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Abstract: An approach to low complexity distributed MPC of nonlinear interconnected systems with 
coupled dynamics subject to both state and input constraints is proposed. It is based on the idea of 
introducing a contractive constraint in the centralized NMPC problem formulation, which would guarantee 
the closed-loop system stability when using a small prediction horizon. Particularly, the one step ahead 
NMPC problem is considered. Further, a quasi-NMPC method is developed, which is based on a 
sequential linearization of the nonlinear system dynamics and finding distributedly a suboptimal solution 
of the resulting convex Quadratically Constrained Quadratic Programming problem. The suggested 
approach would be appropriate for distributed convex NMPC of some cyber-physical systems, since it will 
reduce the complexity of the on-line NMPC computations, simplify the software implementation, and 
reduce the requirements for available memory. The proposed method is illustrated with simulations on the 
model of a quadruple-tank system. 
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1. INTRODUCTION 

Model predictive control (MPC) involves the solution at each 
sampling instant of a finite horizon optimal control problem 
subject to the system dynamics, and state and input 
constraints. Several methods for distributed/decentralized 
MPC of interconnected systems have been developed 
(Christofides et al. (2013), Maestre and Negenborn (2014)) 
which allow the computation of the control inputs to be done 
by the systems without the need for centralized optimization. 
In Venkat et al. (2008), Alessio et al. (2011), Giselsson et al. 
(2013), Giselsson and Rantzer (2014), approaches for 
distributed/decentralized MPC for systems consisting of 
linear interconnected subsystems have been developed. In 
Giselsson and Rantzer (2014), the assumption for 
guaranteeing the stability of the overall system is that the 
prediction horizon is sufficiently large, such that the relaxed 
dynamic programming condition in Grüne and Rantzer (2008) 
is fulfilled. Methods for distributed MPC for systems 
composed of several nonlinear subsystems have also been 
proposed (e.g. Raimondo et al. (2007), Dunbar (2007), 
Grancharova et al. (2016), Heidarinejad et al. (2011)). 
Recently, several methods for reducing the complexity of the 
MPC controllers have been developed. In Hovd et al. (2014), 
an approach to design a low complexity centralized MPC for 
linear systems by using contractive set constraint is proposed. 
The idea of adding a contractive constraint has been widely 
used in MPC to guarantee the stability of the closed-loop 
system (e.g. De Oliveira and Morari (2000)). On a broad 
scope, various Lyapunov-based MPC algorithms (Christofides 
et al. (2013)) have been developed. 
In Grancharova et al. (2016), an approach to distributed quasi-
NMPC for interconnected nonlinear systems has been 

proposed, where the stability of the closed-loop system can be 
achieved by choosing a sufficiently large prediction horizon. 
In this paper, a low complexity distributed quasi-NMPC 
approach is proposed, which applies the method in Murillo et 
al. (2016) of introducing a contractive constraint in the 
centralized NMPC problem formulation. This would help the 
closed-loop system stability when using a small prediction 
horizon and at the same time will reduce the complexity of the 
optimization problem and the requirements for available 
memory. Here, the one step ahead NMPC problem is 
considered. Then, a quasi-NMPC method is developed, which 
uses a sequential linearization of the nonlinear system 
dynamics and finds a suboptimal solution of the resulting 
convex Quadratically Constrained Quadratic Programming 
(QCQP) problem by using distributed iterations of the dual 
accelerated gradient method. 
 

2. FORMULATION OF CONTRACTIVE NMPC 
PROBLEM WITH ONE STEP AHEAD PREDICTION 

Consider a system composed by the interconnection of M  
subsystems with overall state and overall control input: 
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where ( ) in
ix t ∈  and ( ) im

iu t ∈  are the state and the control 
input, related to the i-th subsystem. The general case when the 
subsystems are coupled both through their states and inputs is 
considered and it is assumed that their dynamics are described 
by the nonlinear discrete-time models: 
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(QCQP) problem by using distributed iterations of the dual 
accelerated gradient method. 
 

