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Summary 

 In this thesis, a three-dimensional mathematical model is developed and implemented 

using COMSOL Multiphysics - a platform for physics-based modeling and simulation. The 

numerical model solves a conjugated heat transfer problem for the air stream and heat 

exchange media with only wheel data and inlet flow properties needed as input. The model was 

validated using previously established effectiveness correlations for a comparable regenerative 

heat exchanger but needs further validation.  

  Proper scaling analysis was performed to establish the simultaneously developing 

Nusselt numbers in the entrance region from incomplete tabular data sources, and a new local 

peripheral Nusselt number function was defined from the flow geometry to take into account 

the variable local heat flux around the periphery.  

 Results indicate that the local properties at any cross-section may differ significantly 

from the bulk properties, suggesting that condensation may be present locally in pockets of 

near-stagnant regions for a considerable length of the wheel.  

    

Sammendrag 

I denne tesen har en tre-dimensjonal matematisk modell blitt utviklet og implementert 

ved hjelp av COMSOL Multiphysics – som er en platform for fysikk-basert modellering og 

simulasjon. Den numeriske modellen er klassifisert som et konjugerende varmetransport 

problem for luftstrømningen og varmeoverføringsmediet og er kun avhengig av data for hjulet 

og luft-innstrømningene . Modellen er validert mot tidligere etablerte effektivitets 

korrelasjoner for en tilsvarende varmeveksler men trenger oppfølgningsanalyser. 

 Skaleringsanalyse ble utført for å etablere de samtidige utviklende Nusselt numrene i 

starten av kanalen fra inkomplette tabulære data kilder, og en ny lokal Nusselt nummer 

funksjon ble definert fra strømningsgeometrien for å ta hensyn til den variende lokale 

varmefluksen rundt periferien av et tverrsnitt.  

 Resultatetene indikerer at lokale forhold ved et tverrsnitt kan skille seg betraktelig fra 

gjennomsnittet og således kan kondensasjon eksistere i lommer med lav lufthastighet for en 

vesentlig del av hjulets lengde. 
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Nomenclature 

English Symbols 

a    half height of the sine duct  m   

frA    wheel frontal area 
2m     

sA    heat transfer surface area in one sector 
2m    

cA    cross-sectional flow area 
2m     

A    total heat transfer surface area 
2m    

b    half width of the sine duct  m
 

c    molar concentration 
3/mol m     

*

0Cr    overall matrix heat capacity 

Cr    matrix heat capacity rate /W K   

*C    ratio of minimum to maximum air stream heat capacity rate 

pC    specific heat at constant pressure  J kg K   

d    distance from centroid of maximum velocity  m  or coefficient 

sd    shell thickness  m   

hD    hydraulic diameter  m   

D    mass diffusivity 
2 /m s     

e    coefficient 

f    friction factor, local peripheral Nusselt number function or source term 

F    volume force vector 
3N m    



vi 
 

h    convective heat transfer coefficient 
2W m K     

mh    convective mass transfer coefficient  /m s   

H    enthalpy  /kJ kg K   

j    diffusion flux vector 

k   thermal conductivity 
2W m K     

L    length  m   

m    mass flow rate  /kg s   

M    matrix mass  kg  or molecular weight  /kg kmol
 

n    numerical coefficient 

N    angular speed   /rev s   

Nu    Nusselt number 

0NTU   overall number of heat transfer units 

p    pressure  Pa  or period  s   

P    perimeter  m   

Pr    Prandtl number 

Pe    Peclet number 

oopQ    out-of-plane heat transfer 
2W m      

q    perimeter line integral of heat flux  /W m   

q    heat flux 
2W m      

q    conduction heat flux vector 
2W m      

Re    Reynolds number 
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s    distance along perimeter  m   

T    absolute temperature  K   

t    time  s   

u    velocity vector  m s   

, ,u v w    velocity components  m s  

w    mass fraction  /kg kg   

, ,x y z    spatial coordinates  m   

*z    dimensionless axial coordinate 

 

 

Greek Letters 

    density 
3kg m     

    dynamic viscosity 
2N s m     

    boundary around the periphery 

    relative humidity 

    area correcting factor or thermal diffusivity 

*    ratio of sine height to sine length 

    local area goodness factor function or matrix packing density 
2 3/m m     

    wheel porosity
2 2/m m     

    effectiveness 

    dummy variable 



viii 
 

T    thermal boundary layer thickness  m   

    velocity boundary layer thickness  m   

    local area goodness factor 

 

Subscripts 

ave    average in channel 

b    bulk 

e    exhaust 

face    face of wheel 

fd    fully developed 

i    constituent 

m    mixture or mean 

min    minimum 

max    maximum 

p    perimeter 

s    supply 

0    reference or initial value 
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CHAPTER 1  
INTRODUCTION 

In a rotary regenerator (or regenerative heat exchanger) heat and moisture is cyclically 

transferred from one of the air streams to the matrix and then to the other air stream as shown 

in Figure 1.1. If the regenerator is designed to only transfer sensible heat (temperature) it is 

termed a heat wheel (and sometimes rotating heat exchanger) and the heat transfer is only 

driven by the temperature difference between the two air streams. When the wheel in addition 

is designed to transfer latent heat (moisture) through a desiccant coated layer on the surface of 

the rotor material by exploiting water vapor concentration differences in the air streams, it is 

called an energy wheel (and sometimes a enthalpy wheel or desiccant-coated heat wheel). 

Typical operating conditions for the two types of wheels is presented in Figure 1.2 on a Mollier 

chart. We observe that under winter conditions moisture transfer occurs in the cold part of the 

heat wheel due to condensation, but that no moisture transfer will take place during the 

summer. As the energy wheel transfer moisture through sorption during both winter and 

summer conditions, the outlet conditions of the airflows end up on an intermediate line 

between the two inlet conditions (Tunaa, 2013). 

The  majority of the total heat exchange media used in energy wheels for air-

conditioning today is generally aluminum foil substrate with a surface coating of a desiccant 

material consisting of a dry film of silica gel or molecular sieve ((Fischer Jr, 1988; Jeong and 

Mumma, 2005), but we may also find oxidized surfaces or a separate coating of aluminum 

oxide. The desiccant material account for about 20 percent of the energy wheel mass, and as 

such the bulk of sensible heat transfer is accomplished through the aluminum portion of the 

wheel as for heat wheels without a desiccant coating. Simonson, Besant, and Wilson (1997) 

contributes the aluminum wheels high thermal conductivity and thermal capacitance for its 

popularity in air-conditioning where high sensible and latent heat transfer is usually desired, 

while Fischer Jr. (1988) also credit it for its high strength and durability  and also the advantage 

that aluminum in some cases is capable of being washed with water or steam without harming 

the desiccant coating (Tunaa, 2013). 
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Figure 1.1 Conceptual drawing of the wheel geometry (From Jeong and Mumma, 2005) 

 

 

Figure 1.2 Illustration of winter and summer operations of (a) heat wheel, and (b) energy 

wheel (From Holmberg, 1989) 
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 The sensible and latent heat exchange media used in the wheels are generally in the 

form of a matrix that provides small, uninterrupted flow channels through which an air stream 

can flow (Fischer Jr, 1988). A common matrix arrangement for air-conditioning purposes is a 

type of honeycomb matrix, where alternating layers of a corrugated sheet material and a flat 

sheet material is formed to produce e.g. the sinusoidal curve as shown in Fig. 1.1, that extends 

axially along the depth of the wheel. The effectiveness of the wheel matrix is strongly 

correlated to the heat/mass transfer surface area to volume ratios. The small flow passages 

provides a large surface area, in the order of 1000-5000 m²/m³ , so that it is possible to transfer 

a lot of energy with very compact wheels, making high heat and moisture transfer effectiveness 

a characteristic of heat/energy wheels (Simonson, 2007; Tunaa, 2013). 

One problem associated with the use of rotary regenerators is that of condensation and 

frosting under winter conditions. As the warm and humid exhaust air passes through the heat 

exchange media, it can be cooled to the dew point temperature and a thin film of condensate 

will then start to form on the surface. Excessive or uncontrolled condensation may severely 

degrade the desiccant coating used in energy wheels if the desiccant is saturated and water 

begins to run off and, if the temperature is below freezing, frost may begin to accumulate 

within the exchanger, potentially restricting air flow and reduce the effectiveness or damage 

equipment ( Simonson et al., 1997). Rotary regenerators may however operate with frost or 

condensation occurring on the rotor surfaces under controlled conditions, since the condensate 

is evaporated and frost sublimated on the supply air side (Holmberg, 1989). In comparison with 

static heat recovery units, such as plate heat or membrane exchangers, where the frost layer 

will grow in thickness as more condensate precipitates out onto the cold surface, the moisture 

transfer in heat/energy wheels will effectively lower the limiting temperature for which frost 

accumulation will occur (Holmberg, 1989; Tunaa, 2013). 

 This problem of condensation and frost in heat and energy wheels has been investigated 

by several researchers, with Holmberg (1989) predicting the condensation/frost limits for both 

heat and energy wheels, and Simonson et al. (1997) and Bilodeau et al. (1999) analyzing the 

case of energy wheels. The former produces some interesting charts were heat/energy wheels 

can be directly compared, while the latter two is more detailed in that they in addition to 

analyzing the location of the condensation/frost zones also simulates the frost-build up over 

time. The investigation by Bilodeau et al. (1999), employing a three-dimensional formulation, as 

opposed to the one-dimensional channel considered in the other investigations, is especially 

interesting as it also analyzes the effect of time on the frosting limit.  

 The common denominator among all of these investigations is however that they all are 

written in imperative programming languages like Fortran, and that information are at best 

scarce regarding the modeling parameters (with the exception of Simonson (1998) in which all 
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the wheel parameters are given and numerical code provided) and various diffusion and 

transfer coefficients used. As such these formulations and their numerical implementation 

remains for all purposes inaccessible to the designer with results that are hard to reproduce, let 

alone analyzing and customizing for design purposes. 

With that in mind the objective of this thesis is to develop a three-dimensional 

mathematical model describing the flow geometry and heat transfer in a single sine duct from 

first principles and translate the resulting formulation into a numerical model using the 

computational package COMSOL Multiphysics. The numerical model will be constructed with 

ease of use in mind so that the designer will be able to control the entire model using just the 

modeling parameters which includes all of the geometry parameters and the operating 

conditions. This means that the designer is free to make changes to any of the modeling 

parameters with all the components of the model, including the geometry and physics, 

automatically adjusting to the current input parameters (the only exception to this is the heat 

transfer coefficient which will vary based on the thermal boundary condition used). 

As mass transfer is neglected the model will represent a regenerative heat exchanger or 

heat wheel without sorption or condensation/frosting (mass transfer), but still as the 

concentration field will be solved for, we will be able to retrieve information on whether or not 

there is a risk for condensation on any local cold spots. The decision not to include mass 

transfer is that it would require additional considerations that are better explored when having 

successfully completed this first step as the same physics are used. The present model is 

however constructed with this future objective in mind, and will as such provide a useful 

comparison for a model using the same template but having successfully incorporated the 

additional physics needed to represent a heat/energy wheel with or without condensation. 

Due to not being able to complete the numerical model in a timely fashion (a result of 

licensing issues and the sheer complexity of the complete numerical model) the resulting model 

has not been excessively analyzed. The problem has been one of trading time working with the 

numerical model on the desktop (which for the most part has been necessary in compiling this 

paper) and simulating as the number of licenses only on rare occasions has allowed for both. 

Moreover as the memory required has proven too be far too extensive for laptops (at least  for 

single-core ones) it has been necessary to outsource the computations, and given the stretches 

of time needed when simulating, the process at times obviously has been less than ideal. As a 

result the model has not gone through a mesh refinement study nor has it been the subject of 

extensive validation procedures. Not having enough licenses to orchestrate parallel 

computations in order to compile a data set of different modeling parameters, only the results 

of one test case has been analyzed.   
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CHAPTER 2  
THE COMPONENTS OF A COMPUTATIONAL 

FLUID DYNAMICS SIMULATION SYSTEM 

The objective of this thesis is to establish a model that encompasses the physics at play 

in a regenerative heat exchanger and to simulate how that model, woven together by a system 

of equations representing the physics, responds to changing operating conditions. For that we 

need a platform for physics-based modeling and simulation that allows us to complete a series 

of steps as shown in the chart below (Figure 2.1). In what follows we will take a look at each of 

these in turn and note the differences between an imperative programming language like 

Fortran (derived from Formula Translating System) and computational packages like COMSOL 

Multiphysics. In the former all the sequences of commands that the computer is to perform has 

to be defined by the user, allowing for custom designed numerical techniques and processing. 

In the latter a set of predefined interfaces, couplings and operations contained within a Model 

Tree that spans all the steps are available and are presented on a graphical interface that allows 

for ongoing visual feedback. This is the approach taken in this thesis. 

2.1 Defining the Mathematical Model 

The first step in setting up the simulation is to define the physics that is to be simulated. 

In the next chapter the theoretical background for the mathematical model is presented along 

with any modeling assumptions made. In the case of a graphical user interface processor such 

as COMSOL Desktop the mathematical model can then be directly formulated using the 

appropriate physics with initial and boundary conditions, parameters, variables, couplings and 

so forth on a geometry built using a computer-aided design (CAD) software. This is the objective 

of the chapter describing the numerical implementation of the mathematical model.  

If Fortran is used we still have to define the parameters, variables, couplings and so 

forth, but there is no need to set up the governing equations as only the discretized space 

domain and model equations is used in the computational sequences. At the base level the 

graphical user interface reduces to computing language, but clearly there is an advantage in 

working graphically as it presumably is less time-consuming and the ongoing feedback will 

make the user less prone to making errors. 

In any regard it should be emphasized that within the world of continua, as currently 

applied to describe the behavior of fluids and solids, there is always an unavoidable level of 



6 
 

empiricism in the models. As such any modeling assumption made will be associated with a 

generally undefined level of error when compared to the real world (Hirsch, 2007).  

2.2 Defining the Discretization Process 

 Once the mathematical model is formulated we may begin the major process of 

translating or discretizing the geometrical domain and the set of governing differential 

equations making up the model into numbers that the computer recognizes.  

 The first action is to discretize the space defined by the edges, boundaries and domains 

of the geometry. This process consists of distributing points or finite elements like tets, bricks, 

prisms and pyramids (or any combination of these) to the space. This set of points, which 

replaces the continuity of the real space by a finite number of isolated  points or elements in 

space, is called a grid or a mesh. As the whole objective of the simulation is for the computer to 

provide the numerical values of all the relevant variables, such as velocity, pressure, 

temperature, concentration and so forth, on these mesh points, it becomes clear that the 

outcome of the simulation and its accuracy can be extremely dependent on the grid properties 

and quality (Hirsch, 2007). As imperative programming languages like Fortran does not provide 

visual support this process requires expert knowledge beyond simple geometries. 

