
A System Architecture for Constraint-Based
Robotic Assembly with CAD Information

Mathias Hauan Arbo⇤, Yudha Pane†, Erwin Aertbeliën† and Wilm Decré†
⇤Department of Engineering Cybernetics

NTNU, Norwegian University of Science and Technology
†Robotics Research Group, core lab Flanders Make
Department of Mechanical Engineering, KU Leuven

Abstract—A system architecture is presented to generate

sensor-controlled robot tasks from knowledge encoded in a CAD

model. This architecture consists of an application layer where

the user annotates assembly tasks in the CAD software. A

process layer infers the specific robot skills and parameters

from the CAD model and annotated data. A control layer

executes the complex, force-controlled tasks. A proof-of-concept

implementation is made, consisting of an application layer

implemented in FreeCAD and a process layer that focuses on

using fuzzy inference to generate appropriate skill-dependent

process parameters from the geometric CAD information and

annotations in the CAD model. In the control layer, a constraint-

based control framework is used to robustly execute the assem-

bly tasks. The system is validated on a challenging assembly

task involving the assembly of screw compressor parts.

I. INTRODUCTION

Manufacturing automation is entering a new era, where a
high degree of customization of the product is expected by
the client to which manufacturers must adapt quickly. This
era is associated with human-robot collaborative workcells,
short time to deploy, and tighter coupling of design and
manufacturing.

Computer-Aided Design (CAD) software is a rich source
of information for robotic assembly processes that may
benefit a broad range of companies. The information includes
part dimensions, geometric features, contact situations, etc.
An early constraint-based description of pose relations be-
tween geometric features on assembly parts was presented
by Ambler and Popplestone [1]. Reference frames attached
to the geometric features were used to define the end-product
of assembly in terms of “fits” or “against” relationships. The
relative pose between these frames was described by equality
or inequality constraints.

Autopass [2] is an early CAD-based assembly program-
ming system that starts from a workpiece rather than a
robot-centric perspective. Archimedes 2 [3] describes an
architecture where the CAD model and assembly description,
sequence planning, and skill execution are separated into
modules. One of the most advanced systems is HighLap
[4] where the CAD model is annotated with a small set
of simple semantic assembly descriptions. The descriptions
give constraints similar to Ambler and Popplestone that are
used to find remaining degrees-of-freedom. HighLap uses the

task frame formalism to execute force-controlled motion [5].
Neto et al. argued that integration of robot path programming
in CAD software would benefit small and medium-sized
enterprises where programming costs hinder automation [6].
A more recent approach by Perzylo et al. uses object-
centric programming based on geometric constraints between
parts to simplify the robot motion programming [7]. The
comparison of the object-centric programming and classical
teach-pendant based programming shows that object-centric
programming is faster.

The robot control layer of a CAD-based assembly system
can simplify or complicate the architecture. We advocate for:
a workpiece perspective, composability, and sensor integra-
tion. A workpiece perspective allows us to specify control
relative to the parts. Composability allows us to combine and
include aspects of the environment, workpiece, and robot. To
support a larger class of assembly situations, force control
and easy sensor integration are key. Mason’s task frame
formalism [8] presents an early force and position control in
the task domain. It shows how different control modes can
be applied independently along an instantaneous task frame’s
directions, both in translation and rotation.

Motions are easily defined w.r.t. the workpiece, environ-
ment or robot using constraints, and the constraints are
naturally composable. In [9], De Schutter et al. describe a
procedure to design a robot controller that can deal with
sensor interactions and motion in contact, using a set of aux-
iliary frames to systematically describe the constraints. This
approach gave rise to the iTaSC software framework [10], a
systematic approach for constraint-based programming that
allows us to specify complex sensor-based skills. Subse-
quently, expression graphs are used to simplify constraint-
based programming leading to a specification language
eTaSL [11]. eTaSL scripts are used to specify the continuous
behavior of the controller using constraints that relate to
geometry or sensor-input. eTaSL scripts can specify monitors
that trigger events into a restricted finite state machine
(rFSM) [12]. This rFSM describes the discrete switching
between different continuous control actions. A control layer
using eTaSL/eTC and rFSM can perform assembly tasks in
dynamic and uncertain environments, but requires specific
process parameters to be defined, such as the force magnitude

during assembly or the dither amplitude during insertion. It is
difficult to completely determine appropriate values for these
parameters in a model-based way, so they are typically tuned.
In this paper we want to facilitate the generation of assembly
skills from CAD data by automatically determining process
parameters using a fuzzy inference module.

