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Abstract: Impedance-based frequency domain method is an effective tool for the stability assessment of a doubly-fed 
induction generator (DFIG) system. Several impedance models have been proposed recently, however, these models are 
usually associated with model reductions since the complexity in achieving a detailed DFIG model. This may lead to unreliable 
stability results under certain conditions, and a clarification of this modeling effects is lacking in the literature. Therefore, this 
paper aims to address this issue by developing a detailed DFIG impedance model. To achieve this target, a modular modeling 
technique is proposed instead of the conventional linearization by parts, for which the components of a DFIG system are 
modeled as multi-port modules. Through this method, the detailed DFIG model together with four types of reduced-order 
models can be derived efficiently. The detailed DFIG model is verified by the measured frequency responses in PSCAD/EMTDC, 
along with its correctness in Nyquist-based stability analysis. Subsequently, four types of the reduced-order models are 
compared with the detailed one in terms of Nyquist plots, so that their performance and effectiveness for stability analysis 
are clarified. Besides, conclusions regarding the reduced-order models are also verified by time domain simulations. 
 

1. Introduction 

Voltage source converters (VSCs) are widely adopted 

for the grid integration of renewable energies, such as wind 

and solar [1]. However, grid-integration of these VSC-based 

renewable power generations can be challenging, not only 

because of their intrinsic fluctuation [2], but also the new 

dynamics brought about by the VSCs [3].  

Previous experience has revealed that the wind farms 

are inclined to oscillate when connecting to a compensated 

AC grid. An early report about this was presented in [4], 

where the doubly-fed induction generator (DFIG) based wind 

farms in Texas (USA) were suffered from the so-called sub-

synchronous resonance (SSR). Since then, extensive works 

have been done with respect to this, and the mechanisms 

behind this resonance are well-established now, which can be 

the torsional interaction (TI) [5], the induction generator 

effect (IGE) [6], and the sub-synchronous interaction (SSI). 

In particular, the SSI issue is analyzed in detail since it is 

related to the converter controls and are relatively new for the 

conventional power system. Specifically, for the DFIG wind 

turbines, it now becomes widely accepted that the rotor side 

converter (RSC) has more evident effects than the grid side 

converter (GSC) with respect to the SSR. Hence, the GSC is 

usually omitted for modelling if this type of SSR is aimed at 

[6]. Besides, many SSR-mitigation methods have also been 

proposed by either modifying the original controls [8] or 

utilizing ancillary devices [9]. 

During this period of analysis, the electromechanical 

dynamics of rotating machines (e.g. the synchronous 

generator) still dominate the system’s behavior, thus 

dynamics specific to power electronic devices are not evident. 

Until recently, due to the fast growth of renewable energies, 

VSCs become ubiquitous in power systems, invoking new 

dynamical issues. For example, a new type of SSR was 

reported in China recently [10], which is quite different from 

the DFIG-SSR. In this case, the oscillation occurred between 

a full-scale-converter based wind farm and a non-

compensated AC grid. This issue gains immediate attention 

and a preliminary mechanism about this can be understood as 

that (e.g. [3] and [10]), the VSC introduces capacitive effect 

to the inductive AC grid, forming an equivalent RLC circuit. 

Therefore, oscillation may occur if the net damping of the 

circuit is negative, and this negative damping can be a 

consequence of the phase-locked-loop (PLL) [3]. Besides, a 

recent work in [11] also points out that the outer control loops 

of the VSC can also cause instability.  

In general, these emerging issues motive the needs for 

a thorough stability analysis as well as providing useful 

methods for the VSC-based systems. Among them, the 

impedance-based frequency domain analysis method is 

prevailing since the impedance can be obtained either by 

analytical modelling or measurements [12]. Moreover, the 

well-known Nyquist criterion can be applied for stability 

assessment [13], which is efficient and more acceptable for 

electrical engineers. 

Impedance modelling of a VSC can be fulfilled 

through different methods, e.g. the harmonic linearization 

method [12] for the sequence impedance modelling [14], and 

the typical dq domain linearization method for the dq 

impedance modelling [15]. Recent works e.g. a phasor-based 

[16], a modified sequence domain based [17], and a complex 

transfer-function based (e.g. [18] and [19]) method, also 

provide some new perspectives. From which, the VSC 

properties can be interpreted better, e.g. the mirror frequency 

coupling effect [17] or the sequence coupling effect [20]. 

