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Abstract—This study presents a method of estimating the
effective inertia of a power system from ambient frequency
and active power signals measured by PMUs. Most importantly,
we demonstrate that inertia can be estimated from ambient
measurement data, not only from disturbances. This leads to the
possibility of monitoring inertia in a close to continuous manner
in the time scale of minutes or tens of minutes. The method allows
the system to be divided into a number of areas and the effective
inertia of each area to be estimated as a separate quantity. In
principle, inertia is estimated by observing the dynamics between
changes in active power and resulting frequency deviations
during normal operation of the system. The method is based
on applying system identification on these measurements and
extracting inertia values from identified models. Efficacy of the
method is demonstrated on results of real measurements from
the Icelandic power system.

Index Terms—Frequency control, Frequency dynamics, Iner-
tial response, Phasor measurement units, Wide area monitoring

I. INTRODUCTION

THE INCREASING share of power generating units con-
nected to the system through power electronics is dis-

placing synchronous generation. Larger penetration of renew-
able sources is both decreasing inertia [1]–[3] and changing
its distribution in the system, leading to formation of low
inertia areas [4], [5]. The associated challenges have been
acknowledged and investigated in North America [1], [2], [6]–
[8], Europe [3], [4], [9], Australia [10], [11], and elsewhere
[5]. Some of the important arising questions are determining
and monitoring values of inertia [2], [3], [9], considering the
time varying nature of inertia [4], [12], and areas with low
inertia [4], [5]. This study presents a method of estimating the
inertia of different areas of the power system from ambient
PMU measurements of active power and frequency. For a
transmission system operator (TSO), the main requirement for
monitoring the effective inertia of the system (or areas of it)
is to estimate the time available to deploy a response, and
to define the sensitivity between a frequency change and an
appropriate corrective power response [2], [13].
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With any attempt at estimating inertia in a power system
it is important to discuss the definition of inertia, or in this
case, effective inertia. Effective inertia defines the relationship
between a change in the power balance of the system or area
and the rate of change of frequency of that area, which differs
from a more conventional interpretation of inertia related
to physical spinning mass and inertia time constants. The
majority of inertia in its conventional meaning is contributed
by the physical spinning mass of synchronous generators, but
there are other elements of the system that can contribute to
the effective inertial response of the system [14] (and even
more so in the future), e.g. voltage and frequency dependence
of load and power electronic interfaces for generation, load,
and storage. The method presented in this paper separates the
system into areas and estimates the (effective) inertia of each
area—area inertia—by observing the dynamics between active
power and frequency changes.

The estimation of inertia from recorded disturbances has
been researched and tested in recent years. Inertia values of
single units [15], [16], system areas [17], [18], and entire
systems [19], [20] have been derived from PMU measurements
of frequency events. Inertia has also been approximated from
other information, like statuses of generators or correlation
with total demand [2], [3], [9]. However, no attempts of esti-
mating inertia more continuously from ambient measurements
have been demonstrated so far. Different related parameter
and model identification methods have been presented, e.g.
estimation of low-order dynamic equivalent models from PMU
measurements has been proposed [21] and identification of
governor models has been demonstrated on real PMU mea-
surements [22], [23]. A previous paper from the authors pre-
sented a comparison of different system identification methods
applied on similar measurement data as in this study [24].

The main complication in estimating inertia is that during
normal operation, the inertial response of the system can-
not readily be distinguished from frequency control, voltage
control, electro-mechanical dynamics, and stabilizing actions.
The proposed approach identifies a combined model of in-
ertial response and primary control from measured ambient
dynamics, circumventing this limitation. The inertia estimates
are found by fitting a model to the observed dynamics and
extracting parameters corresponding to inertia from the model.
There is an inherent approximation in fitting the complex non-
linear behavior of a power system to such a model; however,
the simplification provides practically useful information for
contracting and deploying frequency controls, including fast
frequency response.
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In this study, the proposed method is demonstrated on the
example of the Icelandic power system and has been tested
on real measurement data from this system. The Icelandic
system is a relatively small isolated island with scattered
generation and good coverage of PMU measurements. The
method has been applied on ambient wide area measurements
as intended. The models identified in the process of area
inertia estimation have been validated on recorded frequency
events. Even though testing the method on simulated data
would give direct information about the accuracy of results
in a controlled environment, testing it on real measurement
data is significantly better for demonstrating its feasibility in
real world conditions.