The key contribution of this paper is the design of an
architecture and a prototype implementation that allows us
to generate controllers for assembly tasks requiring complex
sensor-based interaction. This is done by splitting the re-
quired parameters for these assembly skills into two groups.
One group of application and geometry-related parameters
is generated from CAD model information. Another group
of process parameters is determined using a fuzzy inference
module. The resulting parameters are then used to generate a
skill specification. These specification files can then be used
to execute the specified skill on a reactive constraint-based
robot controller. Using this architecture, complex force-
controlled assembly skills can be executed even though the
skills rely on empirical parameters.

Section II describes the system architecture and its basic
concepts such as skills and tasks, and the inference module.
Section III describes the software and hardware of the exper-
imental setup, CAD workbench, the implemented skills and
parameter inference. The experimental results are presented
in Section IV. Section V discusses the experimental results.

II. SYSTEM ARCHITECTURE

The system architecture is outlined in Fig.1 and is split
up into three layers: the application layer, the process layer,
and the control layer. In the application layer we have a
workpiece-centric view, where the user annotates the CAD
model with the assembly tasks. In the process layer, assembly
is considered from the point of view of the robotcell, and a
planning and inference system ensures appropriate selection
and composition of robot skills. The skills involved have
application parameters and process parameters. Application
parameters can be extracted from the CAD data, e.g. feature
frame, or insertion length. Process parameters relate to the
CAD data but without a clear underlying model. They may be
empirical or have a range of values that produce acceptable
results e.g. insertion force, or amplitude of anti-jamming
dither. The inference module generates the value of these
parameters. In the control layer the appropriate eTaSL skills
are loaded together with the application parameters and the
process parameters. A finite-state machine handles execution
of the discrete states.

A. Skill and Task

Skill and task are often used interchangeably in the
robotics literature. In this paper the terms refer to two
different concepts.

A task is a piece of work to be undertaken, a skill is
a particular ability. Assembly tasks are high-level assembly
specifications in the application layer, and skills are related
to particular actions the robot can perform. We differentiate

Workpiece
CAD

Task	
Library

Planning	
and	

inference

Robot	cell
Information

eTaSL F S M

User

Skill	
Library

Application	Layer

Process	Layer

Control	Layer

Fig. 1. System architecture.

between atomic skills and composed skills. The skills are
defined by a set of specification files.

Atomic skills are eTaSL scripts that have: a configuration,
inputs, outputs, and event specifications. The configuration
is a set of parameters that are prepended to the eTaSL
script and are constant during skill execution. These could
be application parameters coming from the CAD model or
process parameters generated by the inference module. The
inputs bring information from continuous sources such as
sensors. The outputs are mainly used for logging or analysis
purposes. Monitors can trigger events that denote success or
failure modes of the skill.

A common approach in robotics is to have states
in finite state machines denote motion goals, e.g.
move_to_grasp_location. This puts the skill complexity in
terms of the states. An approach more often found in
computer games is to have states denote operational modes,
e.g. walk, run, or move_cartesian, and then redefine the
parameters of these states during runtime. This reduces the
states used and puts the complexity in the transitions. We
have used the operational modes approach as it is easy to
reuse a finite state machine with new application parameters,
and as transition events denote the momentary situation that
the robot is in. A composed skill is therefore an rFSM where
each state corresponds to an atomic skill to be executed,
and a function call associated with each transition event.
The function call invokes external services such as grippers
and tools, and loads the configuration parameters of the next
atomic skill to be executed.

