
A Parallelized Global Optimization
Method for use in Parameter Estimation

Haakon Eng Holck

Chemical Engineering and Biotechnology

Supervisor: Nadav Skjøndal-Bar, IKP

Department of Chemical Engineering

Submission date: June 2018

Norwegian University of Science and Technology

Abstract

When modeling biological systems with a bottom-up approach, the system parameters
need to be calibrated for the model behavior to match that of the physical system. The
problem is typically presented in the form of an optimization problem, where the deviation
between model outputs and experimental data is minimized as a function of the parameters.
There are multiple methods available, but for some complicated models many either fail
or take too long to find the correct solution.

In this thesis, the covariance matrix adaptation evolution strategy (CMA-ES), a stochas-
tic global optimization method, is implemented for the purpose of parameter estimation on
difficult problems. The CMA-ES is parallelized using message passing interface commu-
nication to reduce the computational time.

The method was tested on two models: An ODE model with known parameters and a
hybrid DAE model with unknown parameters. The CMA-ES managed to find the correct
parameters for the ODE model, albeit after a longer time than that needed by alternative
methods included in MATLAB (trust-region-reflective and Levenberg-Marquardt). When
it came to the hybrid DAE model, the CMA-ES minimized the model error, while the
MATLAB methods that were tested were not applicable. However, the minimum found did
not produce the desired model behavior. The most likely reasons for this are that the model
was incomplete, the search space was badly defined or the objective function contained too
much noise.

The results indicate that the parallel CMA-ES method is too slow for simpler model
calibration problems, but that it may be a powerful tool for parameter estimation problems
with noisy objective functions and long runtimes.

i

Sammendrag

Ved modellering av biologiske systemer ved en “bottom-up” tilnærming, må parametrene
i systemet bli kalibrert slik at modellens atferd samsvarer med det fysikalske systemet.
Dette er vanligvis presentert som et optimaliseringsproblem, hvor avviket mellom model-
lens output og eksperimentelle data minimeres som en funksjon av parametrene. Det er
flere metoder som kan brukes for dette, men på kompliserte modeller er det mange som
enten mislykkes eller bruker for lang tid på å finne den korrekte løsningen.

I denne oppgaven implementeres covariance matrix adaptation evolution strategy (CMA-
ES), en stokastisk global optimaliseringsmetode. Formålet er å bruke den til parameteres-
timering på vanskelige problemer. For å redusere kjøretiden, blir CMA-ES parallellisert
ved bruk av message passing interface-kommunikasjon.

Metoden ble testet på to modeller. En modell i form av et system differensialligninger
med kjente parametere og en hybrid modell bestående av et differensial-algebraisk lign-
ingssystem med ukjente parametere. CMA-ES fant de korrekte parameterverdiene for
differensialligning-modellen, men med lengre kjøretid enn det som krevdes av trust-region-
reflective og Levenberg-Marquardt metodene som er inkludert i MATLAB. Videre fant
CMA-ES også et minimum for hybridmodellen. MATLAB-metodene som ble testet var
uegnede for dette problemet. Minimumet som ble funnet produserte imidlertid ikke den
ønskede modellatferden. De mest sannsynlige grunnene for dette er at feil i modellen, et
dårlig definert søkeområde eller at det var for mye støy i målfunksjonen.

Resultatene indikerer at den parallelliserte CMA-ES metoden er for tidkrevende for
enkle modelltilpasningsproblemer, men at den kan være et kraftig verktøy for problemer
med støyete målfunksjoner og lange kjøretider.

ii

Preface

This master’s thesis was written during the spring of 2018, as the conclusion of the five
year master’s programme in Industrial Chemistry and Biotechnology at NTNU.

I wish to express my sincerest gratitude to my supervisor Professor Nadav Bar, for his
guidance, and to John Floan, senior engineer at the NTNU IT Development Section, for
his help with parallel programming. Thanks to Aud-Therese Tostrup for answering my
questions relating to the RNAP model.

I am immensely grateful to my parents, Pedro, Dag and Fatbardha for their help and sup-
port.

Trondheim, June 2018
Haakon Eng Holck

iii

iv

Table of Contents

Abstract i

Sammendrag ii

Preface iii

Table of Contents v

List of Tables ix

List of Figures xi

Nomenclature xiii

1 Introduction 1
1.1 Problem Description . 1
1.2 Framework . 2
1.3 Structure of the Thesis . 3

2 Global Optimization 5
2.1 The Covariance Matrix Adaptation Evolution Strategy 6

2.1.1 Description . 6
2.2 Choosing Initial Mutation Strength . 10
2.3 Negative Recombination Weights for Step Adaptation 10
2.4 Negative Recombination Weights for Covariance Adaptation 11
2.5 Termination Criteria . 11
2.6 Boundary and Constraint Handling . 11

3 Parallelization 13
3.1 Structure of the Parallel Program . 13
3.2 MPI Functions . 17
3.3 Choice of Population Size . 17

v

4 Testing on a Delayed Negative Feedback Model 19
4.1 Experimental Conditions . 21
4.2 Results . 22

4.2.1 Speedup . 22
4.2.2 Parameter Estimation . 23

4.3 Discussion . 27
4.3.1 The Speedup Test . 27
4.3.2 The Parameter Estimation . 27

5 Testing on an RNAP Hybrid Model 29
5.1 The Model . 29
5.2 Constraints . 31

5.2.1 First Failure Mode: No Productive Yield 31
5.2.2 Second Failure Mode: 100% Productive Yield 33
5.2.3 Adding an Upper Bound . 34

5.3 Intensification: Improving the Accuracy of the Solution 34
5.4 The Multistart Implementation . 35

5.4.1 Dividing Into Batches . 35
5.4.2 Intra-Batch MPI Communication 36
5.4.3 Selecting Initial Points . 37

5.5 Conditions for Parameter Estimation . 38
5.6 Results . 39

5.6.1 Single CMA-ES Instance . 39
5.6.2 CMA-ES Multistart . 43

5.7 Discussion . 44

6 Further Discussion 47

7 Conclusion 49
7.1 Further Work . 50

Bibliography 51

Appendix i

A Effects of Parallelization i

B The Results of a 10% Change of Parameter Values v

C Parallelized CMA-ES Code xi

D Multistart Code xix
D.1 CMAES multistart.m . xix
D.2 myparsteps.m . xxvi
D.3 myreduction.m . xxvii
D.4 myspread.m . xxviii

vi

E Results from the Multistart Run xxxi

vii

viii

List of Tables

4.1 The parameters used in the delayed negative feedback model 20
4.2 The search space in the delayed negative feedback problem 21

5.1 The solution of the RNAP parameter estimation 39

A.1 The test functions used for parallel benchmarking i

E.1 The parameters and corresponding fitnesses returned by the different batches
in the multistart run . xxxii

ix

x

List of Figures

3.1 A flowchart describing the sequential CMA-ES algorithm 15
3.2 A flowchart describing the parallel CMA-ES algorithm 16

4.1 A bifurcation diagram illustrating the values of S for which the system
oscillates . 20

4.2 The cumulative distribution of runtimes in the speedup test 22
4.3 The cumulative distribution of runtimes in the speedup test, without the

10% slowest runs. 23
4.4 The cumulative distributions of fitness for the three optimization methods 24
4.5 The cumulative distributions of fitness for the three optimization methods,

with limited x-axis . 24
4.6 The cumulative distribution of runtimes for each of the three optimization

methods . 25
4.7 The parameters found using the three optimization methods, for fitness< 0.5 25
4.8 The resulting change in the error of the model when changing each of the

parameters by 10% from the correct value 26

5.1 The fitnesses in the first failure mode, RNAP 32
5.2 The parameters in the first failure mode, RNAP 32
5.3 The fitnesses in the second failure mode, RNAP 33
5.4 The parameters in the first failure mode, RNAP 34
5.5 An example of where the starting points would be placed in a two-dimensional

multistart problem with systematic distribution of starting points 38
5.6 The model output of the solution of the single-instance RNAP parameter

estimation, with error bars . 40
5.7 Fitness history of the single-instance RNAP parameter estimation 40
5.8 Parameter history of the single-instance parameter estimation 41
5.9 Step size between each generation in the single-instance parameter esti-

mation . 41

xi

5.10 The model evaluation time for each generation in the single-instance pa-
rameter estimation . 42

5.11 The mean values for the parameters in the ten solutions with fitnesses less
than 0.2 . 43

5.12 The model output of the solution of the multistart RNAP parameter esti-
mation, with error bars . 44

A.1 The number of model equation sequences for 1 to 40 ranks when evaluat-
ing the Ackley function . ii

A.2 The number of model equation sequences for 1 to 40 ranks when evaluat-
ing the Rastrigin function . iii

A.3 The number of model equation sequences for 1 to 40 ranks when evaluat-
ing the Rosenbrock function . iii

A.4 The number of model equation sequences for 1 to 40 ranks when evaluat-
ing the Sphere function . iii

B.1 The model output when changing the value of k3 by 10% vi
B.2 The model output when changing the value of k4 by 10% vi
B.3 The model output when changing the value of Kmk by 10% vii
B.4 The model output when changing the value of Kmp by 10% vii
B.5 The model output when changing the value of S by 10% viii
B.6 The model output when changing the value of CT by 10% viii
B.7 The model output when changing the value of ET by 10% ix

xii

Nomenclature

Metaphors from the theory of evolution are used to name some aspects of the algorithm, as
is the convention with evolutionary algorithms. These terms are defined below. In addition,
common terms in parallel programming are explained. The symbols in the symbol list are
shown approximately in the order of appearance, with lines separating the symbols by
section.

Evolutionary Metaphors used in the CMA-ES Algorithm

Generation: Iteration number.

Individual: A single sample in the parameter space, with a corresponding objective func-
tion value.

Population: The number of individuals in each generation.

Offspring: The population that is generated in a specific generation.

Fitness: The objective function value of an individual. Lower is better.

Recombination: Taking a weighted mean of the best individuals (by fitness) in each gen-
eration in order to generate better offspring.

Parent number: Number of individuals that are used for recombination.

Parallel Programming Terms

MPI: Message Passing Interface, a library standard for functions that perform communi-
cation between computation nodes (allowing for parallel programming). NMPI, an
MPI library developed by the IT division at NTNU is used in this thesis.

Job: To run a parallel program on a computer cluster, the script has to be queued by spec-
ifying the number of ranks and cores to be used, in addition to the maximum time it
should run. If the runtime exceeds the specified limit, the program is terminated.

Rank: The number of threads (or workers) that work in parallel: If a program uses eight
ranks, then eight tasks can be performed simultaneously. One rank can contain
multiple processor cores.

Core: A processor core is a single processing unit. Using multiple cores in one rank can
speed up some processes.

xiii

Vector and Matrix Notation

Vectors and matrices are denoted by bold, upright letters. Vectors are lower case and ma-
trices are upper case. As examples, A is a matrix, a is a vector and a is a scalar. I is
always the identity matrix.

Abbreviations

CMA-ES - Covariance matrix adaptation evolution strategy

ODE - Ordinary differential equation

DAE - Differential algebraic equation

MPI - Message Passing Interface

HPC - High-performance computing

RNAP - RNA polymerase

APC - Anaphase promoting complex

PY - Productive yield

MES - Model evaluation sequence(s)

xiv

Symbol Description Units

N Dimensionality of the optimization problem; number of
parameters to be estimated

-

λ Population; number of samples taken of the parameter
space each generation

-

µ Parent number; number of samples taken into considera-
tion for recombination

-

m(g) The mean of the multivariate normal distribution creating
the offspring for generation g

-

C(g) The covariance matrix of the multivariate normal distribu-
tion in generation g

-

B An orthogonal matrix consisting of the eigenvectors of C -
D A diagonal matrix consisting of the square roots of the

eigenvalues of C
-

σ(g) The mutation strength (also known as step length) in gen-
eration g

-

x
(g)
i Individual number i in generation g -

y
(g)
i Mutation vector number i in generation g -

y
(g)
m The (recombinated) mean mutation vector for generation g -

y
(g)
i:λ The i-th best mutation when ranking by objective function

value
-

wi Recombination weight number i -
µeff Variance effective selection mass, a (self-)tuning parameter -
p
(g)
σ Evolution path used for adapting the step length for gener-

ation g
-

cσ Learning rate for pσ -
p
(g)
c Evolution path used for adapting the covariance matrix for

generation g
-

cc Learning rate for pc -
c1 The learning rate for the rank-one-update of C -
cµ The learning rate for the rank-µ-update of C -
dσ Damping parameter for the σ(g)-update -

λseq Population size for sequential CMA-ES; used as minimal
population size for parallel CMA-ES

-

R Concentration of mitosis promoting factor nM
E Concentration of anaphase promoting complex (APC) nM
EP Concentration of phospholyrated APC nM
ET Total APC concentration (E + EP) nM
C Concentration of Cdc20 nM
X Concentration of a complex of APC and Cdc20 nM
k1 First order rate constant min−1

k2 Second order rate constant nM−1min−1

k3 Third order rate constant min−1

xv

k4 Fourth order rate constant min−1

k5 Fifth order rate constant min−1

Kmk Michaelis constant n;−1min−1

Kmp Michaelis constant nM
Kd Equilibrium constant nM
S Signal nM
Q Photosphase concentration nM
CT Total Cdc20 concentration nM

x Position of the RNAP, measured in nucleotide lengths, Ln Ln
v Velocity Ln/s
FTL The force from the trigger loop on the RNAP Ln/s2

FDNA The force applied on the RNAP when splitting the DNA
base pairs

Ln/s2

FS Stability Ln/s2

FC Force from the catalysis on the RNAP Ln/s2

t Time s
kTL,A Amplitude of the force from the trigger loop Ln/s2

kTL,ω Frequency of the force from the trigger loop s−1

φ Phase of the force from the trigger loop -
kC Scaling parameter for FC -
kDNA Scaling parameter for FDNA -
kS Scaling parameter for FS -
PY Productive yield -

xvi

Chapter 1
Introduction

Understanding the behavior and interactions of living systems is desirable not only in
academia, but in industry as well. For biotechnological industry, such insight is the basis
of production. In order to optimize the production processes, knowledge is required on
how the system reacts to different conditions.

The field of systems biology uses mathematical and computational models as a means
for simulation. The models are usually built with a bottom-up approach where the under-
lying kinetics of the system are described mathematically [1]. These descriptions can be
in the form of ordinary- or partial differential equations, differential algebraic equations,
networks1 and more. The models may contain random elements that emulate a stochas-
tic behavior in the real system, or they may be deterministic. What the models have in
common is that they all include parameters (for example kinetic- or rate constants) that
affect the model behavior. Some parameters can be found in literature, but most parameter
values are unknown, and need to be adjusted until the model can represent the real system
adequately [3].

This thesis aims to parallelize a global optimization method. The method was imple-
mented during a specialization project in the the fall semester of 2017. The goal is to
develop a parallel optimization method that can be used as part of a toolbox for parameter
estimation problems in systems biology.

1.1 Problem Description

Parameter estimation problems are a form of optimization problems. The goal is to mini-
mize the model error, which is the difference between the behavior predicted by the model
and the actual behavior of the physical system, as a function of the parameters. Usually,
the objective function is on the form of a (weighted) sum of squared errors (SSE):

1Like Boolean networks or Petri Nets [2].

1

J(p) =

N∑
i=1

ei(p)
TWei(p)

Where p is a vector of parameters, N is the number of experiments, e is the model error
and W is a weighting matrix (for unweighted SSE, W = I). In order to find the e vector,
the model needs to be solved using the parameters p to get the model outputs. The objec-
tive function is thus itself a function of the model, which makes for complex optimization
problems: nonlinear, multimodal and non-smooth [2, 4]. This makes local optimization
methods inefficient or even unusable, as they converge to the closest optimum, with no
consideration of how good the optimum is. An alternative is a so-called multistart method,
where multiple local solvers are run from initial points in a grid covering the search space,
but it becomes inefficient as the amount of parameters increase.2 Parameter estimation on
a complex model can be a nontrivial problem in itself. In these cases, global optimization
methods are an alternative.

Global optimization methods aim to find the lowest minimum of the entire search
space, in problems where several local minima are available. The task is substantially
more difficult than local optimization, and multiple methods are used without any clear
“best” strategy or method.

Deterministic optimization methods such as Branch-and-Bound or Cutting Plane meth-
ods can guarantee convergence to the global optimum, but are limited in use and can be
impractically slow with increasing dimensionalities [4].

On the other hand, stochastic optimization methods3 such as evolutionary algorithms
or swarm algorithms cannot guarantee that the solution found is the global optimum, but
they are designed to efficiently navigate the search space, and are applicable to most op-
timization problems [3, 5, 6]. Due to the robustness and efficiency, a stochastic global
method is used in this thesis.

1.2 Framework
The global optimization method implemented in this thesis is the covariance matrix adap-
tation evolution strategy (CMA-ES). It is an evolution strategy which is a subgroup of
evolutionary algorithms, loosely inspired by the natural optimization process of evolution.
The thesis considers the parallelization of the CMA-ES in order to run the method on
multiple processor cores on computer clusters, to greatly reduce the required runtime.

The CMA-ES is, like other metaheuristic methods, a black box optimization method.
The only information required about the optimization problem is obtained through sam-
pling the objective function value in single points in the search space, and neither gradients
nor hessians are used. The method is intended for continuous search spaces, although a
mixed-integer version of the method exists [7]. Apart from this, no assumptions are needed
about the objective function. It does not need to be convex, differentiable nor smooth [8].