2. FORMULATION OF CONTRACTIVE NMPC 
PROBLEM WITH ONE STEP AHEAD PREDICTION 

Consider a system composed by the interconnection of M  
subsystems with overall state and overall control input: 

1 2
1

( ) [ ( ), ( ), ... , ( )] ,
M

n
M i

i
x t x t x t x t n n

=

= ∈ = ∑  (1) 

1 2
1

( ) [ ( ), ( ), ... , ( )] ,
M

m
M i

i
u t u t u t u t m m

=

= ∈ = ∑  (2) 

where ( ) in
ix t ∈  and ( ) im

iu t ∈  are the state and the control 
input, related to the i-th subsystem. The general case when the 
subsystems are coupled both through their states and inputs is 
considered and it is assumed that their dynamics are described 
by the nonlinear discrete-time models: 
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( 1) ( ( ), ( )) , 1, 2, ... ,i ix t f x t u t i M+ = =
  
 (3) 

Here, : inn m
if × →  is a nonlinear function of the 

overall system state ( )x t  and control input ( )u t . The 
constraints imposed on the subsystems are: 

( ) , ( ) , 1, 2, ... ,i i i ix t u t i M∈ ∈ =X U  (4) 
where iX  and iU  are the admissible sets, and the following 
assumptions are made: 
A1. The functions if , 1, ... ,i M=  are continuously 
differentiable with (0,0) 0if = . 
A2. The admissible sets iX  and iU  are bounded polyhedral 
sets, i.e. they are defined by: 

{ | }in x x
i i i i ix C x d= ∈ ≤X ,  { | }im u u

i i i i iu C u d= ∈ ≤U    (5) 
and they include the origin in their interior. Here, 

,c x iin nx
iC ×∈ , ,c u iin mu

iC ×∈ , ,c xinx
id ∈ , ,c uinu

id ∈  and , ic xn  

and , ic un  are the number of constraints imposed on ix  and iu . 

Here, the optimal regulation problem is considered where the 
goal is to steer the overall state of the system (3) to the origin. 
It is supposed that a full measurement 1 2[ , , ... , ]Mx x x x=  of 
the overall state is available at the current time t . In order to 
reduce the on-line computational complexity of the 
optimization, a NMPC problem based on one step ahead 
prediction is formulated. For the current overall state x , the 
regulation NMPC solves the optimization problem: 
Problem P1 (Centralized NMPC): 

* ( ) min ( , )
t

tu
V x J u x=    (6) 

subject to: 
, 1| , 1,...,i t t ix i M+ ∈ =X      (7) 

, , 1,...,i t iu i M∈ =U      (8) 

, 1| ( , ) , 1,...,i t t i tx f x u i M+ = =     (9) 

1| 1, 1| 2, 1| , 1|[ , , ... , ]t t t t t t M t tx x x x+ + + +=           (10) 

1, 2, ,[ , , ... , ]t t t M tu u u u=            (11) 
with the cost function given by: 

T T
, 1| , 1| , ,

1

1( , ) [ ]
2

M

t i t t i i t t i t i i t
i

J u x x Q x u R u+ +
=

= +∑  (12) 

Here, , 0i iQ R  are symmetric weighting matrices for the i-
th subsystem. For guaranteeing the stability of the closed-loop 
system, the approach in Murillo et al. (2016) is applied and 
the following contractive constraint is added to the centralized 
NMPC problem formulation: 

0( , ) ( , )t tJ u x J u x≤    (13) 

where 0 0tu =  and: 

0 0,T 0
, 1| , 1|

1

1( , ) [ ]
2

M

t i t t i i t t
i

J u x x Q x+ +
=

= ∑   (14) 

0 0
, 1| ( , ) , 1,...,i t t i tx f x u i M+ = =   (15) 

The contractive constraint (13) can be represented in the form: 
T T

, ,
1

T

1

1 [ ( , ) ( , ) ]
2

1 [ ( ,0) ( ,0)]
2

M

i t i i t i t i i t
i

M

i i i
i

f x u Q f x u u R u

f x Q f x

=

=

+ ≤∑

∑
 (16) 

Note that in Murillo et al. (2016) the contractive constraint 
formulation considers the more general case with horizon 

1N > . 
 