From a workpiece perspective, inserting a peg into a hole
with large or small clearance is the same task, but they
may need completely different insertion control strategies,
e.g. when there is a large clearance a pure position-based
approach could be sufficient, while small clearance would

necessitate force-control strategies. Therefore we map a task
to a set of potentially applicable composed skills.

Going from task to composed skill is done by first finding
the geometric primitives involved, and then using the CAD
data describing these primitives to select the composed skill
from a set of composed skills associated with a task on
such geometric primitives, see Fig.2. In conclusion, tasks are
generalisable and workpiece-centric, while skills correspond
to an ability of the robot system to realize a task in a specific
way.

Task CAD	Primitives Composed	skills

Application
Parameters

Process
Parameters

Fig. 2. A task is annotated between two geometric primitives. This task for
these geometric primitive types can be performed by a set of composed
skills. The CAD data of the geometric primitives is used to select the
composed skill, which has application parameters and process parameters.

B. Planning and Inference Module

The planning and inference module has three main pur-
poses: plan the assembly sequence, compose skills based
on the task and the workcell, and generate the appropriate
configuration parameters. Optimal planning of assembly in-
volves optimal task sequencing, optimal trajectory planning,
and selecting the optimal parameter values. These domains
are interconnected, but they are assumed separable in the
scope of this article. This article does not give a planning
strategy but outlines how the task annotations tie in to the
literature on assembly sequences.

1) Assembly Sequence Planning: tasks and parts form a
liaison graph. In liaison graphs, a node represents a part, and
an edge represents an assembly situation [13]. A precedence
graph specifies which edges in the liaison graph should be
completed before others. This precedence graph represents
all feasible assembly sequences. In [14], Homem De Mello
and Sanderson show the relation between precedence graphs
and other assembly representations such as And/Or graphs.
The precedence graph is created in the application layer.
Assembly of geometric features gives a defined assembly
direction and virtual disassembly in the CAD software along
these lines provides a suggested precedence graph. The
precedence graph is passed from the application layer to the
planner for generation of the assembly sequence. Moving
to grasp, changing tool, reorientation, and other workcell-
related composed skills are added to the assembly sequence
by the planner. Robot cell information such as which parts
and tools are available, or are collaborative workspace skills
required, is an essential plan of the planning module. This

information must be stored in a robot cell database describing
the different setups available for the manufacturer. As the
underlying control layer is robot-agnostic and the skills are
transferrable, we view this as a problem to be addressed in
the planning module.

2) The Parameter Inference Module: given the geometric
information between two mating parts and the selected skill,
the inference module generates the appropriate process pa-
rameters to ensure successful assembly. Here we present an
inference module for the insertion task of a cylindrical object
in a tight-tolerance situation. This task would be extremely
difficult to perform with only position control, hence the
necessity of a force-controlled skill. We generalize the task
as a peg-in-hole problem.

A number of process parameters need to be tuned for
optimal insertion behavior. From existing literature [15], it is
known that the insertion behavior is determined by a number
of factors such as the peg’s dimension and the peg-hole clear-
ance. Even for a peg-in-hole assembly with relatively simple
geometry, accurate process modeling is difficult to achieve
for narrow clearances. Due to hyperstatic contact situations,
not all contact forces are always externally observable. We
therefore use a data-driven approach to determine the process
parameters. To infer parameters in an uncertain or stochastic
situation, a fuzzy inference approach is chosen [16]. Our
fuzzy inference module uses the peg’s length, peg’s diameter
and clearance to estimate the appropriate insertion force and
dither amplitude.

III. IMPLEMENTATION

A. Assembly Use Case

We consider an assembly of a large and a small rotary-
screw compressor (see Fig.3). The large compressor is com-
posed of >30 parts and the small compressor is composed
of >15 parts. To limit the scope of this demonstration, we
focus on the assembly of the rotors and the housing lid.
The housing is attached to a fixture and all insertions are in
the same direction. Each compressor has a small and large
meshing helical screw rotors. The top of the rotors go through
the housing lid trough two chamfered holes. All parts to
be assembled are placed in known poses. Fig.8 shows the
resulting assembly sequence.

