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Abstract: The multiple task-priority inverse kinematics framework using the Moore-Penrose
pseudoinverse has been shown to be asymptotically stable for the regulation problem with
certain conditions on the tasks. In this article we present a theorem that extends this to the
tracking problem by including an additional criterion that we term fully represented in the null-
space. We show the effect of this on a simulation with a snake-like robot manipulator with 30
links for 3 compatible tasks, and an example of 2 tasks that are compatible as a regulation
problem but incompatible as a tracking problem. As the tracking problem is more affected by
the linearization assumption, we also include an example showing that the effect of linearization
can be detrimental during tracking.
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1. INTRODUCTION

From humanoid service robots to industrial manipulators,
we often want the robot to follow a reference trajectory.
The reference is represented in a task space (f.ex. in
Cartesian space) and finding the appropriate robot-centric
control setpoints to converge to the reference is referred to
as the inverse kinematics problem. Inverse kinematics is a
classical problem in robotics, and is fundamental to highly
redundant robots such as humanoid or snake robots.

Sciavicco and Siciliano (1986) and Das et al. (1988) present
methods of finding joint speed setpoints to achieve a given
inverse kinematics. This is commonly called the closed-
loop inverse kinematics (CLIK), where the joint speeds are
found by inverting differential kinematics. By design, the
joint speeds are chosen such that the task errors converge
exponentially.

For robots where there are multiple tasks to be achieved,
and the robot is redundant with respect to the tasks,
Chiaverini (1997) shows that tasks can be combined in
priority by placing lower priority tasks in the null-space of
the higher priority tasks. Antonelli (2009) presents a set
of criteria on the tasks to ensure that we have asymptotic
stability of the regulation problem (when the robot is to
move to a reference point).

Multiple-task inverse kinematics can be solved in many
different ways. We consider the use of pseudo-inverses and
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null-space operators, but others such as Aertbeliën and
Schutter (2014) solves the problem by using a quadratic
program. Falco and Natale (2011) consider the discretized
version of the problem, and gives a stability proof of the
regulation problem.

In this article we consider the tracking problem where
the robot is to follow a reference trajectory rather than
the regulation problem where it moves to a point. We
present a proof with criteria on the tasks to ensure that
the tracking problem exhibits asymptotic stability. We give
three examples on a 30 link planar snake robot. The first
example emphasizes the behavior when we have compati-
ble tasks. The second is a minimal example of tasks that
are compatible as a regulation problem but incompatible
as a tracking problem. The minimal example can easily
happen if a user makes a mistake when designing the tasks.
The final example shows how the tracking problem is more
sensitive to how long the joint speed setpoint is applied to
the robot than the regulation problem.

2. STABILITY

2.1 Description of the Moore-Penrose Pseudoinverse

The Moore-Penrose pseudoinverse, A† is defined for A ∈
Rm×n whereA not necessarily has full rank, and it satisfies
the following conditions:

AA†A = A, (1)
A†AA† = A†, (2)(
AA†

)T
= AA†, (3)(

A†A
)T

= A†A (4)



and if A has full rank, we have
AA† = Im. (5)

2.2 Single task stability

We consider a general robotic system with n degrees of
freedom whose configuration is described by the joint
coordinates q = [q1, q2, . . . , qn] ∈ Rn. The robot is con-
trolled by the speed of the joints q̇des and we assume
q̇des(t) = q̇(t). We define a task error, σ̃ : R× Rn → Rm,
that should be stabilized to zero. It is a function of time,
joint coordinates, and m is the dimension of the task. A
typical regulation problem would be:

σ̃ = p− fp(q) (6)
where fp is the forward kinematics, and p is the desired
goal state. A typical tracking problem would be:

σ̃ = pref(t)− fp(q) (7)
where pref(t) is a reference signal that the end-effector
tracks.

Looking at the total derivative of σ̃ we find the task error
is related to the control input q̇ by

˙̃σ(t, q) =
∂σ̃

∂t
(t, q) +

∂σ̃

∂q
(t, q)q̇(t) (8)

we define J(q) = ∂σ̃
∂q ∈ Rm×n as the configuration-

dependent task error Jacobian. For brevity we simply write
J and σ̃. We essentially assume that we can linearize the
system at this time instance and give the robot a q̇ setpoint
for a short enough time interval that we have not diverged
from this linearization.

