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In many modern embedded systems the available resources, e.g., CPU clock cycles, memory and energy,

are consumed non-uniformly while the system is under exploitation. Typically, the resource requirements

in the system change with different input data that the system process. This data trigger different parts of

the embedded software resulting in different operations executed that require different hardware platform

resources to be used. A significant research effort has been dedicated to develop mechanisms for run-time

resource management, e.g. branch prediction for pipelined processors, prefetching of data frommainmemory

to cache, and scenario based designmethodologies. All these techniques rely on the availability of information

at run-time about the upcoming changes in the resource requirements. In this paper we propose a method

for detection of upcoming resource changes based on preliminary calculation of software variables that have

the most dynamic impact on the resource requirements in the system. We apply the method on a modified

real-life biomedical algorithm with real input data and estimate a 40% energy reduction as compared to static

DVFS scheduling. Comparing to dynamic dvfs scheduling, an 18% energy reduction is demonstrated.
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1 INTRODUCTION

Modern embedded systems are designedwith stringent resource constraints and growing complex-

ity. Tomeet the design goals advanced designmethodologies are needed to keep the resource usage

under control. This becomes particularly challenging when dynamic run-time behavior renders

standard static design time optimization, like static schedulers and timing analysis, insufficient.

The designer can then either use a worst case approach, which will typically result in resource

waste and extended computation time, or try to estimate upcoming system requirements to sched-

ule tasks and resources in a more optimized way.
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Branch prediction is an example of a technique that tries to exploit the resources of a pipelined

processor architecture as effectively as possible. Speculatively following one of the branches in

an if-then-else structure, it is possible to continue pipeline execution even if the required branch

test result is still not available from later pipeline stages. If it turns out that the branch selection

is wrong, the speculatively executed instructions are discarded (wasted) and the pipeline restarts

along the correct branch, introducing an added delay. The branch prediction can be done in several

ways, e.g., through use of statistic knowledge about the application or recent dynamic behavior

collected in a history table. In this case, estimation of upcoming system requirements is based

on prediction. A prediction is inherently inaccurate and incurs a fluctuating waste of time and

resources that is unknown to the scheduler in advance.

Another situation where prediction of future system behavior is applied is in data prefetching.

Data is moved from background memory to cache based on an assumption that it will be needed

in the near future. Depending on the complexity of the access patterns, it is easy or difficult to

predict the upcoming data needs. Incorrect predictions incur unnecessary data transfers, costly

both in time and energy, and may even end up evicting useful data from the cache reducing the

hit ratio.

As part of the system software, scenarios at different abstraction levels can be used for efficient

scheduling and resource utilization. Traditional use-case scenarios and work load scenarios are

extracted by analyzing the different usage episodes of the system in terms of user actions and

the system operations. The system is adapted to perform required functionality of the upcoming

working situation. Compared with these high-level scenarios that do not take actual resource re-

quirements into account when adapting the platform, the system scenarios design methodology

allows run-time management of system resources based on a set of system scenarios specified

at design time [8]. System scenarios group application execution patterns with similar resource

requirements. These patterns are found by profiling the application on the target platform and

observing the variables in the application code having the most impact on the resource costs. At

run-time, these variables, that we will call parameters, are monitored and used to identify the ac-

tive scenario, adapting the platform if a scenario switch is needed. The existing approaches for

estimation of parameter values are either based on statistical methods [8] that can lead to missed

deadlines or assume that parameter values are known at the beginning of the task graph [8] [10],

which is only applicable to a limited number of applications.

Another field that can benefit from upfront estimation of resource requirements is energy-aware

online scheduling for real-time embedded systems [1]. These scheduling algorithms perform on-

the-fly scheduling of application tasks that guarantees that the application finishes within a dead-

line and at the same time dynamically control system’s power management mechanisms to re-

duce power consumption. Dynamic Voltage and Frequency Scaling (DVFS) is a widely used power

management mechanism in many modern embedded systems. DVFS-based online scheduling al-

gorithms exploit dynamic slack, which represents the unused time that becomes available when

tasks complete earlier than the expected worst case execution time. If the information about the

execution time of tasks (i.e. future dynamic slack) is available upfront, the algorithms can adjust

power earlier and reduce number of switches. However, to be applicable in hard real-time systems,

where no deadline misses are allowed, the estimation cannot use probabilistic approach. One idea

could be to monitor application variables with most impact on the execution time of the tasks, i.e.

parameters, but in the general case their values are not known before the task starts.

In this paper we propose a technique for precomputation of data-dependent parameters at run-

time. A precomputation code is added to the application at an early point and provides high ac-

curacy upfront information on changing resources requirements to run-time scheduler. The tech-

nique is applicable in hard-real time systems, but requires that the system supports communication

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article . Publication date: March 2018.
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ALGORITHM 1: Example code

Input: d , dynamic data

1 ...

2 while i < 1000 do

3 if e(i,d) then
4 A ; // 100 clock cycles

5 end

6 else

7 B ; // 20 clock cycles

8 end

9 end

between the application and the run-time scheduler. It also incurs an overhead that depends on the

application and the input data, but we show that for a real practical case the gains from early and

accurate detection of upcoming resource requirements outweighs the precomputation overhead.

The paper is organized as follows. Section 2 demonstrates the motivation for this work. The

related research is reviewed in Section 3. Section 4 describes in detail the proposed method. The

experimental results are presented in Section 5 and discussed in Section 6. Finally, Section 7 con-

cludes the paper.

2 MOTIVATIONAL EXAMPLE

Consider a small example code in Algorithm 1. The application contains a loop repeating 1000

times including a conditional statement e(i,d) that depends on an input value d .When e(i,d) is

true, code block A is executed, which takes 100 clock cycles. Otherwise, code block B is executed

taking 20 clock cycles. Let s be the total number of clock cycles it takes to evaluate the if-else

clause and the e(i,d) statement. The check required for one execution of the while-loop is also

included in s . We assume that the input value d is such that A executes 50% of the time and B

executes the remaining 50% of the time. Total execution time (tET ) to run the loop is calculated to

be: tET = 1000 · s + 500 · 100 + 500 · 20 = 1000 · s + 60000 clock cycles.