This versatility means that the CMA-ES could be used for parameter estimation on
any type of model, but in the thesis it will be tested on two parameter estimation prob-

2Known as Bellman’s curse of dimensionality.
3Also known as metaheuristic methods.

2

lems from systems biology: One model with known parameters, consisting of an ordinary
differential equation (ODE) and a hybrid model based on a differential algebraic equation
(DAE). Although two real models are evaluated, model development (apart from parame-
ter estimation) is not within the scope of this thesis.

An ODE is a system containing one or more equations in the form of

ẋ = f(x, t,p)

where x is a state vector, t is the time and p is a parameter vector that needs to be estimated.
A DAE includes additional algebraic equations, which means they are in the form of:

ẋ = f(x, t,p)

0 = g(x, t,p)

where g(x, t,p) is an algebraic function.
The DAE model used in this case consists of multiple DAEs solved in sequence, with

a random element in the initialization of each equation.

All parallel experiments are run on the Vilje cluster,4 a system of 1404 computation nodes
each consisting of two eight-core 2.6 GHz processors. The parallelization is performed us-
ing MPI (Message Passing Interface) calls for communication between computation nodes.
This is implemented for MATLAB as mex compiled C programs by the HPC group at the
NTNU-IT department.

1.3 Structure of the Thesis
The thesis is structured as follows: In Chapter 2, global optimization is explained further,
and the mechanics of the CMA-ES algorithm is presented. In Chapter 3, parallel program-
ming is introduced. In Chapter 4, the parallelized algorithm is used on a delayed negative
feedback model with known parameters, and is compared with parameter estimation meth-
ods in MATLAB. In Chapter 5, the algorithm is used on a stochastic hybrid model of RNA
polymerase backtracking, with unknown parameters. As a part of this problem, two addi-
tional features are developed and added to the CMA-ES: One allowing for an intensified
search on stochastic models, and one allowing for multiple instances of the parallel CMA-
ES to be run simultaneously from the same script. The results of the tests are further
discussed in Chapter 6, and the concluding remarks are in Chapter 7.

4https://www.hpc.ntnu.no/display/hpc/About+Vilje

3

https://www.hpc.ntnu.no/display/hpc/About+Vilje

4

Chapter 2
Global Optimization

Global optimization is a field of optimization that deals with multimodal optimization
problems, that is, problems with multiple local minima. This is in contrast to local opti-
mization, which concerns itself with problems with a single minimum, which are signifi-
cantly easier to solve. Unlike in local optimization, global optimization problems have no
standard problem formulations (like that of linear programming, quadratic programming
etc.) with universally accepted accompanying solution strategies, and no central idea com-
parable to that of local descent [9]. It is simple to prove local optimality for a given point in
the feasible region, but determining if it is the global minimum on a multimodal problem
is very difficult and time consuming. Because there is little consensus in the field, multiple
methods and strategies are used, with overlapping applicabilities.

Neumayer (2004) [10] proposed four categories of global optimization methods, based
on the rigorousness of the method.

• Incomplete methods, which are heuristic methods with good chances of finding the
global optimum in a reasonable time. They are, however, not guaranteed to find the
global optimum, and might return a local one instead.

• Asymptotically complete methods, which can guarantee to find the global mini-
mum if allowed to run indefinitely long, but is unable to declare with certainty that
a given solution is the global optimum.

• Complete methods, which can guarantee to find the global optimum after indefi-
nitely long time and assuming exact computations (no rounding errors). In addition,
complete methods can tell (within finite time) that an approximately global solution
is found, within predefined tolerances.

• Rigorous methods, which are similar to complete methods, but able to find the
global solution even with rounding errors.

5

Complete and rigorous methods (often called deterministic methods) are computationally
expensive and not always applicable on every kind of problem, depending on the informa-
tion available. For more difficult global optimization problems, with complex objective
functions or high dimensionalities (many parameters), incomplete methods are a better
choice.

Incomplete methods (more often called stochastic or metaheuristic methods) are opti-
mization methods that use heuristics in order to efficiently explore the search space (diver-
sification), without losing the capability to commit to improving a local (hopefully global)
solution (intensification).1 These methods are robust in regards to noisy, irregular objective
functions,2 and high dimensionalities. One such method is the covariance matrix adapta-
tion evolution strategy (CMA-ES).

Stochastic methods have been applied successfully on multiple parameter estimation prob-
lems in systems biology [2].

2.1 The Covariance Matrix Adaptation Evolution Strat-
egy

The covariance matrix adaptation evolution strategy (CMA-ES) is an evolution strategy,
which is a subset of evolutionary algorithms.

Evolution strategies is a group of flexible and effective global optimization methods,
and is previously used with success in parameter estimation problems [2]. The CMA-
ES method specifically is a state-of-the-art global optimization method that has proven to
perform well on real-world search problems [11, 12, 13].

2.1.1 Description
The CMA-ES is a black box optimization method. The only information about the opti-
mization problem is obtained through selection, evaluating the response from the objective
function at specific points. This makes the method insensitive to the details of the objec-
tive function it evaluates, as the only interaction with the function is presenting a set of
variables and looking at what comes out. On the other hand, the method cannot make use
of additional information like gradients in order to solve the problem faster.

Like other stochastic global optimization methods, the CMA-ES has no way to verify
whether a candidate solution is the global solution or not. However, as the objective func-
tion in a model calibration problem is the error between model outputs and the experimen-
tal data, the theoretical minimum has a value of zero. This presumes that the mathematical
model accounts for every factor that affects the physical system (including noise in the
measurements) and is as a result not possible in practice. On the other hand it does mean
that the objective function value directly represents how well the model is fitted to the

1This is also known as exploration and exploitation.
2A “noisy” objective function is subject to random noise in the function evaluations, meaning that evaluating

the same solution twice will return different objective function values.

6

physical system. It is up to the user whether to accept the solution, run the program again
(perhaps with different initial conditions) or revisit the model itself. In any case, global
optimization methods should always be run multiple times on problems with unknown op-
timal solutions.

In the following section, the basic mechanics of how the CMA-ES algorithm works is
explained and the nomenclature of evolution strategies are introduced. The exact mathe-
matical operations are presented afterwards.

The CMA-ES is an iterative method. Following the naming conventions, each iteration
is called a generation, and the variables that are unique for a generation are marked by
(g). In each generation, a number of random points (a population) are sampled from the
parameter space. Each of the random points x(g+1)

i is a candidate solution (an individual),
and the individuals are generated around a specific point, m(g) (the mean). Each of the
individuals are evaluated (by evaluating the objective function) and then ranked in order
of fitness, which is the objective function value for that individual. The mean is then
moved to a more promising area, as indicated by to the best individuals of the generation
(m(g) →m(g+1)). Then, a new generation is generated around the new mean.

Unique to the CMA-ES is that the probability distribution for the randomly sampled
points is changed in order to prioritize exploration in areas that are of interest (having
better fitness) by adapting the covariance matrix, C of the distribution. One generation in
the CMA-ES is described below.

0. Initialization. This is only done at the beginning of the algorithm, and is not part of
the iterative process. Internal strategy parameters are initialized as a function of the
dimensionality of the problem, N , and the population size, λ. The population size
should be at minimum

λ ≥ 4 + b3 logNc

1. Generating offspring. Select λ points from a normal distribution around the current
mean according to:

x
(g+1)
i ∼ σ(g)N (m(g),C(g)), for i = 1, 2, ..., λ (2.1)

The ∼ denotes that the statistical distribution is the same on the right- and the left-
hand side of the equation. The mutation strength, σ(g) is a factor that scales the
variation of the normal distribution (effectively, search range). C(g) is the covari-
ance matrix. It can be eigendecomposited to

C = BD2BT

where B is a matrix of eigenvectors and D is a diagonal matrix of the square roots
of the eigenvalues of C(g)

The actual implementation of Equation (2.1) is a bit indirect, as it first calculates the

7

mutation vectors y(g+1)
i , which are used further in the algorithm:

z
(g+1)
i ∼ N (0, I)

y
(g+1)
i = BDz(g+1) ∼ N (0,C(g)) (2.2)

x
(g+1)
i = m(g) + σ(g)y

(g+1)
i ∼ σ(g)N (m(g),C(g)) (2.3)

2. Selection and recombination. Evaluate the fitness function value of each offspring,
and put them in order from best to worst. Move the mean by taking a weighted mean
of the mutation vectors, giving higher weights to the mutations corresponding with
the offspring with best fitness. Only the best µ individuals are considered for the
recombination (µ < λ):

y(g+1)
m =

µ∑
i=1

wiy
(g+1)
i:λ (2.4)

where y
(g+1)
m is the weighted mean mutation vector, wi is weight number i and

y
(g+1)
i:λ is the i-th best ranked individual.

The mean is then moved by

m(g+1) = m(g) + σ(g)y(g+1)
m (2.5)

This is equivalent to just setting m(g) equal to the weighted mean of the sam-
pled points (m(g+1) =

∑µ
i=1 wix

(g+1)
i:λ), apart from when incorporating negative

weights, which is an alternative version of the method discussed in section 2.3.

3. Update the evolution path. The evolution path is a (exponentially smoothed) his-
tory of the preceding movement of the mean. When the mean has moved in one
direction for multiple generations, the evolution path will bias the search of the next
generations to look in the same direction. Two different kinds of evolution paths are
calculated: The evolution path used for updating the step length (p(g+1)

σ) and the
evolution path used for updating the covariance matrix (p(g+1)

c).

p(g+1)
σ = (1− cσ)p(g)

σ +
√
cσ(2− cσ)µeffC(g)−

1
2y(g+1)

m (2.6)

p(g+1)
c = (1− cc)p(g)

c + hσ

√
cc(2− cc)µeffy(g+1)

m (2.7)

cσ and cc are strategy parameters (learning rates) deciding the rate of the exponen-
tial smoothing. µeff is also an internal strategy parameter.

The Heaviside function hσ in Equation (2.7) prevents pc from growing in cases
where the mutation strength σ increases rapidly (typically in a problem where the
initial mutation strength is set too low), which would cause the axes in C to grow
too fast:

hσ =

1 if ||p(g+1)
σ ||√

1−(1−cσ)2(g+1)
< (1.4 + 2

n+1)E||N (0, I)||

0 otherwise
(2.8)

8

Equation (2.8) requires p(g+1)
σ , which means Equation (2.6) needs to be calculated

first.

4. Adapt the covariance matrix. Like the evolution paths, C is exponentially smoothed.
C is updated Using rank-µ-update and rank-one-update (from Hansen (2016) [14]),
which represents the historical movement of the mean and the selection of the fittest
individuals in the current generation, respectively.

C(g+1) = (1− c1 − cµ)C(g) + c1

(
p(g+1)
c p(g+1)

c

T
+ δ(hσ)C

(g)
)

+ cµ

µ∑
i=1

wiy
(g+1)
i:λ y

(g+1)
i:λ

T
(2.9)

c1 and cµ are the learning rates for the rank-one-update and rank-µ-update, respec-
tively. The δ(hσ)C-term is a minor correction term for the rare cases where hσ = 0.

δ(hσ) = (1− hσ)(2− cc)cc (2.10)

5. Changing the mutation strength. If the length of the evolution path p
(g+1)
σ is

longer than the expected length of a vector in a system where there is no systematic
movement of the mean (E||N (0, I)||),3 then σ is increased. If it has moved less, σ
is decreased.

σ(g+1) = σ(g) exp

(
cσ
dσ

(
||p(g+1)

σ ||
E||N (0, I)||

− 1

))
(2.11)

dσ is a dampening factor, another internal strategy parameter.

The way diversification and intensification is handled in the CMA-ES largely by adapting
σ(g). At the beginning, the mutation strength is large, which allows for sampling of a large
part of the search space. When the method reaches a promising area and the best individ-
uals are generated close to m(g), σ(g) is reduced. The search space is made smaller until
only points in the neighborhood of the minimum is evaluated.

One of the strengths of the CMA-ES is the fact that it has very few inputs that need to
be set by the user [12, 13]. Only two user inputs can affect the performance significantly:
The initial parameter guess (m(0)) and the initial mutation strength (σ(0)). Giving bad val-
ues for these can slow down the convergence time or even make it impossible to find the
global minimum. Both of these inputs are unproblematic to set if an approximate search
space is known: The initial guess can be picked randomly from the search space, and the
step size can be set proportional to the size of the space. This is discussed in Section 2.2.

Two alternative (but compatible) uses of recombination weights can be used by the
CMA-ES algorithm. Both work by including negative weights when calculating the weighted
means, meaning that all λ offspring can be used to calculate the new mean and the covari-
ance matrix, instead of just a subset µ < λ. These implementations are discussed in
Section 2.3 and 2.4.

3In other words, if the mean has moved further than it would in a case where all surrounding solutions have
the same fitness.

9

The termination criteria for the method are implemented from Auger and Hansen
(2005) [15], in which a restart functionality is introduced. The method is allowed to restart
a set amount of times, increasing the population size each time. The restart functionality is
intended for the sequential implementation of CMA-ES, and is unused in the parallelized
version. This is described in Section 2.5.

2.2 Choosing Initial Mutation Strength
One of the factors that can greatly impact the performance of the CMA-ES method is the
selection of the initial mutation strength (σ(0), also known as the step length). While σ(g)

is adapted over generations, selecting too low of a value can make the method converge
to a local minimum before the σ(g) can reach a size sufficient to be able to search through
the entire search space. This happens if the initial mutation strength is so small that no
individuals are generated outside of a local minimum.

A good value for the initial mutation strength is 0.3[a − b] where a and b are the
approximate maximum and minimum values of the search space, respectively [14]. The
fact that a and b are scalars implies that having parameters with greatly differing search
space sizes (differing orders of magnitude) can negatively affect the performance. In those
cases, it would be beneficial to rescale the parameters before starting the optimization.

2.3 Negative Recombination Weights for Step Adaptation
In principle, there is no reason why the weighted mean in Equation (2.4) needs to have
weights that add up to 1. The difference between Equation (2.4) and m(g+1) =

∑µ
i=1 wix

(g+1)
i:λ

is that having weights that sum to more or less than 1 (for instance, if all the weights were
multiplied by 2) will offset the directionality of the latter, while only changing the step
length of the former. Consequently the sum in Equation (2.4) can be expanded to include
all λ offspring:

y(g+1)
m =

λ∑
i=1

wiy
(g+1)
i:λ (2.12)

Where the weights wi for i > µ are negative, and decreasing as i increases. The negative
weights are smaller (in absolute value) than the positive weights.

The purpose is to improve the recombination to not only push m(g+1) towards areas
with better fitness, but also to push it away from poor ones. This increases the amount
of information used, which will hopefully4 improve the movement of the mean. Using
negative recombination weights this way is done in other kinds of evolution strategies, but
is largely unexplored in CMA-ES [17].

The functionality is on by default, as it was found to provide a slight (but significant)
increase to convergence rate during the specialization project. However, the positive im-
pact might be lessened by using larger populations.

4But not necessarily. As mentioned by Arnold, D.V. (2008) [16] on this issue: “[...] the opposite of a bad
direction is not always a good direction”.

10

2.4 Negative Recombination Weights for Covariance Adap-
tation

Negative covariance adaptation weights is impemented according to the tutorial by Hansen,
N (2016) [14]. The logic is the same as in Section 2.3, but applied to the weighted mean
that is used in the covariance adaptation (Equation (2.9)), specifically the term

cµ

µ∑
i=1

wiy
(g+1)
i:λ y

(g+1)
i:λ

T

which is expanded to sum up to λ.
Extra care is needed to ensure that C(g+1) stays positive definite. This is done by

scaling the negative weights before using them to calculate C(g+1). In each generation, a
set of temporary weights w◦i are calculated according to:

w◦i =

wi if wi ≥ 0

wi · N

||C− 1
2 yi:λ||

2 if wi < 0
for i = 1, 2, ..., λ (2.13)

This set of weights is then used to adapt C(g+1).
The functionality is on by default, as it (as in Section 2.3) improves the convergence

rate.

2.5 Termination Criteria
Termination criteria are taken from Auger and Hansen (2005) [15]. If any of the following
events happen, the search is ended:

• If the best individuals in the last 10+ d 30nλ e generations have the exact same fitness
value.

• If the range of fitness values for all individuals in the last generation as well as the
best individuals of the last 10 + d 30nλ e generations is below a threshold tolfun.

• If the search space gets too small, below a certain value tolX.

• If one of the principal axis directions (the diagonal) of C(g) is zero.

• If the condition number of C(g) exceeds a certain value.

2.6 Boundary and Constraint Handling
The CMA-ES implementation does not contain any boundary handling by itself. Any
boundaries or constraints are included in the model evaluation function called by the

11

method.5 Constraints in parameter estimation problems are usually simple linear con-
straints of the type

Lower Bound < p < Higher Bound

where p is a vector containing the parameters. In these cases, the boundaries can easily be
implemented as a check before the model function is called:

if (ANY p < LoBound) or (ANY p > HiBound) then
fitness = a+ ||p− pfeasible||
return fitness

else
perform the model evaluation and calculate fitness as usual

end if
Where a is an integer value that is ensured to be larger than the worst fitness value of a
feasible solution, and ||p − pfeasible|| is the distance from the feasible parameter space,
calculated as

||p− pfeasible|| =
∑

p<LoBound

(p− LoBound)2 +
∑

p>HiBound

(p− HiBound)2

Where p is an individual element in the vector p.
This causes the individuals that are closest to the feasible area to be rated better than

the ones further away, but still worse than any feasible solution. Recall from 2.1.1 that the
magnitude of the differences in fitness values is unimportant: The CMA-ES algorithm only
looks at the ranking6 of the individuals, not by how much better one solution is. Therefore,
a is usually set to 104, 105 or something similar. In a worst-case scenario, it can be set to
infinity, but as a result ranking the infeasible points is no longer possible.