B. Application Layer

The application layer is implemented as a workbench in
FreeCAD 0.16 [17]. FreeCAD is an open-source parametric
CAD program. We implemented three task classes: Insert,
Place, and Screw. Each of them is associated with two faces,
and two FeatureFrame objects. To transfer information about
the geometric features and their location, we implemented a
tool for creating reference frames on geometric primitives.
FeatureFrame objects can be instantiated on a selected vertex,
edge, or face. If the selected geometric primitive has a center,
center of mass, axis, or focus, the feature frame can be
placed at the attribute with z-axis oriented along the axis
if possible. On edges the frame can be placed along the edge

Fig. 3. CAD model of the two compressors side by side.

with x-axis aligned with the edge tangent. On the face the
frame is placed with z-axis aligned with the normal. The
parts are exported as STL meshes for visualization, and a
JSON file describing the feature frames and the attributes
of the geometric primitives relative to the mesh origin. The
feature frame part of the workbench is publicly available
[18]. By creating task instances between parts we form a
liaison diagram, see Fig.4. During instantiation of an Insert
or Screw object, we also instantiate a FeatureFrame object
denoting the instantaneous task frame for force control.
Since assembly sequence planning is not the focus of this
paper, the assembly sequence was manually determined while
specifying the task. The task instances, in order of execution,
are: insert_littlerotor, insert_bigrotor, and place_lid. The
tasks are exported in JSON files with reference to the part
names and feature frame names. Grasp location is assumed
to be known and is annotated as a FeatureFrame instance on
the part.

big_rotor

housing

little_rotor

housing_lid

Fig. 4. Liaison diagram for the assembly use case. Although the rotors are
in contact with the lid, the chamfers allow us to use a place task defined
between the housing and the lid.

C. Implemented Skills

In this use-case each task maps to a single composed
skill. When the skill set of the system grows this will no
longer be the case. The two implemented composed skills
are composed of a larger number of atomic skills, as listed
in Table I. As the table shows, the insert_littlerotor instance
uses grasp_and_insert as the suitable composed skill. This
composed skill consists of three different atomic skills:

move_cartesian, guarded_cartesian, and cylinder_insert. The
transition between these atomic skills is shown in Fig. 5.
When e_start occurs, we set the goal of move_cartesian to
reach a position offset a constant distance along the z-axis of
the grasp frame. Success in reaching the goal is associated
with the e_pregrasp event. When e_pregrasp occurs the goal
of move_cartesian is set to the grasp frame with success
of the atomic skill being associated with e_grasp. When
e_grasp occurs we have reached the grasp pose and engage
the gripper and set the next goal to a z-axis offset from
the grasp frame that we call post-grasp, and success gives
the e_postgrasp event. The procedure is repeated for the z-
axis pre-hole locations. When e_prehole occurs we transition
into guarded_cartesian which is a cartesian motion towards
the hole with monitors that trigger when end-effector force
exceeds a threshold. This procedure of reconfiguring the
goals of the atomic skill is adhered to for all of the transitions.

TABLE I
PROTOTYPE DESCRIPTION

Part name Tasks Composed Skill Atomic Skills Tool

small_rotor insert grasp_and_insert move_cartesian gripper
guarded_cartesian

cylinder_insert

big_rotor insert grasp_and_insert move_cartesian gripper
guarded_cartesian

cylinder_insert

housing_lid place grasp_and_place move_cartesian gripper
guarded_cartesian

As described in Section II, each atomic skill is imple-
mented as an eTaSL script. This script contains a number
of constraints, monitors and input/output ports. For example,
in the cylinder_insert skill, a constraint is used to impose
a specified insertion force. The constraint is parameterized
by the instantaneous task frame and desired insertion force
Fz,des along the cylindrical axis. Meanwhile zero forces and
torques are maintained along and around the other axes. The
location of the instantaneous task frame is a FeatureFrame
instance created on the peg-face of the Insert instance, this
is an an application parameter of the composed skill. The
target insertion force is a process parameter given by the
inference module. The dither is applied as superposed torques
around the x and y axes of the instantaneous task frame. The
selection of the dither axes is based on empirical results.