After generating the mesh we may move on to the discretization of the model 

equations, which makes up the second branch of our modeling tree (Figure 2.1). Now as the 

computer only have access to the elements or points as defined in the mesh all mathematical 

operators such as the partial derivatives of the governing equations needs to be transformed 

into arithmetic operations on those same points in space (Hirsch, 2007). This conversion 

process from derivatives to arithmetic operations are the objective of various methods such as 

the finite element method, finite volume method, the boundary element method and so forth. 

In COMSOL Multiphysics several different methods are in use, but the emphasis is on the finite 

element method. Most critically though is that the method and additional configurations used 

are automatically chosen and tailored to the type of physics and geometry you are solving for. 

At the same time the user retains the option to manually adjust aspects of the discretization 

process like overriding the order of the elements used – that is if the shape of the elements are 

to be say linear or quadratic – on different components like velocity, pressure or temperature, 

which will affect the accuracy of the solution. 
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Figure 2.1 Modeling tree (Presented using XMind software, from (Hirsch, 2007)) 

   

2.3 Performing the Analysis Phase 

Regardless of the discretization method that is being used the discretization process 

yields a set of algebraic relations between neighboring elements or points with one relation for 

each point. The final result is an algebraic system of equations that have as many equations as 

unknowns and is what makes up the numerical scheme. This numerical scheme then must 

satisfy a certain number of rules and conditions to be acceptable and subsequently it must be 

analyzed to establish the associated level of accuracy.  

This phase of analyzing the scheme for consistency, stability and convergence are vital in 

the sense that any discretization will automatically generate errors as a consequence of the 

replacement of the continuum model by its discrete representation (Hirsch, 2007). This is true 

in a sense for both platforms – COMSOL Multiphysics and Fortran – but in the former extensive 

measures are already in place to secure that the various discrete representations is stable and 

accurate. The user is then left with the task of exercising judgment regarding the results of the 

simulation, and perform mesh refinement and validation procedures to ensure that the 

numerical scheme is in fact giving valid solutions. In the latter the researcher needs to be more 

intimately acquainted with the various numerical schemes available and their properties to find 

the most appropriate scheme for the envisaged application. 
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2.4 Defining the Resolution Phase 

The last step in the discretization process is solving the numerical scheme to obtain the 

element or point values of the variables of interest. In COMSOL Multiphysics the software runs 

the analysis together with adaptive meshing (if selected) and error control using a variety of 

numerical solvers: direct and iterative sparse matrix solvers, algebraic and geometric multigrid 

methods, as well as a range of preconditioners. The direct linear system solvers computes the 

system matrix in one step and is as such computationally expensive, robust, and will benefit 

from shared memory parallelism. The iterative solver iterates until a relative tolerance is 

fulfilled, and uses various methods to divide the problem into a more coarse mesh, which it 

solves for, and then applies the solution to a finer mesh. As such the iterative solver requires 

less memory than the direct solver, but is less robust than its counterpart. 

The solution is advanced by using either a segregated solver in which the solution 

variables are divided into subgroups that are solved for independently, or fully coupled solver, 

in which all the solution variables are solved for simultaneously for each iteration. As such the 

fully coupled solver is more computationally expensive than the segregated solver, but are 

more robust in terms of minimizing error. These are mutually exclusive and are a coupled to 

either a direct or iterative sparse matrix solver as shown in the chart below (Figure 2.2) which 

gives their relationships. These solution variables and matrix solvers works whether the 

problem is classified as stationary problem (steady-state) or as time-dependent problem (also 

called dynamic or unsteady problems). In the case of a stationary solver a damped Newton 

method is generally used, while for the implicit time-dependent schemes the BDF and 

generalized alpha stepping methods are available. 

As was the case in the discretization process the software automatically chooses the 

appropriate settings based on the variables available, but the user retains the option to 

manually configure the settings. Moreover it automatically recognizes when multicore 

computing is available and reconfigures the solver settings accordingly. In Fortran the 

researcher would have to be acquainted with the solution algorithms available for the different 

classes of problems and would need to manually adjust these if say more physics was to be 

included in the model. 

Once the solution is obtained, we have to manipulate this considerable amount of 

numbers to analyze and understand the computed variables. This can only be achieved through 

powerful visualization systems, which provide the software tools to study, qualitatively and 

quantitatively, the obtained results. This is true whether or not we use computational packages 

like COMSOL Multiphysics or imperative programming languages like Fortran but for the 

software these visualization systems comes as part of the package while in the latter you would 



9 
 

have direct access to the solution matrices and would have to manipulate these in some 

manner. 

 

 

Figure 2.2 Solver settings (Presented using Xmind software) 

   

2.5 Features of COMSOL Multiphysics 

 The software specific features of COMSOL Multiphysics is, given the scope of such 

computational packages, quite extensive. Here we will therefore limit ourselves to a general 

overview of the program together with some interesting facets as related to the current 

problem of designing a regenerative heat exchanger.  

 Addressing the general overview first we begin by noting that the user interact with the 

platform first and foremost through the COMSOL Desktop which provides an integrated 

environment with a unified workflow regardless of the application area. Here a Model Tree in a 

Model Builder gives the user full overview of the model and access to all functionality – 

geometry, mesh, physics settings, boundary conditions, studies, solvers, postprocessing and 

visualizations. Apart from noting that this environment lends itself for easy and general 

customization, a number of different application programming interfaces (APIs) are also 

available. Of these the Livelink for MATLAB interface are used for the development of the 

overall model in the current problem as it allows us to work with COMSOL Multiphysics in 

combination with the MATLAB technical computing language. 

 Aside from giving access to the core functionality and physics as described above the 

core platform may in addition be augmented by a number of add-on modules that can be 
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engaged for dedicated physics interfaces and tools like the Heat Transfer Module, and Chemical 

Reaction Engineering Module employed in this thesis. The interface modules under which the 

APIs falls comes as part of this extended functionality as well together with cross-platform 

integration with for example Excel and AutoCAD through Livelink for Excel and Livelink for 

AutoCAD, respectively.  

 The most interesting feature of COMSOL Multiphysics is perhaps that it comes with an 

in-built interpreter for mathematical expressions. This means that expressions including 

unknown field variables, their derivatives, spatial coordinates and time all can be assigned to 

variables for later use in for example boundary conditions, interpolation functions or in an 

analysis using the technical computing language of MATLAB. This means that most of the time 

there is no need to write code to adapt the software when there is need for a custom 

expression as we will see when constructing the numerical model.  
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CHAPTER 3  
MATHEMATICAL MODEL 

3.1 Geometry 

The transport equations and fluid-structure interactions is in the present thesis analyzed 

by considering the sinusoidal channel as shown below (Figure 3.1). The basic equations 

governing the shape of a single channel is the sinusoidal function, 

 [1 cos( )],y a x
b


     (3.1) 

where a is the half-height of the sine duct and b is the half-width of the duct, and a lower (or 

upper) boundary that is simply given as a flat plane.  

 

Figure 3.1 Conceptual drawing of the sine channel with fully developed flow (From Sherony 

& Solbrig, 1970). 

 

From this conceptual drawing we note the flow will be symmetrical around the 

centerline of the air stream and as such it is only necessary to solve the variables of interest for 
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half of the channel. On the other hand the flow will not be symmetrical across the sine and 

neither on the lower boundary because of the honeycombed matrix structure in which the sine 

channels are stacked on top of each other. There will however exist skew-symmetry across all 

of these boundaries and as such we are left with a few options regarding how to define the 

geometry. We could consider the air streams on both sides of the sine or we could use the 

skew-symmetry to find the appropriate boundary conditions on the sine wall from the adjacent 

air stream. In any case we would still need to impose skew-symmetry boundary conditions on 

the flat boundaries to restrict the problem. As simulating both air streams would necessarily be 

more computationally expensive, and as we still need to define the other skew-symmetry 

conditions the latter alternative where we in addition would need to define the symmetry 

across the sine is considered the most efficient option.  

Apart from these considerations the conceptual drawing also reveals why a two-

dimensional representation of the channel will fail to capture any transverse influences as there 

isn’t any symmetry across the channel in the x and y (or angular) direction. A two-dimensional 

model will therefore necessarily carry a hydraulic diameter that is simply based on infinite 

parallel plates, and a corresponding flow field that at best makes for a weak approximation of 

the actual flow at any given x or y (or angular) coordinate. This is further illustrated from the 

fully developed velocity profile in the drawing where the maximum velocity is indeterminate 

and could never be replicated in any other reduced formulation. As such a one-dimensional 

representation will inherit far fewer complications than a two-dimensional one as the hydraulic 

diameter doesn’t discriminate between different geometries, but at the same time it carries no 

information on how the equations governing the local diffusional processes behaves. 

The exceedingly complex three dimensional formulation will therefore be the focus of 

this thesis and our attention will be directed towards the features observed in the sine 

geometry. Still it is recognized that a two-dimensional model, while expected to be inaccurate, 

provides an excellent tool to gain a clearer understanding of how the physics works and verify 

that the governing equations indeed behave as expected before launching on a three-

dimensional campaign.  

3.2 Assumptions 

In this thesis the numerical model solves the equations governing the velocity, temperature 

and concentration fields in a single air stream, together with the temperature of the sine-

shaped matrix, and the convective heat fluxes between the matrix walls and air streams. So 

while this model uses an untreated clean aluminum structure that doesn’t support sorption 

processes as a mode for mass transfer it still solves for the water vapor present in the air. The 

channels themselves are cyclically being exposed to two physically separated flows (of which 

the air streams originate) as the rotary matrix, of which they make up a small fraction, spins 
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around its own axis with constant angular velocity. As such, the formulation is three-

dimensional and transient, with space ( , , )x y z  and time ( )t  as the independent variables. 

The idealizations setting the stage for the model analyzed in this thesis is given below. 

1. Body forces such as gravity, centrifugal, Coriolis, and electromagnetic do not exist. 

2. Radiation effects are negligible compared to heat transfer by convection as a result of 

low temperatures. 

3. Thermal energy sources, viscous dissipation effects, and flow work within the fluid are 

neglected. 

4. No free convection, mass diffusion, chemical reaction, change of phase, and 

electromagnetic effects takes place. 

5. The velocity distribution of the air are independent of the fluid temperature.   

6. The channels are equal and uniformly distributed throughout the wheel. 

7. The state properties of each inlet stream are uniform radially (r-direction), but may vary 

with time (or rotational angle). 

8. Heat (and mass transfer) from the exchanger to the surroundings (besides the channel 

inflow and outflow) are negligible. 

9. The velocity, temperature and concentration profiles develop simultaneously within 

each channel. 

10. Pressure drop in the axial flow are negligible with respect to the total pressure. 

11. The convective heat transfer between the air streams and the matrix surface can be 

evaluated by employing bulk properties and film coefficients. 

12. The dependent variables and properties vary periodically with time each rotation of the 

wheel (i.e., within one cycle the dependent variables and properties vary in a cyclic 

manner). 

We note that these assumptions are generally comparable with those presented in the 

literature in that many are dedicated to permit the channels to be independently treated, to 

provide a uniformly distributed transfer area, to ensure constant mass flow rate of dry air for all 

channels and to allow energy balances to be written (Tunaa, 2013). The simplifying assumptions 

that make up the basis for the present study are however more general than those given in the 

literature and in what follows we will look into some of these differences. For a more detailed 

analysis of the implications of the above idealizations as well as other commonly used 

assumptions in the literature the reader is referred to e.g. Tunaa (2013). 

 As noted previously the present model is not limited to a one-dimensional analysis of 

the air as was the case in the investigations by Simonson and Besant (1997) and Sphaier and 

Worek (2004), examined in Tunaa (2013).This allows for an view of how the velocity, 

temperature and concentration profiles is expected to develop and allows for the analysis of 
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how various influences will affect not only the bulk properties found in other studies but also 

local properties which may be of importance.  

On the other hand the present investigation does not include mass transfer through 

sorption nor condensation and as such does not enable the study of how the separated flows 

interact through these important modes of transfer. Furthermore any modifications made to 

the model in order to incorporate such effects would need additional assumptions along the 

lines of those presented in the literature (c.f. Tunaa, 2013).  

 Another important assumption that is relaxed in this thesis compared to previous 

studies is the requirement that all surfaces perpendicular to the air stream is adiabatic. Instead 

symmetry is imposed appropriately around the channel walls to reflect the presence of the air 

streams in the adjacent channels. 

3.3 Conservation of Mass and Force Balances (Momentum Equations) 

As the model analyzed in this paper is three-dimensional it becomes necessary to solve 

the momentum equations in order to establish a flow field on which the transport equations for 

heat transfer considered later forms an intimate relationship with. To bridge the gap between 

what simplifying assumptions are made in the current model and those that are usually made in 

regard to laminar flow through ducts, it is prudent to take a look at these in turn. We start by 

giving the complete set of continuity and momentum equations, 

 ( ) 0
t





 u     (3.2) 

 
2

( ) [ ( ( ) ) ( ) ]
3

Tp
t


   


          
u

u u I u u u I F    (3.1) 

where 

   is the density ( 3/kg m  ) 

 u   is the velocity vector ( /m s  ) 

 p  is the pressure ( Pa  ) 

   is the dynamic viscosity ( 2/N s m  ) 

 F   is the volume force vector ( 3/N m )  

The most commonly invoked assumption for flow geometry in ducts or forced 

convection in general is that the velocity profile may be assumed independent of the heat or 

mass transfer processes occurring. This involves considering the flow properties as constant, 

and hence density changes due to temperature and concentration variations may be neglected. 
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The flow in this case is described as being incompressible or as constant-density flow. The 

preceding two principles – mass conservation plus three force balances – are thus sufficient for 

solving the flow part of the convective heat transfer problem. We note at this juncture the 

availability of four equations for determining four unknowns (three velocity components plus 

pressure). Moreover with the flow independent of the unsteady state heat or mass transfer 

problem, all unsteady state terms in the continuity and momentum equations may be 

neglected (Sherony & Solbrig, 1970). 

Another assumption that is almost always applied with regard to flow geometry in ducts 

in regard to convective heat transfer is that body forces such as gravity, centrifugal, Coriolis, 

and electromagnetic do not exist. This simplifies the analysis as the volume force vector 

vanishes in all three force balances (Shah and London, 1978). 

From here studies of flow geometry in ducts diverge in too two subcategories – one that 

consider only the fully developed flow region and one that in addition describes the 

hydrodynamic entrance region where the velocity boundary layer is developing. Here we are 

interested in the latter as the model considers simultaneously developing flow, but as the 

developed region makes up the greater part of the flow length the most important features can 

be gleaned from such analysis.  

