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Abstract

Background: Almost 16,000 human long non-coding RNA (lncRNA) genes have been identified in the GENCODE
project. However, the function of most of them remains to be discovered. The function of lncRNAs and other novel
genes can be predicted by identifying significantly enriched annotation terms in already annotated genes that are
co-expressed with the lncRNAs. However, such approaches are sensitive to the methods that are used to estimate
the level of co-expression.

Results: We have tested and compared two well-known statistical metrics (Pearson and Spearman) and two
geometrical metrics (Sobolev and Fisher) for identification of the co-expressed genes, using experimental
expression data across 19 normal human tissues. We have also used a benchmarking approach based on
semantic similarity to evaluate how well these methods are able to predict annotation terms, using a well-
annotated set of protein-coding genes.

Conclusion: This work shows that geometrical metrics, in particular in combination with the statistical metrics, will
predict annotation terms more efficiently than traditional approaches. Tests on selected lncRNAs confirm that it is
possible to predict the function of these genes given a reliable set of expression data. The software used for this
investigation is freely available.

Keywords: Function prediction, Gene annotation, Co-expression, Fisher information metric, Sobolev metric, semantic
similarity

Background
Long non-coding RNAs (lncRNAs), defined as
non-protein-coding transcripts longer than 200 nucleo-
tides, are one of the most common RNA species, but
they are in most cases poorly understood with respect to
function [1]. It has been shown that lncRNAs play im-
portant roles in a wide range of biological process [2, 3]
and diseases [4–6]. Possible functions of lncRNAs can
be characterized experimentally using gain- and
loss-of-function approaches [7, 8], but this is not a
straightforward method, for example because lncRNAs
can be expressed in multiple isoforms. Therefore, to
apply computational methods and algorithms can be a

good and accessible supplement to experimental
methods for suggesting possible functions of lncRNAs
and other un-annotated genes.
Currently, such computational approaches are still at

an early stage of development, although its importance
has been recognized [9–11]. There are considerable
challenges in finding precise and reliable computational
approaches due to a lack of suitable data. There is also a
lack of databases with relevant features that are suitable
for example for machine learning, there is a lack of
lncRNAs with known function for training, and for most
lncRNAs we are not aware of any common structural
features that are important for function. For example,
many lncRNA gene sequences are not conserved and do
not contain clear motifs [12], which makes it difficult to
find and predict the function of lncRNAs by relying on
their sequences. A lack of any rich set of molecular
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interaction data for most lncRNAs is also a limitation
with respect to computational annotation [13, 14].
One possible and frequently used approach is based

on “guilt by association”, i.e., to identify well-annotated
genes that seem to be involved in some of the same pro-
cesses as a given un-annotated gene. This association is
often based on co-expression, indicating potential
co-regulation of a set of genes [15, 16]. It is then pos-
sible to predict function of the un-annotated gene by
using information from the well-annotated co-expressed
genes, assuming that co-expressed genes may be in-
volved in similar or at least related processes. This ap-
proach is illustrated in Fig. 1, and it has been tested in
several implementations, with some success. Alam et al.
and Gong et al. list several methods and databases for
annotation of ncRNAs [17, 18], and most of these use
co-expression at some stage, mainly with standard statis-
tical metrics like Pearson or Spearman. For example,
Guttman et al. determined several sets of mouse
lncRNAs to be related to sets of mRNA for protein-cod-
ing genes by Pearson correlation [19], and co-expressed
lncRNA-mRNA networks for mouse have also been used
by Guo et al. (with “lnc-GFP”) and Liao et al. (using a
coding-non-coding (CNC) network computed with Pear-
son correlation) to assigned function to 340 and 1625
mouse lncRNAs, respectively [20, 21]. Jiang et al. used
Pearson correlation to identify co-expressed genes for
human lncRNAs (with “LncRNA2Function”), and they
could annotate given lncRNAs with significantly
enriched gene ontology (GO) terms among the set of
co-expressed protein-coding genes, according to the
hypergeometric test [22]. Park et al. built a database of
lncRNAs (“lncRNAtor”), where they included