D. Inference Module

A Mamdani-type fuzzy inference is chosen and imple-
mented in MATLAB R2017a’s fuzzy logic designer toolbox.
21 rules are defined, describing the mapping from the peg’s
dimension and the clearance to the appropriate insertion force
and dither amplitude. The fuzzy rules are derived from rough
modeling of the contact situation and the empirical trend
observed after executing the cylinder_insert skill. Each fuzzy
rule is approximated with gaussian membership functions

cylinder_insert guarded_cartesian

move_cartesian
e_start e_posthole

e_prehole

e_contact

e_inserted

grasp_and_insert

Fig. 5. Example of the finite state machine for grasp_and_insert. The tran-
sition between two states is triggered by incoming event "e_event_name".

that categorize a range of parameter values into fuzzy sets.
For example, the peg’s diameter can be categorized into
"very small", "small", "medium", "large" and "very large".
The fuzzy sets for each geometric and process parameters
are shown in Fig. 6 while five sample rules are provided in
Listing 1.

0.0 0.2 0.4 0.6 0.8 1.0
clearance [mm]

0.0

0.5

1.0

m
em

be
rs

hi
p

de
gr

ee very
small small medium large very

large

0 20 40 60 80
peg diameter [mm]

0.0

0.5

1.0

m
em

be
rs

hi
p

de
gr

ee very
small small medium large very

large

0 50 100 150 200
peg length [mm]

0.0

0.5

1.0

m
em

be
rs

hi
p

de
gr

ee

small medium large

0 20 40 60
insertion force [N]

0.0

0.5

1.0

m
em

be
rs

hi
p

de
gr

ee very
small small medium large very

large

0.0 0.5 1.0 1.5
jitter amplitude [Nm]

0.0

0.5

1.0

m
em

be
rs

hi
p

de
gr

ee very
small small medium large very

large

Fig. 6. The fuzzy sets used in the inference module. The left column shows
the geometric parameters while the right one shows the process parameters.

Listing 1. Selection of the fuzzy rules used in the inference module
if diameter is "small" then insertion force is "large"
if clearance is "medium" then insertion force is "medium"
if length is "long" then insertion force is "small"
if clearance is "very small" then dither amplitude is "very large"
if diameter is "small" and length is "long" then dither amplitude is "medium"

In this data-driven approach, we first collected the training
data by running a total of 40 peg-in-hole trials with different
process parameter values. For each run, the insertion force
and dither amplitude were carefully selected to ensure suc-
cessful execution, while minimizing contact force. Based on
these experiments, the number of membership functions and
their shapes were then tuned. Finally, the fuzzy inference
module was validated with a new set of peg-in-hole tasks.

E. Control Layer

The experimental setup consists of a seven DOF KUKA
LBR iiwa 14 robot equipped with a pneumatic SCHUNK
RH940 parallel gripper. The robot is controlled with

eTaSL/eTC [11] which is deployed as an Orocos [19] com-
ponent. eTaSL is used for constraint specification in Lua
language while eTC is the controller implementation that sat-
isfies the constraints in an instantaneously optimal way. The
control loop is run with a frequency of 200 Hz. Additionally,
a feature_frame_publisher node [20] was created in ROS [21]
for publishing all relevant frames with TF2. Actuation of the
gripper is also performed through a ROS service call.

IV. EXPERIMENTAL RESULTS

The overall system is deployed for assembling the small
rotor, big rotor, and housing lid consecutively. The rotor
assemblies are categorized as tight-tolerance tasks, therefore
the grasp_and_insert composed skill using force control is
selected, and process parameter inference is required. The
geometric property generated from the CAD information of
the tasks and their inferred process parameters are reported
in Table II. Meanwhile, since the housing lid assembly has
a relatively large clearance, a position control skill with
force monitor i.e. guarded_cartesian is sufficient. Therefore,
process parameter inference is not required.