In fact only the fully developed laminar flow (and heat transfer problem) for sine ducts 

has been investigated to the author’s knowledge. The equations analyzed in such situations are 

simplified by recognizing that for fully developed flow the velocities perpendicular to the flow 

direction, u   and v , are zero. The continuity equation then reduces to the statement that the 

axial change in velocity, w , are zero.  Utilizing the above assumptions and the continuity 

equation the x  and y momentum equations reduces to a statement that the transversal 

pressure gradients are zero while the governing boundary layer type z  momentum equation 

becomes, 

 
2 2

2 2

w w p

x y z






  
  

  
  (3.2) 

These equations implies that the pressure drop in the axial direction is constant 

(Sherony & Solbrig, 1970). We also note that since the continuity equation is utilized in deriving 

the momentum equations only the solution to the momentum equation is required for the fully 

developed laminar fluid flow problem. Only the no-slip condition at the boundary is thus 

needed to close the problem and the equations can be readily solved using a numerical method 

such as a finite-difference method as in Sherony and Solbrig (1970) or as a least-square method 

as in Shah (1975). 
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For the hydrodynamic entrance flow problem however, where the velocity boundary 

layer is developing, these assumptions are no longer valid.  In fact the flow problem can now no 

longer be classified as strictly a boundary layer problem. This is because very near the entrance 

the axial molecular momentum transport 2 2( / )u x    is not a negligible quantity, and far from 

the entrance, the boundary layer thickness is not negligible compared to the characteristic 

dimension of the duct (Shah and London, 1978). In addition it is also conceivable that very close 

to the entry the transverse pressure gradient across the section may not be negligible.  

To overcome these difficulties it is customary to simply assume that those quantities are 

negligible and that the Prandtl boundary layer idealizations, 

 ,w u v   (3.3) 

 , , , , , , ,
w w w u u u v v v

x y z x y z x y z

        

        
   (3.4) 

even though not strictly applicable to the entrance flow problem remains good approximations 

for laminar flow in ducts. The terms of the x  and y momentum equations are then found to be 

one order of magnitude smaller than the corresponding terms of the z  momentum equation 

and hence may be neglected. This implies that the pressure drop is a function of the axial 

coordinate z only, and that if we invoke the idealizations made for the fully developed flow, the 

governing boundary layer type z momentum equation becomes, 

 
2 2

2 2

w w w dp w w
u v w

x y z dz x y

  
 

  

    
       

    
  (3.5) 

There is again imposed a no-slip condition on the boundary, but we now also require an initial 

condition, which is usually a uniform velocity profile at the entrance, and that the continuity 

equation be solved simultaneously.  

 The system of equations describing the flow problem in the case of nonsymmetrical 

ducts such as the sine configuration has four unknowns – ( , , )u v w  and ( )p , but only two 

equations so that two additional equations are needed to close the system. A third equation in 

addition to the momentum and continuity equations are thus needed to describe the behavior 

of the u  and v  components in the entrance region. Such an equation for the sine configuration 

is not known to the author. Finally the axial pressure distribution has to be obtained from 

another physical constraint such as from the solution of the mechanical energy integral 

equation. 
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  In the model investigated in this paper we use the single-phase laminar flow branch in 

the Computational Fluid Dynamics (CFD) Module of the COMSOL Multiphysics software 

package. This module has predefined physics that enables us to solve for the full momentum 

equations as defined in equation (3.1) given at the beginning of this chapter. As detailed above 

it makes sense to assume that the flow geometry is independent of the temperature and 

concentration problem and that body forces exerts a negligible influence on the air stream. 

These simplifications are therefore retained here and can be exercised by selecting for 

incompressible flow and noting that by default no body forces are included. The resulting 

system of equations used in the present model to simulate fluid flow thus becomes, 

 ( ) ( ( )Tp         u u I u u   (3.6) 

 ( ) 0  u   (3.7) 

The no-slip boundary condition for this case is, 

 , , 0u v w on     (3.8) 

The initial condition is a uniform velocity profile at the entrance or sufficiently upstream of the 

exchanger (to be explained later), 

 0 0avg facew w at z or w w at z            (3.9) 

At the outlet a boundary condition that specifies vanishing viscous stress along with a Dirichlet 

condition on the pressure is used as it admits total control of the pressure level along the entire 

boundary, 

   0( ) 0,T p p      u u n   (3.10) 

As is evident from the discussion above this will include quite laborious computations as 

all the terms previously considered negligible now are solved for. In a sense we might be 

sacrificing computational resources to include effects that may have a negligible influence on 

the heat transfer problem, but given the assumptions above this is largely redeemed by the fact 

that we only have to solve for the flow geometry once. From the discussion above we also 

learned that no investigation has been performed to include the hydrodynamic entrance region 

in the simplified scheme outlined above as a result of difficulties in closing the problem. As such 

there is no alternative to the above formulation while at the same time we have no means of 

verifying the resulting developing velocity profile. 
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3.4 First Law of Thermodynamics 

 The heat transfer part of the convection problem requires a solution to the temperature 

distribution throughout the flow. For laminar forced convection in which the solid walls of the 

duct guides the heat-carrying fluid stream this means determining the fluid and wall 

temperature distributions and the heat transfer rate between the wall and fluid. Such  a 

problem has mathematically complex features, such as heat conduction in normal, peripheral 

and axial directions; variable heat transfer coefficients along the periphery and in the axial 

direction; and changing velocity and temperature profiles along the flow length (Shah and 

London, 1978).  

The sine configuration with its high-conductivity matrix walls clearly exhibits most of 

these complicating features as we will go into detail later on and the current problem are 

therefore classified as a conjugated problem as opposed to a conventional convection problem 

(c.f. (Bejan, 2004)). The first step in analyzing this class of problem is to recognize that we need 

to consider the temperature and heat fluxes as continuous functions at the solid wall-fluid 

interface while solving for the energy equations (or first law of thermodynamics) 

simultaneously.  

3.4.1 Conjugated Heat Transfer Problem 

The formulation of the scalar energy equation for the air stream and wall are in the 

present analysis simplified according to the assumptions made before. To reiterate thermal 

energy sources, viscous dissipation effects, and flow work within the air stream are neglected. 

In the absence of radiation, free convection, mass diffusion, chemical reaction, change of 

phase, and electromagnetic effects, the governing differential equations and boundary 

conditions can be written as follows. 

Transport Phenomena in Air Stream 

 ( )p p

net heat transfer by conductionnet transfer of energy by fluid flow
rate of energy accumulation

T
C C T k T

t


 


        

  

    u q   (3.11) 

where 

   is the mixture density  ( 3/kg m  ) 

 pC  is the mixture specific heat capacity at constant pressure ( J kgK  ) 

 T  is the absolute temperature ( K  ) 

 u  is the velocity vector ( /m s  ) 

 q  is the conduction heat flux vector ( 2W m ) 
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 k  is the mixture thermal conductivity ( 2W m K ) 

subject to the boundary conditions, 

 wallT T on     (3.12) 

 ( ) ( )air wallk T k T on          n n   (3.13) 

and initial condition, 

 0 ( )oT T at z or z L         (3.14) 

Transport Phenomena in Matrix 

 ( )wall
p wall

net heat transfer by conduction
rate of energy accumulation

T
C k T

t





   

  

    q   (3.15) 

where 

   is the matrix density  (kg/m³) 

 pC  is the matrix specific heat capacity at constant pressure ( J kgK  ) 

 wallT  is the absolute temperature (K) 

 q  is the conduction heat flux vector 

 k  is the matrix thermal conductivity (W/m²K) 

subject to the boundary conditions, 

 ( ) 0,wallk T at z L       n   (3.16) 

 q on shared boundaries are skew symmetric with adjacent channels           (3.17) 

 As can be seen, the energy equations for the air stream and matrix are coupled by the 

boundary conditions of equations (3.11) and (3.12). Moreover as the channel is not isolated but 

instead surrounded by adjacent channels (c.f. Fig. 1.1) the heat flux over shared boundaries 

from the accompanying air streams needs to be taken into account. These air streams are 

presumably identical to the air stream in the channel solved for and from the matrix 

arrangement and flow geometry we observe that the heat flux on shared boundaries has to act 

in a skew-symmetric manner to the heat flux observed on the inside of the channel. It should 

also be noted that as a consequence of the continuous solid wall-fluid interaction along the 
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entire length of the channel the temperature profile is always variant (never fully developed) 

for the family of problems that this formulation subscribes too (Shah and London, 1978).  

 The conjugated problem as formulated above may be realized in a number of ways by 

synthesizing different interfaces of the core physics platform and/or the Heat Transfer Module. 

As we’ve already assumed that the flow geometry can be solved independently from the 

temperature problem and that the unsteady terms vanishes the usefulness of the Conjugated 

Heat Transfer interface is diminished. The energy balance for the air stream will therefore be 

represented by the Heat Transfer in Fluids interface which by default gives equation (1.10) . The 

temperature problem for the matrix wall may be solved using the Heat Transfer in Solids 

interface which gives equation (1.14) by default or by using the Heat Transfer in Thin Shells 

interface which gives a slightly modified version of equation (1.14), 

 ( )wall
s p T s T wall oop

T
d C d k T Q

t





       (3.18) 

where T  is the tangential derivative along the shell, and 

 ds is the shell thickness (mm) 

 Qoop is the out-of-plane heat flux 

3.4.2 Thermal Boundary Condition 

 The thermal boundary condition is the set of specifications describing the temperature 

and/or heat flux conditions at the inside wall of the duct. Obviously there are a large variety of 

thermal boundary conditions that may be specified for the temperature problem as discussed 

above, and the heat transfer flux of flows operating in the laminar regimes is strongly 

dependent on the condition that is being used (Shah and London, 1978).Paired with the 

observation that these imposed conditions may to varying degrees apply for the actual physics 

the engineering objective of choosing the appropriate conditions is not straight-forward and is 

often compromised by the availability of data. 

 To find the thermal boundary condition most applicable to the current model it is 

helpful to think in terms of the classes of thermal boundary conditions as systemized and 

defined by Shah and London (1978). These are the thermal boundary conditions of 

approximately constant axial wall temperature (T ) and approximately constant axial wall heat 

flux ( H ), respectively.  

We can easily discard the notion of approximately constant axial wall temperature 

under normal operating conditions by noting that the hydraulic diameter is very small 
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compared to the length of the channel and so if a temperature differential exists between the 

supply and exhaust air streams it will manifest itself in varying axial matrix temperature.  

 The thermal boundary condition of approximately constant axial wall heat flux per unit 

length is however realized in the channel and variations of this theme based on the duct 

geometrical properties and thermal conductivities is what is generally applied to heat 

exchangers (Shah and London, 1978). In the thin high-conductivity matrix analyzed in this paper 

the temperature across any cross section may be taken as uniform and the peripheral heat 

conduction may be idealized to be infinite. This is equivalent to idealizing zero wall thermal 

resistance in the normal and peripheral directions and coupled together with the assumption of 

zero axial heat conduction we then have the ( H ) boundary condition: 

 ,b
p

T
q mC constant independent of z

z




        (3.19) 

 
, , ( , )wall m wallT T T constant independent of x y


        (3.20) 

where the fluid bulk mean temperature and mean peripheral wall temperature are defined as, 

 ,

1
wall m wallT T ds

P


    (3.21) 

 
1

c

b c

c b A

T wTdA
A w

    (3.22) 

This formulation is mathematically amenable and consequently it is the most frequently 

investigated boundary condition in the literature. It should be noted however that in practice it 

may be difficult to achieve this boundary condition for noncircular ducts with corners and 

variable peripheral curvature. The underlying reason for this is easiest to conceptualize when 

thinking of the heat carrying fluid stream and its highly variable flow geometry with a high-

velocity core at a location that cannot be predicted analytically (Shah and London, 1978) and 

near stagnant regions near the corners. The flow geometry in these regions will interact with 

the matrix wall according to the local environment and it is therefore unlikely that the 

geometry of the channel will not cause some peripheral variation of the temperature. 

Nonetheless it remains a good approximation by virtue of the high conductivity of the matrix 

material. 

A consequence of the uniform (or near uniform) wall temperature around the 

noncircular periphery of the channel is in any case inevitably that the local heat flux is variable 

around the periphery to accommodate the flow geometry. In particular it will vary from a 

maximum in wall regions close to the stream to a minimum in wall regions close to other wall 
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regions ( q  drops to zero in the sharp corners of the cross section) (Bejan, 2004). Thus q is 

perimeter line integral of the local peripheral wall heat fluxes q , related as follows, 

 
1

avg p

q
q q ds

P P



      (3.23) 

In turn the local peripheral wall heat flux at a point on the boundary (and indeed the peripheral 

average) are given in terms of the operationally convenient heat transfer coefficient h , 

sometimes called the convective conductance, and the temperature difference ( wall bT T ) as, 

 ( ) ( ),
p

p p wall b p wall b p

h h

hk
q h T T Nu T T Nu

D k D
         (3.24) 

Also written as part of this balance are the non-dimensional Nusselt number Nu  which can be 

deduced by normalizing the convective conductance h   to the pure molecular thermal 

conductance hk D .  

As q  varies along the perimeter, the heat transfer coefficient follows suit and varies 

too. As such the Nusselt numbers listed in the literature (c.f. (Shah & London, 1978)) refer to 

the heat transfer coefficient averaged over the duct perimeter. Information about the local 

peripheral values are generally not available in the literature except for a few select 

configurations and this presents a problem as we’re interested in local temperatures in the 

channel. A major part of the numerical implementation of the mathematical model is therefore 

to define the local peripheral values from the known averaged peripheral values. 

 It should be noted that the equality on the left of equation (1.17) represents an energy 

balance in the absence of axial heat conduction within the fluid (together with the assumptions 

provided earlier), but also one that is void of axial heat conduction in the wall. The absence of 

axial heat conduction within the fluid presumably makes for a good assumption as long as its 

magnitude is negligible compared to advection. Depending on the temperature potential 

between the air streams however the wall axial heat conduction is likely to play an important 

role in conveying heat upstream to further enhance convection. This may or may not adversely 

affect the legitimacy of using the Nusselt numbers calculated without including such effects as 

wall axial heat conduction is included in the model. 

3.5 Mass Conservation of Constituents in the Air Stream 

 In the previous discussion on momentum equations we made the assumption that the 

flow was constant-density in order to procure the flow geometry. The centerpiece of the 

analysis was the principle of continuity through the control volume and we invoked it on the 
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case of a fluid of density   whose composition was not questioned. However the air stream 

under consideration is moist air, a mixture of dry air and water vapor, and in this section we will 

apply the principle of mass conservation on each of those constituents.  