3. AN APPROACH TO DISTRIBUTED QUASI-NMPC 
WITH CONTRACTIVE CONSTRAINT 

3.1 Approximation of the NMPC problem with one step ahead 
prediction by a linear MPC problem 
The first step of the quasi-NMPC approach is to locally 
approximate the dynamics of the subsystems (3) by linear 
models for one step ahead prediction. Let at time t , ix  and 

,i tu  be the known state and the predicted update of the control 
input of the i-th subsystem. Taylor series expansion of the 
right-hand side of the model (3) about the point ,( , )i i tx u  leads 
to the locally linear prediction models of the subsystems: 

, 1 , , ,
1

, 1, ... ,
M

i t ij t j t i t
j

x B u g i M+
=

= + =∑  (17) 

where the matrix ,ij tB  and the vector ,i tg  are computed as: 

, , , ,
1

( , ), ( , )

, 1, ... ,

j

M

ij t u i t i t ij t j t i t
j

B f x u g B u f x u

i j M
=

=∇ =− +

=

∑  (18) 

In (18), 1, 2, ,[ , , ... , ]t t t M tu u u u=  and x  is the known state of 
the whole system. The prediction model (17)-(18) is a linear 
time-varying approximation of the nonlinear model (3). The 
one step ahead linearized prediction model of the overall 
systems is: 

1 ( , ) ( , )t t t t t tx B x u u g x u+ = +   (19) 
where: 

11, 12, 1 ,

21, 22, 2 ,

1, 2, ,

T
1, 2, ,

( , )

( , ) [ , , ... , ]

t t M t

t t M t
t t

M t M t MM t

t t t t M t

B B B
B B B

B x u

B B B

g x u g g g

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

  (20) 

The following assumption is made: 
A3. The system (19) is uniformly controllable. 
As in Giselsson and Rantzer (2014), the following tightened 
constraint sets are introduced: 

(1 ) { | (1 ) }in x x
i i i i ix C x dδ δ− = ∈ ≤ −X  (21) 

(1 ) { | (1 ) }im u u
i i i i iu C u dδ δ− = ∈ ≤ −U  (22) 

where (0, 1)δ ∈  is the amount of relative constraint 
tightening. The reason for the tightening is related to the fact 
that a suboptimal solution of the NMPC problem will be 
found (see Section 3.3) and it should be ensured that it will 
keep the original constraints. Let the constraints sets for the 
overall system be denoted: 

1 1(1 )( ... ) , (1 )( ... )M Mδ δ= − × × = − × ×X X X U U U    (23) 
Then, for the locally linear dynamics (17)-(18) with initial 
state x , the linear MPC problem is formulated: 
Problem P2 (Centralized linearized MPC): 

* ( ) min ( , )
t

tu
V x J u x=    (24) 

2018 IFAC NMPC
Madison, WI, USA, August 19-22, 2018

44



	 Alexandra Grancharova  et al. / IFAC PapersOnLine 51-20 (2018) 41–47	 43 
 

     

 

subject to the equality constraints (17)-(18), the admissible 
sets constraints: 

, 1| (1 ) , 1,...,i t t ix i Mδ+ ∈ − =X   (25) 

, (1 ) , 1,...,i t iu i Mδ∈ − =U   (26) 
and the contractive constraint: 

{ }T T T1 1[ ] [ ]
2 2t t t t t t t t t tB u g Q B u g u Ru g Qg+ + + ≤  (27) 

In (27) the overall weighting matrices are: 
1 1blockdiag{ , ... , }, blockdiag{ , ... , }M MQ Q Q R R R= =    (28) 

In (24) the cost function ( , )tJ u x  is defined by (12). The 
contractive constraint (27) is a coupling constraint and it can 
be represented in a more compact form: 

T T T( ) 2 0t t t t t t tu B QB R u g QB u+ + ≤   (29) 

Assume , 0Q R , then T( )t tB QB R+  is a positive definite 
matrix. Therefore, (29) is a convex quadratic constraint and 
the problem P2 is a convex Quadratically Constrained 
Quadratic Programming (QCQP) problem. The following 
assumption is also made: 
A4. The matrices , ,tB Q R  and the vector tg  are such that for 
any x ∈X  there exists tu ∈U  for which the contractive 
constraint (29) is satisfied. 