Since the condition depends on the input, which is not known before the execution of the code,

the system scheduler must assume the worst case where the blockA runs all 1000 times. The worst

case execution time (tWCET ) is then given by: tWCET = 1000 · s + 100000 clock cycles. Thus, the

system scheduler will assign tWCET to this job resulting in 40000 clock cycles overestimation com-

pared to the actual execution. The classical scheduling and timing analysis tools use this approach

to estimate required clock cycles, where only static code analysis is performed. Modern run-time

scheduling algorithms make use of execution time slacks: when a task has finished before its dead-

line, the slack is used to schedule an earlier execution of the following tasks. This avoids the waste

of clock cycles, but the overestimation hinders optimization of energy consumption. Manymodern

embedded processors implement several power-frequency modes (DVFS) that can be used at run-

time to reduce energy in case of lower load. Accurate upfront estimation of required clock cycles

is crucial for the efficiency of DVFS-based methods. An overestimation means that the processor

cannot be switched to low-power mode before the execution completes, so less energy is saved.

An underestimation means that the processor is switched to a slower mode than required which

will cause deadline misses, not acceptable in hard real-time systems.

The solution to this problem can be to precalculate the required clock cycles before the data-

dependent loop. If we copy the loop structure with the condition and place it as early as possible

before the loop starts as shown in Algorithm 2, the number of times each branch runs in the loop

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article . Publication date: March 2018.
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ALGORITHM 2: Example code with precomputation

Input: d , dynamic data

// Precomputing c - number of runs of code block A:

1 int c = 0 while i < 1000 do

2 if e(i,d) then
3 c++ ; // 1 clock cycle

4 end

5 end

// Original data-dependent loop:

6 while i < 1000 do

7 if e(i,d) then
8 A ; // 100 clock cycles

9 end

10 else

11 B ; // 20 clock cycles

12 end

13 end

can be calculated in advance based on the available input valued . The scheduler should allocate for

this precomputation 1000 · s + 1000 clock cycles, so the total execution time with precomputation

(tPET ) is given by: tPET = tET + 1000 · s + 1000 = 2000 · s + 61000. Each increment of c takes 1

clock cycle, in total a maximum of 1000 clock cycles. Right after the precomputation completes,

the exact number of cycles expected to be used in the loop (tET ) is known and an evaluation

can be done whether rescheduling will save clock cycles. This method reduces overestimation

by 40000 − 1000 · s − 1000 = 39000 − 1000 · s clock cycles so the processor can run on a lower

voltage while the task still meet its deadline. Note that this gain depends on the time spent on the

evaluation of the condition. If s is close to the number of clock cycles it takes to execute either

of the two branches (here if s = 29), there will be no actual gain of using precomputation. On

the other hand, in many cases, the precalculation can be done as an integrated part of the earlier

code sections, e.g. when the data value d is generated. This can partially or completely remove the

precomputation overhead.

In reality, real-life applications can have good potential to apply precomputation as wewill show

in Section 4. With the exact knowledge of the number of clock cycles required for a given data set,

the scheduler can improve the resource utilization, e.g., through dynamic voltage and frequency

scaling to save energy. Similarly, precomputed knowledge of correct branch selection or future

data needs can increase a system’s pipeline and prefetching efficiency.

3 RELATEDWORK

As outlined in Section 1, estimation of upcoming system requirements is important in many situa-

tions, e.g., for scheduling and allocation in scenario based settings, for branch prediction and data

prefetching. In this section we will present an overview of state of the art estimation techniques

applied in these and similar settings. Most of the estimation techniques use statistical prediction

methods. All such methods have a certain percentage of mispredictions leading to data-dependent

and therefore non-deterministic overheads. Such overheads present a problem for energy opti-

mization in hard real time embedded systems.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article . Publication date: March 2018.
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Branch prediction is an essential part of pipelined execution. The prediction can be as simple

as statically always taking the branch following immediately in the next sequential instruction

(i.e., not perform a jump). It is then the task of the compiler to place the most likely branch at

this position [11]. The simplest dynamic predictor uses a 2-bit (or even 1-bit) buffer to keep track

of the most likely branch to be taken, based on the recent history of actual branch selection [17].

Since there can be very many branches in an application, a cache-like structure using the lower

instruction address bits as index is typically used in the history buffer. To improve the prediction

accuracy it is possible to use counters with more bits and buffers with increased size. Two-level

predictors are also used since there may be a pattern in the branch selection. A branch history

shift register is used to track the recent branch selection, and the current value is used to choose

between different counters in a pattern history table, which value is then used for the prediction

[23]. In addition to have increasing resources and time overhead, the prediction accuracy is very

application dependent. For applications where 100 % accuracy can be achieved through precom-

putation, the technique presented in this paper is a favorable approach.

Data prefetching is used in cache based memory systems for increased hit ratio. For example, a

sequential prefetcher simply fetches the next cache block from background memory when a given

cache block is accessed [20]. The prediction is hence that data from the next cache block will be

needed in the near future. If this is not the case, it can be seen as a misprediction, and an over-

head is introduced in the unnecessary data transfer. More advanced schemes like Stride Directed

Prefetching avoids needless prefetches when the processor’s referencing pattern strides through

nonconsecutive memory blocks [5]. Further prediction enhancements include use of Reference

Prediction Tables [2], Global History Buffers [18], and Delta Correlation Prediction Tables [9] to

dynamically update stride distances based on encountered cache misses. The overhead, both in

large history tables as well as time and energy consuming data transfers due to misprediction,

makes precomputation attractive for relevant applications.