To ensure exponential stability of the task error, choose
˙̃σ ..= −Λσ̃, (9)

where Λ > 0. From (8), we find

Jq̇ = −∂σ̃
∂t
− Λσ̃. (10)

Note that ∂σ̃
∂t is a feedforward term of the time derivative

of the task error. If J has full rank, we can use the Moore-
Penrose inverse of J to find the desired q̇

q̇ = −J†
(
∂σ̃

∂t
+ Λσ̃

)
. (11)

if the system is redundant with respect to the task, i.e.
n > m, the solution has a null-space operator N = (In −
J†J) such that

q̇ = −J†
(
∂σ̃

∂t
+ Λσ̃

)
+Nq̇null (12)

where q̇null ∈ Rn can be arbitrarily chosen without
affecting the stability of the task. This means that tasks
are combined in priority by projecting their desired joint
speed, (11), into the null-space of the higher-priority tasks.

We use the augmented null-space operator to achieve
this. The augmented null-space operator describes the
null-space formed by the combination of multiple task
error Jacobians. That is, for task errors σ̃1 and σ̃2 the
augmented Jacobian is defined as

J1,2 =

[
J1

J2

]
, (13)

and the augmented null-space operator is defined as

N1,2 =
(
In + J1,2

†J1,2

)
. (14)

A useful property of the augmented null-space operator is:
JiN1,...,k = 0m×n (15)

with i ∈ {1, . . . , k}. For proof see Moe et al. (2016). The
desired joint speed for k tasks, is then:

q̇ = −
k∑

i=1

N1,i−1J1
†
(
∂σ̃1

∂t
+ Λ1σ̃1

)
(16)

where we have defined the shorthandN1,0 = In to simplify
our sum expression.

2.3 Task relation definitions

Antonelli (2009) provides three useful definitions for the
relation between tasks. Two tasks with Jacobians Ji and
Jj are defined to be annihilating if:

JiJj
† = 0m×m. (17)

They are annihilating in the null-space of σ̃1, . . . , σ̃l if

JiN1,...,lJ
†
j = 0m×m, (18)

and the two tasks are independent if they are not annihi-
lating and

ρ(J†i ) + ρ(J†j ) = ρ
([
Ji
†,Jj

†
])

(19)

where ρ(·) denotes the rank.

We include an additional definition, a tracking task is fully
represented in the null-space Nj if

JiNjJ
†
i = JiJ

†
i (20)

which for full rank of Ji gives the identity matrix. This
new criteria ensures that the time-varying aspect to track
in a task can be followed in the null-space it will operate
in.

2.4 Tracking Multiple tasks

Theorem 1. Given k > 1 tasks, and that

(A) each task has full rank,
(B) task i is independent of all tasks 1, . . . , i− 1,
(C) any tasks i and j with i > j > 1 are annihilating in

the augmented null-space N1,...,j−1,
(D) if task i is a tracking task, it is fully represented in

N1,...,i−1

then the task errors are asymptotically stable.

Proof. We have k > 1 tasks. For each of these tasks, we
desire exponential behavior of the task error derivative

˙̃σi =
∂σ̃i

∂t
+ Jiq̇ (21)

˙̃σi
..= −Λσ̃i (22)

where i = 1, . . . , k. To investigate the stability of all the
tasks, we define

−→σ = [σ̃T
1 , . . . , σ̃

T
k ]T (23)

∂−→σ
∂t

= [
∂σ̃1

∂t

T

, . . . ,
∂σ̃k

∂t

T

]T (24)



Then, by inserting (16) into (21) we obtain the system

−̇→σ =−


A11 0m1×m2 . . . 0m1×mk

A21 A22 . . . 0m2×mk

...
. . .

Ak1 Ak2 . . . Akk

−→σ

+


B11 0m1×m2

. . . 0m1×mk

B21 B22 . . . 0m2×mk

...
. . .

Bk1 Bk2 . . . Bkk

 ∂−→σ∂t (25)

where

Aij = JiN1,...,j−1Jj
†Λj (26)

Bij =

{
I − JiN1,...,i−1Ji

†, i = j

−JiN1,...,j−1Jj
†, i 6= j

(27)

Note: the upper-trianguluar block terms are zero as a
result of (15).