3.2 Distributed Quadratically Constrained Quadratic 
Programming problem 
Before representing the optimization problem P2 as a convex 
QCQP problem, the following notation is introduced for the i-
th subsystem. Let the vector Yin

iY ∈  (
iY i in n m= + ) include 

the decision variables (the control input at current time and 
the predicted successor state) for the i-th subsystem, i.e.: 

, 1| ,[ , ]i i t t i tY x u+=    (30) 

The matrix Y Yi in n
iH ×∈  (

iY i in n m= + ), including the cost 
matrices for the i-th subsystem, is defined as: 

0
0

i

i

i m
i

n i

Q
H R

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

   (31) 

where 0
in  , 0

im  are square zero matrices with dimensions in , 

im . The time-varying matrices i Yn n
iA ×∈  and in

iG ∈ , 
related to the equality constraints (17)-(18) for the i-th 
subsystem are introduced: 

1 2 ,,i i i iM i i tA A A A G g⎡ ⎤= =⎣ ⎦   (32) 

where for given i, ijA , 1, 2, ... ,j M=  are: 

,[0 , ], ; [ , ]
i j iij n n ij ii n iiA B i j A I B= − ≠ = −      (33) 

Here, ,0
i jn n  is a zero matrix with dimensions i jn n× , and 

inI  

is the identity matrix with dimension in . The matrix 
,dec

,dec
i Yin n

iC ×∈  and the vector ,dec
,dec

in
id ∈ , associated to 

the decoupled inequality constraints (25)-(26) for the i-th 
subsystem, are introduced: 

,dec

0
0

i

i

x
i m

i u
n i

C
C

C
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

, T
,dec [(1 ) , (1 ) ]x u

i i id d dδ δ= − −  (34) 

Similarly, the matrix ,contr
Y Yi in n

iC ×∈  and the vector 
1

,contr
Yin

ic ×∈  ( ,dec , ,i ii c x c un n n= + ) 1, ... ,i M= , related to the 
contractive constraint (29), are defined as: 

T
, , T

,contr ,contr , ,

0 ( )
, 0 2

0 0
i

i

i i

n i t i i t i
i i n i t i i t

n m

B Q B R
C c g Q B

⎡ ⎤+
⎡ ⎤= =⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

   (35) 

where the matrix ,i tB  is: 
T

, 1, 2, ,i t i t i t iM tB B B B⎡ ⎤= ⎣ ⎦   (36) 
By taking into account this notation, the problem P2 is 
represented as a convex QCQP problem in the following way. 
The decision variables for the overall system are stacked into 

one vector YnY ∈  with dimension 
1

i

M

Y Y
i

n n
=

= ∑ : 

T
1 2[ , , ... , ]MY Y Y Y=   (37) 

The matrices and vectors, associated to the global cost 
function (12), the equality constraints, the inequality 
constraints, and the contractive constraint for the overall 
system, are denoted as Y Yn nH ×∈ , Yn nA ×∈ , nG∈ , 

dec
dec

Yn nC ×∈ , dec
dec

nd ∈ , contr
Y Yn nC ×∈ , 1

contr
Ync ×∈ , 

(
1

M

i
i

n n
=

= ∑ , dec ,dec
1

M

i
i

n n
=

= ∑ ), and are defined by: 

1 2blockdiag{ , , ... , }MH H H H=    (38) 
T T

1 2 1 2[ | | ... | ] , [ | | ... | ]M MA A A A G G G G= =   (39) 

dec 1,dec 2,dec ,dec

T
dec 1,dec 2,dec ,dec

blockdiag{ , , ... , }

[ | | ... | ]
M

M

C C C C

d d d d

=

=
  (40) 

contr 1,contr 2,contr ,contr

T
contr 1,contr 2,contr ,contr

blockdiag{ , , ... , }

[ | | ... | ]
M

M

C C C C

c c c c

=

=
 (41) 

Then, the optimization problem P2 can be written as the 
following convex QCQP problem: 
Problem P3 (QCQP problem): 

* T1( ) min
2Y

V x Y HY=    (42) 

subject to: 
AY G=      (43) 

dec decC Y d≤     (44) 
T

contr contr 0Y C Y c Y+ ≤    (45) 
The problem P3 is convex since 0H , contr 0C . 