The system-scenario-based designmethodology has been developed to improve resource utiliza-

tion in embedded systems with data-dependent resource requirements. In [8] the authors provide

an overview of the methodology and its early use. Recent published reports provide extensions on

memory aware system scenarios [4], power aware system scenarios for wireless transmitters [24],

and scenario aware synchronous data flow graphs [19]. System scenarios utilize the correlation

between the resource requirements of an application and values of the variables in the application

software, which we call parameters. At run-time, a system scenario is identified from the actual

parameter values and a resource management mechanism is invoked to adapt to the changing

resource requirements. Scenario identification and switching overheads must be minimized. Two

approaches for prediction of scenario switch exist in this framework. The first one [8] [10] assumes

that parameters are available at the beginning of the task graph before the scenario starts. Then

depending on the definition space of the parameters, either a multi-valued decision diagram [8]

or polyhedral subdivision of the parameter definition space [10] is selected for scenario identifica-

tion. However in many real-life applications the data-dependent parameter is not known before

the scenario starts, they must be estimated beforehand. Two examples are the short-term Lya-

punov exponent computation (STLEC), which will be studied in this paper, and the fundamental

frequency detector (FFD), where the execution time varies based on the number of peaks in the

autocorrelation function of the input signal. The aforementioned methods for scenario identifi-

cation cannot be used directly in these cases. The second approach [8] is to predict the values

of the parameters using a probabilistic approach, which can have mispredictions that may cause

deadline misses. Thus, this approach is not relevant for hard real-time systems. Precomputation of

data-dependent parameters proposed in this paper enables 100% accurate scenario detection at an

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article . Publication date: March 2018.
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acceptable?

Remove precomp.

of parameters with

least dynamic impact

and most overhead

Preprocessing

Application code

Dynamic im-

pact analysis

Precomputation

design

Insertion of pre-

computation

Precomp.

gain Ḡ
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Fig. 1. Precomputation of run-time resource requirements

earlier point in the application and thus an earlier invocation of run-time resource management

mechanisms

DVFS-based online real-time schedulers are used in real-time embedded systems running appli-

cationswith data-dependent execution times. These algorithms optimize system’s power consump-

tion by dynamically adjusting voltage and frequency of the processor and schedule the application

tasks to finish within a deadline [1]. They initially assume that each task will take worst case num-

ber of cycles to execute and select supply voltage/processor speed accordingly. When a task is

completed, they calculate the available time slack and use it to reschedule the consecutive tasks

and update the voltage/speed setting. This scheduling can be improved by providing the scheduler

upfront information on the execution time of tasks, for example by estimating values of software

variables with the most impact on the execution time (parameters). This paper introduces a tech-

nique for run-time precomputation of such data-dependent parameters and investigates the case

of using this technique together with a DVFS-based online real-time scheduler in a real embed-

ded system. To the best of our knowledge, only probabilistic approach for prediction of execution

time of tasks have been tried earlier, which cannot be directly applied to hard-real time embedded

systems.

4 DESCRIPTION OF PROPOSED METHOD

The proposed method for run-time estimation of resource requirements consists of several steps

shown in Figure 1. The method is aimed at dynamic embedded applications, i.e. applications hav-

ing varying resource requirements throughout their execution on the target embedded platform

and where the resource requirement variation is caused by changing values of data inputs. Let dk
denote a value of input k . Given n number of inputs, we specify a vector d = d1, ...dn containing

values of all data inputs. The idea behind the method is to add a small precomputation code early

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article . Publication date: March 2018.
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ALGORITHM 3: Representative dynamic code structure

Input: d , dynamic data

1 ...

2 Initialize loop iterators i , j

3 while e0(i,d) do
4 i = A(i);

5 if e1(i,d) then // Single or grouped evaluation expression

6 B;

7 end

8 else if e2(i,d) then // Nested conditional statement

9 C;

10 if e3(i,d) then
11 D;

12 end

13 else

14 E;

15 end

16 end

17 else if e4(i,d) then
18 F ;

19 continue/break; // Loop control

20 end

21 else

22 G;

23 end

24 while e5(i, j,d) do // Nested loop

25 j = H (j);

26 I ;

27 end

28 end

in the application.Based on the available run-time input data values d, this code will calculate in

advance the resource requirements of the application parts having the most significant dynamic

impact on the overall resource requirements of the application. This information can be then ex-

ploited by run-time resource management mechanisms to dynamically and efficiently reassign

system resources to the application according to its run-time resource requirements.

Different resource requirements may be generally considered, e.g. CPU time, memory accesses,

clocking and power gating of different parts of the platform. We will here demonstrate the method

for CPU time resource requirements only. We will also target real-time embedded systems with

critical timing deadlines. Such systems require all components to be real-time predictable, so we do

not consider effects of cache and preemptive scheduling. The assumptions for the precomputation

to work are:

(1) Resource requirements (CPU time) of the application vary with input data and depend on

values of internal software variables (data-dependent parameters).

(2) A resource management mechanism (run-time scheduler) is present that can benefit from

precomputation.

(3) Input data is only read at the beginning of a task graph.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article . Publication date: March 2018.
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(4) The only changes to variables come from the calculations in the tasks.

(5) Data-dependent parameters remain stable throughout the dynamic parts of the code that

they control

Assumptions 3-5 ensure that it is always possible to precompute a variable by simply duplicating all

statements that update it to an earlier position in the code. Reading data at the beginning of a task

graph is very common for embedded real-time applications that operate on data frames/packages,

f.ex. video decoders, STLEC, image compression etc. Further research is needed to investigate other

types of applications and possibly relax the assumptions.

In each step of the method we will first present general equations for n data inputs, where it is

possible, and then illustrate its use on a simple case with a single data input. Algorithm 3 presents

the simple case. The example code contains a nested loop with multiple branches and code blocks

that perform some data processing. The following control structures, present in most embedded

applications [3], are considered:

(1) Loop

(2) Branch

(3) Nested loop

(4) Nested branch

(5) Loop exit statement

(6) A combination of these control structures

We assume that this is a dynamic application, i.e. the execution time of the application varies

over time and that the variation is caused by changing values of a data input. Control structures

have the most impact on the execution time variation. The code includes multiple evaluation ex-

pressions e0,...,e5 that depend on a data input with value d . For different values d , the code blocks

A,...,I will be executed a different number of times. Observing that the execution times of the code

blocks are different, the time it takes to execute the given code on an embedded platform varies

with d . Let us assume that the variation of the required CPU time is significant while the available

CPU time is limited, e.g., due to application deadlines and other competing processes. The system

contains a run-time scheduler, which does the resource (CPU time) management. By following

the steps in Figure 1, we will design a mechanism that will provide the scheduler a run-time esti-

mate for the amount of CPU time the application will require the next time it executes the loop in

Algorithm 3.

