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Abstract. Finding and fitting circles from a set of points is a frequent problem in the data
analysis of high-energy physics experiments. In a tracker immersed in a homogeneous magnetic
field, tracks are close to perfect circles if projected to the bending plane. In a ring-imaging
Cherenkov (RICH) detector, circles of photons around the crossing point of charged particles
have to be found and their radii estimated. In both cases, non-negligible background may be
present that tends to complicate the pattern recognition and to bias the circle fit. In this
contribution we present a robust circle fit based on a modified Riemann fit that removes
or significantly reduces the effect of background points. As in the standard Riemann fit, the
measured points are projected to the Riemann sphere or paraboloid, and a plane is fitted to the
projected points. The fit is made robust by replacing the usual least-squares regression by a least
median of squares (LMS) regression. Because of the high breakdown point of the LMS estimator,
the fit is insensitive to background points. The LMS plane is used to initialize the weights of an
M-estimator that refits the plane in order to suppress eventual remaining outliers and to obtain
the final circle parameters. The method is demonstrated on three sets of artificial data: points
on a circle plus a comparable number of background points; points on two overlapping circles
with additional background; and points obtained by the simulation of tracks in a drift chamber
with mirror points and additional background. The results show high circle finding efficiency
and small contamination of the final fitted circles.

1. Introduction
The fitting of circular arcs or full circles to a discrete set of measurements is an important
problem in high-energy physics experiments. In ring-imaging Cherenkov (RICH) detectors rings
of photons have to be reconstructed; from their estimated radii the Cherenkov emission angle
of the crossing particles can be computed. Significant background can be expected, and there
may be overlapping rings from other particles in the same event. Tracking detectors often are
embedded in homogeneous magnetic fields, resulting in a nearly circular track in the bending
plane of the particle trajectories. There is usually background from other tracks in the event, and
in a drift chamber there is additional irreducible background because of the left-right ambiguity
of the position measurement.

Methods for finding rings in RICH detectors include, amongst others, the Hough transform [1,
2, 3, 4], track-based maximum likelihood [5], global maximum likelihood [6], trackless ring finding
via Markov chain Monte Carlo [7], and deconvolution [8]. Methods in the pattern recognition
literature include learning automata [9], genetic algorithms [10] and center-based clustering [11].
It should be noted, however, that some of these are not relevant to the problem studied here, as
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they are designed to the recognition of entire circular objects, for instance coins or balls, in an
image.

In this contribution we propose a novel method for finding and fitting rings: a robust
Riemann circle fit for tagging the noise points, followed by an adaptive least-squares estimator for
obtaining the best possible precision. The Riemann fit [12, 13, 14] has recently been extended to
a scale and location invariant version [15], following a recommendation in [16], including the full
error propagation from the measured points to the final circle parameters. In this contribution
it is shown how to make the circle fit robust against background. The least-squares regression,
which is the core of the Riemann fit, is replaced by a robust regression algorithm. The robust
fit is used to identify the points on the circle, and the found circle serves as the starting point
for the final adaptive least-squares regression. If track information is available, it can be used to
define a window for preselecting the points included in the robust fit.

The paper is organized as follows. After a brief recapitulation of the basic concept of the
Riemann track fit the robust least median of squares (LMS) regression is briefly described
(Section 2). The full chain of the LMS fit followed by the adaptive fit is evaluated first on full
circles with background (Section 3), then on overlapping circles with background (Section 4), and
finally on a simulation of points in a drift chamber with mirror points and additional background
(Section 5). The paper is concluded by a summary and an outlook to further work.

2. Robust Riemann circle fit
We assume that the measured points (ui, vi), i = 1, . . . , N, in the (x, y)-plane are given in
Cartesian coordinates and have already been centered and scaled (see [15]). They are mapped
to the “Riemann paraboloid”, a second-degree surface with the equation z = x2 + y2, by the
following projection:

xi = ui, yi = vi, zi = u2i + v2i .

In this way the circle in the plane with the equation

(u− u0)
2 + (v − v0)

2 = ρ2

is mapped to the plane in 3D space with the equation

z − 2xu0 − 2yv0 = ρ2 − u20 − v20.

The observed points ri = (xi, yi, zi)
T, i = 1, . . . , N , are fitted to the plane nTr + c = 0, where

r = (x, y, z)T, n is the unit normal vector and c is the signed distance of the plane from the
origin. Let di(n, c) = nTri + c denote the distance of the point ri from the plane. The standard
Riemann fit is orthogonal LS regression, in which the (possibly weighted) sum of the squared
distances di of the points from the plane is minimized:

(nLS; cLS) = arg min
(n;c)

∑N
i=1wi d

2
i .

The weights reflect the precision of the measured points. For the sake of simplicity, we assume
equal weights 1/N from now on. The generalization to arbitrary weights is straightforward.