 As we now are interested in how the density or concentration field changes in the air 

stream in response to the heating (or cooling) by the matrix, as opposed to obtaining the flow 

geometry, the unsteady transient terms associated with mass transfer can no longer be 

neglected for the constituents. In the absence of change of phase, chemical reactions, sorption 

and migration caused by an electric field the governing differential equations and boundary 

conditions may be written as follows. 
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  (3.25) 

where, 

   is the mixture density ( 3/kg m  ) 

 iw is the mass fraction of constituent i ( /kg kg  ) 

 u  is the velocity vector ( /m s ) 

 ij  is the fickian diffusion flux vector 

 D  is the mass diffusivity ( 2 /m s  )  

 iM  is molecular weight of constituent i ( /kg kmol ) 

subject to the boundary condition, 

 0i on    n N   (3.26) 

and initial condition, 

 , 0 ( )i o iw w at z or z L         (3.27) 

The mass transfer problem is coupled to the heat transfer problem in that the mass 

diffusivity, whose units is m²/s, is a transport property whose numerical value depends on the 

mixture pressure, temperature and composition. In turn the thermodynamics properties of the 

air stream are defined as a function of the quantity of  vapor in the moist air which the 

concentration equation (3.27) solves for. As observed the diffusion flux vector is assumed to be 
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governed by Fick’s law of mass diffusion in the air stream as is appropriate when molecular 

diffusion is not the dominating transport mechanism. 

 Given the proportionality that links molar concentration and mass fraction as a means 

of quantizing composition, defined by the following relation, 

 
w

c
M


   (3.28) 

the concentration equation formulated above can be replaced with a governing equation 

written in terms of molar concentration, 
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u j
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  (3.29) 

where, 

 c   is the molar concentration of water vapor ( 3/mol m ) 

 j  is the fickian diffusion flux vector 

 D  is the mass diffusivity (m²/s)  

subject to the boundary condition, 

 0i on    n N   (3.30) 

and initial condition, 

 0 ( )oc c at z or z L         (3.31) 

It should be noted that this formulation only is valid if the gas mixture can be considered 

dilute. This is  true in the case of moist air, where the species of interest, water vapor, acts a 

dilute solute in the solvent dry air. As such the above formulation in terms of molar 

concentration provides an alternative to the mass fraction formulation if desired. The above 

formulations may be implemented using either the Transport of Concentrated Species or 

Transport of Diluted Species interfaces, respectively, of the Chemical Reaction Engineering 

Module. 

3.6 Conjugated Heat and Mass Transfer Problem 

 The conjugated heat transfer problem and mass conservation of constituents in the air 

stream as formulated above together with momentum equations solves for velocity, 

temperature and concentration field in what is known as a heat wheel or regenerative heat 
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exchanger. It allows us to find hot or cold spots locally within the channel and can be used as a 

tool to predict when conditions are in place for condensation to occur. To build a numerical 

model that performs that multiphysics simulation for us is the objective of the next chapter. 

 At the same time it may be of equal interest to point out what the system of equations 

as described in the previous sections does not include to further our understanding of the 

limitations of the current formulation. The most obvious simplifying feature is that the 

concentration equation in its present state of zero mass flux on the mass flux boundaries does 

not allow for neither sorption nor condensation. As such the bulk water vapor partial pressure 

in the axial direction is expected to be conserved and equal to the water vapor partial pressure 

of the inflow air stream, while there will be what amounts to negligible gradients in the 

transversal directions as a result of isotropic mass diffusion. From moist air theory (see 

Appendix A) then the relative humidity v satp p  is a function of the saturation pressure of 

water vapor only which is turn is dependent on the local temperature.  

 Now if were to coat the matrix walls with a desiccant like silica gel or molecular sieve, 

each with their own set of characteristics, we would have to consider mass transfer by sorption 

processes. The mass flux on the wall-fluid interface may in the case of sorption mass transfer be 

defined in similar terms as the heat flux of the temperature problem because of the symmetry 

between the mass transfer scaling laws and their heat transfer correspondents (Bejan, 2004). 

More specifically we can define a convective mass transfer coefficient mh   based on the 

difference between the species concentration of the exposed side of the desiccant ,d s  and the 

bulk concentration of the stream b .  The local peripheral rate of species (water vapor) 

exchange between the air stream and the desiccant could then be given as, 

 , ,( )p m p v s bm h       (3.32) 

  The engineering objective would then be to find the convective mass transfer coefficient 

and the species concentration on the surface of the desiccant. The latter will of course be 

dependent of the moisture content and temperature of the desiccant and could be found using 

either sorption isotherms as in Simonson and Besant (1997) and Bilodeau et al. (1999) or by 

considering local diffusional processes within the desiccant (or sorbent felt) as in Sphaier and 

Worek (2004) .Either way we would not only need to consider the mass conservation of water 

vapor in the air stream as in the concentration equations (3.25-3.27) but also a similar set of 

equations for the mass conservation in the desiccant (or sorbent felt). This would include the 

rate of water vapor increase in the control volume (a storage term) and rate of water vapor 

transfer into the control volume. 
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With that in mind it is clear that the problem now indeed has to be classified as a 

conjugated heat and mass transfer problem in that the water vapor exchange between the 

desiccant and the air stream will necessarily be accompanied by heat transfer as well. In 

particular when moisture is adsorbed on the matrix, heat is released (adsorption is exothermic) 

and the local temperature of the air and matrix is increased. In the same manner the 

desorption of moisture into the air stream serves to decrease the local temperature 

(desorption is endothermic) of the air and matrix. This means that if the heat and moisture 

transfer is in the same direction between the supply and exhaust air (which is the case under 

normal winter operating conditions) the warmer of the two inlet streams (the humid exhaust 

air) is simultaneously cooled and dried and the cooler air stream (the cold dry supply air) is 

heated and humidified (Tunaa, 2013). In regard to our previous discussion on the relative 

humidity being a function of the saturation pressure of water vapor only (as for the heat wheel) 

this is clearly no longer the case when sorption is considered as now the mass fraction (and 

consequently the water vapor partial pressure) will change in response to the mass transfer. 

 Whether we consider a heat wheel or a heat wheel coated with an desiccant (an energy 

wheel) condensate will start to precipitate out of the exhaust air if the air temperature adjacent 

to the surface falls below its local dew-point temperature. For heat wheels the dew point of 

interest is simply that of the incoming air stream as no water is precipitated out of the air 

unless it becomes saturated. On a Mollier chart this change in the state of the exhaust air takes 

place along a line of constant water vapor content (c.f. Figure 1.2a and Appendix A) and leads 

to states of higher relative humidity with declining temperature. In energy wheels the dew 

point will gradually decrease as the warm and humid exhaust air flows through the channels 

and gives off water to the desiccant. As the exhaust air is simultaneously cooled down by the 

matrix however the relative humidity will still increase provided that the supply temperature is 

sufficiently low (c.f. Figure 1.2b).  

In any case if at some point along the rotor depth the exhaust air is sufficiently cooled 

down (to its dew point) then the relative humidity will be unity (i.e. 1  ), the water vapor in 

the air is saturated and condensate will start to form on the rotor surface. In a heat wheel this 

condensate will form as a thin film of water whereas for an energy wheel this additional 

moisture will simply be collected by the desiccant, which has large moisture retention capacity 

and can often hold its equivalent mass in water before water begins to run off (Simonson, 

1998). As the rotor rotates, this condensate will then be transferred to the supply side where it 

will be evaporated. The mode of moisture transfer under saturated conditions is thus in the 

form of a condensation/evaporation cycle (or ablimation/sublimation at temperatures below 

the triple point). The danger in regard to condensation or frosting is thus if the supply air 

becomes saturated at the entrance (the dew point will continuously increase as the cold air is 
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heated up) leaving behind a zone in which the condensate/frost can continuously build up with 

each consecutive rotation. 

To summarize the processes of sorption and condensation can both be modeled by 

introducing a mass transfer term like (3.32) in the case of sorption ( 1  )  or a similar term 

accounting for the rate of phase change when the air is saturated and thus limited to 1  , to 

the concentration equations of (3.25-3.27). As discussed above the treatment of the heat wheel 

and energy wheel will be different (with the energy wheel requiring additional equations) but in 

any case the moisture transfer leads to accompanying heat transfer which needs to be 

accounted for in the temperature problem of the air stream and the matrix of equations (3.11-

3.14) and (3.15-3.16), respectively. For a more thorough discussion on the nature of the 

sorption mechanism and the mechanisms behind condensation (and frosting) including their 

consequences on the wheel operation, the reader is referred to Tunaa (2013). 

The limitations of the present analysis is thus revealed in that even if we do not consider 

sorption we have no mechanism by which the amount of condensate that precipitates out of 

the exhaust air stream is accounted for (and by extension the accompanying heat transfer), and 

so even in the event of condensation the condensate will not be transferred to the supply air 

stream. As such this analysis can only evaluate when there will be a danger of sustained 

condensate in the supply section along with the length of this zone by pinpointing the zone of 

condensation is along the flow axis in the exhaust sector of the wheel. 
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CHAPTER 4  
NUMERICAL MODEL 

4.1 Defining the Global Parameters 

 We begin the process of constructing the numerical model from the mathematical 

formulation by providing the model parameters needed for the simulation. The relevant 

parameters along with some typical values are given in Table 4.1. This includes the geometrical 

dimensions of the single sine channel, namely the half height and half width of the duct and the 

thickness of the wall together with the channel length. Next operational parameters like the 

mass flow, temperature and relative humidity are in place to control the flow characteristics. 

Together with the wheel diameter these can be used in accordance with moist air theory to 

produce the density and velocity at the inlets. Also listed is the applied time for the supply and 

exhaust air streams, which are assumed to be identical in this paper. This corresponds to equal 

wheel sections for the opposing streams and in a scenario where this is no longer true the 

applied time would differ. In addition the mass diffusivity of the binary gaseous mixture of air-

water vapor has been defined at atmospheric pressure and a temperature of 298 K (Bejan, 

2004).This value can then subsequently be extrapolated to temperatures and pressures that 

differ from that specified in the table by exploiting an experimental formula knitting them 

together. 

 A primary objective of this numerical model has been that the entire model should be 

controlled by these parameters and that the subsequent geometry, definitions, variables and so 

forth should be defined in terms of the parameters listed here. As such any change in any of 

these will directly translate into those being automatically adjusted and recalculated to reflect 

that change. The only exception to this is the thermal boundary condition used which will in 

part depend on the matrix material and so the averaged peripheral Nusselt numbers will always 

need to be manually redefined. 

4.2 Defining the Sine Geometry 

 The sine channel may be constructed in a number of different ways and may either be 

native to the COMSOL Kernel or imported from more specialized CAD software. In this paper it 

has been built using the COMSOL Kernel in accordance with the objective of controlling the 

entire process using the model parameters. Below you can view the cross section along with 

the geometrical functions used with the innermost sine curve displayed (Parametric Curve 1) 

(Figure 4.1). 
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Table 4.1 Input data used in simulations 

 

 The approached used here is to define two parametric curves that is given by the 

sinusoidal function of eq. (3.1) and that are separated by the wall thickness. The sinusoidal 

function is recognized in the expression field below (Figure 4.1) together with appropriate 

parameters and positioning. Next a series of straight lines defined by linear Bézier Polygons 

were placed appropriately to build the lower arc, smoothing out remaining portions of the 

upper sine to secure correct skew-symmetry and otherwise completing the cross section. Then 

in order to prepare for extruding the cross section to its appropriate length and to be able to 

define the domain and boundaries of the physics, the air stream and matrix wall were made 

solid. These functions and conversions are seen below under the plane geometry of the work 

plane (cross section) under the geometry node. 

At this point it should also be noted that in total five work planes were prepared as seen 

in Fig. 4.1. Of these two work planes are for the extended flow field on either sides of the 

matrix with slightly different cross sections from that of the channel to account for symmetry 

with adjacent channels. The remaining three serves to divide the channel and allows us to mesh 

these separately. A full view of the channel after extrusion with the extended flows (in green) 

on both sides of the channel are given as a reference below (Figure 4.2). 
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Figure 4.1 Geometry sequence together with parametric curve settings and sine geometry. 

 

 

Figure 4.2 Three-dimensional representation of the sine channel 
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4.3 Velocity Problem 

 Our first step in this analysis is to establish how the flow geometry will express itself in 

the sine shaped channel of Figures 4.1 and 4.2. We’ve already established the governing 

equations, boundary conditions and initial conditions in equations (3.8-3.13), and hinted to the 

fact that these equations are in fact perfectly represented by the predefined single-phase 

laminar flow physics in COMSOL Multiphysics. Aside from setting up the physics using no-slip 

conditions, symmetry, and controlling the pressure and viscous stress on the appropriate 

boundaries, as defined by the geometry, the only unknown is the normal inflow velocity.  

As noted before this velocity is defined as the face velocity in front of the wheel rather 

than as a uniform velocity at the inlet and is implemented by extending the flow field. The 

reasoning behind this ties to the heat transfer part of the analysis and comes as a consequence 

of a non-zero uniform velocity at the inlet. If the no-slip condition is violated at the inlet then 

automatically we will experience non-zero heat fluxes all over the inlet boundaries. As the 

neighboring boundaries of the matrix are thermally insulated the result would be heat flux 

discontinuities which are impossible to resolve. In addition as the initial temperature will always 

differs from the previous cycle (and as the switch from one of the air streams to the next is 

modeled as instantaneous) there will always exist an infinitely steep temperature gradient at 

the moment of transition. This cannot be resolved and will inevitably lead to ripples 

downstream. If we extend the flow field however and have a sufficiently fine mesh then the 

impact of  these ripples will be minimized. Barring the strict numerical considerations the 

extended flow field also provides a more physically correct flow geometry as the air stream will 

be slowed down in front of the matrix frontal area as it is forced inside the channel. As such the 

additional computational requirement associated with simulating the flow upstream of the 

channel is deemed to be more than offset by both the numerical and physical considerations. 

To construct the normal inflow velocity from our model parameters we begin by using 

moist air theory (see Appendix A) to find the correct mixture density from the temperature and 

relative humidity of the air stream feeding the matrix. When activating moist air as the fluid 

type in the Heat Transfer in Fluids interface it computes the thermodynamic properties of the 

air stream according to a given concentration field or an input quantity such as the mass 

fraction of water vapor. At the same time predefined functions which  computes the saturated 

pressure for a given temperature, and either the  moisture content or the molar water vapor 

concentration from the relative humidity, temperature and absolute pressure, becomes 

available. For now we limit ourselves to use the function which gives the saturated pressure to 

find the mixture density from the preliminary and mixture definitions as provided in Appendix A 

on moist air theory. The resulting set of relations leading to the mixture density is given in Table 
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4.2 below where the subscript s  and e  represents the supply and exhaust air streams, 

respectively. 