Following the proof in Antonelli (2009), we use the Lya-
punov function

V =
1

2
−→σ T−→σ (28)

which is positive for all non-zero−→σ . It has a time derivative
given by

V̇ =−→σ T −̇→σ (29)

V̇ =−−→σ TA−→σ +−→σ TB
∂−→σ
∂t

(30)

Looking at (26) and (27) we notice that from requirement
(C), the off-diagonal elements of A and B are zero
matrices of appropriate dimension. From requirement (A)
and (D) B disappears entirely, giving

V̇ =−−→σ TA−→σ . (31)

This means that the tracking problem has been reduced to
the regulation problem. As described in Antonelli (2009)
the block diagonal elements of A are positive definite from
the requirement (B) and (C), and the task errors are
asymptotically stable for any Λi > 0 with i ∈ 1, . . . , k.
If requirement (D) holds for all tasks, not just the ones
that have a time-varying aspect, then we also have A =
diag(Λ1Im1 ,Λ2Im2 , . . . ,ΛkImk

).

3. EXAMPLES

To simplify Jacobian and pseudo-inverse calculation, the
following examples were implemented in Python with
CasADi (Andersson et al., 2018). CasADi is a symbolic
and algorithmic differentiation framework for numeric
optimization. The system is simulated with Euler’s method
and a timestep of 0.01 s.

We consider a highly redundant snake-like manipulator
with 30 links of unit length with 30 revolute joints. The
snake is rigidly attached at the base and moves in the
plane. We have q = [q1, q2, . . . , q30]T ∈ R30 with each
subsequent joint angle defined relative the preceding joint.
The forward kinematics to link i is then given by

fpi
(q) =


i∑

j=1

cos(

j∑
k=1

qk)

i∑
j=1

sin(

j∑
k=1

qk)

 (32)

and the partial derivatives of these are simply

∂fpi

∂ql
(q) =


i∑

j=l

− sin(

j∑
k=1

qk)

i∑
j=l

cos(

j∑
k=1

qk)

 (33)

we denote the relative forward kinematics from link i to
link j as fpi,j

(q).

The first example emphasizes how feedforward of the task
error derivative reduces the tracking error for tasks that
are compatible. The second example shows two tasks that
can be combined in the case of a regulation problem but
will cause problems as a tracking problem. The third
example shows a problem with discretization that is more
evident in tracking tasks than in regulation tasks.

3.1 Example 1 - Effect of Feedforward

We have three tasks forming three task errors:

σ̃1(t, q) =

[
2 cos(0.1t) + 10
2 sin(0.1t) + 10

]
− fp20

(q) (34)

σ̃2(t, q) =

[
cos(0.2t) + 2
sin(0.2t) + 2

]
− fp25,30

(q) (35)

σ̃3(t, q) = q21 + q22 + q23 − sin(t) (36)
the first task is for the 20th link to follow a circle of radius 2
centered around (10, 10), and the second is for the 30th link
to follow a circle of radius 1 centered around (2, 2) relative
to the frame on the 25th link. The third tasks is for the
sum of joints q21, q22 and q23 to follow a sinusoidal signal.
The tasks are annihilating, and fully represented in the
necessary null-spaces, and we use gains Λ1 = Λ2 = Λ3 = 1.

In Fig.1 we see the norms of the tasks w.r.t time both
with and without feedback. Without feedforward, there is
a persistent tracking error in all the tasks. In Fig.2 we see
the smallest eigenvalue of A and the Frobenius norm of B
w.r.t. time, note thatA remains positive definite, andB is
zero. As B is zero, the tracking tasks are fully represented
in the null-space of the higher-priority tasks, and the task
errors are asymptotically stable.

3.2 Example 2 - Incompatible Tasks

A simple mistake during task design is to take what should
be one task, and splitting it into two. Here we consider
the case where we control the x and y position of the end-
effector as two different tasks. This gives the task errors

σ̃x(t, q) = 2 cos(0.1t) + 10−
30∑
j=1

cos(

j∑
k=1

qk) (37)

σ̃y(t, q) = 2 cos(0.1t) + 10−
30∑
j=1

sin(

j∑
k=1

qk) (38)
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Fig. 1. Norm of task errors for example 1. With compatible
tasks, feedforward removes tracking error.
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Fig. 2. Minimum eigenvalue of A and Frobenius norm of
B for example 1. Only the case with feedforward is
given as the no feedforward case is similar.

for which the partial derivatives are

∂σ̃x
∂qi

=

30∑
j=i

sin(

j∑
k=1

qk) (39)

∂σ̃y
∂qi

= −
30∑
j=i

cos(

j∑
k=1

qk) (40)

In Appendix A we show that as a regulation problem this
is asymptotically stable, but not as a tracking problem. In
Fig.3 we see the norm of the task errors. The high-priority
σ̃x converges, but σ̃y does not as it is affected by the time-
varying reference signal. In Fig.4 we see that the smallest
eigenvalue of A is positive, and that B is non-zero.