The theoretical background of the problem is covered in
section II. The specifics of system identification and extraction
of inertia values is described in section III. Test calculations
on the measurements from the Icelandic power system are pre-
sented in section IV and discussed in section V. Conclusions
are given in section VI.

II. THEORETICAL BACKGROUND

In order to discuss the proposed system identification, it is
helpful to analyze a theoretical model of the dynamics we
are interested in. In the following, a simplified model of the
dynamics between active power and frequency is given. This
is done in order to analyze what data is needed to identify
a model for these kinds of dynamics. These models or these
particular model structures will not be directly used in any
estimations.

The dynamics between power and frequency during a short
period of time following a power mismatch occurrence can
be modelled by the swing equation. For a single generator i,
the equation commonly used in power systems engineering is
expressed as

dfi
dt

=
PiM − PiE

2HiSin
fn, (1)

where PiM is the output mechanical power of the machine,
while PiE is its electrical load power, fi is the electrical
frequency, Hi the inertia constant, Sin rated apparent power,
and fn the rated steady state frequency of the system. The
model excludes damping effects and mechanical power is
usually assumed to be constant.

As an approximation, an equivalent equation can be applied
to an area of a system (or an entire system). For the aggregated
frequency immediately after a load change in an area j we
write another form of the swing equation

dfj
dt

=
PjM − PjE

Mj
= ∆Pj/Mj , (2)

expressed in terms of Mj . In other publications, the quantity
Mj has been defined in terms of angular frequency [25], [26],
but in this paper, its value expressed for a single machine is
Mi = 2HiSin/fn, i.e. it is expressed in terms of frequency.
In this paper, we assume this form of the swing equation and
define the effective inertia of an area as a proportionality term
between dfj/dt and ∆Pj , equivalent to Mj . It should be
noted that if the effective inertia is deduced from observed
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Fig. 1: Dynamic model of frequency control of a two-area power system with
generator set-point changes disabled.

dynamics between power and frequency, then, contrary to
its conventional definition, this proportionality term may also
include other effects, not only the inertia of synchronous
machines.

The inertia of a single synchronous machine is commonly
represented by an inertia constant H , given in seconds. When
several machines are lumped together, their inertia constants
are weighted by the rated power of each machine. However,
when observing the dynamics between active power and
frequency, it is not practical to consider the rated power of
every possible rotating machine and it is difficult to consider
other possible effects contributing to the effective inertia. It
is more convenient to use the single proportionality term Mj

instead. By definition in the swing equation, it is effectively
an angular momentum and its units are J · s or W · s2 [26].

Once the power mismatch event has occurred and frequency
has started to deviate from its previous value, the frequency
deviation is fed into a closed control loop, where governors
counteract the power imbalance in the system. This control,
mostly known as primary frequency control, but also frequency
containment control, is carried out at the turbine–generator
unit level. For a simpler analysis, we will look at this as
a linear control system. The main components of a unit—
the governor, the turbine, and the generator—are represented
by corresponding transfer functions [27]. The inputs specify
changes in the power set-point reference and load, while the
output is the frequency deviation.

With a set of simplifications, an area of a power system (or
an entire system) can be modeled similarly. In this case, the
inertia of all rotating machines (and the frequency dependence
of load) is lumped into a single area (or system) block and
different governor–turbine systems are summed as parallel
branches and lumped together by evaluating an equivalent
droop. Based on that, a model for a multi-area interconnected
system can be obtained by including tie-line elements that
model the power exchanges between the areas [27]. The
tie-lines are modeled as basic integrator blocks with a gain
determined by line parameters.

This model can be simplified further when we analyze only
primary frequency control, i.e. model the dynamics before any
secondary control would be issued. In this case the power set-
point values of generators remain unchanged and the corre-
sponding inputs in the control system can be disregarded. A
schematic of the model following that is given in Fig. 1, where
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∆PLi are the changes in load of each area and ∆fi = fi−fn
the frequency deviations. In this simplified analysis of the
dynamics of inertial response and frequency control, the multi-
area system becomes a multi-input multi-output system with
load changes as inputs and frequency changes as outputs.

