 

eller kronisk nyrebetennelse/glomerulonefritt). Hos disse har man tidligere ofte antatt 

diagnosen hypertensiv nefropati uten å ta vevsprøve fra nyrene (nyrebiopsi) for bekreftelse. Det 

har vært omdiskutert hvor presise disse kliniske kriteriene er. Dette har vært undersøkt hos 

afrikansk-amerikanere og i enkelte andre etniske grupper, men ikke så godt hos hvite europeere. 

I artikkel 2 gjennomgikk vi 4920 nyrebiopserte pasienter fra Norsk nyreregister, hvorav 918 

hadde biopsi-bekreftet hypertensiv nefropati. Blant de 918 hadde mange urinfunn, hvorav 34 

% hadde blod i urinen og 57 % hadde protein i urinen. Vi fant at de tradisjonelle kliniske 

diagnosekriteriene var relativt upresise (sensitivitet 0,12, spesifisitet 0,96), og at mens fravær 

av disse kriteriene utelukket diagnosen relativt presist (negativ prediktiv verdi 0,83), klarte ikke 

disse kriteriene, de gangene de var tilstede, å forutsi diagnosen presist (positiv prediktiv verdi 

0,41). Kriteriene som var sterkest assosiert med biopsi-bekreftet hypertensive nefropati var høg 
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alder, høgt diastolisk blodtrykk, lav proteinuri, fravær av blod i urin, hankjønn og fravær av 

sukkersyke. Vi fant at de kliniske kriteriene var mest presise hvis man brukte alder >50 år, 

proteinuri <1 gram/døgn, diastolisk blodtrykk >90 mmHg, og ingen blod i urinen. 

I artikkel 1 beskreiv vi forekomsten av kronisk nyresjukdom i Norge på to tidspunkter med ti 

års mellomrom ved hjelp av tall fra tverrsnittsundersøkelsene HUNT2 i 1995-97 og HUNT3 i 

2006-08. Hovedfunnet var at forekomsten av kronisk nyresjukdom holdt seg stabil på rundt 11 

%. I denne perioden fant det sted en klar reduksjon av høgt blodtrykk, noe reduksjon av 

kolesterol og økt fysisk aktivitet, samt moderate økninger i både sukkersyke og overvekt. Vi 

tror at blodtrykksreduksjonen har bidratt til at nyresjukdom-tallene har holdt seg stabile, på 

tross av økt sukkersyke og overvekt. 

I artikkel 3 undersøkte vi proteiner og peptider i urinen hos pasienter med langtkommen 

nyresjukdom av forskjellige typer, og fant at et sett av 273 forskjellige urin-proteiner og 

peptider skiller mellom nyresjuke og –friske. Urin-proteinene som var mest forskjellige, peker 

i retning mot forstyrrelser i bindevev- og arrvevsproduksjonen hos de nyresjuke. 

I artikkel 4 viste kombinerte gen- og urin-analyser at individer med hypertensiv nefropati har 

endringer innen flere områder av metabolismen eller stoffomsetninga, med spesielt redusert 

utskillelse i urin av flere typer aminosyrer sammenliknet med friske. Disse forskjellene peker 

mot forstyrrelser av blodtrykksregulering, åreforkalkning, arrdannelse/fibrose og oksidativt 

stress, som er kjente mekanismer i dannelsen av hypertensiv nefropati og nyresjukdom generelt.  
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2 ENGLISH SUMMARY 

A translational medicine approach to hypertensive nephropathy: prevalence, diagnosis, 

and pathophysiology 

Chronic kidney disease is defined as reduced kidney function (estimated glomerular filtration 

rate (eGFR) < 60 mL/min/1,73m2), and/or pathological findings in urine (proteinuria, 

hematuria) or diagnostic imaging of the kidneys, lasting more than three months. Chronic 

kidney disease is found in one out of ten adults in industrialized countries, and represents a 

burden on society and health care systems, especially because of the increased risk of 

cardiovascular disease and stroke that comes with chronic kidney disease. Early identification 

and treatment, with focus on blood pressure, proteinuria and cholesterol, reduce the progression 

rate of chronic kidney disease. Today’s diagnostic tools with blood and urine tests indicate 

disease only when the kidney function is already moderately reduced, and the kidney disease is 

established. We need better diagnostic tools to find early stages of chronic kidney disease, and 

single out those who will progress to end stage renal disease. We also need more knowledge on 

which disease mechanisms are at play in the development of renal failure, in order to find new 

treatments. 

Chronic kidney disease due to hypertension, or hypertensive nephropathy, is the most common 

cause of end stage renal disease in Norway, and is second only to diabetes mellitus as cause of 

end stage renal disease in industrialized countries. Although it is a well known entity, there has 

been debate over its definition, prevalence, causes, and which are the basic pathophysiological 

mechanisms behind the disease. 

Hypertensive nephropathy has often been the assumed cause of chronic kidney disease in 

individuals with long-standing hypertension, and only sparse urinary findings (little hematuria 

or proteinuria), and with no signs of other diseases that may cause renal damage (e.g. diabetes, 

polycystic kidney disease, or glomerulonephritis). The precision of these clinical criteria in 

identifying hypertensive nephropathy has been debated, and examined in African Americans 

and in certain other ethnic groups, but not extensively in Caucasian Europeans. In paper 2 we 

examined 4920 kidney-biopsied patients from the Norwegian Renal Registry, of which 918 had 

biopsy-proven hypertensive nephropathy. Among those 918 many had urinary findings: 34% 

had hematuria and 57% had proteinuria. We found that traditional clinical diagnostic criteria 

were relatively imprecise (sensitivity 0.12, specificity 0.96), and that while absence of these 

criteria excluded the diagnosis with relative precision (negative predictive value 0.83), the 

criteria, when present, were not able to accurately predict the diagnosis (positive predictive 

value 0.41). The criteria most strongly associated with biopsy-proven hypertensive nephropathy 
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were high age, high diastolic blood pressure, low proteinuria, absence of hematuria, male sex 

and no diabetes. We found that the clinical criteria were most accurate if the following cut-offs 

were used: age > 50 years, proteinuria < 1 gram/day, diastolic blood pressure > 90 mmHg, and 

no hematuria. 

In paper 1 we described the prevalence of chronic kidney disease in Norway at two time points 

ten years apart by means of the cross-sectional studies HUNT2 in 1995-97 and HUNT3 in 2006-

08. The main finding was that the prevalence of chronic kidney disease was stable at around 

11%. During these years, a marked reduction in blood pressure took place, with moderate 

reductions of cholesterol and increased physical activity, as well as moderate increases in the 

prevalence of both diabetes and obesity.  

In paper 3 we examined urinary proteins and peptides in patients with advanced kidney disease 

of many different etiologies, and found that a set of 273 different urinary proteins and peptides 

distinguish between healthy controls and chronic kidney disease. The urinary proteins with the 

greatest difference between the two groups point towards perturbations of fibrosis in those with 

kidney disease.  

In paper 4 combined genetic and urine metabolomics analyses showed that individuals with 

hypertensive nephropathy exhibit perturbations of several facets of metabolism, with 

particularly reduced urinary excretion of several amino acids compared to healthy controls. 

These differences point towards perturbations in blood pressure regulation, atherosclerosis, 

fibrosis, and oxidative stress, which are familiar mechanisms in the pathophysiology of 

hypertensive nephropathy and chronic kidney disease in general. 
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7 INTRODUCTION 

Chronic kidney disease affects an estimated 10 to 12% of the adult population in industrialized 

countries, and carries with it a large increase in cardiovascular morbidity and mortality, even in 

early stages (3, 4). This makes chronic kidney disease a heavy burden on public health (5, 6). 

Patients that progress to end-stage renal disease and require transplantation and particularly 

dialysis face costly treatments, reduced quality of life, and increased cardiovascular mortality 

(7, 8). Early recognition and nephrologist care has been shown to reduce loss of kidney function 

and increase life expectancy in patients with chronic kidney disease (9, 10). Today, kidney 

function is most often evaluated using serum creatinine-based estimations of glomerular 

filtration rate (eGFR) in combination with urine analysis, especially proteinuria. A central 

problem is that the most commonly used diagnostic test for chronic kidney disease, serum 

creatinine, only shows pathological values after a substantial part of the functional kidney tissue 

has already been damaged (11). Also, serum creatinine is imprecise in early stage CKD, in the 

elderly and in persons with very high body mass index (12, 13). It may also be affected by 

several non-renal factors, such as diet, drugs, muscle mass and laboratory measurement 

methods (14, 15).  A combination of urinary albumin-to-creatinine ratio and serum creatinine-

based eGFR has been the recommended biomarker for diagnosis, staging and prognosis by the 

Kidney Disease Improving Global Outcomes (KDIGO) group (1), and is widely regarded as 

the most precise diagnostic and prognostic marker in chronic kidney disease. However, there is 

significant within-subject variation of 20-50% in albumin excretion from day to day due to 

factors such as inflammation, exercise, upright posture, fever etc (16, 17), so repeated samples 

are recommended (1). Although an early marker with a graded response with increasing disease 

severity, albuminuria may be found only after a certain kidney damage has been established. 

Albuminuria is an excellent biomarker in for example diabetic nephropathy, but is not always 

present in all types of kidney disease, such as hypertensive nephropathy or tubulointerstitial 

diseases. Given the inherent weaknesses of creatinine-based GFR estimations and albuminuria, 

there is a need for supplemental diagnostic tests in detecting early chronic kidney disease, and 

for better assessing which patients are at risk of progression to advanced kidney disease. 

Hypertensive nephrosclerosis is the most frequent cause of end-stage renal disease in Norway, 

and the second most frequent cause in the Western world (18, 19).  Hypertensive nephropathy 

is clinically assumed in longstanding hypertension with gradual loss of kidney function and 

low/moderate albuminuria, and in the absence of hematuria and other known causes of kidney 

disease, such as diabetes mellitus, glomerulonephritis, interstitial nephritis etc. The diagnosis 
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is, however, often assumed solely on clinical criteria, and not always biopsy-verified. This 

makes it prone to misdiagnosis. There is a need for a more detailed phenotypical description of 

biopsy-verified hypertensive nephropathy, and evaluation of the precision of the clinical criteria 

commonly used to establish the diagnosis.  

New analytical techniques have surfaced over the last decades, with potential to improve early 

diagnosis and risk stratification in chronic kidney disease. The omics, with studies of genes 

(genomics), gene products (transcriptomics), proteins (proteomics), and intermediary 

metabolite molecules (metabolomics), is a relatively new family of high-throughput analytical 

platforms in the biosciences. Coupled with modern biobanks, medical registries and evolving 

information technology, the omics have become important biomarker research tools. There is 

currently little data on hypertensive nephrosclerosis from the omics research platforms.  

 

7.1 Chronic kidney disease 

In 2013 the Kidney Disease Improving Global Outcomes (KDIGO) CKD Work Group defined 

chronic kidney disease (CKD) as the presence for more than three months of either  

- a decreased glomerular filtration rate (GFR) of less than 60 mL/min/1.73m2, or 

- in the case of GFR above 60 mL/min/1.73m2, kidney damage as defined by albuminuria 

(albumin:creatinine ratio >3mg/mmol), urine sediment abnormality, electrolyte 

disturbances due to tubular disorders, abnormalities detected by histology or imaging, 

or a history of kidney transplantation (1).  

KDIGO offers a risk stratification into CKD stages according to a combination of GFR and 

albuminuria (Figure 1): Stages G1, G2, G3, G4 and G5 represent GFRs of >90, 89-60, 59-30, 

29-15, and <15 mL/min/1.73m2, respectively, and stage G3 is further subdivided into G3a and 

G3b (45-59 and 30-44 mL/min/1.73m2, respectively). Albuminuria is staged as A1 (normal to 

mildly increased, <3 mg/mmol), or A2 (moderately increased, 3 to 30 mg/mmol) or A3 

(severely increased, >30mg/mmol).  

 



15 
 

 

 

CKD is common, with a prevalence in the adult population for all stages CKD 1 to 5 of 10.2% 

in Norway, 11.7% in the USA (20), and ranging from 8 to 16% in data from 52 countries across 

all five continents (19).  

The main causes of end-stage renal disease in Norway are hypertensive/vascular nephropathy, 

followed by diabetic nephropathy, glomerulonephritis, pyelonephritis/interstitial nephritis, and 

polycystic kidney disease (18). Globally, diabetes mellitus and hypertension are the most 

common causes of chronic kidney disease in all developed countries, and in many developing 

countries (19, 21). Also, glomerulonephritis, interstitial nephritis, polycystic kidney disease and 

HIV- and hepatitis-associated nephropathy are frequent causes of CKD globally. 

Glomerular filtration rate is currently most widely estimated by means of serum creatinine (22). 

Equations that combine serum creatinine with demographic variables (sex, age, race) are used 

Figure 1. Prognosis of CKD by GFR and albuminuria categories (KDIGO CKD Work Group, 

Kidney Int Suppl 2013 (1)). Reproduced with permission from the Kidney Disease Improving 

Global Outcomes CKD Work Group. 
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to calculate the estimated glomerular filtration rate, eGFR, and the most used are the 

Modification of Diet in Renal Disease (MDRD) and Chronic Kidney Disease Epidemiology 

Collaboration (CKD-EPI) equations (23, 24). New equations have been developed using other 

filtration markers, such as cystatin C, or a combination of cystatin C and creatinine, for 

improved precision of GFR estimation (25-27). Other measures of renal function are based on 

blood urea nitrogen (BUN), creatinine and urea clearance (require blood and 24-hour urine 

collection), and B2-microglobulin. The gold standard is measured GFR (mGFR) based on 

measured clearance of iothalamate or other exogenous filtration markers such as iohexol, Cr-

EDTA or inulin.  

It has been shown that CKD is an independent risk factor for cardiovascular disease (3, 28-30), 

peripheral arterial disease (31), and all-cause mortality (32, 33). It is likely that the increased 

cardiovascular risk stems from many combined processes, such as hypertension, chronic 

inflammation, endothelial dysfunction, oxidative stress and coagulation, among others. 

Prognosis in established chronic kidney disease varies with the cause of CKD, kidney function, 

albuminuria, and concurrent comorbidity (1). Our most validated prognostic marker in chronic 

kidney disease is currently the CKD stage based on combined glomerular filtration and 

albuminuria level, published by KDIGO in 2012 (1). With higher CKD stage there is a graded 

increase in future risk of all-cause and cardiovascular mortality, end-stage renal disease, acute 

kidney injury and progressive kidney disease (Figure 2):   
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Newer prognostic markers have been investigated in later years, both in serum and urine. 

Among others are the APOL1, CUBN, ELMO1, and PTPN6/PHB2 gene loci in genomics; u-/s-

Neutrophil gelatinase associated lipocalin (NGAL), u-Kidney injury molecule-1 (KIM-1), 

Fibroblast growth factor-23 (FGF-23), and the CKD273 panel in proteomics; and tryptophane, 

urea cycle, nitric oxide synthesis, and oxidative metabolism intermediates in metabolomics (34-

38).  

From kidney biopsy studies we have learned that signs of tubulointerstitial disease, such as 

interstitial fibrosis and tubular atrophy, correlate better with disease prognosis than glomerular 

changes, even in glomerular diseases (39, 40). As a routine examination, however, it is not 

feasible or medically justifiable to obtain kidney biopsies in order to predict an individual’s 

renal prognosis. 

 

Figure 2. Risk of end-points according to eGFR and albuminuria (Levey, Kidney International 2011 

(2)). Blue line: urine ACR<30mg/g or dipstick negative/trace. Green line: urine ACR 30-299mg/g or 

dipstick 1+. Red line: urine ACR ≥300mg/g or dipstick ≥2+. Reproduced with permission from 

Elsevier. 
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7.1.1 Hypertensive nephropathy  

Hypertensive nephropathy, or arterionephrosclerosis, is assumed to be a common cause of 

chronic kidney disease and end-stage renal disease. The term nephrosclerosis is derived from 

Greek (Νεφρός, “nephros”, kidney, and , σκλήρωσις “sklerosis”, hardening/hardness), and was 

first coined by the German pathologist Theodor Fahr and the nephrologist Franz Volhard in the 

1914 publication “Die Brightsche Nierenkrankenheit”, and later in Fahr’s publication “Uber 

Nephrosklerose” in 1919 (41, 42). Hypertensive nephropathy/arterionephrosclerosis is assigned 

as the cause in around 30% of end-stage renal disease in Norway, making it the most frequent 

cause of ESRD in Norway (18), the second most frequent in the US (19), and among the most 

frequent globally (19). Clinically, hypertensive nephropathy is suspected in CKD patients with 

longstanding hypertension and signs of blood pressure-related organ affection such as 

hypertensive left ventricular hypertrophy or hypertensive retinopathy, low proteinuria, and no 

signs of other kidney diseases like hematuria, diabetes, glomerulonephritis etc. (43, 44). The 

accuracy of traditional clinical criteria to predict biopsy-verified hypertensive nephrosclerosis 

was shown in several studies to be variable, with positive predictive values ranging from 50% 

to 85%, across several countries and ethnic backgrounds (45-48). Definitive diagnosis is made 

by kidney biopsy. Typical histopathological findings are arterial medial thickening and hyaline 

arteriolosclerosis in afferent arterioles, leading to narrowing of the lumen. Furthermore, arterial 

medial hypertrophy, intimal sclerosis and duplication of elastic laminae may be seen. Varying 

degrees of focal glomerular ischemic changes with thickening and wrinkling of basement 

membrane, mesangial matrix increase, capillary collapse and glomerulosclerosis along with 

tubular atrophy and interstitial fibrosis are also seen (49-51).  

The treatment of hypertensive nephropathy consists of blood pressure control, adequate 

antiproteinuric treatment with ACE inhibitors or ATII blockers, and aggressive treatment of 

traditional cardiovascular risk factors, such as smoking, hypercholesterolemia, obesity, and 

diabetes mellitus (52). 
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Figure 3. Light microscopy in nephrosclerosis. A: Artery with hyalinosis. G: Glomerulus with early 

signs of pericapsular fibrosis. SG: Sclerotic glomerulus.  IF: Interstitial fibrosis. TA: Tubular atrophy 

with peritubular fibrosis. Arrows: Tubuli with proteinaceous content. Reproduced with kind 

permission from pathologist Tina Syvertsen Overrein, MD, St Olavs University Hospital, 

Trondheim. 
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Regarding prognosis, the incidence of ESRD is low in non-malignant hypertension without 

proteinuria. In the Multiple Risk Factor Intervention Trial the reported 7-year incidence of 

creatinine doubling to >2.0 mg/dL (equivalent to 176 µmol/L) was 0.2% (53). In the 

Hypertension Detection and Follow-up Program the reported 5-year incidence of creatinine 

doubling to >2.0 mg/dL (equivalent to 176 µmol/L) and at least 1.25 times the baseline value 

was around 2.2% (54). In the AASK trial with assumed hypertensive renal disease, the mean 

GFR slope from baseline through four years was around -2.0 mL/min/1.73m2/year, and no 

additional benefit of slowing progression was seen with intensive vs ordinary blood pressure 

goals (55). It is important to point out, however, that patient series with prognostic measures in 

biopsy-verified hypertensive nephropathy are scarce.  

Several pathophysiological mechanisms contribute to hypertensive nephrosclerosis. Meyrier 

points to a loss of autoregulation in preglomerular arteries (56). Autoregulation is the ability of 

the afferent arteriole to vasoconstrict in a setting of high preglomerular blood pressure, to 

protect the glomerular capillaries from the high hydrostatic pressure of the systemic circulation. 

