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Abstract— A fusion method for hierarchical decentralized
state estimation is investigated with unknown cross-correlation.
The process is divided into several local estimators for different
subsystems that can operate independently from each other.
Each of the local estimators estimates only part of the entire
state vector, where some of the states overlap with each other.
Using the proposed fusion method, the local state estimates are
fused together, to reconstruct the global state vector and to get
an improved state estimate. A comparison with other existing
fusion methods was made through simulations and showed a
reduction in estimation error when using the proposed method.

I. INTRODUCTION

Increasing demands for efficient operation and profitability
in the industry require a better understanding of the dynam-
ics of the process. This has led to an increasing interest
in more advanced control systems, e.g., Model Predictive
Controllers (MPC) and Economic MPCs. To successfully
implement such techniques, more frequent information of
the states and disturbances is required [1]. Measuring all
the important states and disturbances is often too expensive
and often not possible. Therefore, they need to be estimated,
using appropriate state estimators as, e.g., in [2], and [3].
For chemical processes and other large-scale systems, using
centralized state estimators are in general not favorable due
to the high computational complexity. Instead, it is preferable
to decompose the problem into several subsystems with local
estimators, that uses the locally available measurements [4].

In [5] the concepts of distributed and parallel state estima-
tion was introduced, where it was concluded that distributed
state estimation is a viable option when estimating the
states for complex and large-scale systems. Information can
be shared between all the subsystems or only with the
neighboring subsystems. From the shared information, it
should be possible to obtain a global estimate. Two main ap-
proaches exist for dealing with the distributed/decentralized
state estimation problem:

One approach is to have every subsystem estimate the
entire state vector using a global model for each local
estimator. A global estimate is then received by fusing all
the local estimates in a centralized fusion layer as in [6].
The main drawback of this approach is that it is a full order
problem and each subsystem must have access to a full
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dynamical model of the system. Therefore, this approach is
poorly suited for most chemical processes and other large-
scale systems.

In the second approach, the different subsystems compute
only a partial estimate using a local model and then transmits
the information to its neighbors. This approach is also
referred as partition-based state estimation [7]. It is in general
more preferable for large-scale systems as in [4] since it
results in low order estimation problems that rely only on
local dynamic and measurement models. What information
that is shared between the neighboring subsystems vary
depending on the distributed estimation scheme, but can be
the measurements, state estimates, and corresponding covari-
ances. The main drawback with this method is that it requires
good performance for the communication between the local
estimators, where corrupted information, information delays,
and transmission frequency limitations may cause problems.

Consensus algorithms for distributed state estimation
based on Kalman filters have recently received much at-
tention [8], [9], [10]. In general, they belong to the second
approach, where each node (local estimator) computes an
estimate and shares it with its neighbors. The state estimates
by the different nodes converge to the same values using
a consensus algorithm. The Kalman based consensus filters
have mostly been applied to target tracking [11], where
each local estimator tries to estimate the same state vector.
However, a consensus based method for merging partially
overlapping state estimates was also proposed in [12].

One aspect most of the distributed state estimation meth-
ods have in common is that they are typically designed using
a top-down approach, i.e., they start with a global model
and then decompose it into smaller subsystems. The local
estimators for the decomposed subsystems then often employ
the same state estimation algorithm.

A major issue in process control is that most chemical
plants together with their different units are unique. There-
fore, most models have to be obtained using empirical mod-
eling, using different system identification techniques that re-
quires excitation of the process. However, these experiments
are often time-consuming and expensive since it interferes
with the process operation. As a consequence, the accuracy
of the models varies greatly, where some parts of the process
can have very accurate nonlinear models, while other parts
have basic linear models. Thus, using the same estimator
algorithm for every subsystem would be suboptimal. Instead,
it would be more practical to use a bottom-up approach,
where each local estimator is independently designed using a
local model and the local measurements. The local estimates



can be sent to a fusion center, from which a more accurate
global state estimate can be recovered.

In this work, a fusion method for hierarchical decentral-
ized state estimation is proposed, where the local estimators
work independently of each other and send their estimates to
a fusion center. The overlapping local estimates have been
scaled using weighting matrices resulting in a reduction in
estimation error once a global estimate has been obtained.