The role of constraints in parameter estimation problems is in this thesis assumed to be
to help the optimization method to converge to the correct solution, by preventing the
method from looking into unproductive parts of the parameter space.

Other problem specific constraints may be required, and can all be handled in the same
way, by returning high fitness values for conditions that are unwanted. These conditions
could be dependent on parameter values, model outputs or anything else measurable in the
wrapper function.

5Typically, a wrapper function is called. The wrapper function calls the model, and calculates the fitness (by
comparing the outputs of the model to the experimental data, which is included in the wrapper function).

6n-th best vs (n+1)-th best etc.

12

Chapter 3
Parallelization

Parallel programming allows for running parts of a program simultaneously (in parallel) on
multiple processors, and is therefore a useful tool for large, time-consuming computational
tasks that can be divided into smaller tasks that can be performed independently of each
other. Depending on how much of the program that is parallelizable, the runtime of the
program can be reduced to fractions of the original, non-parallel (sequential), runtime.
Running a program in parallel is not as simple as running one sequentially, however: a
parallel program requires communication between processors.

There are libraries with functions that perform such communication. MPI (Message
Passing Interface) is a message passing library standard for communication between com-
putation nodes [18]. It describes the syntax and routines for implementations of a message
passing program in C, C++ or Fortran, standardized in order to make it easier to port ex-
isting code and run it on different machines [19]. In this thesis, a MPI library developed
by the high-performance computing (HPC) group at the NTNU-IT department is used for
parallel programming.

3.1 Structure of the Parallel Program
Running a program in parallel is performed as follows: The user specifies how many
ranks (individual processes that run in parallel) that are required, and how many proces-
sors (cores) each rank should consist of. All ranks then run the same script, with the
only difference between the ranks being that they are numbered: Each rank has a variable,
my rank, which is unique to that rank (the ranks are numbered from 0 and up). Thus, to
make the ranks perform different tasks in parallel, the tasks need to be allocated to spe-
cific ranks. The function parsteps delegates the iterations of a for-loop between ranks.
The parsteps function calculates which of the iterations each rank should perform,
by comparing the number of iterations in the for-loop to the number of ranks available
(num ranks, a variable that is the same on all ranks).

After the ranks have performed the parallelized tasks, the variables containing the re-
sults of the tasks will be different between each rank. If those results are to be compared or

13

processed in aggregate, they need to be gathered on one rank. Typically this is the master
rank, rank 0. After all ranks have sent the relevant data to the master rank (there is an
MPI function for this), the master rank performs the relevant processing. If the other ranks
need to know the results of these computations, the relevant data can be spread out from
the master rank to all the others using another MPI function.

The theoretical speedup from parallelizing a program can be calculated from Amdahl’s
law [20], which is, paraphrased:

Speedup =
1

ts + tp/n

where ts is the fraction of the runtime that is used on sequential code (code that needs
to be performed in order), tp is the fraction of runtime that is used on parallelizable code
(code that is independent of order and can thus be performed simultaneously as other
parallelizable code) and n is the amount of processors available to perform in parallel.
Some part of the program will always be sequential. Speedup is measured in how many
times faster the program runs.

For Amdahl’s law to be exact, the parallelizable tasks must have exactly the same
runtime and the amount of parallelizable tasks must be divisible by n. In addition, the
time spent on communication between processors must be negligible. In reality, the actual
speedup will never reach the idealized number calculated by Amdahl’s law.

Like the majority of global optimization algorithms, the CMA-ES algorithm is paralleliz-
able. For each generation in the algorithm, a set of points (offspring) are sampled from the
problem space around a certain point in parameter space, which is decided by the previous
generation. Each individual in the new generation requires a model evaluation in order to
determine its fitness. These model evaluations are only reliant on the parameters they take
in, which are set for each individual. This means that after the offspring is generated, each
individual can be evaluated independently, i.e. in parallel. When evaluating complex mod-
els with long runtimes, this is by far the most time intensive part of the program. There is
a lot of time to gain by parallelizing this. Figures showing the flowcharts of the sequential
vs the parallel programs are shown in figures 3.1 and 3.2.

Note that the parallelization is limited to each generation. The sequential code has to
run after the parallel model evaluations have been performed before the next generation
can start.

14

Figure 3.1: A flowchart describing the sequential CMA-ES algorithm, with a population size of λ.

15

Figure 3.2: A flowchart describing the parallel CMA-ES algorithm with a population size of λ.

16

3.2 MPI Functions

The HPC group at the NTNU-IT department have provided an open source library of mex
compiled MPI functions containing the standard MPI calls, called NMPI. In addition, they
have created parallel functions that build upon NMPI, to allow for parallel programming
without needing to know MPI, called Distributed MATLAB. Only a few of the functions
are used in this project:

• parsteps allows a for-loop to be performed in parallel. This requires that each
iteration in the loop is independent of the others. The role of the function in this
program is to distribute the model evaluations between the different ranks, so that
the evaluations can be performed in parallel as shown in Figure 3.2.

• NMPI Reduce performs a reduction of a variable or array from all ranks. In this
thesis, it is only used for one of its possible mathematical operations, i.e. addition.
The values of an array are added together (element wise) from all ranks and the result
is saved as an array on a specified rank (the root). This allows for collection of the
results from each individual iteration in the parallel for-loop. The result of each
iteration is saved to a corresponding element in a zeros-vector, which means that
iteration number i will create a vector consisting of zeros except in element number
i. When the vectors from all iterations are added together, the result is a vector
containing the values of all iterations. The role of the function in this program is to
collect the results after the parallel model evaluations.

• NMPI Bcast spreads a variable or array from a specified rank (the root) to all
other ranks. This is required when the master rank has performed the analysis of the
model evaluations, in order to spread the relevant calculated variables to the other
workers so that they can begin the next generation.

Combined, these allow for all communication between ranks required in the parallel CMA-
ES method. The two NMPI functions above are also implemented in Distributed MATLAB,
with the only difference (in use) being that the Distributed functions always uses the master
rank as the root, while the NMPI allows the the root to be specified. In this project, the
master rank is always used as the root, so the NMPI functions and Distributed functions
for these operations have been used interchangeably during the coding.

3.3 Choice of Population Size

For the sequential implementation of the CMA-ES, a balance is needed when deciding the
population size (λ):

• If λ is too large, the runtime of each generation becomes too long.

• If λ is too low, the estimation of the problem space becomes too inaccurate, reducing
the convergence rate (measured as number of generations needed to converge).

17

A good value for λ in the sequential algorithm (λseq) is (from Hansen (2016) [14])

λseq = 4 + b3 lnNc (3.1)

whereN is the dimensionality of the problem. This is considered the minimum population
size in order to get a sufficient sampling of the parameter space.

For parallelized implementations, the first concern (runtime of each generation due to the
amount of function evaluations) gets reduced, as they can be performed simultaneously. If
a program is running on exactly λseq ranks, the runtime of the model evaluations will be

1
λseq of that of the sequential runtime.

If the program is run on more than λseq ranks, the population size can be increased at
no cost, improving the accuracy of the estimated gradients and hessians, and thus improv-
ing the convergence rate.

If the program is run on less than λseq ranks, each of the ranks will need to do more
than one model evaluation in each generation, and the population will be set to

min
n

λ = n · Number of ranks

s.t. λ ≥ λseq
(3.2)

where n is the amount of model evaluations each rank will need to perform in sequence
for each generation.

The speedup in this case will be affected by both factors mentioned above: If the
number of ranks is exactly λseq

n , then λ = λseq and the runtime of the model evaluations
will be n

λseq
of the sequential time. If the number of ranks is increased slightly, each rank

must still do n evaluations, leaving the runtime for each generation unchanged. However,
due to Equation (3.2), λ will be greater than λseq and the convergence rate will improve
accordingly.

An example of how the effectiveness of the method is changed by increasing the
amount of ranks is shown in Appendix A. It shows the diminishing returns from increasing
the amount of ranks beyond λseq . The amount of ranks (and by extension, λ) used in this
thesis is generally 32 unless otherwise specified.

18

Chapter 4
Testing on a Delayed Negative
Feedback Model

The delayed negative feedback model is an oscillatory model common in systems biology.
It was chosen as a trial model because the oscillations could present a challenge when
calibrating the model. The model evaluated in this thesis is taken from System Modeling
in Cellular Biology: From Concepts to Nuts and Bolts [21], and is a component of the cell
cycle regulatory mechanism in eukaryotes:

dR

dt
= k1S − k2XR (4.1)

dEP
dt

=
k3R(ET − EP)
Kmk + ET − EP

− k4QEP
Kmp + EP

− k5[EP (CT −X)−KdX] (4.2)

dX

dt
= k5[EP (CT −X)−KdX] (4.3)

Where R is concentration of mitosis promoting factor, E is conc. of anaphase promoting
complex (APC), EP is conc. of phosphorylated APC, ET is total conc. of APC (E+EP),
C is conc. of Cdc20 and X is conc. of a complex of APC and Cdc20. The rest of the
parameters are defined in Table 4.1.

The values for the parameters are the same as in System Modeling in Cellular Biology,
with one important difference: According to the book the system is supposed to be oscil-
latory with 0.2 < S < 0.4 (approximately). However, the model outputs did not reflect
this. Multiplying S by a factor of 100 resulted in the correct behavior. The parameter
values used are shown in Table 4.1, and the bifurcation diagram showing the values of S
that result in a limit cycle is presented in Figure 4.1.

The fact that the system is only oscillatory for certain values of S can provide a chal-
lenge for parameter estimation when the initial guess starts outside of the area producing
a limit cycle.

19

Table 4.1: The parameters used in the delayed negative feedback model, taken from System Mod-
eling in Cellular Biology: From Concepts to Nuts and Bolts [21]. Note that the value for the signal,
S, differs from the original, possibly due to an error in the book.

Parameter Description Value Units

k1 First order rate const. 1 min−1

k2 Second order rate const. 1 nM−1min−1

k3 Third order rate const. 1 min−1

k4 Fourth order rate const. 1 min−1

k5 Fifth order rate const. 0.01 min−1

Kmk Michaelis const. 1 nM−1min−1

Kmp Michaelis const. 1 nM
Kd Equilibrium const. 50 nM
S Signal 30 nM
Q Photosphase conc. 100 nM
ET Total APC conc. 100 nM
CT Total Cdc20 conc. 1 nM

0 10 20 30 40 50 60

S

40

50

60

70

80

90

100

110

120

R

Figure 4.1: A bifurcation diagram showing the values of R (after the system has reached steasy
state), as a function of S. Around 20 < S < 40, the system oscillates, and the dots show both the
minimum and maximum values of R in the stable limit cycle.

20

4.1 Experimental Conditions
Two types of experiments were performed using the delayed negative feedback model.
The first experiment was a benchmark test, to check to what degree the parallelization lead
to actual speedup on a model with relevant evaluation times. This is in contrast to the
examples in Appendix A which only considers the reduction in evaluation sequences. The
resulting impression of the speedup is exaggerated, as the CMA-ES contains sequential
code as well.

In the speedup test, 30 generations of the CMA-ES algorithm1 were run and timed
200 times on the model, for both a sequential and parallel implementation. The two im-
plementations were run on the Vilje cluster, with one job using 1 rank, and another using
9 ranks,2 with one core per rank. Each of the 200 runs started on a random initial point
within the search space given by Table 4.2. The same random seeds were used in both jobs.

The parameter estimation problem was set up by first simulating the system with the cor-
rect parameters in order to create “experimental data” that could be used in the parameter
estimation problem. 14 time steps were simulated, spaced by 3 seconds each. All three
model outputs (R, X , Ep) were saved at each time step, resulting in a total of 42 data
points, including the initial conditions ([0, 0, 0]).

After generating the experimental data, seven parameters were set to be unknown: k3,
k4, Kmk, Kmp, S, CT and ET . The parameter estimation was subsequently performed
100 times, each time starting in a random point within the search space. The search space
was limited within the boundaries shown in Table 4.2. In addition to the CMA-ES method,
both methods utilized by the lsqnonlin function in MATLAB were used: Trust Region
Reflective and Levenberg-Marquardt. Trust Region Reflective was used with the same
bounds as specified in Table 4.2, while the Levenberg-Marquardt problem formulation
was unbounded as this is a requirement for the Levenberg-Marquardt method.

The CMA-ES method was run on the Vilje cluster, using 32 ranks. The lsqnonlin
methods were run on a desktop with an Intel(R) Core(TM) i5-6200U 2.30GHz quad core
processor and 8192MB RAM.

Table 4.2: The search space in the delayed negative feedback problem.

Parameter Lower bound Upper bound

k3 0 5
k4 0 5
Kmk 0 5
Kmp 0 5
S 0 100
CT 0 5
ET 50 150

1The algorithm was hardcoded to terminate after 30 generations.
2The number 9 is chosen because the minimum population λseq for a 7 dimensional problem (which this is)

is 9. This way, the population sizes are the same for the sequential and parallel jobs.

21

4.2 Results
The results of the speedup test is shown in Section 4.2.1, before the results of the actual
parameter estimation is shown in Section 4.2.2. Cumulative plots are used to show how
the runtimes and fitnesses are distributed over the 100 runs. When depicting runtimes, the
y-axis shows the fraction of the 100 runs with a runtime less than the times at the x-axis.
When depicting fitness, the y-axis shows the fraction of the runs which fitness less than
the values at the x-axis.

4.2.1 Speedup
A cumulative plot showing the runtimes of 200 runs consisting of 30 iterations is shown
in Figure 4.2. A few outliers with an order of magnitude 100-1000 times larger than the
average means that a logarithmic x-axis is required. A plot excluding the 10% longest
runtimes is shown in Figure 4.3.

10-1 100 101 102 103 104 105

Runtime [s]

0

0.2

0.4

0.6

0.8

1

F
(x

)

Cumulative Distribution of Runtimes

1 rank

9 ranks

Figure 4.2: The cumulative distribution of the runtimes required to perform 30 generations of the
CMA-ES algorithm on the delayed negative feedback model. Note that the x-axis is logarithmic.

22

0 2 4 6 8 10 12

Runtime [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
F

(x
)

Cumulative Distribution of Runtimes

1 rank

9 ranks

Figure 4.3: The cumulative distribution of the runtimes required to perform 30 generations of the
CMA-ES method on the delayed negative feedback Model. This figure shows only the 90% fastest
runs, in order to exclude outliers.

4.2.2 Parameter Estimation
In Figure 4.4, the cumulative distributions of the fitnesses resulting from 100 runs of each
of the optimization methods are shown. The x-axis is logarithmic as there is a large dif-
ference in fitness between runs that managed to solve the problem and runs that did not.
A zoomed-in version (with linear axes) only showing the lower fitnesses is shown in Fig-
ure 4.5. In Figure 4.6, the runtimes are shown, again with a logarithmic x-axis.

A box plot showing the distribution of parameter values found by solutions with good
fitness (SSE < 0.5) is shown in Figure 4.7. The parameters are normalized (so that the
correct value for all parameters would be 1) for visibility. The central marks of the box
plots show the median values, with the boxes denoting the 25th and 75th percentiles. The
whiskers show the most extreme values (excluding outliers). The +-signs mark outliers.

A sensitivity analysis was also performed, where each of the parameters were changed
by 10% (from the correct values shown in Table 4.1), and the resulting increase in fitness
was noted. The results of this is shown in Figure 4.8. Figures comparing the model output
with and without the perturbed parameters are provided in Appendix B.

23

10-2 100 102 104 106 108 1010

Fitness (SSE)

0

0.2

0.4

0.6

0.8

1
F

(x
)

Cumulative Distribution of Fitness

CMA-ES

Levenberg-Marquardt

Trust-Region-Reflective

Figure 4.4: The cumulative distributions of fitness (measured by the sum of squared errors) for the
three optimization methods. Note that the x-axis is logarithmic.

0 1 2 3 4 5 6 7 8 9 10

Fitness (SSE)

0

0.2

0.4

0.6

0.8

1

F
(x

)

Cumulative Distribution of Fitness

CMA-ES

Levenberg-Marquardt

Trust-Region-Reflective

Figure 4.5: The cumulative distributions of fitness (measured by the sum of squared errors) for
the three optimization methods. The lines do not reach unity as there are multiple solutions with
fitnesses outside of the scope of the x-axis.

24

10-1 100 101 102 103 104 105

Runtime [s]

0

0.2

0.4

0.6

0.8

1
F

(x
)

Cumulative Distribution of Runtimes

CMA-ES

Levenberg-Marquardt

Trust-Region-Reflective

Figure 4.6: The cumulative distribution of runtimes for each of the three optimization methods.
Note that the x-axis is logarithmic.

Figure 4.7: The parameters found using the three optimization methods, for fitness < 0.5. The
parameters are normalized so that 1 is the correct value for all parameters. An outlier for Kmk

found by the Levenberg-Marquardt method is outside of the scope, with a value of 18.

25

Sensitivity of Parameters in the Delayed Negative Feedback Model

k
3

k
4

K
mk

K
mp

S C
T

E
T

10-1

100

101

102

103

104

In
c
re

a
s
e
 i
n

 E
rr

o
r

(S
S

E
)

10% increase of parameter

10% decrease of parameter

Figure 4.8: The resulting change in the error of the model (SSE) when changing each of the param-
eters by 10% from the correct value. Note that the y-axis is logarithmic: k3, k4, S and CT are far
more sensitive to change than Kmk, Kmp and ET are.