co-expression by Spearman correlation [23], whereas
Zhao et al. developed a web-based application (“Co-
LncRNA”) for exploring combinatorial effects of
lncRNAs, using linear regression and Spearman correl-
ation to map co-expression between lncRNAs and
protein-coding genes [24]. Perron et al. combined
co-expression by Pearson correlation with evolutionary
conservation in “FuncPred” [25], whereas Zhou et al.
used a combination of ChIP-seq, CLIP-seq and RNA-seq
(in “lncFunNet”) to predict lncRNA function, using
Pearson correlation to estimate co-expression of gene
pairs [26]. Zhou et al. also released a toolkit
(“lncFunTK”) for calculation of a Functional Information
Score (FIS) [27], based on their previous work with
lncFunNet. Recently Zhang et al. used a hierarchy of
neural networks to predict GO terms for lncRNA genes,
implemented as “NeuraNetL2GO”, with Pearson correl-
ation as the measure of co-expression [28].
Thus, most proposed methods rely on identification of

co-expressed genes from experimental expression data.
Therefore, estimation of co-expression is a crucial step,
and relevant alternative metrics should be evaluated. Here
we use several metrics for estimating co-expression, in
particular statistical (Pearson, Spearman) and geometrical
ones (Sobolev, Fisher), and a combination of those. This
has been implemented as LNCRNA2GOA, which is avail-
able to users. The aim is to provide improved identifica-
tion of true co-expression. We use an enrichment analysis
to identify enriched GO-terms in the co-expressed gene
sets, and use this to predict GO terms for the
un-annotated gene. We have benchmarked the methods
for co-expression on a subset of well-annotated protein-
coding genes, using semantic similarity to compare real

Novel gene Compare to
annotated genes

Annotated genes

GO:0005667 transcription factor complex
GO:0003682 chromatin binding

GO:0070412 R-SMAD binding
GO:0000978 RNA polymerase II core

GO:0000982 transcription factor activity

Score and rank
annotated genes

Find enriched termsAssign enriched
terms to novel gene

GO:0005667 transcription factor complex
GO:0003682 chromatin binding

GO:0070412 R-SMAD binding
GO:0000978 RNA polymerase II core

GO:0000982 transcription factor activity

Similarity cutoff

Fig. 1 The “guilt by association” principle for prediction of annotation terms for a novel gene. It is based on comparison of gene expression
profiles between the novel gene and a set of annotated genes, ranking of the annotated genes according to the similarity of the expression
profiles relative to the novel gene, and enrichment analysis of annotation terms in the most highly ranked annotated genes. The significantly
enriched terms can be used as an estimate of annotation for the novel gene

Ehsani and Drabløs BMC Bioinformatics          (2018) 19:533 Page 2 of 12



and predicted GO terms, and also tested the performance
on a small number of well-known human lncRNAs.

Methods
Data sources
For expression data we have used data from Jiang et al.
[22]. They used the information from GENCODE V15
[29] for genomic coordinates and RNA-Seq data of 19
human normal tissues from the Human Body Map 2
project (ArrayExpress accession GSE0554), and read and
computed expression values using tophat [30] and cuf-
flinks [31] for all human lncRNA and protein-coding
genes. Details are given in the paper by Jiang et al. [22].
GO annotations were downloaded from the Gene Ontol-
ogy Project [32], and R [33] version 3.3.3, Plyr [34] ver-
sion 1.8.5, and GOSim [35] version 1.12.0 were used for
the implementation.

Main workflow
The schematic workflow is shown in Additional file 1:
Figure S1, where key aspects of this study (i.e., metrics
for comparison of expression profiles, and similarity
measures for comparing predicted and known annota-
tions) are highlighted. A pseudocode representation of
the LNCRNA2GOA algorithm is shown in Table 1. The
goal is function prediction for an lncRNA or another
poorly annotated gene (denoted as g). Let be a set of
statistical and geometrical methods (see below) and
Targetmg be all protein-coding (or well-annotated) genes

that are co-expressed with g as determined by method
m. Now the gene g will be functionally annotated with
significantly enriched annotation terms (here GO)
among the set of co-expressed well-annotated protein-
coding genes. We use the hypergeometric test to com-
pute the p-value of each term T:

p ¼
P min n;Mð Þ

i¼t
M
i

� �
N−M
n−i

� �

N
n

� � ð1Þ

Herein, N is the number of all protein-coding genes,
M is the number of protein-coding genes that are anno-
tated in the functional term T, n is the size of Targetmg
and t is the number of genes in Targetmg that are anno-

tated in the functional term T. Because the statistical
analysis is not appropriate for problems of small size, we
exclude GO terms with less than five annotated
protein-coding genes from the enrichment analysis, as
recommended by Jiang et al. [22]. We also use false dis-
covery rate (FDR) for correction for multiple hypothesis
tests. The significance cut-off of corrected p-value is set
as 0.05.