Definitely, these techniques are applicable for the 

impedance modelling of a DFIG wind system. However, it 

can be challenging since the typology of a DFIG is much 

more complicated than a single VSC. Particularly, its GSC 

and RSC are coupled both on the dc and ac side. Therefore, 

impedance modelling of a DFIG system usually associated 

with model reductions. For example, recent works e.g. [21] 

and [22] developed a DFIG impedance model with a constant 

dc-link voltage assumption, whereby the GSC and RSC can 

be modelled separately. However, the effects of these model 
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assumptions on stability have not been properly addressed 

and evaluated.  

Therefore, this work aims to address this issue by 

providing a detailed DFIG impedance model, and by 

clarifying the associated model reduction effects on stability 

analysis, particularly, the stability conclusion. This paper is 

organized as follows: 

In section 2, the modular modelling method is 

introduced and applied to derive the detailed DFIG 

impedance model. Section 3 performs a thorough verification 

of the detailed DFIG model. Next, four types of reduced-

order models are developed by means of the modular 

modelling approach, in section 4, and their performance and 

effectiveness on stability analysis are discussed and clarified. 

Finally, section 5 draws the main conclusions. 

2. Modular impedance modeling of the DFIG 
system 

2.1. System description  
Fig. 1 presents a typical DFIG-based wind system. 

The electrical parts are shown in detail, whereas the 

mechanical parts (e.g. wind rotor and drive chain etc.) are 

neglected since this work is focused on the converter control-

related stability issues. 
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Fig. 1 Schematic of a DFIG-based wind power system 

Generally, GSC controls the dc voltage, whereas the 

RSC fulfills the maximum power point tracking (MPPT) (see 

[23] for details). Both of the GSC and RSC have identical 

inner current control loops. The step-up transformer is 

considered since it can introduce a relatively large leakage 

inductance to the line impedance. The grid is represented by 

a Thevenin equivalent voltage source. The total grid 

impedance seen from point of connection (POC) can be 

quantified by the short circuit ratio (SCR). It is noted that 

since all the controls are in the dq frame, which relies on the 

proper functioning of a PLL. 

 

2.2. Modular modeling method  
Impedance modelling of a single VSC is intuitive 

since it only contains two ac ports in dq domain (e.g. ud and 

uq). However, for a DFIG system, the GSC and RSC are 

interconnected not only at the dc side but also the ac side (via 

the stator of DFIG), resulting in a coupled ac/dc system. 

Therefore, directly modelling from the ac side with a step-by-

step linearization method is inefficient and even unfeasible in 

some cases.  

To overcome this issue, this work adopts a modular 

modelling method. As illustrated in Fig. 2, the GSC and RSC 

can be modeled as three-port modules, where the d and q axis 

of the ac voltage can be the two ports, and the third port is the 

dc voltage of the converter. Accordingly, the dq and dc 

currents can be chosen as the three-port outputs. Note that the 

DFIG winding circuit is included in the RSC module. 
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Fig. 2 Modular representation of the RSC and GSC 

The major benefit of this method is that, once the GSC 

and the RSC module are established, they can be manipulated 

via Kirchoff's current and voltage law to derive the detailed 

DFIG model, as well as the reduced-order efficiently. 

 

2.3. Derivation of the GSC and RSC module 
In this subsection, the analytical modelling of the GSC 

and RSC module will be presented. Generally, they can be 

derived from the dq impedance modelling technique as 

presented in [15]. 

Previously, authors of this work have proposed a 

modified sequence domain modelling method [17]. In essence, 

it is a linear transformed dq impedance but inheriting the 

major properties of the sequence impedance. To the authors’ 

experience, the modified sequence impedance exhibits better 

numerical performance, which is more suitable for a complex 

system analysis (e.g. high order). Therefore, the DFIG will be 

modelled in the modified sequence domain. 

 

2.3.1 Modelling the GSC module: Derivation of the GSC 

model in the modified sequence domain can be fulfilled by 

the following two steps: 1) the first step is to linearize the 

control blocks of GSC (Fig. 1) in dq domain [15]; 2) the 

second step is to convert them into the modified sequence 

domain, this can be found in a previous study [24]. This work 

will not look into such details to maintain a compact structure. 

