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Abstract

One of the major drawbacks of deep learning is the amount of labeled training
data required in order to reach acceptable performance. This labeled data may
be di�cult and expensive to obtain. The goal of active learning is to reduce the
amount of labeled data needed for a model to achieve acceptable performance.

Traditional active learning has limited e↵ectiveness across di↵erent domains,
and there is no single query strategy that outperforms all others in various do-
mains. In this thesis, we perform research on ways to close the gap between
the current state of the art active learning research and a domain general active
learning strategy.

This thesis proposes an architecture that utilizes the similarity between sam-
ples to improve the performance achieved by traditional active learning algo-
rithms. We test the architecture on datasets with di↵erent characteristics, and
prove that the utilization of inter-sample similarity enhances the performance in
all cases. Our architecture is able to reach and exceed the performance achieved
by traditional entropy sampling using only 62.5% and 83.9% of the data on the
MR and UMICH dataset. To the best of our knowledge, this is the first analysis
of the e↵ects of inter-sample similarity in active learning.

Furthermore, we explore approaches to active learning in a visual semantic
embedding setting. First, we provide a qualitative discussion on how model
uncertainty may be represented in such an application. Using this representation,
we propose a reinforcement learning approach to stream-based active learning.
Lastly, we evaluate the e↵ectiveness of the proposed approach, and provide an
in-depth discussion of its performance.
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Sammendrag

En av de største ulempene med dyp læring er den store mengden annoterte ek-
sempeldata som kreves for å trene modellene. Det kan være b̊ade vanskelig og
dyrt å fremska↵e slike eksempeldata i det omfanget som kreves for at modellen
skal oppn̊a et tilfredsstillende læringsresultat. Målet med aktiv maskinlæring er
å redusere den nødvendige mengden annoterte eksempeldata. I denne oppgaven
utforsker vi hvordan det er mulig å minske avstanden mellom n̊aværende ledende
forskning p̊a aktiv maskinlæring og en generell aktiv maskinlæringsstrategi.

Oppgaven introduserer en arkitektur som utnytter likhet innenfor eksempel-
dataene for å forbedre læringsresultatene til de algoritmene som benyttes ved
tradisjonell aktiv maskinlæring. Vi tester arkitekturen p̊a datasett med forskjel-
lige egenskaper. Vi viser at den oppn̊ar bedre resultater enn tradisjonell aktiv
maskinlæring i hvert eksperiment. V̊ar arkitektur oppn̊ar og overg̊ar læringsresul-
tatene til tradisjonelle aktive læringsalgoritmer ved kun å bruke 62.5% og 83.9%
av dataen p̊a MR og UMICH datasettene. S̊a vidt vi vet, er dette den første
analysen av e↵ektene av inter-datapunktslikhet i aktiv maskinlæring.

Videre undersøker vi hvordan aktiv maskinlæring kan utnyttes i visuell seman-
tisk embedding. Vi utvikler en metode basert p̊a modellusikkerhet og diskuterer
hvordan metoden kan brukes i denne settingen. Vi velger å bruke strøm-basert
forsterkende læring som utnytter modellusikkerheten. Til slutt vurderer vi e↵ek-
tiviteten av den tilnærmingen vi har valgt og diskuterer grundig hva det er mulig
å oppn̊a.
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Chapter 1

Introduction

This chapter first describes the background and the motivation for this thesis.
Then, we present our goals and research questions, before we summarize our main
contributions.

1.1 Background and Motivation

Deep learning has achieved amazing results in recent years. In acoustic modeling
[18], the error rate improved from 24,4% to 20,7% by replacing Gaussian mixture
models with deep neural networks. In sentiment analysis [25], accuracy improved
from 80% to 85.4% using a recurrent neural network. Question answering [8] also
achieved an improvement with deep neural networks. Deep neural architectures
consistently outperform other machine learning techniques, and has rightfully
received much attention.

A disadvantage, however, with deep learning is the amount of data required
to train the models. Active Learning (AL) is a field within machine learning that
aims to reduce the amount of data needed to train machine learning models. A
very high percentage of deep learning applications use supervised learning, and
gathering and labeling data needed for this kind of learning is a costly process. An
example is ImageNet [15] that contains more than 15 million images. This dataset
was created by manually classifying the images into 22000 di↵erent categories.

Reducing the amount of training data needed to fulfill this kind of task by
only a small percentage means significant economical and computational benefits.
An example of how the amount of training data may be reduced is [6], where a
5% test error on the MNIST dataset was achieved with active learning using 295
labeled images. On the contrary, 835 labeled images were required to achieve the
same percentage using naive random sampling, which means a 283% increase in

1



1.2. Goals and Research Questions 2

the amount of data needed to accomplish the same performance.
There is little doubt that reducing the required amount of labeled training

data is beneficial for virtually all supervised learning applications. However,
most of the existing approaches to active learning are domain specific, or re-
quires the existence of a labeled dataset to learn a query policy. Both circum-
stances inherently defeat the purpose of active learning. This motivates a work
on designing domain general active learning strategies, applicable without using
domain-specific knowledge.

Learning joint embeddings for data from di↵erent domains is an attractive
use of deep learning. Applications of joint embeddings may be recognizing items
in a photo [4] and assist self-driving cars in understanding what happens around
them using object-based semantic mapping [19], among others. Training models
for joint embeddings requires large amounts of data, and motivates research on
active learning within such applications. When connecting data from di↵erent
domains, the model maintains a joint embedding space which exhibits semantic
properties. The properties of that space are, in theory, domain independent. As
such, it motivates a theme of research that explores approaches to exploit this
independence, in order to produce an active learning strategy that works across
applications of joint embeddings.

1.2 Goals and Research Questions

Our main goal for this thesis is to reduce the distance between current active
learning research and a domain general active learning query strategy.

Our pre-thesis [28] yielded interesting results on the similarity between sam-
ples in active learning and warranted further research on how to incorporate
inter-sample similarity in an active learning query strategy. This similarity be-
tween samples is a property which is domain general, and the utilization of this
information may be a step in the right direction towards our main goal of a
general active learning strategy.

Research question 1 How may similarity between samples be utilized in order
to improve on existing active learning techniques?

Deep neural models that connect data from di↵erent domains are highly
sought after at the present time. To the best of our knowledge, no active learn-
ing query strategy has been defined for domains on which such a model can be
applied. Active learning algorithms with a basis in uncertainty have tradition-
ally performed well, and this motivates research on how we can capture this
uncertainty in the joint embedding space.

Research question 2 How may uncertainty be captured in Visual Semantic
Embedding?



3 1.3. Contributions

Using the factors that encapsulate model uncertainty in Visual Semantic Em-
bedding (VSE), we want to develop an active learning query strategy for this
domain. A main purpose with this thesis is to explore the possibilities and
limitations of using a reinforcement learning agent to learn an active learning
strategy in joint embedding settings, moving active learning closer to a general
active learning strategy.

Research question 3 By applying factors that encapsulate model uncertainty
in Visual Semantic Embedding, will a reinforcement agent be able to learn
which states lead to high rewards?

1.3 Contributions

This section summarizes our main contributions in this thesis.

1. An e↵ective approach for exploiting similarity between samples in order to
improve on existing active learning techniques

2. Insight to how to encapsulate model uncertainty in visual semantic embed-
ding

3. An attempt to utilize model uncertainty to train a reinforcement agent to
make labeling decisions in visual semantic embedding

4. A qualitative analysis of the e↵ectiveness of the proposed approach

All our experiments and code are publicly available at Github1.

1.4 Thesis Structure

The paper is structured as follows: In chapter 2, we give a brief description of
the background theory needed for our theoretical discussion. In chapter 3 we
refer the state of the art research within the field. In chapter 4 we present the
architecture and models we employed. Chapter 5 starts with describing the hard-
ware, frameworks, and datasets we made use of, with some key characteristics
of each dataset. Thereafter, we describe our experimental setup and the details
surround the experiments we have performed. The chapter is closed o↵ by dis-
playing and describing our results. In the last chapter, we discuss these results
on a theoretical basis before we clarify our conclusions and make suggestions for
future work.

1https://github.com/hoxmark/Deep_reinforcement_active_learning (Accessed on
7/08/2018)

https://github.com/hoxmark/Deep_reinforcement_active_learning
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Chapter 2

Background Theory

This chapter involves the background theory needed in order to follow the dis-
cussion and proposed theories for the remainder of the thesis.

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational networks originally in-
spired by the human brain and how neurons work. A neuron, illustrated in
figure 2.1, consists of a core, called the nucleus, which has several incoming con-
nections, called dendrites. Based on the electronic signals on these dendrites, the
nucleus may activate and send an output signal on its axon. This output signal is
then spread to the incoming dendrites of many other neurons, making the signal
propagate forward through the network.

ANNs consist of several layers of artificial neurons. Artificial neurons, shown
in figure 2.2, are digital replicas of the neuron described above. The first layer
is called the input layer and forwards the input values to the nodes on the next
layer. Based on the incoming signals, a single node computes an output signal
that is passed to the nodes on the next layer. This process repeats until the final
output layer, which yields the output of the neural network. Layers between the
input and the output layers are called hidden layers.

Each node in the network has weights associated with each incoming signal.
These weights are multiplied with the particular input signal, before all the re-
sulting values are summed. This sum is passed through an activation function
which computes the value to be passed on to the next layer of nodes. If a neuron
j receives input values x1, x2, ..., xn, the output oj of that neuron is given by

5
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Figure 2.1: Neuron 1 Figure 2.2: Artificial neuron 2

Figure 2.3: Example of a Deep Neural Network 3

oj = �

 
nX

i

xi · wij

!
(2.1)

where � is the activation function used for the neuron. The choice of activation
function matters significantly, and has been extensively studied in the past years
[26, 29, 7, 2, 9].

Artificial Neural Networks with multiple hidden layers are called deep neural
networks, illustrated in figure 2.3. Traditionally, many hidden layers have made
the networks too computationally di�cult to work with, but in the later years,
hardware development has risen to a level where incredibly large networks are

1https://simple.wikipedia.org/wiki/Neuron (Accessed on 11/11/2017)
2https://upload.wikimedia.org/wikipedia/commons/thumb/6/60/

ArtificialNeuronModel_english.png/600px-ArtificialNeuronModel_english.png (Accessed
on 11/11/2017)

3https://cdn-images-1.medium.com/max/1600/1*5egrX--WuyrLA7gBEXdg5A.png (Accessed
on 11/11/2017)

https://simple.wikipedia.org/wiki/Neuron
https://upload.wikimedia.org/wikipedia/commons/thumb/6/60/ArtificialNeuronModel_english.png/600px-ArtificialNeuronModel_english.png
https://upload.wikimedia.org/wikipedia/commons/thumb/6/60/ArtificialNeuronModel_english.png/600px-ArtificialNeuronModel_english.png
https://cdn-images-1.medium.com/max/1600/1*5egrX--WuyrLA7gBEXdg5A.png
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Figure 2.4: Example CNN architecture. Figure presented in [31].

feasible. Deep neural networks may further be split into subcategories depending
on what type of computation is done within the layers. Here two particularly
essential types of networks are described.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a very popular kind of neural net-
works, used mostly for image related tasks. CNNs had their breakthrough in
image classification, and are also in the center of almost all computer vision sys-
tems to date. Essential in CNNs is the notion of convolutions. Convolutions may
be described as functions applied to a sliding subset of the input values. The
output of one application of this sliding function is one value in the resulting
convolution vector. An example CNN is shown in figure 2.4.