Methods to identify Targetmg
To identify co-expressed genes for a typical gene g, we used
the geometrical metrics Sobolev and Fisher information, in
addition to the statistical metrics Pearson and Spearman.

Sobolev metric
In this section, we use definitions and notations as in
[36]. We start with the usual p-inner product. Let f, g be
real-valued functions (in this case f and g values are the
expression vectors of two genes f and g):

f ; gp ¼
Xn

k¼1

f k :gk
�
�

�
�p

 !1
p

ð2Þ

By this notation, Sobolev inner product, norm and
meter of degree k respectively can be defined by:

〈 f ; g〉Sp;α ¼ 〈 f ; g〉p þ α〈Dk f ;Dkg〉p ð3Þ

fk kSp;k;α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈 f ; f 〉Sp;α

q
ð4Þ

dS
p;k;α f ; gð Þ ¼ f −gk kSp;k;α ð5Þ

where Dk is the kth differential operator. For the special
case p = 2 and α = 1 an interesting connection to the

Fourier-transform of analysis can be made; let f̂ be the
Fourier-transform f

f̂ ωkð Þ ¼
XN−1

j¼1

g j exp −i
2πkj
N

� �

ð6Þ

where ωk ¼ 2πk
N and i ¼ ffiffiffiffiffiffi

−1
p

. Finally, the norm can be
written as

fk kS2;k;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN−1

j¼1

1þ ω j
� �k

f̂ ω j
� ��

�
�

�
�
�
2

v
u
u
t ð7Þ

In this work we used metric (5) with norm (7) and
k = 1.

Fisher information metric
In this section we use definitions and notations as in
[37]. To define Fisher information metric we first intro-
duce the n-simplex Pn defined by

Pn ¼ x∈Rnþ1 : ∀i; xn≥0;
Xnþ1

i¼1

xi ¼ 1

( )

ð8Þ

The coordinates {xi} describe the probability of observ-
ing different outcomes in a single experiment (or expres-
sion value of a gene in ith cell type). The Fisher
information metric on Pn can be defined by
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J ij ¼
Xnþ1

k¼1

1
xk

∂xk
∂xi

∂xk
∂x j

ð9Þ

We now define a well-known representation of the
Fisher information as a pull-back metric from the

positive n-sphere Sþn ;

Sþn ¼ x∈Rn; ∀i; xn≥0;
Xnþ1

i¼1

x2 ¼ 1

( )

ð10Þ

The transformation T : Pn→Sþn defined by

Table 1 Pseudocode of the LNCRNA2GOA algorithm
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T xð Þ ¼ ffiffiffiffiffi
x1

p
;…;

ffiffiffiffiffiffiffiffiffi
xnþ1

p� � ð11Þ

pulls back the Euclidean metric on the surface of the
sphere to the Fisher information on the multinomial
simplex. Actually, the geodesic distance for x, y ∈ Pn
under the Fisher information metric may be defined by
measuring the length of the great circle on Sþn between
T(x) and T(y)

d x; yð Þ ¼ acos
Xnþ1

i¼1

ffiffiffiffiffiffiffi
xiyi

p
 !

ð12Þ

Size of Targetmg
In the previous section we introduced four methods to
measure similarity between genes based on their expres-
sion values, which can be used to rank genes. Now the
challenge is to determine a threshold for identifying the
most informative set of correlated genes as Targetmg .

Some studies, for example [22] used a threshold of 0.9
on the Pearson metric, but this does not identify an opti-
mal cutoff; sometimes it returns thousands of
co-regulated genes, and sometimes nothing. It is also
difficult to set a threshold in a similar way when using a
geometrical metric. Therefore, we tried to select a
threshold based on a possible number of Targetmg ele-

ments. We selected a range of different sizes for subsets
of the most similar genes from the Targetmg set, includ-

ing {50 ∗ x| x = 1, 2,…, 10}, and analysed how well the al-
gorithm could predict some well-known lncRNAs. This
analysis showed that a selection of the top 250
co-expressed protein-coding genes seemed to have opti-
mal performance for prediction of GO terms for some
well-known lncRNAs.