Generally, the GSC dynamics can be represented by a 

set of linearized equations in the dq frame as follows (see 

appendix 8.1 for details): 
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Decomposing the vectors (e.g. dqi  ) in dq frame yields:  

( )
*

j j
dq p ne e  = + i i i ， , where pi  and 

ni  are the 

positive- and negative-sequence components. Further, the 

following relationship is established: 

dp
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this is basically the method for transforming impedance in dq 

domain to modified sequence domain as discussed in [17] and 

[24].  

Given by this method, (1) can be transformed into 

modified sequence domain, yields the GSC module (
gsc gsc
p n,i i

are positive if flowing into the grid, gsc
dci is positive if flowing 

into GSC) as: 
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Please see the appendix for 
gsc

pnY , 2 1a  , 1 2b and gsc
dcY  models. 

 

2.3.2 Modelling the RSC module: The RSC module can be 

derived in a similar way as the GSC module. Generally, the 

RSC can be represented by a set of linearized equations in dq 

frame as (see the appendix 8.2 for details): 
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Then, transforming (5) into the modified sequence 

domain by the same method, yields (dc current rsc
dci  is positive 

if flowing into RSC, and ac currents 
r
dqi  and 

rsc
dqi  are positive 

if flowing into the grid): 
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Please see the appendix for 
rsc

pnY , 2 1c  , 1 2d and rsc
dcY  models. 

Finally, both the GSC and RSC module are obtained. 

In which, the GSC module is comprised of (3) and (4), 

whereas the RSC module is comprised of  (6) and (7). Note 

that in Fig. 2, the subscripts “dq” should be replaced with 

“pn”. 

 

2.4. Derivation of the detailed DFIG admittance 
model  

The ac side DFIG impedance model (i.e. seen from the 

POC) can be derived by eliminating the dc ports from the 

RSC and GSC modules using the following equation: 
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Substituting it into the summation of  (4) and (7) gives: 
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where 
all rsc gsc

dc dc dc capY Y Y s C= + +  . 

Then, substituting it into the summation of (3) to (6), 

yields: 
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Finally, the detailed DFIG admittance model is 

obtained, i.e. 
DFIG

pnY . In which, it can be clearly observed that 

gsc rsc
pn pn,− −Y Y  are the ac side admittances of RSC and GSC 

under a constant dc voltage assumption [22]. Hence, the 

additional term: ( )( ) all
2 1 2 1 1 2 1 2 dc/ Y   + +a c d b  can be 

interpreted as the dc-coupling of the RSC and GSC. 

3. Validation of the detailed DFIG impedance 
model 

In this section, the detailed DFIG model (10) will be 

verified through the measured frequency responses along 

with the Nyquist-based analysis.  

 

3.1. Method for measuring modified sequence 
impedance from simulations  

The DFIG system as shown in Fig. 1 is built in 

PSCAD/EMTDC. The multi-run module is utilized to inject 

one single-tone perturbation of each run, and the frequency is 

swept from 2 Hz to 100 Hz with an increment of 2 Hz.  
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Fig. 3 A flowchart of measuring the modified sequence 

impedance from simulations 
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To calculate the impedance matrix, two sets of data are 

required, e.g. for the dq impedance, it can be calculated as: 
1

d1 d2 d1 d2

dq

q1 q2 q1 q2

U U I I

U U I I

−
   

=    
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Z        (11) 

Hence, two sets of independent perturbations at each 

frequency are required to obtain the independent columns e.g. 

d1 q1

T

I I 
  and d2 q2

T

I I 
  . This is fulfilled by injecting the 

positive and negative sequence perturbations in this case. 

Afterward, simulation data are sent to MATLAB for 

frequency-domain analysis and impedance calculation. A 

flowchart of this process is briefly shown in Fig. 3. 

 

3.2. Comparison of the detailed DFIG model with 
the measured frequency responses 

Fig. 4 presents the Bode plots of the detailed DFIG 

model in comparison with the measured frequency responses. 

Both sub- and super-synchronous conditions are taken into 

account (the sub-synchronous mode denotes the generator 

speed is less than the grid frequency, whereas the super-

synchronous mode is the opposite). Main circuit and control 

parameters are given in appendix 8.3. 