The convolutions transform a window of lower level features to higher level
representations. Each convolution layer extracts di↵erent features from di↵er-
ent regions, and repeated applications of convolutional- and max-pooling layers
transform the low-level pixel values to higher-level information. One filter may
detect edges in its sliding window, the next shapes from the detected edges. These
edges are constructed into objects, and so on.

Multiple convolutional layers are computed at each level before being fed into
a pooling layer. The purpose of the pooling layer is to downsample the data, and
to make the results from a convolutional filter more general and robust to scale
or orientation changes.

The nature of the convolutional layers is to extract a feature over a sliding
window, converting low-level spatial information to information of higher level.
This method of computation does not take into account temporal information of
previous data, which makes CNNs poorly suited for tasks that are sequential by
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Figure 2.5: Purpose of CNN pooling 4

nature, but better suited for tasks where spatial locality is significant, e.g. image
processing.

2.3 Recurrent Neural Networks

The power behind Recurrent Neural Networks (RNNs) comes from the ability to
perform sequence modeling, and the ability to let previous time steps influence
the future. This makes RNNs suited for tasks of sequential nature - e.g. natural
language processing and text generation. If a sentence x consists of n words

x = x0, x1, x2, x3, ...xn (2.2)

Sequence modeling is made possible by first initializing a hidden state that is
combined with the first input x0. This combined vector is fed to the RNN, which
outputs h0 corresponding to that time step. This hidden state may be decoded
to an output at that time step. To compute the hidden state h1 at t = 1, the
hidden state h0 is combined with the input x1 and then fed to the RNN. This
process is repeated for each sequential data part in x. At each time step the
model outputs a hidden state ht that may be used both as an output at that
time step, or used in the next time step t+ 1.

There are several di↵erent implementations of RNNs. The general idea of
outputting a hidden state to be used for future time steps is ubiquitous, but the
internal computation di↵ers between the implementations. A traditional RNN
consists of just one tanh-layer. A common problem with traditional RNNs is that
their performance degrades once the gap between the relevant history and the

4http://adventuresinmachinelearning.com/convolutional-neural-networks-tutorial-tensorflow/

http://adventuresinmachinelearning.com/convolutional-neural-networks-tutorial-tensorflow/
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Figure 2.6: Traditional RNN 5

current time step increases, which means that they su↵er from long-term memory
loss. Section 2.3.1 and 2.3.2 describe two principal kinds of RNNs.

2.3.1 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of RNN that aims to improve the
short-term memory found in traditional RNNs. Instead of a simple tanh layer
inside the repeating units, an LSTM contains a more sophisticated way of com-
puting the hidden layers at each time step. The key behind LSTM’s performance
is the cell state that is displayed as the top line running through the LSTM unit,
shown in figure 2.7.

i = �(xtU
i + st�1W

i) (2.3)

f = �(xtU
f + st�1W

f ) (2.4)

o = �(xtU
o + st�1W

o) (2.5)

g = tanh(xtU
g + st�1W

g) (2.6)

ct = ct�1 � f + g � i (2.7)

st = tanh(ct) � o (2.8)

An LSTM unit consists of four layers and three gates. The gates are comprised
of an input gate i, a forget gate f and an output gate o. All gates apply a sigmoid
activation function. This function has the e↵ect of defining how much information
you want to let through that particular gate. g combines the previous hidden

5http://colah.github.io/posts/2015-08-Understanding-LSTMs/ (Accessed on
01/12/2017)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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state st�1 and the current input xt to a hidden state that will be run through the
input gate. ct is calculated by multiplying ct�1 with the forget gate f , added to g
multiplied by i. The intuition is to control how the previous memory is combined
with the new input. Finally, the hidden state st is computed by multiplying ct
with the output gate o.

2.3.2 Gated Recurrent Unit

A Gated Recurrent Unit (GRU) is quite similar to an LSTM unit, but there are
still significant di↵erences. A GRU has only two gates - a reset gate r and an
update gate z. The reset gate r controls how much of the incoming memory ht�1

that should be combined with the new input xt. The update gate controls how
much of that previous memory persists to the next time step. GRUs are also
missing the internal memory ct found in LSTMs.

z = �(xtU
z + st�1W

z) (2.9)

r = �(xtU
r + st�1W

r) (2.10)

h = tanh(xtU
h + (st�1 � r)Wh) (2.11)

st = (1� z) � h+ z � st�1 (2.12)

The Gated Recurrent Unit is a more modern implementation of the Recurrent
Neural Network, which usage has increased the last couple of years. Because of
the reduced amount of layers and gates, GRUs may train faster, and they need
less data to achieve a better performance.

2.3.3 Bidirectional RNN

The performance of an RNN may be enhanced by making it bidirectional. In
many cases, knowledge about what will happen in the future in addition to what
has happened in the past may often be beneficial for the accuracy of an RNN. To
make an RNN bidirectional, it will operate with two hidden states. One hidden
state works through the input sequentially, and the other works through the input
backward. The final outputs of both the hidden states are typically concatenated
before being fed to a dense output layer. A visualization is shown in figure 2.10.

2.4 Pre-trained word vectors

A vital part of a deep neural net’s performance is the representation of the in-
put presented to the model. Although deep neural networks compute their own
internal representations throughout the model, the quality of the intermediate
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Figure 2.7: LSTM unit 6

Figure 2.8: RNN Legend 7

Figure 2.9: GRU 8

6http://colah.github.io/posts/2015-08-Understanding-LSTMs/ (Accessed on
05/6/2018)

7http://colah.github.io/posts/2015-08-Understanding-LSTMs/ (Accessed on
01/12/2017)

8http://colah.github.io/posts/2015-08-Understanding-LSTMs/ (Accessed on
01/12/2017)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure 2.10: Bidirectional RNN 9

representations depends on the input representation of a given sample. The rep-
resentation of the input should thus be one that ensures that it is as easy as
possible to separate features that are important for the task at hand.

Pre-trained word vectors are a collection of numerical vectors, each represent-
ing one word. These vectors are trained on an extremely large dataset, in order
to capture the meaning of each word by the context it is normally used in. When
making use of deep neural networks for natural language processing, the use of
pre-trained word-vectors almost always leads an increase in performance. The
most commonly used are Word2Vec10, GloVE, described in [20], and fastText 11.

These vectors display interesting behavior. When mapped into a multidimen-
sional space, words with similar meaning are grouped together. See figure 2.11.
Furthermore, the distance between similar pairs is the same. Vector addition and
summation also show particularly interesting properties, see figure 2.13.

vector(0king0)� vector(0man0) + vector(0woman0) ⇡ vector(0queen0) (2.13)

2.5 Active Learning

Active Learning (AL) is a type of semi-supervised machine learning. The goal of
active learning is to intelligently select which samples to use when training a deep
neural network, in order to reduce the total amount of labeled samples needed
to reach acceptable performance. There are two main ways of performing active
learning: Pool-based and stream-based. In a pool based scenario, unlabeled

9http://colah.github.io/posts/2015-09-NN-Types-FP (Accessed on 14/11/2017)
11https://code.google.com/archive/p/word2vec/ (Accessed on 07/12/2017)
11https://fasttext.cc/ (Accessed on 10/07/2018)

http://colah.github.io/posts/2015-09-NN-Types-FP
https://code.google.com/archive/p/word2vec/
https://fasttext.cc/
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Figure 2.11: Word vectors display interesting behaviour when mapped into a
multidimensional space. 12

samples are scored using a scoring algorithm before greedily selecting samples
using the calculated score. The selected unlabeled samples are labeled by an
annotator, and then added to the labeled pool. A model is trained on the labeled
data pool, before the cycle is repeated. In a stream-based setting, the active
learner is presented with samples one at a time, and has to make a decision
whether or not to label the current sample in the stream.

Active learning’s field of application is areas in which unlabeled data are
abundant, but the cost of labeling data using human experts is high. Spending a
minor amount of computational power to drastically reduce the number of labeled
samples needed promotes a huge financial motivation to apply active learning in
a labeling process. An example of increased accuracy as a result of intelligent
selection of samples is shown in figure 2.12

The e↵ectiveness of active learning depends on the query strategy chosen for
ranking the unlabeled samples. Here a few historically significant active learning
scoring strategies are described.

12https://nlp.stanford.edu/projects/glove/ (Accessed on 10/7/2018)

https://nlp.stanford.edu/projects/glove/
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2.5.1 Traditional active learning

Uncertainty sampling is a scoring method concerned with one sample’s ex-
pected information gain. This method ranks samples by how much new informa-
tion they are expected to add to the model. A common definition for uncertainty
sampling in active learning is Shannons entropy, first proposed in [23]:

�
X

k

P (yk|xi) log2 P (yk|xi) (2.14)

where P (yk|xi) is the predicted probability that sample xi belongs to class yk.
It follows from equation 2.14 that a model is least certain when P (yk|xi) is

equal for all k. If a model assigns an equal probability for all possible classes, it
is obviously uncertain as to which label the sample should have. On the other
hand, a model is most certain when there is one class yk that has a much higher
predicted probability than the other classes. Computing Shannon’s entropy for
all unlabeled samples before greedily selecting samples according to their entropy
has traditionally performed well for a range of machine learning applications [22].

Expected parameter changes is a di↵erent group of active learning scoring
methods. They are based on the expected model parameter change after the
sample’s label has been revealed and applied for training. The intuition is that
if the model only needs to perturb its parameters in a small way, the sample lies
close to other samples already seen by the model, and does not provide much
new information.

On the other hand, if the expected model parameter updates are of greater
magnitude, the sample is expected to bring a large quantity of new information.
Because the true label for a sample is unknown at the selection stage, the expected
parameter changes will have to be calculated for each possible class the sample
may belong to. This may lead to a substantial increase in runtime when the
number of possible classes grows large.

A deep neural model has many parameters, and the expected parameter
changes may be calculated with respect to the di↵erent layers of the model.
Which layer one decides to choose as a basis for expected parameter changes
may be di↵erent for each application of the model.