II. PRELIMINARIES

A. Notation

Let A ∈ Rn×m denote a real matrix with n rows and
m columns. For a matrix A, its transpose is denoted AT ,
and A−1 denotes its inverse. The identity and the null
matrix of appropriate dimension are given by I and 0.
The notation A � 0, A � 0 means the matrix is semi-
positive and semi-negative definite respectively. The estimate
of a stochastic state x ∈ Rn, can be represented with a
Gaussian distribution x ∼ N(x̂, P ), where x̂ ∈ Rn is the
estimated mean, and P ∈ Rn×n is the covariance matrix.
A Gaussian distribution can be represented by an ellipsoid
ε(x̂, P ) = {x|(x− x̂)TP−1(x− x̂) ≤ 1}.

B. Problem Formulation

Consider a discrete-time system described by a nonlinear
dynamic model f(·) and its measurement model h(·):

x(k + 1) = f(x(k), u(k)) + w(k) (1)
z(k) = h(x(k)) + v(k) (2)

where x(k) ∈ Rnx, u(k) ∈ Rnu, and z(k) ∈ Rnz are the
states, inputs, and measurements respectively. The process
noise w(k) and the measurement noise v(k) are uncorrelated
zero mean white Gaussian noise with the respective covari-
ance matrices Q(k), and R(k). Decomposing the system into
n subsystems of a lower order where index i identifies the
i-th subsystem represented as:

xi(k + 1) = fi(xi(k), ui(k), Xi(k)) + wi(k) (3)
zi(k) = hi(xi(k), Xi(k)) + vi(k) (4)

Here the vector Xi(k) represents the states which are shared
among the neighboring subsystems, but for which the model
equations are unknown to subsystem i.

Each subsystem uses a decentralized state estimator, that
can operate independently, i.e., it does not require any
information from any of the other subsystems. For the local
estimator to operate without the need to communicate with
its neighbors, the local model in (3) is augmented with
integrators that represent the interacting states Xi(k). Thus,
the augmented model for the local estimators becomes:

xai (k + 1) =

[
xi(k + 1)
Xi(k + 1)

]
=

[
fi(xi(k), ui(k), Xi(k))

Xi(k)

]
(5)

It is assumed that the augmented state vector xai (k) is
observable using the locally available measurements zi(k).
The local estimators can be of different type, but they all

produce a local estimate together with a covariance matrix
that can be represented by N(x̂ai , P

a
i ). Each of the local

estimates x̂ai represents a smaller part of the global state
vector in (1) where some parts of the local estimates overlap
with each other as in Fig. 2. The objective is to collect and
fuse the local estimates together in a fusion center, using a
hierarchical decentralized structure (see Fig. 1). However, the
role of the fusion center is not only to assemble the global
state vector, but also to get a more accurate state estimate.

Fig. 1: The hierarchical decentralized state estimator.

III. HIERARCHICAL DECENTRALIZED STATE
ESTIMATION

A state vector and its covariance matrix can be represented
as an information vector and an information matrix also
known as their canonical form [13]. The canonical form
is commonly used in distributed and decentralized state
estimation, since fusing estimates then becomes equivalent
to adding the information matrices and vectors together. The
information matrix and information vector are defined as:

Y (k|k) = P (k|k)−1 (6)

y(k|k) = P (k|k)−1x̂(k|k) (7)

where x̂(k|k) is the state estimate, and P (k|k) is its covari-
ance matrix at time k.

Fig. 2: Fusion of partially overlapping local estimates

Hierarchical state estimation can be done by computing
the global information matrix, and vector from n different
subsystems:

Y (k|k) = Y (k|k − 1) +

n∑
i=1

(
Yi(k|k)− Yi(k|k − 1)

)
(8)

y(k|k) = y(k|k − 1) +

n∑
i=1

(
yi(k|k)− yi(k|k − 1)

)
(9)

Here, each local estimator is assumed to have the global
model available and tries to estimate the whole state vector



using the locally available measurements. This can essen-
tially be interpreted as having a centralized estimator that
computes a global a priori estimate y(k|k− 1), Y (k|k− 1),
and then receives the additional information containing the
measurements from each local estimator. This approach has
been shown by [14] to be equivalent to using a centralized
state estimator, but the requirement of a global model makes
it impractical for large-scale systems. Therefore, instead it
would be preferable to fuse all the a posteriori information
matrices and vectors directly from the local models:

Y (k|k) =

n∑
i=1

HiYi(k|k)HT
i (10)

y(k|k) =

n∑
i=1

Hiyi(k|k) (11)

Where Hi is a transformation matrix, that maps the local
state vectors x̂i(k|k) to the global state vector x̂(k|k), i.e.
x̂i(k|k) = HT

i x̂(k|k).
The global estimate in (10) and (11) is optimal if there is

no correlation between the local estimates. This assumption
rarely holds and has therefore been referred to as the ”naive
approach” [15]. If the cross-correlations are ignored, it will
result in overconfident and inconsistent state estimates. For
the proposed hierarchical decentralized state estimator, con-
sistency will not be a major issue, since the fused estimates
have no influence on the local estimates. However, the cross-
correlations should still be considered in order to improve the
accuracy of the fused estimate.

IV. FUSION STRATEGIES

This section briefly covers some of the existing methods
for fusing estimates. From here on the index (k|k), and
(k|k − 1) will be dropped for ease of notation.

A. State fusion under known correlation

The Bar-Shalom Campo (BC) formula [16] is a well-
known method for incorporating the known cross-correlation:

PBC = P1 (12)

− (P1 − P12)(P1 + P2 − P12 − P21)−1(P1 − P21)

x̂BC = (P2 − P21)(P1 + P2 − P12 − P21)−1x̂1 (13)

+ (P1 − P12)(P1 + P2 − P12 − P21)−1x̂2

where P12 and P21 constitute the cross-correlations. From a
Maximum Likelihood sense, this formula results in consistent
fusion. However, keeping track on and maintaining these
cross-correlations is expensive, especially for large-scale
systems. Instead, different suboptimal strategies are often
used, that gives a fused solution without the need to maintain
the cross-correlations.

B. State fusion under unknown correlation

Several methods exist for fusing estimates with unknown
correlations. One of the most popular methods used is known
as Covariance Intersection (CI) [17]. It determines the fused

estimate by multiplying the information matrices and vectors
with a scalar weight, ω ∈ R[0,1]:

PCI = (ω · Y1 + (1− ω) · Y2)−1 (14)

x̂CI = PCI(ω · y1 + (1− ω) · y2) (15)

Numerous approaches for determining the weight ω exists,
e.g., [18] and [19] but in general, they attempt to minimize
the trace or the determinant of PCI . The CI method guar-
antees that the fused estimate is consistent as long as the
local estimates are consistent. It does so by overestimating
the covariances in all directions, thus ensuring the fused
covariance is larger than for the worst case cross-correlation
scenario. This is also one of its drawbacks, as it does not
necessarily reduce the estimation error.
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Fig. 3: Covariance ellipses P1, P2, and P3, the desired ellipse
Pdes and the fused covariances EI123, EI132, and EI321
when fusing using Ellipsoidal Intersection in different orders.

Contrary to CI, which attempts to obtain a minimum over-
estimation of the intersection region between covariances, the
Ellipsoidal Intersection (EI) [20], and the Largest Ellipsoid
Algorithm (LEA) [21] methods aim to find the maximum
ellipsoid inside the region of the intersection.

EI ensures that the uncertainty decreases for the fused esti-
mate, and gives a reduction in the estimation error compared
to using CI. It does so by calculating the mutual covariance
Γ, and the mutual mean γ, yielding:

PEI = (P−1
1 + P−1

2 − Γ−1)−1 (16)

x̂EI = PEI(P−1
1 x̂1 + P−1

2 x̂2 − Γ−1γ) (17)

Both the EI and LEA methods are similar since they both
aim to obtain the maximum ellipsoid inside the region of
the intersection. Where they use eigenvalue decomposition,
to find a transformation matrix T such that,

P̃1 = TP1T
T (18)

P̃2 = TP2T
T (19)

becomes diagonal matrices with P̃1 being equal to the iden-
tity matrix. The intersection ellipsoid can then be computed,

PLEA = T−1P̃LEAT−T (20)

where [P̃LEA]j,j = min([P̃1]j,j , [P̃2]j,j). The similarity
between EI and LEA was also addressed in [22]. However,
the fused mean in LEA is not adapted to the fused covariance,
which is a significant difference compared to EI.