Combination of methods
Let SigGOsm;r

g ¼ ½SigGOsmg �r be the r most significant

terms assigned to gene g by method m. Since the opti-
mal method m is individually different we can assign
SigGOsr;sg ¼ ½∪

m∈ΜSigGOsm;r
g
�s to the gene, and this will in-

crease the accuracy of predictions (see Results and dis-
cussion). If there are identical terms for some methods,
we just consider the term with the minimum corrected
p-value. Actually, in the combination method the algo-
rithm first collects the r most significant terms for all
m ∈Μ, then selects the s most significant terms from
this collection. When r = all and s = all then the algo-
rithm returns all significant terms.

Evaluation on protein-coding genes
Before evaluating the performance of our method on
some known lncRNA genes, we benchmarked it on a set

of well-annotated genes. Since protein-coding genes in
general are much more well-annotated than lncRNA
genes, this set was based on protein-coding genes. We se-
lected protein-coding genes annotated by 5 or 6 molecular
function (MF) terms and 9 or 10 biological process (BP)
terms in the GO database. This represents the average
number of GO-terms in each set, as the genes were on
average annotated by 4.67 MF and 9.25 BP terms. There-
fore the benchmark set has a typical (average) level of an-
notation. It consists of 352 protein-coding genes (denoted
as Test352), and is available as part of the LNCRNA2GOA
distribution [38]. We used a “leave-one-out” approach for
the actual benchmarking. That is, for each gene in Test352
we treated the gene as unannotated and predicted GO
terms for the gene by each of five different methods (Pear-
son, Spearman, Sobolev, Fisher, and Combine, which is a
combination of all four methods). We then used the
TopoICSim [39] and GOSemSim [40] approaches to esti-
mate similarity between real and predicted GO annota-
tions for each gene in Test352. TopoICSim and
GOSemSim are two algorithms for measuring semantic
similarity between pairs of genes. To have a more realistic
semantic measure for benchmarking, we restricted the
size of the output set of enriched terms by selecting

SigGOsðm;2�LÞ
g where L is the number of GO terms for

gene g in Test352 based on the gene ontology database.
For the Combine case, where we find an optimal combin-
ation of predictions from each of the four different
methods, we evaluated the performance first for
SigGOsΜ;2�L;2�L

g (Combine_2L) and then For

SigGOsΜ;2�L;4�L
g (Combine_4L).

Results
Evaluation on Test352
Before applying LNCRNA2GOA to human lncRNAs,
we first benchmarked the performance on the well-
annotated set of protein-coding genes, Test352. We
have applied all metrics in for each gene in Test352
and evaluated semantic similarity between actual and
predicted annotation as measured by the GOSemSim
and TopoICSim methods. We also included results
for LncRNA2Function [22] and Co-LncRNA [24]. The
results for Co-LncRNA were based on the published
computational approach, but using the LncRNA2-
Function database, to keep the results comparable.
The average semantic similarities for each method
and metric are shown in Fig. 2. In all cases the
TopoICSim measure shows better performance than
GOSemSim. It has previously been shown that
TopoICSim seems to be a more correct measure for
semantic similarity compared to other approaches
[39], therefore this most likely reflects a real similarity
in predicted annotation, and not a systematic bias in
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measurements. In particular for TopoICSim there is a
good correlation between performance in MF and BP,
indicating that the improved performance is not ran-
dom, but due to the choice of better methods. The
results also show that the geometrical metrics predict
function more efficiently than statistical metrics, and
in particular the combined measure shows quite good
performance. It can be argued that the standard devi-
ation (SD) of the averages is high, indicating a vari-
ation in performance. However, the SD is lower for
the Combine measure. The overall performance seems
to be better for BP compared to MF. It is possible
that this reflects a bias in the dataset, as each gene in
Test352 has almost twice as many BP terms compared
to MF terms. In summary, Fig. 2 shows that the com-
bined approach has good performance with respect to
prediction of GO terms, in particular for terms re-
lated to BP.