Query by committee is another popular choice of active learning strategy.
Query by committee maintains a set of di↵erent models that are trained on
the labeled data. At the selection stage, samples are ranked by how much the
di↵erent models disagree on the classification of the sample. If the sample is
classified di↵erently, it is more likely to bring new information to the labeled
data pool.
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Figure 2.12: The left figure shows two types of data, separated by shape and
color. The middle figure shows a decision boundary found when selecting training
samples randomly. The right shows a decision boundary found when selecting
samples intelligently, resulting in a boundary that more accurately splits the two
types of data. Figure from 13.

2.6 Reinforcement Learning

Reinforcement Learning (RL) is an area within machine learning concerned with
how agents select actions in an environment with the purpose of maximizing
a cumulative reward. A predominant di↵erence between this kind of learning
and traditional machine learning is the absence of annotated training data. A
reinforcement learning agent is able to collect and learn from experience while it
is acting.

The reinforcement agent can be described as an entity playing a game: At
each time step the agent must make an action, and by performing the action, it
receives a reward, much like what a human player does when playing a game. The
process of action selection, action execution and reward observation is repeated
until the game ends and reaches a terminal state. Each individual play through
is referred to as an episode.

The environment, in which the agent acts, is described as a Markov Decision
Process (MDP), where outcomes from actions are partly random, and partly
under the control of the agent. A Markov decision process is defined by

• A set of environment and agent states, S

• A set of actions the agent can make, A

• A transition model Pa(s, s0) that describes the probability of going from
state s to state s0 when performing action a

• A reward model Ra(s, s0) that describes the reward of going from state s
to state s0 when performing action a

13https://www.datacamp.com/community/tutorials/active-learning. (Accessed on
31/07/18)

https://www.datacamp.com/community/tutorials/active-learning
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Figure 2.13: Reinforcement Learning cycle. Figure from 14.

• A discount factor � that controls the importance of future rewards

How the agent selects actions in an environment, is called a policy, denoted ⇡.
The policy is a function that inputs the current state s and returns the proposed
action to make in state s:

⇡(s) : S ! A (2.15)

The purpose of a reinforcement agent is to learn a policy ⇡ that will maximize
the rewards received throughout an episode. Each time the agent acts it stores a
state transition that will be used to improve its policy. A state transition consists
of the state the agent was in, the action it performed, the reward it received, and
the new state reached as a consequence of making the action, commonly denoted
as an (s, a, r, s0) tuple. An episode is a sequence of states, actions, and rewards
that ends in a terminal state. Given a discount factor �, the agent’s objective is
to maximize the rewards throughout the episode

1X

t=0

�trt (2.16)

, where r is a function that calculates a reward when the agent chooses action a
in state s.

To enable an agent to maximize equation 2.16 it is trained numerous times
using its stored state transitions collected during multiple episodes, iteratively im-
proving its policy. If an agent greedily selects actions purely based on its estimate
of action and state values, the agent would never explore the possible state-action
space and, as a result, perform poorly. On the other hand, a purely stochastic
action selection policy will never improve itself. This trade-o↵ between optimal
actions and exploration is commonly referred to as the exploitation versus ex-
ploration dilemma, and is essential within reinforcement learning. This dilemma

14http://rll.berkeley.edu/deeprlcourse-fa15/. (Accessed on 31/07/18)

http://rll.berkeley.edu/deeprlcourse-fa15/
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makes it necessary to define an exploration strategy. A common strategy is the
✏-greedy strategy which selects the action that yields the highest expected future
reward with probability 1� ✏, and a random action with probability ✏.

There are several methods for an agent to improve its policy as it acts and
gathers experience. We will now describe the di↵erent central methods.

2.6.1 Value based

Value based reinforcement agents are agents that try to estimate the value of
being in any given state. Naturally, the expected value of being in state s depends
on our policy ⇡. Denoted V ⇡(s), the value of acting according to policy ⇡ starting
from state s is the expected sum of discounted future rewards perceived by the
agent

V ⇡(s) = E
" 1X

t=0

�trt

#
(2.17)

An agent that always makes optimal actions acts under policy ⇡⇤. The optimal
value function is the value function that corresponds to the optimal policy:

V ⇤(s) = max
⇡

V ⇡(s), (2.18)

In addition to the value function V ⇡(s), that tells us the value of being in
state s when acting according to ⇡, it is useful to know the value of making action
a in state s. This function is typically called Q:

Q : S⇥ A ! R (2.19)

V ⇤(s) is the value of being in state s when acting according to the optimal
policy ⇡⇤. This is equivalent to selecting the action that maximizes the state-
action function Q(s, a) for all possible states:

V ⇤(s) = max
a

Q⇤(s, a) (2.20)

Having the optimal Q-function Q⇤, an agent may act optimally by selecting
the action from Q⇤ with the highest value in each state:

⇡⇤(s) = argmax
a

Q⇤(s, a) (2.21)

The search for an optimal policy ⇡⇤ is thereby equivalent to the search for the
optimal state-action function Q⇤(s, a), and the Bellman equation can be used to
iteratively improve an estimate of Q⇤(s, a). The Bellman equation simply states



2.6. Reinforcement Learning 18

that the value of Q⇤(s, a) is equal to the immediate reward of making action
a in state s, plus the discounted expected value of being in the state action a
puts the agent in, s0. Recall that the outcome of actions is not deterministic, so
the expected value of state s0 is the sum of probabilities times the value of that
particular state.

Q⇤(s, a) = R(s, a) + �Es0 [V
⇤(s0)]

Q⇤(s, a) = R(s, a) + �
X

s02S
p(s0|s, a)V ⇤(s0) (2.22)

Using the definition above, iteration may take place numerous times, and
the state-action function will converge towards optimal values. However, it is
required to know the transition and reward models p and r, which is not always
the case.

2.6.2 Q-learning

Q-learning is a form of model-free reinforcement learning. A model-free rein-
forcement learning algorithm is one that does not require knowledge about the
transition- or reward-model. The Q-learning algorithm maintains an estimate Q-
value for each state-action pair (s, a), and updates these by continuously acting
in the environment and observing rewards. At first, the Q-values are initialized
to a fixed value. Iterating, the Q-values are updated by

Q(st, a) = Q(st, a) + ↵


rt+1 + �max

p
Q(st+1, p)�Q(st, a)

�
(2.23)

where ↵ is the learning rate, and determines the magnitude of the update to
Q(st, at). rt is the instantaneous reward for taking action a in state st. This is
known as Time-Di↵erence Learning. The estimated future reward is the reward
when acting optimally from the next state onward. One of the benefits of Q-
learning is that it does not require knowledge about either the transition or the
reward model.

Traditional Q-learning needs to enumerate the entire state-action space that
quickly grows unfeasibly large. Modern approaches utilize approximation tech-
niques to circumvent the complexity in large state-action spaces, keeping Q-
learning valid as a reinforcement learning technique.

2.6.3 Deep Q-Learning

When the total number of states and the number of possible actions in each
state increases, the memory size required to perform traditional Q-learning grows
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(a) Q-learning with table (b) DQN

Figure 2.14: The left figure shows a table that supports a traditional Q-learning
algorithm. There is one entry per state-action pair, which grows in size quickly.
The right shows how a neural network is used to reduce the size requirement.
Figures from 15.

exponentially and becomes unfeasible for large state-action spaces. Deep neural
networks’ ability to generalize over a large space may be used to approximate
state-action values, and keep Q-learning viable in domains with a large state-
action space. A deep neural network used for Q-learning is often called DQN,
and takes a representation of the current state as input.

Training Deep Q-networks

In order to train DQNs we use the fact, that every Q-function for some policy
obeys the Bellman equation. Because the task of the DQN is to predict Q-values
for actions given a state, the Bellman equation may be used as a basis for a
regression objective function in DQN training.

Q⇡(s, a) = r + �Q⇡(s0,⇡(s0)) (2.24)

The temporal di↵erence error � is known as the di↵erence between the left and
right side of equation 2.24:

� = Q(s, a)� (r + �max
a

Q(s0, a)) (2.25)

15http://mnemstudio.org/path-finding-q-learning-tutorial.htm (Accessed 08/08/2018)
https://ai.intel.com/demystifying-deep-reinforcement-learning/ (Accessed
08/08/2018)

http://mnemstudio.org/path-finding-q-learning-tutorial.htm
https://ai.intel.com/demystifying-deep-reinforcement-learning/
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� tells us that the current Q-value for an action in a state should be equal
to the reward for making the action added with the maximum Q-value for the
resulting state.

As the agent is acting in an environment, it records state transitions, actions,
and rewards in a tuple (s, a, r, s0). These are used to iteratively improve its
estimate Q-values, using the temporal di↵erence error � as a loss function.

Unstable learning

DQN su↵ers from unstable learning. This may partly be attributed to strong
correlation between subsequent states. This makes the deep RL network over-
fit similar situations, and lose the ability to generalize. Several techniques to
counteract this have been developed.

Replay Memory Instead of recording all state transitions, the amount of
recorded state transitions is limited to a fixed size and stored in the replay mem-
ory. When performing mini-batch training, the agent samples a mini-batch at
random from the replay memory, and uses it to update its estimate Q-values.
This makes the state transitions in a mini-batch decorrelated, which is beneficial
for the stability of the training.

Prioritized replay memory Traditionally, samples from the replay memory
are drawn uniformly at random. In reality, the samples stored in the replay
memory are of varying importance, and some samples contribute to the agent’s
learning more than other samples of worse quality. Prioritized replay memory,
presented in [21], is a technique where the agent associates a priority with each
transition in the replay memory. This leverages the probability that it will be
drawn, with the intention of making items of higher quality drawn more often
than those of low quality. Some transitions may be expected, and some may be
rare and should contribute more than others.

Assigning priority to state transitions may be done in several ways, but the
most common is to use the magnitude of the temporal error � described in section
2.6.3. The temporal error is used to estimate the amount that the RL agent may
learn from the transition. A greedy sampling using this temporal error will make
the agent focus on a small subset of the experience, and this is not optimal. A
solution to this is to find a trade-o↵ between stochastic and greedy prioritized
sampling. The probability of a transition being sampled should be scaled with the
transition’s priority, while simultaneously ensuring that zero-priority transitions
have a chance of being sampled:

P (i) =
p↵iP
k p

↵
k

, (2.26)
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Figure 2.15: The figure shows a Q-learning update when the Q-values of the next
state comes from a separate target Q-network. The target Q-network is updated
to the current one in fixed intervals. The red rectangle is the values output from
the target Q-network.

where pi is the priority if transition i. ↵ determines how much the priority should
contribute towards the sample probability.

Target Network When training the Q-network using the loss function de-
scribed in section 2.6.3, the target Q-values are constantly changing as we are
updating our network weights. Google DeepMind has shown in [17] that having a
separate target network that predicts the target Q-values helps stabilize training.
The target network is updated in fixed intervals, and there are two typical ways
to update it. Hard, which sets the target network equal to the Q-network every
n-th iteration, and soft where the target network weights are updated by a small
moving average of the Q-network weights.