Loss of autoregulation has been shown in rat models with long-standing hypertension (57), and 

in humans in ageing and hypertension (58, 59). Animal models with genetic hypertension (Dahl 

salt-sensitive rats, Brown-Norway rats and fawn-hooded rats) suggest that the loss of 

autoregulation produces an intrarenal hypertension, paving way for glomerular lesions induced 

by hyperfiltration and shear-stress on podocytes (60-63). Subsequently, arteriolohyalinosis of 

the afferent glomerular arteriole, with resultant pressure-induced dilatation, leads to glomerular 

hypertrophy and focal segmental glomerulosclerosis (59). Second, the micromilieu of the 

kidneys is characterized physiologically by low oxygen tensions (64), and ischaemia/hypoxia 

are central in most renal diseases. It has been shown that chronic ischaemia/hypoxia induces 

fibrosis through many locally working factors, and has been proposed as common pathway for 

renal fibrosis and GFR loss (56, 65).  

Assuming that end-stage renal disease stems from longstanding hypertension has been 

supported by registries of end-stage renal disease which utilize clinicians’ diagnoses, often in 

the absence of kidney biopsy (47). Recent genomic studies have shown that African Americans 

with two risk alleles of the APOL1 gene and a hypertensive nephropathy phenotype have a very 

high risk of kidney failure (66). It has been postulated that individuals of African descent with 

hypertension and CKD probably often have a separate disease belonging to the spectrum of 

focal segmental glomerulosclerosis (FSGS) which is not necessarily initiated by hypertension 

(67). In whites, on the other hand, clinical nephrosclerosis is associated with histological 
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arteriolar nephrosclerosis with resultant glomerular ischemia, a process more likely initiated by 

hypertension and cardiovascular risk factors (68).  

 

7.2 The kidneys and the metabolism 

7.2.1 Urine production 

Urine is produced as the sum of three processes: glomerular filtration, tubular reabsorption, and 

tubular secretion. First, filtration from the glomerular capillaries into Bowman’s capsule 

produces large quantities of fluid that is almost completely free of proteins, the so-called 

primary urine. Most substances, with the notable exception of proteins, are freely filtered from 

the glomeruli, so their concentrations in the primary urine are almost the same as in the blood. 

On average, an adult produces around 150 to 170 L of primary urine every day (69). The 

primary urine passes through the tubules where water and certain substances are reabsorbed, 

and re-enter the bloodstream via the peritubular capillaries. Third, some substances are secreted 

actively from the peritubular capillaries into the tubules and excreted in the final urine. Some 

waste products, such as creatinine, are freely filtrated and completely excreted without neither 

reabsorption nor secretion. Other substances, like salts, are freely filtered and partially 

reabsorbed back into the bloodstream, to varying degrees. Some substances are freely filtered 

and almost completely reabsorbed from the tubules, such as amino acids and glucose. Other 

substances are freely filtered and in addition actively secreted into the tubules for excretion 

(70).  

The kidneys regulate water excretion according to hydration state, salt and water intake, and 

serum sodium level, to mention the most important variables. Accordingly, urinary volume and 

concentrations vary greatly, over many orders of magnitude, and so do the concentrations of all 

urinary biomarkers. It is important to adjust for these effects in urinary biomarker analyses. 

 

7.2.2 The kidneys and amino acids 

Amino acids have several important functions in the metabolism. They serve as building blocks 

for proteins, substrates for energy production, and as neurotransmitters. A 70 kg man holds 

around 12 kg of protein, and around 250 grams of free amino acids, of which only 

approximately 5 g are found in the circulation (71). With normal kidney function, around 50 to 

70 grams of amino acids are freely filtered every day, of which almost everything (98%) is 
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reabsorbed (72, 73). Amino acids are reabsorbed from the tubules by several different 

transmembrane transporter proteins expressed on the brush border membrane of the proximal 

kidney tubule cells (74). The most important of these is the luminal B0AT1 transporter, which 

has broad selectivity and reabsorbs more than 80% of all amino acids, by co-transport with Na+. 

One amino acid and one Na+ ion are bound simultaneously and imported into the cell, powered 

by the chemical gradient of Na+, which is constantly exported out of the proximal tubular cells 

by the sodium-potassium ATPase. Once inside the cell, amino acids and glucose exit over the 

basolateral cell membranes into the interstitium along their chemical gradients, and are 

absorbed into the peritubular capillaries. The capacity of the amino acid-binding carrier proteins 

is so large that essentially all the amino acids are reabsorbed from the tubules (70).  

The kidneys play a role in the normal amino acid metabolism in humans. In the physiological 

state, the kidneys not only filter and reabsorb, but also synthesize, degrade and excrete amino 

acids. In the postabsorptive state there is net uptake or release of certain amino acids by the 

kidneys. Renal synthesis is the major source of certain amino acids, such as serine, cysteine, 

arginine and tyrosine, to which the kidneys contribute 50% to 100% of the total body pool (71).  

The kidneys are also the main site of excretion of certain amino acids, such as proline and 

glutamine, the latter being used as substrate for ammonia production, which is central in the 

acid-base balance (75). The kidneys are central for the removal of the amino acids glutamine 

and proline (72), for removal of citrulline and the peptide Cysteine-Glycine derived from 

glutahionine metabolism (76), and for S-adenosylhomocysteine, a metabolite of homocysteine 

(77).  

It has been shown that CKD leads to changes in plasma and urinary levels of amino acids, 

across a spectrum from early-stage CKD to end stage renal disease (ESRD). Whereas the 

urinary levels of some amino acids increase in CKD (such as homocysteine, glutamate, 

guanidoacetate), others decrease (such as leucine, serine, taurine, threonine and glutamate) (78, 

79).   
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7.2.3 The kidneys and urinary protein 

Normally, only small amounts of protein are filtered across the glomeruli. Most of these 

proteins are reabsorbed in the proximal tubule after binding to two specific tubular receptors, 

megalin and cubulin. These transmembrane receptors recover a wide range of ligands from the 

tubules: vitamin binding proteins such as intrinsic factor vitamin B12, miscellaneous carrier 

proteins such as albumin, lipoproteins such as apolipoprotein E, hormones such as insulin, 

enzymes such as α-Amylase, and immune-related proteins such as IgG light chains.(80) These 

ligands bind to megalin and cubulin or both, and are internalized by way of invagination or 

endocytosis, producing endocytic vesicles that fuse with for example lysosomes, where the 

ligands are further processed.  

In cases of disruption of the glomerular filtration barrier function with leakage of proteins into 

the glomerular ultrafiltrate (glomerular proteinuria), or an overproduction of certain filterable 

immune proteins (overflow proteinuria), the protein reabsorbing capacity in the proximal tubule 

may be exceeded, leading to proteinuria. In other cases there may be a tubular dysfunction 

because of kidney disease, inhibiting the proximal tubular reabsorption of proteins (tubular 

proteinuria).  

Figure 4. Tubular reabsorption of amino acids from the primary urine happens in the proximal 

tubule. An active Na+ pump on the basal side of the cell pumps out Na+ and sets up a gradient 

that drives passive import of Na+ with co-transport of amino acids on the apical surface. 

(Copyright PK Øvrehus) 
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Some urinary protein excretion is normal. The average daily urinary protein excretion in adults 

is 80 mg/day, with normal excretion considered to be <150 mg/day. The large part of this is 

uromodulin, formerly known as Tamm-Horsfall protein, constituting around 85% of daily 

urinary protein excretion. It is secreted from distal tubular cells, and is believed to have a role 

in calcium-binding to avoid urinary stones (81). Urinary albumin excretion is approximately 5-

10 mg daily in young healthy adults (82). 

Microalbuminuria is an early marker of kidney dysfunction and is a predictor of kidney and 

cardiovascular outcomes in CKD (2). 

 

7.2.4 Kidney disease and global metabolism 

That the systemic metabolism affects kidney function and kidney disease is well known from 

diabetes. Vice versa, chronic kidney disease also influences the extrarenal metabolism. CKD 

causes protein energy wasting and is implicated in reduced insulin sensitivity (83, 84). Also the 

levels of some circulating metabolites, such as amino acids, are significantly regulated by the 

kidneys (75, 85). Finally, the kidneys have regulatory roles in many types of circulating 

metabolites, some of which have surprisingly shown hormone-like effects, such as glutamate 

(86, 87) and citric cycle metabolites (88).  

It is fair to say that our knowledge both on all facets of the human metabolism, and the way the 

kidneys interact with metabolism, is not complete. 
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7.3 Overview of translational medicine in kidney research 

 

 

Translational medicine is a term that encompasses many of the new analytical platforms known 

as the “omics”. Genomics, transcriptomics, proteomics, and metabolomics are the principal 

ones.  

The study of metabolites in kidney diseases has a long history, in one sense starting already 

with urine tests in the Middle Ages (89), where the colour of the urine was subject to systematic 

studies (Figure 5). Urine, which is easily obtained non-invasively and has intimate relation to 

Figure 5. A typical urine wheel from the Middle Ages. Published in Epiphanie Medicorum by 
Ulrich Pinder, Nuremberg, in 1506.  
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the kidneys, lends itself to metabolomics studies, and has already made possible large cohort 

and biobank studies in nephrology. Today, with the advent of high-throughput analytical 

platforms, coupled with modern biobanks, medical registries and ever evolving information 

technology features, it is an up-and-coming method for studying a broad range of biological 

questions in kidney disease.  

Metabolomics, which is the study of low-molecular weight compounds in tissues or fluids, 

makes part of the “omics” family of systems biology research branches (90). Metabolomics aim 

to describe the presence of many metabolites at the same time, thus providing a kind of snap-

shot of the end product of the ongoing metabolism. Whereas genomic techniques describe the 

expression of genetic material in disease, and transcriptomics and proteomics describe the 

RNAs and proteins that these genes code for, metabolite studies describe the total end product, 

or down-stream “net effect”, of all these up-stream perturbations.  

 

 

 

Figure 6. The family of omics. (Copyright PK Øvrehus) 
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Metabolomic analysis is a relatively recent development in renal research. Metabolomic studies 

have been undertaken in nephrology using blood and urine, and have been done in fields such 

as chronic kidney disease, diabetic nephropathy, acute kidney injury, transplantation 

nephrology, glomerulonephritis and renal cancer, amongst others. The two major metabolomics 

methodologies are nuclear magnetic resonance (NMR) spectrometry and mass spectrometry 

(MS), the latter in conjunction with a separation step, typically gas or liquid chromatography 

(GC-MS and LC-MS, respectively). Each of these techniques has strengths and weaknesses. 

NMR, while robust, reliable and with many years in use already, is hampered with low 

sensitivity. The MS techniques have high sensitivity and resolution, but have issues concerning 

sample pretreatment, and for LC-MS in particular, reproducibility and systems stability over 

time. There is no single and completely exhaustive technique for full metabolome coverage, 

but rather they should be used in complementary ways. The vast data produced in metabolomics 

poses challenges in data processing and biostatistics. This provided, metabolomic studies in 

kidney research have the potential to elucidate important pathophysiological pathways and 

contribute to diagnostic, prognostic and therapeutic steps forward.  

Proteomics is the large-scale study of proteins and peptides in a biological system (91), and 

makes part of the omics family. Like metabolomics, proteomics analyses are relatively fast and 

high-throughput, and handle blood and urine samples by the use of LC-MS, CE-MS and NMR 

platforms. CE-MS has been the dominant platform for proteomics analysis in nephrology. 

Proteomics platforms have been utilized for diagnosis of CKD across a range of etiologies, such 

as ANCA associated vasculitis (92), kidney transplant rejection (93), IgA nephropathy (94), 

diabetic nephropathy (95, 96) and general CKD (95). Proteomics-based biomarkers have also 

been used for prognostication in CKD, both in diabetic nephropathy (97, 98) and general CKD 

(99-101).  

Genomics is the large-scale study of genes and gene expression patterns in health and disease. 

In nephrology, one direction in genomics analyses has been the genomic characterization of 

kidney tissue from specific biopsy-proven renal diagnoses from biopsy registries, such as the 

European Renal cDNA Bank (102). Another direction has been the plasma-based genome-wide 

association studies (GWAS), where countless genetic loci or single nucleotide polymorphisms 

(SNPs) have been analyzed and associated to clinical traits, such as eGFR, hypertension, or 

CKD (103). Yet another genomics platform are the genome-wide association studies of 

metabolite concentrations (mGWAS), which bring together genomic and metabolomic data to 

provide genome-wide association analyses of metabolic compounds (104). 
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Table 1. Overview of metabolomics findings in CKD and ESRD. S: serum. P: plasma. U: urine. 

Adapted from (35). 

 

Source Method Pathway Reference

CKD 1-2
Glutamate↑ S, U CE-TOF-MS Amino acids 134

Aspartate↑ S, U CE-TOF-MS Amino acids 134

Ornithine↑ S CE-TOF-MS Amino acids 134

Histidine↓ U CE-TOF-MS Amino acids 134

Carnosine↓ U CE-TOF-MS 134

Hypotaurine↓ U CE-TOF-MS 134

Hypotaurine↑ S CE-TOF-MS 134

Hypoxanthine↑ S CE-TOF-MS Nucleotides 134

Adenosin↓ S CE-TOF-MS Nucleotides 134

Adenosin↓ U CE-TOF-MS Nucleotides 134

Lactate↑ S CE-TOF-MS Anaerobic glycolysis 134

Citrate↓ U CE-TOF-MS Krebs cycle 134

U-3-phosphoglycerate↓ U CE-TOF-MS Carbohydrate 134

CKD 2-4
Citrulline↑ S GC-MS/LC-MS Arginine-NO 125

Ornithine↑ S GC-MS/LC-MS Arginine-NO 125

Arginine↑ S GC-MS/LC-MS Arginine-NO 125

Proline-hydroxyproline↑ S GC-MS/LC-MS 125

Fibrinopeptide A↑ S GC-MS/LC-MS Coagulation, inflammation 125

CKD 1-5
ADMA, SDMA↑ P CE-MS/LC-MS Nitric oxide 108

Indoxyl sulphate↑ P CE-MS Bacterial 108

Kynurenine, kynurenic acid↑ S LC-MS Tryptophan 108

Tryptophan↓ S LC-MS Tryptophan 108

Uric acid S LC-MS Nucleotides

ESRD
Adipate↑ P LC-MS β-oxidation 108

ADMA, SDMA↑ P CE-MS/LC-MS Nitric oxide 108

Hippurate↑ P LC-MS Bacterial 108

Homovanillate↑ P LC-MS Serotonin 108

5-hydroxyindolacetic acid P LC-MS Dopamine 108

Indoxyl sulphate↑ P CE-MS Bacterial 108

Kynurenine, kynurenic acid↑ S LC-MS Tryptophan 108

MOPEG↑ P LC-MS Norepinephrine 108

TMAO↑ P LC-MS Bacterial 108

Homocysteine↑ P LC-MS Serine-homocysteine 108
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7.3.1 Metabolomics in hypertensive nephropathy 

The pathophysiology of hypertensive nephropathy is complex, involving glomerular, tubular, 

and interstitial changes due to endothelial dysfunction, activation of the renin-angiotensin-

aldosterone system (RAAS), and oxidative stress, as well as genetic, metabolic, and 

inflammatory perturbations (50, 105). However, there is paucity of metabolomics data in the 

field of hypertensive nephropathy. Here is a short resume of where metabolomics stand in 

hypertensive nephropathy research. 

Xanthosine: This amino acid is high in ESRD, together with most other purines from the 

nucleotide metabolism (106, 107). Ganda et al measured plasma metabolites in patients with 

hypertensive nephropathy (n=16), diabetic nephropathy (n=34), other CKD etiologies (n=10), 

and controls (n=30) using LC-MS, all diagnoses set by a nephrologist (108). Xanthosine was 

increased in hypertensive arterionephrosclerosis: 1.9-fold and 2.4-fold higher than in diabetic 

nephropathy and other CKD etiologies, respectively. In a median follow up of 2.6 years, 

xanthosine was significantly associated with first occurrence of a cardiovascular event in CKD 

patients. The role of xanthosine in the pathophysiology of hypertensive nephropathy and CKD 

is uncertain, but in line with this, a Framingham Heart Study work found that baseline 

xanthosine levels were significantly associated with incident CKD (85).  

Citric acid cycle: Reduced citric acid cycle function is associated with non-diabetic CKD (109). 

Liu et al carried out gene ontology, pathway enrichment and network analysis on a gene 

expression dataset of biopsy-verified hypertensive nephrosclerosis (110). The most 

differentially expressed genes belonged to metabolic pathways, especially the TCA cycle, 

glycolysis/gluconeogenesis, MAPK signaling, and pyruvate metabolism. The most 

differentially expressed TCA cycle genes were PCK1and PCK2, which code for the cytosolic 

and mitochondrial isozyme of phosphoenolpyruvate carboxykinase (PEPCK), respectively. 

PEPCK is a gluconeogenesis regulator enzyme in the kidneys, and underexpressed in a rat 

model of CKD (111). Furthermore, perturbations were found in the gene coding for SORD, an 

enzyme involved in glycolysis by converting sorbitol to fructose in the polyol pathway in the 

kidney (112). Microvascular disease is associated with accumulation and toxicity of sorbitol 

(113).  

Oxidative stress: Oxidative stress working through reactive oxygen species (ROS) is believed 

to be central in the pathogenesis of renal damage and hypertensive nephropathy from 

hypertension (105, 114). The mitochondria are the major intracellular source of ROS, which 
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are formed in the respiratory chain (115). In one study, high-salt fed Dahl/Rapp salt-sensitive 

rats developed human nephrosclerosis-like histologic kidney lesions, which were associated 

with mitochondrial dysfunction and promotion of apoptosis (116). Also, high-salt fed stroke-

prone spontaneously hypertensive rats (SHRsp) develop severe renal damage at blood pressures 

where the stroke-resistant SHR model does not (117). This has been attributed to the 

underexpression of the uncoupling protein-2 (UCP2) gene in the SHRsp model. UCP2 is a 

mitochondrial protein that protects agains ROS, and its underexpression is associated with 

increased oxidative stress, inflammation, and histological changes (117).  

 

7.3.2 Metabolomics in general CKD 

In early metabolomics studies in nephrology, particular interest was shown to the analysis of 

uremic toxins, which are small and middle molecules in plasma or dialysates of patients with 

advanced CKD and end stage renal disease (ESRD) (118, 119). Pathophysiology studies have 

examined the effects of uremic metabolites in promoting oxidative stress, inhibiting wound 

repair, and promoting coagulation (120-122). Also, efforts have been done to find 

metabolomics biomarkers for diagnosing early stage chronic kidney disease (123, 124), and 

which metabolites associate with de novo CKD development in disease-free individuals (85). 

The cross-sectional associations between serum metabolites and eGFR in population-based 

cohorts have been examined in several studies, such as the Chronic Renal Insufficiency Cohort, 

Atherosclerosis Risk in Communities, the TwinsUK Registry, the Cooperative Health Research 

in the Region of Augsburg Study, and the Framingham Heart Study (85, 125-128).  

Here is a short resume of where metabolomics stand in chronic kidney disease research. 

 

7.3.2.1 Descriptive metabolomics in general CKD 

ADMA/SDMA, arginine metabolism: Assymetric dimethylarginine (ADMA) and symmetric 

dimethylarginine (SDMA) are increasingly elevated in plasma with more advanced CKD stages 

(123, 129). The biological function of SDMA is unclear. ADMA is an inhibitor of nitric oxide 

synthetase. High ADMA levels could contribute to inhibition of nitric oxide (NO) production 

and thus to endothelial dysfunction and impaired relaxation. Ornithine and citrulline, both 

arginine metabolites, are low in more advanced CKD.  
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Oxidative stress markers: Oxidative stress is induced when free oxygen radical levels are 

increased (130). Oxidative stress is increased in CKD, and contributes to the cardiovascular 

morbidity seen in this condition (131). Already in CKD stages 1-2, changes in free radical 

scavengers carnosine and hypotaurine have been found, indicating higher renal oxidative stress 

(132). In CKD 2-4, impaired carboxylate anion transport, with higher levels of mono- and di-

carboxylate anions (e.g. γ-glutamyl leucine), are thought to reflect increased oxidative stress 

because of glutathione depletion (123).  