C. State fusion for more than two local estimates

The framework of the three fusion methods (CI, EI, and
LEA) have been devised for fusing two estimates only. When
extended to multiple estimates the general recommendation
is to sequentially apply these fusion methods [23], [24].
However, as demonstrated in [25] when using CI for three or
more estimates it tends to overestimate the covariance, and
therefore, the minimum overestimate no longer holds. On
the other hand, using a sequential approach for EI, and LEA,
may lead to an underestimate of the uncertainty, that is, result
in a covariance that is smaller than the maximum ellipsoid
inside the intersection region as seen in Fig 3. Furthermore,
the order of the sequence of which the fusion is done effects
the final estimates as also illustrated in Fig 3, where the
three covariances P1, P2, and P3 end up with a different
fused covariance depending on the sequential order.

D. State fusion for partially overlapping state estimates

Compared to fusing state estimates that correspond to the
same state vector, research regarding fusing partial overlap-
ping state vectors is fairly limited. A consensus based method
for fusing the overlapping parts have been proposed in [12].
In [26] an empirical method was investigated, where the EI
method was extended to deal with partially overlapping state
vectors. However, both these methods are better suited to
fully distributed state estimation, where the local estimates
are shared between its neighbors without any fusion center.

A more suitable technique for the desired hierarchical
fusion structure was proposed in [27]. There, fusing unequal
state vectors is treated as a Weighted Least Squares (WLS)
problem, where the fused state estimate becomes:

x̂WLS = K
[
x̂T1 · · · x̂Tn

]T
(21)

The gain K for unknown cross-correlations can be computed:

K = (HTYWLSH)−1HT (YWLS)−1. (22)

where H :=

H
T
1
...
HT
n

 , and YWLS :=

ω1Y1
. . .

ωnYn

 .
The scalar weights ωi can be obtained using, e.g., CI
such that ωi ≥ 0, and

∑n
i=1 ωi = 1. However, no more

information was given on how to compute ωi. Furthermore,
CI is not particularly well suited for dealing with partially
overlapping state estimates. For instance, if the goal is to
minimize the trace of the fused covariance, then using larger
weights for the local estimates of lower dimensions would in
general, be beneficial, even if these estimates are inaccurate.

V. PROPOSED FUSION METHOD

Motivated by some of the shortcomings when fusing
multiple and partially overlapping state estimates, a method
is proposed that tries to address some of these issues. The
proposed method is inspired by EI [20] and LEA [21], as
it tries to obtain a fused covariance that corresponds to
the maximum ellipsoid inside the region of intersection.

Therefore, similar to EI, it does not guarantee consistency
[28] unless the local estimates are weakly correlated [24].
However, instead of using a sequential approach, the aim is
to compute static weight matrices Wi such that the global
state estimate becomes,

x̂ = Y −1y (23)

where,

Y =

n∑
i=1

HiWiYiW
T
i H

T
i (24)

y =

n∑
i=1

HiWiYiW
T
i x̂i. (25)

The weights Wi in (24), and (25) will be obtained by solving
two semidefinite programming (SDP) problems.

Proposition 5.1: [29] An inner ellipsoidal approximation
of the intersection for the ellipsoids H1Y1H

T
1 , ...,HnYnH

T
n ,

can be obtained by solving the following Linear Matrix
Inequality (LMI):

max
Z,λi

(det(Z))1/nx (26)

subject to: λi ≥ 0, ∀i (27) I 0 HiY
1
2
i H

T
i Z

0 1− λi 0
ZHiY

1
2
i H

T
i 0 λiI

 � 0, ∀i (28)

The approximation of the intersection, Y0 is calculated from:

Y0 = Z−2 (29)
The obtained Y0 from (29) represents the desired covari-

ance (e.g., Pdes = Y −1
0 in Fig. 3), but it doesn’t provide any

information on how to choose the weights Wi. E.g., assuming
Hi = I, ∀i, then selecting Wi such that W1Y1W

T
1 = Y0 and

setting WiYiW
T
i = 0 for i = 2...n, would result in (24) be-

coming equivalent to Y0, but it wouldn’t necessarily improve
the global estimate. Instead, Wi should be chosen such that
(24) becomes equal (or close) to Y0, but more importantly,
so that it reduces the estimation error by emphasizing the
more accurate local estimates. Therefore, Y0 will be used
for finding transformation matrices Ti, that diagonalizes and
manipulates the orientation of Yi. If the matrices in (24) are
diagonalized and aligned with Y0, then Wi can be selected
such that it scales the variances in the desired directions.