The experiment shows that the robot successfully as-
sembles the parts using a parametrized skill by the ap-
plication and process layers, see Fig.8 for a snapshot of
the assembly sequence. The recorded insertion forces and
moments during a portion of the assembly sequence are
shown in Fig 7. The plot gives a recording of the transition
from guarded_cartesian to cylinder_insert. To emphasize the
behavior of the dithering in the skill, we do not transition
from cylinder_insert to move_cartesian, but remain in the
cylinder_insert skill.

TABLE II
GEOMETRIC AND INFERRED PROCESS PARAMETERS FOR THE ROTOR

ASSEMBLIES

Part Name
Parameter Category Parameter Name small_rotor big_rotor

Length (mm) 192 192
Geometric Diameter (mm) 61 75.5

Clearance (mm) 0.1 0.08

Process Insertion Force (N) -31.1 -33.5
dither Amplitude (Nm) 1.13 1.33

V. DISCUSSION

The force controller in eTaSL has a damping behavior
[11]. This resulted in a velocity proportional to the difference
between the measured and desired force. The plot in Fig. 7
shows that when the robot approached the rotor’s hole
between 0 s and 2.8s the forces were approximately zero.
When a force magnitude of -10 N in Fz was experienced by
guarded_cartesian a transition into cylinder_insert occurred.
The insertion process lasted from 2.8 s to 6.7 s and the
robot was moving down with a constant velocity. The effects
of friction (approximately -10 N in z-direction) are visible

40

20

0

20

Fo
rc

es
 [

N
]

Fx
Fy
Fz

0 2 4 6 8 10 12
Time [seconds]

4

2

0

2

4

To
rq

ue
s

[N
m

]

x

y

z

Fig. 7. The measured forces and torques during insertion of the big rotor.
Note that from 8 s, the rotor is in contact with the bottom. This was added
to verify that the desired dithering is present.

Fig. 8. The robot performing the assembly sequence of the compressor
parts. From left to right: assembly of the small rotor, the big rotor, and the
housing lid.

during the insertion. The remaining difference between in-
sertion force set-point and the measured friction caused an
approximately constant insertion velocity. The dithering was
not easily distinguished in the graph during the insertion
process. From 6.7 s to 8 s, the rotor touched the bottom of the
hole, the velocity dropped to zero, and the set-point for the
insertion force reached its desired value. The measured force
along the z-axis was consistent with the selected process
parameters listed in Tab. II. Furthermore, the oscillations due
to the applied dither-force remained bounded. This shows that
the skill executed the assembly task as desired.

The composed skills are given the names of feature frames.
These are used to look up the location of parts using the
published frames, making them less dependent on hard-coded
locations. An example of this is the grasp frame available
on each of the parts. The pre-grasp and post-grasp locations
were constant offsets from the grasp frame, and the grasp
frame was queried from TF2 based on the part name. This
allows easy integration with robot cell localization systems
that publish part locations using TF2.

The published frames were also beneficial in calibration
of the robot cell as we could use the known CAD data on
where the holes are on the parts to quickly calibrate the part
location, e.g. we moved the end-effector to the grasp location
of a rotor and read where the mesh was located relative to the
grasp location from the feature_frame_publisher. This can be
useful if a teach-in of the robot cell information is desired.

An aspect of the geometric information that was not
incorporated was the part symmetry, the rotors are cylin-
drical and can be grasped or inserted from any orientation
around its z-axis. This information is available in the JSON
file of the part, and requires developing an atomic skill,
move_cartesian_symmetric, where the symmetric informa-
tion is added to the application parameters of the skill.
This would allow more efficient execution of the approach
motions. Depending on the specific mounting of the gripper
on the robot, this can also increase the working range of the
robot.

In this paper we have emphasized the geometric informa-
tion available in the CAD data, but there is another aspect that
is of relevance, the material properties of the parts involved.
For example, insertion of a teflon peg in a steel hole has
different process parameters to inserting a steel peg in a soft-
plastic hole. Material properties are available in STEP AP214
file format, and many CAD programs support it. For multi-
material assembly scenarios, the inference engine should be
trained on the material properties as well as the geometric
properties.