It is well known that LS regression is sensitive to background or outlying measurements. A
highly robust alternative to LS regression is LMS regression [17], in which not the sum but the
median of the squared distances is minimized:

(nLMS; cLMS) = arg min
(n;c)

medNi=1 d
2
i .
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The breakdown point of the LMS regression is 0.5. This means that up to 50% of the measure-
ments can be moved to arbitrary positions without introducing a bias into the fit.

The price to pay for the extraordinary robustness of the LMS regression is threefold: it is more
difficult to compute than LS regression; it is less efficient in terms of its asymptotic variance; and
there is no simple prescription for computing the covariance matrix of the estimated parameters.
We have therefore used the LMS regression only for identifying the background measurements.
Computing the LMS regression parameters is essentially a combinatorial problem: one has to
find the subset of size �N/2� that minimizes the sum of the squared orthogonal distances to the
plane. As it is hardly possible to check all such subsets, triples of points are selected randomly,
defining a plane. The squared distances of all points to this plane are computed, and the plane
with the smallest median of the squared distances is taken as an approximation of the LMS
plane. This plane is used to compute the initial weights of the final fit, which is a redescending
M-estimator with deterministic annealing [18, 19, 20], implemented as an iterated re-weighted
LS regression. The final temperature of the annealing process is set to T = 0.25, resulting in
a hard discrimination between inliers and outliers. Points having a final weight above 0.5 are
tagged as inliers and are included in the final circle.

In the following sections the robust Riemann circle fit will be compared to randomized Hough
transform (RHT). As in the robust Riemann fit, triples of points are selected randomly, from
which the center and the radius of the circle defined by the triplet are computed and stored.
After finding the most populated bin in the 2D histogram of the center coordinates, the found
circle is defined as the medoid of all centers and radii in this bin. Points are tagged as inliers or
outliers by a cut on their weighted radial distance to the found circle.

3. Performance with full circles plus background
We have simulated 10000 circles with superimposed background. The signal consists of points
on a circle with radius ρ = 1, which is contained in a window of size 1.5× 1.5 around the origin.
The points are distributed uniformly on the circumference of the circle. In analogy to a RICH
detector, where the number of photons follows a Poisson distribution, the number of points is
drawn from a Poisson distribution with mean 20. Gaussian position errors with σx = σy = 0.02
are added to their (x, y)-positions. The background points are uniformly distributed in the
window, and their number is drawn from a Poisson distribution with mean 15. This means that
in about 22.3% of the cases there are at least as many background points as signal points in the
window.

The performance can be summarized by the efficiency of the circle finding and by the purity
and the completeness of the reconstructed circles. The efficiency of the circle finder can be
measured by counting the outliers in the residual distributions of the circle parameters, which
are the coordinates of the center and the radius. In this context, an outlier is defined as a residual
which is outside the interval [m−4 s,m+4 s], where m and s are robust estimates of the location
and the spread of the residual distribution, respectively. We have chosen m as the median and
s as the median of the absolute deviations from the median (MAD) times 1.485, which is very
close to one for large standard normal samples. According to this criterion, the efficiency is
about 98%. The average bias μ, the standard error σ and the root-mean-square error RMSE of
the estimated circle parameters (xc, yc, ρ) are listed in Table 1, along with the corresponding
results of the RHT. The robust Riemann fit gives smaller RMSE for all three parameters.

The purity of a found circle is defined as the ratio of the signal inliers over all inliers. Its
average over all 4899 found circles is 94.6%. The completeness is the ratio of the signal inliers
over all signal points. Its average is 98.8%. The corresponding figures for the RHT are again
98% for the efficiency, 92.9% for the average purity, and 99.7% for the average completeness.
The robust fit is almost twice as fast as the RHT.

Figure 1 shows two examples of circle fits. The true circle is drawn in cyan, the LMS circle
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in magenta, and the final circle in black. In Example 1 on the left, which is representative
for the overwhelming majority of cases, the three circles are virtually identical, although two
background points that are close to the true circle are included. In Example 2 on the right,
the circle is biased by the inclusion of two background points by the LMS regression (magenta
dotted circle), from which the M-estimator (black circle) cannot recover.