The convex QCQP problem P3 can be solved distributedly by 
applying the dual accelerated gradient algorithm in Giselsson 
et al. (2013). The decomposition is enabled by formulating the 
dual problem to problem P3, which is created by introducing 
dual variables nλ ∈  for the equality constraints (43), dual 
variables dec

dec
nµ ∈  for the linear inequality constraints 

(44), and dual variables contrµ ∈  for the quadratic inequality 
constraint (45). The dual problem can be written as: 

dec contr
dec contr, 0, 0

max ( , , , )D x
λ µ µ

λ µ µ
≥ ≥

  (46) 

where dec contr( , , , )D x λ µ µ  is the dual cost function (Boyd and 
Vandenberghe (2004)): 
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dec contr

T T T T 1
dec dec contr contr contr contr

T T T T T
dec dec contr contr dec dec

( , , , )
1 ( ) ( )
2

( )

D x

A C c H C

A C c G d

λ µ µ

λ µ µ µ

λ µ µ λ µ

−

=

− + + +

+ + − −

   (47) 

The dual problem (46) is solved by applying a modified 
version of the dual accelerated gradient method (Giselsson et 
al. (2013) and the references therein) that is here adapted to 
maximize a dual cost function of the form (47).  
In order to distribute the iterations of the dual gradient 
method, let in

iλ ∈ , ,dec
,dec

in
iµ ∈  be the dual variables for 

the equality and the linear inequality constraints, related to the 
i-th subsystem. Then, the distributed iterations of the modified 
dual accelerated gradient method, applied to solve the convex 
QCQP problem P3, are: 

1 T T T
,contr contr ,dec ,dec ,contr contr

1
( ) ( )

r
i

M
r i r r r

i i j j i i i
j

Y

H C A C cµ λ µ µ−

=

=

− + + +∑  (48) 

11 ( )
2

r r r r
i i i i

rY Y Y Y
r

−−
= + −

+
          (49) 

1 11 1( ) ( ))
2

r r r r r
i i i i i i

r AY G
r L

λ λ λ λ+ −−
= + − + −

+
        (50) 

1 1
,dec ,dec ,dec ,dec

,dec ,dec

1max{0, ( )
2

1 ( )}

r r r r
i i i i

r
i i i

r
r
C Y d

L

µ µ µ µ+ −−
= + −

+
+ −

         (51) 

1, 2, ... ,i M=  
1 1

contr contr contr contr contr
1 1max{0, ( ) }
2

r r r r rr C Y
r L

µ µ µ µ+ −−
= + − +

+
    (52) 

where i
jA  are the columns of the matrix jA  corresponding to 

the decision vector iY . Here, r is the iteration index and 1 L  
determines the step size of improving the solution of the dual 
problem (usually L  is the Lipschitz constant to the gradient 
of the dual function, which can be estimated by off-line 
computations). Because of the couplings in the dynamics 
models of the subsystems, the computation of the decision 
variables r

iY  for the i-th subsystem requires to have 

information about the dual variables r
jλ  of the subsystems 

interacting with it. Also, the update of the dual variables iλ  
for the i-th subsystem uses the information about the decision 
variables r

jY  of those subsystems. In (48) and (50) this is 
reflected with a corresponding construction of the matrices 

i
jA  and iA . Since there are both decoupled inequality 

constraints (cf. (25)-(26)) and coupled inequality constraint 
(cf. (27)), the respective dual variables ,deciµ  and contrµ  are 
updated by separate formulas. The update of ,deciµ  requires 

information only about the decision variables r
iY  for the i-th 

subsystem, while for updating contrµ  it is necessary to have 

information about the decision variables rY  for the whole 
system. Therefore, the distributed solution of the dual problem 
(46) requires for the interacting subsystems to exchange 

information about the current updates of their dual variables 
and decision variables. 