VI. CONCLUSION

In this paper, a three-layered system architecture for au-
tomating robot assembly programming using CAD informa-
tion is proposed. The application layer is used for annotating
the tasks, the process layer is used for planning and inference
of the relevant robot skills, and the control layer is used for
execution of the skills on the robot platform. We focus on
more challenging assembly tasks that require force-control.
To accomplish this we use skills that have process parameters
such as insertion force and dither amplitude. These empirical
parameters are not readily available in the CAD model. A
fuzzy logic inference module is used to capture this process
knowledge by providing a method of inferring the process
parameters based on a set of key geometric parameters from
the CAD model.

As a proof-of-concept, we implemented the proposed sys-
tem architecture and validated it with force-controlled inser-
tion of compressor rotors. The problem can be generalized as
a peg-in-hole task, for which the conventional solutions have
been studied well [22]. The key geometric parameters used
in the fuzzy logic was the peg’s clearance, peg’s diameter,
and insertion length, all of which were extracted from the
CAD model and Task object in the application layer. For
more complex assembly tasks, such as click-connection, the
key geometric parameters are yet to be defined.

Inference is realized using a fuzzy inference method which
proved to be straightforward to implement. Of course, this

method fails to extrapolate outside the predefined range of
the fuzzy sets and we assumed that all of the given geometric
parameters are relevant. With a sufficiently large dataset
and more advanced regression methods (such as automatic
relevance detection [23]), it is possible to deduce which of
the parameters are really relevant for the process parameters.
Such an approach will be beneficial for including material
properties when inferring process parameters. The fuzzy set
database can grow over time to accommodate a larger variety
of assembly cases and this database can be shared with
similar robot setups.

For many industrial assembly cases, there are more than
two contact surfaces involved. An example is the housing
lid and the two rotors. There are two main approaches to
this: defining a primitive boundary representation [4], or
using the subshape. In this article we have assumed the
chosen geometric primitive to be sufficient for completing
the task. To handle more complex geometries, a task could
be split into subtasks with their individual primitive boundary
representations, or a special purpose composed skill can be
defined.

The preliminary implementation contains prototypes and
tools that the eventual system will use. The assembly of
the rotors and housing lid was successfully executed by
the system, and the inference module provided reasonable
parameters. The application layer implementation is useful
for annotating geometric features to CAD models and the
publisher node gives their transformations in ROS.

A wealth of research exists on assembly analysis, plan-
ning, and skills. This research can become tools that can
benefit researchers as well as manufacturers. We describe
a system architecture based on previous work that also
allows for process parameter inference for tight-tolerance
assembly situations and share some of the tools built in the
process. However, it is difficult to build up a comprehensive
system. Therefore we advocate prototyping in open-source
frameworks such as FreeCAD and Orocos.

VII. ACKNOWLEDGEMENT

The work reported in this paper was supported by Flanders
Make ICON FINROP (Fast and Intuitive Robot Program-
ming) in Belgium and the centre for research based inno-
vation SFI Manufacturing in Norway. The work is partially
funded by the Research Council of Norway under contract
number 237900.

REFERENCES

[1] A. Ambler and R. Popplestone, “Inferring the positions of bodies from
specified spatial relationships,” Artificial Intelligence, vol. 6, no. 2, pp.
157–174, jun 1975.

[2] L. I. Lieberman and M. A. Wesley, “AUTOPASS: An Automatic
Programming System for Computer Controlled Mechanical Assembly,”
IBM Journal of Research and Development, vol. 21, no. 4, pp. 321–
333, jul 1977.

[3] S. Kaufman, R. Wilson, R. Jones, T. Calton, and A. Ames, “The
Archimedes 2 mechanical assembly planning system,” in Proceedings
of IEEE International Conference on Robotics and Automation, vol. 4.
IEEE, 1996, pp. 3361–3368.

[4] U. Thomas and F. M. Wahl, “Assembly Planning and Task Planning
— Two Prerequisites for Automated Robot Programming,” in Springer
Tracts in Advanced Robotics, 2010, vol. 67, pp. 333–354.