Evaluation on data from FuncPred
We also tested the performance of LNCRNA2GOA on a
set of 37 manually annotated lncRNAs from FuncPred
[25]. Figure 3 shows the number of successful predic-
tions by LNCRNA2GOA, FuncPred and LncRNA2Func-
tion [22]. Here a prediction was counted as successful if
at least one of the correct GO terms could be predicted.
The same approach has previously been used for ex-
ample in testing of the NeuraNetL2GO method [28].
Again we see that the best performance was achieved
with the LNCRNA2GOA approach.

Comparison to functional predictions by lncFunTK
Finally, we have done a qualitative evaluation of predic-
tions performed with LNCRNA2GOA, compared to pre-
dictions by lncFunTK with data from HeLa cells and
Human Body Map, provided as Table S2 in Zhou et al.
[27]. The lncFunTK predictions are sorted according to

a

b

Fig. 2 Evaluation of the different similarity metrics for 352 well-annotated protein-coding genes (Test352). For each gene in Test352 all methods were
applied for prediction of function, and similarity between real and predicted terms were measured with TopoICSim and GOSemSim. The table shows
average similarity scores over the test set, with standard deviation. LncRNA2Function: Co-expressed protein-coding genes was obtained for each gene
in Test352 using [22] with Pearson correlation coefficient > 0.9. Co-LncRNA_Pearson or _Spearman: Co-expressed protein-coding genes was obtained
for each gene in Test352 using [24] with Pearson or Spearman correlation coefficient > 0.8 and LncRNA2Function expression data
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Functional Information Score (FIS), which is a predicted
functional importance of a given lncRNA, based on a
combination of several data types (ChIP-seq, CLIP-seq,
RNA-seq). We have focussed on the 100 most significant
cases from lncFunTK according to FIS, and used
LNCRNA2GOA to predict GO terms for 50 of those
genes where Ensembl IDs could reliably be assigned (see
Additional file 2: Table S1). The predicted GO terms
were then compared to the GO terms from lncFunTK,
using experimental data from literature as a common
reference. We were able to retrieve PubMed entries
based on gene name for only 20 of the 50 genes, which
limits the comparison. However, for more than half of
these genes the predictions from LNCRNA2GOA
showed at least some similarity to literature data (see
Additional file 3: Table S2). For lncFunTK, on the other
hand, the available predictions consist of only a single
GO term per gene, and most of these terms are identi-
cal. For the set of 50 genes, 35 entries are classified as
GO:0045944 (positive regulation of transcription from
RNA polymerase II promoter) by lncFunTK, and this
strong preference for GO:0045944 is the same for the
full set of predictions.
It is difficult to do a direct comparison of predictions from

these two methods. Both use RNA-seq data from multiple
tissue types to estimate co-expression. However, the
lncFunTK approach also ranks genes using additional data
(in this case, on HeLa cells), which may give some preference
for properties that are particularly enriched in this cell type
(for example increased transcription). LNCRNA2GOA may
to a larger extent display properties that are important across
the full range of activities where each lncRNA is involved.
This may explain some of the differences in the output be-
tween lncFunTK and LNCRNA2GOA. However, it is our
general impression that the predictions from LNCRNA2-
GOA contain more information, compared to lncFunTK,
and that several of these predictions seem to be consistent
with observations from literature.

Functional annotation of human lncRNAs
There is a lack of good “gold standard” datasets for hu-
man lncRNAs with known function that can be used for
benchmarking. However, we have used a small set of five
well-known lncRNAs from literature as examples to
show the efficiency of LNCRNA2GOA. These lncRNAs
have previously been used for documenting the perform-
ance of in particular LncRNA2Function [22]. The sum-
mary information describing these example lncRNAs,
their functions and references are shown in Table 2.
To examine whether LNCRNA2GOA is able to func-

tionally annotate the lncRNAs that are listed in Table 2,
we applied the algorithm with defaults (i.e., ontology set
as Biological Process and using the Combine method
with ( SigGOsΜ;all;all

g ), and prediction results are pre-

sented and discussed for each lncRNA separately. The
top 10 predictions are in each case are given in Table 3.

