
Application of machine learning methods to 

improve dimensional accuracy in additive 

manufacturing 

Ivanna Baturynska1 , Oleksandr Semeniuta1 ,  Kesheng Wang2  

Abstract. Adoption of additive manufacturing for producing end-use products 

faces a range of limitations. For instance, quality of AM-fabricated parts varies from 

run to run and from machine to machine. There is also a lack of standards developed 

for AM processes. Another limitation is inconsistent dimensional accuracy error, 

which is often out of the standard tolerancing range. To tackle these challenges, this 

work aims at predicting scaling ratio for each part separately depending on its 

placement, orientation and CAD characteristics. Recent attention to machine 

learning techniques as a tool for data analysis in additive manufacturing shows that 

such methods as classical artificial neural networks (ANN), such as multi-layer 

perceptron (MLP), and convolutional neural networks (CNN) have a great potential. 

For the data collected on polymer powder bed fusion system (EOS P395), MLP 

outperformed CNN based on accuracy of prediction and mean squared error. The 

predicted scaling ratio can be used to adjust size of the parts before fabrication. 
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1 Introduction 

Additive manufacturing is a “process of joining materials to make parts from 3D 

model data, usually layer upon layer, as opposed to subtractive manufacturing and 

formative manufacturing methodologies” [1]. There are different types of additive 

manufacturing processes, categorized after characteristics such as source of energy 

and type of material. Different AM process categories require optimization of 

different process parameters. Therefore, AM processes with similar parameters can 
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be investigated as one AM group, and results of optimization can be generalized 

within this group.   

Lately, the main attention is set on optimization of additive manufacturing 

process parameters in order to improve quality of fabricated products. Many studies 

report that AM is already used to produce end-user products, but quality still 

remains an issue. For example, dimensional accuracy is still an issue for such AM 

processes as powder bed fusion AM [2–5]. As compared to the tolerance 

requirements defined in the DIN 16742:2013 standard [6] for injection molding 

process, dimensional accuracy error of AM exceeds the defined ranges [4].  

Baturynska, I. [4] made an attempt to improve dimensional accuracy by 

predicting dimensional features (thickness, length and width) based on linear 

regression. However, just 4 out 12 proposed models (separate models for each 

dimensional feature and parts’ orientation) had accuracy higher than 75%. Based on 

these results, the author proposed to use more advanced methods for predicting 

scaling ratio, and hence improving dimensional accuracy. This paper is an extension 

of the work described in [4], and therefore, more advanced methods are used for 

data analysis and improvements of dimensional accuracy prediction.  

In recent years, machine learning has become a viable option in the additive 

manufacturing domain as a means for building highly flexible models describing 

complex relationships between variables. One of the latest reviews on trends of 

machine learning in additive manufacturing [7] describes five different categories 

of machine learning application: process parameters, quality enhancement, process 

monitoring and control, digital security and additive manufacturing in general. The 

main focus is set on application of ANN, genetic algorithms (GA), support vector 

machines (SVM). Fewer articles used deep neural networks, principal component 

analysis (PCA) and particle swarm optimization (PSO) [8–10]. While ANN is used 

to optimize process parameters, predict mechanical properties and porosity of the 

object, deep learning techniques were already applied in order “to identify styles of 

3D models” based on 2D images rendered from digital 3D models [7].  

This paper investigates applicability of two neural network models, namely 

Multi-layer perceptron (MLP) and Convolution Neural Network(CNN), for 

predicting scaling ratio for each additively manufactured part separately. The 

former model constitutes the classical ANN, while the latter is a deep learning 

model. The chosen techniques are described in Section 3. Comparison of the results 

of MLP and CNN is done based mean squared error (MSE) and prediction accuracy. 

As CNN is one of the deep learning models, its performance depends on the amount 

of training data, but it is less sensitive to noise in data. MLP, on the other hand, is 

more sensitive to noise, but requires less data for training. Performance of the two 

chosen methods are compared in Section Error! Reference source not found., and 

results on scaling ratio prediction are presented in Section 5. 
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2 Experimental work 

In this work, data is collected from the EOS P395 polymer powder bed fusion 

(PPBF) additive manufacturing process with the material being Polyamide 2200 

(PA12). Two identical runs were performed, with 358 samples being fabricated in 

each build. The build layout is designed in Magics 20.0 software, and is shown in 

Fig. 1. Each sample is labeled to support identification of each sample after 

fabrication. More details on the experiment are described in the earlier work [4].  