4.1 Preprocess the application

In this step the application source code is reorganized to bring it into the form that can be efficiently

processed by the subsequent step of the dynamic impact analysis. In this process the code is divided

into code blocks with nearly static resource requirements and code structures having a dynamic

impact on the resource requirements.

In our demonstration case the resource to be optimized is the CPU time and the Algorithm 3 rep-

resents the output of the preprocessing step. Code blocks A,...,I have execution times tA(d),...,tI (d),

and evaluation expressions e0,...,e5 have execution times te0 (d),...,te5 (d). These execution times are

nearly static, i.e, they have no or only a small dependency on d . For a code block/evaluation ex-

pression X , having execution time tX , the difference δX between its upper and lower execution

time is constrained by the maximum allowed execution time difference δ as given by Equation 1.

δX ≤ δ for all X , where δX = max (tX (d)) −min (tX (d)) (1)

The maximum allowed execution time difference δ defines the borders of code blocks/evaluation

expressions and therefore also the size of the code hidden in them and to what extent the control

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article . Publication date: March 2018.



Run-Time Precomputation of Data-Dependent Parameters :9

code structures depending on d are revealed. The lower δ is selected, the more and smaller code

blocks there will be and the more dynamic code structures will be revealed. And vice versa, the

higher δ , the fewer and larger code blocks there will be and less revealed dynamic code structures.

The value of δ is initially chosen to reveal all control flow statements depending on d .

A run-time scheduler typically operates with upper bounds of execution times for the units to

be scheduled. In our further equations we therefore use only the upper bounds of the execution

times, i.e. max(tX (d)), which we abbreviate by tX for better readability.

4.2 Dynamic impact analysis

The structure of the application is analyzed and its dynamic behavior is characterized. The main

assumption of our precomputation technique is that changes in resource requirements of an appli-

cation can be observed through changes in values of software variables in that application, which

we call parameters. For dynamic applications we in general observe all variables v that read the

input data d, the code statements ξv these variables v control, and the changes ∂r
∂v

in the resource

requirements r as the result of changes in v. When the dynamic impact analysis is completed, the

variables in v can be ordered by their impact on the resource requirements:

v = {v1, ...,vk }, where (2)

v1 = f1 (d) , ...,vk = fk (d) , (3)

r = fr (v1,v2, ...,vk ) , and (4)

∂r

∂v1
>
∂r

∂v2
> ... >

∂r

∂vk
(5)

Variables in v represent candidates for precomputation. Once their values are known for a given

input d = a, the resource requirements r (a) can be estimated according to fr .

For our special case we need to find an ordering of the revealed control flow variables, i.e. pa-

rameters v = {e0, e1, e2, e3, e4, e5}, according to their impact on the overall execution time of Algo-

rithm 3. We apply dynamic impact analysis proposed by [7]. The method is fully automatic and

based on static timing analysis of application code. For each variable v , influence coefficient IC(v)

is calculated, which represents the maximum possible variation (in cycles) caused by the different

values of the variable v on the WCET of the application. Practically, this is done by traversing the

abstract syntax tree (AST) of the program in the backward direction (from the end to the begin-

ning) and computing IC(v) in each statement as a sum of its own contribution and the maximum

of IC(v) computed for all its successors in the program. The first statement of the program will

yield the ICs computed for each possible variable. Another profiling based method exists, namely

the one in [6], which aims at soft real time systems. We assume that the resulting ordering of the

parameters is v = {e0, e5, e4, e1, e2, e3}.

4.3 Precomputation design

In this step the precomputation is designed based on the information gathered in the previous

step. We know which parameters v control the most dynamic parts ξv in the application, how they

control them and how the changes in v influence the resource requirements r of the application.

To make this knowledge useful in the run-time environment, the upcoming resource requirements

r should be estimated in advance, i.e. before the execution of dynamic parts ξv. To achieve this, the

parameters v1,v2, ...,vk must be precalculated at the earliest possible position in the application

code and remain stable until and throughout the execution of ξv. This is done by duplicating the

statements that update v and inserting them early in the code as a basis for precomputation. The

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article . Publication date: March 2018.
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location for the placement of the duplicate code will be discussed in the next section. From the

precomputed values of v and the estimated resource requirements for these values, the resource

estimation function fr is specified that can be used by the run-time resource manager.

ALGORITHM 4: Initial precomputation code

Input: d , dynamic data

1 Initialize loop iterators i , j and counters cA − cI
2 while e0(i,d) do

3 i = A(i);

4 cA + +;

5 if e1(i,d) then
6 cB + +;

7 end

8 else if e2(i,d) then
9 cC + +;

10 if e3(i,d) then
11 cD + +;

12 end

13 else

14 cE + +;

15 end

16 end

17 else if e4(i,d) then
18 cF + +;

19 continue/break;

20 end

21 else

22 cG + +;

23 end

24 while e5(j,d) do
25 j = H (j);

26 cH + +;

27 end

28 end

Algorithm 4 shows the initial precomputation code for the dynamic loop in Algorithm 3. This

code is the exact copy of the control flow of Algorithm 3 with added counters cA,...,cI , which count

the number of times the application visits a particular level of the control flow hierarchy. These

counters are used by fr to estimate r , in this case the required number of CPU cycles. When pre-

computation has completed and the values of the precomputation counters cA,...,cI are known, the

total execution time of the code in Algorithm 3 can be estimated as the sum of the products of

each counter with the execution times of the associated code block(s) and evaluation expression(s)