 

Table 4.2 Flow geometry input variables 

 

 With the mixture density established as a function of the operating conditions we may 

apply a mass conservation statement on the flow just upstream of the channel. Assuming that 

the wheel is divided into equal sections for the supply and exhaust air streams the mass flow 

rate is given as, 

 
1

2
m face frm w A   (4.1) 

where m  is the mixture density, frA  is the wheel frontal area, and facew  is the face velocity. 

Now simply solving for the face velocity as in the table giving the flow geometry input 

variables (Table 4.2) we have all the prerequisites needed to run an analysis on the flow 

geometry with a suitable numerical solver. As we will need to analyze the flow geometry to 

make sense of the subsequent sections on heat transfer we will skip ahead of the space 

discretization procedure for now and give the velocity profile at a cross section of the channel 

where the flow is considered to be fully developed (Figure 4.3). Additionally the z   dependent 

velocity profile in the hydrodynamic entrance region (Figure 4.4) at some arbitrarily chosen 

location (here 0.25z mm  ) is also given as an illustration.   
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We observe that the maximum velocity occurs away from the centroid on the axis of 

symmetry in the contour plot giving the fully developed flow geometry (Figure 4.3) as was 

expected for the sine channel. As such no general statement can be made as for the location of 

maxw  for the fully developed velocity profile and it has to be determined numerically. The z   

dependent velocity profile in the hydrodynamic entrance region (Figure 4.4) shows clearly that 

as the velocity boundary layers grows there will exist local maxima because of the compressed 

corners together with an inviscid core as expected. 

4.4 Conjugated Heat Transfer Problem 

 The conjugated problem as described in the mathematical model in the previous 

chapter contained a cascade of different concerns that needs to be dealt with in order to ready 

the formulation for analysis. First of all we require that the temperature and heat fluxes be 

continuous everywhere. In other words we need the boundary conditions of equations (3.11) 

and (3.12) to be appropriately imposed in such a way that the temperature fields and fluxes 

between the solid matrix and air stream are continuous.  

Aside from how the different physics interfaces are coupled together we also need to 

implement the thermal boundary condition correctly. As we’ll see not only are there 

uncertainties regarding the actual values of the peripheral averaged Nusselt numbers but from 

our discussion on thermal boundary conditions we remember that in a three-dimensional 

formulation we have to account for how it varies locally around the perimeter as well.  

In defining the most appropriate thermal boundary condition, which we identified to be 

the (H1) boundary flux condition, we also introduced the concept of a bulk fluid mean 

temperature bT . As we’ll need that quantity along with the wall temperature wallT  to relate the 

convective conductance (or Nusselt number) to the heat flux we need to compute it from the 

flow geometry and local temperatures using the definition as set forth by equation (3.22) at 

every cross section along the axial direction.  
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Figure 4.3 Contour plot of the fully developed velocity profile 

 

Figure 4.4 Contour plot of the developing velocity profile 
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4.4.1 Averaged Peripheral Nusselt Number 

 The fully developed laminar flow problem has been analyzed extensively for a range of 

duct geometries, including the sine geometry. As a result analytical correlations in closed-form 

equations have been developed and verified by many researchers for flow friction and heat 

transfer in a single channel. The hydraulic diameter and the averaged peripheral Nusselt 

number for a sine channel are available in terms of the ratio of the sine height to the sine 

length * 2 2a b    (c.f. Figure 3.1) as follows (Shah et al., 2003). For *0 2:    

 
* *2 *3 *4 *(1.0542 0.4670 0.1180 0.1794 0.0436 )

2

hD

b
           (4.2) 

 
* *2 *3 *4 *51.9030(1 0.4556 1.2111 1.6805 0.7724 0.1228 )HNu              (4.3) 

 
* *2 *3 *4 *5Re 9.5687(1 0.0772 0.8619 0.8314 0.2907 0.0338 )f              (4.4) 

These relations are defined along with the modeling parameters (not shown in Table 

4.1) and will automatically update according to the geometrical parameters. For the present 

case of * 0.5   the resulting geometrical, flow and heat transfer characteristics are 

1.2164 ,hD mm   Re 11.170,f    and 2.5975,HNu    respectively. 

 Having the fully developed values we move on to find suitable Nusselt numbers for the 

simultaneously developing flow in the entrance region of the channel. Unfortunately no 

investigations has been (at least not successfully) conducted for the sine geometry for the 

simultaneously developing flow part, and as such no reliable data or empirical correlations is 

available for easy access to the author’s knowledge. Our only option if we want to capture the 

increased heat transfer in this region is to turn to other similar geometries where data is 

available or, lacking that, to correlations available for developed flow and developing 

temperature profiles. 

Simonson and Besant (1997) used data available in tabular form for the equilateral 

triangle duct geometry as presented in Shah and London (1978). These peripheral averaged 

Nusselt numbers were obtained using a finite difference method in which the effect of the 

transverse velocity components u  and v , as well as the axial momentum and thermal 

diffusions, 2 2( )w z    and 2 2( z)k w  , respectively, were neglected . The resulting values are 

only valid for (and tabulated) in the region  *1 200 1 10z  and are presented in Figure 4.5 

along with the fully developed value for the sine geometry and a correlation for the Nusselt 

number in the case of developed flow (which we’ll come back to later). In COMSOL Multiphysics 

this was achieved by using an interpolation function which allows us to use the tabulated values 
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directly and to apply a function to interpolate between the given values. The dimensional group 

governing the transition from the developing to the fully developed temperature profile is given 

as  * ( Re Pr)
hh Dz z D and the results are plotted against the square root of this value. 

Figure 4.5 Heat transfer in the entrance region of a sine geometry with ( H ) boundary 

condition 

 Now the fully developed value for an equilateral triangle duct with straight edges can 

be found in any book on convection heat transfer (c.f.(Shah and London, 1978)) to be 

, 3.111H fdNu   for the ( H ) boundary condition while the value obtained at * 1 10z   using 

the scheme above were , 1 10 3.58H zNu    . Clearly there is a discrepancy between these values 

that are unknown to us and to bridge the gap we need to know the thermal entrance length for 

which the Nusselt number approaches the fully developed value. Unfortunately no general 

formula is available to predict this thermal entrance length and even its definition as being the 

duct length required to achieve a value of local xNu  equal to 1.05 fdNu  for the fully developed 

flow are somewhat arbitrarily defined (Shah & London, 1978). 

 In addition we incidentally lack information on what happens as we’re approaching the 

channel inlet and the best option seems to concede to using an correlation for the developed 

flow and developing temperature profile as sketched in Figure 4.5. The correlation is the result 
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of an regression analysis (Shah et al., 2003), and are given in terms of the product of the 

fanning friction factor and Reynolds number as provided through equation (4.4) and the 

dimensionless group as defined above: 

 
1 3 * 1 3

, 0.517( Re) ( )H zNu f z

     (4.5) 

The above correlation are valid for both circular and noncircular ducts and are recommended 

for * 0.001z  . Aside from leaving us with some blind spots as seen in Figure 4.5 it is important 

to recognize that if the velocity profile are already developed at the channel inlet the fluid 

velocity, velocity gradients, and temperature gradients near the wall will be lower than in the 

case of simultaneously developing flow. The higher the velocities near the wall the more 

thermal energy will be convected in the flow direction, and heat transfer in the thermal 

entrance region will therefore be higher in the case of developing velocity profiles. 

Rather than settling with the above correlation then it may instead be prudent to return 

to some proper scaling analysis to find at least the correct scale for the thermal entrance length 

and deduce something about the nature of the profile of the developing Nusselt numbers. As a 

full scaling analysis is out of the scope of the present paper only the conclusions of an scaling 

analysis as performed by Bejan (2004) will be presented here and only in the case of Pr 1 (the 

procedure is different but the conclusions the same in fluids like water and oils for which 

Pr 1 ). If Pr 1 then the thermal boundary layer T  develops faster than the velocity 

boundary layer   and the following relation applies (Bejan, 2004), 

 
1 2 1 2( ) zPr ReT zz 

   (4.6) 

Now at the end of the thermal development Tz Z  and T hD  so that, 

 
1 2 1 2Pr Re

TT Z hZ D 
  (4.7) 

or 

 

1 2

/
1

Re Pr
h

T h

D

Z D 
 
 
 

  (4.8) 

This is a well-known result listed in much of the literature other than Bejan (2004) as, 

 0.1
Re Pr

h

T h

D

Z D
  (4.9) 
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 In view of the apparent discrepancy between these formulations Bejan (2004) makes 

the case that eq. (4.8) is the correct way of writing T hD . Squaring any proportionality in 

which the coefficient is (1)  but numerically less than 1 Bejan (2004) argues, leads to a 

proportionality of type (4.9) where the coefficient is no longer (1) . In conclusion then, the 

correct scaling for the transition from the developing to the thermally developed temperature 

profile is T hD , which means that the proper dimensionless group governing the transition is 

   
1 2

/ Re Pr
hT h DZ D 

 
. The reason that this group (and its counterpart that describes the 

transition from the developing to the fully developed velocity profile) governs transition 

phenomena Bejan (2004) discusses is that they become of order 1 during transition. Moreover 

they become of order 1 because they represent the competition between the correct scales, 

which, after all, make the concept of transition meaningful (Bejan, 2004).  

 Applying the correct scale to the local peripheral average Nusselt numbers in the 

thermally developing section ( )Tz Z  then gives, 

 

1 2

Re Pr
h

h h h h
z

T D

hD D D z Dq
Nu

k T k 



 
  

   

  (4.10) 

Since the T  scale is 1 2 1 2Pr Rezz    over the entire Pr  range as alluded to before it follows that 

the Nusselt number scale of eq. (4.10) should be valid for all values of Pr  (Bejan, 2004).  

 Returning now to the presented Nusselt numbers of Figure 4.4 it becomes obvious that 

when using the correct scale the developing Nusselt numbers should approach the fully 

developed value as the square root of our dimensionless group *z  becomes of (1) . Clearly the 

simultaneously developing Nusselt numbers of the equilateral triangle duct does not approach 

the fully developed value of the sine duct but rather that of the fully developed value of the 

equilateral triangle duct. To rectify this discrepancy it is therefore proposed to modify the 

known values of the equilateral triangle duct by the factor , ,fd sine fd triangleNu Nu  such that, 

 
,

, ,

,

fd sine

z sine z triangle

fd triangle

Nu
Nu Nu

Nu
    (4.11) 

 On the other end of the domain of known Nusselt numbers we observe that the 

presented Nusselt numbers resulting from the correlation of eq. (4.5) seems to conform to the 

scaling law presented in eq. (4.10). This is indeed the case as in general, the results as cataloged 

in Shah and London (1978) show that in the entrance region *1 2( 1)z , the Nusselt number 

obeys a relationship of the type (Bejan, 2004), 
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1 2

( )
Re Pr

h

h
z

D

z D
Nu constant



 
  

 
 

  (4.12) 

where ( ) (1)constant  . This proves the validity of the scaling law (4.10) and if we can find this 

constant for the simultaneously developing flow for the sine geometry we may complete the 

log-log presentation of Figure 4.5 as the scaling law has to exist in the form of lines of slope 1 . 

 Consider now the known Nusselt numbers of the modified sine duct as discussed above. 

Taking the difference between two of these at locations az  and bz  ( , )a b Tz z Z , and assuming 

that the Nusselt numbers obey the scaling law we have, 

 

1 2 1 2

, ,b ( )
Re Pr Re Pr

h h

a h b h
z a z

D D

z D z D
Nu Nu constant

     
      
        

  (4.13) 

Now simply solving for the unknown constant, we get, 

  
1 2 1 2

, ,b( )
Re Pr Re Pr

h h

a h b h
z a z

D D

z D z D
constant Nu Nu

     
      
        

  (4.14) 

and the log-log presentation may be completed using the Nusselt numbers that follows from 

eq. (4.12). 

The resulting values are presented in Figure 4.6 along with the values of the equilateral 

triangle and the correlation of eq. (4.5) for comparison. As no successful investigation has been 

conducted on the simultaneously developing flow for the sine geometry it’s difficult to assess 

the accuracy of these proposed Nusselt numbers, and the constant is if anything mildly 

speculative as it’s only as good as the values of the modified sine duct Nusselt numbers derived 

from the equilateral triangular duct Nusselt numbers. In spite of this the presented values are 

following the scaling law (4.12) and therefore the general trend should be correct even if the 

Nusselt numbers should prove not to be accurate. 
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Figure 4.6 Heat transfer in the entrance region of a sine geometry with ( H ) boundary 

condition 

 Having already defined the molar fractions of water vapor and dry air, the mixture 

density, and the average velocity of the air stream in the channel we continue using the moist 

air theory of Appendix A to define the rest of the needed thermophysical and transport 

properties of humid air. The resulting set of relations leading to the mixture Peclet number is 

given in Table 4.3 below where the subscript s  and e  represents the supply and exhaust air 

streams, respectively.  

The target dimensionless group, *z , can then be calculated according to the current 

distance z along the channel. In addition the average thermal conductivity of the mixture has 

been defined as the average of the thermal conductivities of the supply and exhaust air 

streams. 
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Table 4.3 Heat transfer input variables 

  

 

4.4.2 Local Peripheral Nusselt Number 

 As was discussed in the section on the thermal boundary condition in the chapter 

describing the mathematical model, the near uniform wall temperature around the noncircular 

periphery of the channel dictates that the peripheral local heat flux in turn must be variable 

around the periphery. Since information about the distribution of the peripheral local heat flux 

around the periphery of the sine geometry is non-existent in the literature we again have to 

rely on information we can salvage from investigations conducted on other geometries and 

general observations on how the peripheral local heat flux must behave to accommodate the 

flow geometry.  

 There are various analytical, semi-analytical and numerical methods available for the 

solution of the relevant momentum and energy equations, but most of these are only 

concerned with laminar fully developed flows and with the peripheral averaged Nusselt number 

(c.f.(Sherony & Solbrig, 1970)). Now the analytical treatments are generally only applicable to 

simpler geometries so that no closed-form solution are available and as such we expect any 

investigation to be performed using either semi-analytical or numerical techniques. We’ve 

already established that no such study is available for the sine geometry, let alone for the 

developing region, and moreover note that any such investigation would have to provide a 

function for the local peripheral Nusselt number that takes into account the flow geometry to 

be directly applicable in the present analysis.  