 

 
Fig. 1 Placement and orientation of 358 specimens [4] 

In order to minimize a dimensional accuracy error for each part separately, scaling 

ratio for thickness, width and length was calculated as follows: 

 
𝑠𝑟𝑖 = 𝑦𝑖 − 𝑦𝑖

′                                         (1) 

where 𝑖 ∈ {1, 2, 3} (1 stands for thickness, 2 for width and 3 for length), 𝑠𝑟𝑖 is a 

scaling ratio of feature i, 𝑦𝑖  is the designed dimension of feature i and 𝑦𝑖
′   is 

measured dimension of feature i. 

Predicted value for each dimensional feature should be added to the designed 

value before fabricating it. For more complex design, a different type of scaling 

ratio should be proposed. 
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3 Computational intelligence techniques for 
improvement of dimensional accuracy 

3.1 Data pre-processing 

Data analysis always requires clean and normalized data beforehand. This step is 

especially important in case when parameters’ values are different. Application of 

machine learning requires normalization of features in the training data. In this 

study, an impact of 20 different parameters on three dimensional features (thickness, 

width and length) are investigated (see Table 1). Part orientation is represented as 

four different groups, and thus value of this parameter varies from 1 to 4, while 

value of number of mesh triangles starts at ca. 1200 and increases up to ca. 7000. 

These ranges in parameters’ values has to be scaled to zero mean and unit variance. 

  
Table 1 Description of input and output parameters 

Input parameters  Output 

cent_coord_X Orient_Z min_coord_X max_coord_X 
Thickness 

cent_coord_Y Orient_group min_coord_Y Num_mesh_trian 

cent_coord_Z Weight min_coord_Z Num_mesh_points Width 

Orient_X Build_numb max_coord_X Volume 
Length 

Orient_Y Shape_group max_coord_Y Surface 

 

The work underlying this paper is based on Scikit-learn and TensorFlow with 

Keras frontend. The original data is split to training (541 samples) and testing (136 

samples) sets using train_test_split. Before training the models, the 

training data is scaled to zero mean and unit variance using StandardScaler.  

3.2 Multilayer Perceptron 

Artificial Neural Networks constitute a class of machine learning models that allows 

to define complex non-linear relationship between input and output. The core idea 

behind ANNs is in constructing a complex model as a network of processing 

functions and learning the parameters of these functions using backpropagation. 

The latter constitutes a method for computation of gradients of a cost function with 

respect to functions’ parameters by propagating the error back through the network 

architecture and applying the chain rule for differentiation.  

Multilayer Perceptron (MLP) is the classical neural network model, based on a 

sequence of fully connected layers of neurons, where the lineal layer-to-layer 

mapping is activated with a non-linear function. In this work, MLP neural network 

is designed with Scikit-learn. In order to obtain stable prediction every time, MLP 

architecture was optimized by trial and error approach: different combinations of 

number of hidden layers and number of nodes in each layer, as well as various 
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available activation functions, has been manually tuned and applied in order to 

predict scaling ratio of thickness, width and length.  

The stability of this neural network was evaluated based on 5 runs given the same 

architecture but different randomly chosen training and testing sets (Table 2). The 

final architecture of MLP ANNs consists of one hidden layer with a size of 35 

nodes, 20 parameters are used as input and 3 dimensional features as outputs. 

Rectified Linear Unit (ReLU) activation function is chosen because of best 

performance.  

 
Table 2 Stability evaluation of Multilayer Perceptron architecture 

 
Number 

of runs 

MLP performance metrics MLP 

number of 

iterations 

MSE Accuracy 

 1 0.0006358 0.919135 1131 

 2 0.0006402 0.868677 1333 

 3 0.0006770 0.839951 1553 

 4 0.0007860 0.865166 2271 

 5 0.0006876 0.892730 1664 

Mean  0.0006853 0.87713 1590 

 

3.3 Convolutional Neural Network 

Convolutional Neural Networks are a class of deep neural networks. Their 

architecture is comprised of a series of convolutional layers, followed by flattening 

the multi-dimensional output tensor and feeding it to a series of fully-connected 

layers (the same as in an MLP). The convolutional layers provide space invariance 

by sliding a filter with shared weights over data. These models are typically used in 

image recognition, language processing, and similar types of application. The main 

interest in deep learning techniques is attributed to possibility of ignoring the noise 

in data, and therefore minimizing time spent on data preprocessing. 