Steroids: Lower levels of metabolites of adrenal steroid hormones are found with advancing 

CKD, suggesting decreased production of adrenal hormones in CKD (123). Steroids are 

involved in lipid metabolism, immunomodulation, and stress response, and perturbations in 

steroid metabolism are thought to participate in hypertension (133, 134).  

Urea cycle: Urea is converted to uric acid in the urea cycle in the kidneys and the liver. 

Citrulline, an amino acid produced in the liver as part of the urea cycle, was higher in urine and 

plasma in hemodialysis compared to advanced CKD (129). The authors hypothesized that the 

increased urinary levels were caused by tubular dysfunction or a metabolic mechanism. They 

claimed support to this by a mouse study where partial nephrectomy induced citrullinuria (135). 

Ornithine is urea cycle intermediary whose catabolism toward citrulline and possibly proline 

synthesis is increased in advanced CKD, leading to accumulation (136). Citrulline-to-arginine 

and ornithine-to-arginine ratios are increased in advanced CKD (129). 

Nitric oxide: Nitric oxide (NO) regulation is disturbed in CKD (129). NO is a free radical that 

causes vasodilatation. It is produced in the endothelium by arginine breakdown catalyzed by 

NO synthase (NOS), which produces citrulline and NO. The conversion of citrulline, a 

precursor of nitric oxide via arginine, is reduced in CKD, which likely impacts on endothelial 

function and reduces NO-mediated vascular relaxation (72, 137). ADMA, which increases in 

advanced CKD, inhibits NO synthase and is associated with hypertension, glomerulosclerosis, 

and possibly CKD progression (136).  

Tryptophan: Tryptophan and tryptophan intermediate levels, especially indoxyl sulfate and the 

kynurenines, are high in advanced CKD (138, 139). Tryptophan and its intermediates seem to 

play a role in blood pressure regulation, hypertension, dyslipidemia, and atherosclerosis (140, 

141). 
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Acid-base, glutamate: Glutamate is an intermediate in glutamine metabolism that produces 

ammonia and is central to acid-base balance. 5-oxoproline, part of a catabolic pathway from 

glutathione via 5-oxoproline to glutamate, is its precursor. In CKD stages 1-2 and 3-5 urinary 

glutamate is higher (78, 132), and urinary 5-oxoproline is lower (78), pointing to amino acid-

related disturbances in acid-base balance in CKD.  

Hypoxanthine, nucleic acid metabolism:  Higher serum hypoxanthine has been found in CKD 

stage 1-2 (132). Hypoxanthine is found in nucleic acid metabolism, and is implicated in the 

progression of renal interstitial fibrosis in a mouse model (142).  

Tricarboxylic acid cycle: CKD induces systemic changes in carbohydrate metabolism. Reduced 

urinary levels of most TCA cycle metabolites is a feature of both diabetic and non-diabetic 

chronic kidney disease (109, 143). CKD patients have increased risk of hypoglycemia due to 

impaired gluconeogenesis (144), which is linked to underexpression of the gene for 

phosphoenolpyruvate carboxykinase (PEPCK), a gluconeogenesis regulator. This has been 

demonstrated in a rat CKD model (111). Even in early stage (1-2) CKD, lower urine citrate and 

fumarate, and higher serum lactate, have been found (132). Serum citrate has been shown to be 

elevated across CKD stages 3a to 5 (124). Although the literature consistently reports reduced 

urinary levels of TCA intermediates in CKD, it is interesting that fumarate has also been found 

to be increased in the urine in a mouse model of diabetic nephropathy (145), in early human 

diabetes type 2 (146), and in diabetic humans before reduction in kidney function (147). 

Whether this discrepancy stems from a difference in selection of patients or differences in 

eGFR, or mechanisms that are not elucidated, is not known.  

Tyrosine: The amino acid tyrosine is involved in catecholamine biosynthesis, natriuresis, and 

blood pressure control through the tyrosine-phenylalanine axis. Low plasma tyrosine and 

phenylalanine are found in CKD stage 3a to 5 (124). Urine and plasma tyrosine are reduced in 

CKD stage 3-4, and are lower in CKD with or without diabetes compared to non-CKD diabetics 

(148). It has been hypothesized that renal phenylalanine-hydroxylase enzyme activity is 

decreased in CKD, making kidneys retain tyrosine (72). Kidneys are the major organ for uptake 

of phenylalanine and conversion to tyrosine in humans. The splanchnic uptake of tyrosine is 

reduced in CKD, and urinary excretion of phenylalanine and tyrosine impaired, possibly leading 

to impaired synthesis of tyrosine products dopamine, epinephrine, and norepinephrine (149). 

This might influence blood pressure regulation. 
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Acylcarnitines: Physiologically, carnitine is a transporter of fatty acids into mitochondria (150). 

Higher serum levels of acylcarnitines and of amino acids glycine and phenylalanine have been 

found with lower eGFRs across a wide specter of eGFR in the cross-sectional KORA F4 Study, 

and validated in the TwinsUK study (127). The authors hypothesized that this may indicate 

saturated capacity for mitochondrial beta-oxidation in the setting of lipotoxicity-induced insulin 

resistance. Concentrations of acylcarnitines have previously been suggested as indicative of the 

speed of beta-oxidation of fatty acids (151).  

 

7.3.2.2 Predicting eGFR decline in general CKD 

In addition to descriptive studies of metabolite levels at different CKD stages, prospective 

studies have also been carried out in renal metabolomics. 

Spermidine, kynurenine-to-tryptophan ratio, and a specific phosphatidylcholine ratio were 

found to associate with annual eGFR change in an LC-MS study with 1104 KORA participants 

over 7 years (152). Together with 35 other metabolites they predicted incident CKD. The 

kynurenine-to-tryptophan ratio was hypothesized to reflect activity of the enzyme indoleamine 

2,3-dioxygenase (IDO). IDO is linked to inflammation, obesity, blood pressure, and 

atherosclerosis (141, 153). The phosphatidylcholine ratio was linked to lipoprotein-associated 

phospholipase A(2), associated with CKD progression and CV events (154). 

Serum pseudouridine, C-mannosyltryptophan, and O-sulfo-L-tyrosine were associated with 

incident CKD in a GC-MS/LC-MS study of KORA/TwinsUK participants (128). Pseudouridine 

is a uremic toxin (107). Myo-inositol, N-acetylalanine, N-acetylcarnosine and 49 other 

metabolites associated with baseline eGFR. High myo-inositol levels are associated with 

progression to ESRD in diabetes (155). N-acetylalanine and N-acetylcarnosine are results of N-

acetylation, a detoxification mechanism whose role in CKD is unclear. 

Serum 3-indoxylsulfate, N-acetylalanine, and phenylacetylglutamine and 71 other metabolites 

associated with eGFR decline in a GC- and LC-MS study on 1921 ARIC participants over 20 

years (126). The largest measures of association were in the amino acid pathway. Baseline 5-

oxoproline and 1,5-anhydroglucitol were associated with the lowest hazard ratio (HR) for 

incident CKD. 5-oxoproline is substrate for glutamate and involved in glutathione synthesis 

and degradation. Glutathione deficiency contributes to oxidative stress (156). High urinary 1,5-

anhydroglucitol has been suggested as an indicator of renal toxicity (157).  
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High plasma levels of kynurenic acid and kynurenine predicted incident CKD in an LC-MS 

study of 1434 Framingham Heart Study participants over 8 years (85). So did choline 

derivatives (choline), citric acid cycle intermediates (aconitate, isocitrate), and purine 

metabolites (xanthosine, adenosine). Kynurenine and kynurenic acid are tryptophan metabolites 

and implicated in inflammation, vascular tone regulation, and atherosclerosis (153, 158). 

Proximal tubular cells metabolize citrulline and choline, and are the location for organic anion 

transporters (OATs) that transport kynurenic acid (159). Perturbed levels of these might reflect 

an underlying tubulointerstitial dysfunction.  

Lower threonine, methionine, phenylalanine, and arginine, and higher uric acid, glucoronate, 

4-hydroxymandelate, cytosine, and homogentisate were found in CKD progressors compared 

to non-progressors in an LC-MS study of 200 participants from the CRIC cohort with CKD 

(125). Uric acid has been associated with incident CKD and CKD progression (160, 161). The 

authors hypothesized that depletion of arginine, a substrate for the production of nitric oxide, 

could have negative vascular effects and potentially contribute to CKD progression. 

High plasma acylcarnitines and low urinary collagen associated with eGFR decline in an LC-

MS study of CKD over 3 years (162). High plasma acylcarnitines in progressors might indicate 

impaired fatty acid beta-oxidation and an adjustment to prevent the accumulation of lipotoxic 

acyl-CoA in CKD. Lower urinary collagen in progressors might reflect fibrosis and reduced 

extracellular matrix degradation. A 76 metabolite and peptide panel associated with eGFR 

decline. Low uromodulin has previously been associated with fibrosis, and high protein S100-

A9 with inflammation. Again, high ADMA and hydroxykynurenine were implicated in 

endothelial dysfunction and oxidative stress, respectively.  

 

7.3.3 Proteomics in general CKD 

Like metabolomics, proteomics is also a relatively new analytical technique in medicine and 

biosciences. By 2010, around 5000 unique peptides had been identified and catalogued.  

Urinary proteomics-based classifiers have been shown to discriminate biopsy-verified CKD 

from healthy controls (163), and to discriminate asymptomatic hypertensive patients with left 

ventricular diastolic dysfunction from healthy controls (164). Among the most studied 

biomarkers in proteomics is a panel of 273 distinct urinary peptides, the so-called CKD273 

classifier (Mosaiques Diagnostics GmbH, Hannover, Germany). This proteomics platform has 

also been evaluated as a prognostic tool, predicting the progression in diabetics from 
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normoalbuminuria to macroalbuminuria (97, 98), and progressive eGFR loss in general CKD 

(99, 165). It has also been shown to predict cardiovascular complications in CKD patients (165) 

and hard end-points like ESRD or death (100). 

The most significant findings in the CKD group have been decreased levels of urinary collagen 

α1 (III), collagen α1 (I), and uromodulin fragments. Lower urinary collagen have been proposed 

to indicate disturbance of matrix turnover, with reduced breakdown and excessive accumulation 

of matrix collagen, possibly contributing to the fibrosis seen in CKD (95). Other peptides 

associated with CKD are α1-antitrypsin, fragments of albumin and fibrinogen, which are all 

proteins abundant in plasma. Uromodulin, arising from tubular protein secretion, and plasma-

derived polymeric immunoglobulin receptor, clusterin, and α2-HS-glycoprotein are other 

peptides linked to CKD (166). 

 

7.3.4 Genomics in general CKD 

In plasma-based genome-wide association studies (GWAS), certain single nucleotide 

polymorphisms (SNPs) have been associated to CKD. Some SNP associations with CKD have 

been found at the gene locus UMOD (103). UMOD codes for uromodulin, or Tamm-Horsfall 

protein, which is the most abundantly excreted tubular protein in the urine. Uromodulin has 

been linked to tubular dysfunction (167). Risk alleles at the APOL1 locus (coding for 

Apolipoprotein L1) have been associated with increased risk of focal segmental 

glomerulosclerosis, progressive CKD, and ESRD, especially in patients of African descent 

(168). Risk alleles at the MYH9 locus (Myosin heavy chain) have been shown to associate with 

ESRD in African Americans (169), and with non-diabetic CDK and diabetic ESRD in European 

Americans (170, 171). Genes related to angiotensinogen, angiotensin converting enzyme and 

apolipoprotein E have show association with accelerated renal function decline in Caucasian 

women (172). and genes related to permeability glycoprotein associated with increased risk of 

hypertension and CKD in the Chinese population (173).  

Another genomics platform are the genome-wide association studies of metabolite 

concentrations (mGWAS), which bring together genomic and metabolomic data to provide 

genome-wide association analyses of metabolic compounds (104). Examples are 

CKD12/PNMT, which code for enzymes involved in e.g. tyrosine metabolism, which again is 

linked to catecholamine biosynthesis. Another example is ALDH2, which codes for enzymes in 
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the kynurenine pathway, which in turn is implicated in CKD-related inflammation and 

endothelial dysfunction (104).  

 

7.3.5 Hypertension  

 

7.3.5.1 Metabolomics in hypertension 

Several metabolite classes have been found in metabolomics studies on hypertension: 

Amino acids: Perturbed amino acid metabolism is a frequent finding in metabolomics studies 

in hypertension. In a study of young hypertensives compared to controls, 12 of 20 significantly 

different serum metabolites were amino acids, and 6 of the 8 most enriched pathways related to 

amino acid metabolism (174). In the hypertensives, low ornithine, tyrosine, valine, isoleucine, 

glycine, threonine, methionine, asparagine, glutamine, citrulline, lysine, tryptophan, and cystine 

were found, and high s-fumarate, glycerol, and uric acid. Another case-control study found that 

serum arginine was increased, and serum alanine, pyruvate, methionine, adenine, and uracil 

were reduced in essential hypertension cases (175). In a cross-sectional study, high urine 

alanine was associated with hypertension in 4630 INTERMAP participants (176). High 

baseline serine, glycine, and the acyl-alkyl-phosphatidylcholines C42:4 and C44:3 levels 

associated with lower incidence of de novo hypertension (177). Many different mechanisms are 

at play. Alanine increases blood pressure and modulates cardiovascular catecholamine response 

in animal models (178). Serine produces vasodilation in rat vessels (179), and glycine has anti-

inflammatory effects on human coronary endothelial cells (180). Uric acid has been shown to 

play a role in early hypertension (181) and established hypertension (182). Fumarate given 

intravenously increased salt-induced hypertension and medullary ROS levels in a rat model 

(183). High dietary tyrosine has been related to lower blood pressure (184). Arginine acts as a 

vasodilator by conversion to NO via NO synthase (NOS), (185), and perturbations of the 

arginine/NO pathway have been linked to hypertension. ADMA blocks NOS and reduces NO 

availability (186), and increased ADMA levels may follow from reduced activity of 

dimethylarginine dimethylaminohydrolase (DDAH), an enzyme linked to inflammation, 

hyperhomocysteinemia, and hyperglycemia (175).  

Carbohydrate metabolism: Elevated glucose, galactose, sorbose and other sugar species have 

been found in hypertension, and could be linked to the tendency towards impaired glucose 

tolerance in hypertension (187). Succinate was found to increase blood pressure in mice through 
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activation of the RAAS (88). In the same study, a-ketoglutarate and succinate were found to act 

as G-protein-coupled receptor activators, and to potentially have a signaling function in addition 

to being intermediate metabolites in the TCA cycle.  

Hippurate, gut-related metabolites: An association between serum 4-hydroxyhippurate and 

incident hypertension was found in the Atherosclerosis Risk in the Communities cohort (188). 

Four-hydroxyhippurate is a product of microbial degradation of polyphenols, and the authors 

proposed a link to hypertension via gut microbial fermentation and oxidative stress. Formate 

and hippurate are products of gut metabolism, and associate with hypertension (176). 

Lipid metabolism: Dysregulated lipid metabolism with higher serum free fatty acids has been 

found in hypertensive elderly (189). This could indicate a metabolic syndrome-associated 

perturbation of insulin-controlled lipid catabolism. Free fatty acids also increase neurovascular 

tone and inhibit endothelium-dependent vasodilation (190). Diacylglycerols were associated 

with baseline systolic and diastolic hypertension in a cross-sectional study (191). 

Diacylglycerols are increased in G-protein-coupled receptor activation of intracellular 

phospholipase C seen in vasopressin signaling (192), and activate the TRPC6 channel, a 

calcium flux regulator in vascular smooth muscle cells (193). The authors suggested there is a 

biological plausibility for a role of diacylglycerols in hypertension pathophysiology.  

Steroids: A positive association between hypertension and a sex steroid pattern of 

pregnenolone, and estrogen and androgen derivatives has been found. The sex steroids have 

multiple effects on vascular, renal and heart cells, and also modify aldosterone, renin and 

aldosterone-to-renin ratio (194). 

 

7.3.5.2 Proteomics in hypertension 

In one case-control study of hypertensives vs. normotensives, 27 peptides were found to 

accurately classify hypertension (195). Some of the significant peptides were fragments of the 

proteins osteocalcin and humanin, which have been linked to atherogenesis. In another 

hypertension proteomics study of hypertensives vs. controls, different levels of uromodulin and 

nephrin 1, a protein involved in the slit diaphragm, were found (196). There is scarce data in 

this field of proteomics hypertension research. 
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7.3.5.3 Genomics in hypertension 

A large case-control GWAS study of hypertensives and controls found associations between 

hypertension and a UMOD gene variant (197). The authors suggested a possible link with 

sodium reabsorption and homeostasis, as uromodulin production is chiefly localized in the 

proximal tubulae, where also sodium reabsorption takes place. 

 

 

7.4 Analytical methods 

There are two main analytical approaches in metabolomic studies in nephrology. Mass 

spectrometry, in conjunction with a separation technique such as gas chromatography (GC-MS) 

or liquid chromatography (LC-MS) on one side, and nuclear magnetic resonance spectroscopy 

(NMR), on the other. 

7.4.1 Mass spectrometry 

Mass spectrometry is an analytical technique for molecular characterization of substances, most 

commonly used in chemistry. A mass spectrometer is capable of analyzing gases, liquids and 

solids. It works by ionizing the molecules in the sample under analysis, accelerating the ions so 

that they travel in a vacuum through a graded electromagnetic field, and colliding them onto a 

detector. Based on mass and ion charge the ions bend to different degrees as they pass through 

the graded electromagnetic field, and hit the detector at different locations. The MS ultimately 

describes the metabolites by the mass-to-charge ratio (m/z) of their ions. In tandem mass 

spectrometry (MS/MS), which is used in quantitative MS, the molecules are ionized, then 

selected in a first filter (Q1) that lets through only ions of a certain m/z. Then those ions collide 

with a gas (usually argon) in a collision chamber (Q2) to characteristically fragment into 

“daughter” ions, and then the “daughter” ions move through a second filter (Q3) that again lets 

through only ions of a certain m/z. Based on known fragmentation patterns, this allows precise 

identification of ions and hence molecules, at high sensitivity and specificity. 
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There are different analytical methods in mass spectrometry, of which time-of-flight (TOF) 

MS, triple quadrupole MS, and ion trap MS are the principal (198). 

Before the molecules can travel through the spectrometer they have to be ionized. There are 

several different ionization methods, such as electron ionization (EI) and chemical ionization 

(CI) in GC-MS, and electrospray ionization (ESI) and atmospheric pressure chemical ionization 

(APCI) in LC-MS.  

Common to most MS analyses is a separation step prior to mass spectrometry. The most 

common separation steps are gas chromatography (GC) and liquid chromatography (LC).  

7.4.2 GC-MS 

In gas chromatography, the gas phase of the sample travels with a carrier gas (usually helium) 

through an analytical column. Compounds interact differently with the carbon lining inside the 

column, causing sample compounds to elute from the column at different time points (called 

retention times), and so you have separation, prior to injection into the mass spectrometer. Gas 

chromatographic retention times are reproducible and robust (199). Samples are converted into 

the gas phase in part spontaneously, as some metabolites are naturally volatile, and in part 

through pretreatment with substances to make the metabolites in the sample more volatile, 

through a process called derivatization. Trimethylsilylation (TMS) (sugars), and deritivization 

by ethyl chloroformate and methylchloroformate (MCF) (amino and organic acids), are 

commonly used (200). Electron ionization (EI) is the most common ionization method in GC-

Figure 7. Principle of mass spectrometry. Molecules are ionized, travel through an 

electromagnetic field, and crash into the detector. (Copyright PK Øvrehus) 
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MS. Characteristic retention times, together with characteristic MS patterns, allow separation 

and identification of molecules by the aid of libraries and databases. GC-MS is particularly 

adept to the analysis of volatile metabolites, and offers high sensitivity and reproducibility 

(201). One disadvantage of GC-MS is the laboursome sample pretreatment. Also, incomplete 

derivatization, which may produce different adducts of the same parent substance and at 

different rates, may disturb accurate quantification. Also, a GC-MS set-up is less stable than 

NMR, and requires regular calibration to correct for analytical drift over time (200). The major 

limitation of GC-MS is that it is able to analyse only volatile molecules or molecules that can 

be made volatile (201).  