The singular value composition of Y0 is given by

[U0, D0] = svd(Y0), (30)

from which, a transformation matrix can be defined,

T0 = D
− 1

2
0 UT0 (31)

that makes T0Y0T
T
0 = I . The following transformation

matrices can be computed for i = 1, ..., n:

[Ui, Di] = svd(T0HiYiH
T
i T

T
0 ) (32)

Ti = UTi D
− 1

2
0 UT0 (33)



The transformation matrices, Ti can be used to bring Y0 and
Yi within a space where they have compatible orientations:

Ỹ0 = TiY0T
T
i = I (34)

Ỹi = TiHiYiH
T
i T

T
i (35)

where Ỹ0 and Ỹi are diagonal matrices. Next, the goal is
to find some diagonal scaling weights W̃i, such that the
corresponding ellipsoid when transformed back to original
space becomes:

Y0 =

n∑
i=1

T−1
i W̃iỸiT

−T
i (36)

=

n∑
i=1

T−1
i W̃iTiHiYiH

T
i T

T
i T

−T
i (37)

=

n∑
i=1

T−1
i W̃iTiHiYiH

T
i (38)

Theorem 5.1: The weights W̃i can be obtained by solving:

max
W̃i

(
det
( n∑
i=1

T−1
i W̃iTiHiYiH

T
i

))1/nx
(39)

subject to: W̃i ≥ 0, ∀i (40)∥∥∥ n∑
i=1

T−1
i W̃iTi

∥∥∥
2
≤ 1 (41)

Proof: From (38), (T−1
i W̃iTi) can be considered as a

weight matrix, that when multiplied with HiYiH
T
i results in:

(T−1
i W̃iTi)HiYiH

T
i = HiYiH

T
i (T−1

i W̃iTi)
T � 0 (42)

The symmetry is due to W̃i, and Ỹi in (36) being diagonal
matrices and the constraint in (40) guarantees semi-positive
definiteness. The upper bound placed on W̃i through (41)
ensure that

∑n
i=1 T

−1
i W̃iTiHiYiH

T
i � Y0. Therefore, the

weights W̃i are optimal if
∑n
i=1 T

−1
i W̃iTi = I , which

results in
∑n
i=1 T

−1
i W̃iTiHiYiH

T
i = Y0

Remark 5.1: Ideally, the constraint in (41) could be re-
placed with

∑n
i=1 T

−1
i W̃iTi = I . However, due to possible

round-off error and other numerical issues when computing
Ti, it can give poor results. Therefore, the relaxed constraint
in (41) is preferred and should result in

∑n
i=1 T

−1
i W̃iTi ≈ I .

Because W̃i are diagonal matrices, (36) can be written as

Y0 =

n∑
i=1

T−1
i W̃i

1
2 ỸiW̃i

T
2 T−T

i (43)

=

n∑
i=1

T−1
i W̃i

1
2TiHiYiH

T
i T

T
i W̃i

T
2 T−T

i (44)

The weights in the original space then become:

Wi = HT
i T

−1
i W̃i

1
2TiHi, ∀i. (45)

An illustration of the proposed fusion method can be seen
in Fig. 4. The individual covariances get scaled using the
weights in (45), so the uncertainty mainly increases in the
inaccurate directions. This forces the fused estimate to put
more emphasis on the accurate estimates.

The algorithm for computing Wi can be summarized as:
Algorithm

1) Compute the maximum ellipsoid inside the region of
intersection Y0 for H1Y1H

T
1 , ...,HnYnH

T
n by solving

the LMI in (26), subject to (27), and (28).
2) Obtain the transformation matrices Ti that aligns Y0

with Yi for all i, from (30), (31) (32), and (33).
3) Compute the diagonal weight matrices W̃i by solving

the LMI in (39) subject to (40), and (41).
4) Calculate the weights Wi in original space from (45).
The global state estimate can then be obtained from (23),

(24), and (25). Alternatively, (21), and (22) can be used,
where ωiYi in YWLS can be replaced with WiYiW

T
i .
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The main drawback with the proposed algorithm is that it
requires solving two SDPs, which can be computational de-
manding, especially for large-scale systems. However, unless
there are significant changes in the covariance matrices from
the local estimates (due to, e.g., high non-linearities), updat-
ing the weights at every iteration should not be necessary.
Instead, the weights can be kept constant until the operating
conditions in the process changes.