The described model treats each area as a single node with
aggregated load, generation, and control loops and a unified
value of frequency. In such a model it is important to define
areas that on a system level can be aggregated. The described
treatment is also dependent on the possibility of analyzing the
system in a period of time when the power set-points of all
of the generators remain unchanged or change very little (i.e.
∀i : ∆PRi ≈ 0).

III. SYSTEM IDENTIFICATION

It is proposed that once a power system has been divided
into a number of appropriately defined areas, an approximate
control system modelling the dynamics between frequency and
active power can be identified. This is based on the assumption
that the dynamics can be approximated as a linear control
system with a structure that is in principle similar (but not
necessarily identical) to the model discussed in the previous
section (as in Fig. 1). During periods of time when generator
set-points are not changed, the model can be assumed to have
load changes as inputs and frequency deviations as outputs. If
sufficient measurement data is available, it is possible to fit a
model to the observed dynamics between the inputs and the
corresponding outputs. Among other parameters, this model
would include the inertia of each area.

A. Inputs and Outputs

The proposed methodology can only be applied on areas that
are aggregated meaningfully, with two main requirements. The
areas have to be consistent in terms of network topology—
all nodes forming an area have to be directly connected to
at least one other node of the area and areas have to be
separable by clear boundaries. More importantly, the areas
should consist of nodes that have frequencies close to each
other. This is simple to understand with the example of inter-
area oscillations, where the frequencies of the nodes in one
area oscillate against the frequencies of the nodes forming
another area. Knowledge about such areas in the power system
can be used as a basis and analysis of measured frequency
signals can be used to refine the separation into areas.

When an area is aggregated in order to model it similarly
to the control system in Fig. 1, its center of inertia frequency
is commonly used [26]. The center of inertia frequency is
evaluated as a weighted average of frequencies

fCOI =

∑N
i HiSinfi∑N
i HiSin

, (3)

where fi are the frequencies of all of the N nodes comprising
the area weighted by the inertia of each node (nodes assumed
to include no inertia are effectively excluded). Clearly, a degree
of prior knowledge about inertia values of larger generators
across the area is assumed when evaluating this quantity.

In this method, we use an aggregated area frequency that is a
simplification of the center of inertia frequency. The frequency
of area j is evaluated as a weighted average of measured
frequencies

fj =

∑Nj

i wifi∑Nj

i wi

, (4)

where fi are the frequencies of the Nj nodes that are measured
in area j. The weights wi are picked based on analyzing
the system and selecting frequency signals that reflect the
general distribution of inertia in each area. The weights should
consider which nodes contribute more to the inertia of the area
but also consider its possible variability in time and the quality
of frequency signals. In the simplest case, all nodes which are
assumed to contribute some inertia are weighted equally and
all other measured nodes weighted by zero.

In system identification, the input–output data can be pre-
processed in different ways. It is common to subtract either
the mean value or the first value of the time series, but
sometimes the data is also detrended or processed in other
ways [28]. Since we know the nominal value of frequency
that the control system is attempting to achieve, it is possible
to use the deviations from nominal frequency as the outputs.
After evaluating the aggregated value, the frequency deviation
in area j can be expressed as

∆fj = fj − fn, (5)

which is the jth output of the identified system.
Once the areas are formed and aggregated, it would be

simple in principle to sum up all load changes in the areas
to determine the inputs of the system. However, in order to
do this directly, it would have to be possible to monitor the
majority of load. Measuring load has not been the first priority
when allocating PMU measurement resources and even if it
becomes more common to monitor load feeders, it would take
time until a sufficient share of them are covered. This means
that more common PMU measurements have to be used to
approximate the changes in load. When PMUs are installed in
the system, they are most often set up to measure power flows
on transmission lines, followed by monitoring of generators.

Fortunately, if power flows between the defined areas and
a majority of generators that participate in primary frequency
control can be monitored, it is possible to approximate load
changes. The main assumption is that when small changes
over time are considered, the changes in load and generation
are sufficiently close to each other. The approximate change
in load in area j would thus be

∆PLj
∼=
∑
i

∆PGji +
∑
k

∆PTjk (6)

where ∆PGji is the change in output power of the ith
generator (or a group of generators) participating in primary
frequency control in area j and ∆PTjk is the change in power
transmitted from the kth to the jth area. All changes are
evaluated with respect to the first value in the time series,
i.e. ∆P = 0 at t = 0.