26

4.3 Discussion

4.3.1 The Speedup Test

The results of the speedup test show a noticeable gain from parallelization, even though the
model evaluations have a low runtime: 30 generations (which means 9 · 30 = 270 model
evaluations in sequence for the sequential run) typically required less than 10 seconds.
There were some massive outliers, however, where runs took 100-1000 times longer to
finish. This indicates that there are some parameter combinations that massively slow
down the ODE solver. These slow runs happened at different initial guesses between the
sequential and parallel implementations. The same initial guess that resulted in an outlier
for one implementation took an unremarkable amount of time for the other. This is because
the CMA-ES algorithm is stochastic, which means that the two implementations differed
between the exact parts of the search space they explored. This could have been avoided
by rewriting the algorithm to use the same random seed each time.3 Excluding the 10%
slowest runs, the mean runtime of the parallelized version was 2.8 times faster than that of
the sequential version.

The speedup test was performed with the assumption that the runtime of the 30 first
generations are representative of the runtime of a generation in general. This assumption is
probably acceptable (as long as outliers are excluded), as the 30 first generations are likely
to have the worst candidate solutions of the parameter estimation problem. This specific
model is quickly solved with the correct parameters, but can run slowly with very poor
parameters, as mentioned above.

4.3.2 The Parameter Estimation

The CMA-ES algorithm managed to find the optimum with a much higher consistency
than the MATLAB functions. The CMA-ES solved the problem for every initial starting
point except one, albeit with a comparatively enormous runtime in some of the cases.4 A
way to handle this could be to add another termination criterion into the CMA-ES algo-
rithm, ending the search after a set amount of time. There is no easy way to tell what
this set amount of time should be however, as there is no obvious cutoff point present in
the data (see Figure 4.6). The runtimes follow an approximately logarithmic distribution,
where 40% of the runs converged after 100 seconds and 80% of the runs converged after
1000 seconds.

To chart the sensitivity to each of the parameters in the model, a test was performed where
each of the parameters were increased and decreased by 10%. The resulting changes in
model fitness are shown in Figure 4.8.

3The same random seed was used for intital guesses between the sequential and the parallel runs, but not in
the CMA-ES that was subsequently used for these random seeds.

4The longest run of the CMA-ES algorithm took seven hours, 425 times as long as the longest runtime of
Levenberg-Marquardt. Still, this run also managed to converge to the optimum.

27

Some of the parameters have a large variance. As shown in Figure 4.7, Kmk and ET
are generally inaccurate even at solutions with good fitness. The sensitivity analysis in
Figure 4.8 shows that the model is the least sensitive to those parameters, but ET is (ac-
cording to this analysis) just barely less sensitive than Kmp, which is estimated relatively
accurately. This type of univariate sensitivity analysis does not show the whole picture, as
it is likely that covariances between the parameters improve the fitness of a solution where
the univariate analysis would predict worse values. Still, the most sensitive parameters in
this analysis have a very low variance.

28

Chapter 5
Testing on an RNAP Hybrid Model

5.1 The Model

The parallelized CMA-ES algorithm was used for estimating the parameters of a model
describing the behavior of RNA polymerase (RNAP) when transcribing DNA strands. The
model evaluated is from another thesis, and is a version of a model currently in develop-
ment (Nadav Bar and Jørgen Skancke: Dynamic of RNA Polymerase and Backtracking
(2018), to be submitted to BMC Bioinformatics). The model covers the phenomenon of
backtracking (introduced in Nudler et al., 1997 [22]), in which the RNAP will “slide”
backwards over the DNA it is currently transcribing. The model takes a DNA sequence as
input, and simulates the trajectory of the RNAP enzyme. The model considers four forces
that affect the movement of RNAP:

• A Brownian ratchet mechanism, enabled by the trigger loop, a component of the
polymerase. This force is oscillatory.

• The force used to separate the DNA base pairs by breaking the hydrogen bonds of
the nucleotides. This force is negative, pushing the RNAP backwards.

• The stability of the RNA/DNA hybrid. The transcribed RNA will be connected
to the DNA for 8-9 base pairs before it is released. The more base pairs that are
connected, the more stable the hybrid is, in addition, the stability depends on the
exact base pairs.

• The catalytic force obtained from attaching the previous nucleotide to the RNA. This
force is large initially, but decreases with time.

The model is a system of differential algebraic equations, which describes the translocation
(movement) of the RNAP over a single base pair:

29

ẋ = v (5.1)
v̇ = FTL + FDNA + FS + FC (5.2)

ḞC = −20 FC , FC(t = 0) = kC f1(NTP) (5.3)

FTL = kTL,A sin (t kTL,ω + φ) (5.4)
FDNA = −kDNA f2(x,DNA-DNA) (5.5)

FS = kS f3(x,RNA-DNA) (5.6)

where x is the position of the RNAP (each base pair has a length of 1), v is its velocity,
FTL is the force from the trigger loop, FDNA is the force used (lost) to split the DNA
base pairs, FS is stability, FC is force from the catalysis, t is time and kTL,A kTL,ω and φ
are the amplitude, frequency and phase of the trigger loop. f1(NTP) is a function depen-
dent on the latest nucleotide added to the mRNA strand, f2(x,DNA-DNA) is a function
dependent on the position of RNAP as well as the DNA-DNA base pair it is currently
separating, f3(x,RNA-DNA) is a function dependent on the position of RNAP as well as
the previous RNA-DNA base pairs transcribed.1 kC , kDNA and kS are scaling parameters.

The hybrid part of the model comes from the fact that the DAEs are chained. After the
RNAP has reached the end of the current base pair, the velocity is reset to zero. The values
of the functions in Equation (5.3), (5.5) and (5.6) are calculated anew and, after a slight
delay, the movement begins again: The DAE system is solved for the next base pair. If the
RNAP has not reached the end of the current base pair within 150 seconds, it is assumed
that it never will, and that backtracking happens. The simulation is ended, and the tran-
scription is counted as a failure.

Some elements of the model are random: The phase of the trigger loop, φ, is given by
N (π2 , 1). In addition, one of the terms for calculating the delay before starting the next
translocation is random2 as well. Because of this randomness, the system has to be solved
multiple times and then be averaged in order to determine the model output. The model
output of interest is the productive yield (Hsu et al. (2006) [23]), which is the ratio of
full-length RNA to the total RNA produced:

PY =
Success

Success+Backtrack
(5.7)

A Success is a case where a complete RNA strand was transcribed without backtrack-
ing, as opposed to the incomplete RNA strands that result from backtracking. In order to
perform the parameter estimation, experimental data is provided, showing the productive
yields corresponding to 30 DNA strands.

The parameters that were estimated in this thesis are kTL,A, kTL,ω, kDNA, kC and kS .
The correct parameter values are unknown.

1The last nine base pairs as a maximum.
2Following a folded normal distribution, |N (0, σ)|.

30

5.2 Constraints
The parameter estimation was first attempted almost unconstrained, on the assumption
that the algorithm would converge to the global optimum even without variable bounds.
Only a non-negativity constraint was included3 in the first attempt as the parameters were
supposed to be non-negative, and experience indicated that allowing the algorithm to solve
the model with negative parameters can cause bad results: If the initial guess provides a
bad combination of parameters, a solution that includes negative parameters can have a
better fitness than many others. The non-negativity constraint turned out to be insufficient,
as some local optima occupied a large part of the search space, making them easy to
fall into. Two more constraints were added as additional failure modes (cases where the
algorithm was stuck in a clearly unwanted situation) were discovered, and an upper bound
was added as the last constraint.

5.2.1 First Failure Mode: No Productive Yield
Attempting the parameter estimation with only non-negativity constraints resulted in the
algorithm steadily increasing the size of the parameters: The algorithm overlooked the
relatively small part of the parameter space that produced some levels of backtracking,
and instead moved into the (infinitely larger) parameter space that produced 100% back-
tracking (and correspondingly, 0% PY). Because the yields in the experimental data are
low, the resulting fitness (sum of squared errors) from this was better than many other
feasible solutions. Once the algorithm moved into this part of the parameter space, the
candidate solution continued moving the same way, seeing as the fitness for all individuals
were identical. To prevent this, a constraint was added in the wrapper function, checking
if any successful transcriptions happened for any of the DNA strands. If absolutely none
occurred, the fitness was set to a high value (105). Figures 5.1 and 5.2 show how the fitness
is steady at 0.6217 (which is the SSE resulting from no yield) while the parameters diverge
into increasing values. At generations 21-23, fitness values of less than 0.6217 are found,
which means that these were feasible solutions featuring a low amount of productive yield.
The following generations did not manage to find these kinds of solutions again. For the
rest of the generations, the best solutions were those returning 0% PY.

3All constraints were incorporated as explained in Section 2.6.

31

0 5 10 15 20 25 30 35 40 45

Generations

0

1

2

3

4

5
F

it
n

e
s
s

Fitness in the First Failure Mode

Figure 5.1: A plot showing the fitness values (of the best individual solution) of each generation
in the first failure mode. The earlier values that are outside of the axis limits are a combination of
solutions with negative parameters and feasible solutions with bad fitness.

0 5 10 15 20 25 30 35 40 45

Generations

0

200

400

600

800

1000

1200

1400

1600

1800

2000

P
a
ra

m
e
te

r
V

a
lu

e
s

Parameter Values in the First Failure Mode

k
TL,A

k
TL,

k
DNA

k
C

k
S

Figure 5.2: A plot showing the parameter values (of the best individual solution) of each generation
in the first failure mode.

32

5.2.2 Second Failure Mode: 100% Productive Yield
After adding the 0% PY constraint another failure mode emerged, mirroring the prior:
The algorithm found parameters giving 100% yield (0% backtrack rate), and once again
diverged into ever-increasing parameter values. The fitness corresponding to 100% yield is
significantly worse than that of 0% backtrack rate however: It is the worst fitness possible,
excepting the fitness returned when breaking the constraints! To trigger this failure mode,
the initial guess had to be in a region of the parameter space where all the candidate
solutions either breached one of the constraints or returned 100% yield. As before, a
constraint was added, setting the fitness to a high value (a higher value than the previous
constraint, to more heavily discourage this solution than the 0% yield solution) if the
simulation returned 100% yield for all DNA strands.

In Figure 5.3, it can be observed that the sum of squared errors (of the best individual
in the generation) starts off at 23.3087, the fitness corresponding to 100% yield. Most
likely, some amount of the individuals broke one of the constraints, giving the algorithm
an initial direction to move; away from the constraint. At generation 5, an individual
solution returns 4.8345, but this single incidence is not enough to move the algorithm
into the feasible area. After this, the algorithm keeps expanding the search space as it
moves away from the solutions that break one of the earlier constraints. The effect on the
parameters can be seen in Figure 5.4. The program terminated at generation 21, because
the 15 preceding generations had no difference in fitness (satisfying the first termination
criterion in Section 2.6).

0 5 10 15 20 25

Generations

4

6

8

10

12

14

16

18

20

22

24

F
it

n
e
s
s

Fitness in the Second Failure Mode

Figure 5.3: A plot showing the fitness values (of the best individual solution) of each generation in
the second failure mode.

33

0 5 10 15 20 25

Generations

0

200

400

600

800

1000

1200

1400

1600
P

a
ra

m
e
te

r
V

a
lu

e
s

Parameter Values in the Second Failure Mode

k
TL,A

k
TL,

k
DNA

k
C

k
S

Figure 5.4: A plot showing the parameter values (of the best individual solution) of each generation
in the second failure mode.

5.2.3 Adding an Upper Bound

After some time, enough parameter studies had been performed on the model to say with
relative certainty that the parameters could be constrained between 0 and 3. This was
useful to add even with all the other constraints already implemented, as there seemed to
be a local minimum in the shape of a (perhaps infinitely long) “valley” where multiple
solutions returned similar fitnesses as long as the ratios between the parameters stayed
similar. Adding the upper bound reduced the amount of generations before a feasible
solution was found.

5.3 Intensification: Improving the Accuracy of the Solu-
tion

After implementing the constraints, all parameter estimation runs converged to promising
local minima. The size of these minima were relatively large for some of the parameters
however, as the random element in the model means that subtle differences in fitness are
near undetectable. The solution could only be improved to a certain point until the ran-
dom noise made all solutions essentially the same. An attempted fix for getting past this
“stochastic bedrock” was to increase the number of times the simulations were run, in or-
der to reduce the uncertainty. Because this greatly increases the evaluation time for each
generation, doing it in the early generations would be a waste of time: The intensification,

34

the increase in simulation evaluations,4 should only happen when the fitness stagnates.

To decide when to intensify the search, a t-test is performed in order to see whether the
change in fitness over the last few generations of the algorithm is statistically significant
in the interval. If it is not, the search is intensified.

From the implementation of the termination conditions in section 2.6, the generation
history, the amount of generations (looking backwards) to be considered when evaluating
whether a termination criterion is satisfied is

nGenHist = 10 + d30N
λ
e

where N is the dimensionality of the problem and λ is the population size.
This generation history seemed too short for the purpose of evaluating the significance

of the change in fitness, so empirically, a value of b1.5 · nGenHistc was chosen instead.
When an intensification is triggered, the next intensification is barred from happening

until another b1.5 · nGenHistc generations have passed, in order to reset the data. Due
to the behavior of the model, this is all but guaranteed to happen as soon as possible, as
the improvement gained by the intensification happens fast and is not very large. The
intensification functionality is included in the code in Appendix D.1.

5.4 The Multistart Implementation
When running preliminary parameter estimation attempts on the RNAP model, it became
clear that multiple local minima existed, some of which the method would converge to-
wards depending on the starting position. It is possible that, given enough generations,
the method could eventually navigate out of the minimum (depending on how wide and
“deep” it is), but the long evaluation times of the model means that this amount of gen-
erations is not available. Thus, multiple runs needed to be performed in order to be more
secure that a given solution was optimal (or close to it). Because of the long runtime of the
program, running multiple instances of the algorithm after one another would take an un-
reasonable amount of time. Either multiple jobs needed to be queued at the same time on
the cluster, or one job needed to run multiple independent (but still parallelized) instances
of the algorithm. The latter option was chosen.

5.4.1 Dividing Into Batches
To perform simultaneous parallel instances of the CMA-ES method in one job, the ranks
first need to be divided into subgroups (hereby batches) in which all MPI communications
are limited to the other ranks in the subgroup. Because each rank runs the same script
individually, this can be done by using a regular for-loop with an if-statement:

4This increase in evaluations should coincide with the time when the focus of the optimization algorithm has
switched from diversification to intensification. Thus, the intensification happens at both optimization algorithm
level as well as model evaluation level.

35

for i = 0 to (NBatches − 1) do
if (my rank ≥ i · batch size) and (my rank < (i+ 1) · batch size) then

run CMA-ES as batch number i
end if

end for
The if-statement filters out the ranks within each batch. If a rank does not fulfill the criteria,
it will continue in the for-loop until it does. Functionally, this is a parallel (outer) for-loop.
The rank number, i is used further in order to keep track of which ranks belong to what
batch.

With the ranks divided into batches, the Distributed MATLAB functions needed to be
redefined to limit MPI communication to ranks within the same batch.

5.4.2 Intra-Batch MPI Communication
With the batches functioning completely independently of each other, communication
which would usually pass through the master rank (rank 0) needs to go to another sub-
stitute master rank. This rank is set to be the first rank in each batch, that is rank number
i · batch size.

The Distributed functions written by the HPC group at NTNU-IT use basic MPI func-
tionalities which make some implicit assumptions that work against use in independent
parallel instances:

• That the first (and master) rank in the process is rank 0 and that the other ranks
involved in the process count up from there.

• That information should be spread to (and collected from) all ranks involved in the
parallel job. This means that information would be spread outside of an individual
batch.

Therefore, the Distributed functions needed to be edited in order to allow for temporary
substitute master ranks, and to limit the communication to the other ranks within a batch.
The problem was solved by making use of the batch size and batch number as arguments
in the function calls.

The default parsteps function makes use of the num ranks variable to determine
the amount of available ranks, before dividing the iterations of the for-loop evenly be-
tween them. This code was simply rewritten by changing the number of ranks available
to batch size, and use the batch number in order to calculate the specific ranks that
should be included in the for-loop.5

The new, custom spread and reduction functions take in the instance (batch) num-
ber the worker is a part of, as well the amount of workers in each batch (batch size) as
input arguments. From this, the master rank for each batch is set to be the first rank of the
batch, and the other ranks are instructed specifically to send (or receive) to (or from) that

5The default function assigned iterations to ranks 0 and up, which in this case would be incorrect for any
batch except batch number 0.

36

rank. This way, there is no communication between each batch. These custom functions
are built on simple send and receive NMPI functions, as these can specify sender and
receiver rank. The code is shown in Appendix D.

Using point-to-point communication as done in these custom functions is less efficient
than using the collective communication alternatives (which use the assumptions outlined
above) that are used in the default functions. However, this time loss is negligible assuming
the runtime between each instance of MPI communication is significant. This is very much
the case when using the CMA-ES on the RNAP parameter estimation problem.

5.4.3 Selecting Initial Points
A concern when the algorithm converges towards multiple local minima is that the initial
guess is going to affect what minimum the algorithm ends up in.6 Thus, the independent
CMA-ES instances should start at different areas in the problem space. Because of the rel-
atively low dimensionality of the RNAP parameter estimation problem (five parameters),
the starting positions could be provided systematically instead of randomly.