Table 1. Average bias μ, standard error σ and root-mean-square error RMSE of the estimated
circle parameters. Left: robust Riemann fit, right: randomized Hough transform.

xc yc ρ

μ · 103 0.027 0.037 0.815

σ · 102 0.784 0.781 0.546

RMSE · 102 0.784 0.781 0.552

xc yc ρ

μ · 103 −0.028 0.151 0.173

σ · 102 1.140 1.147 0.811

RMSE · 102 1.140 1.147 0.811
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Figure 1. Two examples of fitted circles. Cyan: true circle with true center, green: signal points,
red: background points, circled: points tagged as inliers by the M-estimator, magenta dotted:
LMS circle, black: final circle with final center

4. Performance with overlapping circles plus background
We have simulated 10000 pairs of overlapping circles that are fully contained in the square
[−2.5, 2.5] × [−2.5, 2.5]. The primary circle is centered at the origin and has the radius ρ1 = 1.
The number of points on this circle is drawn from a Poisson distribution with mean N1 = 20.
The center of the secondary circle is uniformly distributed in the square [−1.5, 1.5]× [−1.5, 1.5],
its radius ρ2 is drawn from a uniform distribution in [0.5 ρ1, ρ1], and the number of points is
drawn from a Poisson distribution with mean N2 = 15. The points on the circles are smeared
with Gaussian errors as before. The background points are uniformly distributed in the window,
and their number is drawn from a Poisson distribution with mean Nb = 10.

After the fit, for each of the circles the sum of the weights of its point are computed, and
the circle with the larger sum is tagged as found. The efficiency of the circle finding as well as
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the purity and completeness of the found circles are defined as in Section 3. The total circle
finding efficiency, measured as above, is 94.7%. Of the 4735 found circles inside the efficiency
cut, 2498 are primary circles and 2237 are secondary circles. The purity averaged over all circles
within the efficiency cut is 94.2%, the completeness is 98.7%. There is no significant difference
between primary and secondary circles. The corresponding figures for the RHT are 97.1% for the
efficiency, 92.8% for the average purity, and 99.8% for the average completeness. The average
bias μ, the standard error σ and the root-mean-square error RMSE of the estimated circle
parameters (xc, yc, ρ) are listed in Table 1, along with the corresponding results of the RHT.
Again, the robust Riemann fit gives smaller RMSE for all three parameters, but the RHT is
slightly more efficient. As the robust fit needs more iterations with larger background, the RHT
is slightly faster in this case.

Figure 2 shows an example of a successful fit. The left hand panel shows all points including
the background, the right hand panel shows which circle has been found and which points are
tagged as inliers. After removing the points on the found circle the procedure can be repeated
in order to find the other circle.

Table 2. Average bias μ, standard error σ and root-mean-square error RMSE of the estimated
circle parameters. Left: robust Riemann fit, right: randomized Hough transform.

xc yc ρ

μ · 103 0.168 0.081 0.736

σ · 102 0.810 0.818 0.579

RMSE · 102 0.810 0.818 0.583

xc yc ρ

μ · 103 0.253 0.031 0.291

σ · 102 1.112 1.131 0.813

RMSE · 102 1.113 1.131 0.814
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Figure 2. An example of a successful fit with overlapping circles. Left: all points before the fit.
Right: after the fit; cyan: true circles with true centers, blue: signal points of the primary circle,
green: signal points of the secondary circle, red: background points, circled: points tagged as
inliers by the M-estimator, black: final circle with final center
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5. Performance with mirror points
We have simulated tracks in a simplified and down-scaled model of the central drift chamber of
the Belle II experiment [21], without the stereo layers. The model has 40 layers of sense wires,
the cell size is 2 cm, and the point resolution is 150μm. Each true point has a mirror point.
In each layer, there is the probability pN of an additional noise point plus its mirror point in
either the signal wire itself or in the two adjacent wires on each side of the signal wire. The
LMS regression is the same as in the previous sections. The M-estimator has been modified to
include competition between a point and its mirror point, which is effectively an EM algorithm
with deterministic annealing [22] and a special case of the Elastic Planes algorithm in [12].

Table 3 shows the average purity and the average completeness of the reconstructed track for
three values of pN. The completeness is close to one in all cases, the purity drops to about 94%
at the highest noise level, as more noise points are included in the tracks. An example of a track
at the highest noise level is shown in Figure 3. This track has 17 noise points and their mirror
points. In layer 2, the signal point is missing and its mirror point is included. Three noise points
are included in layers 6, 15 and 28.

Table 3. Average purity and average completeness of tracks with mirror points at three noise
levels.

pN 0.0 0.2 0.4

purity 0.994 0.966 0.942

completeness 0.994 0.998 0.998
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Figure 3. An example of a track at noise level pN = 0.4. Cyan: true track, green: true points,
red: mirror points, magenta: noise points, circled: points included in the track, black: final track.
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6. Summary and outlook
It has been shown that circle finding against a substantial background can be implemented by
a robust Riemann circle fit based on LMS regression in combination with an M-estimator. Its
performance is comparable to that of the randomized Hough transform. As LMS regression is
computationally quite costly, further work will explore other robust regression methods such as
least trimmed squares [17] or L1 regression. Alternatively, the results of the randomized Hough
transform can serve as the initial values for the M-estimator, in particular in the case of several
overlapping circles. Finally, the fitting of tracks with mirror points will be extended to the case
of crossing or overlapping tracks.
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