(Equation 6). For a given counter cY , its associated code blocks are all code blocks at the same level

of the control flow hierarchy in the original application code, which are executed the same number

of times as the counter is incremented. The associated evaluation expressions are all evaluation

expressions that are executed to access that level of hierarchy from the level above it. If an evalua-

tion expression must be evaluated to FALSE to access a given level, we mark it by a horizontal bar
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above it. See the lists below Equation 6. We denote the application execution time estimate based

on precomputation by tPET . Recall that tX is the execution time of the code block X.

fr = tPET =
∑

Y ∈{A, ...,H }

(cY | d) · tcY , where tcY =
∑

all X associated with cY

tX (6)

cA : A, e0 cB : B, e1 cC : C, e1, e2 cD : D, e3

cE : E, e3 cF : F , e1, e2, e4 cG : G, e1, e2, e4 cH : H , I , e5

To compare, a safe time estimate without precomputation, i.e not exploiting the actual run-time

value of input d , must be based on the slowest possible execution of the nested loop for any value

of d . Let dWCET denote the value of d that produces such a worst case condition. Then, the worst

case execution time tWCET can be estimated by exchanging (cY | d) in Equation 6 by the worst

case count of each code block and evaluation expression (cY | dWCET ). Equation 7 below shows

the result.

tWCET =

∑

Y ∈{A, ...,H }

(cY | dWCET ) · tcY , where tcY =
∑

all X associated with cY

tX (7)

To evaluate these two estimates for the execution time of the application, we need to compare

them with the actual execution time, tET . As mentioned in Subsection 4.1, tX in Equations 6 and

7 above represent the upper bounds of the execution times of the code blocks and evaluation ex-

pressions. Thus, both estimates are an overestimation of the actual execution time tET , bounded

by the maximum allowed execution time difference δ . In addition, the worst case estimate tWCET

is based on the maximum possible execution counts (cY | dWCET ), which results in further overes-

timation in all cases except when the worst case input value d = dWCET occurs. tPET avoids this

overestimation at a price of precomputation overhead.

To find the execution time added by precomputation, we compare Algorithms 4 and 3 and ob-

serve that the control flow structure of the precomputation code is identical to the control flow

structure of the original nested loop, and all code blocks have been replaced by a simple count-

ing operation that takes time 1, except blocks A and H that calculate the loop counters i and

j. Thus, Equation 6 can be used as a basis for calculation of the precomputation execution time

(tprecomputation). We add the counting operation to Equation 6 and update the associated block lists

and obtain precomputation execution time as given by Equation 8 below. Note that this is the

overhead for the non-optimized code.

tprecomputation =

∑

Y ∈{A, ...,H }

(cY | d) · t ′cY , where t
′
cY
= 1 +

∑

all X associated with cY

tX (8)

cA : A, e0 cB : e1 cC : e1, e2 cD : e3

cE : e3 cF : e1, e2, e4 cG : e1, e2, e4 cH : H , e5

4.4 Insertion of precomputation

In this step the complete precomputation code is inserted into the application code. The location

should be selected before the dynamic parts of the code. There is a requirement that the parameters

remain stable between the precomputation code and the dynamic parts they influence. Recall that

our precomputationmethod assumes that the only changes to variables come from the calculations

in the tasks. The input data are read only at the beginning of a task graph. Since the method

duplicates all statements that update a parameter to an earlier position in the code, even though
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the parameter changes, its precomputed value will always be correct. However, the number of

duplicated statements should be minimized to reduce the overhead of precomputation.

The second consideration that needs to be taken into account when searching for the optimal

location of the precomputation code is the response time of the resource management mecha-

nism. The reaction times of run-time resource management mechanisms vary depending on the

mechanism used and on the implementation platform. A run-time scheduler in system scenario

framework has earlier been reported to have response time of 0.25 ms on a 200MHz processor [16],

p.148. The scheduler monitors the values of parameters and identifies the active scenario. When

the scenario has changed, a rescheduling is performed.

4.5 Optimization

This step performs optimization of the precomputation code. Ideally, precomputation code should

be merged as much as possible into the application’s own code to reduce the overhead of precom-

putation. In some cases it is possible, while in others it might not be possible. It depends on the

code structure and compiler optimizations used/allowed in a given hard real time system. Both

cases are allowed as long the precomputation overhead and gain are acceptable. Precomputation

code verification is done after optimization.

4.6 Profiling and evaluation

Evaluate the effectiveness of the precomputation on a representative set D of N input data vectors

d ∈ Rn . Identify precomputation gain G and precomputation overhead O and also the conditions

at which the overhead becomes unacceptable.

We first define precomputation gain and precomputation overhead for a given data input d.

Precomputation overheadO represents the resource requirements added to the application by the

precomputation code:

O = rprecomputation | d (9)

Precomputation gain represents the efficiency of precomputation, or the number of times the

resource requirements of the application decreases by using precomputation, taking into consid-

eration the overhead of precomputation. We define precomputation gain G as the ratio between

the resource requirement estimate based on the worst case input dWC and resource requirement

estimate calculated from precomputation augmented with precomputation overhead:

G =
fr | dWC

fr | d + rprecomputation | d
(10)

With this definition, precomputation gain equals 1 when the resource requirement estimates

with and without precomputation are the same, when taking into consideration the overhead of

precomputation. Precomputation gain is more than 1 when precomputation-based resource re-

quirement estimate with added precomputation overhead is less than worst-case-input based re-

source requirement estimate, so the resources can be saved by using precomputation. Precompu-

tation gain is less than 1 when precomputation-based resource requirement estimate with added

precomputation overhead is bigger than worst-case-input based resource requirement estimate,

meaning that precomputation is counter-productive.