For each dimension, a low value and a high value is specified. Then, a CMA-ES in-
stance is set to start on every possible permutation of high/low values. This means that a
permutation matrix is created as follows (for a three-dimensional problem):

P3 =

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

(5.8)

Where 1 represents a high value and 0 represents a low value for a given parameter.
Each row is a combination of parameters.

In the example case of Equation (5.8) there are 8 permutations, meaning that 8 in-
dependent instances of the algorithm are initiated. This scales up by 2n, hence the five-
dimensional RNAP problem will require 25 = 32 instances. Keep in mind that each of
these instances require a minimum of 4 + b3 ln 5c = 8 ranks in order to do all model
evaluations simultaneously, which is very much desired. The high and low values were set
to be 1

4 and 3
4 of the way through each dimension, with an initial search radius σ0 of 1

4 .
An example of how this looks is presented in Figure 5.5.

6Because of the random nature of the CMA-ES method, the method could theoretically end up in just about
any of the minima from any initial position, but the initial position would heavily affect the likelihood of reaching
a specific minimum.

37

(0,0) (1,0)

(0,1) (1,1)

σ0

Figure 5.5: An example of where the four starting points would be placed in a two-dimensional
problem where the search space is set between 0 and 1 for both dimensions. The initial step size σ0

is chosen in order to cover as much of the space as possible with minimal overlap.

5.5 Conditions for Parameter Estimation

Because each model evaluation requires the model to be simulated multiple times (100
times, before intensification) for each of the 30 DNA strands, each evaluation takes a sig-
nificant amount of time (generally over 10 minutes). The long evaluation times means
that running a parallel method is very beneficial. In addition, the randomness also makes
the problem space non-smooth and extremely noisy. The Levenberg-Marquardt and Trust
Region Reflective methods in MATLAB do not work on this problem.

Two different strategies were used: A “single-start” and a multistart. The single-start con-
sisted of a single, high-population CMA-ES instance with 32 ranks (and thus a population
of 32).7 The initial point was in the middle of the search space, at 1.5 for all parameters.
The job was run for 40 hours.

The multistart strategy used 32 independent batches, each consisting of 8 ranks, result-
ing in a total of 256 ranks. The starting points were evenly distributed as explained in
Section 5.4.3. The multistart job was also run for 40 hours.

7Preliminary attempts also used 64 ranks, with no discernible difference. 32 ranks were used subsequently as
CPU hours on the Vilje cluster are a limited resource.

38

Both strategies used the intensification method explained in Section 5.3.

5.6 Results
Both jobs were terminated after 40 hours of runtime. The best solution was assumed to be
the last solution found before termination. In all runs, intensification (from Section 5.3)
happened twice, increasing the amount of simulations per model evaluation to 500 (times
30 DNA sequences).

5.6.1 Single CMA-ES Instance
The best parameters of the last generation in the single-start run are shown in Table 5.1.
The fitness was calculated anew by performing 100 model evaluations using the best pa-
rameters, each model evaluation consisting of 500 simulations (per DNA sequence). The
average output of the 100 model evaluations is shown in Figure 5.6, and compared to the
experimental data. The error bars mark 95% confidence intervals for the productive yield
of each DNA sequence.

In figures 5.7 to 5.9, the changes of the fitness and parameters of the best individual in
each generation is shown. The step sizes are calculated as the distance (in parameter
space) from the best solution in one generation to the next. Note that in these figures, only
the best individual is considered. The parameter history (and subsequently, the step sizes)
does not show the exact movement of the mean, although they are highly correlated, and
would look very similar.

In Figure 5.10 the model evaluation time for each generation is shown. The evaluation
times increase as intensification (Section 5.3) happens. The amount of simulations per
evaluation are increased twice, first from 100 to 300, then to 500.

Table 5.1: The solution of the RNAP parameter estimation, from the single-instance CMA-ES run.
The fitness is the mean fitness (± two standard deviations) found after performing 100 runs of 500
simulations using these parameters.

Parameter Value

kTL,A 0.9514
kTL,ω 0.1077
kDNA 2.7543
kC 2.0898
kS 0.8757

Fitness (SSE) 0.1759± 0.0264

39

D
G

4
3
4

D
G

4
3
3

N
2
5
a
n

ti
D

G
4
2
7

D
G

4
2
9

D
G

4
3
1

D
G

4
3
2

D
G

4
3
7

D
G

4
3
0

D
G

4
3
6

D
G

4
4
1

D
G

1
1
5
a

D
G

4
3
8

D
G

4
3
5

D
G

1
3
3

D
G

4
2
8

D
G

4
4
0

D
G

4
3
9

D
G

4
4
9

D
G

4
4
6

D
G

4
4
3

D
G

4
4
2

D
G

4
4
4

D
G

4
4
8

D
G

4
5
1

D
G

4
4
5

D
G

4
4
7

D
G

4
5
2

D
G

4
5
0

N
2
5

0

0.05

0.1

0.15

0.2

0.25

0.3
P

Y
Results of RNAP Simulations

Simulated

Experimental

Figure 5.6: The resulting model output from using the parameters presented in Table 5.1. The x-axis
consists of the different DNA sequences and is not a continuous variable. The error bars mark the
95% confidence interval.

0 10 20 30 40 50 60 70 80 90 100

Generations

0

2

4

6

8

10

F
it

n
e
s
s

Fitness History

Figure 5.7: The fitness history (best fitness of each generation) of the single-instance parameter
estimation. The fitness values outside of the scope of the y-axis are cases where the constraints were
breached.

40

0 10 20 30 40 50 60 70 80 90 100

Generations

0

0.5

1

1.5

2

2.5

3
P

a
ra

m
e
te

r
V

a
lu

e
s

Parameter Values History

k
TL,A

k
TL,

k
DNA

k
C

k
S

Figure 5.8: The parameter history (the parameters corresponding to the best individual of each
generation) of the single-instance parameter estimation.

0 10 20 30 40 50 60 70 80 90 100

Generations

0

0.5

1

1.5

2

2.5

3

S
te

p
 S

iz
e

Step Size History

Figure 5.9: The step size between each generation in the single-instance parameter estimation,
calculated as the distance between the best solution of one generation to the next.

41

0 10 20 30 40 50 60 70 80 90 100

Generations

0

500

1000

1500

2000

2500

3000

3500

4000

M
o

d
e
l
E

v
a
lu

a
ti

o
n

 T
im

e
 [

s
]

History of Evaluation Times

Figure 5.10: The model evaluation time for each generation in the single-instance parameter esti-
mation. Intensification happens at generations 28 and 79, increasing the amount of simulations per
evaluation from 100 to 300 and finally 500.

42

5.6.2 CMA-ES Multistart
The parameters and fitnesses found in each of the 32 CMA-ES instances is shown in
Appendix E. Not all runs managed to find the minimum. For further analysis, the solutions
with fitness over 0.2 has been discarded as unconverged. There were ten solutions with less
than 0.2 fitness. A box plot showing the distribution of the parameter values in converged
solutions is shown in Figure 5.11. The plot showing the model outputs of the solution with
the best fitness is presented in Figure 5.12. All runs intensified twice.

k
TL,A

k
TL,

k
DNA

k
C

k
S

0

0.5

1

1.5

2

2.5

3

P
a
ra

m
e
te

r
V

a
lu

e

Parameter Values Corresponding to Fitness < 0.2

Figure 5.11: The mean values for the parameters in the ten solutions with fitnesses (SSE) less than
0.2. The error bars mark the 95% confidence intervals.

43

D
G

4
3
4

D
G

4
3
3

N
2
5
a
n

ti
D

G
4
2
7

D
G

4
2
9

D
G

4
3
1

D
G

4
3
2

D
G

4
3
7

D
G

4
3
0

D
G

4
3
6

D
G

4
4
1

D
G

1
1
5
a

D
G

4
3
8

D
G

4
3
5

D
G

1
3
3

D
G

4
2
8

D
G

4
4
0

D
G

4
3
9

D
G

4
4
9

D
G

4
4
6

D
G

4
4
3

D
G

4
4
2

D
G

4
4
4

D
G

4
4
8

D
G

4
5
1

D
G

4
4
5

D
G

4
4
7

D
G

4
5
2

D
G

4
5
0

N
2
5

0

0.05

0.1

0.15

0.2

0.25

0.3
P

Y
Results of RNAP Simulations

Simulated

Experimental

Figure 5.12: The resulting model output from using the parameters of the solution with the best
fitness from the multistart run. The x-axis consists of the different DNA sequences, and is not a
continuous variable. The error bars mark the 95% confidence interval.

5.7 Discussion
The CMA-ES has managed to find a minimum, as seen from Figures 5.7 to 5.9: The fitness
and the parameter values stay stable in approximately 50 generations before termination.
The best solutions from the multistart run indicate that this is the global minimum, as the
best solutions have relatively similar values for three of the parameters. The two other
parameters, kTL,ω and kC , have values spanning a large part of the search space, which
indicates that the model is less sensitive to these parameters.

Even though what is likely to be the global minimum (within the constrained search
space) is found, the model output does not follow the same correlation with the DNA
sequences as the experimental data does (see Figure 5.6). There are two potential ways in
which the model output could be improved, depending on what the cause of the mismatch
is. The choices are either improving the model or finding a better solution.

It is possible that the model should be improved. The version of the RNAP model
evaluated here does not take into account all types of forces affecting the RNAP, and it
is very possible that emulating the experimental data is impossible using the model as it
is. The fact that the model behavior does not correlate with the DNA sequences could
indicate this. If a better solution existed with parameter values close to those found, there
could still be expected some kind of systematic model behavior in response to the DNA
sequences given as inputs.

There is also a possibility that a correct solution (in the sense that it produces the de-
sired behavior) exists for the given model, either in a very small part of the search space or

44

far outside the search boundaries. If the random noise was too large even after the inten-
sification had increased the amount of simulations, it could be too difficult to register the
subtle differences in fitness that could lead to a solution which would result in the correct
behavior. As can be seen in Figure 5.6, there is still a significant variance in the model out-
puts even with 500 simulations per model evaluation. The productive yields vary between
0.1 and 0.15 (approximately) for the same set of parameters, which results in a fitness with
a 95% confidence interval of 0.1759± 0.0264, as shown in Table 5.1. If the boundaries of
the search space were wrongly defined, the parameters could have values far larger than
3, which would increase the impact of some of the forces affecting the RNAP movement
more than currently possible within the constraints.

As mentioned in Section 5.6, the solution selected as the “best” was the solution with
the lowest fitness in the last generation. In a case where a completely deterministic model
is used, the solution would simply be the one with the lowest fitness (out of any generation)
as it would unquestionably be the best. However, due to the randomness inherent in the
RNAP model, this is not a safe choice as it could be a statistical outlier for a solution with
suboptimal parameters. Therefore, in the case of the RNAP model, the best solution was
assumed to be the last solution found, as m(g) should statistically move towards the best
solutions as g →∞, in spite of noise in the individual model evaluations. When assessing
the plots of the parameter changes (and step sizes), this assumption seems acceptable: The
change in parameters is negligible for the last generations, which means that the solution
found is not just a one-time lucky roll of the dice. Even though the solution is stable for
approximately 50 generations, the solution of the last generation is likely to be the most
correct, as the small adjustments of the last generations are more likely to be beneficial (or
at worst, neutral) for the solution.

The noise present in the fitness even when simulating each DNA sequence 500 times in-
dicates that the intensification (from Section 5.3) increasing the amount of simulations
by 200 each time is insufficient to find an exact minimum. The intensification happened
twice during the process, for a total of 500 simulations per model evaluation. Looking at
the amount of random noise still present, it seems like the number needs to be increased
to a point where the evaluation times would make the runtime of the optimization process
infeasibly long.8 In this case, improving the model is the only feasible way to achieve the
desired model behavior. As mentioned before, model development is not the focus of this
thesis.

8At 500 simulations, one model evaluation required approximately 1 hour.

45

46

Chapter 6
Further Discussion

The CMA-ES method developed herein consistently solves the parameter estimation prob-
lem of the delayed negative feedback model, with a higher success rate than the Levenberg-
Marquardt or trust-region-reflective methods used in MATLABs lsqnonlin function.
However, this comes at the cost of significantly higher runtimes, even when running the
CMA-ES in parallel on a computer cluster and the lsqnonlin methods on a laptop.
This is a trait typical of stochastic global optimization methods, as the tradeoff between
diversification and intensification means that the methods will converge slower than local
methods, but with a higher chance of finding the global minimum.

The test on this model indicates that the CMA-ES is reliable for parameter estimation
problems of this type.

The results from the RNAP model calibration were mixed in the sense that the param-
eters found did not make the model respond to inputs in the same way as the experimental
data. However, a minimum was found, proving that the method manages to navigate noisy
objective functions. If a correct solution exists for this RNAP model and it was not found,
it is likely not due to the mechanics of the CMA-ES method, but rather because of limita-
tions related to the choice of search space or an excessive amount of noise in the objective
function. The fact that the CMA-ES is parallelized was critical, as the time otherwise
needed to solve the problem would be impractically long.

In summary, the CMA-ES is more consistent than the lsqnonlin functions, and man-
ages to solve more difficult problems, at the cost of comparatively longer computational
time for simple problems. For problems with long evaluation times and noisy objective
functions, the CMA-ES could be a powerful tool which should be explored further in a
later project.

47

48

Chapter 7
Conclusion

In this thesis, a parallel implementation of the CMA-ES optimization method has been
implemented and tested on two parameter estimation problems from systems biology. In
addition to parallelizing the method, a set of functions were created in order to allow for
independent instances of a parallelized CMA-ES process to run in parallel, in a multistart
fashion. These functions can be used in other programs where separate groups of ranks
work independently of each other, without needing to delve into lower level programming
than MATLAB.

The first model calibration was performed on a delayed negative feedback ODE model
with known parameters. In this case, the CMA-ES method managed to find the correct pa-
rameters more consistently than MATLABs lsqnonlin function, but with significantly
longer runtimes. For a problem this simple, the method is unnecessarily complicated and
resource intensive.

The second model calibration was performed on a DAE model with a stochastic element,
simulating the movement of RNA polymerase during transcription. The correct parame-
ters for this model were unknown. The lsqnonlin functions in MATLAB were unusable
for this problem. Due to the random element in the model, the model evaluations had to be
performed by simulating the model multiple times in order to use the average of the sim-
ulations as the model output. Starting at 100 simulations per model evaluation, the high
amount of noise still present in the objective function required an increase in simulations
when approaching a local minimum. A functionality was added to the CMA-ES algorithm
which increased the amount of simulations after the improvement in the fitness values for
each generation seemed to have stagnated.

The CMA-ES managed to minimize the model error, although the minimum found
spanned a wide area in parameter space and did not lead to satisfactory model behavior.
This is most likely due to either errors in the model or the amount of noise still present in
the objective function after increasing the amount of simulations to 500. The boundaries
of the search space could also be too narrow.

49

The parallelized CMA-ES method seems to potentially have a niche in difficult parameter
estimation problems, where the objective function is multimodal or noisy and the model
evaluations take too long to be performed sequentially. A prime example of this type of
problem is the RNAP model evaluated in this thesis.

7.1 Further Work
The CMA-ES should be tested on additional models with noisy objective functions, prefer-
ably with known parameters, in order to gain more knowledge about the speed and accu-
racy the method achieves on such models.

50

Bibliography

[1] F. J. Bruggeman and H. V. Westerhoff, “The nature of systems biology,” TRENDS in
Microbiology, vol. 15, no. 1, pp. 45–50, 2007.

[2] J. Sun, J. Garibaldi, and C. Hodgman, “Parameter Estimation Using Metaheuristics
in Systems Biology: A Comprehensive Review,” IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics (TCBB), vol. 9, no. 1, pp. 185–202, 2012.

[3] M. Ashyraliyev, Y. Fomekong-Nanfack, J. A. Kaandorp, and J. G. Blom,
“Systems biology: parameter estimation for biochemical models,” FEBS
Journal, vol. 276, no. 4, pp. 886–902, 2009. [Online]. Available: http:
//dx.doi.org/10.1111/j.1742-4658.2008.06844.x

[4] C. G. Moles, P. Mendes, and J. R. Banga, “Parameter Estimation in
Biochemical Pathways: A Comparison of Global Optimization Methods,”
Genome Research, vol. 13, no. 11, pp. 2467–2474, 2003. [Online]. Available:
http://genome.cshlp.org/content/13/11/2467.abstract

[5] J. R. Banga, “Optimization in computational systems biology,” BMC Systems Biol-
ogy, vol. 2, no. 1, p. 47, 2008.

[6] C. Blum and A. Roli, “Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison,” ACM Comput. Surv., vol. 35, no. 3, pp. 268–308, 9 2003.

[7] N. Hansen, “A CMA-ES for mixed-integer nonlinear optimization,” Ph.D. disserta-
tion, INRIA, 2011.

[8] T. Glasmachers, T. Schaul, S. Yi, D. Wierstra, and J. Schmidhuber, “Exponential
Natural Evolution Strategies,” in Proceedings of the 12th Annual Conference on
Genetic and Evolutionary Computation, ser. GECCO ’10. New York, NY, USA:
ACM, 2010, pp. 393–400. [Online]. Available: http://doi.acm.org/10.1145/1830483.
1830557

[9] A. Zhigljavsky and A. Zilinskas, Stochastic global optimization. Springer Science
& Business Media, 2007, vol. 9.