From these figures it can be obtained that, in general, 

the analytical impedance plots are well-matched with the 

simulations both in magnitude and phase, indicating the 

detailed DFIG model i.e. (10) is effective. This also implies 

that the proposed model can accurately capture the dynamics 

within the frequency range of interest, and is effective for 

frequency-domain analysis. 

Please note that (10) is in admittance format, it is 

inversed to get the corresponding DFIG impedance. 

 
a 

 
b 

Fig. 4 Comparison of the detailed DFIG model with simulation (current controller bandwidth for both GSC and RSC are 200 

Hz, PLL bandwidth is 20 Hz, PQ and dc voltage controller bandwidth are 20 Hz. Grid SCR is 4.) 

(a) Bode plots at sub-synchronous operation (𝛚𝒓𝟎= 0.8 p.u., magnitude units are ohm in dB format, phase units are in degree) 

(b) Bode plots at super-synchronous operation (𝛚𝒓𝟎= 1.2 p.u., magnitude units are ohm in dB format, phase units are in degree)

Further, it can be identified that the impedance shapes 

are very different when the operating modes are changed (e.g. 

by comparing the impedance characteristics under super- and 

sub-synchronous mode). This implies that the power flow 

may have some impacts on DFIG stability, particularly the 

power flow direction since the converter power flow is 

inverted if the DFIG changes from super- to sub-synchronous 

mode. More discussion on this will be provided in section 4 

along with the model reductions. 

Back to the analysis of the impedance characteristics, 

it can be seen that the Zpp under sub-synchronous mode (Fig. 

4 (a)) exhibits more capacitive characteristics than the super-

synchronous mode (Fig. 4 (b)) at the low-frequency range. 

This implies the DFIG is more likely to be unstable under 

sub-synchronous mode when it is connected to a weak AC 
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grid. This mechanism is similar to the equivalent RLC circuit 

of a grid-tied VSC system [3] as introduced before. This 

finding also addresses the potential impacts of the power flow 

direction of the back-to-back converter on stability (i.e. super 

and sub-synchronous operating mode).  

In addition, it can also be observed that the off-

diagonal terms e.g. Zpn and Znp are not small compared to the 

diagonal terms e.g. Zpp and Znn. Consequently, neglecting 

them may lead to inaccuracies on stability results as will be 

discussed in section 4. 

 

3.3. Nyquist-based stability analysis under a weak 
AC grid condition  

Since the DFIG and the AC grid forms a closed-loop 

system, the Nyquist criterion can be applied to study this 

closed-loop system stability by plotting its eigen-loci of the 

minor loop gain [13] in a complex plane. In this case, the 

minor loop gain is the multiplication of the DFIG admittance 

and the ac grid impedance. However, since the impedances 

under discussion are generally two-by-two matrices, the 

generalized Nyquist Criterion [15] has to be applied rather 

than the classic one. Therefore, the stability can be analyzed 

by plotting the eigenvalue loci of the loop gain 

( ) S DFIG
pn pns = L Z Y  in a complex plane and counting their 

encirclements of the critical point (-1, 0 j).  

       
                         a                                                               b                                                                  c 

Fig. 5 Nyquist plots and time domain simulations (conditions are similar to the analysis in Fig. 4, except the PLL bandwidth) 

(a) Nyquist plots (𝜔𝑟0= 0.8 p.u., PLL 55 Hz); (b) Nyquist plots (𝜔𝑟0= 1.2 p.u., PLL 55 Hz) (c) Time domain verification of 

the Nyquist-based stability analysis, PLL bandwidth is increased from 20 Hz to 55 Hz at 4 s. 

Typically, the DFIG is designed to be stable when 

connecting to an ideal ac grid. Hence, there are no right-hand 

poles in 
DFIG

pnY , a similar consideration also applies to the 

grid 
S
pnZ . Consequently, any clockwise encirclements of the 

critical point (-1, 0 j) will result in an unstable system (one 

may refer [13] and [25] for more details).  

The Nyquist plots of the DFIG system with a weak AC 

grid are shown in Fig. 5 (a) and (b). It can be identified that, 

under the sub-synchronous mode, the DFIG is unstable since 

one of the eigen-loci encircles the critical point in a clockwise 

direction. On the other hand, the DFIG is shown to be stable 

under super-synchronous mode. This observation regarding 

the impact of power flow direction justifies the previous 

finding in section 3.2, where the stability was qualitatively 

predicted according to the DFIG impedance characteristics.  