 

 

7.4.3 LC-MS 

In liquid chromatography, the liquid phase of the sample travels through an analytical column. 

Due to different physiochemical interaction between sample and column the compounds elute 

at different times (retention times), and so you have separation, prior to injection into the mass 

spectrometer. LC-MS has high sensitivity, in the pico mole range, offering detection of 

Figure 8. Principle of gas chromatography. The sample travels from the injector through the 

column to the detector. In GC-MS, the sample is further injected into the mass spectrometer. 

(Copyright PK Øvrehus) 
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metabolites that are below the NMR detection limits in some cases. It uses different column 

chemistries to separate different metabolite groups. For example, hydrophilic interaction 

chromatography (HILIC) for polar metabolites (e.g. amino acids, sugars), and traditional 

reverse phase chromatography (RP) for non-polar metabolites (e.g. lipids) (201, 202). This way 

LC-MS is able to cover a broad range of metabolite classes. LC-MS does not demand 

derivatization. LC-MS is rapid with run times in certain standard reverse phase set-ups as short 

as a few minutes. It has advantages over NMR in dealing with biofluids with high salt content, 

such as urine (90). As for limitations, LC-MS requires that the analytes are ionizable, and so 

optimization of separation for each class of metabolites is quite important. Another weakness 

is the gradual change in chromatographic column and MS properties, called analytical drift. 

Changing physiochemical properties of the column over time, and the mass spectrometer 

getting dirty, causes gradual analytical differences both within batches and over time. One way 

of surveilling intra-batch drift is by quality control (QC) samples. Standardized QC samples, 

made up of internal standards or pooled analytes, are analyzed regularly at the beginning, 

throughout and at the end of the run. If the drift is small, the QC samples results should cluster 

well (203). Also, LC-MS is less reproducible between labs, and has more challenges with data 

standardization and reporting, than GC-MS (204).  

 

Figure 9. Principle of liquid chromatography. The sample travels from the injector through the 

column to the detector. In LC-MS, the sample is further injected into the mass spectrometer. 

(Copyright PK Øvrehus) 
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7.4.4 CE-MS 

Capillary electrophoresis is a separation step that sends the liquid sample through a long 

capillary rather than through a shorter column, and achieves separation through the interaction 

between the metabolites and the lining of the capillary. It is a relatively fast technique with good 

resolution and sensitivity (205).  

 

 

7.4.5 NMR 

NMR was the first of these techniques to emerge, and has been around in practical use since 

the 1970s. NMR involves sending a radiofrequency pulse into a biological sample located in a 

strong magnetic field, where the magnetic features of a few atomic nuclei (most commonly 1H 

or 13C) in the sample absorb the pulse, and subsequently re-emit, or resonate, electromagnetic 

radiation in a manner characteristic of the substance. Using so-called chemical shift patterns in 

this signal, that are influenced by neighbour atoms, it is possible to elucidate local molecular 

structure and abundance of compounds, thus making chemical identification and quantitation 

possible (198). NMR has the advantage of requiring little sample pre-treatment or separation 

Figure 10. Capillary electrophoresis. The sample travels from the injector through the capillary 

with a liquid buffer to the detector. In CE-MS, the sample is further injected into the mass 

spectrometer with its detector. (Copyright PK Øvrehus) 
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step, in contrast to GC-MS and LC-MS. It is able to analyze a broad range of samples, from 

biofluids such as urine and extracts in the liquid form, to tissues such as kidney biopsies and 

solid organs (90). NMR examination does not destroy or consume or permanently alter the 

samples, as derivatization in GC does, so samples may easily be carried over from NMR to 

other platforms. NMR has proven to have high analytical reproducibility, both over time and 

between labs (206), and sample automation is readily feasible. Furthermore, accurate 

quantitation is possible in NMR without the use of internal standards. 

A major limitation of NMR is its sensitivity, which is relatively low compared to mass 

spectrometry methods. This has in part to do with the fraction of NMR detectable nuclei in a 

given substance, which, following the Bolzmann distribution, is grossly outnumbered by nuclei 

that do not give rise to a detectable signal by NMR. This leads to the detection of only the most 

abundant metabolites. Another disadvantage is that NMR instruments are relatively expensive. 

NMR was not used in our studies. 

 

 

 

7.4.6 Targeted and non-targeted analysis 

Targeted studies measure a limited number of compounds with a high degree of quantitative 

accuracy. This allows robust metabolite identification and quantification for a precise 

phenotype characterization. This may help the biological interpretation of the findings (207). 

However, targeted studies will only find perturbations in the metabolites measured, so one must 

Figure 11. Nuclear magnetic resonance. The sample is inserted inside the electromagnetic coil, 

radio waves are fired at the sample, and the atoms in the sample resonate, producing radio 

waves back. (Copyright PK Øvrehus) 
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have an a priori hypothesis that the measured metabolites are biologically interesting. 

Untargeted studies measure all the metabolites visible to your analytical technique. They are 

suitable for de novo biomarker discovery, hypothesis generation and often offering a wider set 

of compounds than targeted studies. However, untargeted studies are also fraught with a lower 

degree of definitive compound identification, or at least more steps necessary to ensure 

identification. This may increase the risk of false positive results, i.e. type I error.  

In targeted approaches, both NMR and MS are applicable. NMR, albeit limited by low 

sensitivity, has good specificity and ability to assign definitive metabolite identities from the 

peaks that do arise from the sample. MS conversely generates many peaks, but the identification 

of metabolites is often not complete using only chromatographic retention time and m/z. Here, 

tandem MS is very useful, which makes possible the monitoring of selective 

“mother”/”daughter” ions corresponding to known metabolite fragmentation patterns from 

databases and commercial standards (198). A weakness with targeted strategies is that they 

confer a narrower vision of the metabolism, maybe missing out on significant biological 

processes that shape the role of the targeted metabolites. 

In non-targeted approaches, the strategy is to generate many peaks from the samples, for 

example using scan mode methods, and then identify qualitative differences in peak 

distributions between the different groups, for example case vs control. Being more of a 

descriptive strategy, and good at identifying qualitative differences, the non-targeted approach 

has a weakness in that it does not necessarily give definitive insight into the biological processes 

at hand, as the focus is not on metabolite identification. 

All in all, NMR and targeted LC-MS and/or GC-MS have been the most used analytical 

methods in metabolomics studies to date (34). 
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7.5 Data analysis and statistics 

Given the complexity and vastness of data produced in metabolomics methodology, proper data 

analysis methods are required. This includes data preprocessing, featuring for example baseline 

correction, normalization, scaling and peak alignment, the object of which is to correct for data 

variance that is associated with analytical and matrix effects (202).  

7.5.1 Data correction 

There is often a need for data correction to adjust for analytical variance before data analysis in 

metabolomics experiments. The aim is to correct for analytical variance related to matrix 

effects, ion suppression, and drifts in instrument performance within and between batches. One 

technique is to add known internal standards in known amounts to each sample, and then 

analyze the internal standard signal within and between batches, and over time. Ideally, if the 

internal standard signal is reduced by 15% for some reason, the metabolite response should go 

down by 15% simultaneously in order to avoid a falsely high response. Optimally, one should 

have one internal standard per analyzed metabolite, but for practical purposes a group of 

internal standards are often used to evaluate the response of an even larger group of metabolites 

(208). These internal standards are often deuterated (heavy) versions of metabolites. Another 

technique is based on quality control (QC) samples for every n sample analyzed. A QC sample 

often consists of very small aliquots from all the samples added together into a so-called pooled 

QC sample. By comparing signal from the QC samples across batches, and adjusting metabolite 

responses to QC sample responses, it is possible to correct for analytical variance (208-210). 

7.5.2 Normalization 

In contrast to blood, where solute and water concentration are finely regulated, urinary solute 

concentrations vary greatly from day to day and hour to hour according to water intake. 

Accordingly, metabolite concentrations will vary with urine concentrations, and normalization 

is used to correct for these fold changes. There are many urine normalization strategies. 

Normalization to urine volume, to urine osmolality, to creatinine by either measured creatinine 

concentration of fixed volumes or dilution of urine samples to the same creatinine 

concentration, and to total combining injection volume calibration with creatinine and MS 

signal normalization (211, 212). The optimal method is not clear (213, 214). Although no true 

universal standard exists, it is fair to say that urinary creatinine and urinary osmolality are the 

most frequently used normalization factors (212), and they have been recommended in at least 

one review (214).  
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7.5.3 Statistics 

A combination of univariate and multivariate testing is used, in addition to more elaborate 

statistical techniques. Univariate testing of non-normally distributed values, such as urine 

concentrations, often requires non-parametric methods, such as the Mann Whitney U-test (two-

sample Wilcoxon rank test).  

Multivariate statistical analyses are essential to simplify and find patterns in the data. Often the 

starting point is unsupervised methods, such as principal component analysis (PCA), which 

identifies the underlying component that explains most of the variance of the data set (principal 

component 1), then identifies the component that explains most of the residual variance of the 

data set after principal component 1 is subtracted (principal component 2), and so on. This is 

useful for giving an overview of clustering in the material, and does not use a training set, so 

the input is clustered in what is called an unsupervised way (201). Hierarchical clustering 

analysis (HCA), K-means clustering, and independent component analysis (ICA) are other 

unsupervised methods. Supervised methods, on the other hand, such as orthogonal partial least 

squares discriminant analysis (O-PLS-DA), use a training set of the data to build a classification 

model, and then classifies or clusters the data according to this model, to evaluate overall 

discrimination between patients and controls. Variable importance in projection (VIP) is used 

as a measure of the importance of variables from the PLS-DA analysis. The VIP score is based 

on the sum of variable influence over all model dimensions, looking at the PLS loadings relative 

to the amount of explained Y-variation (215), and can be used to identify discriminating 

variables or predictors (216). False Discovery Rate (FDR) is one of several techniques to adjust 

for multiple testing calculated according to the Benjamini Hochberg ranking procedure (217).  
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8 AIMS 

 

The overall aim is to improve the treatment and outcomes in patients with hypertensive 

nephropathy. The initial motivation for the thesis was the lack of knowledge on hypertensive 

nephropathy, despite its high prevalence in clinical nephrology and in registries. We aimed to 

describe the extent of hypertensive nephropathy, its clinical characteristics, and how well we 

diagnose it today. We also aimed to elucidate the pathophysiology of hypertensive nephropathy, 

as there is scarce biological data, especially from the omics disciplines. 

 

Specific aims: 

Paper 1: How prevalent is CKD, and how has the prevalence changed? We aimed to describe 

the trends in the prevalence of chronic kidney disease, and evaluate the influence of modified 

cardiovascular risk factors on CKD prevalence.  

Paper 2: How prevalent is hypertensive nephropathy, and how do we diagnose it today? We 

aimed to describe the clinical characteristics of biopsy-verified hypertensive nephropathy 

patients, and test the accuracy of traditional and tentatively new clinical criteria for the 

diagnosis. 

Paper 3: How can we improve diagnosis and prognosis in hypertensive nephropathy? We aimed 

to describe the diagnostic precision of a urinary proteomics test in advanced chronic kidney 

disease with a set of hypertensive nephropathy cases, and retrospectively evaluate the 

association between proteomics and rapid kidney function decline. 

Paper 4: What are the pathophysiological mechanisms behind hypertensive nephropathy? We 

aimed to describe perturbations of gene expression and urinary amino acid excretion in 

individuals with early stage hypertensive nephrosclerosis. 
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9 MATERIAL 

Epidemiologic data was gathered by accessing patients’ electronic health records (Paper 3), and 

through structured questionnaires in combination with central Norwegian health registries 

(Paper 4 and III). Data was also collected from national Norwegian health registries (Paper 2 

and IV). 

9.1 The Nord-Trøndelag Health Study (HUNT3) 

Nord-Trøndelag county is situated in the central region of Norway, with a population of 128 694 

in 2006 (218). The population is ethnically homogenous, with approximately 3% being of non-

Caucasian origin (219). Migration out of or into the county is low, at only 0.3% of the 

population per year (220). The county is fairly representative of Norway in regards to age 

distribution, geography, economy, morbidity and mortality(219). 

The Nord-Trøndelag Health Study III (HUNT3) was a cross-sectional population study 

performed in the county of Nord-Trøndelag between October 2006 and June 2008 (Paper 4, III 

and IV). It was preceded by the previous HUNT1 (1984-86) and HUNT2 (1995-97) studies. 

The HUNT3 study invited all inhabitants aged 20 years or more (n=93860) living in Nord-

Trøndelag county, by mailing a questionnaire along with a personal invitation to undergo a 

physical examination. A total of 50 807 (54.1%) participated, with lowest participation rates in 

those older than 80 and younger than 40 years (221). Data was collected in all the 24 

municipalities at temporary examination sites by nurses and technicians.  

A self-report questionnaire (Q1) was filled in at home before attending the physical 

examination, and included questions on education and profession, diseases such as coronary 

heart disease, stroke, diabetes, and hypertension, as well as smoking, physical activity, and 

diseases in the family. After the clinical examination, participants received a second 

questionnaire with a sex and age specific part (Q2), and a third questionnaire (Q3) to 

participants with particular diseases such as diabetes or cardiovascular disease or cancer as 

stated in Q1, with questions on symptoms, disease duration, medication, and complications.  

In September 2017 the HUNT4 study started collecting data. 

 

9.2 The Norwegian Kidney Biopsy Registry 

The Norwegian Kidney Biopsy Registry (NKBR) collects clinical and histopathological data 

for all patients who undergo a kidney biopsy in Norway (5.0 million inhabitants, biopsy 

frequency 150 per million inhabitants per year in 2013) (222, 223) (Paper 2). After its 
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establishment in 1988, around 14 000 biopsies have been included (until 2015)(18). Only 

biopsies on native kidneys for non-neoplastic indications are registered. The NKBR registers 

the biopsy indication, known or suspected systemic diseases, clinical and lab data. All biopsies 

are examined by light microscopy and standard immunohistochemistry (staining for IgA, IgM, 

IgG, C1q and C3), and electron microscopy when necessary. Biopsies are examined first locally 

in one of the six Norwegian nephropathologist centres, and then reviewed by an experienced 

nephropathologist at Haukeland University Hospital, Bergen, for uniform diagnosis. In 2016, 

the NKBR was fused with the Norwegian Renal Registry. 
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10 METHODS 

10.1 Clinical measurements 

In HUNT3 trained nurses measured clinical data, including blood pressure, which was 

measured three times with one minute intervals with participants sitting down, by an automatic 

oscillometric method (Dinamap 845XT, Criticon, Tampa, FL, USA). Furthermore, heart rate, 

weight, height, and circumferences of hip and waist were measured. Venous blood sampling 

was done non-fasting for all participants when they attended. Fresh midstream urine samples 

were collected at the study venue, and first frozen to -20° Celsius, then further to - 80° Celsius 

within 24 hours, without centrifugation or additives. 

10.2 Urine analysis 

Dipstick analysis was carried out on an Urisys 1100 apparatus (Roche Diagnostics, Basel, 

Switzerland). Urine creatinine was measured at Levanger Hospital, Levanger, Norway by the 

enzymatic method using an ABX Pentra 400 apparatus (Horiba ABX SAS, Montpellier, 

France). 

Urine metabolomics analysis of amino acids was performed using liquid chromatography 

coupled with mass spectrometry, in our lab at NTNU. The frozen urine samples were thawed 

at the HUNT Biobank lab, aliquoted into 200 μL tubes, and refrozen. We subsequently thawed 

200  μL of urine on ice, vortexed for 5 seconds, removed 80 μL  urine and added to 320 μL of 

MS-grade water and 10 μL of internal standard stock. The internal standard stock consisted of 

a pool of five deuterated so-called “house-keeping” metabolites: d3-alanine, d4-succinate, d8-

valine, d2-tyrosine and d2-fumarate (Cambridge Isotope Laboratories, Tewksbury, MA, USA). 

The internal standards were all diluted to a concentration of 1 mM. The 400 μL samples were 

then centrifuged for seven minutes at 14 000 rotations per minute at 4 °C to remove protein 

using a 3000 Da molecular weight cut-off filter (VWR Centrifugal Filter, modified PES, 3 K, 

VWR International, West Chester, PA, USA). Forty μL of the resulting urine was pipetted into 

a well on four parallel 96 well plate duplicates and frozen at -80°C for subsequent analysis. The 

96 well plates were then loaded into the autosampler at a temperature of 4°C.  

For the targeted amino acid analyses, the urine samples were derivatized using the EZ:faast 

LC/MS Physiological (Free)Amino Acids Kit (Phenomenex, Inc, Torrance, CA, USA). All 

samples were spiked with three isotopically labelled internal standards, HARG, HPHE, and 

d3Met. Standard mixes and internal standards were provided in the EZ:faast kit. In brief, the 

previously spin-filtered and frozen urine was thawed and gently vortexed, and 30 µL of it was 
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mixed with 10 µL internal standard solution and 160 µL MS-grade water. Then 200 µL 

Na2CO3 was added, and the mixture was absorbed into the Phenomenex absorbing tip, and 

eluted with 200 µL of an eluting agent consisting of NaOH and N-propanol, 3:2 ratio. Then 50 

µL chloroform was added, vortexed and allowed to react (alternative: oximation reaction with 

chloroform?). Then 200 µL iso-octane were added and allowed to react, resulting in a two-

layered mixture. From the supernatant 50 µL was taken and desiccated over 5 minutes under a 

gentle flow of N2, followed by reconstitution in 80 µL H20/formic acid. Thirty µL of this was 

inserted into an MS vial and capped, and 2 µL was injected into the LC-MS for analysis.  A 5 

uM standard mix was injected for every 10 to 20 sample as a quality control sample.  

Urinary metabolomics analysis was carried out using liquid chromatography coupled with mass 

spectrometry. Liquid chromatography was performed on an Acquity HSS (High Strength 

Silica) T3 1.8 μm UPLC 2.1 x 100 mm chromatographic column, running on the ACQUITY 

ultra-performance liquid chromatography (UPLC) platform (Waters Corporation, Milford, MA, 

USA). The sample injection volume was 2 μL and UPLC mobile phase flow rate kept at 400 

μL/min. Sample and column temperatures were 4°C and 40°C, respectively. Mobile phases: A: 

95% acetonitrile and 0.1% formic acid, at a 10mM final concentration. B: 50% acetonitrile, 

50% ammonium acetate, at a 10 mM final concentration. With seven minutes run time, the 

eluent gradients were as follows: A 99% and B 1 at 0.0 minutes; A 99%, B 1%; at 1.0 minutes, 

The column was primed by five initial injections of high-grade water, then repeated injections 

of the Standard Mix 1 (QC) sample. Then 12 samples were run, followed by a QC sample. Then 

12 new samples were run, followed by a QC sample, and this was repeated until the last sample, 

which was followed by three QC samples. The liquid chromatography was coupled with the 

Synapt G2-S High Definition Mass Spectrometer (MS) (Waters Corporation, Milford, MA, 

USA) for LC-MS/MS analysis. Samples were run in negative mode and positive mode, and in 

UPC2 mode using the UPC2 (Waters Corporation, Milford, MA, USA). The instrument was 

set up according to the manufacturer’s manual, using leucine-enkefalin (MW 554.2615 Da in 

negative mode) as lock-mass compound. Calibration was carried out using mM sodium formate 

solution. Capillary voltage was set to 2.5 kV in negative mode and 3.2 kV in positive mode. 