51

http://dx.doi.org/10.1111/j.1742-4658.2008.06844.x
http://dx.doi.org/10.1111/j.1742-4658.2008.06844.x
http://genome.cshlp.org/content/13/11/2467.abstract
http://doi.acm.org/10.1145/1830483.1830557
http://doi.acm.org/10.1145/1830483.1830557

[10] A. Neumaier, “Complete search in continuous global optimization and constraint
satisfaction,” Acta numerica, vol. 13, pp. 271–369, 2004.

[11] N. Hansen and A. Ostermeier, “Completely Derandomized Self-Adaptation in Evo-
lution Strategies,” Evolutionary Computation, vol. 9, no. 2, pp. 159–195, 6 2001.

[12] N. Hansen and S. Kern, “Evaluating the CMA evolution strategy on multimodal test
functions,” in PPSN, vol. 8. Springer, 2004, pp. 282–291.

[13] N. Hansen, “The CMA Evolution Strategy: A Comparing Review,” in Towards a New
Evolutionary Computation: Advances in the Estimation of Distribution Algorithms,
J. A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 75–102.

[14] ——, “The CMA Evolution Strategy: A Tutorial,” CoRR, vol. abs/1604.0, 2016.
[Online]. Available: http://arxiv.org/abs/1604.00772

[15] A. Auger and N. Hansen, “A restart CMA evolution strategy with increasing popu-
lation size,” in 2005 IEEE Congress on Evolutionary Computation, vol. 2, 2005, pp.
1769–1776.

[16] D. V. Arnold, “Optimal Weighted Recombination,” in Foundations of Genetic Al-
gorithms: 8th International Workshop, FOGA 2005, Aizu-Wakamatsu City, Japan,
January 5 - 9 , 2005, Revised Selected Papers, A. H. Wright, M. D. Vose, K. A.
De Jong, and L. M. Schmitt, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 215–237.

[17] D. V. Arnold and D. C. S. Van Wart, “Cumulative Step Length Adaptation for
Evolution Strategies Using Negative Recombination Weights,” in Applications of
Evolutionary Computing: EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT,
EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Naples, Italy,
March 26-28, 2008. Proceedings, M. Giacobini, A. Brabazon, S. Cagnoni, G. A.
Di Caro, R. Drechsler, A. Ekárt, A. I. Esparcia-Alcázar, M. Farooq, A. Fink, J. Mc-
Cormack, M. O’Neill, J. Romero, F. Rothlauf, G. Squillero, A. c. Uyar, and S. Yang,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 545–554.

[18] D. Walker and J. Dongarra, “MPI: a standard message passing interface,” Supercom-
puter, vol. 12, pp. 56–68, 1996.

[19] W. D. Gropp, W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel
programming with the message-passing interface. MIT press, 1999, vol. 1.

[20] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint com-
puter conference. ACM, 1967, pp. 483–485.

[21] Z. Szallasi, J. Stelling, and V. Periwal, “System modeling in cellular biology,” 2006.

[22] E. Nudler, A. Mustaev, A. Goldfarb, and E. Lukhtanov, “The RNADNA Hybrid
Maintains the Register of Transcription by Preventing Backtracking of RNA Poly-
merase,” Cell, vol. 89, no. 1, pp. 33–41, 1997.

52

http://arxiv.org/abs/1604.00772

[23] L. M. Hsu, I. M. Cobb, J. R. Ozmore, M. Khoo, G. Nahm, L. Xia, Y. Bao, and
C. Ahn, “Initial transcribed sequence mutations specifically affect promoter escape
properties,” Biochemistry, vol. 45, no. 29, pp. 8841–8854, 2006.

53

54

Appendix A
Effects of Parallelization

To illustrate the effects of parallelizing and choice of population size, four test functions
are evaluated on different dimensionalities, using different amounts of ranks in parallel.

These functions are standard test functions in optimization benchmarking the Ackley,
Rastrigin, Rosenbrock and Sphere test functions.

The Ackley and Rastrigin functions are multimodal (multiple local minima), while the

Table A.1: The test functions used for benchmarking. n is the amount of dimensions.

Name Function

Ackley f(x) = 20(1− exp (−0.2
√

1
n

∑n
i=1 x

2
i))− exp (1n

∑n
i=1 cos (2πxi))− exp (1)

Rastrigin f(x) = 10n+
∑n
i=1[x

2
i − 10 cos (2πxi)]

Rosenbrock f(x) =
∑n−1
i=1 [100(xi+1 − x2i)2 + (xi − 1)2]

Sphere f(x) =
∑n
i=1 x

2
i

Rastrigin and Sphere functions are unimodal. From prior experience, the CMA-ES method
navigates the Ackley and Sphere functions easily, while the Rosenbrock and Rastrigin re-
quires more evaluations.

The amount of ranks working in parallel were 1, 8, 16, 24, 32 and 40. The single rank
run is used to contrast the performance of the sequential implementation with the perfor-
mance of the parallel implementation.

Due to the simplicity of the test functions, little to no actual time is saved by paralleliza-
tion on these problems. Each function call has a runtime on the order of sub-milliseconds.
When coupled with the small added computational overhead from the MPI processes, the
parallelization is useless. In these test cases, the runtime is mostly affected by the (un-
avoidable) sequential parts of the code, more specifically the eigendecompositon of the
covariance matrix. This is a computationally expensive operation, especially at higher

i

dimensionalities.
All of the aforementioned effects are negligible when evaluating a real model where

the runtime for each model evaluation is several orders of magnitude longer than that of
the rest of the code. However, in this specific case the runtime would be a poor indicator of
the achieved speedup of the program. Instead, the number of model evaluation sequences
(hereby MES) is used instead. For each MES, one parallelized set of model evaluations are
performed. Because these model evaluations are performed in parallel, it can be expected
that one MES takes a set amount of time no matter how many model evaluations each
sequence consists of. In other words, each MES should take approximately the same
amount of time no matter how many ranks that are used (when evaluating the same model).
As a result, the runtime of the program should be proportional to the amount of MES
needed to converge.

In figures A.1 to A.4, the mean amount of model equation sequences at different di-
mensionalities is shown for experiments running 1 to 40 ranks. Due to the extreme dif-
ference between the performance of the single worker run and the parallelized runs, the
figures are showing plots of the performance with and without the single worker run, for
the sake of visibility.

2 4 6 8 10 12 14

Dimensions

0

1000

2000

3000

4000

5000

M
o

d
e
l
E

v
a
lu

a
ti

o
n

 S
e
q

u
e
n

c
e
s

Ackley

1 rank

8 ranks

16 ranks

24 ranks

32 ranks

40 ranks

2 4 6 8 10 12 14

Dimensions

0

100

200

300

400

500

600

700

M
o

d
e
l
E

v
a
lu

a
ti

o
n

 S
e
q

u
e
n

c
e
s

Ackley

8 ranks

16 ranks

24 ranks

32 ranks

40 ranks

(a) (b)

Figure A.1: The number of model equation sequences at different dimensionalities for 1 to 40 ranks
when evaluating the Ackley function. Figure (b) shows only the parallelized runs.

ii

2 4 6 8 10 12 14

Dimensions

0

0.5

1

1.5

2

M
o

d
e
l
E

v
a
lu

a
ti

o
n

 S
e
q

u
e
n

c
e
s

105 Rastrigin

1 rank

8 ranks

16 ranks

24 ranks

32 ranks

40 ranks

2 4 6 8 10 12 14

Dimensions

0

0.5

1

1.5

2

M
o

d
e
l
E

v
a
lu

a
ti

o
n

 S
e
q

u
e
n

c
e
s

104 Rastrigin

8 ranks

16 ranks

24 ranks

32 ranks

40 ranks

(a) (b)

Figure A.2: The number of model equation sequences at different dimensionalities for 1 to 40 ranks
when evaluating the Rastrigin function. Figure (b) shows only the parallelized runs.

2 4 6 8 10 12 14

Dimensions

0

0.5

1

1.5

2

M
o

d
e
l
E

v
a
lu

a
ti

o
n

 S
e
q

u
e
n

c
e
s

104 Rosenbrock

1 rank

8 ranks

16 ranks

24 ranks

32 ranks

40 ranks

2 4 6 8 10 12 14

Dimensions

0

500

1000

1500

2000

M
o

d
e
l
E

v
a
lu

a
ti

o
n

 S
e
q

u
e
n

c
e
s

Rosenbrock

8 ranks

16 ranks

24 ranks

32 ranks

40 ranks

(a) (b)

Figure A.3: The number of model equation sequences at different dimensionalities for 1 to 40 ranks
when evaluating the Rosenbrock function. Figure (b) shows only the parallelized runs.

2 4 6 8 10 12 14

Dimensions

0

500

1000

1500

2000

2500

M
o

d
e
l
E

v
a
lu

a
ti

o
n

 S
e
q

u
e
n

c
e
s

Sphere

1 rank

8 ranks

16 ranks

24 ranks

32 ranks

40 ranks

2 4 6 8 10 12 14

Dimensions

0

100

200

300

400

M
o

d
e
l
E

v
a
lu

a
ti

o
n

 S
e
q

u
e
n

c
e
s

Sphere

8 ranks

16 ranks

24 ranks

32 ranks

40 ranks

(a) (b)

Figure A.4: The number of model equation sequences at different dimensionalities for 1 to 40 ranks
when evaluating the Sphere function. Figure (b) shows only the parallelized runs.

iii

From the results, it can be seen that parallelizing does result in a large speed-up in the
sense of reducing the amount of time spent on model evaluations. In the case of 1 rank,
the number of model evaluation sequences are in the thousands, while the parallel im-
plementations only need some hundreds of MES. The number of MES decreases as the
amount of ranks are increased, but with diminishing returns. This is due to the fact that
increasing the amount of ranks only increases the population size in each generation. As
mentioned in Section 3.3, increasing the population size improves the accuracy of the al-
gorithm’s estimation of the search space around the current point, allowing the algorithm
to make better moves and converge faster. At large population sizes, the benefits of in-
creasing the size further lessens.

The 8-rank run displays a less consistent level of performance compared to the ones using
more ranks. This is due to the fact that 8 ranks are too few to consistently have a higher
amount of ranks than λseq . When going from 4 dimensions to 6, the population size is
increased from 8 to 16, (and consequently, the number of MES per generation is doubled)
as λseq goes from 8 to 9 (following Equation (3.2)). This is most noticeable on the Ackley
and Sphere functions: These functions are easily solved by low populations and they get
little benefit from the improved fidelity provided by higher populations, so they get a spike
in MES at the increase from 4 to 6 generations.

For the Rosenbrock and Rastrigin functions, the increase in population size is more
beneficial, as these are difficult objective functions to navigate, making the increased in-
formation from the bigger population sizes more useful. In fact, for the notoriously diffi-
cult Rastrigin function, the jump from 8 to 16 offspring is beneficial, with the performance
at 6 dimensions being disproportionately good (see Figure A.2). This makes sense as the
largest gap between λ and λseq is at 6 dimensions with 8 ranks.1

1The population used at 6 dimensions (when using 8 ranks) is 16, while the population that heuristically
should be enough, λseq , at this point is 9. The Rastrigin function is too difficult for λseq to be sufficient. For
this function, higher populations is better. At 6 dimensions, λ/λseq is disproportionately large compared to the
other dimensions. Thus the disproportionately good performance.

iv

Appendix B
The Results of a 10% Change of
Parameter Values

The results of running the delayed negative feedback model with perturbed parameters is
shown in Figures B.1 to B.7, comparing the model outputs to those of the correct param-
eters. The blue line corresponds to a 10% decrease in parameter value, and the red line
corresponds to a 10% increase.

v

Figure B.1: The model outputs with a 10% change in the value of k3. The circles denote the model
output of the correct parameters. The blue line corresponds to a decrease in parameter value, and the
red line corresponds to an increase.

Figure B.2: The model outputs with a 10% change in the value of k4. The circles denote the model
output of the correct parameters. The blue line corresponds to a decrease in parameter value, and the
red line corresponds to an increase.

vi

Figure B.3: The model outputs with a 10% change in the value of Kmk. The circles denote the
model output of the correct parameters. The blue line corresponds to a decrease in parameter value,
and the red line corresponds to an increase (the lines overlap).

Figure B.4: The model outputs with a 10% change in the value of Kmp. The circles denote the
model output of the correct parameters. The blue line corresponds to a decrease in parameter value,
and the red line corresponds to an increase (the lines overlap).

vii

Figure B.5: The model outputs with a 10% change in the value of S. The circles denote the model
output of the correct parameters. The blue line corresponds to a decrease in parameter value, and the
red line corresponds to an increase.

Figure B.6: The model outputs with a 10% change in the value of CT . The circles denote the model
output of the correct parameters. The blue line corresponds to a decrease in parameter value, and the
red line corresponds to an increase.

viii

Figure B.7: The model outputs with a 10% change in the value ofET . The circles denote the model
output of the correct parameters. The blue line corresponds to a decrease in parameter value, and the
red line corresponds to an increase (the lines overlap).

ix

x

Appendix C
Parallelized CMA-ES Code

function [solution, fitnessHist, solutionHist, runtime]=CMAES(initP, modelfct, my_rank, num_ranks, varargin)
% A parallel CMA-ES implementation intended for parameter estimation.
% Returns solution (struct of fitness and parameters of the best solution),
% the histories of the solutions and their corresponding fitnesses as well
% as the runtime of the algorithm. A workspace file is saved at each
% evaluation, for cases where the algorithm is unable to terminate
% (typically due to time constraints when running on computer clusters).

% The underlying functionality is taken from Hansen, N. "The CMA Evolution
% Strategy: A Tutorial". Termination criteria is taken from A. Auger and
% N. Hansen, "A restart CMA evolution strategy with increasing population
% size".

% The function takes the following inputs:
% initP: Vector containing initial guesses for parameters
% modelfct: A wrapper function that takes the parameters as input, runs the
% model and returns a fitness function (e.g. sum of squared error or
% similar).
% my_rank: MPI variable, containing the (integer) rank of the worker.
% num_ranks: MPI variable, containing the total amount of workers.

% Additional options:
% 'filename': Name of the saved workspace. NOTE: '.mat' is appended
% automatically. Defaults to CMAES_WS.
% 'stopfitness': The objective function value for which the method is
% considered converged. Defaults to 1e-10.
% 'adaptiveStep': True or false, to toggle the adaptive step method, which
% uses additional negative weights to shift the mean.
% 'adaptiveCov': True or false, to toggle the use of additional
% negative weights to adapt the covariance matrix. Recommended on.
% 'pmin' and 'pmax': The approximate bounds of the parameter space, used to
% calculate the initial step size. Can be on the form of vectors with
% individual values, or scalars. Will improve the performance/avoid
% local minima better with a good value. NOTE: Constraint handling is NOT
% included in this script as it is easier and more flexible to implement

xi

% in the wrapper function (modelfct). The given bounds are NOT
% constraints, but rather scale.
% 'nRestarts': Number of restarts. The population size increases for each
% restart. If a solution is found that gives a fitness value below
% 'stopfitness', the loops are terminated immediately. Defaults
% to 0 restarts, and is more useful for sequential versions of the CMAES
% method.
% 'popfactor': Factor with which the population increases each restart.
% Defaults to 2. Between 2 and 5 is good.

%% INITIALIZATION
inputs = inputParser; % Instance inputParser class for varargin
inputs.addParameter('filename','CMAES_WS',@(x) ischar(x) || isstring(x));
inputs.addParameter('stopfitness',1e-10,@(x) isnumeric(x)); % stop if fitness < stopfitness
inputs.addParameter('adaptiveStep',1,@(x) x == 0 || x == 1); % Toggle adaptive step
inputs.addParameter('adaptiveCov',1,@(x) x == 0 || x == 1); % Toggle adaptive cov
inputs.addParameter('pmin',NaN,@(x) isnumeric(x));
inputs.addParameter('pmax',NaN,@(x) isnumeric(x));
inputs.addParameter('nRestarts',0,@(x) isnumeric(x)); % Number of restarts
inputs.addParameter('popfactor',2,@(x) isnumeric(x) && x > 0); % Factor for

% population increase per restart
inputs.parse(varargin{:});

filename = inputs.Results.filename;
stopfitness = inputs.Results.stopfitness;
adaptiveStep = inputs.Results.adaptiveStep;
adaptiveCov = inputs.Results.adaptiveCov;
pmin = inputs.Results.pmin;
pmax = inputs.Results.pmax;
nRestarts = inputs.Results.nRestarts;
popfactor = inputs.Results.popfactor;

Master_rank = 0; % Master_rank is an MPI variable, but it is always 0,
% and can therefore be defined here instead of having
% to be used as an imput argument.