In order to identify the dynamics between load changes and
resulting frequency deviations it is necessary to monitor the
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system for a sufficiently long period. Following a disturbance,
the inertial response in frequency can be seen in the first few
seconds, while the primary control (governor) response takes
place in a time frame of tens of seconds. It can be assumed
that a period of at least 1. . . 2 minutes should be observed
in order to capture enough variations in the system, but the
period should not have to exceed 10 minutes. In practice,
measurement periods of 2. . . 6 minutes have been applied.

There are two main considerations to take into account
while selecting the measurement periods. Firstly, these periods
should exclude any time when automatic generation control
(AGC) is acting or any other generator set-point changes are
being made. A simple way to handle this is to consider the
time these actions are executed and assume a buffer time for
the associated effects to take place (e.g. 60 to 90 s). Secondly,
it would be advisable to start and end the measurement periods
at instances when area rate of change of frequency (i.e. df/dt
or RoCoF) crosses zero. This is done in order to improve
the efficiency of the system identification algorithm. This
is relatively simple to implement even with noisy RoCoF
measurements from PMUs.

B. System Identification
The next part of the estimation process is applying system

identification on the obtained input–output data. Ambient load
variations are generally small and they excite the dynamic
system weakly. This means that a suitable system identification
procedure is needed that is not sensitive to the low level of
excitation. Some aspects of this problem have been studied
in previous work, comparing various system identification
methods applied in a similar way but with the example of
analysing inter-area modes [24].

Regardless of which system identification method is used,
a certain model order has to be specified. Even a small
area of a power system contains many complicated control
systems, making it very difficult to determine a correct order
for such a model. However, most of the relevant dynamics
of the system can be captured by a lower order model and
the particular order itself may vary to some extent [24]. The
order has to be large enough to capture the main dynamics but
should still be small enough not to become too complicated
or computationally expensive. In fact, it is possible to identify
models of various orders from the same dataset and obtain a
number of similar estimates [24].

The System Identification Toolbox in Matlab offers a se-
lection of ready to use system identification tools and has
been used in the presented method [28]. In a comparison of
available identification algorithms, it was determined that the
implementation of ARMAX is the best suited and most robust
tool for the given type of problem [24]. The procedure pre-
sented in this paper uses this system identification method, but
the general concept of area inertia estimation is not dependent
on this particular implementation. Due to the complexity of
identifying systems with many inputs and outputs, it would
be recommendable to divide the system into 2. . . 4 main areas
of interest.

ARMAX in Matlab is a system identification technique
based on the autoregressive–moving-average model with ex-

ogenous inputs. It results in a polynomial model, which is
a generalized variant of a transfer function, expressing a
relationship between an input, an output, and a noise term
[28]. For a multi-input–multi-output (MIMO) ARMAX model
with nu inputs and ny outputs, the input–output relationships
for the lth output of the model can be expressed as

ny∑
j=1

Alj(q)yj(t) =

nu∑
i=1

Bli(q)ui(t− nki) + Cl(q)el(t), (7)

where Alj , Bli, and, Cl are polynomials of orders nA, nB , and
nC expressed in q−1, and nki are the input–output delays in
terms of number of samples. Polynomial models are discrete
time (i.e. z-domain) linear systems and in this application
the time step is determined by the sampling rate of PMU
measurements.

Due to the nature of the system identification problem that
was set up, the models have an equal number of inputs and
outputs corresponding to the number of areas the system is
divided into. As noted earlier, we apply system identification
that attempts to fit a number of models in a range of orders
n = nmin, . . . , nmax for each dataset. Within each iterated
order, the various variables defining model order are equal,
i.e. n = nA = nB = nC . All input–output relationships
are symmetric in the sense that in each identification attempt
elements of the order matrices are equal. Input–output delays
nki are determined with tools provided in Matlab once for a
given system and assumed constant after that (a default value
of zero is also sufficient in practice).