HOTAIR
HOTAIR (Hox transcript antisense RNA) is an lncRNA
known to be involved in development, cancer and high
risk metastases, at least partly through interaction with
PRC2 and regulation of HOX genes [41, 42]. To investi-
gate whether LNCRNA2GOA is able to associate func-
tionally relevant GO terms with HOTAIR, we applied
the algorithm with defaults parameters. This identified
124 GO BP terms in total. As expected, most signifi-
cantly enriched terms are associated with development
and morphogenesis, and cell metastasis. The results in
Table 3 indicate that LNCRNA2GOA successfully identi-
fies functionally relevant GO terms for HOTAIR.

HCP5
HCP5 (HLA complex P5) is an lncRNA associated with
immune response, and it is associated with for example
AIDS [43] and virus-related cancers [44]. When testing
whether HCP5 can be annotated by LNCRNA2GOA, we

Fig. 3 GO terms for a manually annotated set of 37 lncRNAs from FuncPred has been predicted using LNCRNA2GOA, FuncPred and LncRNA2Function,
and the number of successful predictions has been counted
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found that HCP5 was associated with 333 GO terms for
biological processes. As expected, most of them involve
the immune system and immune response, and func-
tional terms that are associated with the development of
AIDS (see Table 3). A relevant example is regulation of
immune response (GO:0050776).

HULC
HULC (Heptacellular carcinoma up-regulated long
non-coding RNA) is known to be upregulated in liver
cancer and associated with tumorigenesis [45, 46]. We
used LNCRNA2GOA to assess whether HULC can be
correctly assigned to have liver-related functions. The
enrichment output showed 177 GO terms for biological
processes associated with HULC. Most of these terms
are involved in functions related to liver and lipids, such
as lipid hydroxylation (GO:0002933) and chylomicron
remodelling (GO:0034371). Table 3 shows the top 10
GO functional terms enriched in protein-coding genes
that are co-expressed with the liver-related lncRNA
HULC.

H19
H19 (Imprinted maternally expressed transcript) is known
to be important for fertility and several processes associ-
ated with female disease risk, including cancer [47, 48].
LNCRNA2GOA identified 53 GO terms for biological
processes as associated with H19. Several of these terms
suggested strongly that H19 can play an important role in
infertility or breast cancer, such as female pregnancy
(GO:0007565), female gamete generation (GO:0007292),
and adrenal gland development (GO:0030325). There
were also other relevant GO terms, as for example,
JAK-STAT cascade involved in growth hormone signalling
pathway (GO:0007565), cell-cell signalling (GO:0007267),
and cell proliferation (GO:0008283). This indicates that
H19 can play a role in various cancers and other

conditions where JAK-STAT signalling is important. The
top 10 GO terms for biological processes are shown in
Table 3.

PCA3
PCA3 (Prostate cancer associated 3) is strongly upregulated
in prostate cancer [49, 50]. LNCRNA2GOA identified 25
terms for GO biological processes as associated with PCA3.
There were three terms directly involved in prostate cancer;
urinary bladder development (GO:0060157), prostate gland
development (GO:0030850), and prostate epithelial cord
arborization involved in prostate glandular acinus morpho-
genesis (GO:0060527). PCA3 is a quite challenging case,
but this prediction seems to be an improvement over a pre-
vious prediction by LncRNA2Function, where only a single
pathway linked to androgen receptor was identified, and in
some aspects also predictions by the more recent FARNA
tool [17].

Additional tests
We also tested LNCRNA2GOA on a few cases not in-
cluded in the original LncRNA2Function test set, and got
similar results. The two most significant GO BP terms for
MALAT1 (Metastasis associated lung adenocarcinoma
transcript 1) were ion transport (GO:0006811) and excre-
tion (GO:0007588), which seems to be consistent with the
observation that MALAT1 often is associated with kidney
function and with renal cell carcinoma [51]. For
LINC00152, also known as CYTOR (Cytoskeleton regula-
tor RNA), the two most significant terms were cell adhe-
sion (GO:0007155) and extracellular matrix organisation
(GO:0030198), which is consistent with the observation
that this lncRNA influences the properties of breast can-
cer cells with respect to for example invasion and migra-
tion [52]. For LINC-ROR (Long intergenic non-protein
coding RNA, regulator of reprogramming) the two most
significant terms were chromatin silencing at rDNA