 Still the work of Ray and Misra (2010), which provides a detailed description of the local 

peripheral Nusselt number for the rectangular and equilateral triangular geometries with 
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varying radius of curvature at the corners, is interesting. Their investigation revolved around a 

semi-analytical approach in which the least-square method were employed on harmonic series 

and showed excellent agreement against previous studies when comparing the peripheral 

averaged Nusselt number. What makes it interesting however is that it confirms that the heat 

flux will indeed drop to zero in the case of a sharp corner for both the rectangular and 

equilateral triangular geometries, and that the heat transfer coefficient is at a maximum at the 

straight portions of the channel. As such the influence of the flow geometry is demonstrated in 

that sharp corners where adjacent walls converge acts as a heat (or cold) pocket because of the 

lower axial velocity while the straight-portions with less restricted flow transfer heat more 

effectively. The coupling between the flow geometry and the temperature is in Ray and Misra 

(2010) made clear by the fact the known coefficients of the harmonic series solution of the 

velocity problem is used as part of the series solution of the temperature problem.     

 Returning now to the fully developed velocity profile of Figure 4.3 we may make some 

general observations about the nature of the local peripheral Nusselt number around the 

periphery of the sine geometry. As observed for the geometries analyzed in Ray and Misra 

(2010) the local heat flux (and Nusselt number) has to drop to exactly zero in the corner where 

the walls converge. The rate of change of the local heat flux approaching this singularity will 

moreover be dependent on the local area goodness factor (wall-to-wall distance) resulting from 

the curvature of the sine curve and the flat plane. Next there has to be local maxima on the axis 

of symmetry on the flat plane and somewhere on the sine curve where the resistance to flow is 

at a minimum. Finally the decrease in Nusselt number in the uppermost region must have a 

local minima on the axis of symmetry that again will depend on the local area goodness factor 

resulting from the radius of curvature around this point. 

 Based on these observations it is therefore proposed that the local peripheral Nusselt 

numbers will be a function of the rate of change of the velocity gradient from the maximum 

velocity on the axis of symmetry to the requirement of zero velocities on the walls. The rate of 

change is clearly observed in Figure 4.3 where consecutive layers of lines of constant velocity is 

dense approaching the expected local maxima, and more spaced towards the uppermost region 

and sharp corners where the local area goodness factor rapidly declines. As the averaged 

peripheral Nusselt number at any cross-section z along the axis is known we may write (c.f. eq. 

(3.15)),  

 , ( )z p z zNu Nu ds Nu f s ds
 

      (4.15) 

assuming that the local peripheral Nusselt number can be expressed as the product of the 

averaged peripheral Nusselt number and some function ( )f s subject to, 
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 ( ) 1f s ds


   (4.16) 

where p  denotes the local peripheral value and ( )f s is defined as the peripheral local Nusselt 

number function.  

 To find this function we begin by making the observation that the rate of change of the 

velocity gradient from the maximum velocity on the axis of symmetry scales with the distance 

from the maximum velocity to the wall. This distance is simply given as, 

  
1 2

2 2

max max( , ) ( ) ( )d x y x x y y      (4.17) 

where max max( , )x y  is the location of the maximum velocity for the fully developed flow, and 

( , )x y are local wall coordinates. The coordinates for the maximum velocity can be found using 

a maximum operator defined on the domains of the air stream. 

Using this distance we may define the minimum and maximum wall distances from the 

maximum velocity to the sharp corner and the global maxima (which may correspond to either 

the flat plane or some point on the parametric curve) as mind  and maxd , respectively, by way of 

a minimum and maximum operator defined on the wall boundaries facing the air stream. The 

peripheral local Nusselt number function can then be recast in terms of the distance d  as, 

 ( ) ( ) 1f s ds f d d 
 

      (4.18) 

where 1 ( )f d d 


  is an area correcting factor,   a dummy variable, and ( )f d  is given as, 

 min

max min

( ) ( ) 1
d d

f d d
d d


 

   
 

  (4.19) 

where ( )d is some function taking into account the local area goodness factor at location 

( , )d x y on the wall.  

 The set of relations as defined above are given below (Figure 4.6) along with the 

boundaries on which these equations are valid. Here the local area goodness factor function is 

simply set to  max max( )d d d d   too further shift the heat transfer away from the sharp 

corner. As seen the local peripheral Nusselt number on the neighboring boundaries facing 

adjacent air streams are also defined using the skew-symmetry boundary condition. This 

involves defining an alternative coordinate system in which the wall distance is subject to an 
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imaginary maximum velocity in the neighboring channels and may be achieved by mirroring the 

known values on the boundaries of the simulated air stream in an appropriate fashion to create 

reciprocal (skew) values on the boundaries facing the adjacent air streams. The subscripts s  

and e  denotes the supply and exhaust air streams respectively, as before. 

 

Figure 4.7 Local peripheral Nusselt number function with associated boundaries 

 

Figure 4.8 Local peripheral Nusselt number function as a function of s along the periphery 
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The resulting peripheral local Nusselt number function can now be plotted against the 

wall distance s along the periphery, starting from the axis of symmetry on the flat plane and 

ending on the axis of symmetry on the uppermost portion, for various functions ( )d  taking 

into account the local wall-to-wall distance (Figure 4.8).  

Now all of these are in line with the general pattern we expect to see around the 

periphery as discussed in the preceding section, with 1   giving the unadulterated distance 

function and n   where  max maxd d d    giving consecutive shifts of more heat transfer 

taking place away from the point of singularity. The most reminiscent curve of the rectangular 

geometry in the case of the H1 boundary condition in Ray and Misra (2010) is 1  while for 

the equilateral triangular geometry it seems to shift towards something similar to 0n  . 

Considering that the wall-to-wall distance in the sharp corner of the sine geometry is even less 

than that of the equilateral triangle (which again is less than the rectangular geometry) we can 

with some confidence rule out the pure distance function but the exact value of n  remains 

unknown. Indeed it may be that some other function ( )d  other than those considered here 

would be more suitable. In the present analysis we choose, somewhat arbitrarily, the 

coefficient to be 1 2n . 

 The above analysis still has merit of course using the z   dependent velocity profile 

present in the hydrodynamic entrance region, but is complicated by the fact that the velocity 

profile is developing. Starting out as near uniform at the entrance the flow geometry will 

immediately adapt to the local area goodness factor of the compressed corners resulting in 

local increased velocities while the inviscid core remains unaffected (see Figure 4.4). As the 

velocity boundary layer around the periphery continues to grow these pockets of higher 

velocity will propagate towards the axis of symmetry along with a pocket of local increased 

velocity in the uppermost region that similarly is the result of a competition between the 

appropriate scales. Initially then we expect the peripheral local Nusselt numbers to be much 

more uniformly distributed around the periphery with local maxima starting closer to the 

singularity (where the heat flux is still zero) on both the sine and flat plane, together with a 

local maxima on the axis of symmetry in the uppermost region. Then as the velocity boundary 

layers develops these local maxima will start to approach the local maxima as seen in the fully 

developed peripheral local Nusselt number function of Figure 4.8 from both sides of the sine 

and on the flat plane. 

 Now to implement this in our mathematical model in Comsol Multiphysics we would 

begin with keeping track on all local maxima at every cross section along the flow axis and 

impose some function that would yield local maxima at the appropriate locations while at the 

same maintaining zero heat flux at the singularity. This is out of the scope (or timeframe) of the 
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present analysis and instead we are forced to assume the fully developed peripheral local 

Nusselt number function holds in the simultaneously developing region as well. Combining the 

averaged peripheral Nusselt number with the peripheral local Nusselt number function we can 

then plot the resulting Nusselt numbers directly on the wall boundaries facing the air stream 

along with the imposed skew-symmetry Nusselt numbers of the neighboring channels (Figure 

4.9).  

 

  

Figure 4.9 Local Peripheral Nusselt numbers in the entrance region for (a) the channel and 

for (b) the skew-symmetry boundaries (color range capped at 10Nu  for illustration purposes) 

. 

4.4.3 Defining the Bulk Temperature 

 To complete the relationship between the heat flux q  and the Nusselt number we 

finally require the wall-fluid temperature difference.  As was discussed in the chapter on the 

thermal boundary condition we conventionally select wall bT T T    as the representative wall-

fluid temperature difference since the fluid temperature varies over the channel cross section. 

The fluid bulk mean temperature bT  is not just any average; it is the mean temperature the 

definition of which is the first law for bulk flow (Bejan, 2004). Its definition was given as eq. 

(3.22) in the section on the thermal boundary condition in the previous chapter and is rewritten 

here as the following double integral over x  and y . 

 
1

( ) ( , , ) ( , , )b

c b

T z w x y z T x y z dxdy
A w

 
    (4.20) 

where cA  is the constant cross-sectional area and bw  the bulk velocity. 
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 To evaluate this double integral in Comsol Multiphysics we can use two general 

projection coupling operators. How they work are not straight-forward and may arguably best 

be described by way of an shadowgraphy analogy. In such an analogy the model (or part of it) 

takes the role of the hands and are defined as the source in the operator settings. The wall in 

this analogy is another part of the model: the destination. This is where the shadow is formed. 

Just like shadow puppets then, the result of a projection is to reduce the dimension of the 

source by one. The projected quantities or image is formed by integrating an expression in the 

direction of light. This direction is specified by a map between the source and the destination. 

 Now consider first projecting from 3D to 2D by integrating over y  (the x direction 

would work equally well here) over a representative cross-section of the channel as in the 

upper-left corner of Figure 4.10 below. Here the red arrows represent the lines integrated over. 

The associated operator’s settings contain fields for mathematical expressions where we can 

define the source map and the destination map. As there’s no need to integrate over some 

curve the expressions will simply be linear functions of the coordinates, and starting with the 

destination map we simply enter z and x  in the x  and y  expressions, respectively, to define 

the flow axis z  and the x  axis as the destination of the projection. Since we use the same 

plane in the source, the x  and y  expressions are z  and x  there as well. The z expression then 

defines the direction of integration, which in this case is the y axis, so we simply enter y . 

 The next step then is to use another projection operator to project the results of the 

first operator as described above from 2D to 1D by integrating over the remaining coordinate. 

Presented again at a representative cross-section of the channel we see the intended lines of 

integration as red arrows in the upper-right corner of Figure 4.10. As for the first projection 

operator this procedure takes place along the whole length of the flow axis, only this time we 

integrate over the boundary associated with the flat plane and not the entire flow domain. The 

destination map then is simply the z axis so we enter z in the x expression. Since we use the 

same line in the source, the x expression are z here as well. The y expression now defines the 

direction of integration so we simply enter the remaining coordinate x . 

 We can now use these projection operators (called genproj1 and genproj2 for the 3D to 

2D and the 2D to 1D projection, respectively) in combination to evaluate the mean bulk 

temperature as defined in eq. (4.20) as follows. 

 
1 2( 1( ))

( ) ( , , ) ( , , )
2( 1( ))

b

c b

genproj genproj w T
T z w x y z T x y z dxdy

A w genproj genproj w


  

    (4.21) 

where ( , , ) 2( 1( ))c bA w w x y z dxdy genproj genproj w    has been defined as a nested 

projection as well to ensure consistency. 
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Figure 4.10 Conceptual drawing of the lines of integration with associated General 

Projection settings. 

Now we could seemingly use the expression for the nested projection of eq. (4.21) 

directly in the heat flux defined on the heat flux boundaries but that would lead to a problem 

that is unnecessarily complex. Consider that with only one level of projection, the heat flux in 

every node on the heat flux boundaries connects to all nodes in a domain or on a boundary. 

With two levels, the same heat flux connects to one integral over all nodes in a domain or on a 

boundary, for each node in a domain or on a boundary. While the details of the assembly 

process are too involved to be presented here it is nevertheless clear that the vastly increased 

levels of complexity that results from nesting two projections and applying the result on a 

boundary will lead to an prohibitively long assembly time. 

 Instead it is proposed to define an edge ODE, mapping the nested projection to an edge 

variable bT . This can be achieved by simply adding the Edge ODE and DAEs physics from the 

Mathematics module, which enables us to configure the following equation on any edge in the 

geometry. 



50 
 

 
2

2

b b
a a

T T
e d f

t t

 
 

 
  (4.22) 

Now simply setting the coefficients ae  and ad  to zero as in the distributed ODE column of Figure 

4.10 we can map the nested projection onto the edge variable bT  by simply subtracting the 

nested projection from the edge variable in the source term f . Then with the help of a general 

extrusion (which allows us to map an expression defined on a source to an expression 

evaluated on any destination as shown in the general extrusion column of Figure 4.11) defined 

on the same edges (marked in blue in the graphics of Figure 4.11) as the edge variable bT we 

may again apply the heat flux on the appropriate heat flux boundaries.  

 

 

Figure 4.11 Edge ODE and DAEs and General Extrusion Coupling settings with associated 

edges 

In the assembly process the difference now is that while the nested projection as stated 

needed to be performed once for every node on the heat flux boundaries, the nested 

projection mapped on the edge variable bT only needs to be performed once for every node on 

the selected edges.  

4.4.4 Imposing the Thermal Boundary Conditions 

 The final step in completing the formulation of the conjugated heat transfer problem 

aside setting up the physics using symmetry (which gives the same equation as thermal 

insulation in this case), thermal insulation and designating the inlet temperature and outflow 
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on the appropriate boundaries (see Figure 4.12) is to couple together the matrix temperature 

and the air stream temperature using the appropriate thermal boundary conditions.  

 Now we do have some freedom in what physics interfaces we choose to use in order to 

implement the conjugated problem as defined by equations (3.11-3.17), but as we’ve already 

discussed the Heat Transfer in Fluids physics coupled together with either the Heat Transfer in 

Solids or the Heat Transfer in Thin Shells physics presents itself as most suitable to our 

application. Here we will use the former (Heat Transfer in Solids) as it has proven to be far 

easier to define the geometry, the thermal boundary conditions and the peripheral local 

Nusselt number function correctly using this interface. On the other hand the latter (Heat 

Transfer in Thin Shells) frees us of the need to define the mesh in the solid matrix and is more 

computationally efficient than its counterpart as it is tailored for these exact situations. 

Unfortunately there are issues concerning the geometry that leads to problems with the 

thermal boundary conditions and the peripheral local Nusselt number function that cannot be 

resolved without inducing some level of error, that may or may not be acceptable.  

  Moving on to the objective of coupling the physics together we begin by defining the 

heat fluxes that the matrix boundaries are subject too. The heat flux in the direction of the 

matrix on the wall-fluid interface are given combining the averaged peripheral Nusselt number, 

the peripheral local Nusselt number function and the wall-fluid temperature difference as, 

 
*

,( , ) ( ) ( ) ( ( ) )H z b wall

h

k
q z s f s Nu z T z T

D


     (4.23) 

where ( ) ( )f s f d . 