Source temperature was 120 °C. Desolvation temperature was 250°C. All amino acids were 

analyzed as mass spectrometry responses. In addition, calibration curves were constructed for 

24 of 47 amino acids, where we had available standard mixes in dilution series.  

Urine proteomics analysis was performed at the Mosaiques Diagnostics lab in Hannover, 

Germany. For CE-MS analysis a 0.7 mL urine aliquot was thawed immediately before use and 
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diluted with 0.7 mL 2 M urea, 10 mM NH4OH containing 0.02 % SDS. In order to remove high 

molecular weight polypeptides, samples were filtered using Centrisart ultracentrifugation filter 

devices (20 kDa molecular weight cut-off; Sartorius, Goettingen, Germany) at 3,000 g until 

1.1 mL of filtrate was obtained. Subsequently, filtrate was desalted using PD-10 column (GE 

Healthcare, Sweden) equilibrated in 0.01% NH4OH in HPLC-grade water. Finally, samples 

were lyophilized and stored at -20°C. This procedure results in an average recovery of sample 

in the preparation procedure ~85%.(92) Shortly before CE-MS analysis, lyophilisates were 

resuspended in HPLC-grade water to a final protein concentration of 0.8 µg/µL checked by 

BCA assay (Interchim, Montlucon, France). CE-MS analysis was performed as previously 

described.(224, 225) The limit of detection was ~1 fmol, mass resolution was above 8000 

enabling resolution of monoisotopic mass signals for z≤6.  

After charge deconvolution, mass deviation was <25 ppm for monoisotopic resolution and <100 

ppm for unresolved peaks (z>6). The analytical precision of the platform was assessed by (a) 

reproducibility achieved for repeated measurement of the same replicate and (b) by the 

reproducibility achieved for repeated preparation and measurement of the same urine sample; 

details on analytical precision were reported recently (163). To ensure high data consistency, a 

minimum of 800 peptides/proteins had to be detected with a minimal MS resolution of 8,000 

in a minimal migration time interval of 10 min. Mass spectral ion peaks representing identical 

molecules at different charge states were deconvoluted into single masses using MosaiquesVisu 

software (226). Both CE-migration time and ion signal intensity (amplitude) showed variability, 

mostly due to different concentrations of ions in the sample, and were consequently normalized. 

Reference signals of 1770 urinary polypeptides were used for CE-time calibration by local 

regression. For normalization of analytical and urine dilution variances, MS signal intensities 

were normalized relative to 29 internal standard peptides generally present in at least 90% of 

all urine samples with small relative standard deviation. For calibration, linear regression was 

performed (227). The obtained peak lists characterized each polypeptide by its molecular mass 

[Da], normalized CE migration time [min] and normalized signal intensity. All detected 

peptides were deposited, matched, and annotated in a Microsoft SQL database (Microsoft, 

California, USA) allowing further statistical analysis.  

CE-MS measurement of the urine samples and data processing resulted in a maximum of 5,616 

distinct peptides, which described the human urinary low-molecular-weight proteome (228, 

229). The CKD273-classifier is a SVM-based classification model (230-232), which allows the 



53 
 

classification of samples in the high dimensional parameter space using MosaCluster software 

(version 1.7.0) (233).  

Applying the CKD273-classifier to CE-MS data of unknown samples, MosaCluster calculated 

classification scores, based on the amplitudes of the 273 CKD-biomarkers. Classification is 

performed by determining the Euclidian distance (defined as the SVM classification score) of 

the 273-dimensional vector to a 272-dimensional maximal margin hyperplane, which was 

defined previously (163). The cut-off of the classification score was determined with the result 

of the biomarker discovery cohort in Good et al (163). Patients with urine samples who had 

classification factors exceeding 0.343 were classified as CKD273-classifier positive cases and 

patients with urine samples scoring below 0.343 were classified as CKD273-classifier controls. 

All data were calibrated and annotated to the Mosaiques human urinary database. 

 

10.3 Data analysis and statistics 

Data correction 

Raw data files were processed using the Mosaiques Visu software (Biomosaiques Software, 

Hannover, Germany) in Paper 3, and the Transomics software (Waters, Milford, MA, USA) in 

Paper 4 for peak picking, alignment and deconvolution. Data was checked for analytical 

variance in Paper 4 by evaluating responses from the kit-provided internal standards 

homoarginine (HARG), homophenylalanine (HPHE) and methionine-D3 (d3Met), and then 

adjusted based on responses from QC samples consisting of a standard mix of 24 amino acids 

for every 20 sample, as explained below.  

In Paper 3 quantitation was based on calibration lines calculated by linear regression. In Paper 

4 quantitative analyses were done using the MassLynx software application TargetLynx 

(Waters, Milford, MA, USA). To be included in the further quantitative analyses in Paper 4 

metabolites had to show relatively stable intensities across the repeated QC samples, with a 

predefined criterion of relative standard deviations < 30%. According to QC requirements 

metabolites were excluded if  >20% of measurements were at zero concentration or missing. 

The MS data was filtered in a stepwise manner outlined by Want (210).  For every metabolite, 

the non-normalized intensity data was exported to Excel, and adjusted to the signal of the 

different QC samples (as mentioned above) throughout the batch to cater for analytical drift: 

the samples were first sorted in run order and the sample list then divided into QC blocks. Each 



54 
 

block started with a QC sample, then a QC sample in the middle, and ended with a QC sample. 

The average of these three QC samples from the same block was divided by the grand average 

of all the QC samples, to produce a block constant. Intensities in all the samples in the same 

block were divided by this constant, to adjust the feature intensities according to the feature 

intensities seen in the QCs along the batch. This model of “feature-based correction algorithm 

(using) the QC intensities in the local neighborhood of each sample to formulate a correction 

factor” has been described by Kamleh (209). The resultant intensities were processed using 

Metaboanalyst 3.0 (215).  

Normalization 

In Paper 3, responses were normalized to 29 internal standard peptides present in ≥90% of all 

samples with small variance. In Paper 4, responses were filtered using non-parametric relative 

standard deviation data filtering, as recommended in large data sets (234), normalized to urinary 

creatinine, log transformed and auto scaled (mean-centered and divided by the standard 

deviation of each variable) in Metaboanalyst 3.0 (215). 

Statistics 

Univariate analysis: In Paper 3 mean proteomic score in the two groups were compared with 

two-sample t-test. The metabolites in Paper 4 were non-normally distributed, so the non-

parametric Mann Whitney U-test was used for univariate testing of difference in means of 

amino acids between controls vs hypertensive nephropathy. Data exploration was done using 

fold change and volcano plots. Adjustment for multiple testing was done using False Discovery 

Rate (FDR) according to the Benjamini Hochberg ranking procedure (217) in Metaboanalyst 

3.0.  

Multivariate analysis: In Paper 3 the formerly established support vector machine (SVM)-based 

classification model CKD273 was applied to CE-MS data of unknown samples (230). The 

MosaCluster software calculated classification scores based on the amplitudes of the 273 CKD 

biomarker peptides, and samples were classified as CKD or not CKD relative to a previously 

validated cut-off value. Linear regression was used for calibration and for computing decline in 

kidney function over time, and logistic regression to describe the associations of specific urinary 

proteins to CKD and to rapid kidney function decline. Also in Paper 3 we created Receiver 

Operator Characteristic (ROC) curves, and tested the diagnostic precision by ROC area equality 

of different logistic regression based models (e.g. base model + albuminuria vs enhanced model 
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+ albuminuria + proteomic score). We also used risk reclassification in Paper 3. Significance 

testing is difficult in risk reclassification, but these are useful for demonstrating how different 

risk prediction models changes the risk estimates in subjects with and without the outcome 

(235).  

In Paper 4, preliminary data exploration was done using principal component analysis (PCA), 

an unsupervised clustering analysis that explains the variance of the data set by a small number 

of factors, called principal components (PCs). In our metabolomics study, every PC is a linear 

combination of metabolite contributions to variance, and PC1, the first of PCs produced in the 

analysis, explains the largest amount of variance in the data set. PC2 explains the largest amount 

of variance that PC1 did not account for, and so on. The PCs are all orthogonal to each other, 

and together form a new matrix built up of a score matrix and a loadings matrix. The scores 

matrix has the positions of the linear transformations of the original observations (i.e. individual 

samples) in the new coordinate system, and the loadings matrix indicates the variables (i.e. 

metabolites) with the highest weights in transforming the samples from the original data to their 

positions in the scores matrix (236, 237). This way one can reduce a complex metabolomics 

matrix of for example 100 patients x 100 metabolites into a three-dimensional coordinate 

system defined by PC1, PC2 and PC3, for quick visualization of the data, identifying outliers, 

evaluating analytical drift, and getting a first impression of how the data clusters, and what 

metabolites and samples drive that separation (236). 
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Figure 7. A PCA 3D plot showing clustering in a three-dimensional coordinate system created 

by PC1, PC2 and PC3 (copyright MA Øvrehus).  

Next we used partial least squares discriminant analysis (PLS-DA), a supervised method which 

employs multiple linear regression techniques to find the direction of maximum covariance 

between the data set and group label. PLS-DA uses the data to build a training classification 

model, then clusters the data according to this model to evaluate overall discrimination between 

patients and controls. Variable importance in projection (VIP) is a frequently used outcome 

measure in PLS-DA analysis, and is based on the sum of variable influence over all model 

dimensions, looking at the PLS loadings relative to the amount of explained group variation 

(215). VIP scores can be used to identify discriminating variables or predictors (216).  

Another technique used in Paper 4 was over-representation analysis, which tests if compounds 

are present more than expected by chance. We also did pathway enrichment analysis, which 

tests if a group of compounds representing known metabolic pathways is present more than 

expected by chance. A pathway topology analysis in addition takes into consideration that some 

compounds are more central than others in a metabolic pathway, and that changes in metabolites 

that are crucial to a pathway has larger impact than changes in more peripheral compounds. 

 



57 
 

  

Figure 8. Example of a pathway analysis plot (over-representation analysis) on Metaboanalyst. 

Each circle represents a different biological pathway; x-axis: pathway impact, y-axis: -log(p). 

(Copyright MA Øvrehus) 

 

Parallell to this we was also utilized gene ontology (GO) enrichment analysis, to integrate gene 

expression data to an easier to understand description of overall biological function. (238). 

Finally we combined gene and metabolite information into a so-called integrated pathway 

analysis. 

Analytic variance was estimated using Excel software (Microsoft, Redmond, WA, USA), and 

descriptive statistics and some hypothesis testing were done using Stata software (StataCorp 

LP, College Station, TX, USA).  

 

10.4 Ethical considerations 

All participants gave informed consent when included in the Norwegian Kidney Biopsy 

Registry and the HUNT study, including linkage to central national registries. The studies in 
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Paper 3, II, III, and IV were approved by the Regional Committee for Medical and Health 

Research Ethics Central Norway. The studies in Paper 2 and IV were approved by the 

Norwegian Data Protection Authority. The study in Paper 2 was approved by the Norwegian 

Ministry of Health. All participants gave written consent. 
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11 RESULTS 

We have described trends in CKD development, evaluated the prevalence, diagnosis, and 

prognosis in hypertensive nephropathy, and carried out urine proteomics and metabolomics 

analysis for diagnosis in advanced CKD and early hypertensive nephropathy. 

 

11.1 Summary of Paper 1 

Surveillance of CKD prevalence over time and information on how changing risk factors 

influence this trend are needed to evaluate the effects of general practice and public health 

interventions. However, very few studies have addressed this topic. We studied the total adult 

population of a demographically stable county representative of Norway using cross-sectional 

studies 10 years apart (HUNT2 and HUNT3, participation rates 70% and 54%, respectively). 

Thorough quality-control and comparisons of methods over time excluded analytical drift, and 

multiple imputations of missing data and attendance-weights contributed to unbiased estimates. 

CKD prevalence remained stable in Norway from 1995-97 (11.3%, n=65,237) to 2006-08 

(11.1%, n=50,586) (p=0.42). The association of survey period with CKD prevalence was 

modified by a strong blood pressure decline, more physical activity and lower cholesterol; 

without these improvements 2.8, 0.7, and 0.6 percentage-points higher CKD prevalence could 

have been expected, respectively.  In contrast, prevalence of diabetes and obesity increased 

moderately, but the proportion of diabetic patients with CKD decreased substantially (33.4%-

28.6%, p=0.002) so only a 1.0 percentage-point lower CKD prevalence could have been 

expected without these changes. In conclusion, CKD prevalence remained stable in Norway 

over a 10-year period characterized by strong improvements in blood pressure, lipids and 

physical activity and only modestly increasing diabetes and obesity. 

 

11.2 Summary of Paper 2 

Hypertensive nephrosclerosis is assumed to be the second most common cause of kidney 

failure. The diagnosis is often assumed but not always biopsy-verified in CKD patients with 

long-standing hypertension, no/low-grade proteinuria, no diabetes, and no hematuria. However, 

several important aspects of the disease are not well studied, especially in white patients. The 

aim was to improve our understanding of the nephrosclerosis phenotype, prevalence, prognosis, 

and diagnostic process.  



60 
 

We analyzed data from representative adults of the Norwegian general population (n=36878) 

participating in the cross-sectional population-study HUNT-3 (2006-08). We also used data 

from the Norwegian Kidney Biopsy Register (1988-2012) on all CKD patients referred for 

kidney biopsy (n=7261), with follow-up until 2017. In addition we included data from random 

unselected nephrology clinic patients (n=193) for matching. We evaluated the 

sensitivity/specificity, predictive values, and net benefit in decision curve analysis using current 

clinical criteria, and built new diagnostic models using logistic regression, decision tree, and 

other methods for optimizing diagnostic accuracy.  

The prevalence of clinical criteria-based nephrosclerosis was 2.6% in the general population, 

and their risk for rapid GFR decline, kidney-related hospital admissions, and ESRD was 

significantly increased compared to age and sex matched subjects from the general population 

and comparable to diabetic kidney disease (DKD) patients. Mortality risk was higher in DKD 

and in the biopsy cohort, but nephrosclerosis patients had a 50% increased risk after adjusting 

for age, sex, cohort type and cardiovascular risk factors. Current clinical criteria had very low 

sensitivity (0.14) but high specificity (0.94) for biopsy-confirmed nephrosclerosis. Many 

patients with biopsy-verified nephrosclerosis had overt proteinuria (60%) or hematuria (34%). 

The most common biopsy-verified diagnoses in patients fulfilling clinical criteria were 

nephrosclerosis (41%), glomerulonephritis (21%) and interstitial nephritis (17%). Decision 

curve analysis indicated that adding age >50year and increasing proteinuria cutoff to <1.0g/d 

would slightly improve net benefit of current clinical criteria, but a regression-based continuous 

model had the highest net benefit, especially for risk-willing patients.  

Hypertensive nephrosclerosis is a common, high-risk disease, often with an atypical phenotype 

compared to current clinical criteria, which have low sensitivity but high specificity. A positive 

test will reduce the need for kidney biopsy, but the current “no-biopsy” strategy in suspected 

nephrosclerosis implies a risk for misclassification and under-treatment. Increased biopsy 

frequency should be considered in selected patients assumed to have hypertensive nephropathy. 

 

11.3  Summary of Paper 3 

The contrast between a high prevalence of chronic kidney disease (CKD) and the low incidence 

of end-stage renal disease highlights the need for new biomarkers of progression beyond 
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albuminuria testing. Urinary proteomics is a promising method, but more studies focusing on 

progression rate and patients with hypertensive nephropathy are needed.  

We analyzed urine samples with capillary electrophoresis coupled to a mass-spectrometer from 

18 well characterized patients with CKD stage 4-5 (including six with hypertensive 

nephropathy) and 17 healthy controls. Classification scores based on a previously developed 

panel of 273 urinary peptides were calculated and compared to urine albumin dipstick results. 

Urinary proteomics classified CKD with a sensitivity of 0.95 and specificity of 1.00. Overall 

diagnostic accuracy (area under ROC curve) was 0.98, which was better than for albuminuria 

(0.85, p=0.02). Results for hypertensive nephropathy were similar to other CKD diagnoses, 

including diabetic nephropathy, glomerulonephritis, and other CKD. Adding the proteomic 

score to an albuminuria model improved detection of rapid kidney function decline 

(>4ml/min/1.73m2 per year) substantially: area under ROC curve increased from 0.762 to 0.909 

(p=0.042), and 38% of rapid progressors were correctly reclassified to a higher risk and 55% 

of slow progressors were correctly reclassified to a lower risk category. Reduced excretion of 

collagen types I-III, uromodulin, and other indicators of interstitial inflammation, fibrosis and 

tubular dysfunction were associated with CKD diagnosis and rapid progression. Patients with 

hypertensive nephropathy displayed the same findings as other types of CKD. 

Urinary proteomic analyses had a high diagnostic accuracy for CKD, and strongly improved 

identification of patients with rapid kidney function decline beyond albuminuria testing. The 

method performed equally well in hypertensive nephropathy, and our results indicate that 

hypertensive nephropathy shares many of the pathophysiological pathways and mechanisms 

found in other CKD diagnoses. 

 

11.4 Summary of Paper 4 

Hypertensive nephrosclerosis is among the leading causes of end-stage renal disease globally, 

but its pathophysiology is poorly understood, and metabolomic data is scarce. We wanted to 

describe both gene expression in renal tissue, and urine metabolic changes in early hypertensive 

nephrosclerosis, compared to healthy controls. 

We used gene expression data from the European Renal cDNA Bank and included 15 patients 

with biopsy-verified hypertensive nephrosclerosis and 21 healthy living kidney donors. We 

compared urinary amino acid levels measured by LC-MS in 95 participants from a Norwegian 
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cross-sectional population study, 62 participants with assumed hypertensive nephrosclerosis 

that fulfilled traditional clinical criteria, and 33 healthy controls. 

The main finding from the gene expression data was substantial underexpression of genes 

related to amino acid catabolism and synthesis in hypertensive nephrosclerosis (15- and 8-fold, 

respectively). Also, gene expression was decreased for fatty acid oxidation (13-fold), and 

increased in interferon gamma and cellular defense response (both 8-fold). Urinary 

metabolomics analysis revealed significantly lower excretion of eleven amino acids in 

hypertensive nephrosclerosis, among them tyrosine, phenylalanine, dopamine, homocysteine 

and serine. Pathway analysis showed perturbations of catecholamine biosynthesis (tyrosine, 

phenylalanine), homocysteine/methionine homeostasis (homocysteine) and the serine pathway.  

A combined genomic and metabolomic analysis in hypertensive nephrosclerosis showed 

several changes relevant to the pathophysiology of nephrosclerosis. The main findings were 

perturbations of catecholamine biosynthesis, which is linked to natriuresis and blood pressure; 

homocysteine/methionine homeostasis, which is linked to cardiovascular risk, atherosclerosis 

and fibrosis; and the serine pathway, which is linked to endothelial dysfunction and oxidative 

stress.  
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12 DISCUSSION 

 

 

12.1 Methodological considerations 

12.1.1 Epidemiological aspects 

 

Selection bias: In prospective cohort studies (HUNT), the main selection bias is non-

participation. The participation rate in HUNT2 was high (69%), but dropped to 54% in HUNT3, 

as observed in other more recent population-based studies (221). Non-participation in HUNT3 

was most common in ages 20-39 and 80+, and lack of time, no perceived benefit, being too ill 

to participate were the main causes. Non-participants had lower socioeconomic status, higher 

prevalence of cardiovascular disease (CVD) and diabetes, and higher mortality (239). Given 

the association between chronic kidney disease (CKD) and CVD/diabetes, for Paper 4 it could 

imply that our study missed participants with serious CVD and renal disease, and is biased 

towards weakening the association between urinary metabolite patterns and early CKD. I.e. the 

association between urinary metabolite patterns and CKD could in reality be stronger than 

Paper 4 indicated. In Paper 1 (HUNT2 and HUNT3) one tried to counter the non-participation 

selection bias altogether by constructing attendance-weights for HUNT3 based on predicted 

probability of attendance, and using multiple imputation of missing data.  