3.3 Algorithm for distributed quasi-NMPC with contractive 
constraint  
Here, a suboptimal algorithm is proposed that differs from the 
one in Grancharova et al. (2016) in two aspects: 1) the quasi-
NMPC approach is based on one step ahead prediction of the 
system behaviour and including contractive constraint, 2) the 
resulting optimization problem is a convex Quadratically 
Constrained Quadratic Programming problem, which is 
solved distributedly by applying the dual accelerated gradient 
method. The suggested algorithm for distributed NMPC 
includes two loops. In the outer loop, the dynamics of the 
nonlinear system (3) is locally approximated with a linear 
model (17)-(18) about the known state x  and the current 
update tu  of the control input at time t . Then, in the inner 
loop, a suboptimal solution to the resulting convex QCQP 
problem P3 is found by applying the distributed iterations 
(48)-(52) of the dual accelerated gradient method. 
Let tu  be the current update of the control input and denote 
with 1|t tx +  the corresponding predicted state of the nonlinear 
system (3) obtained for initial state |t tx x= , i.e.: 

1| ( , )t t tx f x u+ =    (53) 
Then, the current update ( )Y t  of the decision variables can be 
easily constructed according to (30). Respectively, if updates 

rY  are obtained by performing the iterations (48)-(52), the 
corresponding update r

tu  of the control input can be extracted 
from it. Further, assume that a relative tolerance 0ε >  of 
achieving the extremum of the cost function is specified, i.e. 
the iterations in the outer loop will terminate if the following 
condition is satisfied: 

2 1 1| ( , ) ( , ) | ( , )J u x J u x J u x ε− ≤   (54) 
Here, 1 2,u u  and 1 2( , ) , ( , )J u x J u x  are the control inputs and 
cost function values obtained in two consecutive iterations in 
the outer loop of the algorithm. 
Suppose that the relative constraint tightening δ , the relative 
tolerance ε  and the number rN  of iterations (48)-(52) are 
specified. Then, the algorithm for distributed quasi-NMPC 
with one step ahead prediction is described as follows. 
Algorithm 1: 
1. Given δ , ε  and rN . Let 0t = , 0tu = . 
2. Let the state at time t  be 1( ) [ , ... , ]Mx t x x x= = . 
3. Compute the predicted state 1|t tx +  (53) of the nonlinear 
system corresponding to initial state x  and control input tu , 
and the associated cost function value 2 : ( , )tJ J u x=  by using 
(12). Form the vector ( )Y t  of decision variables. 
4. Do 
5.  1 2:J J=  
6.  Obtain simultaneously the locally linear prediction 

models (17)-(18) of the subsystems about the point 
( , )tx u . 

7.  For 0,1, ... , rr N=  do 
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8. If 0r =  then  
9. Initialize iterations (48)-(52) with 1 ( )Y Y t− = , 

0 1 0λ λ−= = , 0 1
dec dec 0µ µ−= = , 0 1

contr contr 0µ µ−= = . 
10.  else 
11. Let 1 :r rY Y− = , 1 : ,r rλ λ− =  1:r rλ λ += , 1

dec dec:r rµ µ− = , 
1

dec dec:r rµ µ += , 1 1
contr contr contr contr: , :r r r rµ µ µ µ− += = . 

12.  end 
13.  For i-th subsystem, 1, 2, ... ,i M= , communicate the 

dual variables r
jλ  and the decision variables r

jY , 
1, 2, ... ,j M= , j i≠  of the interconnected 

subsystems. 
14. Run iterations (48)-(52) distributedly and obtain rY , 

1rλ + , 1
dec
rµ + , 1

contr
rµ + . Extract r

tu  from rY . 
15.  end 
16.  Let rN

t tu u= . 
17.  Compute the predicted state 1|t tx +  (53) of the nonlinear 

system corresponding to initial state x  and control input 
tu  and the cost function value 2 : ( , )tJ J u x=  by using 

(12). Form the vector ( )Y t  of decision variables. 
18. while 2 1 1| | /J J J ε− >  
19. Apply to the overall system the control input ( ) tu t u= . 
20. Let 1t t= +  and go to step 2. 
It would be necessary to perform an offline study of the 
performance of the Algorithm 1 with different values of the 
parameters δ , ε  and rN  in order to ensure that the 
computed suboptimal NMPC in closed-loop with the 
nonlinear system (3) will lead to feasibility, stability and 
desired performance. It also should be noted that the 
suggested approach can be easily modified so to relax the 
independent constraints on states and inputs (4) to linear 
constraints in the extended input-state space. 
 