2.6.4 Policy gradient

Policy gradient methods try to learn and optimize a policy function ⇡(s) in the
policy space instead of learning the state-action function Q(s, a). The agent
learns how to map states directly to actions, as opposed to learning to estimate
values for making actions in certain states. This is normally done using neural
networks that directly model the action probabilities. On each agent interaction,
the parameters of the neural network are tweaked, with the intention of making
beneficial actions sampled more often in the future. This is repeated until the
policy converges.

As mentioned in equation 2.16, we want our agent to maximize

J✓ =
1X

t=0

�trt (2.27)

, where ✓ represents the neural network parameters. We want to optimize the
parameters in the policy space, and following the gradient of J will make our
network predict more beneficial actions in the future. Similar to Q-learning, the
agent acts in an environment and stores state transitions (state, action, reward,
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next state). These samples are used to estimate r✓J before updating our models
parameters with �✓ = ↵r✓J

Policy gradient methods provide several benefits. There are environments in
which the Q-function is too complex to be learned, and normal Q-learning will not
be able to learn an acceptable policy. Policy gradient methods are still capable of
learning an acceptable policy in these environments because they operate directly
in policy space. In addition, policy gradient methods normally converge faster,
but often reach a local optimum. On the other hand, policy gradient methods
possess high variance in calculating r✓J . This makes the network weights change
too much in the wrong directions, and that slows and penalizes the training.

The main problem in policy gradient methods is computing r✓J . An ana-
lytical solution for this gradient is not possible to derive, so one has to resort to
approximation methods. A common way to do this is making use of likelihood
ratios, that leads to the policy gradient theorem: For any di↵erentiable policy
⇡✓(s, a) and objective function J , the policy gradient is

r✓J(✓) = E⇡✓ [r✓ log ⇡✓(s, a) Q
⇡✓ (s, a)] (2.28)

REINFORCE

The REINFORCE algorithm, from [30], is a policy gradient method that has
basis in likelihood ratios. Q⇡✓ (s, a) in equation 2.28 is the long-term value of
making action a in state s. The REINFORCE algorithm uses vt, the value of
being in state t, as an unbiased sample of Q⇡✓ (s, a). vt is simply the experienced
rewards from state t onward.

�✓t = ↵r✓ log ⇡✓(st, at)vt (2.29)

The agent collects state transitions over the course of several episodes. At the
end of each episode, the agent loops through all the recorded state transitions
for that episode and updates the network parameters according to equation 2.29.
Because it has the empirical rewards received at each time step, it is able to use
those to estimate Q⇡✓ (s, a), denoted vt in equation 2.29.

2.6.5 Actor critic methods

Policy gradient methods have a high variance. This is partly due to the fact that
vt in equation 2.29 in reality is a high variance sample of the true V (s). vt is the
sum of discounted rewards the agent perceived after time step t, but the agent
might have followed a di↵erent path from the state at t, resulting in a di↵erent vt.
This is an intuitive explanation for the high variance of policy gradient methods.

To reduce the variance, actor-critic agents have a separate network for esti-
mating vt that is updated simultaneously with the policy network. This estimate
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of vt is called the critic, and the policy network that outputs actions is called the
actor. The critic estimates the action-value function

Qw(s, a) ⇡ Q⇡✓ (s, a) (2.30)

Our parameter update is then

�✓ = ↵r✓ log ⇡✓(st, at)Qw(s, a) (2.31)

This results in a decrease in variance, because the long-term value of being in
state at time step t is estimated instead of using the unstable empirical rewards
perceived by the agent.
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Chapter 3

State of the Art

To design active learning strategies, heuristics are needed to determine for which
samples to request the true label. These heuristics must be designed ahead of
time and will often incur a human bias to the sample distribution. They are
in addition often specialized and designed for specific datasets and datatypes.
Furthermore, if the process of active learning is framed as a sequential one, each
acquired sample changes the model, and thus a↵ects the scoring of the samples
in the next acquisition stage. Due to this, several experiments have been carried
out where the purpose is to learn an active learner. The sequential nature of
active learning supports the use of reinforcement learning to learning an active
learning policy. Here we describe related work on learned active learners.

[32] use deep reinforcement learning in stream-based active learning to learn
a policy that determines whether or not a label for the current sample should
be requested. The model receives a stream of images and should make a choice
at each time step whether or not to predict a label for the current sample. The
rewards associated with either requesting the label, predicting the correct label
or predicting the wrong label are

rt =

8
><

>:

Rreq if a label is requested

Rcor if predicting and ŷ = yt
Rinc if predicting and ŷ 6= yt

The action produced by the model is a one-hot vector of length c+ 1, where
c is the number of classes in the current training episode. By setting the final
bit of the output vector, the model requests the true label for the current image.
The next input to the model at time step xt+1 includes the next image, along
with either the true label for the previous image if the previous action was a

25
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Figure 3.1: The left part of the figure shows the complete task structure. At time
step t the model outputs an action corresponding to a request or a prediction.
The right part show the possible scenarios for the reward rt calculated at time
step t+ 1. Figure presented in [32].

request, or a 0-vector if the previous action was a prediction. The reward rt is
then determined at time step t + 1, depending on what action the model chose,
and whether the prediction was correct. The goal of each episode is to maximize
the sum of future rewards using rt at each time step. The task structure is shown
in figure 3.1.

[5] argues that active learning methods relying on predefined heuristics is far
from optimal, and achieve varying performance across di↵erent types of datasets.
To address these problems, they frame the active learning problem as a reinforce-
ment learning problem, where the learned policy takes the place of predefined
heuristics. Their application is Named Entity Recognition(NER). They utilize
the power of cross-lingual word-embeddings to train an agent on a target lan-
guage where labeled data is abundant and apply it to another language with less
available data. They claim that learning a policy on a high-resource language is
trivial, and that the real gain in active learning comes from being able to apply
a query strategy on a target language with considerably less labeled data.

The reinforcement agent is used in a stream-based active learning setting.
Here the agent is tasked with deciding whether or not to label the current sample
in the stream. The reinforcement agent is implemented using Deep Q-learning. A
key decision in any stream-based reinforcement active learner is how to represent
the current state. The state representation used in [5] consists of several parts.
First, they use a CNN for text classification, similar to what is proposed in [11], to
extract a feature vector from each sentence. As stated before, model uncertainty
has proven beneficial for a range of wide active learning applications. To quantify
this they use a di↵erent CNN over their classifier’s predictive marginals belonging
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Figure 3.2: The architecture for representing predictive marginal distributions,
p�(y|xi), as a fixed dimensional vector, to form part of the MDP state. Figure
and description from [5].

to a sentence and include it in the state. Finally, they include the confidence of
the sequential predictions using the Viterbi algorithm for most probable path:
C = n

p
maxy p�(y|xi), where n = |xi| is the length of the sentence.

[33] also uses reinforcement learning in an active learning setting. Co-training
is a commonly applied semi-supervised method where two separate classifiers
make use of the unlabeled data to increase each other’s performance. Co-training
is suited when the data exhibit two or more views, like multilingual word embed-
dings for Natural Language Processing (NLP), or headline and content for text
classification.

Their problem setup is similar to that of [5], but they argue that making the
reinforcement agent reason about each individual unlabeled sample is computa-
tionally ine�cient. To combat this, [33] divides the unlabeled data pool into k
groups U = {U1, U2, U3, . . . , Uk} using Jaccard similarity.

A representation vector Si is selected for each group Ui 2 U , and the represen-
tation vectors S1, S2, S3, . . . , Sk are used to construct a state for the reinforcement
agent. This state should be able to encapsulate the state of the two co-training
classifiers. Research has shown [36] that co-training with high-confidence ex-
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Figure 3.3: The Reinforced Co-Training framework. Figure from [33].

amples only results in improving areas in which the model already has a high
performance, instead of learning a distribution that better represents the sample
space. That is why the state should also be comprised of unlabeled samples with
high uncertainty and diversity. There is a trade-o↵ between these two types of
data, and the balance between the two is di�cult to determine ahead of time.
Focusing on high uncertainty samples makes the classifiers unstable, and focus-
ing too much on diversity shifts the bias towards the unlabeled data pool. For a
reinforcement agent to be able to reason about this trade-o↵, the state needs to
fully encapsulate the distribution of the unlabeled data.

Based on this intuition, the state representation is defined as

st = {P 1
1 ||P 2

1 , P
1
2 ||P 2

2 , ..., P
1
K ||P 2

K}t, (3.1)

where each P 1
i and P 2

i is the probability distribution of the two classifiers C1 and
C2 on Si.

A weakness of learned active learning strategies is that the learned policy is
usually domain specific. A general active learning strategy needs to generalize
across di↵erent datasets. Furthermore, it is trivial to learn a brilliant query
strategy using deep reinforcement learning with access to many labeled samples.
However, in a scenario where one has access to many labeled samples, an active
learning approach will not be needed in the first place. This has motivated
research on how to learn an active learner that is able to achieve cross-domain
generalization.
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Figure 3.4: Policy and meta-learning network architecture from [1]. The meta-
network on the right takes as input a featurization of the unlabeled and labeled
samples ZT

u and ZT
l , and the current state of the classifier f , and outputs both

an encoder We and a decoder Wd to be used for policy network to the left. The
decoder is used for regularization purposes.

[1] also use deep reinforcement techniques for active learning, and they inves-
tigate how to train an active learning policy that may generalize across datasets.
This is achieved by using two neural networks: One representing the criterion
policy used for reinforcement learning, and a meta-network used for generating a
dataset embedding and the weight matrices that are input to the policy network.
The policy network outputs a softmax distribution ⇡(ai|s) for selecting samples
for which to request a label. The proposed architecture is shown in figure 3.4.

Cross-dataset generalization is achieved by multi-task training the embedding-
generating network on multiple datasets. The network learns how to create an
embedding for several types of datasets that the policy network may use for
reinforcement learning.
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Chapter 4

Architecture

This chapter first presents a detailed summary of the architecture applied in the
experiments, along with the rationale behind the architectural choices made.

4.1 Similarity in traditional active learning

Our pre-thesis [28] included work on traditional active learning methods, where
we explored the e↵ects of employing di↵erent methods in a sentiment analysis
setting. It showed that if used naively, active learning algorithms often select
samples of very high similarity. If one sample is scored high using the scoring
strategy in question, similar samples will probably be scored high as well. La-
beling many samples of similar characteristics can be detrimental to the model’s
performance, and we will now describe an extension to the architecture that
counteracts this.

The classifier for doing sentiment analysis is a CNN, based on [11]. The
embedding layer of the classifier is initialized with word2vec word embeddings to
increase performance. Our pre-thesis showed that if this is used naively, an active
learner may select a subset of samples similar to one another at each acquisition
stage. This may harm the model’s performance, and warrants a method that
discards samples of su�cient similarity. To further experiment on the e↵ects of
inter-sample similarity on model performance we developed an extension of the
architecture of our pre-thesis.