To evaluate the gain and the overhead of precomputation for an embedded application that is

continuously rerun with different input data, we profile the application with inserted precomputa-

tion with the representative data set D and compute the average precomputation overhead Ō and

the average precomputation gain Ḡ by Equations 11 and 12 respectively:
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Ō =
1

N

∑

d∈D

rprecomputation | d (11)

Ḡ =
1

N

∑

d∈D

fr | dWC

fr | d + rprecomputation | d
(12)

For our case application, precomputation gain and precomputation overhead are calculated in

terms of execution time. Precomputation overhead O corresponds to the precomputation execu-

tion time tprecomputation in Equation 8. The average precomputation gain can then be computed by

Equation 13 by profiling the application with N data vectors d ∈ Rn from a representative set D:

Ō =
1

N

∑

d ∈D

tprecomputation (13)

Precomputation gain is the ratio of execution time estimate for the worst case input tWCET

(Equation 7) and the sum of execution time estimate based on precomputation tPET (Equation 6)

and precomputation execution time tprecomputation. The average precomputation gain for the repre-

sentative data set D is given by Equation 14:

Ḡ =
1

N

∑

d ∈D

tWCET

tPET + tprecomputation
(14)

Note that the accuracy of the estimated precomputation gain Ḡ and precomputation overhead

Ō depend on the accuracy of the applied data model.

4.7 Check if precomputation overhead Ō is acceptable

In this step precomputation overhead Ō is evaluated. This can be done by specifying a percent-

age γ that the total resource requirements of the application can increase due to precomputation.

Specification of γ requires a global system evaluation with given overall resource constraints. If Ō

satisfies this requirement, precomputation design is completed and the next step is to evaluate its

effectiveness. If not, an iterative approach as indicated in Figure 1 can be applied to simplify the

precomputation code.

4.8 Remove precomputation of parameters with least dynamic impact and most

overhead

From the dynamic impact analysis in Subsection 4.2 we have a list of parameters ordered by their

dynamic impact on the resource requirements, see Equation 2. To lower the overhead of precom-

putation, we iteratively remove precomputation of parameters having the least dynamic impact on

the resource requirements. If this does not help, we try removing parameters that have the largest

impact on the precomputation overhead. Each time the precomputation is simplified, the overhead

is reduced, but so is also the gain. The reason for this is that the resource requirement estimates

of the removed parts must be reset to the worst case to avoid underestimation. The steps in Sub-

sections 4.4 - 4.7 are repeated until the precomtputation design is accepted or the precomputation

is found inefficient, in which case it is removed.

In our case we adjust the precomputation loop structure by hiding some of the control flow to

obtain acceptable gains and overheads. Using the list of parameters v = {e0, e5, e4, e1, e2, e3} from

Subsection 4.2, ordered by decreasing dynamic impact on the execution time of the application,

we decide to hide the nested if structure (branches e1, e2 and e3) keeping only the branch e4 that

steers the continue/break statement. The resulting precomputation code is shown in Algorithm 5.

The execution time estimate based on the simplified precomputation is given by Equation 15, and
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the overhead of the precomputation in Algorithm 5 is presented in Equation 16. Note that the tPET
estimate for the hidden code structure defaults to the worst case values.

ALGORITHM 5: Final precomputation code

Input: d , dynamic data

1 Initialize loop iterators i , j and counters cA, cF , cH
2 while e0(i,d) do
3 i = A(i);

4 cA + +;

5 if e1 & e2 & e4(i,d) then
6 cF + +;

7 continue/break;

8 end

9 while e5(j,d) do
10 j = H (i);

11 cH + +;

12 end

13 end

tPET =
∑

Y ∈{A,F ,H }

(cY | d) · tcY + (cA − cF ) · thidden, where

thidden = max
(
tcB , tcC + tcD , tcC + tcE , tcG

)
and tcY is given by Eq. 6

(15)

O =
1

N

∑
d ∈D

(∑
Y ∈{A,F ,H }(cY | d) · t ′cY

)
∑
d ∈D tWCET

, where t ′cY is given by Eq. 13 (16)

4.9 Check if precomputation gain Ḡ is acceptable

In profiling and evaluation step in Subsection 4.6, precomputation gain Ḡ was calculated, and now

a decision must be made if this gain is acceptable. Recall that precomputation gain is defined as the

average number of times resource requirements of the design decreases when precomputation is

used. We specify a threshold l representing the minimal average number of times the resource re-

quirements of the application must decrease when applying precomputation. The number l should

be selected based on a global system evaluation with a given run-time resource manager. If pre-

computation gain Ḡ is above the threshold l , the precomputation is effective and improves the

resource utilization of the system. The precomputation design is accepted. On the other hand, if

precomputation gain Ḡ is below the threshold l , the precomputation is inefficient in the applica-

tion at hand and is not recommended. This happens in cases when precomputation of parameters

requires itself too much resources and cannot be optimized.

4.10 Implementation remarks

Note that all steps in our algorithm is safe in the sense that they ensure that the resource require-

ments are never underestimated. For each code block and evaluation statement an upper bound

of the resource requirements is used, while the precomputed counter values (cX | d) are always

equal to the actual number of activations of each code block and evaluation expression X . Also

each time we remove a parameter from precomputation, we set the resource requirement estimate

to the worst case for all the blocks and statements in the corresponding structure in the original
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code. Thus this method respects the resource limits of the system and can handle arbitrary worst-

case data situations. However it will only be efficient when worst-case situations appear seldom.

To compare, classic static methods consider all data situations as worst-case and they run most

efficiently in the worst case. Precomputation makes use of the dynamism in the data and runs

more efficiently than classical methods in all other data situations where the required resources

are less than the worst case (minus the overhead of the precomputation code).

However, a good model of the expected data is necessary at design time to obtain realistic es-

timates of precomputation gain G and precomputation overhead O to evaluate precomputation

efficiency. This works well for stationary data with constant statistical properties. Application of

precomputation in case of non-stationary data should be investigated by further research.

5 EXPERIMENTAL RESULTS

In this section we present experimental results from implementation of run-time precomputation

of data-dependent parameters in a real-life biomedical application, STLEC, on the CoolBio biomed-

ical signal processing (BSP) platform [12]. STLEC performs a continuous estimation of the largest

short-term Lyapunov exponent (STLmax) from human EEG. STLEC is used in an epileptic seizure

predictor [13, 15] and other related systems [14]. 32 EEG sensors perform brain wave measure-

ment with a 200 Hz sample rate. For each sensor, 2048 samples (10.24 seconds) are collected into a

sample set on which a STLmax calculation is performed. Generally, Lyapunov exponents are used

in many practical applications dealing with phenomena that are modeled as physical dynamical

systems, when the system equations are not explicitly known. Lyapunov exponents are defined

as the average exponential rates of divergence or convergence of nearby orbits in phase space

representations of such dynamical systems.