4. EXAMPLE 

4.1 System description  
As an example, the quadruple-tank system in Johansson 
(2000) is considered, which is schematically shown in Fig. 1.  

tank 2 

tank 3 tank 4 

pump 1 pump 2

v1 v2 
y1 y2 

tank 1 

 
Fig. 1. Quadruple-tank system (Johansson (2000)). 

The objective is to control the level in the lower two tanks 
with two pumps. The control inputs are 1v  and 2v  (input 
voltages to the pumps) and the outputs are 1y  and 2y  
(voltages from level measurement devices). The first-
principles model of the system is (Johansson (2000)): 

31 1 1
1 1 3 1

1 1 1

2 2
aa k

h gh gh v
A A A

γ
= − + +  (55) 

2 4 2 2
2 2 4 2

2 2 2

2 2
a a k

h gh gh v
A A A

γ
= − + +  (56) 

3 2 2
3 3 2

3 3

(1 )
2

a k
h gh v

A A
γ−

= − +   (57) 

4 1 1
4 4 1

4 4

(1 )
2

a k
h gh v

A A
γ−

= − +   (58) 

In (55)-(58), iA  is the cross-sectional area of tank i , ia
 
is the 

cross-sectional area of the outlet hole of tank i , ih  is the 
water level in tank i  (Johansson (2000)). The voltage applied 
to pump i  is iv  and the corresponding flow is i ik v . The 
parameters 1 2, (0, 1)γ γ ∈  are determined from the positions 
of the two valves. In the simulation experiments, it is chosen 
that 1 0.7γ =  2 0.6γ = , which lead to a minimum-phase 
behavior of the plant (Johansson (2000)). The flow to tank 1 is 

1 1 1k vγ  and the flow to tank 4 is 1 1 1(1 )k vγ− . The flows to tanks 
2 and 3 are 2 2 2k vγ  and 2 2 2(1 )k vγ− , respectively. The 
acceleration of gravity is denoted g . The measured level 
signals are 1 1cy k h=  and 2 2cy k h= , where ck  is a constant. 
The parameter values of the quadruple-tank system are given 
in (Johansson (2000)). The control objective is to keep the 
water levels 1h  and 2h  at the set-points: 

* *
1 212.4 cm , 12.7 cmh h= =   (59) 

The steady-state values of 3 4 1 2, , ,h h v v , corresponding to 
these set-points are: 

* * * *
3 4 1 21.6 cm, 1.45 cm, 3.04 V, 2.97 Vh h v v= = = = (60) 

The following variables are introduced: 
* *

1,1 1 1 1,2 4 4,x h h x h h= − = − , * *
2,1 2 2 2,2 3 3,x h h x h h= − = −    (61) 

* , 1,2i i iu v v i= − =   (62) 
Then, the quadruple-tank system can be considered as 
consisting of two interconnected sub-systems, which are 
described by: 
Subsystem S1: 

* *
1,1 1 1 1,1 1 3 1 2,2 3

*
1 1 1 1 1

( ) 2 ( ) ( ) 2 ( )

( )( )

x a A g x h a A g x h

k A u vγ

= − + + +

+ +
   (63) 

* *
1,2 4 4 1,2 4 1 1 4 1 1( ) 2 ( ) [(1 ) ]( )x a A g x h k A u vγ= − + + − +   (64) 

Subsystem S2: 
* *

2,1 2 2 2,1 2 4 2 1,2 4

*
2 2 2 2 2

( ) 2 ( ) ( ) 2 ( )

( )( )

x a A g x h a A g x h

k A u vγ

= − + + +

+ +
   (65) 

* *
2,2 3 3 2,2 3 2 2 3 2 2( ) 2 ( ) [(1 ) ]( )x a A g x h k A u vγ= − + + − +  (66) 

The subsystem S1 influences the dynamics of the subsystem 
S2 with the expression *

4 2 1,2 4( ) 2 ( )a A g x h+ , while the 
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subsystem S2 influences the dynamics of the subsystem S1 
with the expression *

3 1 2,2 3( ) 2 ( )a A g x h+ . 