A time domain simulation is further conducted to 

verify the Nyquist-based analysis. As shown in Fig. 5 (c), 

initially, the PLL bandwidth is set to 20 Hz to achieve a stable 

operation under both the sub- and super- synchronous modes. 

Then, it is increased to 55 Hz at 4s. It can be seen that, under 

the super-synchronous mode, the DFIG system is stable, 

which is consistent with the analysis of Fig. 5 (b). Whereas, 

under the sub-synchronous condition, the DFIG is unstable 

and exhibits a 20 Hz oscillation in dc voltage. Moreover, this 

simulation also implies is a marginally unstable case, because 

it takes a relatively long time for the oscillation to be 

observable since the PLL bandwidth change. This finding is 

consistent with the Nyquist plots in Fig. 5 (a), where the 

encirclement occurs close to the critical point. 

In summary, the detailed DFIG model is effective for 

stability analysis, and it will be used as the reference model 

for the later comparative analysis. 

4. Discussion on the reduced-order DFIG models 
for stability analysis 

4.1. Derivation of the reduced-order models  
Benefits from the modular modeling method, the 

reduced-order models can be assembled efficiently by setting 

some of the components to zero or removing some of the 

ports according to the model assumptions. In this section, four 

types of reduced-order models are considered: 

Model.1: The off-diagonal terms of the detailed DFIG 

model in (10) are removed, i.e. ( )ml_1 DFIG
pn pndiag=Y Y . Thus 

the derived DFIG impedance model is decoupled. 

Model.2: Only the RSC is considered, whereas the 

GSC is removed. Meanwhile, the dc voltage is assumed 

constant. The model can be derived from (6) by removing the 

dc port, i.e. 
ml_2 rsc

pn pn= −Y Y . 

Model.3: Only GSC is considered, the RSC is 

removed and replaced by a constant current source/load at the 

dc side. This model can be derived from (3) and (4) as:  

( )ml_3 gsc gsc
pn pn 2 1 1 2 cap dc/ s C Y = − +   +Y Y a b . 

Model.4: Model.2 and Model.3 are parallel-connected 

at the ac side, i.e. 
ml_4 ml_2 ml_3

pn pn pn= +Y Y Y . This model is 

equivalent to assume that the RSC and the GSC are decoupled 

at the dc side. Note that the dc voltage control loop still exists 

in the GSC model. 
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To help illustration, a circuit description of these 

reduced-order models are drawn in Fig. 6. 

RSC

DC

Model.2

GSC

Model.3
Current 

source

DFIG

Model.1

PoC

Model.4

Parallel connected 

DFIG

pp

DFIG

nn

0

0

Y

Y

 
 
 

 

Fig. 6 A circuit description of the reduced-order models 

4.2. Evaluation of the reduced-order models on 
stability assessments  

In the following, these reduced-order DFIG models 

will be compared with the detailed DFIG model in terms of 

Nyquist plots, so that the model assumptions on the accuracy 

of stability assessment can be intuitively revealed. 

The Nyquist plots of the reduced-order models, as well 

as the detailed DFIG model, are shown in Fig.7 (a)-(d), where 

the super-synchronous operating mode is initially taken into 

account. As indicated by the detailed DFIG model (black 

lines), in this case, the DFIG is stable and this conclusion will 

be the reference for the reduced-order models.  

By comparing the Nyquist plots of the reduced-order 

models with the detailed DFIG model, it can be obtained that 

Model.1 and Model.2 are wrong, whereas Model.3 and 

Mode.4 are correct in terms of stability conclusion.  

 
                          a                                                  b                                                c                                                 d 

Fig. 7 Nyquist plots comparison of the reduced-order models (ωr0=1.2 p.u., PLL bandwidth is 50 Hz, PQ and dc voltage 

controller bandwidth is 20 Hz, current controller bandwidth of GSC and RSC is 200 Hz, SCR is 4.) 

(a) Model.1; (b) Model.2; (c) Model.3; (d) Model.4 (black lines: the detailed model; red lines: the reduced models). 