The skew-symmetry heat fluxes are similarly defined on the outside boundaries only now the 

skew-symmetry functions ( )lpf s  and ( )ucf s , for the lower plate and upper curve, respectively, 

replaces the peripheral local Nusselt number function ( )f s . These heat fluxes are 

implemented as shown in Figure 4.12 as Heat Flux 1,2 and 3, respectively, by selecting the 

appropriate boundaries and using the native variables as defined previously together with the 

interpolation function _ _ ( _ )Nu H z z star  giving the averaged peripheral Nusselt number.  

 Now in order to implement the requirement that the temperature and heat flux are 

both continuous as expressed by the boundary conditions of eq. (3.11) and (3.12) we simply 

designate the temperature of the air stream to be wallT T  (Temperature 2 in Figure 4.12) on all 

shared boundaries. The heat flux across this common boundary will then everywhere be exactly 

what is must be in order for the equations and the remaining boundary conditions put forward 

to be fulfilled. To see why it has to be this way imagine that we were to manually specify both 

the temperature and the heat flux on the shared boundaries. Then either the temperature 
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condition or the heat flux condition would automatically override the other because if it didn’t 

we would be over-constraining the system of equations. Moreover if we attempted to assign 

only a heat flux condition in lieu of the temperature condition we would violate the continuity 

equation and the air stream temperature immediately adjacent to the wall-fluid interface 

would not be constrained by the matrix temperature. 

 

Figure 4.12 Heat flux settings with associated boundaries 

 

4.5 Mass Conservation of Constituents in the Air Stream 

 The mass conservation of dry air and water vapor expressed in terms of either mass 

fractions or molar concentrations together with their associated boundary and initial conditions 

may be implemented using the Transport of Concentrated Species interface or the Transport of 

Diluted Species interface, respectively. Here we choose to use the formulation consisting of eqs. 

(3.25-3.27) corresponding to the Transport of Concentrated Species interface as it arguably is a 

more familiar way to write the concentration equation. 

 In any case we begin by again noting the similarities between the mass convection 

problem and the energy convection problem. If we divide the energy equation of (3.11) with 

pC  and compare it with the concentration equation of (3.25) we observe that the mass 

fraction ipw  occupies the place of the temperature, while the mass diffusivity D replaces the 

thermal diffusivity pk C  . As such we can set up the physics in the same manner as the 

fluid temperature problem with symmetry, inlet mass fraction and outflow on the same 

boundaries. The only difference is that since we in the present analysis assume that the air 

stream does not exchange moisture with the matrix through neither sorption nor condensation 
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(which would lead to extra terms in the energy equation) the mass boundary condition reduces 

to simply a statement of no mass flux across the wall-fluid interface. 

 The dominating feature of the concentration profile is thus simply the inlet mass 

fraction together with some weak concentration gradients caused by the mass diffusivity. The 

inlet mass fraction can simply be found using moist air theory (Appendix A), and a feature in 

COMSOL Multiphysics even allows us to define it in terms of the molar concentration. As 

discussed earlier in regard to the saturated pressure a predefined function is also available to 

determine the molar concentration directly from the modeling parameters of temperature, 

relative humidity and absolute pressure, and so it makes sense to exercise this option.  

The mass diffusivity D is as was alluded to in the beginning of this chapter dependent on 

the mixture temperature and pressure and can be evaluated using the value specified in the 

table as (Bejan, 2004), 

 

1.75

0
0 0

0

( , ) ( , )
pT

D T p D T p
T p

 
  

 
  (4.24) 

where 0 298T K   and 0P  is atmospheric pressure. 

Worth keeping in mind is that the mass diffusivity of a binary gaseous mixture does not depend 

on the concentration. Now as the diffusive term is expected to be almost negligible compared 

to the convective term in eq. (3.25), small changes in the value of the diffusivity coefficient is 

likely to have minimal impact on the results. As such it is prudent to simply assume that the 

mass diffusivity D is constant with little loss of accuracy.   

4.6 Space Discretization 

The final operation in completing the numerical model is to define the set points that 

replaces the continuity of the real space by a finite number of isolated points or elements in 

space. As was briefly discussed in defining the discretization process the grid properties, quality 

and mesh size is instrumental to the outcome of the simulation and its accuracy. As the mesh 

size decreases towards zero (leading to a model of infinite size) we move toward the exact 

solution for the equations we are solving. However, as we are limited by both finite 

computational resources and time, we have to rely on an approximation of the real solution. 

The goal then is to construct a mesh that allows for a simulation to be performed where the 

difference or error between the exact and the approximated solution is minimized  such that it 

is below some accepted tolerance level.  

Now given the huge array of possible ways to combine the different element types it 

becomes clear that we need some strategy when constructing the mesh. The first option would 
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normally be to just default to a physics-controlled mesh automatically available as a meshing 

sequence, but in the sine geometry considered in this paper it fails as a result of the complexity 

of the geometry. Instead the mesh has to be user-controlled, and while we will not concern 

ourselves with the exact procedure here a few remarks on how it may be done and potential 

concerns are appropriate. 

As a result of the skewed aspect ratio 1hL D and thin wall it seems prudent to use 

some form of swept mesh so that the cross-sectional xy plane mesh remains the same 

through the entire length of the channel. In an alternative scenario we could envisage to 

control all the boundaries around the periphery and use an unstructured tetrahedral mesh. 

Either way we would want to define the mesh at 0,z L  using some sort of combination of a 

mapped mesh and a free triangular mesh on the appropriate boundaries. To further control the 

interaction between the meshes corresponding to the air stream and matrix we could also 

make use of an edge mesh around the periphery. In addition we should consider including a 

boundary layer mesh which are typically used for fluid flow problems to resolve the thin 

boundary layers along the no-slip boundaries. 

Next to ensure that the grid stretching is continuous along the flow axis we need to 

assign some distribution to take into account the more abrupt gradients present in the 

entrance region. As we’ve already separated the channel into multiple regions one option is to 

assign a geometric distribution giving a dense mesh at the inlet that is progressively more 

spaced along the domain covering the entrance region. Then for the remainder of the channel 

where gradients is expected both to be of approximately the same magnitude and to have a 

major longitudinal component we can assign a fixed distribution giving equal spacing.  

 Completing these steps gives a mesh reminiscent of Figure 4.13 and Figure 4.14 where 

the xy   plane and entrance region together with a mesh sequence are displayed, respectively. 

 What’s apparent in the sample meshes given (Figure 4.13) is that the decision of 

including or not including a dedicated boundary layer mesh around the periphery will result in 

two meshes that differ considerably with respect to element quality and total number of 

elements. To find how they compare then we need to take a look at the mesh statistics which 

gives a detailed report of the mesh elements. As we have the option to examine the meshed 

edges, boundaries and domains individually we select the boundary corresponding to the air 

stream at the channel opening for a simple analysis. The resulting set of statistics are given 

below in Figure 4.15. 
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Figure 4.13 Sample cross-sectional meshes with (a) no dedicated boundary layer and (b) 

boundary layer (24 layers) 

 

 

Figure 4.14 Sample mesh sequence together with associated mesh (8 layers) 
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Figure 4.15 Mesh statistics of the cross-sectional mesh similar to Figure 4.13 with (a) no 

dedicated boundary layer and (b) boundary layer (8 layers) 

 

 While it’s clear that we somehow need to address the differences between these 

meshes we should note that different applications (i.e. a boundary layer versus structured 

tetrahedral) require different mesh qualities and in comparing these two statistics directly we 

should keep this in mind. That said the Minimum element quality statistic in combination with 

the Element Quality Histogram is a telling indicator when assessing the grid quality. Beginning 

with the boundary of the structured tetrahedral boundary layer mesh we observe from the 

histogram that the element quality at any cross section is generally very high with only a few 

elements of lesser quality scattered away (here a value of 1 indicates an element with optimum 

quality). These elements are most probably artifacts of the complex geometry near the 

singularity and so altering the geometry around this area to a shape more amenable to the 

meshing process could serve to increase the minimum element quality. The same high quality 

elements are also present on the boundary of the dedicated boundary layer mesh only now the 

greater portion of the elements contained within the boundary layer causes the overall 

distribution to be more uniformly distributed. As we learned from the competing mesh the 

singularity is likely causing the most offensive elements, but now the minimum element quality 

is further reduced because of the additional skewed aspect ratios caused by the layer adjacent 

to the boundary. In general it seems like the mesh quality increases as the boundary layer 

grows, indicating that at least the inner layers have ratios that make them too highly distorted.   

  Next we observe that the number of elements is vastly increased when introducing the 

boundary layer mesh (here displayed using 8 layers). Contributing to this increased number is 



57 
 

as we notice that all the elements are triangular (or tetrahedral for domains) depending on 

whether we consider a boundary or a domain, respectively. The explanation for this is that 

while the boundary layer usually produces prism or hexagon elements depending on the 

surrounding mesh, the general projection operator only accepts triangular and tetrahedral 

elements and so if we are to use a dedicated boundary layer we have to convert this layer as 

well. 

 In conclusion then the combination of a substantially increased need for computational 

resources and time together with an element quality that is considered as to low, results in the 

dedicated boundary layer mesh being discarded in favor of the more simple mesh. On the other 

hand if the element quality could be improved to a certain threshold, not only on the boundary 

considered for simplicity here but also on the domain level where the maximum growth rate 

(which can be used as an indicator for jump in grid size) and element quality are still worse, 

then that decision should be revisited.  

4.7 Pseudo-Steady State and Livelink for Matlab 

 The numerical model as developed so far is designed to solve the velocity problem, the 

conjugated heat transfer problem and the mass conservation problem for the air stream and 

matrix for either the supply or the exhaust part during one rotation of the wheel. Now we want 

to take this model one step further and solve the transient solution generated by the turning of 

the wheel until pseudo-steady state (or sometimes called quasi-steady state) is reached. As 

such the pseudo-steady solution is a transient solution that varies periodically and so even 

though the most important result is the pseudo-steady solution the model must be time 

accurate.  

 As discussed in Simonson and Besant (1997) the pseudo steady-state can be determined 

using either the periodicity of the wheel or by conservation of energy (and moisture) across the 

wheel. Now as we’re not concerned with moisture transfer in the present state of the model 

we’ll proceed using only the energy as an argument but it should be noted that the same line of 

reasoning holds for moisture. Based on an energy balance only then, pseudo-steady state is 

defined as the time when all the energy that is lost by one air stream is taken up by the other 

air stream. This means that the cyclic energy storage in the matrix over one revolution of the 

wheel is zero (or negligible) (Simonson and Besant, 1997). The pseudo-steady conditions for an 

energy balance is thus defined when, 
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where the enthalpy terms are the velocity weighted bulk enthalpy defined as 
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and the tolerance determines how stringent the solution is defined. 

 To ensure that eq. (4.25) gives the pseudo-steady solution Simonson and Besant (1997) 

suggests that periodicity of the wheel is checked by calculating the effectiveness after each 

revolution of the wheel. Periodicity is reached when the change in effectiveness is zero (or 

negligible), 
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where  is the total energy (enthalpy) effectiveness defined as the average of the supply and 

exhaust side effectivenesses ( 0e is the effectiveness of the previous rotation of the wheel), 
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The sensible heat transfer effectiveness, assuming constant specific heat, is given as, 
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  As the above equations (4.25,4.27-4.29) involves using properties from both the supply 

and exhaust section of the wheel it is clear that we need to have access to two sets of solutions 

– one for the supply part and one for the exhaust part – to evaluate if pseudo-steady state has 

been reached. In other words we need to progress the solution forward in time meaning that 

the numerical model as defined in this chapter needs to alternate between solving for the 

supply and exhaust section of the wheel. Then at the end of each rotation we need to evaluate 

whether or not pseudo-steady state has been achieved, that is if the transient solutions has 

converged. 

At the level of the numerical model this entails using the previous solution at time ft t  

where 0ft t period   ( 0t is the start of the period) for one section as the initial values for the 

simulation of the next section. That way we impose a continuous temperature for the matrix 

(and for the properties of the air stream). To simulate the actual turning of the wheel (assuming 

that the supply and exhaust air stream are arranged in a cross-flow arrangement) we need to 

reconfigure the boundaries on which the inlet and outlet conditions are defined to reflect the 

reversal of the flow direction. At this point it is prudent to remind ourselves that the flow 
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geometry solution is stationary indicating that some level of error has been introduced by 

assuming that the velocity profile develops instantaneously at the moment of transition. Alas 

the effect is likely to be small as long as the mass flow rate is sustained at the current level, but 

could become a concern when the mass flow rate is reduced.  

  Now to combine the need to progress to solution forward and evaluate if the solutions 

has converged with the changes made at the level of the numerical model it is clear that we 

need some high level language that allows us to develop algorithms and evaluate data in a way 

that the modeling platform in the COMSOL Desktop is not designed for. The solution is to use 

the Livelink for MATLAB interface which allows us to combine and use COMSOL Multiphysics 

together with MATLAB by creating a bidirectional integration between these modeling 

environments. This interface includes the COMSOL API so that for each operation done in the 

COMSOL Desktop there is a corresponding command that is entered at the MATLAB prompt. 

Thus it allows the user to save the numerical model with the geometry, variables, couplings, 

physics, and so forth as constructed in the COMSOL Desktop as a M-file for further processing.  

This enables us to use the open-ended technical computing environment of MATLAB for 

programmatic control for setting up and running the numerical model using repetitive 

operations like the while loop (or alternatively the for loop) and controls like if-else. Now if we 

combine that together with communication between COMSOL Multiphysics and MATLAB 

variables and the option to call individual study nodes as defined in the numerical model in the 

MATLAB workspace, it is easy to envisage how the complete pseudo-steady state numerical 

model might be constructed. The actual process is not easily communicated as the language 

and functions used in MATLAB are specific to the Livelink for MATLAB interface and is best 

learned by trial and error. The resulting algorithm for progressing the solution together with the 

changes done at the level of the numerical model (which is of course implemented at the level 

of the Livelink for MATLAB specific language used in MATLAB rather than manually in the 

COMSOL Desktop) is given in Appendix B. 

The complete model for obtaining the pseudo-steady state solution and describing the 

transient nature of the wheel operation is thus a product of the numerical model as 

constructed using the modeling platform of COMSOL Multiphysics and the algorithm developed 

in MATLAB using the Livelink for MATLAB interface. 
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CHAPTER 5  
RESULTS AND DISCUSSION 

 The numerical simulations were carried out using a fully coupled and direct solver for all 

the study nodes – the most robust scheme – as the mesh is constructed in such a highly 

controlled manner that it does not lend itself to the multigrid methods of the iterative solver (it 

generates errors as the mesh cannot be appropriately partitioned without generating inverted 

elements) and as the problem is posed in such a way that the segregated solver cannot be 

initiated. Using the numerical algorithm as defined in Appendix B the solution for the supply 

and exhaust sections was progressed until the convergence criteria of equations (4.25) and 

(4.27) were reached.  