4.2 Simulation results  
The performance of the proposed distributed NMPC approach 
and algorithm is studied by simulations for the quadruple-tank 
system described above. The ordinary differential equations 
(63)-(66) are discretized with sampling time of 1 s by 
applying the Euler’s method with step 0.1 s. The constraints 
imposed on the system (55)-(58) are: 

0 ( ) 6 V, 1,2iv t i≤ ≤ =   (67) 
0 ( ) 20 cm, 1,2ih t i≤ ≤ = , 0 ( ) 3 cm, 3, 4ih t i≤ ≤ =  (68) 

which by taking into account (59)-(62) become: 
13.04 ( ) 2.96 Vu t− ≤ ≤ , 22.97 ( ) 3.03 Vu t− ≤ ≤  (69) 

1,112.4 ( ) 7.6 cmx t− ≤ ≤ , 1,21.45 ( ) 1.55 cmx t− ≤ ≤  (70) 

2,112.7 ( ) 7.3 cmx t− ≤ ≤ , 2,21.60 ( ) 1.40 cmx t− ≤ ≤  (71) 
The following two cases of weighting matrices in the 
centralized NMPC problem P1 are considered: 

a) 1 2 diag(50, 1)Q Q= = , 1 2 0.1R R= = ; 
b) 1 2 diag(5, 1)Q Q= = , 1 2 0.1R R= = . 

In both cases, the Algorithm 1 is used to generate the control 
inputs for the following initial states of the subsystems: 

1,1 1,2 2,1 2,2[ (0) (0) (0) (0)] [ 4.4 1.35 4.7 1.5]x x x x = − − − −  (72)  
The trajectories obtained with the distributed contractive 
NMPC with horizon 1N =  are compared to those 
corresponding to the distributed non-contractive NMPC 
approach (Grancharova et al. (2016)) with horizon 15N = . 
The transients in Fig. 2 – Fig. 5 correspond to the weighting 
matrices in case a), while those in Fig. 6 – Fig. 9 are related to 
case b). Both distributed approaches use the same values of 
the parameters in the algorithms. 
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1

2

3
u1 (V)

time (s)

contractive NMPC, N=1
non-contractive NMPC, N=15

 
Fig. 2. The control input for subsystem S1 - case a). 
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Fig. 3. The control input for subsystem S2 - case a). 
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Fig. 4. The state *

1,1 1 1x h h= −  of subsystem S1 - case a). 
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Fig. 5. The state *

2,1 2 2x h h= −  of subsystem S2 - case a). 
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Fig. 6. The control input for subsystem S1 - case b). 
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Fig. 7. The control input for subsystem S2 - case b). 
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Fig. 8. The state *

1,1 1 1x h h= −  of subsystem S1 - case b). 
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Fig. 9. The state *

2,1 2 2x h h= −  of subsystem S2 - case b). 
 
It can be seen from Fig. 2 – Fig. 9 that both distributed NMPC 
approaches lead to feasible trajectories, but different state 
weighting matrices should be chosen in order to obtain similar 
quality of performance in terms of regulation time and 
smoothness of the control inputs trajectories. A good control 
quality with the contractive NMPC with 1N =  is achieved 
for 1 2 diag(50, 1)Q Q= = , while the non-contractive NMPC 
with 15N =  has good performance for 1 2 diag(10, 1)Q Q= = . 
However, the significant advantage of the suggested 
contractive distributed NMPC approach is the small size of 
the optimization problems solved by the subsystems, as it is 
shown in Table 1. This would allow an efficient online 
implementation with less memory requirements. 

Table 1. Comparison of QP sub-problems dimensions. 
Distributed quasi-
NMPC approaches Dimension of the QP for each subsystem

with contractive 
constraint, 1N =  

3 decision variables, 6 inequality 
constraints, 2 equality constraints 

1 contractive constraint 

without contractive 
constraint,  15N =  

45 decision variables, 90 inequality 
constraints, 30 equality constraints  

 
 

5. CONCLUSION 
An approach to low complexity distributed MPC of nonlinear 
interconnected systems is proposed by including a contractive 
constraint in the MPC problem formulation and using one step 
ahead prediction. The advantages of the suggested approach 
in comparison to the distributed NMPC without contractive 
constraint and large horizon are that it is computationally less 
expensive and the dimension of the optimization sub-problem 
solved by each subsystem is much smaller. For these reasons, 
the suggested approach would be appropriate for distributed 
NMPC of cyber-physical systems. 
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