Specifically, although Model.1 and Model.2 draw a 

wrong stability conclusion in this case, the Model.1 performs 

much better than the Model.2 according to their eigenvalue 

loci.  

In the case of Model.1, its eigen-loci are very close to 

the detailed model at the high-frequency range, whereas 

exhibiting some inaccuracies at low-frequency range, this 

leads to an over-pessimistic stability conclusion as depicted 

in Fig.7 (a).  

On the other hand, the eigen-loci of Model.2 are 

extremely different from the detailed DFIG model, which are 

far away from the critical point. This implies that the RSC is 

less risky in instability. This makes sense because the large 

magnetizing inductance of DFIG can overtake the control 

effects of the RSC, resulting in an inductive impedance 

characteristic. It is intuitive to know that an inductive DFIG 

impedance when connecting to an inductive grid will be very 

stable. Since this large discrepancy in the eigen-loci, the 

Model.2 cannot be used for stability analysis. 

Further, according to Fig.7 (c) it can be obtained that 

the eigen-loci of the Model.3 are improved in comparison 

with the Model.2. This also implies that the GSC is more 

important in determining the DFIG stability than the RSC. In 

this case, the Model.3 can predict the same stability 

conclusion as the detailed DFIG model, though there are 

some evident differences in the shape of the eigen-loci. 

This discrepancy in eigen-loci can be reduced by 

further paralleling the Model.3 with the Model.2, i.e. the 

Model.4. According to the Fig.7 (d), the Model.4 is shown to 

be a good approximation to the detailed DFIG model. 

Moreover, the modelling work for Model.4 is much less than 

the detailed one due to the fact that the dc-side is assumed to 

be decoupled, which means the GSC and RSC can be 

modelled separately. 

Since the Model.3 and Model.4 draw the correct 

stability conclusion in this case, meanwhile, as addressed 

before the effects of power flow direction should not be 

overlooked, hence these two reduced-order models will be 

tested under sub-synchronous mode further, and the results 

are shown in Fig. 8.  

From Fig. 8 (a) it can be obtained that, the Model.3 

predicts wrong stability conclusion in this case, mainly due to 

the change of the power flow direction. In combination with 

the analysis under the super-synchronous mode, it can be 

concluded that the Model.3 is slightly optimistic for DFIG 

stability analysis. On the other hand, the Model.4 still 

performs well under this condition, exhibiting good accuracy 

both in eigen-loci and stability conclusion, as illustrated in 

Fig. 8 (b).  

To verify the above analysis, a time domain simulation 

is conducted in PSCAD/EMTDC, from which the dc voltage 

responses of the detailed DFIG model, Model.3 and Model.4 

are compared in Fig. 8 (c). It can be observed that after the 

PLL bandwidth changes from 20 Hz to 55 Hz (i.e. the value 

of Nyquist plots) at 3s, both the detailed DFIG model and the 

Model.4 start oscillating after a relatively long time, 

indicating a marginally unstable condition. However, the 

Model.3 is shown to be stable since the dc voltage remains 
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steady. This simulation shows that the former remarks on the 

Model.3 and Model.4 are correct.  

One may also observe that the dc voltage response 

from the Model.4 increases faster than the detailed model. 

This finding can also be justified from the Nyquist plots in 

Fig. 8 (b), where the eigen-loci of Model.4 are located slightly 

to the left side of the detailed DFIG model, implying more 

negative damping in time domain responses. 

   
       a          b      c 

Fig. 8 Nyquist plots comparison and simulation (ωr0=0.8 p.u., PLL bandwidth is 55 Hz, other conditions are the same as Fig.7, 

red lines denotes reduced models, black lines denote detailed model.) 

(a) Nyquist plots of the Model.1; (b) Nyquist plots of the Model.2; (c) Time domain simulations; (black lines: the detailed 

model; red lines: the reduced models). 

Besides, it is worth to explain that time domain 

simulations of Model.1 and Model.2 are not shown because 

Model.1 has no physical meaning since it is mathematically 

deduced from the detailed DFIG model, whereas Model.2 is 

obviously not suitable for stability analysis as concluded 

before. In fact, Model.2 has been tested in simulation, and the 

results are consistent with the Nyquist plots, in which the 

Model.2 can remain stable even under an extreme worse 

condition (e.g. a very fast PLL, e.g. 100 Hz and an extremely 

weak ac grid, e.g. SCR = 2). This is the consequence of the 

large discrepancy in eigen-loci as addressed before.  