The Norwegian Kidney Biopsy Registry likely has a selection bias towards patients with 

hematuria and/or albuminuria, as has been postulated earlier (51, 240) and confirmed in an 

international questionnaire-based query on nephrologists’ biopsy indications  (241). In 

suspected hypertensive nephropathy, historical biopsy practices have possibly been restrictive, 

in line with Luke: “(…) biopsy for the diagnosis of hypertensive nephrosclerosis is indicated 

(…) only when there is substantial doubt based on the clinical evidence” (240). It is therefore 

possible, as the authors stated, that the biopsied cases of hypertensive nephropathy/ 

nephrosclerosis “(…) represent cases with more advanced hypertensive nephrosclerosis” (51). 

Paper 2 is therefore most likely biased towards high proteinuria levels that could reflect 

advanced disease.  

Information/misclassification bias: Information on diseases such as diabetes, treated 

hypertension etc was self-reported by questionnaire. A validation study in HUNT however 

showed high concordance between reported information on hypertensive medication and 
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medical records in diabetics (242), so there is probably little information bias in Paper 4 and 

Paper 1. Urine sample handling may not have been uniform, with delayed freezing likely 

reducing the concentrations of metabolites, possibly at different rates. This may have introduced 

a bias in Paper 2, possibly showing associations between early CKD and metabolites where in 

reality there are none. However, the majority of urines were collected at the study site and 

immediately frozen, ensuring uniform sample handling. Also, it is likely that possible 

metabolite degradation in storage would affect all urine samples equally. Urinary proteins are 

relatively stable, and storage procedures probably had little impact on protein/peptide findings 

in Paper 3.  

Confounders and effect modifiers: Confounders are associated with both exposure and effect, so 

that a measured association between exposure and outcome may not represent a causal effect 

(243). Factors representing intermediate steps in the causal chain are not confounders but effect 

modifiers. Stratification and multivariable analyses are techniques to reduce the effect of 

confounding (Paper 4, III, IV). We employed stratification by sex and age group in intervals 

(20-50, 50-70, 70+ years) of cases and controls in Paper 4, and used several multivariate and 

regression-based analysis techniques, such as principal component analysis (PCA) and partial 

least squares discriminant analysis (PLS-DA). In regression analysis in Paper 2 we age stratified 

and matched biopsy-verified and clinical nephrosclerosis cases to find which clinical features 

were most strongly associated with nephrosclerosis. These techniques reduce the extent of 

confounding, but there will probably always be residual confounding due to non-measured 

confounding variables.  

In Paper 1 we performed sensitivity analysis and generalized estimation equation (GEE). 

Sensitivity analysis is an analytical technique where you first do a statistical analysis, then 

exclude one (or a number of) variables from the original analysis and re-do the analysis, to see 

if the result is unchanged. Generalized estimation equation is a statistical technique that allows 

for use of both multiple imputation and non-participation adjusted data in the analysis.  

External validity: It strengthens the external validity of HUNT that it is a population-based study 

with many participants, high participation, from a county which is fairly representative of 

Norway as a whole in major demographics. The study has been found to be comparable to other 

Western countries as to CKD and cardiovascular mortality (20, 221, 244, 245), but the findings 

are limited to Caucasian populations. 
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Missing data: As briefly mentioned we used multiple imputation in Paper 1 for missing data. 

Missing data may reduce power and/or introduce bias. Multiple imputation is a technique that 

allows prediction of missing values based on observed data from other participants by multiple 

regression analysis, and has become an accepted strategy to avoid the problems of bias related 

to missing data (246, 247).  

12.1.2 Statistical analyses 

In Paper 4, Q-Q plots and Skewness-Kurtosis tests showed that the metabolites were non-

normally distributed, so the non-parametric Mann Whitney U-test was used to test the 

difference in means of amino acids between controls vs hypertensive nephropathy. Adjustment 

for multiple testing is necessary when doing multiple significance testing. The more 

associations you test between cases and controls, the more likely it becomes that one of the tests 

is falsely positive, i.e. that it shows a statistically significant difference when in fact there is 

none (type I error). It is especially important adjust for this in modern biostatistics where 

thousands of features may be tested in thousands of samples. To counteract this several 

techniques are available, such as the Bonferroni correction, Holm step-down procedure, and 

controlling for False Discovery Rate (FDR). In Paper 4 we controlled for FDR, which implies 

controlling the expected percentage of falsely positive tests in your test battery. FDR-control is 

deemed a less stringent multiple testing adjustment than the Bonferroni correction, which 

controls the probability of at least one falsely positive test.  

In Paper 3 we used Support Vector Machines (SVM), which is a supervised, machine learning 

technology developed for classification. Here the software, after having been given a training 

set with samples belonging to one of two groups, creates a model that classifies new samples 

into one of the two groups (230). Whereas PLS-DA algorithms model linear relationships 

between feature and group, SVM and other machine learning techniques are able to model non-

linear relationships as well (248). One of the problems with PLS-DA and other supervised 

learning methods however, is the tendency toward overfitting of the data. Overfitting implies 

that the learning model is very effective in separating classes within your given data set, but 

may not be accurate when exposed to new examples or used in another study. There are several 

methods of counteracting this, most prominently cross validation techniques. In Paper 4 we 

used pathway and pathway enrichment analyses to put our findings into biological context. 

When doing pathway analysis on a data set that generated by a specific group of compounds, 

for example amino acids, it is important to be aware that in the pathway analysis your specific 

group of compounds is likely to be found important, and that an implicit bias was introduced 
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by your choice of method (34). This would be true for many types of analyses in translational 

medicine, and accentuates the importance of an a priori hypothesis. Also, most of the 

compounds central in human metabolism have been characterized and annotated in libraries 

such as The Human Metabolome Database or METLIN, but probably not all. So it is important 

to be aware that any pathway analysis is necessarily limited to the known pathways and their 

known facets (249). Furthermore, in Paper 2 we used discrimination analysis in the form of 

Receiver Operator Characteristic (ROC) analysis. Here the discriminatory ability is expressed 

as the Area Under Curve (AUC) of a specific binary diagnostic test, and is a function of the 

sensitivity and specificity of the test across all of its cut-off values (X-axis: (1-specificity); Y-

axis: sensitivity). High AUC values towards 1.0 indicate high discriminatory ability (CKD yes 

or no, for example), an AUC value of 0.5 indicates that the test is no better than chance, and the 

values in between are deemed as excellent discrimination (0.80-0.90), acceptable (0.70-0.80) 

and inadequate (<0.70) (250). We also assessed optimal cut-off values using several variants of 

ROC analysis (ROC 01, Youden index, specificity >0.90, equal sensitivity and specificity, and 

cost benefit ratio) (251). We also used decision tree analysis to illustrate these optimal cut-offs. 

Furthermore we employed decision curve analysis. Full traditional decision analysis is 

challenging since we must include costs and benefits for different interventions and outcomes. 

For most scenarios, we have only limited information on these variables, and individual patients 

also tend to have different valuation of risks and utility of outcomes. Therefore most analyses 

choose not to do so due to the difficulities mentioned above. Decision curve analysis is a rather 

new method which omits some of these problems but still manages to include the most 

important parts of a full medical decision analysis (252). This is a method to include risk/benefit 

aspects in the evaluation of diagnostic tests without actually measuring these variables (253). 

Confounders: Many metabolic processes are influenced by sex, age, body mass, drug use, 

smoking and alcohol ingestion, shift work and nutrition status, among other things. It is difficult 

to adjust for all these confounders in the computational models, and this is important to keep in 

mind especially with regard to study design (254).  

12.1.3 Laboratory analyses 

Targeted metabolomics studies have strengths and weaknesses. They measure a limited number 

of compounds with a high degree of quantitative accuracy, which allows a precise phenotype 

characterization. However, targeted studies will only find perturbations in the metabolites 

measured, so one must have an a priori hypothesis that the measured metabolites are 

biologically interesting. Untargeted studies measure all the metabolites visible to your 
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analytical technique. Suitable for de novo biomarker discovery, hypothesis generation and often 

offering a wider set of compounds than targeted studies, untargeted studies are also fraught with 

a lower degree of definitive compound identification, or at least more steps necessary to ensure 

identification. This may increase the risk of false positive results, i.e. type I error.  

Stability of internal standards: Inter-batch variability was 11.9%, calculated as the relative 

standard deviation (RSD=standard deviation/mean). The average variance of the internal 

standard within the same batch (intra-batch) was 2.1% (range 0.5-4.2%). Between all batches, 

71% of these amino acids had relative standard deviations of less than 35%. CVs of calibration 

curves. 

Weakness: Calibration curves of targeted compounds were not made in urine matrices, but in 

water solutions. The exact matrix effects of urine (on for example ion suppression) are therefore 

unknown. 

Interpreting huge datasets is complex, requiring expertise in many fields such as analytical 

chemistry, biostatistics, computer science, and epidemiology, in addition to basic 

medicine/biology and medical statistics. The metabolomics field is young. There seem to be 

many protocols around for sample handling, pre-analysis data cleaning, analytical set-ups and 

protocols, data management and analysis varieties, and so on. There is a need in the field for 

more unified experimental protocols, laboratory standard operating procedures, and best 

practices in data quality control. 

 

12.2 To biopsy or not to biopsy - how do we diagnose hypertensive nephropathy? 

As previously mentioned, hypertensive nephropathy has traditionally been suspected in CKD 

patients with longstanding hypertension and signs of blood pressure-related organ affection, 

low proteinuria and no signs of other kidney diseases like hematuria, diabetes, 

glomerulonephritis etc. This assumption based on clinical criteria alone was criticized in the 

mid-1990s. Schlessinger, evaluating 43 patients referred for kidney transplantation because of 

assumed hypertensive end-stage renal disease, found that only few had been biopsied, and less 

than 10% had documented hypertension at the time of normal kidney function (255). In later 

studies the accuracy of traditional clinical criteria to predict biopsy-verified hypertensive 

nephrosclerosis was shown to be variable, with positive predictive values ranging from 50% to 

85%, across several countries and ethnic backgrounds (45-48). Despite these studies 
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hypertensive nephropathy is still most often diagnosed on clinical grounds alone, and there is a 

systematic tendency towards low biopsy rates in patients with a classical suggestive 

hypertensive nephropathy phenotype, as discussed in Paper 2. Kidney biopsies are widely 

regarded as safe procedures, with 98% of biopsies having no complications in one study of 

>9000 kidney biopsies (256). A certain percentage of clinically diagnosed hypertensive 

nephropathy patients will in fact have another kidney disease such as for example chronic 

glomerulonephritis, tubulointerstitial nephropathy and lupus nephritis, as described in Paper 2. 

Conversely, albuminuria and/or hematuria increase the likelihood of kidney biopsy, producing 

a selection bias (240). The true prevalence of nephrosclerosis in general population-based CKD 

cohorts is unknown since there has been a general attitude against biopsying this group. An 

Italian study described a diagnostic algorithm for CKD patients using all available laboratory 

tests, three experienced nephrologists and extensive use of renal ultrasound, but without an 

invasive kidney biopsy. They found that hypertensive/ischemic nephropathy encompassed one 

in four CKD patients which gave a prevalence of 3.4% at the age of 40+ years (257, 258). We 

found a somewhat lower prevalence in the general population using clinical criteria (2.6%, but 

a very similar percentage (3.9%) at age 40+. The optimal study would be to systematically 

biopsy and prospectively follow all incident patients with a clinical phenotype of hypertensive 

nephropathy, but such a biopsy policy is hardly feasible. The true prevalence of hypertensive 

nephropathy in the CKD population remains unknown.  

 

12.3 Hypertensive nephropathy – is it all about the pressure?  

Also, hypertensive nephropathy is a debated diagnosis. While it is consistently reported as a 

disease entity in kidney biopsy and ESRD registries around the globe, some also have pointed 

at the functional and structural resemblance hypertensive nephropathy has with normal aging 

in absence of CKD. They have questioned whether it is simply an accelerated aging process, as 

supported by findings in living kidney donors (259) and autopsy studies (260-262). One 

histopathological finding in arterionephrosclerosis at least, arteriolar hyalinosis, has been 

proposed to correlate stronger with age than with hypertension (58). Also, as argued by Tracy, 

there is certain evidence that the first pathogenic change in hypertensive nephropathy is age-

related intimal hyperplasia leading to reduced glomerular blood flow and a RAAS activation to 

increase global blood pressure (263). Recently, important progress has been made in 

understanding the genetic basis of hypertensive nephropathy. An evolutionary advantage 

against Trypanosoma brucei species causing African sleeping sickness, two variants of the 
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APOL1 gene (G1 and G2) have recently been found to be highly frequent in populations of 

African descent, and strongly associate with ESRD, FSGS, HIV-associated nephropathy 

(HIVAN), and hypertension-attributed CKD (50, 66, 264, 265). On the other hand, many 

African Americans with hypertension-attributed nephropathy do not have the risk genotype, so 

it probably does not explain the whole picture (50). Patients with hypertension develop 

nephrosclerosis across all races, although the frequency of APOL1 is low in most races except 

people of sub-Saharan African ancestry (266). This may explain why African Americans 

develop hypertension-attributed ESRD at an earlier age than European Americans (267), and 

why adequately treated hypertension seemingly slows CKD progression to a less degree in 

African Americans than in European Americans (54, 268). The APOL1 gene encodes the 

apolipoprotein L1 protein, which has central functions in trypanosome lysis, autophagic cell 

death, lipid metabolism and certain other vascular processes (269). In addition, claims have 

been made that hypertension is an immunological disease, supported by signs of continued 

(micro)inflammation found in both hypertension and hypertensive nephropathy, and activation 

of immune regulating pathways TGF-β and NF-κB activated in hypertension (270). It is 

possible that microinflammation contributes to the gradual progression of tubular atrophy and 

interstitial fibrosis pointing towards ESRD. Kopp proposed that hypertensive kidney disease is 

not solely a genetic disease, but probably the result of a combination of factors such as aging, 

obesity, hyperlipidemia, smoking, chronic inflammation, and oxidative stress (50).  

Around 30% of incident ESRD in the US was attributed to hypertension by the reporting 

physicians in 2017, with the inherent uncertainties of registry data (271). But does hypertension 

cause hypertensive nephropathy/CKD and end-stage renal disease? The association between 

hypertension and end-stage renal disease was pointed out as early as in 1873 by Professor G 

Johnson in the UK (272), and repeated by dr Fahr in Germany, who coined the term 

nephrosclerosis (“Nephrosklerose”) in 1919 (42). For many years it has been believed that 

prolonged non-malignant hypertension could induce hypertensive nephropathy and ESRD. This 

view was supported by the finding in the MRFIT Study after 16 years of follow-up of 330 000 

males of a strong and graded association between hypertension and development of ESRD, 

independent of the association between ESRD and age, race, diabetes mellitus, myocardial 

infarction, cholesterol, and smoking (53, 240). Others have seen hypertension as one of many 

factors contributing to CKD, alongside with traditional cardiovascular risk factors such as 

hypercholesterolemia, smoking, obesity etc (273, 274). Contrary to this, it has been stated that 

as long as underlying kidney disease is not definitively excluded by means of kidney biopsy, 



70 
 

the claimed association between hypertension and progressive renal failure cannot be made. 

Weisstuch pointed this out in his critique of the use of the diagnosis hypertension-attributed 

ESRD in the USRDS database, and in prospective clinical studies such as the Baltimore 

Longitudinal Study on Aging (BLSA) or the Hypertension Detection and Follow-Up Program 

(HDFP) (275). Luft also has pointed to the lack of biopsy data in hypertension-related ESRD, 

and the progression of renal failure despite optimal treatment of hypertension (276). Also, as 

Meyrier pointed out, vascular lesions are not unique to hypertensive nephropathy, but have also 

been found in arteries and arterioles in many patients with glomerulonephritis (277).  

If hypertension were causal in inducing nephropathy, one might expect treatment of 

hypertension to slow or even ameliorate hypertensive nephropathy. On the contrary, Hsu found 

in 2001, in his meta-analysis of 10 randomized, controlled trials of hypertension drug treatment 

including 26 000 participants and 114 000 patient-years, that antihypertensive treatment did not 

reduce the incidence of renal dysfunction in patients with non-malignant hypertension (278). 

Although only the most recent of these 10 trials included ACE inhibitors (Sys-Eur, 1997), the 

same finding was done in the overall analysis of the more modern AASK trial, which included 

ACE inhibitors (279). With recent discoveries of the strong genetic link to a percentage of CKD 

which is histopathology like hypertensive nephropathy, especially in patients of African 

ancestry, there is evidence that the condition in some patients is a heritable rather than an 

acquired disease. All in all, it is likely that prolonged non-malignant hypertension alone can 

lead to nephropathy and ESRD, but it is not definitively ascertained. The question remains 

whether observation time in the mentioned studies has been sufficiently long to evaluate the 

causality between hypertension and reduced kidney function. With most studies having <10 

years of follow-up, it uncertain that long-term effects of hypertension are registered. 

Furthermore, hypertension in assumed hypertensive nephropathy is sometimes indicative of an 

underlying, unidentified primary nephropathy, where kidney function loss is aggravated by 

continued hypertension. It is clearly a risk that clinicians clinically diagnose hypertensive 

nephropathy in patients with “support” in the high numbers of hypertension-attributed ESRD 

in registries, where kidney biopsy rates are low. There is a risk for a reciprocal dynamic, where 

registries accept the diagnosis from clinicians in the absence of kidney biopsy, and clinicians 

use it because it is prevalent in registries.  

It is quite possible that other disease-related gene variants may be identified in future studies, 

and help explain why some cases of hypertensive nephropathy progress rapidly, and have 

substantial proteinuria, and others have not. The implications of APOL1 and MYH9 have 
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already been mentioned. Lately, several other gene alleles have been identified that confer 

increased risk of CKD. Studies have shown that genes related to angiotensinogen, angiotensin 

converting enzyme and apolipoprotein E associated with accelerated renal function decline in 

Caucasian women (172), genes related to uromodulin associated with increased risk of CKD in 

individuals of European descent (103), and genes related to permeability glycoprotein 

associated with increased risk of hypertension and CKD in the Chinese population (173). 

Whether some of the variations in phenotype could also be related to differences in other 

factors, such as epigenetics, nephron endowment, infection sequelae, metabolism disturbances, 

and autoimmunity, is not known.  

 

12.4 Metabolomics and genomics in the context of the current literature 

We found that urinary metabolomics combined with gene expression in kidney biopsies 

displayed perturbations in several, potentially related, pathways relevant to the pathophysiology 

of hypertensive nephropathy, such as serine metabolism (endothelial dysfunction and oxidative 

stress), methionine metabolism (cardiovascular risk and fibrosis), and tyrosine metabolism 

(catecholamine biosynthesis and natriuresis). These could contribute substantially to the major 

hallmarks of nephrosclerosis; hypertension, atherosclerosis and interstitial fibrosis. 