Contrary to the traditional use cases, in this paper a CNN is used for regression, 

and trained with relatively small amount of data. The input data is one dimensional 

(1D) that was beforehand preprocessed (more details in Section 3.1) The final 

architecture for Convolutional Neural Network (see Fig. 2) was chosen in the same 

way as for ANN.  
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Fig. 2 The final architecture of Convolutional Neural Network 

CNN model is comprised of four convolutional layers, three max-pooling layers 

and three dropout layers. The latter are added to prevent overfitting. The output 

from the last dropout layer is flattened and fed to two fully connected layers. where 

the first layer is activated with ReLU, and the second one – with softmax. The Adam 

optimizer were chosen due to its computational efficiency and low memory 

requirements.  

 

4 Prediction of scaling ratio of dimensional 
features by using MLP and CNN  

Dimensional accuracy error can be caused by different variations in the process, 

such as temperature distribution in the build chamber. One normally requires deep 

knowledge of the process and the material in order to mathematically define this 

phenomenon. Typically, a single scaling ratio is proposed for the whole build 

chamber or one for each coordinate axis (x, y and z). However, due to different 

temperature distribution at different places in the build chamber, dimensional error 

will still be present, especially in the corners (see Fig. 1).  

This work applies MLP and CNN to predict scaling ratio for each part separately. 

Using machine learning techniques allows incorporating any type of relationship 

between input and output and providing better prediction accuracy with lower mean 

squared error (MSE). Comparing the performance metrics for MLP and CNN, it is 
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evident that prediction accuracy and MSE are better for MLP. As it is shown in 

Table 3, the known (measured) values for dimensional features, presented as Y 

original, range between -1.0 and 1.0, and therefore value of MSE should be smaller 

than 0.001 in order to minimize accuracy error in the future.  

 
 Table 3 Prediction of scaling ratio for thickness, width and length using MLP and CNN 

techniques for a sample of 10 data points from the test set 

MLP predicted Y original CNN predicted 

[0.2289,  0.2626, -0.9517] 

[-0.1189,  0.1878,  0.1135] 

[-0.0233,  0.1945  0.2757] 

[-0.0115,  0.0163, -0.2164] 

[-0.0328, -0.1823,  0.1669] 

[-0.2750,  0.0320,  0.0865] 

[-0.1224,  0.1965,  0.3019] 

[ 0.1235,  0.1964,  0.3570] 

[-0.0796,  0.0938,  0.0186] 

[ 0.218  0.274 -0.95 ] 

[-0.085  0.249  0.22 ] 

[-0.055  0.098  0.28 ] 

[-0.005  0.101 -0.12 ] 

[-0.012 -0.281  0.18 ] 

[-0.279  0.025  0.22 ] 

[-0.075  0.177  0.21 ] 

[ 0.147  0.202  0.34 ] 

[-0.099  0.11   0.06 ] 

[0.2342, 0.4075 , 0.3582] 

[0.4603, 0.52578, 0.0139] 

[0.1739, 0.4218, 0.4043] 

[0.1574, 0.3943, 0.4482] 

[0.3194, 0.4055, 0.2749] 

[0.2845, 0.2184, 0.4972] 

[0.1976, 0.4104, 0.3920] 

[0.1454, 0.4223, 0.4324] 

[0.2689, 0.3832, 0.3479] 

0.0005877 MSE 0.097392 

0.887624 Accuracy 0. 764705 

 

Although, results for CNN is not as good as for MLP, it is very important to keep 

in mind that amount of data is an important factor to train deep learning models. As 

a rule of thumb, the more data is used to train a machine learning model, the better 

performance it will have. As such, for data set less than 1000 points,  CNN results 

are relatively good, and they can be improved upon in the future when more data 

from experiments is accumulated.  

At the same time, the trained MLP can already be used to predict scaling ratio 

for dimensional features even considering parts with simple but different shapes. 

Such industries as automotive, aerospace and medical can already benefit from the 

results described in this article. Incorporating presented algorithms will allow 

decreasing dimensional accuracy error, while fully utilizing build chamber space 

and thus decreasing cost per part in one build. 

 

5 Conclusion 

In this work, data was collected from the experiment performed on EOS P395 

polymer powder bed fusion process. Two identical runs with the same process, build 

and material parameters were executed with 358 samples in each run. This data was 

preprocessed and divided into training and testing samples. As an input for 

algorithm training, 20 different parameters were chosen and scaling ratios for 3 

dimensional features were defined as an output. Two machine learning algorithms 

were applied for data analysis, and their results were compared based on two metrics 

(MSE and accuracy). 
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Multi-layer perceptron outperformed convolutional neural network and should 

be used in the future in order to minimize dimensional accuracy error. However, 

results for convolutional neural network show the possibility of using this method 

in the future after more data is accumulated. Additional experiments with different 

material, process and build parameters will be beneficial for both the MLP and CNN 

algorithms. 
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