Table 2 Summary information describing the five case studies for human lncRNAs

Ensembl ID Gene symbol Name
Function

Selected references

ENSG00000228630 HOTAIR Hox transcript antisense RNA
Development process and morphogenesis, cancer
metastasis and invasiveness

[41, 42]

ENSG00000206337 HCP5 HLA complex P5
Immune responses

[43, 44]

ENSG00000251164 HULC Heptacellular carcinoma up-regulated long non-coding
RNA
Liver cancer and colorectal carcinomas that metastasize
to the livers

[45, 46]

ENSG00000130600 H19 Imprinted maternally expressed transcript
Infertility and multiple cancers such as breast, cervical, liver
and bladder

[47, 48]

ENSG00000225937 PCA3 Prostate cancer associated 3
Prostate cancer

[49, 50]
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Table 3 Top 10 biological processes assigned to each of the selected case studies

GO ID P-value FDR Term

HOTAIR (development and morpogenesis)

GO:0032964 0.00e+ 00 0.00e+ 00 collagen biosynthetic process

GO:0030199 1.72e-14 9.36e-12 collagen fibril organization

GO:0030198 1.39e-09 3.98e-07 extracellular matrix organization

GO:0007275 2.07e-07 6.27e-05 multicellular organism development

GO:0035115 5.31e-07 7.63e-05 embryonic forelimb morphogenesis

GO:0060272 8.21e-07 1.00e-04 embryonic skeletal joint morphogenesis

GO:0048704 7.01e-07 1.49e-04 embryonic skeletal system morphogenesis

GO:0001568 2.13e-06 1.88e-04 blood vessel development

GO:0007506 7.72e-06 1.00e-03 gonadal mesoderm development

GO:0002063 1.58e-05 1.01e-03 chondrocyte development

HCP5 (immune- and AIDS-related processes)

GO:0002480 0.00e+ 00 0.00e+ 00 antigen processing and presentation of exogenous
peptide antigen via MHC class I, TAP-independent

GO:0002504 0.00e+ 00 0.00e+ 00 antigen processing and presentation of peptide or
polysaccharide antigen via MHC class II

GO:0002376 1.35e-55 3.37e-53 immune system process

GO:0050776 1.10e-53 1.22e-50 regulation of immune response

GO:0006955 6.98e-50 1.39e-47 immune response

GO:0002250 6.06e-28 1.35e-25 adaptive immune response

GO:0050852 3.56e-27 5.93e-25 T cell receptor signaling pathway

GO:0019882 7.67e-27 1.09e-24 antigen processing and presentation

GO:0045087 6.77e-23 1.26e-20 innate immune response

GO:0042110 8.62e-20 1.21e-17 T cell activation

HULC (liver-related processes)

GO:0002933 0.00e+ 00 0.00e+ 00 lipid hydroxylation

GO:0006547 0.00e+ 00 0.00e+ 00 histidine metabolic process

GO:0006572 0.00e+ 00 0.00e+ 00 tyrosine catabolic process

GO:0010873 0.00e+ 00 0.00e+ 00 positive regulation of cholesterol esterification

GO:0010898 0.00e+ 00 0.00e+ 00 positive regulation of triglyceride catabolic process

GO:0016098 0.00e+ 00 0.00e+ 00 monoterpenoid metabolic process

GO:0030300 0.00e+ 00 0.00e+ 00 regulation of intestinal cholesterol absorption

GO:0034371 0.00e+ 00 0.00e+ 00 chylomicron remodelling

GO:0034378 0.00e+ 00 0.00e+ 00 chylomicron assembly

GO:0042737 0.00e+ 00 0.00e+ 00 drug catabolic process

H19 (cancer-related processes)

GO:0007565 3.46e-14 2.79e-11 female pregnancy

GO:0060397 7.14e-08 1.92e-05 JAK-STAT cascade involved in growth hormone
signaling pathway