C. Inertia Estimation

Once we have identified approximate models describing the
dynamics between load changes and frequency variations, it is
still necessary to determine the effective inertia of each area.
The ARMAX models include the effective inertia but not as
an explicit value, thus, it is necessary to further analyze the
identified models. A simple way to obtain results is to evaluate
the step response of the ARMAX model and observe its initial
slope. However, if sufficiently good models are identified, it
is possible to extract inertia values from their parameters. One
possible procedure for that is presented below.

First of all, the discrete time ARMAX models are converted
into continuous time using the d2c function in Matlab. This
is not successful in every case and the resulting models are
checked once again for stability, this time with the s-domain
criterion (real part of poles should be less than zero). The
remaining polyniomial models are ready to be reduced to
lower order transfer functions.

The continuous time models are reduced to a lower order
using a set of functions available in Matlab. The models
are first transformed into a balanced state-space realization.
Next, insignificant states are identified and removed to form
a reduced order system. The system is then transformed
from the state-space representation into a continuous time
transfer function. This is done using the ssdata, balreal,
modred, and ss2tf functions in the System Identification
Toolbox [29].
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The expected structure of the transfer functions is of the
generic form

H(s) =
bn−1s

n−1 + bn−2s
n−2 + . . . + b0

ansn + an−1sn−1 + . . . + a0
. (8)

The ss2tf tends to give marginal but non-zero values for the
term bn, resulting in the same dynamics but a different formal
structure. In order to simplify the estimation of the effective
inertia values, these bn terms are set to zero in the presented
implementation.

To understand how the effective inertia can be determined,
we can look at a simplified example. If we have a single
unit with no governor or frequency control, we can model
the swing equation as a first order transfer function

H(s) =
1

Ms + D
=

1/M

s + D/M
, (9)

where M is the effective inertia and D is frequency depen-
dence of load [27]. The unit impulse response of this system
is given by

h(t) =
1

M
exp

(
−D

M
t

)
. (10)

Clearly, instantly after the perturbation, at t = 0, the impulse
response is equal to the inverse of the effective inertia.
More precisely, the initial response of the system to a load
disturbance is what we consider to be the effective inertia.
Because we use load changes as inputs, the proportionality
term is negative, i.e. h(0) = −1/M .

The identified transfer functions are more detailed than the
single machine model without controls. However, the inertial
response is still the fastest acting and we can assume that
it determines the first instance of the impulse response. This
means that the inertia of each area can be determined by the
value of its unit impulse response at t = 0. For a transfer
function with the structure given in (8), the estimates—i.e the
first value of the impulse response—can be evaluated either
with the impulse function, as the gain value of the zero-
pole model from tf2zpk or most simply as the ratio of an
to −bn−1.

In the MIMO model it is also possible to determine the
impulse response of the system, which provides an additional
estimate of total system inertia (in addition to the sum of
area inertia values). This is based on the principle that system
COI frequency is an average of area frequencies weighted by
the inertia of each area. Once area inertia values have been
determined, it is possible to calculate system inertia from the
unit impulse response of the whole system.

Based on responses of all N areas to a unit impulse in area
k, the system inertia can be expressed as

MSk = −
∑N

i=1 1/hii(0)∑N
i=1 hki(0)/hii(0)

, (11)

where hki(0) is the response of the ith output of the MIMO
system at time t = 0 to a unit impulse in the kth input. The
1/hii(0) values correspond to the effective inertia of each area
and weight the output frequency deviation of each area so that
the sum corresponds to the system COI frequency. It has been

observed that in practice these estimates tend to have a lower
variance than the sum of area inertia values.

One of the important aspects of the presented method is that
several estimates are obtained from one period of monitoring
data. The multiple ARMAX models identified with various
model orders provide a number of estimates for area inertia,
which can then be averaged. However, there are commonly a
few poorly identified models that introduce outliers far from a
realistic inertia value, which have to be detected and removed.

We propose to use the median absolute deviation (MAD),
a robust median based statistic, defined as [30]–[32]

sMAD(X) = c med
(
|X −med(X)|

)
, (12)

where med(X) denotes the median of a sample X = {xi | i =
1, . . . , n}, xi are the values in that sample, and c is a term
introduced to achieve consistency with the standard deviation
of a certain distribution [31]. Any value xi for which

|xi −med(X)|
sMAD(X)

> k (13)

is considered an outlier and discarded. The cut-off factor k is
chosen in conjunction with c and the assumed distribution. If
a normal distribution is assumed, c takes the value of 1.4826
and k can be set to 2 for a 95% interval and 3 for a 99%
interval [31].