12.4.1 The tryptophane – phenylalanine – tyrosine axis  

In addition to low urinary tyrosine we found several perturbations in tyrosine metabolism, 

which is involved in catecholamine biosynthesis, natriuresis, and blood pressure control.  Urine 

tyrosine is reduced in early CKD (148, 280) and ESRD (149, 281), likely because of low 

phenylalanine-hydroxylase (PAH) activity (38), also found here. It has been proposed that the 

mechanism for the reduced PAH activity is an oxidative stress-induced shortage of the 

necessary cofactor tetrahydrobiopterin due to oxidation (38). A precursor of dopamine, tyrosine 

is converted to L-dihydroxyphenylalanine (L-DOPA), and L-DOPA to dopamine by L-DOPA-

decarboxylase (DDC). Dopamine is abundant in the kidneys, and is important in blood pressure 

regulation, regulating more than 50% of the kidney salt excretion ability and interacting with 

the RAAS in sodium homeostasis and blood pressure regulation in normotensives (282, 283). 

Disturbed renal dopamine is linked to hypertension, both by reduced renal L-DOPA uptake or 

conversion to dopamine (140, 284), and disturbed dopamine function (285). DDC expression 

for conversion of L-DOPA to dopamine was strongly down regulated in our nephrosclerosis 

patients, and has also been shown to induce lower renal and urine dopamine concentrations and 

reduced salt and water excretion, activation of renin-angiotensin system and increased blood 
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pressure in mice (286). A defective tubular D1 receptor function has been shown in salt-sensitive 

hypertension in humans (287). A role on dopamine-dependent natriuresis of renalase, which is 

central to dopamine breakdown, has been found in animal studies, but its role in human disease 

is uncertain (288). Taken together, our data suggests that enzymatic downregulation and 

metabolite deficiency in the phenylalanine-tyrosine-dopamine axis is found in hypertensive 

nephropathy, and are linked to impairment of blood pressure control.  Further to this, 

perturbations in the phenylalanine-tyrosine-tryptophan biosynthesis pathway were found in our 

gene and metabolite combining integrated pathway analysis. Tryptophan and tryptophan 

intermediates, especially indoxyl sulfate and the kynurenines, show high plasma levels in 

advanced CKD (122, 129, 138, 139, 141, 289), and are higher in diabetic nephropathy (DN) 

with proteinuria than without proteinuria (290), and in DN with proteinuric progressors 

compared to non-progressors (291). Prognostic studies of large cohorts show that changes in 

tryptophan metabolism, with higher kynurenine-to-tryptophan ratio at baseline, associate with 

incident CKD defined as eGFR<60 (OR 1.36 per SD) (152). Also, high baseline kynurenine 

and kynurenic acid both associate with incident CKD (OR 1.49 and 1.53, respectively) (85). It 

has been hypothesized that high kynurenine/tryptophan ratios reflect disturbed tryptophan 

degradation and activity of the enzyme indoleamine 2,3-dioxygenase (IDO), which is induced 

by inflammation and has been linked to dyslipidemia and atherosclerosis in CKD (141) and has 

a role in blood pressure in inflammation (153). Kynurenine has also been linked to 

atherosclerosis in several studies (158). IDO is rate-limiting step of breakdown of tryptophan 

to kynurenine, and is in vitro proapoptotic in renal tubular epithelial cells in response to IFN-ɣ 

and TNF-α. In a mouse model, IDO knockout mice did not experience renal reperfusion injury, 

whereas blocking IDO in wild-type mice protected against renal reperfusion injury (292). Also, 

kynurenine may bind to G-protein-coupled receptor 35 on leukocytes and itself promote 

inflammation (293). There is a plausible link between inflammation-induced 

tryptophan/kynurenine-associated IDO activity and renal damage in CKD. It is not certain 

whether this relation is causal or the result of more fundamental processes. In the cross-sectional 

KORA study, serum phenylalanine was negatively correlated with eGFR (-2.36 

mL/min/1.73m2 per SD) (127). Further to this, in an analysis of the CRIC cohort, plasma 

phenylalanine was lower in fast progressors (<-3 mL/min/1.73m2/year) than in non-progressors 

(±1 mL/min/1.73m2/year) in a nested case-control study (125). Over a mean follow up of 9 

years in the Framingham Offspring study, baseline phenylalanine was associated with a lower 

risk of incident CKD (OR 0.71 (95% CI 0.55-0.92 per 1SD increase in phenylalanine 

concentration, p=0.01)) (294). Urinary tyrosine levels were lower in type 2 diabetics with 
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microalbuminuria than in type 2 diabetics with no albuminuria, and was put together with two 

other amino acids to improve risk prediction of macroalbuminuria (281). Serum tyrosine levels 

were higher in CKD cases with type 2 diabetes than in CKD cases without type 2 diabetes (295). 

Also, in a nested case-control study of diabetes in the Framingham Offspring study, baseline 

plasma tyrosine was associated with incident diabetes (OR 1.85 (95% CI 1.35-2.55), p=0.0001), 

and the finding was replicated in the Malmö Diet and Cancer study (296). Kidney function 

being normal, the authors suggested that the perturbations of serum amino acids, notably high 

levels of some and low levels of tyrosine, could be an early sign of insulin resistance. In the 

same Framingham Offspring study, baseline tyrosine was associated with lower odds of 

incident CKD (OR 0.75 (95% CI 0.58-0.97), p=0.027) adjusted for eGFR, diabetes, 

hypertension and proteinuria, but failed to reach significance in the final multivariable adjusted 

analyses (294). In the KORA F4 study, baseline serum O-sulfo-L-tyrosine associated with 

annual eGFR decline and incident CKD in individuals with a near normal baseline kidney 

function (mean eGFR 81 mL/min/1.73m2) (128). In a study of young hypertensive men, serum 

tyrosine levels were 2.8-fold lower than in normotensive controls (p=0.0039), and the tyrosine-

related tryptophane pathway came up as significantly perturbed in a pathway enrichment 

analysis (174). In the Joslin Kidney Study of type 2 diabetes, baseline plasma tyrosine levels 

were lower in non-progressors than in those who progressed to ESRD (155). In human genome 

wide association studies (GWAS), low urinary tyrosine has been associated with CKD via the 

genetic locus CDK12/PNMT, with PNMT coding for phenylethanolamine N-methyltransferase, 

the enzyme to catalyze the ultimate step of catecholamine synthesis (297). All in all, the 

tryptophane – phenylalanine – tyrosine axis participates in in blood pressure regulation through 

dopamine, plays a part in inflammation-induced dyslipidemia and atherosclerosis through IDO, 

and in associating with progression of diabetic nephropathy and incident CKD, likely plays a 

role in creating and/or maintaining chronic kidney disease.  

12.4.2 The glycine – serine – threonine axis 

We found that serine was lower in the urine of hypertensive nephropathy cases than in controls 

in Paper 4. The kidneys are the main site of serine production (298), supplying 75% of the body 

total from de novo synthesis (299), the majority of which comes from TCA cycle intermediates 

converted into phosphoenolpyruvate by phosphoenolpyruvate carboxykinase (PEPCK) (299). 

Serine is a major methyl group provider in the one carbon metabolism central to methylation 

of proteins and DNA (300), and has direct blood pressure lowering effects on vessels with intact 

endothelium in a rat model (179). Serine blood levels have previously been shown to be 
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inversely associated with reduced eGFR (annual eGFR change -0.12, p=0.016, Suppl.) (152), 

to be elevated in membranous nephropathy cases with higher proteinuria levels (301), and to 

induce apoptosis and pro-fibrotic reactions in a human proximal tubular cell line (302). In 

human genome wide association studies (GWAS), serine has been associated with CKD via the 

genetic locus CPS1 (Carbamoyl-Phosphate Synthetase 1) (303). CPS1 encodes a mitochondrial 

enzyme in the first and rate-limiting step of the urea cycle that converts ammonia to carbamoyl 

phosphate, which enters the urea cycle and is converted to citrulline. In a gene expression 

analysis of biopsy-verified hypertensive nephrosclerosis, the glycine-serine-threonine 

metabolism was on the top 10 list of pathways with the highest number of differentially 

expressed genes, and the serine hydroxymethyltransferase 1 on the top 10 list of the most central 

genes in a gene network analysis of hypertensive nephropathy (110). It is unclear whether serine 

is causative of CKD or merely the product of CKD, but its proximity to mitochondrial and urea 

metabolism, as well as a role in methylation control and blood pressure regulation, certainly 

open up for a role in CKD pathophysiology. Furthermore, we found that urinary glycine was 

lower in hypertensive nephropathy cases in Paper 4. In support of this, higher urinary glycine 

has been associated with lower odds of incident CKD in one observational study (OR 0.59 (95% 

CI 0.43-0.80)) found in the Framingham Offspring cohort and replicated in the ARIC cohort 

(294). Glycine has been shown to inhibit production of pro-inflammatory cytokines in vitro 

(304), improve ischemia-reperfusion kidney damage when supplemented orally in rats (305), 

and induce nitric oxide-mediated vasodilation via the NMDA receptor to increase single-

nephron GFR in rats (306). Also, serum glycine associated with reduced risk of coronary artery 

disease in women, but not men, in a plasma-based metabolomics GWAS (307). A human 

genome wide association study (GWAS) found low serum glycine levels to be associated with 

CKD, but curiously also high urinary glycine. Gene analyses conferred this association to the 

genetic locus CPS1 (297, 308). The mechanistic explanation of the association between glycine 

and CKD is uncertain, but could be related to inflammation and endothelial function as 

mentioned above.  Also, we found low urinary threonine in our hypertensive nephropathy cases, 

but were not able to reproduce this finding in the SUGAR cohort, where in fact threonine was 

slightly higher in cases (+12.8%, p=0.21). Threonine was recently found to be lower in the 

serum of fast CKD progressors (<-3 mL/min/1.73m2/year) compared to stable CKD patients 

(eGFR decline ±1 mL/min/1.73m2/year) in a nested case-control study (n=400) from the CRIC 

cohort (125). Threonine being net released by the kidney (85), the authors hypothesized that 

low serum threonine may reflect reduced renal metabolic function (mean eGFR 

43.3mL/min/1.73m2/year at the start), in parallel with the reduced hemoglobin and 1,25-
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hydroxyvitamin D levels seen in CKD. Threonine in plasma was also inversely associated with 

progression to ESRD in type 2 diabetes in a nested case-control study from the Joslin Kidney 

Study cohort with follow up of 7 years, but here kidney function was near normal (mean eGFR 

79mL/min/1.73m2 ±19) (155). Also, in young hypertensive men with normal kidney function, 

serum threonine was recently shown to be lower than in normotensive controls (174). Taken 

together, there is evidence that reduced kidney (metabolic) function is not the only cause of low 

serum threonine. Also, it seems to be an early marker of CKD, and may interfere with kidney 

metabolism in early CKD in an unknown fashion. In a GWAS, lower serum levels of threonine 

were associated with lower GFR via the genetic locus GCKR, which codes for the glucokinase 

regulatory protein, a regulator of glucokinase which is a key enzyme in glucose metabolism 

(104, 309).  

12.4.3 The methionine – homocysteine axis 

We found that urinary methionine and homocysteine were lower in hypertensive nephropathy 

cases than in controls in Paper 4, although nominally significant only for homocysteine. Many 

previous studies have shown that plasma homocysteine is inversely correlated with eGFR and 

that high serum homocysteine levels are found in ESRD (310, 311). Hyperhomocysteinemia 

has long been studied as a risk factor of cardiovascular disease (312, 313), and has also been 

suggested as a risk factor for hypertension (314) and incident CKD (315-319). Methionine and 

homocysteine are central in protein synthesis, transmethylation reactions, and the 

tetrahydrofolate-associated one-carbon metabolism. Methionine is converted into 

homocysteine via demethylation of s-adenosyl-methionine (SAM) to s-adenosyl-homocysteine 

(SAH) (320). This step is the major provider of methyl groups used for DNA methylation to 

regulate transcription (epigenetics) and for proteins methylation. Homocysteine remethylation 

via the remethylation pathway to methionine depends on 5-methyl-tetrahydrofolate and serine 

or betaine. Alternatively, homocysteine can be metabolized with serine to the end product 

cysteine via the transsulfuration pathway. We find that these patients have pathophysiological 

perturbations in both serine and methionine/homocysteine metabolism which are closely 

connected, possibly through the mentioned DNA methylation disturbances. One mouse model 

has shown that hyperhomocysteinemia-induced DNA hypermethylation and imbalance 

between important extracellular matrix regulatory proteins contributed to abnormal renal 

extracellular matrix remodeling and fibrosis in CKD, which was ameliorated by 

pharmacological reversal of the DNA hypermethylation (321). Furthermore, several studies 

have shown an association between hyperhomocysteinemia and DNA hypomethylation in CKD 
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(322). One likely mechanism behind this is S-adenosylhomocysteine (SAH), a strong inhibitor 

of most methylation reactions (323), which increases in CKD, often more strongly than 

homocysteine levels with reduced kidney function (324, 325). Furthermore, we have previously 

found that TCA cycle activity is downregulated in non-diabetic CKD (109), and in the current 

study we find reduced renal expression of PEPCK in nephrosclerosis. These two perturbations 

could lead to reduced serine production and a state of reduced substrate for the tetrahydrofolate 

cycle, which is important in methylation. We also demonstrate reduced renal expression of 

5,10-methylene-tetrahydrofolate reductase (MTHFR), methionine synthase (MS) and betaine-

homocysteine methyl-transferase (BHMT), which are key enzymes for the remethylation of 

methionine, and reduced methionine levels. Although global hypomethylation has been found 

in blood cells and vascular lesions of patients with atherosclerosis (326, 327), and is associated 

with aging (328), several studies show that both hypermethylation and hypomethylation coexist 

in various disease (329, 330). Whether this is a direct facilitator of harmful effects or merely a 

marker of a generalized epigenetic dysregulation is not well studied. Oxidative stress (331, 332) 

and upregulated inflammation (333, 334) may be induced by high homocysteine levels. CKD 

experimental models have demonstrated that uremic toxins or other causes of inflammation and 

oxidative stress lead to hypermethylation of Klotho via upregulation of DNA methyl 

transferases (DNMT) (335). This leads to Klotho protein suppression and removes the Klotho-

mediated inhibition of pro-fibrotic signaling, resulting in increased renal fibrosis, shown both 

in animals and humans (336, 337). In our study, upregulation of DNMT1 in nephrosclerosis 

kidneys and the potential for global hypomethylation could contribute to renal fibrosis and 

general atherosclerosis through these pathways, respectively. In human genome wide 

association studies, low serum methionine has been associated with CKD via the genetic locus 

CDK12/PNMT (297), and homocysteine and low serum methionine sulfone with CKD via the 

genetic locus DPEP1 (338). PNMT codes for phenylethanolamine N-methyltransferase which 

catalyzes the ultimate step of catecholamine biosynthesis, and several SNPs from this locus 

have been associated with acute kidney injury, possibly through mechanisms related to 

catecholamine breakdown (339). DPEP1 codes for the enzyme dipeptidase 1 in the kidneys, 

which hydrolyzes many dipeptides. The interaction between DPEP1 and CKD pathophysiology 

is unknown. In another GWAS focusing on coronary artery disease (CAD), however, there was 

no association between the most common gene variants that determine serum homocysteine 

and risk of CAD (338).  
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12.5 Proteomics 

In Paper 3, we found that a urinary proteomic score had significantly better diagnostic accuracy 

for CKD than albuminuria alone. When adding urinary proteomics to albuminuria, which is 

currently among our best predictors of CKD prognosis, it substantially improved the 

identification of rapidly progressing patients.  

Among the most studied biomarkers in proteomics is a panel of 273 distinct urinary peptides. 

This so-called CKD273 classifier (Mosaiques Diagnostics GmbH, Hannover, Germany) has 

been shown to accurately distinguish CKD of various etiologies from non-CKD (163). This 

was replicated in our study in Paper 3. The most significant findings in the CKD group have 

been decreased levels of urinary collagen α1 (III), collagen α1 (I), and uromodulin fragments. 

This proteomics platform has also been evaluated as a prognostic tool, predicting the 

progression in diabetics from normoalbuminuria to macroalbuminuria (97, 98), and progressive 

eGFR loss in general CKD (99, 165). It has also been shown to predict hard end-points like 

ESRD or death (100).  

Reduced urinary excretion of collagen I-IV fragments was our main proteomics finding. This 

has been found in many other proteomics studies on CKD, as reported above, both in diabetic 

and non-diabetic CKD. Urinary collagen fragments have been hypothesized to be a marker of 

extracellular matrix metabolism (340). It has been suggested that lower urinary collagen might 

indicate disturbance of matrix turnover, with reduced breakdown and excessive accumulation 

of matrix collagen, and that this imbalance may contribute to the fibrosis seen in CKD (95). 

Excessive accumulation of extracellular matrix and subsequent fibrosis is a general 

pathophysiological characteristic of advanced kidney disease. If the initial trigger event is not 

cleared, epithelial tubular cells will transition to a more mesenchymal-like cell type starting a 

chronic interstitial process with increased production of collagen type I and type III (341). Both 

experimental and human studies have suggested an initial phase with increased extracellular 

matrix production followed by an imbalance between collagen degradation enzymes (matrix-

metallo-proteinases, MMPs) and their tissue inhibitors (tissue inhibitors of metalloproteinases, 

TIMPs). This leads to reduced degradation and development of tubulointerstitial fibrosis (98, 

341, 342). Reduced urinary collagen has been found consistently in CKD patients by use of 

CE-MS, in line with our findings (100, 166, 343, 344). Lower levels of urinary MMP activity 

has also been found in progressive compared to stable patients with diabetic nephropathy (345). 

However, one fragment of the collagen α-5 chain precursor was increased in the urine of CKD 

and diabetic nephropathy cases in another study (346). It is difficult to explain why almost every 
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other collagen fragment except this one is low in CKD. The authors propose that this fragment 

is a component of the basal membrane in addition to the extracellular matrix, and that it might 

be low because of increased basal membrane breakdown. Furthermore, high urinary levels of 

procollagen III amino-/N-terminal propeptide (PIIINP) have been studied by 

radioimmunoassay (RIA) technique, and found to associate with CKD progression and incident 

ESRD (347). This might seem to be in conflict with our finding of reduced urinary collagen 

fragments in CKD progressors. However, PIIINP has been shown to correlate with the degree 

of interstitial fibrosis (348), and it could be argued that PIIINP reflects collagen production, 

whereas collagen fragments in the urine may be seen as markers of collagen degradation. 

Whichever way one sees it, collagen fragments could be useful for the development of future 

biomarkers of rapid CKD progression, and our data indicate that this could hold for 

hypertensive nephropathy patients as well.  

We found lower urinary levels of uromodulin fragments in early hypertensive nephropathy. 

This is in agreement with earlier reports in both diabetic and non-diabetic CKD (81, 346). 

Uromodulin, or Tamm-Horsfall protein, is a glycoprotein excreted into the urine from the thick 

ascending limb of the loop of Henle (TAL) and the early distal convoluted tubule (DCT). It is 

the major protein excreted in urine and takes part in the formation of urinary casts (349). Less 

urinary uromodulin in CKD patients has been interpreted as a sign of reduced production of 

uromodulin in the tubules, indicating tubular dysfunction (167, 346). Low urinary levels have 

been found in CKD of varied etiologies (163) and to be associated with progression of 

albuminuria in diabetic nephropathy (97). 

Other proteins and peptides that we found were significantly different in cases were osteopontin 

and CD99 antigen. Osteopontin is a glycoprotein found in several organs, but most abundantly 

in bone and kidney. The main physiological function of osteopontin in the kidneys is thought 

to be the inhibition of calcium oxalate crystal formation and blocking adhesion of calcium 

oxalate to renal tubular cells (350, 351). However, it also seems to play a role in kidney injury, 

inflammation and tissue remodeling. For example, osteopontin gene and protein expression has 

been shown to be increased in an acute kidney injury model in rats (350), and is produced in 

increased amounts in hyperoxaluria. In hyperoxaluria it seems to have a double edge: on one 

side it may prevent adhesion of crystals in the lumen/tubular interface, and on the other side it 

may contribute to fibrosis in the interstitium (351). The exact interactions here have not been 

fully elucidated. Interestingly, osteopontin deficient mice are relatively protected against the 

lipid accumulation and glomerulosclerosis induced by hypercholesterolemia (352). We found 
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low levels of urinary osteopontin in CKD, which is in line with earlier studies on CKD (166). 