The model starts with a pool U containing all the unlabeled samples in the
dataset, and an empty pool L of labeled samples. At each acquisition stage,
we score the samples in U using entropy (section 2.5.1), before greedily selecting
samples with the highest score. Instead of naively adding all the selected samples
to L, as done in traditional active learning, we further calculate pairwise similarity
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between the samples in the selected subset. Any pairs that have a similarity above
a given threshold, has its lowest-scoring sample discarded from the selected set,
and replaced by a new sample. This is an iterative process that continues until
all the samples in the selected subset have a pairwise similarity that is su�ciently
low, or no more samples of su�cient distance may be found.

To calculate pairwise similarity, we use cosine similarity. The representation
of a sentence used in cosine similarity may be found in di↵erent ways. Here we
describe two di↵erent methods.

w2v When the application is sentiment analysis, and we are using pre-trained
word vectors, one way is to calculate the average word vector for each sentence,
and use that vector as a basis for calculating similarity between sentences. The
average word vector for a sentence is calculated by first adding all the individ-
ual vectors for each word that constitutes the sentence, and then dividing each
element in the resulting vector by the number of words in the sentence. An ad-
vantage of this approach is that the embedding layer is pre-trained. This means
that we will have useful representations of sentences without the need to train
the classifier. A disadvantage of the approach is that the w2v features may not
be an optimal representation for this setting.

CNN Another method is to use the output of the classifier applied in the ex-
periment. First, the sentence may be passed through the CNN. Thereafter the
second-last fully-connected layer(before logits) is used as a sentence representa-
tion. This as a basis for calculating similarity between the sentences. See figure
4.1 for a graphical representation of the CNN used for text classification. A fault
of this approach is that we need to train the classifier in order to be able to
produce useful representations. However such representations might be better
suited for the task at hand since they are trained in the actual domain.

To summarize the architecture that utilizes similarity information in an active
learning setting, we implemented the following procedure:

1. Train the model using the labeled samples in L

2. Calculate entropy for all samples in U

3. Select topk samples from U, ordered by entropy score

4. Calculate pairwise similarity within the selected subset

5. Discard lower-ranking item with similarity above the threshold, replace with
new samples
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6. If the selected subset is too small, go to 3

Figure 4.1: CNN for text classification. An input sentence has each word embed-
ded with its word-vector. Then a series of convolution and max-pooling layers
are applied, before final, fully connected layers downsamples the output to the
number of classes in the classification problem. Figure from [11].

4.2 Visual Semantic Embedding

Our application for doing active reinforcement learning is Visual Semantic Em-
bedding. This represents an example of problem types where the goal is to com-
pute a joint embedding connecting di↵erent domains. The intention is to map
data from two di↵erent domains into a common vector space, where semantically
similar items ideally reside in close proximity to one another. In other words, we
need to define a system that may learn to represent the underlying structure of
the domains. The first step in this process is to derive a proficient representation
in the respective domains, before projecting these into a common space.

4.2.1 Data representation

An important aspect of machine learning is the representation of data. Here we
describe how we compute and derive vector representations of the data in our
datasets.

VGG19

To compute representations of images, we use a CNN. A specific CNN architecture
that has performed well is VGG19 [24]. VGG is a collection of convolutional net-
work configurations that utilize deeper networks with smaller receptive window
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sizes. VGG-{size} denotes the released architecture with depth=size. Networks
of this depth are made possible due to the small window sizes in the convolutional
layers. The VGG networks all use 3x3 convolutional filters.

A pre-trained VGG19 model is natively available within the PyTorch frame-
work and eliminates the need to train a model locally. We use the representations
before the softmax layer in the VGG19 model as image representations, shown
in figure 4.2.

Caption representations are computed using a Gated Recurrent Unit (section
2.3.2). The embedding layer in the GRU inherits weights from pre-trained word
vectors, Word2Vec (section 2.4), in order to improve performance.

Figure 4.2: VGG19 model with its constituent layers. All convolutional layers
are of size 3x3, with increasing number of channels per layer. Figure from 1.

The selected images do not change during the experiment. By using pre-
trained encoders, we can save computational time by calculating the represen-
tations of the images once, and store these for future use. We use precomputed
image features from [14], downloaded from 2.

1https://lihan.me/2018/01/vgg19-caltech101-classification (Accessed on
08/08/2018)

2https://github.com/fartashf/vsepp (Accessed on 01/06/2018)

https://lihan.me/2018/01/vgg19-caltech101-classification
https://github.com/fartashf/vsepp
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4.2.2 Projections

The purpose of Visual Semantic Embedding is to connect images and descriptions
of images. Images and text comprise data types with di↵erent properties. The
object is to learn projections that map data of similar semantic characteristics
from both domains close to one another in a common embedding space. This is
a popular approach to semantic-visual joint embeddings [4, 13, 10, 27].

The projection of both images and captions is performed using linear, fully
connected layers, which input the representations described in the previous sec-
tion. Let  and � be functions that encode images and captions in their respective
domains. The common embedding space projections are then

f(i,Wf ) = WT
f  (i) (4.1)

g(c,Wg) = WT
g �(c) (4.2)

, where Wf and Wg denotes the weights associated with the image- and caption
projection layers. i and c denotes an image and a caption.

Once mapped to a common vector space, we need to define how to calculate
similarity to determine if the projections from di↵erent domains are semantically
analogous. Semantic similarity in the common embedding space is defined by the
inner product

s(i, c) = f (i;Wf ) · g (c;Wg) (4.3)

The parameters included in loss function, ✓, need to include error terms from
the di↵erent projections Wf ,Wg. Let eim⇥d and ecm⇥d be the matrices consisting
of the embedded images and captions where the i -th row of ecm⇥d is the embedding
of the correct caption for the image embedded in the i -th row of eim⇥d,m is the
number of samples, and d is the size of each embedding vector. The pairwise
distance between all images and captions is calculated by the inner product:

d = eim⇥d · ecm⇥d (4.4)

d is a matrix of size m ⇥ m where elements along the diagonal represent the
distance between an image and its correct caption. If we subtract each row in d
with its corresponding element in the diagonal, the result is a matrix in which
the diagonal is 0, and the other elements are real numbers. Using the sum of
all the elements in the matrix as a loss function makes the model push pairwise
non-similar items apart while minimizing the distance to the most similar one.
The loss for the caption projection layer may be computed by transposing d, and
repeating the procedure. The two losses are combined to form the total loss that
includes elements from both projection layers.

To evaluate the performance of the model, we resort to using common in-
formation retrieval performance evaluation metrics. Recall @K is the fraction of
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query samples that have their corresponding item among the closest K items. An
ideal model projects all pairs closest to each other and would have an R@1 score
of 100%, but this is nearly impossible to achieve. The common embedding space
is a space of semantical properties, and even though the pairs are not projected
closest to each other, a projection that puts them in near vicinity of one another
can still be a decent projection. Thus, we define recall at di↵erent distances, and
use the sum of those as a performance measure.

A visualization of the visual semantic embedding procedure is shown in figure
4.3.

4.3 Reinforcement Active Learning

We apply a reinforcement active learning agent on top of the architecture de-
scribed in section 4.2. The agent operates in a stream-based active learning
environment, where samples are presented one after another. The agent is tasked
with determining whether or not to query the label for the current sample in the
stream.

Our task contains data belonging to di↵erent domains. In order to do stream-
based active learning, we need to select one of these domains as the primary
domain, to be used as a basis for active learning. When doing this, one can
re-frame the problem as a classification problem, where the possible classes for
each instance of the primary domain is the possible assignments for the instances
in the secondary domain. The proposed architecture uses images as the primary
domain and basis for stream-based active learning. Labeling the current image in
the stream consists consequently of querying the correct captions for that image.
Reinforcement learning requires us to define a state and reward function. We will
now describe how we define these in the Visual Semantic Embedding setting.

4.3.1 State generation

The action selected by the agent ought to depend on the current state it can
observe. It is crucial to provide a state to the agent that encapsulates important
features from the environment, so that the agent is su�ciently informed and is
able to make an appropriate action. Here we describe how we construct the state
presented to the agent.

First, all images and captions are encoded using the linear projections from
equation 4.1 and 4.2. Using the vector representations in the common embedding
space, we calculate the pairwise cosine distances between images and captions.
This results in a matrix D, where each xi,j 2 D is the pairwise cosine distance
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between image i and caption j.

D =

2

666664

x0,0 x0,1 x0,2 . . . x0,n

x1,0 x1,1 x1,2 . . . x1,n

x2,0 x2,1 x2,2 . . . x2,n
...

...
...

. . .
...

xn,0 . . . . . . . . . xn,n

3

777775
(4.5)

Each row in D constitutes a basis for constructing a state to be input to the
reinforcement agent. How we construct this state is of great importance and
a↵ects the agent’s ability to learn and generalize across domains. Research has
shown that using model uncertainty as the basis for a query strategy leads to
an increase in performance for a wide range of active learning applications [34].
However, quantifying uncertainty in joint embeddings is not straightforward. Our
state generation procedure will try to capture di↵erences that make a di↵erence
and make it possible for the agent to reason about this uncertainty. Here we
describe possible features to include in such a state.

Distance to close captions

The goal of the joint embedding space is to capture semantic information from
di↵erent domains. An optimal VSE model places images and captions with the
same semantic information in the exact same location in the joint embedding
space. Because of this, a state should encapsulate the distances to the captions
which reside in close proximity to the image in question. Distances between pairs
of data types are inherently domain general, which attains our goal of learning a
general active learning framework. We select the distance to the k closest captions
and include it in the state, where k is a hyperparameter. An intuitive example
of how distances may be used to determine uncertainty is shown in figure 4.4.

Naively using the actual distances between the image and captions in the
common embedding space is not su�cient. It is not the actual distances from
the image to the captions that are of importance, it is the di↵erence in distance
among the closest captions that should give the agent grounds for reasoning about
uncertainty. Distance is, in reality, a relative measure, and the uncertainty for
the state

[0.1, 0.2, 0.3] (4.6)

should intuitively be roughly the same as the uncertainty for the state

[10.1, 10.2, 10.3] , (4.7)

but these states are vastly di↵erent. As a result, the agent loses important gen-
eralization opportunities and needs more data to converge to a better policy.
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Figure 4.4: The left figure shows 4 captions with the same distance from the
image. The right figure shows 4 captions with di↵erent distance from the image.
Because of the di↵erence in distance in the right figure, the state constructed
using the left figure should have a larger uncertainty than the one at the right.