GO:0070234 1.95e-06 3.93e-04 positive regulation of T cell apoptotic process

GO:0007292 3.90e-05 3.50e-03 female gamete generation

GO:0016486 3.90e-05 3.50e-03 peptide hormone processing

GO:0030325 3.90e-05 3.50e-03 adrenal gland development
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(GO:0000183) and nucleosome assembly (GO:0006334),
which may be consistent with observations that
LINC-ROR is involved in regulation of differentiation of
embryonic stem cells [53].
We also tested the performance on a more general

data set, using a set of prostate cancer-associated
lncRNAs with unknown molecular mechanism, pub-
lished by Mitobe et al. [54]. Most of these lncRNAs are
upregulated in prostate cancer, and it has been shown
that RNA interference (RNAi) towards these lncRANs
leads to a reduction in proliferation, making it reason-
able to assume that their upregulation in prostate cancer
contributes to increased proliferation in cancer tissue.
However, function prediction on this gene set illustrates
one of the main challenges. The lack of proper bench-
mark data, and the fact that the molecular mechanism
for these lncRNAs is unknown, makes it difficult to as-
sess the quality of the predictions. There are some cases
where recent results seem to support some of the pre-
dictions. For example, for SNHG1 (Small nucleolar RNA
host gene 1) a highly significant prediction is for positive
regulation of histone H3-K27 methylation (GO:
0061087), which is consistent with recent results from
Yu et al. [55] showing that SNHG1 may be involved in
epigenetic silencing of the tumour suppressor CDKN1A.
However, in most cases the predictions need further
verification. The prediction output is therefore included
here as supplementary material for future assessment
(see Additional file 4: Table S3).

Discussion
In recent years, thousands of lncRNAs have been discov-
ered that probably play important roles in many differ-
ent biological processes and diseases, but unfortunately
the vast majority of them still need to be functionally an-
notated. In this paper, we present an improved approach
for estimating co-expression for computational function
prediction. We compare several measures for estimating
co-expression, covering both statistical and geometrical
ones, and this gives improved identification of true
co-expression. We use an enrichment analysis to identify
enriched GO terms in the co-expressed gene set, and
use this to predict GO terms for un-annotated genes.
This can be any un-annotated gene, but here in particu-
lar human lncRNAs.

We have benchmarked the co-expression for enrichment
analysis on a subset of well-annotated protein-coding genes.
For each gene the GO terms were predicted (without using
the known terms for the gene), and the fit between pre-
dicted and known GO terms was measured using semantic
similarity measures. This showed good correlation between
predicted and known GO terms, in particular for terms re-
lated to biological process (BP) and when using a combined
similarity measure on gene expression. These score values
are clearly better than the score values achieved using Pear-
son or Spearman, which previously has been the most com-
mon approach. The procedure was then tested on
lncRNAs, in particular using a set of five well-described
lncRNAs tested in previous publications [22]. The predicted
GO-terms showed good correspondence with published
functional descriptions of these lncRNAs. This shows that
it is possible to predict the function of both protein-coding
and ncRNA genes, given a reliable set of expression data.
There is still room for improvement. Although the

prediction is successful in many cases (indicated by the
high average similarity score in the benchmarking), the
high SD indicates that there are specific cases where the
prediction is less successful. It would be very useful if we
were able to identify and focus on cases where predic-
tion is most likely to be successful. The performance
may also be sensitive to the quality, variation and anno-
tation of the reference data. The approach used for en-
richment analysis will also influence the result.

Conclusion
The results presented here show that approaches for
computational gene annotation based on co-expressed
genes can provide useful annotations, in particular when
using improved estimates of co-expression based on a
combination of geometrical and statistical metrics.

Additional files

Additional file 1: Figure S1. A flowchart illustrating the approach used
for prediction and benchmarking in LNCRNA2GOA. (PDF 342 kb)

Additional file 2: Table S1. Predicted annotation for a set of lncRNAs
from HeLa, previously analysed with lncFunTK by Zhou et al. [27] and
listed in their Table S2. (TXT 76 kb)

Additional file 3: Table S2. Predicted annotations from Additional file 3:
Table S1 for lncRNAs found in PubMed, illustrated with selected PubMed
references. (TXT 435 kb)

Table 3 Top 10 biological processes assigned to each of the selected case studies (Continued)

GO ID P-value FDR Term

GO:0007267 5.08e-05 4.31e-03 cell-cell signalling

GO:0042060 8.28e-05 5.50e-03 wound healing

GO:0006703 1.55e-04 8.91e-03 estrogen biosynthetic process

GO:0030540 4.66e-04 1.75e-02 female genitalia development
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