[5] F. Dietrich, J. Maaß, A. Raatz, and J. Hesselbach, “RCA562: Control
Architecture for Parallel Kinematic Robots,” in Springer Tracts in
Advanced Robotics, 2010, vol. 67, pp. 315–331.

[6] P. Neto, N. Mendes, R. Araújo, J. Norberto Pires, and A. Paulo
Moreira, “High-level robot programming based on CAD: dealing
with unpredictable environments,” Industrial Robot: An International
Journal, vol. 39, no. 3, pp. 294–303, apr 2012.

[7] A. Perzylo, N. Somani, S. Profanter, I. Kessler, M. Rickert, and
A. Knoll, “Intuitive instruction of industrial robots: Semantic process
descriptions for small lot production,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 2016-
Novem. IEEE, oct 2016, pp. 2293–2300.

[8] M. T. Mason, “Compliance and Force Control for Computer Controlled
Manipulators,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 11, no. 6, pp. 418–432, 1981.

[9] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits,
E. Aertbeliën, K. Claes, and H. Bruyninckx, “Constraint-based Task
Specification and Estimation for Sensor-Based Robot Systems in the
Presence of Geometric Uncertainty,” The International Journal of
Robotics Research, vol. 26, no. 5, pp. 433–455, may 2007.

[10] R. Smits, T. De Laet, K. Claes, H. Bruyninckx, and J. De Schutter,
“iTASC: a tool for multi-sensor integration in robot manipulation,”
in 2008 IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems. IEEE, aug 2008, pp. 426–433.

[11] E. Aertbelien and J. De Schutter, “eTaSL/eTC: A constraint-based task
specification language and robot controller using expression graphs,”
in 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, sep 2014, pp. 1540–1546.

[12] M. Klotzbücher and H. Bruyninckx, “Coordinating robotic tasks and
systems with rfsm statecharts,” JOSER: Journal of Software Engineer-
ing for Robotics, vol. 3, pp. 28–56, 2010.

[13] T. De Fazio and D. Whitney, “Simplified generation of all mechanical
assembly sequences,” IEEE Journal on Robotics and Automation,
vol. 3, no. 6, pp. 640–658, dec 1987.

[14] L. Homem de Mello and A. Sanderson, “Representations of mechanical
assembly sequences,” IEEE Transactions on Robotics and Automation,
vol. 7, no. 2, pp. 211–227, apr 1991.

[15] N. Pitchandi, S. P. Subramanian, and M. Irulappan, “Insertion force
analysis of compliantly supported peg-in-hole assembly,” Assembly
Automation, vol. 37, no. 3, pp. 285–295, 2017. [Online]. Available:
http://www.emeraldinsight.com/doi/10.1108/AA-12-2016-167

[16] S. Guillaume, “Designing fuzzy inference systems from data: An
interpretability-oriented review,” IEEE Transactions on Fuzzy Systems,
vol. 9, no. 3, pp. 426–443, jun 2001.

[17] J. Riegel and Y. van Havre, “FreeCAD: Parametric 3D modeler.”
[Online]. Available: https://www.freecadweb.org

[18] M. H. Arbo and Y. Pane, “ARBench,” 2017. [Online]. Available:
https://github.com/mahaarbo/ARBench

[19] P. Soetens, “A Software Framework for Real-Time and Distributed
Robot and Machine Control,” Ph.D. dissertation, Katholieke Univer-
siteit Leuven, 2006.

[20] M. H. Arbo and Y. Pane, “ARBench part publisher,” 2017. [Online].
Available: https://github.com/mahaarbo/arbench{_}part{_}publisher

[21] M. Morgan Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot
Operating System,” in Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA) Workshop on Open Source Robotics, may 2009.

[22] T. Lozano-Perez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,” The International Journal of
Robotics Research, vol. 3, no. 1, pp. 3–24, 1984.

[23] C. M. Bishop, Pattern Recognition and Machine Learning. New York:
Springer, 2006.