Whether this reflects a state of tubular dysfunction with secondary reduced osteopontin 

production, or reflects perturbed osteopontin metabolism associated with advanced interstitial 

kidney fibrosis, is uncertain.  

We found higher urinary levels of α1-antitrypsin in hypertensive nephropathy, consistent with 

earlier CKD studies (166, 353). α1-antitrypsin is a protease inhibitor that is abundant in plasma. 

It has been shown to protect against protease-induced renal tissue injury and fibrosis in a rat 

model (354). α1-antitrypsin and other highly abundant plasma proteins like albumin and 

fibrinogen are high in CKD urines. It has been proposed that this reflects a tubular dysfunction 

characteristic of chronic kidney disease (166).  

We found high levels of urinary α-2-HS-glycoprotein in CKD. This glycoprotein has been 

associated with tubular damage and inflammation in diabetic nephropathy (355). It has also 

shown to associate with progression of albuminuria in diabetic nephropathy (97). One 

explanation of this is that many plasma proteins in diabetic nephropathy are hyperglycated, and 

that the increased urinary levels reflect the increased plasma levels (97). Another explanation 

is that tubular dysfunction leads to reduced reabsorption of abundant plasma proteins, and hence 

increased urinary levels (166). 

In the original publication, a cut-off level of 0.343 of the CKD273 classifier was found to 

discriminate optimally between healthy controls and established CKD, those with scores >0.343 

having CKD (163). We found an association with rapid CKD progression already from 

CKD273 scores above 0.0 in Paper 3. Similarly, an increased risk of progression of proteinuria 

in type 2 diabetics was seen with CKD273 scores > 0.154 in type 2 diabetics in the DIRECT-2 

study (356). Also, in a prognostic study of CKD273, all of the participants that developed end-

stage renal disease or died had a CKD273 score of >0.55 (100). In other words, there seems to 

be a positive association between CKD273 score and CKD. It is possible that refined analyses 

may utilize this “graded response” of CKD273 to identify CKD at ever earlier stages in future 

studies. One may hope that this could also help identify progressors with particularly high risk 

of developing end-stage renal disease.  

Furthermore, several single protein biomarkers have been studied in CKD, like Neutrophil 

gelatinase-associated lipocalin (NGAL), Kidney injury molecule-1 (KIM-1), and N-acetyl-β-

D-glucosaminidase (NAG). Although not “originating from proteomic studies in a strict sense”, 

as H Mischak put it (357), they certainly are protein biomarkers, and have perhaps come closer 
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to application in the clinic than many of the multi-protein panels from the proteomics field. 

KIM-1 is seen as a marker of tubular injury. It has been shown to associate with albuminuria 

progression in type 1 diabetes in one study, where low urinary levels at baseline associated with 

regression of microalbuminuria (358). NAG, also seen as a marker of tubular damage, has been 

shown to be elevated in the urine of microalbuminuric patients. It is also elevated in diabetic 

patients with normal albuminuria levels compared to non-diabetics (359). NGAL is elevated in 

both plasma and urine in various forms of CKD. NGAL has been shown to predict future acute 

kidney injury, and to associate with future risk of developing CKD independent of albuminuria 

(360, 361). A role in the pathophysiology and progression of CKD itself has also been proposed 

(361).   

 

12.6 Clinical epidemiology 

We found that total CKD prevalence was stable in Norway over a 10-year period. Improved 

treatment of hypertension, hypercholesterolemia and higher physical activity might have 

contributed to this in spite of increasing diabetes and obesity prevalence.  

12.6.1 Changes in CKD prevalence 

How has the prevalence of CKD changed over the last few decades internationally? In the US, 

the CKD prevalence increased from 10.0% in 1988-94 to 13.1% in 1999-2004 (362), and then 

stabilized during the 2000s and 2010s (363). In Japan the CKD prevalence grew from 1974 to 

2002, with CKD stages 3-5 increasing threefold in men (4.8% to 15.7%) and twofold in women 

(5.8% to 11.7%) (364).  In Scotland, however, a study reported stable CKD prevalence between 

2004 and 2009 (365), and in Korea CKD prevalences went down between 2001 and 2009 in 

men (7.9% to 4.5%) and in women (11.3% to 6.3%) (366). In agreement with this, an English 

study found that the prevalence of eGFR <60 ml/min/1.73m2 declined from 5.7% to 5.2% from 

2003 to 2010 (367). The Global Burden of Disease project has estimated that the impact of 

CKD has increased steadily from 1990 to 2010 in both high income and developing countries 

(459-549 and 339-438 DALYs/100.000, respectively) (368).    

Also, the CKD prevalence varies greatly between countries. In a survey of cross-sectional 

population studies of individuals aged 20-74 years from 13 European countries, CKD 

prevalences varied from 3.3% in Norway to 17.3% in a region in Germany (369). This variation 

was stable when comparing both high and low risk populations, suggesting that factors other 

than hypertension, diabetes and obesity were at least partly responsible for the differences in 
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CKD prevalences. The authors pointed to variations possibly stemming from biological 

differences (diet, smoking, physical activity, and genetics), healthcare policy differences, and 

analytical differences (lab methods and study populations) (369). Large regional variations in 

CKD prevalence have also been found in the US (4% to 11%) and China (6% to 18%) (370, 

371). Different distribution of risk factors, such as hypertension, diabetes, obesity, and 

cardiovascular disease may naturally also play a role. 

12.6.2 The role of hypertension 

Hypertension is a central player in chronic kidney disease, and very closely knit to CKD both 

as cause and effect. Whether or not hypertension causes CKD has been discussed earlier in this 

thesis (chapter 12.3). Another question is: Can control of hypertension reduce the progression, 

and thus the prevalence, of CKD? In three randomized controlled trials comparing low vs usual 

blood pressure (MDRD, AASK, REIN-2), no uniform effect of more intense blood pressure 

control on slowing CKD progress was found in an aggregate of 2269 patients. In the MDRD 

trial, low blood pressure (mean arterial pressure (MAP) 92 mmHg) in proteinuric patients 

(>3g/day) reduced the eGFR decline rate significantly compared to usual blood pressure (MAP 

107 mmHg) in patients with moderate CKD (eGFR 22-55 mL/min/1.73m2) (372). It did not, 

however, reduce the eGFR decline rate significantly when all patients were included in the 

analysis. Also, the low blood pressure group had more users of ACE inhibitors (48%) than the 

usual blood pressure group (28%), perhaps pointing to a drug effect rather than a blood pressure 

effect. In the AASK trial, no difference was seen in the eGFR decline rate between the low and 

usual blood pressure groups (mean 128/78 mmHg and 141/85mmHg, respectively) in African 

American patients with moderate hypertension-attributed CKD (eGFR 20-65 mL/min/1.73m2) 

(55). In the REIN-2 trial of proteinuric non-diabetic moderate CKD (eGFR 34-35 

mL/min/1.73m2), there was no difference in kidney outcomes in the intensive vs ordinary blood 

pressure group (mean 130/80 vs 134/82mmHg, respectively) regarding time to end-stage renal 

disease (373). Recently, the SPRINT trial of 9361 participants with increased cardiovascular 

risk, showed that intensive blood pressure control substantially decreased cardiovascular 

disease and all-cause mortality risk compared to the standard treatment group (mean systolic 

blood pressure 121 vs 136mmHg) (374). This was achieved at an increased risk of acute kidney 

injury and of a 30% decline in eGFR that were observed with intensive blood pressure 

treatment. The sheer size of SPRINT It is noteworthy that compared to the three above 

mentioned trials, only 28% of the participants in SPRINT had established chronic kidney 

disease (mean eGFR of 47 mL/min/1.73m2) compared to a mean eGFR of 71 mL/min/1.73m2 
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for the study as a whole. A possible explanation is that a beneficial cardiovascular effect of 

intense BP lowering exists in relatively mild CKD (SPRINT), but is overshadowed by the 

marked CVD risk that follows more advanced CKD (MDRD, AASK, REIN-2). Whether this 

should translate into accepting a more conventional blood pressure target in more advanced 

CKD patients, who are also more likely vulnerable to the adverse affects of intense blood 

pressure lowering, is uncertain. The debate on the most optimal blood pressure levels has been 

vivid after the SPRINT trial, and will certainly go on.   

Can control of hypertension reduce the progression, and thus the prevalence, of CKD? As 

shown in Paper 1, blood pressure control was improved and more individuals were on 

antihypertensive medication both in Norway and the UK between 1990 and 2010, whereas the 

opposite trend was seen in the US (Paper 1, table S4) (375, 376). This disparity of blood 

pressure trends is mirrored also in the Global Burden of Disease database, where the annual 

percentual decrease in disability-adjusted life years (DALYs) due to hypertension between 

1990 and 2010 was smaller in the US (-1.4%) than in Norway and the UK (-3.4% and -4.1%, 

respectively). In the same period, prevalences of obesity and diabetes increased across all the 

three countries (Paper 1, table S4). It is suggestive that the prevalence of low GFR in the period 

increased in the US while it decreased in Norway and the UK (table S4). It is possible that 

improved blood pressure control may have contributed to a stabilized CKD prevalence in a 

period with increasing obesity and diabetes prevalence in Norway and the UK.  

Over time, the percentage of hypertensives with so-called controlled hypertension have 

increased. This is true for both the US, Norway and England (table S4), as well as for Japan 

and Korea (364, 366). It is noteworthy that in spite of these achievements, more than 50% of 

hypertensives still have too high blood pressures. This remaining fraction of hypertensives is 

likely dominated by difficult-to-treat hypertension. Given that hypertension accelerates the 

progression of established CKD, improvements in hypertension control rates are warranted, and 

would likely contribute to reduced CKD prevalences. 

12.6.3 The role of diabetes 

Diabetes is a known risk factor for chronic kidney disease. Increasing diabetes prevalences were 

seen in the US, Norway and England between the 1990s and the 2000s, with a parallel increase 

in CKD numbers, at least in the US and England. It is noteworthy that while the prevalence of 

diabetic kidney disease (DKD) increased in the US from 1988 to 2008, there was no change in 

the prevalence of DKD among those with diabetes (377). The authors found a large increase in 
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the use of antidiabetics, RAAS inhibitors, and statins in this period, producing reduced levels 

of HbA1c, blood pressure, and LDL cholesterol, but no reduction in DKD prevalence. The 

effects of these favourable changes may have been annulled by increased obesity in the 

diabetics in the same period, and the accumulated duration of diabetes over time, the authors 

hypothesized (377). The incidence of end-stage renal disease due to diabetes in the US, 

however, have declined from 1990 to 2006 (378). The authors hypothesized that this could be 

attributable to improved glycemic control, better hypertension care, and increased use of RAAS 

inhibitors.  In Korea, which saw a reduction of CKD prevalences from 1998 to 2010-12, 

antidiabetic use and diabetes control were also better in the 2000s than in the 1990s and turn of 

the century (366). Unfortunately, this study did not report on Korean prevalences of DKD 

specifically, but it illustrates that the relationship between changes in risk factor do not translate 

into changes in end-points in a simple manner.   

12.6.4 The role of physical inactivity and obesity  

As mentioned earlier, physical exercise has been shown to slow the decline in kidney function 

in small randomized controlled trials (379). Low physical activity accounted for up to 5% of 

new cases or progressive CKD in a large observational cohort study (380), and elderly with 

higher physical activity have 28% lower risk for future rapid GFR decline after multivariate 

adjustment (381). Regular exercise reduces insulin resistance, reduces total cholesterol, and 

increases HDL (382, 383). In Norway over the last four decades, a small increase in leisure 

time physical activity has been overshadowed by a more sedentary work life, in sum leading to 

reduced physical activity (384). In the US, physical activity increased for the country as a whole 

from 1984 to 2015, but in absolute numbers, a large proportion of adults were still physically 

inactive. In 45 out of 51 states, more than 20% of adults reported no leisure-time physical 

activity (385). The role of physical exercise in the prevention of CKD is still not well-

documented.  

Obesity is a growing problem, and increases the risk of hypertension, diabetes, and 

cardiovascular disease. It has been debated whether obesity also increases the risk of de novo 

CKD. A recent meta-analysis of >600 000 participants in 39 cohorts showed that obesity (BMI 

>30) was associated with de novo CKD, defined as eGFR <60 mL/min/1.73m2 or albuminuria 

(relative risk 1.36 (95% CI 1.18-1.56)) (386). This association was confirmed when analyzing 

the association between BMI as a continuous variable and low eGFR, with a significantlyl 

increased relative risk of 1.02 per unit BMI. Several possible mechanisms behind this 

association have been postulated, including hyperfiltration, abnormal activation of the renin-
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angiotensin-aldosterone system (RAAS), and the possible production of RAAS proteins by 

adipose tissue (387). With the obesity epidemic in the Western world, and increasingly also in 

developing countries in Asia and Africa, this could imply increased global CKD prevalences in 

the future. Obesity should be a target in population-scale strategies to prevent CKD. 

12.6.5 The role of cholesterol  

There is less data available to support our hypothesis that lipid lowering therapy reduces the 

risk of kidney disease. Several studies show that abnormal lipid levels are associated with 

accelerated kidney function loss (388, 389) but statin intervention trials have shown conflicting 

results and are not recommended solely for renal protection (390-392). However, many used 

hard clinical outcomes like ESRD which are late events requiring long follow-up and large 

sample sizes. It has therefore been suggested that future studies should test high potency statins 

before a major GFR decline occurs and to use lesser declines in estimated GFR as an alternative 

endpoint (393, 394). 

12.6.6 The role of smoking 

Smoking is a generally accepted risk factor for CKD. A recent meta-analysis with more than 

65 000 patients found an increased summary relative risk for incident CKD and end-stage renal 

disease in active smokers of 1.33 and 1.91, respectively (395). Smoking contributes to CKD by 

several mechanisms. It produces kidney fibrosis, induces damage to endothelium and 

epithelium, and promotes inflammation and perturbed DNA methylation (396). We estimated 

that if smoking patterns had stayed unchanged at HUNT2 levels (1995-97), we could have 

expected a tendency toward higher CKD prevalence in HUNT3. Daily smoking in Norway was 

much more prevalent between 1995-97 (at 30%) than in 2006-08 (around 17%) (397). 

12.6.7 Future CKD trends and methodology issues 

A study on the future burden of CKD in the US estimates that the prevalence will increase from 

13% currently to 16% in 2030 (398), and projections also indicate that CKD will move up four 

places in the global mortality rankings (399). A European study predicted a continued rise in 

the prevalence of CKD stage 5 in diabetic patients from 2012 to 2025 at 3.2% per year for 12 

European countries as a whole (400).  

Several methodology issues stand in the way of a precise surveillance of CKD prevalence. A 

lack of standardization of creatinine and albumin assays, use of different GFR estimating 

equations, different population sample selections, and lack of national registries are some of the 

foremost (401, 402). 
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12.7 Limitations and challenges 

Our studies have some limitations that need to be addressed. First, combined arterial and venous 

measurements across the kidney would be the optimal design to fully describe the renal 

handling of amino acids, and we do not have blood values from the HUNT study. Second, we 

have defined hypertensive nephrosclerosis from a set of clinical and laboratory criteria known 

to be rather unspecific, rather than by histological definition based on renal biopsy findings. 

The ideal study would be to have a set of cases with biopsy-verified hypertensive nephropathy 

for the metabolomics and genomics analyses. Alternatively, to find the true prevalence of 

hypertensive nephropathy by biopsying all with suspected chronic kidney disease would be 

scientifically interesting, but not warranted from a medico-ethical standpoint, and not feasible. 

Third, we could not ensure that fasting was uniform, or that amino acid or protein intake was 

uniform before urine analysis. Although this is seldom the case in metabolomics studies, some 

studies have managed to accomplish this. Fourth, for definite mechanism elucidation, additional 

cell line and/or animal experiments with a more focused view is needed.  

Briefly, other themes relevant in the field which this discussion has not elaborated on, are 

oxidative damage, mitochondrial dysfunction, renal nitric oxide metabolism, endothelial 

dysfunction, the role of trimethylamine N-oxide, and endothelial-to-mesenchymal transition. 

These are covered in several reviews (34, 254). 

So is there a common denominator for all these metabolomic changes? In the metabolomics 

field today, there is no Grand Unified Theory, with one pathway or one substance to explain all 

disease conditions. Nor is there one dominant analytical platform, or globally accepted 

guidelines on research practice such as how to perform data analysis. However, there is ongoing 

interest in metabolomics, with an increasing body of publications, use of online data analysis 

tools like Metaboanalyst, and cooperation between groups. 

A challenge in the omics field is the multitude of protocols in use, the vast amounts of data 

generated, and the diverse data management and analysis alternatives available. Also, it may 

take weeks or months from the time of analysis until a proper conclusion or presentation of 

results can be made. Today it is fair to say that metabolomics is at the lab bench, rather than 

bedside. Metabolomics is, however, a valuable tool for both hypothesis generation and 

mechanistic studies alike. Like other research platforms, the value of metabolomics pends on 

having a scientific question, and putting the findings into a biological context with physiological 

meaning.  
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13 CONCLUSIONS 

We found that CKD prevalence remained stable in Norway over a 10-year period characterized 

by strong improvements in blood pressure, lipids and physical activity, and only modestly 

increasing diabetes and obesity. 

We found that hypertensive nephrosclerosis is a common, high-risk disease, often with an 

atypical phenotype compared to current clinical criteria, which have low sensitivity but high 

specificity. A positive test will reduce the need for kidney biopsy, but the current “no-biopsy” 

strategy in suspected nephrosclerosis implies a risk for misclassification and under-treatment. 

Increased biopsy frequency should be considered in selected patients assumed to have 

hypertensive nephropathy. 

We found that urinary proteomic analyses had a high diagnostic accuracy for CKD, including 

hypertensive nephropathy, and strongly improved identification of patients with rapid kidney 

function decline beyond albuminuria testing. 

We found perturbed gene expression and metabolic pathway patterns in our combined genomic 

and metabolomic analysis of early stage hypertensive nephrosclerosis. Renal gene expression 

analysis showed reduced amino acid catabolism and synthesis in nephrosclerosis patients. 

Metabolomics analysis revealed downregulation of the phenylalanine-tyrosine-dopamine axis, 

which regulates natriuresis and blood pressure. We also found disturbances in 

methionine/homocysteine and serine metabolism, involved in methylation status, endothelial 

dysfunction, inflammation and atherosclerosis.  

 

13.1 Future research 

Future research should probably concentrate on specific diagnoses of renal disease, rather than 

studies of the rather large and diverse entity of CKD. Different diagnoses have different 

pathophysiologies that may be of interest for early diagnosis and prognosis, and studying 

advanced-stage CKD does not have the potential to do that.  

Prospective and larger-sized studies which evaluate the prognostic value of pre-disease and 

early-stage disease metabolite patterns are interesting future research prospects.  

Integration of genomics and metabolomics, and possibly with addition of proteomics, would 

make more potent use of scarce biological material.  
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In the future, metabolomic analysis coupled with well-characterized cohorts, and in conjunction 

with biobanks, has the potential to elucidate associations between metabolite patterns and more 

classical epidemiology data, such as demographic and clinical data. This has ultimately the 

promise to identify biomarkers, point towards metabolite pathways that are active in disease, 

aid earlier diagnosis and more accurate prognosis, and possibly guide future therapies. 
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