% Initialize solution struct
solution = struct;
for i = 1:nRestarts+1

solution(i).fitness = inf;
solution(i).params = zeros(length(initP),1);

end

% Initialize counters
restartcount = 0; % Number of restarts, given as output
restartNum = 0; % Internal count of restarts
totalEvals = 0; % Total number of evaluations over all restarts
p = zeros(length(initP),1);
fitness = inf; % Initializing fitness
runtime = 0; % Initializing runtime
totalRuntime = tic;
%% BEGIN RESTART LOOP
while restartNum <= nRestarts
restartflag = 0;

% INPUT PARAMETERS
N = length(initP); % Number of dimensions/parameters to estimate

xii

if isrow(initP) % initial parameter guess
xmean = initP';

else
xmean = initP;

end

% coordinate wise standard deviation (step-size)
if (pmin < pmax)

sigma = 0.3*mean(pmax - pmin);
else

sigma = 0.5; % Decent for search spaces of magnitude 10ˆ0 to 10ˆ1
end
alpha_cov = 2;

% STRATEGY PARAMETER SETTING: SELECTION
if num_ranks < 4+floor(3*log(N))

lambda = ceil((4+floor(3*log(N)))/num_ranks)*num_ranks ...% population size, offspring number

*popfactorˆrestartNum; % Increase population size each restart
else

lambda = num_ranks*popfactorˆrestartNum;
end

mu = floor(lambda/2);

wTmp = log((lambda+1)/2) - log(1:lambda); %Initial (un-normalized) weights

mueff = sum(wTmp(1:mu))ˆ2 / sum(wTmp(1:mu).ˆ2);%Effective selection mass
muNegeff = sum(wTmp(mu+1:lambda))ˆ2 / sum(wTmp(mu+1:lambda).ˆ2);

c1 = alpha_cov / ((N + 1.3)ˆ2 + mueff); %Learning rate for rank-one
%update of C

cmu = min([1 - c1, alpha_cov * (mueff - 2 + 1/mueff) / ...
((N + 2)ˆ2 + alpha_cov*mueff/2)]); %Learning rate for rank-mu

%update of C

alpha_mu = 1 + c1/cmu; %The alphas are multipliers
alpha_mu_eff = 1 + 2*muNegeff/(mueff + 2); %for scaling the negative
alpha_posDef = (1 - c1 - cmu)/(N*cmu); %weights

posWeights = (1/sum(wTmp(wTmp>0))) * wTmp(wTmp>0)';
negWeights = (min([alpha_mu, alpha_mu_eff, alpha_posDef]) /...

(abs(sum(wTmp(wTmp<0))))) * wTmp(wTmp<=0)';

switch adaptiveStep % Whether to use negative weights for adjusting mean or not
case 0

nMeanWeights = mu;
meanWeights = posWeights;

case 1
nMeanWeights = lambda;
meanWeights = [posWeights; negWeights./10];

end

switch adaptiveCov % Whether to use negative weights for adjusting C or not

xiii

case 0
nCovWeights = mu;
covWeights = posWeights;

case 1
nCovWeights = lambda; % The negative weights are defined in the

% generation loop
end

% STRATEGY PARAMETER SETTING: ADAPTATION
cc = (4+mueff/N) / (N+4 + 2*mueff/N); % time constant for cumulation for C
cs = (mueff+2)/(N+mueff+5); % t-const for cumulation for sigma control
damps = 1 + 2*max(0, sqrt((mueff-1)/(N+1))-1) + cs; % damping for sigma

% INITIALIZE DYNAMIC (INTERNAL) STRATEGY PARAMETERS AND CONSTANTS
pc = zeros(N,1); % evolution path for C
ps = zeros(N,1); % evolution path for sigma
B = eye(N); % B defines the coordinate system
D = eye(N); % diagonal matrix D defines the scaling
C = B*D*(B*D)'; % covariance matrix

% INITIALIZING STOPPING CRITERIA-RELATED VARIABLES AND ARRAYS
stopeval = 1000 * lambda; % maximum amount of evaluations. Will rarely be

%triggered as the other termination criteria
%will be triggered first.

tolfun = 1e-13; % lowest tolerance of range of objective function values
fitnessHist = []; % objective function value history
solutionHist = []; % solution history (unused, just interesting to have)
evaluationTimes = []; % Array of evaluation times. Also just interesting.
nGenHist = 10 + ceil(30*N/lambda); % number of generations to consider
tolX = 1e-12; % Lowest tolerance of search space
condNum = 1e14; % Maximum condition number in covariance matrix
bestfitness = inf;

eigeneval = 0;
chiN = Nˆ0.5*(1-1/(4*N)+1/(21*Nˆ2)); % expectation of ||N(0,I)||

counteval = 0;

for i = parsteps(1:num_ranks) % Initializing random seed
t=clock();
seed=t(6) * 1000 * my_rank;
rng(seed);

end

% First generation
arz = randn(N,lambda); % standard normally distributed vector
arx = xmean + sigma * (B*D * arz); % add mutation

%% GENERATION LOOP
while counteval < stopeval
% GENERATE AND EVALUATE OFFSPRING
% Resetting the variables for reduction() reasons
arfitness = zeros(1,lambda);
evaltimes = zeros(1,lambda);

for k = parsteps(1:lambda)

xiv

evaltimer = tic;
arfitness(k) = feval(modelfct, arx(:,k)); % evaluate model
evaltimes(k) = toc(evaltimer);

end

arfitness = reduction('+',arfitness);
arfitness = arfitness';

evaluationTimes(:,end+1) = reduction('+',evaltimes);
counteval = counteval+lambda;
totalEvals = totalEvals+lambda;

% SEQUENTIAL OPERATIONS
if my_rank == Master_rank % Master_rank

% Sort by fitness and compute weighted mean into xmean
[arfitness, arindex] = sort(arfitness); % minimization
zmean = arz(:,arindex(1:nMeanWeights))*meanWeights; % == Dˆ-1*B'*(xmean-xold)/sigma
xmean = xmean + sigma * (B*D * zmean); % recombination

% Cumulation: Update evolution paths
ps = (1-cs)*ps + (sqrt(cs*(2-cs)*mueff)) * (B * zmean);
hsig = norm(ps)/sqrt(1-(1-cs)ˆ(2*counteval/lambda))/chiN < 1.4+2/(N+1);
pc = (1-cc)*pc + hsig * sqrt(cc*(2-cc)*mueff) * (B*D*zmean);

if adaptiveCov == 1 % Rescaling vector lengths associated with negative weights
covWeights = [posWeights; ...

negWeights*N/norm(B*inv(D)*B'* ...
(B*D * arz(:,arindex(1:lambda))))ˆ2];

end

% Adapt covariance matrix C
C = (1-c1-cmu) * C ... % old matrix

+ c1 * (pc*pc' ... % plus rank one update
+ (1-hsig) * cc*(2-cc) * C) ... % minor correction
+ cmu ... % plus rank mu update

* (B*D*arz(:,arindex(1:nCovWeights))) ...

* diag(covWeights) * (B*D*arz(:,arindex(1:nCovWeights)))';

% Adapt step-size sigma
sigma = sigma * exp((cs/damps)*(norm(ps)/chiN - 1));

% Update B and D from C
if counteval - eigeneval > lambda/(c1+cmu)/N/10 % to achieve O(Nˆ2)

eigeneval = counteval;
C=triu(C)+triu(C,1)'; % enforce symmetry
[B,D] = eig(C); % eigen decomposition, B==normalized eigenvectors
D = diag(sqrt(diag(D))); % D contains standard deviations now

end

if arfitness(1) < solution(restartNum+1).fitness % Update best solution
solution(restartNum+1).fitness = arfitness(1);
solution(restartNum+1).params = arx(:, arindex(1));

end

% UPDATE FITNESS HISTORY

xv

fitnessHist(end+1) = arfitness(1); % fitness history
solutionHist(:,end+1) = arx(:,arindex(1)); % solution history (unused,

%just interesting to have)

% STOPPING/RESTARTING CRITERIA, from Auger & Hansen (2005)
nGen = counteval/lambda;
if nGen > nGenHist

if range(fitnessHist(end-nGenHist:end-1)) == 0 || ... % Zero range
isnan(range(fitnessHist(end-nGenHist:end-1))) % If all solutions are inf

restartflag = 1;
elseif range([fitnessHist(end-nGenHist:end-1), arfitness]) < tolfun

restartflag = 1; % Function value range too small
elseif all([sigma*abs(pc), sigma*sqrt(diag(C))]) < tolX

restartflag = 1; % Search space too small
elseif xmean == xmean + 0.1*sigma*B(:,1+floor(mod(nGen,N))) ...

*D(1+floor(mod(nGen,N)),1+floor(mod(nGen,N)))
restartflag = 1; % Zero movement in a principal direction

elseif xmean == xmean + 0.2*sigma*sqrt(diag(C))
restartflag = 1; % Zero movent in all principal directions?

% I don't know how this criterion will
% ever be satisfied without already
% satisfying the prior criterion. Left in
% because it's in Auger & Hansen (2005)

elseif cond(C) > condNum
restartflag = 1; % Condition number too large

end
end

% Escape flat fitness
if arfitness(1) == arfitness(ceil(0.7*lambda))

sigma = sigma * exp(0.2+cs/damps);
end
bestfitness = arfitness(1);

arz = randn(N,lambda); % standard normally distributed vector
arx = xmean + sigma * (B*D * arz); % add mutation

save([filename,'.mat']); % Save workspace

end % if, sequential code on master rank

% Spread relevant variables to all ranks
bestfitness = NMPI_Bcast(bestfitness,1,Master_rank);
restartflag = NMPI_Bcast(restartflag,1,Master_rank);

arx1d = reshape(arx, N*lambda, 1); % Convert to 1D array
arx1d = NMPI_Bcast(arx1d,N*lambda,Master_rank);
arx = reshape(arx1d, [N,lambda]);

% Break, if fitness is good enough, or termination criteria is fulfilled
if bestfitness <= stopfitness

restartNum = nRestarts + 1; % End restart loop
break;

elseif restartflag == 1
restartcount = restartcount + 1;

xvi

restartNum = restartNum + 1; % End generaton loop, allow for restarts
break;

end

end % while, generation loop

end % while, restart loop

runtime = toc(totalRuntime);
end

xvii

xviii

Appendix D
Multistart Code

D.1 CMAES multistart.m
This code utilizes both the intensification and the multistart functionalities. The outputs
of the function are irrelevant, as the method will rarely have the time to terminate, and the
workspaces that are saved every generation is analyzed directly instead.

function [p, fitness, details]=CMAES_multistart(initP, modelfct, ...
my_rank, batch_size, batch_number, initSigma, varargin)

% A multistart CMA-ES implementation intended for parameter estimation.
% Returns solution (parameters), fitness value for solution and runtime
% (given in number of function evaluations).

% The underlying functionality is taken from Hansen, N. "The CMA Evolution
% Strategy: A Tutorial". Termination criteria is taken from A. Auger and
% N. Hansen, "A restart CMA evolution strategy with increasing population
% size".

% The function takes the following inputs:
% initP: Vector containing initial guesses for parameters
% modelfct: A wrapper function that takes the parameters as input, runs the
% model and returns a fitness function (e.g. sum of squared error or
% similar).
% my_rank: MPI variable, containing the (integer) rank of the worker.
% batch_size: Number of ranks in the batch
% batch_number: Which batch this rank is part of
% initSigma: Initial step size

% Additional options:
% 'filename': Name of the saved workspace. NOTE: '.mat' is appended
% automatically. Defaults to CMAES_WS.
% 'stopfitness': The objective function value for which the method is
% considered converged. Defaults to 1e-10.
% 'adaptiveStep': True or false, to toggle the adaptive step method, which
% uses additional negative weights to shift the mean.
% 'adaptiveCov': True or false, to toggle the use of additional

xix

% negative weights to adapt the covariance matrix. Recommended on.
% 'pmin' and 'pmax': The approximate bounds of the parameter space, used to
% calculate the initial step size. Can be on the form of vectors with
% individual values, or scalars. Will improve the performance/avoid
% local minima better with a good value. NOTE: Constraint handling is NOT
% included in this script as it is easier and more flexible to implement
% in the wrapper function (modelfct). The given bounds are NOT
% constraints, but rather scale.
% 'nRestarts': Number of restarts. The population size increases for each
% restart. If a solution is found that gives a fitness value below
% 'stopfitness', the loops are terminated immediately. Defaults
% to 0 restarts, and is more useful for sequential versions of the CMAES
% method.
% 'popfactor': Factor with which the population increases each restart.
% Defaults to 2. Between 2 and 5 is good.

%% INITIALIZATION
inputs = inputParser; % Instance inputParser class for varargin
inputs.addParameter('filename','CMAES_WS',@(x) ischar(x) || isstring(x));
inputs.addParameter('stopfitness',1e-10,@(x) isnumeric(x)); % stop if fitness < stopfitness
inputs.addParameter('adaptiveStep',1,@(x) x == 0 || x == 1); % Toggle adaptive step
inputs.addParameter('adaptiveCov',1,@(x) x == 0 || x == 1); % Toggle adaptive cov
inputs.addParameter('pmin',NaN,@(x) isnumeric(x));
inputs.addParameter('pmax',NaN,@(x) isnumeric(x));
inputs.addParameter('nRestarts',0,@(x) isnumeric(x)); % Number of restarts
inputs.addParameter('popfactor',2,@(x) isnumeric(x) && x > 0); % Factor for

% population increase per restart
inputs.parse(varargin{:});

filename = inputs.Results.filename;
stopfitness = inputs.Results.stopfitness;
adaptiveStep = inputs.Results.adaptiveStep;
adaptiveCov = inputs.Results.adaptiveCov;
pmin = inputs.Results.pmin;
pmax = inputs.Results.pmax;
nRestarts = inputs.Results.nRestarts;
popfactor = inputs.Results.popfactor;

% Initialize solution struct
solution = struct;
for i = 1:nRestarts+1

solution(i).fitness = inf;
solution(i).params = zeros(length(initP),1);

end

% Initialize counters
restartcount = 0; % Number of restarts, given as output
restartNum = 0; % Internal count of restarts
totalEvals = 0; % Total number of evaluations over all restarts
p = zeros(length(initP),1);
fitness = inf; % Initializing fitness
runtime = 0; % Initializing runtime
tic
%% BEGIN RESTART LOOP
while restartNum <= nRestarts
restartflag = 0;
intensificationCounter = 0;

xx

% INPUT PARAMETERS
N = length(initP); % Number of dimensions/parameters to estimate
if isrow(initP) % initial parameter guess

xmean = initP';
else

xmean = initP;
end

% coordinate wise standard deviation (step-size)
sigma = initSigma;
alpha_cov = 2;

% STRATEGY PARAMETER SETTING: SELECTION
if batch_size < 4+floor(3*log(N))

lambda = ceil((4+floor(3*log(N)))/batch_size)*batch_size ...% population size, offspring number

*popfactorˆrestartNum; % Increase population size each restart
else

lambda = batch_size*popfactorˆrestartNum;
end

mu = floor(lambda/2);

wTmp = log((lambda+1)/2) - log(1:lambda); %Initial (un-normalized) weights

mueff = sum(wTmp(1:mu))ˆ2 / sum(wTmp(1:mu).ˆ2);%Effective selection mass
muNegeff = sum(wTmp(mu+1:lambda))ˆ2 / sum(wTmp(mu+1:lambda).ˆ2);

c1 = alpha_cov / ((N + 1.3)ˆ2 + mueff); %Learning rate for rank-one
%update of C

cmu = min([1 - c1, alpha_cov * (mueff - 2 + 1/mueff) / ...
((N + 2)ˆ2 + alpha_cov*mueff/2)]); %Learning rate for rank-mu

%update of C

alpha_mu = 1 + c1/cmu; %The alphas are multipliers
alpha_mu_eff = 1 + 2*muNegeff/(mueff + 2); %for scaling the negative
alpha_posDef = (1 - c1 - cmu)/(N*cmu); %weights

posWeights = (1/sum(wTmp(wTmp>0))) * wTmp(wTmp>0)';
negWeights = (min([alpha_mu, alpha_mu_eff, alpha_posDef]) /...