VI. SIMULATIONS

A. Lorenz Attractor

Let’s consider three estimators, that tries to estimate the
states of the Lorenz attractor,

ẋ1 = −σ(x1 − x2) (46)
ẋ2 = x1(ρ− x3)− x2 (47)
ẋ3 = x1x2 − βx3 (48)

zi = hi
[
x1 x2 x3

]T
(49)

where σ = 10, ρ = 28, and β = 8/3. Each estimator uses an
Unscented Kalman filter (UKF) [30] with the measurements:

h1 =

[
1 0 0
0 1 0

]
, h2 =

[
0 1 0
0 0 1

]
, h3 =

[
0 0 1
1 0 0

]
.

The covariance matrices for the process and measurement
noise are assumed to be known and are for i = 1, 2, 3:

Qi = diag(
[
0.52 0.52 0.52

]
), Ri = diag(

[
0.012 0.12

]
)



TABLE I: RMSE for the Lorenz attractor

RMSE x1 RMSE x2 RMSE x3

Local Est. 1 0.0101 0.0969 1.7172
Local Est. 2 1.1101 0.0101 0.0992
Local Est. 3 0.0968 1.4670 0.0103
Fast CI 0.1315 0.1036 0.0905

EI123 0.0108 0.0101 0.0109
EI132 0.0101 0.0106 0.0107
EI321 0.0110 0.0112 0.0103
Proposed (updated Wi) 0.0101 0.0101 0.0103
Proposed (static Wi) 0.0101 0.0101 0.0104

The Lorenz attractor is simulated for 1000 samples with a
step size of 0.01 using a 4th order Runge-Kutta numerical in-
tegration. To improve the result, the estimated states from the
local estimators are fused, using a hierarchical structure as in
Fig. 2, but with all states overlapping. The cross-correlations
between the estimates are assumed to be unknown, and thus
the estimation error for the fast CI [19], the EI, and the
proposed method are compared. The root mean squared error
(RMSE) for the respective estimator and the three fusion
methods can be seen in Table I, where the subscript of ’EI’
denotes the sequential order the estimates have been fused.

As seen in Table I, all three fusion methods give an overall
reduction in the estimation error compared to the local
estimates. However, the proposed method gives a better result
compared to the two other methods, where there is little
improvement when updating the weights at every iteration
compared to using the same (static) weights. It can also be
seen that the estimation error for the EI method depends on
the order which the local estimates have been fused in.

B. CSTR and Flash Separator

A chemical process consisting of two continuous stirred
tank reactors (CSTRs) and a flash separator connected in
series is considered as seen in Fig 5. A mixture of A and B

Fig. 5: Diagram of 2 CSTR and Flash Separator.

is fed into the two CSTRs, in which two reactions occur, i.e.,
A→ B and B → C. The outlet of the second CSTR is fed
into the flash separator at a flow rate F2. The overhead of
the separator is condensed and passed to a downstream unit
at flow rate Fr and the bottom product stream is removed
at flow rate F3. The dynamic model obtained via mass and

TABLE II: Parameters for the CSTR and Separator

xA1 = 0.923 wt(%) T1 = 315.1 K F1 = 74.5 kg/s
xB1 = 0.074 wt(%) T2 = 315.2 K F10 = 8.3 kg/s
xA2 = 0.919 wt(%) T3 = 314.9 K F2 = 75.0 kg/s
xB2 = 0.081 wt(%) Q1 = 10.0 kJ/s F20 = 0.5 kg/s
xA3 = 0.806 wt(%) Q2 = 10.0 kJ/s F3 = 8.0 kg/s
xB3 = 0.184 wt(%) Q3 = 10.0 kJ/s Fr = 66.2 kg/s
xA10 = 0.90 wt(%) V1 = 89.4 m3 Fp = 0.8 kg/s
xA20 = 0.80 wt(%) V2 = 90.0 m3 cp = 25 kJ/kg K
E1/R = −100 K V3 = 3.27 m3 αA = 3.5
E2/R = −150 K k1 = 0.020 1/s αB = 1.1
∆H1 = −40 kJ/kg k2 = 0.018 1/s αC = 0.5
∆H2 = −50 kJ/kg ρ = 0.15 kg/m2 T10, T20 = 315 K

energy balances are the same as in [31], but the flows and
thus the volumes are assumed to be constant resulting in:

CSTR 1 (Estimator 1)
dxA1

dt
=
F10xA10 + FrxAr − F1xA1

ρV1
− k1e

−E1
RT1 xA1 (50)

dxB1

dt
=
F10(1− xA10) + FrxBr − F1xB1

ρV1

+ k1e
−E1
RT1 xA1 − k2e

−E2
RT1 xB1 (51)

dT1
dt

=
F10T10 + FrT3 − F1T1

ρV1

− ∆H1

cp
k1e

−E1
RT1 xA1 −

∆H2

cp
k2e

−E2
RT1 xB1 +

Q1

ρcpV1
(52)

CSTR 2 (Estimator 2)
dxA2

dt
=
F20xA20 + F1xA1 − F2xA2

ρV2
− k1e

−E1
RT2 xA2 (53)

dxB2

dt
=
F20(1− xA20) + F1xB1 − F2xB2

ρV2

+ k1e
−E1
RT2 xA2 − k2e

−E2
RT2 xB2 (54)

dT2
dt

=
F20T20 + F1T1 − F2T2

ρV2

− ∆H1

cp
k1e

−E1
RT2 xA2 −

∆H2

cp
k2e

−E2
RT2 xB2 +

Q2

ρcpV2
(55)

Separator (Estimator 3)
dxA3

dt
=
F2xA2 − (Fp + Fr)xAr − F3xA3

ρV1
(56)

dxB3

dt
=
F2xB2 − (Fp + Fr)xBr − F3xB3

ρV1
(57)

dT3
dt

=
F2T2 − (Fp + Fr + F3)T3

ρV1
+

Q3

ρcpV3
(58)

with the algebraic equations:

xAr =
αAxA3

x̄3
, xBr =

αBxB3

x̄3
, (59)

x̄3 = αAxA3 + αBxB3 + αC(1− xA3 − xB3). (60)

The process is split into three local estimators; one for
each of the reactors, and one for the separator. The available
measurements zi, and inputs ui for the estimators are:

z1 =

xA3

xB1

T1

, z2 =

xA1

xB2

T2

, z3 =

xA2

xB3

T3

,
u1 = xA10

u2 = xA20
.



The process and measurement noise are given by:

Qi = diag(
[
0.0052 0.0052 0.12

]
)

Ri = diag(
[
0.00022 0.00012 0.12

]
)

for i = 1, 2, 3. All three models are augmented with three
states as in (5) with xAi, xBi, and Ti from the previous
estimator. The parameters and the steady-state values are
shown in Table II. A UKF was used for all the local
estimators, and the process is simulated for 100s with a
sampling time of 0.5s, where the inputs u1 and u2 are varying
with two different sinusoidal signals.
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Fig. 6: RMSE for the 2 CSTR and reactor process. The blue
line is the method in [27] with ω1 = ω2 = ω3 = 1/3, and
the red line is using the proposed method.

An EI method for fusing unequal state vectors was pre-
sented in [26], where the overlapping parts get marginalized
out and shared with the neighboring nodes. This gives an
improvement in the local estimates, but it doesn’t provide
a global state vector and requires a different structure than
the hierarchical decentralized state estimator. Instead, the
proposed fusion method is compared to using (21), and (22)
with the scalar weights, ω1 = ω2 = ω3 = 1/3, where the
resulting RMSE for the compositions can be seen in Fig. 6.

VII. CONCLUSION

A method for fusing multiple and partially overlapping
state estimates with unknown cross-correlation has been
proposed. The method calculates weight matrices that scales
the local estimates such when fused together gives a more
accurate estimate. Simulations showed a reduction in the
estimation error compared to other existing methods.
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