IV. TEST CALCULATIONS

A. Test System

The method has been tested on the Icelandic power system.
The Icelandic system is a relatively small island system with
a typical load around 1. . . 2 GW and total installed generating
capacity of 3 GW. In present terms, the system has a large
number of PMU measurement points relative to its size,
with more than 30 PMUs and around 200 measured voltage
and current signals. A simplified schematic of the system is
given in Fig. 2. The schematic includes all significant buses,
generators, and lines and four large industrial loads, denoted
by ILA, ILB, ILC, and ILZ. Total MVA ratings of power
plants are given next to the symbols. The transmission system
operator did not have a method of estimating or monitoring
inertia at the time of this study.

Generators colored black in Fig. 2 are monitored directly
by PMUs, i.e. their power flows are measured. However,
generators in blue are not monitored yet and their output power
flows are approximated. The simpler approximations are that
the power flows on lines LA1, LF1, VF1, and SP2 are used
as power measurements of the generators at LAX, LAG, VAF,
and MJO respectively. Power flows on lines SN1 and FI2 are
used to approximate the changes in generation at SVA and
REY, units in the smaller area bounded by the blue dashed line.
Additionally, all of the generation in the larger area bounded
by the blue dashed line is approximated by power flows into or
out of that area. These approximations may affect the accuracy
of the results, but are sufficient to enable the application of
this method.

The system has two main load centers, one in the west
and one in the east. In terms of centers of inertia (COI), the
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Fig. 2: Simplified schematic of the Icelandic power system. Larger black
labels denote substations, smaller colored labels denote transmission lines.
Total rated MVA of all generators at each plant given next to symbol.

system can be split quite naturally from the two long lines that
connect these two areas, even though border nodes can deviate
somewhat from their assigned area. The purple dashed line in
Fig. 2 shows this split. Line labels written in purple denote
the power flow measurements used to calculate area boundary
power flows. Load variations are approximated based on (6),
including the approximations used to find changes in power
generated by the units that are not monitored.

Frequencies at KOL, SIG, HRA, and BUD were used for the
western part and weighted by 1.5, 1.0, 1.0, and 0.5, and FLJ,
KRA, and BLA were assigned to the eastern part with weights
of 3.0, 1.0, and 0.5, respectively. The weight of BLA was set
lower because it is a border node and its frequency differs
more from frequencies of other nodes. These weights apply
to area COI frequencies, not a whole system COI frequency.
Frequency deviations were calculated for the aggregated areas
using (4) and (5). It has been observed that in practice such an
approach to evaluating area frequency and estimating effective
area inertia is not very sensitive to the weights, meaning that
crude assumptions are sufficient.

B. Validation of Method

The method was validated on a combination of measure-
ments from both ambient conditions and frequency distur-
bances. The effective area inertia values were estimated from
ambient measurements using the presented method. These
measurements were gathered from time periods preceding
frequency disturbances, meaning that the inertia values were
estimated right before the events. The disturbances were then
used to analyze the performance of the method. A total of
16 events were selected for the study, 14 of these were load
trips (industrial loads at either ILA, ILB or ILC) and two were
generator trips. Only so-called “clean” events were selected,
i.e. disturbances where a single unit tripped at a moment when
the system could be considered to be in steady-state and no
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Fig. 3: Example of monitoring data used for the estimation of effective area
and system inertia. Frequency deviations and load, approximated as in (6),
plotted for the western and eastern areas. Six selected measurements, periods
with missing data, and AGC operation marked by shaded areas.

other disturbance followed immediately. All disturbances took
place in the western part of the system.

The accuracy of estimated inertia values was quantified
by a comparison of the RoCoF of the recorded event and
the corresponding RoCoF predicted from the inertia value
for the given disturbance. From the disturbances, RoCoF was
estimated as the slope of a linear fit to measured frequency
during the period of 0.2 to 0.4 s after the trip. The jump in
frequency is a measurement effect of the disturbance causing a
step change in voltage phase angle, which cleared in 160 ms in
most cases but an additional 2 cycle margin was assumed. The
change in load, i.e. ∆P , was determined from the measured
power at the tripped unit as the largest deviation during the
first 0.3 s after the trip.