STLEC is characterized by a varying execution time depending on the input EEG, see histogram

in Figure 2. Profiling on a CoolBio BSP with a 32-channel 6 hrs long EEG recording from Arizona

State University (ASU)1 have shown that the application requires 55 · 106 clock cycles in the best

case and 113 · 106 clock cycles in the worst case.

Recall that the proposed methodology is aimed at dynamic applications, i.e. where the change in

resource requirements to be optimized is caused by change in the input values of the application.

It is also assumed that the change in the resource requirements can be observed through values

of internal software variables that we call parameters. Precomputation of these parameters will

be efficient if the typical input values of the application do not produce the (near) worst case

conditions in the dynamic part of the code.

STLEC utilizes a variant of the well-known fixed evolution time program of [21] and has a dy-

namic code built up from control structures presented in Algorithm 3. To find the largest Lyapunov

exponent, the application takes in a segment of EEG (2048 samples) and from it constructs a phase

space model of the brain system. It then selects a reference orbit in the model and spends most

of its time on searching for the nearest neighbor orbit. At each time step, the point on a nearest

neighbor orbit must satisfy two conditions: 1) Minimum distance to the reference orbit above the

noise level, and 2) Minimum change of orientation of the neighbor orbit. The search is done iter-

atively, where only points inside a cone with a selected radius and apex angle are searched. If the

desired point is not found, the radius is increased. If still not found, the angle is increased while the

radius is reset to the original value. This procedure is repeated several times. If no point satisfying

1) and 2) is found, the point from the previous time step is extrapolated in the direction of the orbit

found so far.

1Provided by Prof. Leonidas Iasemidis that was working at ASU at that time. The origin of the data is confidential due to

an NDA with ASU.
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Fig. 2. Histogram over clock cycles for 60,000 runs of STLEC application on CoolBio BSP platform with and

without precomputation

We identified three parameters that have the greatest impact on the execution time of STLEC,

sorted in the descending order of impact:

• The total number of points in the phase space representation that can be searched to find the

nearest orbit. This parameter depends on the number of data points in each EEG segment

and the dimension of the phase space representation, which are typically fixed, so it does

not have real dynamic impact.

• The number of iterations of the search procedure at each time step of the algorithm before

the point that satisfies 1) and 2) is found.

• The number of points in each iteration of the search with distances above the noise level

and below the selected radius. They satisfy the condition 1) above and undergo an additional

angle check 2) that requires extra time.

The last two parameters depend on the input EEG that is not known in advance. They are the

candidates for our precomputation methodology. We attempted to implement precomputation of

both parameters using the proposed method, Subsections 4.1-4.8. However the second parameter

in the list above was finally removed as incurring too much overhead, although it had greater

dynamic impact than the third parameter with the original settings of the algorithm. To precom-

pute this parameter at a given time step of the algorithm, we would need to perform a complete

search of the next step, meaning that we would double the amount of clock cycles and memory

requirements as compared with the case with no precomputation.

In the final experiment we reduced the impact of the second parameter by modifying the algo-

rithm settings. We reduced the number of searched apex angles from three to a single angle. The

original STLEC had also a reduced number of angles as compared to [21]. Note that this may affect

the quality of the STLmax calculation.

The precomputation code of the third parameter, denoted preNrAnдleChecks , is shown in Al-

gorithm 6 with original comments from [21].
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ALGORITHM 6: STLEC precomputation code

//LOOK FOR REPLACEMENT POINT

//ZMULT IS MULTIPLIER OF SCALMX WHEN GO TO LONGER DISTANCES

...

preNrAnдleChecks = 0;

if zmult < mult then
prescalmx = dnewmx ∗ bb∗(double)(zmult + 1);

end

else
prescalmx = dnewmx ∗ bb;

end

//SEARCH OVER ALL POINTS

...

//LOOK FURTHER AWAY THAN NOISE SCALE, CLOSER THAN ZMULT*SCALMX

dnew_check = dnew < scalmn;

if dnew_check | |dnew > prescalmx then
preNrAnдleChecks + +;

end

dnew_check = dnew_check | |dnew > scalmx ;

We evaluated the design by cycle accurate simulation in Target Compiler Technologies’ Check-

ers tool 2. CoolBio BSP has 4 power modes [12]: 1) Data collection mode (DC): only the periphery

domain and the required number of data memory banks are on, running at 0.4 V and 0.7 V respec-

tively; the program memory is in retention mode and the rest of the system is off; 2) Low power

mode (LP): the processor and periphery are on, running at 0.4 V, part of the program and data

memory are on, running at 0.7 V and the unused memory banks are off; 3) High performance (HP)

mode: All components are running at 1.2 V, and the unused memory banks are off; 4) Sleep mode:

all power domains are off and no internal clock is running. The authors provide only numbers for

dynamic power consumption for the three active modes. They comment that the processor is not

optimized for deep-sleep mode, but for a power efficient data collection mode. We assume a static

power consumption of 5% of the dynamic power consumption, which is reasonable for standard

90 nm LP process and use the numbers in the paper for the normalized leakage scaling in low

power mode and data collection mode. Table 1 shows the result of this calculation. Unfortunately,

it seems that low power mode is not energy-efficient for the case with full functionality due to its

low frequency. It is probably intended for power-gated operation. Since the primary goal of this

experiment is to consider DVFS gains and overheads, we do not include power gating/reduced

functionality operation. Hence, we exclude low power mode from consideration and add instead

two interpolated modes between the low power mode and the high performance mode. See Table 1

for characterization of the interpolated modes.

The application starts in one of the considered DVFS modes when a full sample set of EEG

values to perform STLmax estimation has arrived, runs until the estimation is done, switches to

the data-collection mode and stays in this mode until the deadline, when a new set of EEG values

arrives and the process is repeated. We compare the following three cases:

(1) Static DVFS scheduling (STA). The power mode is selected before the application runs based

on worst case clock cycles of the application and the time to deadline.