To encapsulate the relative di↵erences between the distances as opposed to the
actual distances themselves, we resort to using a softmin(x) = softmax(-x) func-
tion over the distances to the closest captions. This moves the caption-distance
state values to the range [0, 1], and captures the di↵erence between the numerical
values in the state.

softmin([0.1, 0.2, 0.3]) = softmin([10.1, 10.2, 10.3]) = [0.367, 0.33, 0.3] (4.8)

Similarity between close captions

Extending the argument that the state provided to a reinforcement agent should
make the agent able to reason about model uncertainty, we also make the case
that the semantic di↵erence between the k closest captions should be included
in the state. If the closest captions for a given image all reside in a small area
of the common embedding space, the model is fairly certain as to what semantic
properties that image exhibits. On the other hand, if the closest captions for an
image are in vastly di↵erent spaces of the embedding space, the model is clearly
uncertain as to what semantic properties the image contains. A visual example
is shown in figure 4.5.

To calculate the di↵erence between the closest captions, we first extract the
topk closest captions for each image. Then, for each caption, we calculate the
average pairwise distance towards the other closest captions. The resulting vector
is of size topk, where each element represents that caption’s average distance
towards the other close captions.
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Figure 4.5: Both figures show 4 captions that all have distance 1 from the image.
However, all of the captions in the right figure are in close proximity to one
another, which means that the model is fairly certain of the semantic properties
of the image. In the left figure, the closest captions all lie far from each other.
Even though the distance from the image is identical, the distance between the
captions should result in an increase in uncertainty.

Image representation

There may be images with semantical properties that are more di�cult to learn
than other images. Quantifying this di�culty is not a trivial task for humans to
do, but a reinforcement agent, however, should be able to make sense of which
image representations statistically lead to an increase in performance.

The decision of what to choose as image representation is significant. By using
the representation calculated by the image-encoder (CNN, second-last layer of
VGG19), we limit our reinforcement agent to only learn about joint embedding
problems where the primary domain consists of images. Furthermore, in order to
maintain the performance from one dataset to another, the image representation
should be the same, which means we must use the same image representation
encoder each time.

Another option is to use the actual representation of the image in the common
embedding space. This representation is inherently more domain general due
to the fact that it lies in the common embedding space. On the other hand,
distribution of the common embedding space changes across domains, so this
option may not be as general as we want.

We decided to include the representation of the image in the common embed-
ding space in the state.

An example of a resulting state vector is shown in figure 4.6, and the full RL
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network is shown in figure 4.7.

2

4
Distance to close captionsz }| {

0.367, 0.33, 0.3 ,

Similarity between close captionsz }| {
0.012, 0.06, 0.3 ,

Image representationz }| {
0.13, . . . , 0.01

3

5

Figure 4.6: Example of a state used in reinforcement learning for visual semantic
embedding. The state depicted consists of image representation, distance to the
closest captions and the distance between the closest captions, as explained in
section 4.3.1.

4.3.2 Reward

If the agent chooses to query the captions for the current image in the stream,
they are added to the labeled pool and the model is retrained. After the model is
retrained, we measure the change in model performance and use it as the reward
for labeling that particular image. If the agent decides not to label the current
image, a reward of 0 is received.

Model performance may be defined in many ways and will vary with the
domain and application. In normal classification use-cases, the measured classifi-
cation accuracy on a held-out dataset is the obvious choice, but for more complex
use-cases such as VSE, there are several possible reward choices. Furthermore,
the calculation of held-out classification performance may be computationally
demanding. The calculation of reward is something that happens frequently in
the training of a reinforcement learning agent, and the runtime of this procedure
contributes to a large extent to the overall runtime. This motivates defining re-
ward functions that require less computational resources, such as the total loss of
the loss function over a held-out dataset. Nonetheless, the reward chosen for the
action should always be computed over data not previously seen by the model.

If the sample(s) that are being added to the labeled pool normally leads to
an increase in performance, the agent will eventually always learn to request
a label for the current sample, regardless of the input state. The intuition is
obvious: If the agent doesn’t select this sample, the reward will be 0, whereas a
selection will, with a very high probability, bring a positive reward. If left as-is,
the agent will learn that more data is always beneficial for a model’s performance,
and will consequently label the current sample with a very high probability. An
increase in the amount of labeled data available presumably leads to an increase
in performance. We therefore need to incur a penalty for requesting the true
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Distance to close captions

Similarity between close captions

Image representation

Q-values

Figure 4.7: Illustration of our reinforcement learning network. Each element in
the state is connected to a linear layer of equal size. The features from those
linear layers are added together and input to a separate fully connected layer
that downsamples the data to two values - one for a label action, and one for a
discard action.
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labels for samples, in order to force the agent to only request labels for samples
that are of high quality. This penalty is determined empirically.

The change in performance may have di↵erent magnitudes for di↵erent datasets
or applications. To increase the agent’s ability to learn a general active learning
query strategy, it is beneficial to make the reward equal in magnitude across
datasets. By employing the same idea as in [17], a possibility is to limit the re-
ward to the range [�1, 1]. Label queries that result in an increase in performance
get a reward of 1, whereas a decrease in performance achieves a reward of -1.
The reward for not labeling the sample still receives a reward of 0.

4.3.3 Selection radius

Each row in D is calculated with respect to a single image. However, the compu-
tational requirement of going through all images in the unlabeled pool is far too
large. The state-generation procedure described in section 4.3.1 has to be done
every time the agent is to output an action. Furthermore, because of the fact
that the state should be representative of the most recent model, embeddings
of both images and captions need to be re-computed at every label-action. To
reduce the total runtime, we select a group of images at each label-action, as op-
posed to only including the image on which the current state was generated. The
selection of images is determined by a similarity measure between the current
image and all other images in the unlabeled data pool. How many additional
similar images that are selected at each acquisition stage is from now on referred
to as the selection radius, and a selection radius of 1 only constitutes the current
image itself.

To calculate the similarity between images, we construct a state as explained
in section 4.3.1 for all images in the unlabeled set, and calculate pairwise cosine
similarity between the current state si and all other states. In addition to adding
image i to the labeled data pool, we include the k images that had their resulting
state most similar to si. If the model decides that state si is the result of an
uncertain image, including images with the same uncertainty will probably lead
to an increase in performance.

Furthermore, by increasing the selection radius, the resulting tuple (reward,
action, next state) is one that is more representative for the current state in the
stream. The model is reset before every reward calculation, and the state of
the initial weights may influence the observed reward in subtle ways. Including
additional samples with high similarity to the current one makes the perceived
reward more representative of the current state, and reduces the chance that these
minor fluctuations perturb the reward in a prominent way. Moreover, selecting
a subset of the unlabeled pool at each acquisition stage makes the uncertainty of
the next state change more than only selecting a single sample. The result is an
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agent that better captures model uncertainty.

4.3.4 Budget

The agent continues to output actions until it has reached a predefined budget.
The budget sets a limit on how many labels the agent may request. When this
number is reached, the environment is reset, and the agent plays the game again.
Increasing the budget will cause an increase in the total time needed to train a
model, but will naturally result in an increase in performance, because the agent
sees more of the unlabeled data in each episode. In many real-life applications
such as medical imaging, this budget is determined by economic factors.
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Chapter 5

Experiments and Results

In this chapter, we first describe the datasets applied in our experiments and the
experiments themselves. Thereafter the results are displayed.

5.1 Hardware and frameworks

We have run our experiments on an Ubuntu 16.04.2 server with 48 cores, 64GB
RAM and two NVIDIA Tesla P100 GPUs with CUDA 8.0.61. All the code
and experiments have been written in Python, using the PyTorch1deep learning
framework.

5.2 Datasets

This section describes the di↵erent datasets we chose to use in our experiments.

5.2.1 Movie Reviews

The Movie Review (MR) dataset is a perfectly balanced dataset containing 5331
positive and negative movie reviews written in English. The reviews are of vari-
able length, and the longest sentence includes 59 words. The reviews are written
by di↵erent people, and thus contains varying examples of natural language. The
dataset is provided by Cornell Computer Science 2. Examples from the dataset
are shown in figure 5.1.

1https://pytorch.org/ (Accessed 17.07.2018)
2http://www.cs.cornell.edu/people/pabo/movie-review-data

47
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Sentence Sentiment
an engaging overview of johnson’s eccentric career . Positive
if you sometimes like to go to the movies to have fun , wasabi is
a good place to start .

Positive

a disturbing and frighteningly evocative assembly of imagery and
hypnotic music composed by philip glass .

Positive

a visually flashy but narratively opaque and emotionally vapid
exercise in style and mystification

Negative

here , common sense flies out the window , along with the hail of
bullets , none of which ever seem to hit sascha .

Negative

unfortunately the story and the actors are served with a hack
script .

Negative

Figure 5.1: Examples of sentences with sentiment from the MR dataset.

5.2.2 UMICH

Another dataset is provided by the University of Michigan (UMICH) class SI650.
This is a perfectly balanced dataset that consists of 7086 sentences from social
media. It is used for training models in sentiment analysis and contains samples
with similar language and repetition, which makes it an easy-to-learn dataset. 3

5.2.3 Flickr

The next dataset consists of images from flickr.com, with five associated captions
describing each image. The images contain multiple objects, and the captions
usually describe the main and possibly one or two secondary subjects for each
image. The dataset aims to train models to perform multi-label classification
for either images or captions. It has been released in two sizes, Flickr8k and
Flickr30k, and it is provided by the University of Illinois at Urbana, Champaign4.
The Flickr datasets support di↵erent areas within computer vision, e.g. image
segmentation and image captioning. An example image with captions is shown
in figure 5.2.

5.3 Experimental Setup

This section describes the details and hyperparameters of each experiment we
have performed.

3https://www.kaggle.com/c/si650winter11 (Accessed on 02/7/2018)
4http://shannon.cs.illinois.edu/DenotationGraph/ (Accessed on 01/6/2018)

http://shannon.cs.illinois.edu/DenotationGraph/
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• A goalie tries to catch a ball
during a soccer game.

• A group of guys playing soccer
on a field.

• Footballers are scrambling
around the goal as the goal
keeper reaches for the ball.

• Four men in green at a soccer
goal post trying to score, while
3 men in blue try to prevent it.

• Two soccer teams converge at
the goal and the goalie reaches
for the ball.

Figure 5.2: Example of an image with corresponding captions from the Flickr
dataset.

5.3.1 Similarity in traditional active learning

The experiment for exploiting similarity between samples uses the architecture
described in section 4.1.

The labeled data pool starts empty. We perform several rounds of mini-batch
active learning. In each round the model tries to select labels for 32 samples
ranked by entropy scoring. This continues until we have queried labels for 250
samples, or no more labels can be queried due to high similarity threshold. The
model is re-trained after each round. Similar samples in the selected subset are
discarded and replaced with subsequent items further down the scoring list. This
lasts until we either have a subset of 32 samples with su�ciently low similarity
scores, or the entire dataset has been discarded. Samples in each selected subset
are discarded if they have a similarity below a certain threshold, and we will
experiment with several di↵erent thresholds, listed by similarity threshold in table
5.2 and 5.3. The similarity thresholds have been chosen empirically.