5.  Conclusion 

This work derives a detailed DFIG impedance model, 

along with four types of reduced-order models through the 

modular modeling approach. The detailed DFIG model is 

verified by measured frequency responses as well as its 

correctness on stability analysis. Several significant concerns 

on the reduced-order models are clarified as follows: 

1) The Model.1, obtained with omitting the off-diagonal 

terms of the detailed DFIG impedance model is shown to 

be over-pessimistic for stability analysis.  

2) The Model.2, only with a detailed modelling of the RSC 

cannot be used for stability analysis due to its large 

discrepancy in eigen-loci compared with the detailed 

DFIG model. 

3) The Model.3, only with a detailed modelling of the GSC 

is slightly optimistic in terms of the stability conclusion, 

though some evident differences in eigen-loci are 

observed when compared with the detailed DFIG model. 

4) The Model.4, obtained by paralleling the Model. 2 with 

the Model. 3 provides the best approximation to the 

detailed DFIG model. Thus, it can be a good candidate 

and is more efficient for stability analysis since less 

modelling work is required compared to the detailed one. 

It is worth to note again that these conclusions 

regarding the DFIG model reductions are drawn under a non-

compensated ac grid. 
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8. Appendices  

8.1. Transfer functions of the GSC module in the 
modified sequence domain 

Derivation of (1): The dq variables can be written in 

a more compact vector format as: dq d qji i= +i . Then the 

current vector in PLL frame can be derived as: 

( ) ( )( )pllgsc gsc gsc
c0 c0 c0 pllpll dq dq 1 j

j
e




− 
+ = +  + − i I i I i I (A.1) 

hence,  
gsc gsc

c0 pllpll dq j = − i i I                       (A.2) 

gsc
plli  is the feedback current vector for controls. 

The outputs of the current controller are duty cycles. 

Similarly, they can be written as: 

( ) ( )( )pllgsc gsc gsc
c0 c0 c0 pllpll dq dq 1 j

j
e




− 
+ = +  + − d D d D d D (A.3) 

then,  
gsc gsc

c0 pllpll dq j = − d d D                   (A.4) 

is obtained. 

For the PLL, its small signal input is the projection of 

the PoC voltage on the q axis, which is pllq q 0 pllu u U = −  .  

Substituting it into the PLL forward gain yields: 

( )pll
pll pllq=

H s
u

s
  . Hence, the PLL transfer function is: 

( )

( )
( )

0 pll

pll pll

0 pll 0 01

q qU H s u u
T s

U H s U U
 = =

+
       (A.5) 

The output voltage vector of the GSC is: 

( )( )gsc gsc
c0 c0 dc dc0dq dq u V+ = + +u U d D          (A.6) 

hence, its linearized model is obtained as: 
gsc gsc
dq c0 dc dc0 dqu V= +u D d                    (A.7) 

The relationship between the ac and the dc side 

currents can be established according to the power balance as: 

 ( ) 
*

gsc gsc * gsc
dc c0 dq c01.5Re dqi = +D i I d             (A.8) 

Assembling (A.2), (A.4), (A.5), (A.7) via the control 

diagram in Fig. 1 can derive (1). 

 

Transfer-function blocks: Afterwards, transforming 

(1) into the modified sequence domain through (2), then the 

GSC module (with three ports) is obtained, and its associated 

transfer-functions are given as follows: 
pll0 pll0
p pgsc

pn 2 2 f f pll0 pll0
dc0 p 0 n n n

1 G G1 1
,

H H G 1 Gc c dc

diag
V Z V Z



   −
  = −
 + +  −  

Y ; 
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T
*

c dc 0 c0 c dc 0 c0
2 1 f f

c 0 p c 0 n

0.5
Z H Z

dc dc

dc dc

H H V H H V

H V V


 + +
 =

+ +  

D D
a ; 

* f f
0 p* gsc *0 n

1 2 0 0 pn 0 0
0 0 0

Z Z3 1

2

c c
c c c c

dc dc dcV V V


     = + + +      

I I
b D D Y I I ;  

* f f
c0 pgsc * * c0 n c0

c0 c0 2 1dc 2
dc0 dc0 dc0

Z Z3

2

P
Y

V V V


 
 = + + −
  

I I
D D a . 

where, ( )f
p f s fjZ s sL L= + , ( ) ( )( )

*
pll0 pll0
n pG Gs s=  and

( ) ( )( )
*

f f
n pZ s Z s= . ( ) ( )

( )pllpll0
p dc0 c c0 c0

0

G
2

T s
s V H

U
= +I D . Note 

that the conjugation operator only applied to the coefficients 

of complex-value functions, e.g. ( )f
n f s fjZ s sL L= − . 