System identification was applied so that ARMAX models
of orders 9 to 28 were identified, i.e. 20 models with different
model orders. In each case with six consecutive measurement
periods, the first identification was made with five iterations
and each following made with three iterations using the results
of the previous measurement as a starting point. The least
squares non-linear fitting method was used inside the ARMAX
routine and the input–output delay was set to zero. Identified
models were reduced to 4th order transfer functions. MAD
based outlier detection assumed a normal distribution and a
95% confidence interval.

C. Inertia Estimation Results

In order to explain the application of the method better,
a little over 40 minutes of monitoring data is presented in
Fig. 3 as an example of input data. From this longer period,
six smaller sets of measurement data were selected by a
preprocessing algorithm. In the algorithm, a minimum length
(4 min in this case) was specified and measurement periods
were selected so that they started and ended at df/dt = 0,
while avoiding moments when data was missing or AGC was
operating. All of this is from ambient conditions, preceding
a load trip that took place 42 minutes after the start of
monitoring.
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Fig. 4: Details of validation with event number 16. Measured COI frequency in the western area and entire system plotted in left and center graphs, alongside
the responses predicted by the identified models and RoCoF slopes predicted from estimated inertia. Predictions were based on pre-event ambient data.
Variance in predicted RoCoF based on two standard deviations of all inertia values given as shaded area. Rightmost graph shows the measured power at the
tripped unit and the equivalent step signal used as the input of identified models. The magnitude of the step was also used as the ∆P when predicting RoCoF.
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Fig. 5: Individual inertia estimates from the six measurements. Average inertia
for each measurement is plotted, alongside all accepted values and outliers
that were rejected based on the MAD criterion.

The main results of the method are presented in Fig. 5,
where estimates of inertia from each measurement period are
plotted. The figure shows individual estimates extracted from
individual models and presents which values were accepted
and which rejected as outliers. It also gives the average inertia
value estimated from each measurement and shows the bound
based on the MAD method that was used to detect outliers.

Following that, the results of the six measurements before
the disturbance were further combined, decreasing variance in
the estimates of inertia. The value of effective inertia estimated
from the ambient monitoring data was then used to predict
the RoCoF of the following frequency disturbance in each
of the 16 cases. However, the cases were also analyzed in
detail in order to validate the results more thoroughly. For this,
the recorded frequency excursions were visually compared to
predictions from the identified models and a RoCoF slope
based on the estimated inertia. Recorded power of each tripped
unit was used to determine the amount of load or power lost
in the event. Fig. 4 presents this kind of validation of the
case that showed the largest difference between predicted and
comparison RoCoF values (area and system combined).

Measurements from all 16 cases were processed with the
proposed method and effective inertia of the western part and
the entire system were estimated. However, there were no
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Fig. 6: Comparison of approximate RoCoF after each disturbances and
corresponding RoCoF predicted from estimated inertia values for the western
area (top) and the entire system (bottom). Variance bounds based on two
standard deviations of all inertia samples of each case.

reference values of inertia with known accuracy available to
compare them to. In order to analyze the overall performance
of the method, RoCoF values were compared instead. For each
event, a RoCoF value and the amount of load (or generation)
lost were estimated from the PMU measurements. The iner-
tia values estimated from ambient measurements before the
events were used to predict RoCoF values of corresponding
disturbances.

A comparison of these results over all 16 cases are presented
in Fig. 6 for the western area and the whole system. (No
suitable validation events occurred in the eastern part of the
system.) Differences between RoCoF values estimated from
recorded frequencies and predicted from inertia values are
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predicted from estimated inertia. Per cent difference of prediction from
approximate RoCoF is given.

presented in Fig. 7. The average difference was 20% for the
western area and 12% for the whole system. However, these
should not be seen strictly as errors, since the RoCoF and ∆P
values of the events were also approximated. For example, in
validation event 16 shown in Fig. 4, the the first swing in the
frequency of the western area started before 0.3 s, meaning the
linear fit between 0.2 and 0.4 s was incorrect.