(2) Dynamic DVFS scheduling (DYN). The power mode is selected at the activation of each task

at run-time based on worst case clock cycles of the task and its allocated time. The time is

2Target Compiler Technologies was acquired by Synopsys in February 2014

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article . Publication date: March 2018.



:18 E. Hammari et al.

Table 1. Characterization of CoolBio[12] original power modes and interpolated power modes

Power modes DC Mode LP Mode Mode 1 Mode 2 HP mode

Frequency [MHz] 1 1 38 69 100

Voltage [V] 0.4/0.7 0.4/0.7 0.7 0.95 1.2

Dynamic power [μW] 13 1792 1881 6276 14500

Estimated static power [μW] 0 56 145 435 725

Total power [μW] 13 1848 2026 6711 15225

Total energy per cycle [pJ/cycle] 13 1848 53 10 152

Table 2. Comparison of energy consumption per STLEC run between STA - static scheduler, DYN - simple

dynamic scheduler, and DYNPRE - same as DYN, but with precomputation of data-dependent parameters

STLEC STA DYN DYNPRE

Energy/run [mJ] Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.

Processing energy 8.38 13.54 17.23 2.95 7.49 11.14 3.32 5.60 8.75

DVFS switching [μJ] 1.17 0.5 3.00 5.16 0.4 0.27 2.09

Dynamic scheduling 0 1.36 2.27 2.76 1.36 2.27 2.76

Total energy 8.38 13.54 17.23 4.31 9.75 13.87 4.68 7.87 11.48

allocated to each task before the application runs, based on the worst case clock cycles of

the task. When the task is completed, time slack to its deadline is used in the power mode

selection of the next task.

(3) Dynamic DVFS scheduling with precomputation (DYNPRE). Same scheduler as 2 is used, but

for the dynamic task with precomputation the precomputed clock cycles are used instead

of worst case clock cycles to select the power mode. The overhead of precomputation is

included in the precomputed cycles

The deadline for a single channel equals the time it takes to acquire the full set of EEG samples,

10.24 s. There are 32 EEG channels, while the schedulers in the list can process 3 channels within

the deadline. We set deadline for a single channel equal to 10.24 s/3 = 3.41 s.

We evaluated average energy consumption of STLEC application for the three scheduling cases.

Totally, 60,000 runs of STLEC were done and the number of tasks varied between min/typ/max

= 356/596/724. Table 2 presents the results of this evaluation. In the table, processing energy is

the energy that is consumed by the application’s tasks when run with the DVFS settings selected

by the applied scheduler. In the DYNPRE case, processing energy also includes the overhead of

processing the precomputation code of Algorithm 6.

The remaining overheads are rough estimates. DVFS switching overhead is the extra energy that

is consumed due to switching of power modes. We use same approach and switching times as the

authors in [22] used for the SAM4L processor. The overhead is calculated as the product of switch-

ing time and the power consumption of the previous power mode. Switching times for voltage

upscaling and voltage downscaling are 16.4 μs and 1.25 μs, respectively. Note that precomputation

reduces DVFS switching overhead. This is caused by reduction of the number of switches. Another

observation that we made is that precomputation changes the distribution of DVFS switching en-

ergy. While in case of DYN, switching energy has a distribution close to normal, with average of

3.00 μJ and standard deviation of 0.68 μ, the switching energy in DYNPRE case has a completely
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Fig. 3. DVFS switching energy per run of STLEC application with DYNPRE scheduler

different form, see Figure 3. We use median values for the typical switching energy for DYNPRE

case in Table 2.

Dynamic scheduling overhead considers the extra time it takes to reschedule the tasks at run-

time. We used the response time of a run-time scheduler in [16], 250 μs, to calculate this overhead.

We assumed that the scheduler is activated once per task.

The overhead of the precomputation is presented in Figure 2. Precomputation increases the

cycle count of STLEC application by 13.1% on average.

Figure 4 shows the distributions of the total energy consumption per run of the application,

including all the investigated overheads. The figure shows that the run-time precomputation of a

single data-dependent parameter used by a dynamic DVFS scheduler reduces the energy consump-

tion of the system by 40% on average compared to static DVFS scheduler, and by 18% on average

compared to dynamic DVFS scheduler without precomputation.

6 DISCUSSION

The results in Section 5 show that precomputation has a positive effect in a real system, taking

into consideration the overheads of processing extra precomputation code, rescheduling the tasks

and up- or downscaling the supply voltage.

In this application the final precomputation is done for a single parameter and gives good results.

Generally, it is desirable to keep the number of parameters that are precomputed low in order

to reduce the overall precomputation overhead. It can therefore be expected that some of the

parameters will be pruned away from precomputation code after the profiling and evaluation step

in the methodology.

Although we only considered a single application in our experiments, the results are never-

theless applicable to other hard real-time dynamic applications where execution time varies due
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Fig. 4. Distribution of total energy per run of STLEC application with STA, DYN and DYNPRE schedulers

to data-dependent control structures such as loops and branches. The exact percentage of saved

energy will be different, as it depends on the actual control structure, target platform and input

data, but precomputation has a good potential to reduce the system energy consumption when

the application rarely runs in the worst case conditions.

Automatic precomputation of data-dependent parameters should be investigated in further re-

search. Since the current method is based on replication of the dynamic control structures and addi-

tion of simple counters, the automation seems feasible. Integrationwith compiler and co-operation

with other compiler optimization techniques needs to be investigated.

7 CONCLUSIONS

We have presented a method for run-time precomputation of data-dependent software variables,

called parameters, having the most impact on system resource requirements. The method is aimed

at dynamic embedded hard real-time systems containing run-time resource management mecha-

nisms that can monitor parameters and exploit the knowledge of their resource impact for better

resource utilization. The efficiency of the proposed method depends on the application structure

and the statistical properties of the input data, particularly, how often the system requires the

maximum resource usage. Experiments with a real life algorithm and real data show a significant

energy gain for data-dependent parameter precomputation.
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