We will test the e↵ects of two di↵erent ways of representing the sentence for
similarity calculation, specifically w2v and CNN, as described in section 4.1.

The classifier is a CNN for text classification, based on [11]. Each sentence
is embedded using w2v word-vectors, where each word-vector is of size 300. The
CNN makes use of one-dimensional convolutions of size 3, 4 and 5, with 100
applications for each size. After the embedding layer, we apply a dropout of 0.2,
before a ReLU activation function and a max-pooling layer is applied. These
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max-pooled results are concatenated to a vector of size 300 subject to a dropout
of 0.4. To downsample the data to our output size we use a linear layer of size
(300, 2) that produces the classification probability of each class.

The model is trained using the Adadelta optimizer, described in [35], and
cross entropy loss function with learning rate 0.1 over 100 epochs. We validate
the model’s performance over a held-out part of the dataset after each training
epoch. If the validation performance decreases while the training performance
increases, we stop the training early as to not overfit the data in the training set.

An overview of the classifier hyperparameters is shown in table 5.1.

Hyperparameter Value
batch size 32
budget 250
dropout embed layer 0.2
dropout fc layer 0.4
Filter sizes [3,4,5]
Filter numbers [100,100,100]
Learning rate 0.1
Loss function Cross entropy
Optimizer Adadelta
Train epochs 100
Word dim 300

Table 5.1: Hyperparameters for the CNN used for experiments on similarity in
traditional active learning.

Hyperparameter value
Similarity threshold MR [0.00, 0.05, 0.08, 0.12]
Similarity threshold UMICH [0.00, 0.08, 0.12, 0.14]

Table 5.2: Di↵erent similarity thresholds used in the experiments when using
CNN as basis for inter-sample similarity

Hyperparameter Value
Similarity threshold MR [0.0, 0.54, 0.56, 0.58]
Similarity threshold UMICH [0.0, 0.37, 0.39, 0.42]

Table 5.3: Di↵erent similarity thresholds used in the experiments when using
average w2v-vector as basis for inter-sample similarity
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5.3.2 Visual Semantic Embedding

In our experiments with active reinforcement learning, we employ a model for
computing joint embeddings as described in section 4.2. The base model for
computing joint embeddings is based on [4], with an implementation in Python
available on GitHub5.

The image representations are the output of the penultimate fully connected
layer of VGG19, of size 4096. The caption representations are calculated using a
Gated Recurrent Unit, with 1 hidden layer of size 1024. Each word in the input
sentence is substituted with a w2v-vector of length 300.

The projections to the common embedding space are performed using linear
layers of size 4096 x 1024 for images, and 1024 x 1024 for captions. Both the
image- and the caption embeddings are normalized.

We use the Adam optimizer, described in [12], with learning rate 0.0002,
and a contrastive loss as explained in section 4.2.2. The parameters included in
the optimizer are the parameters of both linear projection layers and the GRU
caption encoder.

An overview of the hyperparameters is shown in table 5.4.

Hyperparameter Value
Caption encoder GRU
Caption projection Linear(1024, 1024)
CNN type VGG19
Embedding size 1024
GRU hidden layer size 1024
GRU layers 1
Image encoder VGG19
Image projection Linear(4096, 1024)
Learning rate 0.0002
Loss function Contrastive loss
Optimizer Adam
Train epochs 15
word dim 300

Table 5.4: Hyperparameters used for the baseline VSE model.

5.3.3 Training RL agent

To train a reinforcement agent to make intelligent labeling decisions, we use
the Flickr8k dataset described in section 5.2.3. The VSE- and RL-model are as

5https://github.com/fartashf/vsepp

https://github.com/fartashf/vsepp
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described in section 4.2 and 4.3, with the VSE model using hyperparameters from
section 5.3.2. The following paragraphs describe in detail the training of the RL
agent in our experiment.

At the start of each episode, the VSE model is pre-trained with 224 samples
in order to force the model to output a certain degree of uncertainty from the
beginning. The agent used in the experiment is a traditional DQN agent that
collects data and trains over 10000 episodes. Each episode lasts until the agent has
queried labels for 1120 samples, or discarded the entire dataset. Selecting multiple
samples at each stage (selection radius), makes the remaining budget decrease
with selection radius samples, and we make use of a selection radius of 32. The
determination of the selection radius is a trade-o↵ between performance and
runtime, and 32 is the lowest threshold we were able to use while still maintaining
an acceptable runtime. States for images are constructed using the 10 closest
captions for each image. The reinforcement agent is trained using a regression
objective, with the RMSProp optimizer with learning rate 0.01 and the Huber
loss function. The agent’s reward is the sum of both image- and caption-related
recalls, R1, R1i, R5, R5i, R10, and R10i. The agent utilizes an epsilon-greedy
exploration strategy, where a random action is selected with probability 10%.
The probability of a random action selection decreases over time.

To validate the performance of the agent, we measure R1, R5, and R10 for
both images and captions at the end of each episode.

The size and depth of the agent’s Q-network depend on the state used in the
experiment. The state in the experiment consists of three elements: The distance
to the closest captions, the average distance between the closest captions and the
representation of the image in the common embedding space, as explained in
section 4.3.1. Each of these elements is connected to a linear layer of output size
512. These outputs are added together before connected to a final linear layer
of size (512, 2), which outputs the Q-values for a label- and discard action. The
DQN structure is shown in figure 4.7. The networks for the state elements are of
size (1024, 512), (10, 512) and (10, 512), and the layer that outputs Q-values is
of size (512, 2).

The agent has a replay memory of size 10000, and uses a separate target
network to predict Q-values of the next state to determine the regression loss.
The target network is updated to the policy network every 10 episodes.

An overview of the hyperparameters is shown in table 5.5.

5.3.4 Validating RL agent

If the training of the RL agent is successful in improving its query strategy, we
will perform an experiment in which we measure how well the agent performs
when operating on previously unseen data. After an agent is trained using the
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Hyperparameter Value
Agent DQN with target network
Budget 1120
Episodes 10000
Epsilon 10%
Init samples 224
Learning rate 0.01
Loss function Huber loss
Optimizer RMSProp
Replay memory size 10000
Reward threshold 0
Selection radius 32
State linear layers [(1024, 512), (10, 512), (10, 512)]
Target network update 10
Topk 10
Q linear layer (512, 2)

Table 5.5: Hyperparameters used to train an RL agent to make labeling decisions
on the Flickr8k dataset.

procedure described in section 5.3.3, we will test the generality of the learned
policy by applying it to previously unseen data. The agent is used in a validation
setting. Here it only outputs its proposed actions based on provided states, and
does not learn from the environment transitions. The agent queries labels for
selection radius size at each acquisition stage, and the model is re-trained by
using the expanded labeled data pool. When the size of the labeled data pool is
equal to the budget, the performance of the model is validated over a held-out
dataset. This process is repeated several times to calculate an average.

5.4 Experimental Results

In this section, we describe our results.

5.4.1 Similarity in traditional active learning

The results from the experiments are shown in figure 5.3 and 5.4. The experiment
is run 10 times, and the figures show the average across all runs. The experiments
have been performed using the MR and UMICH datasets.
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Figure 5.3: Discarding similar items on the MR dataset, using the model CNN
as basis for similarity and di↵erent similarity thresholds. The line labeled 0.0 has
a similarity threshold of 0.0, which means it is equivalent to traditional entropy
sampling.

CNN similarity

Figure 5.3 shows that discarding similar items in the selected subset ultimately
leads to an increase in performance. Moreover, we see that in the beginning,
the di↵erent similarity thresholds perform comparably. However, after a few
iterations of active learning, the runs with similarity threshold outperform the
one without and also the random baseline.

Figure 5.4 shows similar features. The performance improvement is not promi-
nent in the early iterations of the active learning experiment, but picks up after
some time. The algorithm with similarity threshold outperforms traditional en-
tropy and the random baseline.

w2v similarity

As for CNN similarity, the experiments using the average w2v-vector as basis for
similarity calculation also outperforms both standard entropy and the random
baseline. It is worth noting that the similarity thresholds with the best perfor-
mance are significantly higher for the w2v experiments than those of the CNN
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Figure 5.4: Discarding similar items on the UMICH dataset, using the model
CNN as basis for similarity.

experiments.
Figure 5.5 shows the results of using w2v as basis for similarity on the MR

dataset. However, as opposed to figure 5.3, we have an increase in performance
from the beginning of the experiment. Moreover, there is a larger increase in
performance when compared to figure 5.3.

Figure 5.6 shows the same experiment performed on the UMICH dataset.
Again there is an increase in performance when using a similarity threshold, but
the gain seems less significant than the others.

A summary of the results from inter-sample similarity is shown in table 5.6.

5.4.2 Training RL agent

The results from the experiments are shown in figures 5.7 - 5.11, performed using
the Flickr8k dataset. It is apparent that the agent fails in learning a useful
query strategy. The performance is fluctuating, but not increasing. This is
also strengthened by figure 5.9, which shows that the agent does not discard a
meaningful amount of samples in the stream.

Due to the fact that the agent failed in improving its query strategy in the
training domain, we did not construct an experiment to validate its performance
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Figure 5.5: Discarding similar items on the MR dataset, using the average w2v-
vector as basis for similarity.

Figure 5.6: Discarding similar items on the UMICH dataset, using the average
w2v-vector as basis for similarity.
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Dataset-algorithm Labeled samples Accuracy Relative amount of labeled samples
MR-w2v 160 72% 62.5%

MR-CNN 160 71% 62.5%
MR-entropy 256 71% 100%
UMICH-w2v 188 90% 83.9%

UMICH-CNN 192 91% 85.7%
UMICH-entropy 224 90% 100%

Table 5.6: Summary of the results from the experiments on inter-sample simi-
larity. The result chosen for entropy is the best performing one, resulting in a
worst-case calculation of the relative amount of data the architecture needs. Bold
text shows the algorithm needing the least amount of data to reach or exceed the
same performance as the entropy baseline.

Figure 5.7: Di↵erent image recall measures at each episode end, measured over
10 000 episodes.
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Figure 5.8: Di↵erent caption recall measures at each episode end, measured over
10 000 episodes.

Figure 5.9: The number of discard actions output by the agent in each episode.
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Figure 5.10: The loss over a held-out dataset at the end of each episode, measured
over 10 000 episodes.

Figure 5.11: Sum of all image- and caption-related recalls at the end of each
episode, measured over 10 000 episodes.
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over an unseen dataset.



Chapter 6

Discussion and Conclusion

In this chapter, we discuss our results before we end with a conclusion that
summarizes our findings and answers our research questions.

6.1 Discussion

In this section, we discuss the experimental results presented in the previous
chapter.

6.1.1 Similarity in traditional active learning

As seen in section 5.4.1, not selecting samples with pairwise similarity above a
given threshold improves the rate of accuracy of the model.