In computation time, processing one measurement period
took around 20. . . 50% of its length using a single core on a
regular office laptop (Core i5-4200U@1.6 GHz, 12GB RAM).
If the total length of all measurement periods in all 16 cases
was 380 min then the total time the code took to process all of
it was 140 min. On average it took 22 s to analyze one minute
of monitoring data or 37% of its length.

V. DISCUSSION

The method is based on first identifying the combined
inertial and primary control response of the system and then
extracting the value of inertia. This means that in order to
find a good estimate of inertia, it is necessary that the inertial
response is captured well enough in the identified system. The
inertial and primary control responses can only be clearly
separated in case of a distinct frequency disturbance. For
these reasons, the models identified from ambient measure-
ments were validated by comparing their inertial responses to
recorded frequency disturbances.

Results of system identification were validated this way
in all 16 cases. However, it is very difficult to quantify the
quality of a model in this comparison. A scalar difference
between the recorded and predicted time series could not
consider the different dynamics in the system and was not
suitable in many cases. Neither auto-correlation nor prediction
error analysis could reliably describe the quality of identified
models. Therefore, this type of validation was made as a visual
comparison, with one example given in Fig. 4.

It was seen in the estimates of inertia (Fig. 5, measurements
1 and 2 of eastern area) that some results are clearly incorrect.
The method is based on averaging a large number of estimates
and detecting and removing outliers is an important part of
that. While the MAD based outlier detection was suitable in
most cases, in the example presented in Fig. 5 measurements
1 and 2 for the eastern part of the system showed that it does

not always perform ideally. However, for the bounds based
on MAD to be very wide, there has to be a similar number
of values that are clearly underestimating and overestimating
the real value, meaning the average result is not significantly
distorted as errors are canceled out.

It is nevertheless important to quantify the accuracy of the
method and in order to do that, a comparison of RoCoF values
was carried out. It is possible to analyze a recorded frequency
excursion and approximate a RoCoF value based on a linear
fit during a certain period of the measurement. In this study, it
was also possible to monitor the power of the tripped units and
determine the change in load during the disturbance. Based
on estimated inertia values, it was then possible to calculate
another RoCoF value from the ratio of change in power to
inertia. These two RoCoF values could be directly compared
to each other as seen in Fig. 6 and Fig. 7.

Even though the reference RoCoF from each disturbance
was also approximated and not correct in every case (e.g. event
16), this comparison over 16 different cases still offers insight
into the expected accuracy of the method. The differences
ranged from a few per cent up to around 40% in a few cases,
with a 12% average in values for the entire system and 20% for
the western area. A very important result is that considering
variance bounds, not a single prediction underestimated the
RoCoF value caused by the disturbance. Even though some
estimated effective inertia values predicted a slightly lower
RoCoF, the upper bound gave a sufficiently conservative value
in each case.

The computational cost of the algorithm is considerable and
the time taken to process one measurement period can be in the
same order of magnitude as its length. In the presented results,
it took 20. . . 50% of the length of the measurement period.
If an average monitoring period of 4 min was assumed, then
an on-line application could give the average effective inertia
of this period 5. . . 6 min after the start of measurement. The
bulk of the computational work could be run in parallel (every
model order is independent) and significantly shorter running
times could be achieved on a more powerful computer. On the
other hand, increasing the number of input–output pairs would
increase the computational burden.

VI. CONCLUSIONS

The paper presented a method of estimating the effective
inertia of a system and its areas from ambient wide area mea-
surements, i.e. during normal system operation. The developed
method would enable a close to continuous and close to real-
time monitoring of inertia. The method is based on identifying
both the inertial response and primary frequency control in the
dynamics between active power and frequency.

The most important result of the work is demonstrating
that effective inertia can be monitored based on ambient
measurements, not only frequency disturbances. Thus, a TSO
can determine the time available to deploy frequency response
before frequency thresholds are crossed and load is lost
or other secondary disturbances occur. This means that the
amount of fast-acting reserve can be identified and allocated
per area of the power system, and the response time require-
ments specified. While there is sometimes a sizable spread in
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estimates, it was possible to determine a conservative estimate
to define the maximum expected RoCoF in every disturbance
case.
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