Calculations were conducted on the Kongull Linux Cluster (CentOS 5.3 Linux cluster 

running Rocks) using 1 x Dell Intel Xeon based compute nodes, each with 2 x Intel(R) Xeon(R) 

CPU E5-2670 @ 2.60GHz  8-core (Sandy Bridge) processors and 32GB DDR3 1600 MHz memory. 

To set up the job sent to the cluster for processing COMSOL Commands on Linux (see the 

COMSOL Multiphysics Reference Manual) were used together with Kongull (i.e. CentOS 5.3 

Linux Cluster) specific commands. The resulting job script is given in Appendix C using the 

Message Passage Interface (MPI) system. 

As a consequence of not succeeding to complete the numerical model in a timely 

fashion only a few simulations to convergence has been performed, and as such no extensive 

library of different data sets has been compiled. Neither has the tolerance criteria for the 

energy balance nor the periodicity been subject to analysis and so it has not been checked if 

making them more or less stringent will change the predicted effectiveness.  

5.1 Mesh Refinement Study 

 The lack of different data sets makes it impossible to track any characteristic output 

parameter and as such no mesh refinement study has been conducted to find the best mesh 

size and fineness. The complete mesh used in this thesis is therefore based on a qualitative 

judgment only and represents a balance between maintaining the minimum element quality 

and the cross-sectional and swept meshes at an acceptable level while trying to keep the total 

number of elements at a minimum. The mesh statistics is given below in Figure 5.1 along with 

the associated mesh. For the physics currently employed in the simulations combined with this 

mesh (which is thought be intermediate with respect to number of elements) the number of 

degrees of freedom was 603472 (plus 226087 internal DOFs) and the computational time 
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needed to simulate one rotation of the wheel was approximately 6-8 hours depending on the 

number of computational nodes used. 

 If such a study were to be conducted however COMSOL Multiphysics allows us to track 

any variable or mathematical expression of variables at a single point of interest or use some 

operation (integral, average, minimum, maximum, etc.) performed over one or more of the 

domains, boundaries or edges. In our case the best option might be to track the bulk 

temperature at the outflows for both the supply and exhaust air streams which are already 

defined and solved for using the nested general projection combined with the Edge ODE and 

DAEs interface and general extrusion operator.  

 

 

Figure 5.1 Mesh statistics and the associated mesh used in the simulations 

 

Next we would typically have to define some parameter or parameters in our case as we 

would probably want to check both the cross-sectional mesh and the swept mesh, and then use 

those in the relevant size features and number of elements properties of the cross-sectional and 

swept mesh, respectively. Then using a parametric sweep with our dummy variable defined 

above we should sweep through a wide range of maximum mesh sizes to capture the 

convergence effect. Now while we should arguably solve for the pseudo-steady state solution 

this would take excessively long time and instead it may be prudent to just solve for one 

rotation of the wheel or even only one of the sections.  
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After computing the simulations we should join the relevant data sets that compares 

the tracking parameter at each mesh size with the value of the tracking parameter that is 

considered to be a reliable solution (which would typically be the finest mesh size). As we want 

to capture the convergence effect the data sets should be subtracted from each other and the 

result (here the difference between the bulk temperatures at the outflows) plotted against the 

tracking parameter. 

5.2 Validation of Formulation 

 As there was only a handful of simulations performed with the complete model, and as 

the computational times required are extensive, the process was controlled by using an for-

loop with only two full rotations of the wheel simulated instead of going for full convergence. 

As such the values presented in the following sections will not represent converged values and 

is only for demonstration, but the initial condition for the matrix temperature was continually 

updated with the previously conducted simulations and so it is expected that the transient 

solutions will convergence with a small number of consecutive turns of the wheel. Moreover 

the ripples was not adequately smoothed out in the simulations, and so we might envisage to 

extend the flow field further or improve the mesh (i.e. more dense at the ends) to improve 

performance. It may be that the ripples will be smoothed out with more consecutive turns of 

the wheel as well. 

In validating the formulation we will use the predicted sensible heat transfer 

effectiveness of equation (4.29) rather than the total energy (enthalpy) effectiveness of 

equation (4.28) as no moisture is transferred is in the present analysis (even if there is 

condensation) and because the effectiveness relations given in the literature is for sensible heat 

transfer only. Using the modeling parameters of Table 4.1 and the modified sine duct Nusselt 

number of Figure 4.6 the sensible heat transfer effectiveness becomes: 
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  (4.30) 

where ,s oT  and ,e oT  are the time-averaged temperatures at the respective outflows over the 

time interval 
1

3
p t p   ( see Figures 5.3 and 5.4 of the test case). 

As the temperature has not been time-averaged over the interval 0 (1/ 3)t p   the final 

effectiveness should be somewhat higher (while the convergence will most probably pull in the 

other direction) but the interval has been neglected because of some disturbance, presumably 

from the ripples and the fact that the transient solutions has not converged. 
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 To find how this effectiveness compare to that of the literature we have to define the 

overall number of heat transfer units ( 0NTU ) and overall matrix heat capacity ( *

0Cr ) from the 

modeling parameters. In the case of equal flow areas, heat transfer coefficients and mass flow 

rates on the hot and cold side, 0NTU and *

0Cr  simply becomes (Tunaa, 2013), 
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   (4.31) 

where h  is the fully developed averaged peripheral convective heat transfer coefficient, sA  is 

the heat transfer surface are, m is the mass flow rate and pC is the specific heat capacity at 

constant pressure of the air stream.   
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where M  is the mass of the wheel, ,p mC  is the specific heat capacity at constant pressure of 

the matrix, and N  is the angular speed of the wheel. 

 In order to find 0NTU  we begin by calculating the heat transfer surface area as 
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  (4.33) 

where the matrix packing density is given as 4 hD  and the total heat transfer surface area 

is 2 sA A as the wheel is divided into equal sector angles. 

The fully developed convective heat transfer coefficient can be found as, 

 
2
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h

k W
h Nu

D m K
     (4.34) 

where the mixture thermal conductivity has been evaluated at the mean temperature 

   , ,1 2 s i e iT T T   . 

From the foregoing values together with the mass flow rate and the specific heat capacity at 

constant pressure, again evaluated at the mean temperature, we get, 
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 To determine *

0Cr  , we first determine the matrix mass as, 

 

2 2 3(0.9 )m 0.1m 2700kg m (1 0.925) 12.9kg
4
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  (4.36) 

Knowing the matrix mass, its heat capacity rate is computed as, 

 
20
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60

p mCr MC N        (4.37) 

Knowing Cr  and the mass flow rate and the specific heat capacity at constant pressure for the 

air stream, we have, 
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 To include the effect longitudinal heat conduction in the matrix we need another dimensionless 

group, 
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An empirical effectiveness correlation expressed in terms of 0NTU and *

0Cr  for a sensible 

regenerative heat exchanger, valid for 0.9  and *

min max 1C C C  , is given as (Shah et al. , 

2003), 

 0
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where 
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Thus we have an expected value for a heat wheel with the same characteristics as the 

one employed in the present analysis that are somewhat less than the predicted effectiveness 
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of the current scheme which is to be expected because of the additional heat transfer in the 

entrance region (not accounted for in the analysis above). Even if we narrow in on the details 

though by not assuming equal heat transfer coefficients and specific heats (which are very good 

approximations) the predicted effectiveness should differ only marginally. These discrepancies 

should clearly be explored further in respect to both the numerical model and the hand 

calculations, but again because of time concerns (also with long simulation times) this has not 

been done in this thesis. Of special concern should be to mitigate the ripples as discussed in the 

velocity problem of the numerical model (section 4.3). Using the methodology above the 

effectiveness should also be checked for a host of different values of 0NTU  and *

0Cr  

corresponding to a set of different modeling parameters to ensure consistency. In addition to 

this validation it may be prudent to check the temperature profiles obtained with the current 

formulation against some experimental data but lacking both data for the simulations and any 

reliable experimental data this has not been done. 

5.3 Test Case 

 To illustrate the proposed formulation, simulation results of a test-case, compromising 

heat transfer in a selected heat wheel, are presented. The input data used in the simulations 

can be found in Table 4.1. To reiterate the inlet air temperatures and relative humidities are 

10supplyT C    and 20exhaustT C  , and  0.20supply   and  0.40exhaust  , respectively, whereas 

the mass flow rates are balanced and equal to 0.5 /supply exhaustm m kg s   .  

 In order to obtain insight on the pseudo-transient nature of the wheel, the evolution of 

the temperature distribution in the matrix is examined over one rotation of the wheel (Figure 

5.2). In addition the bulk cold and dry supply air and the bulk hot and humid exhaust air 

temperature distributions are given in Figure 5.3 and 5.4, respectively. As can be seen, the 

matrix absorbs heat during the exhaust section of the wheel and releases this heat in the supply 

section of the wheel. All of these temperatures profiles is very reminiscent of and shows good 

agreement with the distributions as presented in Holmberg (1977) for a wheel with balanced 

flows and 5oNTU  and *

0 5Cr  , respectively.  
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Figure 5.2 Matrix temperature distribution over one rotation of the wheel 

 

Figure 5.3 Bulk temperature distribution over the supply section of the wheel 
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Figure 5.4 Bulk temperature distribution over the exhaust section of the wheel 

  

The three-dimensional flow geometry in the entrance region and for the fully developed 

flow was given in Figures 4.3 and 4.4, respectively, and need not be repeated here. The effect 

of this flow geometry and the local peripheral heat flux distribution on the resulting cross-

sectional temperature profile is illustrated in Figure 5.5 for the exhaust section of the wheel at 

40mmz  (i.e. a flow length of 60mm ) and time (3.0s)ft t  . 

 As displayed, there is a considerable temperature difference between that of the wall 

and the near-stagnant pockets in the regions of low wall-to-wall distance, and that of the 

centroid with fast flowing air. As such these pockets of near-stagnant air represents cold spots 

and will along with the air immediately adjacent to the wall around the periphery be subject to 

condensation even if the bulk humidity gives no indication that condensate will begin to 

precipitate out of the air. This becomes clear when considering a relative humidity profile for 

the exhaust section of the wheel at the same cross-section and time (Figure 5.6), and a plot of 

the relative humidity at the wall together with the bulk relative humidity of the associated 

cross-sections versus the flow length (Figure 5.7). 
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Figure 5.5 Contour plot of the air stream temperature profile at 40mmz   

 

Figure 5.5 Contour plot of the relative humidity profile at 40mmz  with black regions 

indicating condensation/frost. 
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Figure 5.7 Local wall relative humidity versus bulk humidity for the exhaust section of the 

wheel. 

 These figures demonstrates that condensation/frosting conditions will exist locally 

within the wheel and moreover that the limits clearly will be influenced by the geometry of the 

wheel. As seen the moisture in the air will begin to precipitate out of the air in the pockets 

already at 43mmz  , continually increasing as the temperature drops further to envelop the 

whole cross-section at 28mmz  , where the bulk relative humidity finally reaches unity. This 

discrepancy might be a cause for concern as the condensation/frosting limits established in e.g. 

Holmberg (1989) and Simonson et al. (1997) is based on whether the supply air (as in bulk 

relative humidity) is able to pick up all of the condensate precipitated out of the exhaust air or if 

a zone of frost/condensation will be left behind. Obviously even if the supply bulk relative 

humidity drops below unity, indicating that all the condensate has been picked up, there may 

still be reservoirs of frost/condensate left in the near-stagnant pockets of condensate also 

transferred to the supply section. 
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CHAPTER 6  
CONCLUSIONS AND AREAS OF FUTURE STUDY 

 A three-dimensional and transient mathematical model for the heat transfer in 

regenerative heat exchangers has in this thesis been developed from physical principles, with 

efforts aimed at a detailed description of the thermally and hydraulically developing flow 

problem. The mathematical model was implemented using the computational package 

COMSOL Multiphysics with Livelink for MATLAB rather than an imperative programming 

language like Fortran. As such the resulting model represents a step towards analyzing the 

multiphysics phenomena of heat and mass transfer occurring in regenerative heat exchangers 

in full three-dimensional detail by utilizing automated state-of-the-art numerical analysis 

methods and powerful visualizations tools instead of settling with one-dimensional models 

carrying less information. The current procedure makes for a more user-friendly approach by 

allowing for ongoing visual feedback, making the entire process more streamlined, less prone to 

error and the results easier to analyze.  

The model developed in this thesis is unique in that proper scaling analysis has been 

performed to complete the simultaneously developing Nusselt numbers in the entrance region 

from incomplete tabular data sources, and in that a local peripheral Nusselt number function 

has been developed from the flow geometry to reflect the varying peripheral local heat flux 

around the periphery. In addition it also considers an extended flow field designed to improve 

the flow field, to negate ripple effects resulting from unphysical temperature gradients, and to 

ensure that the heat fluxes and temperature fields at the inlets are continuous.     

Results from the simulation of a test case considered in this thesis show that the local 

properties may deviate significantly from the bulk properties, suggesting that condensation 

may be present locally in pockets of near-stagnant regions for a considerable length of the 

wheel. The condensate precipitated out in these regions will not be captured by one-

dimensional formulations considering only bulk flow and so they run the risk of greatly 

underestimating the amount of condensate actually forming.     

 The numerical model presented has not been validated extensively and there is a need 

for further validation to ensure that the model provides consistent results. In addition the 

ripples should be revisited to see if they can be further mitigated. The model has neither been 

subject to a mesh refinement study nor has the modeling parameters been analyzed for 

sensitivity. As such there is a clear need for further research regarding these issues and in 

particular the influence of the characteristic parameters such as the mass flow rate and the 

angular velocity of the wheel on the performance. 
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 Regardless of the necessity for further investigation the proposed three-dimensional 

numerical model should provide an excellent platform for future studies that aims to 

incorporate sorption mass transfer and/or condensation and frost. At present there does not 

seem to be adequate built-in physics to support all of the additional considerations needed for 

analyzing the local diffusional effects or sorption isotherm in the desiccant, nor the mass 

transfer associated with change of phase resulting from condensation or frost. As additional 

modules is continually added to the COMSOL Multiphysics platform this may change in the 

future. There are however PDE Interfaces and ODE and DAE Interfaces available that might be 

used to manually define the physics needed under the Mathematics Module along with options 

to control the mesh (Moving Mesh) to take into account the changing interface caused by 

condensate precipitating out of the air stream. 
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