8.2. Transfer functions of the RSC module in the 
modified sequence domain 

Derivation of (5): The dq domain model of the RSC 

and the generator winding dynamics can be established 

similarly as the GSC. In which, the current vector feedback 

is: 
r r
pll dq r0 pllj = − i i I                          (A.9) 

The current controller output is: 
r r
pll dq r0 pllj = − d d D                      (A.10) 

The RSC output voltage is: 
r rsc r
dq r0 dc dc0 dqu V= +u D d                     (A.11) 

The generator winding dynamics can be obtained from 

its flux-linkage and voltage equations: 

( )( )r r r rsc
dq r dq 0 s r dq m dqjR s s L L= + + −u i i i     (A.12) 

is the rotor voltage equation. 

( )( )poc rsc r rsc
dq s dq 0 s m dq s dqjR s s L L= − + + −u i i i    (A.13) 

is the stator voltage equation. 

Assembling (A.9)-(A.13) via the control diagram in 

Fig. 1 can derive (5).  

 
Transfer-function blocks: Afterwards, transforming 

(5) into the modified sequence domain through (2), then the 

RSC module (with three ports) is obtained, and the associated 

transfer-functions are given as follows: 

( )rsc IOP IOP
pn 2 2 p n

m pll0 pll0
p p dc0 c s 0 dc0 p 0

pll0 m pll0
c s 0 0 n 0 n n dc0

,

G 1.5 G

1.5 G G

s dc

s dc dc

diag Y Y

k V H H V V

H H V V k V

= 

 − +
 
 + − 

Y

I

I

; 

IOP
r0 p

2 1
* IOP
r0 n

1

2

Y

Y


 
 =
 
 

D
c

D
; 

* * lr lr rsc
dc0 r0 r0 p dc0 r0 r0 n pn

*1 2
* m m0 r0 dc0 r0

0 r0 p r0 nm m
p n

V V

3
V V2V dc

dc

Z Z

k k
Z Z



  + +
  
 

=   
 + + + 
    

D I D I Y

d D D
I I

; 

rsc * * lr lr r0
dc dc0 r0 r0 p dc0 r0 0 n 2 1 2

0 0

3
V V

2V V
r

dc dc

P
Y Z Z 

 = + + −
 

D I D I c . 

where, 
( )

IOP
p * Lr

c dc0 0 p

1

1.5 1s s

Y
H V H Z

=
+ +U

, ( )
*

IOP IOP
n pY Y= ,

lr
p lr r 0 lrj sZ sL R s L= + +  , ( )

*
lr lr
n pZ Z=  Lr

p r r 0 rj sZ sL R s L= + + ,

( )
*

Lr Lr
n pZ Z=  , Lm

p mjm sZ sL L= + , ( )
*

Lm Lm
n pZ Z= , 

r
pm

p m
p

Z
k

Z
= ,

( )
*

m m
n pk k= . 

8.3. DFIG and VSC parameters 

Table 1 DFIG parameters 

Name value 

Rating  2 MW 

Voltage (mag per phase) U0 563 V 

Pole pairs  2 

Turns ratio  

Stator resistance Rs 

Rotor resistance Rr 

Magnetizing inductance Lm  

Leakage inductance Llr 

1/3 

0.0054 pu 

0.00607 pu 

4.362 pu 

0.1 pu 

Rating  2 MW 

Voltage (mag per phase) U0 

 

563 V 

 

Table 2 VSC parameters 

Name value 

Rating  750 kW 

Voltage (mag per phase) U0 563 V 

DC voltage Vdc0  1.1 kV 

Filter inductance Lf 

DC capacitor Ccap  

0.1 pu 

10 mF 
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