(abs(sum(wTmp(wTmp<0))))) * wTmp(wTmp<=0)';

switch adaptiveStep % Whether to use negative weights for adjusting mean or not
case 0

nMeanWeights = mu;
meanWeights = posWeights;

case 1
nMeanWeights = lambda;
meanWeights = [posWeights; negWeights./10];

end

switch adaptiveCov % Whether to use negative weights for adjusting C or not
case 0

xxi

nCovWeights = mu;
covWeights = posWeights;

case 1
nCovWeights = lambda; % The negative weights are defined in the

% generation loop
end

% STRATEGY PARAMETER SETTING: ADAPTATION
cc = (4+mueff/N) / (N+4 + 2*mueff/N); % time constant for cumulation for C
cs = (mueff+2)/(N+mueff+5); % t-const for cumulation for sigma control
damps = 1 + 2*max(0, sqrt((mueff-1)/(N+1))-1) + cs; % damping for sigma

% INITIALIZE DYNAMIC (INTERNAL) STRATEGY PARAMETERS AND CONSTANTS
pc = zeros(N,1); % evolution path for C
ps = zeros(N,1); % evolution path for sigma
B = eye(N); % B defines the coordinate system
D = eye(N); % diagonal matrix D defines the scaling
C = B*D*(B*D)'; % covariance matrix

% INITIALIZING STOPPING CRITERIA
stopeval = 300*32; % Should not be necessary, but an alternative is

% 1000*Nˆ2*popfactorˆrestartNum;
tolfun = 1e-13; % lowest tolerance of range of objective function values
fitnessHist = []; % objective function value history
solutionHist = []; % solution history (unused, just interesting to have)
evaluationTimes = []; % Array of evaluation times. Also just interesting.
nGenHist = 10 + ceil(30*N/lambda); % number of generations to consider
tolX = 1e-12;
condNum = 1e14; % Maximum condition number in covariance matrix
bestfitness = inf;
intensificationGeneration = [0]; % Keeping track of when intensification

% happens, for later analysis

eigeneval = 0;
chiN = Nˆ0.5*(1-1/(4*N)+1/(21*Nˆ2)); % expectation of ||N(0,I)||

counteval = 0;

for i = myparsteps(1:lambda,my_rank,batch_size,batch_number) % Initializing seed
t=clock();

seed=t(6) * 1000 * my_rank; % Seed with the second part of the clock array.

rng(seed);
end

%% GENERATION LOOP
while counteval < stopeval
% GENERATE AND EVALUATE OFFSPRING
% Resetting the variables for reduction() reasons
arz = zeros(N,lambda);
arx = arz;
arfitness = zeros(1,lambda);
evaltimes = zeros(1,lambda);

for k = myparsteps(1:lambda,my_rank,batch_size,batch_number)

xxii

evaltimer = tic;
arz(:,k) = randn(N,1); % standard normally distributed vector
arx(:,k) = xmean + sigma * (B*D * arz(:,k)); % add mutation

arfitness(k) = feval(modelfct, arx(:,k), intensificationCounter); % evaluate model
evaltimes(k) = toc(evaltimer);

end
arfitness = myreduction(batch_size,batch_number,arfitness);
arfitness = arfitness';

arz1d=reshape(arz , N*lambda , 1); % reshape to 1d array
arz1d=myreduction (batch_size,batch_number, arz1d); % reduce all elements
arz = reshape(arz1d,[N,lambda]); % shape back to 2d array

arx1d=reshape(arx , N*lambda , 1); % reshape to 1d array:
arx1d=myreduction (batch_size,batch_number,arx1d); % reduce all elements
arx = reshape(arx1d,[N,lambda]); % shape back to 2d array

evaluationTimes(:,end+1) = myreduction(batch_size,batch_number,evaltimes);

counteval = counteval+lambda;
totalEvals = totalEvals+lambda;

% SEQUENTIAL OPERATIONS
if my_rank == batch_size*batch_number % Master_rank

% Sort by fitness and compute weighted mean into xmean
[arfitness, arindex] = sort(arfitness); % minimization
zmean = arz(:,arindex(1:nMeanWeights))*meanWeights; % == Dˆ-1*B'*(xmean-xold)/sigma
xmean = xmean + sigma * (B*D * zmean); % recombination

% Cumulation: Update evolution paths
ps = (1-cs)*ps + (sqrt(cs*(2-cs)*mueff)) * (B * zmean);
hsig = norm(ps)/sqrt(1-(1-cs)ˆ(2*counteval/lambda))/chiN < 1.4+2/(N+1);
pc = (1-cc)*pc + hsig * sqrt(cc*(2-cc)*mueff) * (B*D*zmean);

if adaptiveCov == 1 % Rescaling vector lengths associated with negative weights
covWeights = [posWeights; ...

negWeights*N/norm(B*inv(D)*B'* ...
(B*D * arz(:,arindex(1:lambda))))ˆ2];

end

% Adapt covariance matrix C
C = (1-c1-cmu) * C ... % old matrix

+ c1 * (pc*pc' ... % plus rank one update
+ (1-hsig) * cc*(2-cc) * C) ... % minor correction
+ cmu ... % plus rank mu update

* (B*D*arz(:,arindex(1:nCovWeights))) ...

* diag(covWeights) * (B*D*arz(:,arindex(1:nCovWeights)))';

% Adapt step-size sigma
sigma = sigma * exp((cs/damps)*(norm(ps)/chiN - 1));

% Update B and D from C
if counteval - eigeneval > lambda/(c1+cmu)/N/10 % to achieve O(Nˆ2)

eigeneval = counteval;

xxiii

C=triu(C)+triu(C,1)'; % enforce symmetry
[B,D] = eig(C); % eigen decomposition, B==normalized eigenvectors
D = diag(sqrt(diag(D))); % D contains standard deviations now

end

if arfitness(1) < solution(restartNum+1).fitness % Update best solution
solution(restartNum+1).fitness = arfitness(1);
solution(restartNum+1).params = arx(:, arindex(1));

end

% UPDATE FITNESS HISTORY
fitnessHist(end+1) = arfitness(1); % fitness history
solutionHist(:,end+1) = arx(:,arindex(1)); % solution history

%(unused, just interesting to have)

% STOPPING/RESTARTING CRITERIA
nGen = counteval/lambda;
if nGen > nGenHist

if range(fitnessHist(end-nGenHist+1:end)) == 0 || ...
isnan(range(fitnessHist(end-nGenHist+1:end))) % If all solutions are inf

restartflag = 1;
elseif range([fitnessHist(end-nGenHist+1:end), arfitness]) < tolfun

restartflag = 1;
elseif all([sigma*abs(pc), sigma*sqrt(diag(C))]) < tolX

restartflag = 1;
elseif xmean == xmean + 0.1*sigma*B(:,1+floor(mod(nGen,N))) ...

*D(1+floor(mod(nGen,N)),1+floor(mod(nGen,N)))
restartflag = 1;

elseif xmean == xmean + 0.2*sigma*sqrt(diag(C))
restartflag = 1;

elseif cond(C) > condNum
restartflag = 1;

end
end

% Intensification: Following good coding practice, this is taken from an
% earlier script for model fitting: A first order regression is
% performed on the fitness history, and if the slope is insignificant
% according to a t-test, the search is intensified. The computational
% cost of doing this operation every generation is negligible compared
% to the cost of regular model evaluations.

if (intensificationGeneration(end) + floor(1.5*nGenHist) < nGen) && ...
(˜any(fitnessHist(end-floor(1.5*nGenHist)+1:end) == inf))

y = fitnessHist(end-floor(1.5*nGenHist)+1:end)';
X = [ones(floor(1.5*nGenHist),1) (1:floor(1.5*nGenHist))'];
[n_X,p_X] = size(X);
b = X\y;
e = X*b - y;
SSE = e'*e; % Sum of squared errors
DOF_SSE = n_X-p_X; % Degrees of freedom for sum of squared errors
MSE = SSE/DOF_SSE; % Mean Square Error
covb = MSE * inv(X'*X); % Covariance matrix for b

ttest = tinv(0.975,DOF_SSE);

xxiv

b_u = b + sqrt(diag(covb))*ttest; % Upper confidence interval
if b_u(2) > 0

intensificationCounter = intensificationCounter + 1;
intensificationGeneration(intensificationCounter+1) = nGen;

end
end

% Escape flat fitness
if arfitness(1) == arfitness(ceil(0.7*lambda))

sigma = sigma * exp(0.2+cs/damps);
end
bestfitness = arfitness(1);

save([filename,'.mat']);

end % if, sequential code on master rank

% Spread relevant variables to all ranks

xmean = myspread(batch_size, batch_number, xmean);
sigma = myspread(batch_size, batch_number, sigma);
bestfitness = myspread(batch_size, batch_number, bestfitness);
restartflag = myspread(batch_size, batch_number, restartflag);
intensificationCounter = myspread(batch_size, batch_number, intensificationCounter);

B1d = reshape(B, N*N, 1); % Convert to 1D array
B1d = myspread(batch_size, batch_number, B1d);
B = reshape(B1d, [N,N]);

D1d = reshape(D, N*N, 1); % Convert to 1D array
D1d = myspread(batch_size, batch_number, D1d);
D = reshape(D1d, [N,N]);

% Break, if fitness is good enough
if bestfitness <= stopfitness

restartNum = nRestarts + 1; % End restart loop
break;

elseif restartflag == 1
restartcount = restartcount + 1;
restartNum = restartNum + 1;
break;

end

end % while, generation loop

end % while, restart loop

runtime = toc;
%% End, manage outputs

if temp_my_rank == temp_master_rank
[˜, ind] = sort([solution.fitness]); % Find the best solution

fitness = solution(ind(1)).fitness; % Return the best fitness value
p = solution(ind(1)).params; % Return the best solution

xxv

end % if, master rank
fitness = myspread(batch_size, batch_number, fitness);
p = myspread(batch_size, batch_number, p);

details.runtime = runtime; % Return runtime
details.evals = totalEvals; % Return total evaluations
details.restarts = restartcount;% Return total restarts
details.nRanks = batch_size; % Return number of ranks
details.parEvaluations = totalEvals/batch_size; % Return number of parallel

% evaluation "chunks"

end

D.2 myparsteps.m

function psteps=myparsteps(isteps,my_rank,batch_size,batch_number)

% Edited by Haakon Eng Holck in 2018, for use in double parallel for
% loops: MPI communication restricted to a subgroup of MPI_COMM_WORLD.
% Allows for independent subgroups ("batches") of ranks to perform parsteps
% (e.g. limiting a batch consisting of ranks 8-15 to perform an individual
% parallel loop)

istart=isteps(1);
iend=isteps(length(isteps));
lsteps=((iend-istart+1)/batch_size);
if lsteps<1.3

lsteps=1;
else

lsteps=ceil(lsteps);
end

if my_rank==batch_number*batch_size
pstart=istart;
pend=lsteps;

else
pstart=(my_rank-batch_number*batch_size)*lsteps+1;
if (my_rank-batch_number*batch_size)==batch_size-1

pend=iend;
else

pend=((my_rank-batch_number*batch_size)+1)*lsteps;
end

end %if
if pstart>iend||pend>iend

pstart=1;
pend=0;

end
psteps=pstart:pend;

end%function

%%

xxvi

% NMPI
% John Floan
% NTNU - IT
%%
% Copyright 2015 NORWEGIAN UNIVERISTY OF SCIENCE AND TECHNOLOGY
%
% IN NO EVENT SHALL MIT BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
% SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
% THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF MIT HAS BEEN ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
%
% NTNU SPECIFICALLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTIES INCLUDING,
% BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
% FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
%
% THIS SOFTWARE IS PROVIDED "AS IS," NTNU HAS NO OBLIGATION TO PROVIDE
% MAINTENANCE, SUPPORT, UPDATE, ENHANCEMENTS, OR MODIFICATIONS.
%

D.3 myreduction.m

function array=myreduction(batch_size, batch_number, inarray)
% :Reduction function for parallel
% Reduce the variable(s) varargin with operator operatorin
% Operators: '+','*','MAX','MIN'
% NTNU John Floan.
% Build on NMPI.
% Copyright 2015 Norwegian University of Science and Technology

% Edited by Haakon Eng Holck in 2018, for use in double parallel for
% loops: MPI communication restricted to a subgroup of MPI_COMM_WORLD.
% Now only uses '+' operation, as the intended purpose is to collect
% information saved in array cells together in a single array on the
% (functional) master rank.
% Uses point-to-point communication which is slightly inefficient, but
% good enough for the purpose of this function.

global my_rank

nvar=length(inarray);

if nvar==1
array=inarray;
temparray = 0;

else
array=zeros(nvar,1);
temparray = array;
for ii=1:nvar

array(ii)=inarray(ii);
end

end
for k = 1:batch_size-1

if my_rank == batch_size*batch_number+k
NMPI_Send(array,nvar,batch_size*batch_number);

elseif my_rank == batch_size*batch_number

xxvii

temparray = NMPI_Recv(nvar,batch_size*batch_number+k);
array = array+temparray;

end
end

end

%%
% NMPI
% John Floan
% NTNU - IT
%%
% Copyright 2015 NORWEGIAN UNIVERISTY OF SCIENCE AND TECHNOLOGY
%
% IN NO EVENT SHALL MIT BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
% SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
% THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF MIT HAS BEEN ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
%
% NTNU SPECIFICALLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTIES INCLUDING,
% BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
% FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
%
% THIS SOFTWARE IS PROVIDED "AS IS," NTNU HAS NO OBLIGATION TO PROVIDE
% MAINTENANCE, SUPPORT, UPDATE, ENHANCEMENTS, OR MODIFICATIONS.

D.4 myspread.m

function array=myspread(batch_size, batch_number, inarray)

% Edited by Haakon Eng Holck in 2018, for use in double parallel for
% loops: MPI communication restricted to a subgroup of MPI_COMM_WORLD.
% Spreads array to all ranks in same subgroup ("batch").
% Uses point-to-point communication which is slightly inefficient, but
% good enough for the purpose of this function.

global my_rank

nvar=length(inarray);

if nvar==1
array=inarray;
temparray = 0;

else
array=zeros(nvar,1);
temparray = array;
for ii=1:nvar

array(ii)=inarray(ii);
end

end
for k = 1:batch_size-1

if my_rank == batch_size*batch_number
NMPI_Send(array,nvar,batch_size*batch_number+k);

elseif my_rank == batch_size*batch_number+k
array = NMPI_Recv(nvar,batch_size*batch_number);

end

xxviii

end
end

%array=NMPI_Bcast(array,length(array),Master_rank);%,my_rank);
% if nvar==1
% varargout{1}=outarray;
% else
%
% for ii=1:nvar
% varargout{ii}=outarray(ii);
% end
% end
%
% end

%%
% NMPI
% John Floan
% NTNU - IT
%%
% Copyright 2015 NORWEGIAN UNIVERISTY OF SCIENCE AND TECHNOLOGY
%
% IN NO EVENT SHALL NTNU BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
% SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
% THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF NTNU HAS BEEN ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
%
% NTNU SPECIFICALLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTIES INCLUDING,
% BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
% FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
%
% THIS SOFTWARE IS PROVIDED "AS IS," NTNU HAS NO OBLIGATION TO PROVIDE
% MAINTENANCE, SUPPORT, UPDATE, ENHANCEMENTS, OR MODIFICATIONS.

xxix

xxx

Appendix E
Results from the Multistart Run

Table E.1 shows the parameters and corresponding fitness for each of the batches in the
multistart run on the RNAP model. The fitnesses are unnaturally low, as they are the
fitnesses of the best (and therefore, the “luckiest”) individual in the last generation. Eval-
uating the same solutions again is likely to lead to slightly higher values.

xxxi

Table E.1: The parameters and corresponding fitnesses returned by the different batches in the
multistart run. Batch 26 did not manage to find a solution that did not break a constraint.

Batch kTL,A kTL,ω kDNA kC kS Fitness

1 1.0334 1.3735 2.8047 2.4268 1.1668 0.1674
2 2.1000 0.0427 2.5683 1.3702 0.0546 0.3060
3 0.4927 0.9304 1.7706 0.4743 0.5960 0.3959
4 0.7300 1.3300 2.6622 1.8589 1.3494 0.1626
5 1.2235 2.0414 2.9678 1.2797 1.3558 0.1597
6 1.5388 1.5330 1.9517 1.8740 0.1753 0.6068
7 1.6161 1.2867 2.3408 1.6909 0.3582 0.6066
8 0.6223 0.1822 2.2853 2.1230 0.8589 0.1728
9 1.6508 1.8113 2.7695 1.4047 0.6228 0.3965
10 2.5006 0.6539 2.2531 1.7968 0.0434 0.5670
11 1.9835 0.6712 2.6028 1.6712 0.2073 0.6123
12 0.2860 0.6269 2.3178 0.3348 1.3990 0.1663
13 1.1561 1.7927 2.4078 2.7313 0.7673 0.1699
14 2.5875 0.8870 2.8338 2.5556 0.1446 0.6128
15 0.8368 0.1015 2.7050 0.3075 0.9906 0.1606
16 1.7972 0.1154 2.4145 2.3881 0.1267 0.2995
17 0.9521 1.2744 2.3736 0.2525 0.7664 0.3900
18 0.3036 0.6943 0.9976 1.2618 0.2730 0.8150
19 2.0519 1.8913 2.7138 0.6303 0.3565 0.6152
20 2.2349 1.7247 2.5760 1.9084 0.2037 0.6075
21 0.8022 0.3223 2.2295 0.9583 0.6294 0.4287
22 0.6139 0.4889 1.6458 2.3352 0.3301 0.6072
23 1.9416 0.1914 2.7904 1.5682 0.2334 0.4194
24 0.7450 0.2937 2.7962 0.3756 1.2265 0.1529
25 2.2231 0.4386 1.9869 1.4197 0.0447 0.5292
26 1.5596 0.8310 2.5309 2.1881 1.6911 N/A
27 2.2879 1.7330 2.7464 2.3769 0.2195 0.6057
28 1.4068 1.7815 2.9596 1.3092 1.0780 0.1646
29 1.0609 1.3466 2.8764 0.9752 1.2045 0.1782
30 1.7236 0.5930 2.2970 1.1815 0.1734 0.6116
31 0.8889 0.6109 2.5931 0.8995 0.8727 0.3824
32 1.3678 1.4658 2.8599 0.3311 0.8752 0.3783

xxxii

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Problem Description
	Framework
	Structure of the Thesis

	Global Optimization
	The Covariance Matrix Adaptation Evolution Strategy
	Description

	Choosing Initial Mutation Strength
	Negative Recombination Weights for Step Adaptation
	Negative Recombination Weights for Covariance Adaptation
	Termination Criteria
	Boundary and Constraint Handling

	Parallelization
	Structure of the Parallel Program
	MPI Functions
	Choice of Population Size

	Testing on a Delayed Negative Feedback Model
	Experimental Conditions
	Results
	Speedup
	Parameter Estimation

	Discussion
	The Speedup Test
	The Parameter Estimation

	Testing on an RNAP Hybrid Model
	The Model
	Constraints
	First Failure Mode: No Productive Yield
	Second Failure Mode: 100% Productive Yield
	Adding an Upper Bound

	Intensification: Improving the Accuracy of the Solution
	The Multistart Implementation
	Dividing Into Batches
	Intra-Batch MPI Communication
	Selecting Initial Points

	Conditions for Parameter Estimation
	Results
	Single CMA-ES Instance
	CMA-ES Multistart

	Discussion

	Further Discussion
	Conclusion
	Further Work

	Bibliography
	Appendix
	Effects of Parallelization
	The Results of a 10% Change of Parameter Values
	Parallelized CMA-ES Code
	Multistart Code
	CMAES_multistart.m
	myparsteps.m
	myreduction.m
	myspread.m

	Results from the Multistart Run