3.3 Example 3 - Linearization

CLIK approaches generally assume that q̇ = q̇desired,
calculates q̇desired, and then applies q̇desired to the robot
for a time interval. This means that the time interval we
apply q̇ = q̇desired to the robot should be sufficiently small
for the linearization assumption to hold. In Fig.5 we show
the norm of the full task error vector in Example 1 for
varying timestep sizes. In Fig.6 we show the same tasks
but with a constant reference point instead of a reference
trajectory.
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Fig. 3. Norms of the task errors for Example 2. Note that
σ̃x converges but σ̃y does not.
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Fig. 4. Minimum eigenvalue of A and Frobenius norm of
B for example 2. Only the case with feedforward is
given as the no feedforward case is similar. Note that
the minimum eigenvalue remains positive, but ‖B‖ is
non-zero.
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Fig. 5. Norms of the full task error vector from (34)-(36)
for varying timestep lengths.

4. CONCLUSION

When performing tracking tasks, it is not as easy to
combine tasks as when handling a regulation problem.
In this article we presented a theorem showing sufficient
conditions on the tasks to ensure asymptotic stability of
the task errors for task-priority inverse kinematics for
tracking problems. The new requirement when compared
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to the regulation problems is that tracking tasks are fully
represented in the null-space of the previous tasks. This
was shown with two examples, one showing compatible
tasks where the tracking error was removed by the feedfor-
ward signal, and one showing a minimal example of incom-
patible tasks that could arise by simple user mistakes. The
third example emphasized the dangers of linearization and
discretization as a reminder that this becomes a larger is-
sue when handling tracking problems. The errors observed
in the third example are to be expected in other CLIK
approaches where we assume the same linearity in the
task error Jacobian. As the error observed is in the order
of millimeters or even centimeters, this could negatively
affect industrial use-cases such as seam-following as the
error may exceed the desired tolerances if not accounted
for.

The multiple task-priority inverse kinematics framework
has been extended to set-based tasks in Moe et al. (2016).
Extending the results of this article to set-based tasks will
allow us to design control systems where we can ensure
convergence while avoiding obstacles moving in known
paths, or when the robot must remain inside a time-
varying workspace.

The linearization issues may be addressed by extending the
work of Falco and Natale (2011) to consider the tracking
problem in the discretized version of the approach.
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Appendix A. STABILITY OF EXAMPLE 2 AS A
REGULATION PROBLEM

We have the partial derivatives (39) and (40) that form the
Jacobians Jx ∈ R1×n and Jy ∈ R1×n. We investigate the
stability of the regulation problem by looking at A. As A
is lower-triangular, we are only interested in A11 and A22:

A11 = Λ1 (A.1)
and

A22 = Jy(I − Jx
†Jx)Jy

†Λ2 (A.2)
A22 = (1− JyJx

†JxJy
†)Λ2 (A.3)

We observe that

JyJx
† =

1

‖Jx‖2
JyJ

T
x (A.4)

JyJx
†JxJy

† =
1

‖Jx‖2 ‖Jy‖2
(
JyJ

T
x

)2
(A.5)

and that the tasks are not annihilating by design. By
Cauchy-Schwarz, assuming Jy and Jx are non-zero (we
avoid singularities), we have that

1 ≥
(
JxJ

T
y

)2
‖Jx‖2 ‖Jy‖2

(A.6)

which gives:
eig(A) = (Λ1, αΛ2) (A.7)

where α ≥ 0 as long as Jy 6= 0, Jx 6= 0 and the
two are linearly independent. This means that given any
arbitrary Λ1 > 0 and Λ2 > 0 the regulation problem is
asymptotically stable. The tracking problem on the other
hand is not. We have

B =

[
0 0
−β 1− α

]
(A.8)

where

β =
JyJ

T
x

‖Jx‖2
(A.9)

If Jx and Jy are linearly independent, then β = 0 but
1 − α 6= 0. If Jx and Jy are dependent, then 1 − α = 0,
but β 6= 0. The example shows how we can have stability
of the regulation problem while not guaranteeing stability
of the tracking problem with pseudo-inverse based closed-
loop inverse kinematics.