Delay in performance increase

In section 5.4.1 we described how the gains of discarding similar items did not
reveal itself before after a couple of iterations. The basis for calculating similarity
in the experiment was the output of the classifier used in the experiment, and
is the reason for this delay in performance increase. The model starts with no
labeled training data, and its weights are initialized randomly. As a consequence,
the representation output of the model does not constitute a representative vector
for the input sample. With no labeled training data, the model is not able to
capture the di↵erences that are of importance, and the resulting representation is
not one that captures the meaning of the sentence in a su�cient way. However,
after a couple of iterations, the performance increase of discarding similar items

61
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Figure 6.1: Number of discarded samples on the UMICH dataset when using
CNN as basis for similarity.

is more prominent because the model now has been trained on labeled data and
is able to capture the meaning of a sentence in a more satisfying way.

This delay in performance is not present when using the average w2v-vector
as basis for sample similarity, shown in figure 5.5 and 5.6. Section 2.4 explains
how the word vectors are pre-trained to capture the meaning of words, and this
is why we see the immediate benefit of using intra-sample similarity to discard
similar samples when using w2v as basis for similarity.

E↵ect of similarity threshold

Figure 5.3 shows the results when using several di↵erent similarity thresholds, us-
ing a CNN representation on the UMICH dataset. Intuitively, a higher threshold
should yield a larger increase in performance. Selecting a more diverse subset at
each acquisition stage is expected to increase the performance, and to further an-
alyze the e↵ects of the similarity threshold, we recorded the amount of discarded
samples at each acquisition stage. The numbers are shown in figure 6.1.

As expected, using a higher similarity threshold makes the model discard a
larger amount of samples due to fewer samples having su�cient distance from
each other. However, the experiment with the largest similarity threshold does
not achieve the best performance when compared to other similarity thresholds.



63 6.1. Discussion

Moreover, the similarity threshold with the best performance changes as we add
more labeled data. In the beginning, higher similarity thresholds perform better.
This is because, as previously mentioned, the basis for similarity is the CNN
output itself. In the beginning, the representations of sentences are more alike,
and a larger similarity threshold makes the model select a more diverse subset in
the selection stages.

As time progresses, the benefits of the higher similarity threshold experiments
diminish. Similarity threshold 0.14 moves from being the top performer to per-
forming the worst after 140 labeled data samples have been added. After 165 it
is even outperformed by traditional entropy sampling. Recall that the samples
are first scored using entropy, and then selected and possibly discarded due to
pairwise similarity. If discarded, the lowest-scoring sample of the pair is replaced
with the next sample according to its entropy score. If the similarity threshold is
too high, many high-entropy samples will be discarded due to pairwise similarity,
and they will be replaced with samples with lower entropy score, but with suf-
ficient pairwise similarity. The result is that at the end of the cleaning process,
many of the remaining samples in the selected subset have low entropy, which in
turn is detrimental to the model’s performance. The problem lies in the fact that
the representations, and thus the best-performing similarity threshold, changes
as the model receives more labeled training data, and motivates a time-dependent
similarity threshold.

The same is not the case when using w2v representations for calculating inter-
sample similarity. The pre-trained word vectors do not change as we add labeled
data to the model. This is why there is more consistency in which similarity
thresholds perform the best across the entire timeline.

The determination of similarity threshold in the experiments was done empiri-
cally, and has remained fixed throughout the experiment. The previous discussion
describes how this may lead to sub-optimal performance, and motivates further
research on an automatically determined similarity threshold that is re-evaluated
at each time step.

Dataset comparison

When comparing the results for the MR dataset, figures 5.3 and 5.5, and the
results for the UMICH dataset, figures 5.4 and 5.6, we see some di↵erences. First
of all, the similarity threshold is di↵erent for the two datasets and both basis
for similarity calculation. As explained in section 5.2, UMICH is a dataset that
contains sentences of very similar language and wording. As a consequence, the
representation of the sentences in that dataset is more similar, and it is therefore
necessary to increase the similarity threshold.

Furthermore, there is a di↵erence in the relative performance increase for the
two datasets in our experiments. This may also be attributed to the di↵erence in
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the datasets themselves. Due to the simpler nature of the UMICH dataset, the
model manages to generalize to the di↵erent classes in a shorter amount of time.
If one instance of one class is very similar to another, the model will only need
a few samples of that class to be able to generalize. As for the MR dataset, the
model needs several samples for each class to be able to generalize for that class.
Hence, the possible performance gain for using similarity-based active learning is
larger for heterogeneous datasets.

6.1.2 Reinforcement Learning for active VSE

As seen in figures 5.7 and 5.8, the agent fails in learning which states lead to high
rewards. Here we discuss possible reasons for the agent’s inability to improve its
query strategy.

In section 4.3.1 we described the di↵erent elements included in the state gen-
eration procedure. The reward used in the experiment was the increase in the
sum of recalls measured over a held-out dataset. There must be some correlation
between what the agent receives as a reward and the state upon which it calcu-
lated its action. This is to make it possible for the agent to learn the expected
long-term future reward for various states. We will now explore possible reasons
to why these may not be as correlated as initially theorized.

Distance to closest captions

One element of the state generation procedure was the numerical distances to the
closest captions, on which a softmin function was applied to make the internal
di↵erences between the distances more prominent. The softmin function turns the
distance distribution over the closest captions for a given image into a probability
distribution. When framing the problem as an n-way classification problem, this
probability distribution may be analyzed using common uncertainty sampling
techniques, and was our initial intuition as to why this should be included in a
state generation procedure. When defining the reward function as the increase of
the sum of recalls, the de-correlation becomes more clear. When presented with
a probability distribution over the distances to the closest captions, the agent has
no ability to reason about anything but R1. Intuitively, a state

s0 = [0.9, 0.025, 0.025, 0.025, 0.025]

will probably have its corresponding caption as the closest one among the closest
captions because of the high relative proximity to the closest caption. On the
other hand, a state

s1 = [0.35, 0.35, 0.1, 0.1, 0.1]
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will probably not have its caption as the closest one, due to the small di↵erence
in distance to the closest and the second-closest caption. This pattern is easily
learnable, and is known as margin sampling. Margin sampling is simply the dif-
ference between the two most probable labels for a given sample, and is inversely
proportional to model uncertainty.

Reasoning about anything but recall at one, however, is a more di�cult task.
If it turns out that in fact neither s0 nor s1 have had its correct caption as the
closest one, which one would be more likely to have it in the closest 10? There
is no intuitive combination of numbers that with a higher probability results in
a positive recall measure for anything but R@1. By looking at the distances to
the closest captions, the agent has no way of reasoning about the probable value
of labeling the corresponding sample.

Using embedding space as image representation

Another part of the state generation procedure is the representation of the sample.
This is done to increase the reinforcement agent’s ability to reason about the
quality of the current data sample. There may be parts of the joint embedding
space that are more di�cult to learn than others, and since our goal is to reach
a high accuracy as fast as possible, these parts of the space should be avoided.
Including a representation of the image in the common embedding space, should
thus assist the agent in learning this.

The results in section 5.4.2 show the agent’s performance after 10 000 episodes.
During each episode, the agent selects a subset of the unlabeled data given its
selection radius. This subset of data is added to the labeled pool and the model is
re-trained. To make the state generation at the next acquisition stage accurate,
the states for all remaining samples in the unlabeled pool have to be re-computed.
The state generation procedure uses characteristics from the joint embedding
space, and when the model is trained on new data, the mappings to the embedding
space changes. This necessitates re-computing states for all unlabeled samples
after each acquisition.

Imagine the state generated for one image at one specific acquisition stage
in one specific episode. This state depends on the state of the linear projection
layers, and the state of the projection layers depends in turn on what data has
been previously labeled. If the agent chooses to label the image responsible for
that state, it will receive a reward. Imagine then, in a di↵erent episode, at a
di↵erent acquisition stage, the state generated for the same image. Due to the
fact that the generated state, is strongly coupled to the previously added labeled
data, the resulting state for the same image may be completely di↵erent.

Following the same argument, the reward may also be described as tightly
coupled to the labeled data already selected. Imagine at one point in time, the
agent saw a representation of an image in the joint embedding space, selected the
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sample, and received a positive reward. Due to the selection radius, the agent
picks several images with a state closely resembling the current one, and add
them to the labeled pool. The model now has access to several samples that lie
in close proximity to one another in the same part of the embedding space. In
the future, if the agent sees a state similar to the one previously described, it will
probably select the same action as before, due to the previously received positive
reward. However, now that the model already has several samples in that part
of the space, the reward is probably di↵erent than before, and may confuse the
agent.

Distance between closest captions

We initially believed that inter-caption distance was the most important factor for
defining salient active learning features for the reinforcement agent. To test this,
we redefined the VSE problem to be a traditional active learning scoring func-
tion problem, where the scoring function is the average inter-caption distance, as
described in section 4.3.1. At each acquisition, we added the 32 images with cor-
responding captions that have the largest average inter-caption distance between
their closest 10 captions. After each acquisition, the model is retrained and per-
formance is measured before a new acquisition begins. This repeats until we reach
a budget of 640 images, which makes 640 images ⇤ 5 captions for each image =
3200 total samples. The results are shown in figures 6.2, 6.3 and 6.4.

The results show that average intra-caption similarity is not as important as
we first assumed. The active learning scoring function based on inter-caption
similarity is consistently outperformed by random sampling. This is a possible
reason why the reinforcement agent fails in improving its query strategy over the
episodes.

Despite the fact that the naive scoring method approach previously described
does not yield positive results, the notion of including inter-caption distance in
the state provided to a reinforcement agent may still be a rational and beneficial
choice. When used as a scoring function, the score is merely the average inter-
caption distance between the closest captions. However, there may be a function
that more accurately captures the salient relationships between the captions.
Intuitively, the closest captions and the distances between them should shed
some light on the expected performance gain of labeling that particular image,
and we are not absolutely disregarding this idea.

E↵ect of selection radius

Including several samples at each selection stage substantially reduces the total
run-time of the algorithm. However, there is a problem with the formulation as it
is now. The reasoning behind using reinforcement learning as an active learner is
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Figure 6.2: Sum of image recalls when using average inter-caption distance over
closest captions as a scoring function, measured after each acquisition.

Figure 6.3: Sum of caption recalls when using average inter-caption distance over
closest captions as a scoring function, measured after each acquisition.
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Figure 6.4: Sum of all recalls when using average inter-caption distance over
closest captions as a scoring function, measured after each acquisition.

that the agent is better at finding intricate relationships between the input state
and the reward, and also at establishing connections that are incomprehensible
for human beings.

In our experiments, in addition to adding the current image, we also add the
images that have their resulting state most similar to the one constructed for
the current image. This similarity has been calculated using cosine similarity. In
doing this, we are essentially incurring a bias as to what samples are similar to
the current one. Including samples based on cosine similarity may be detrimental
to the agent’s performance, because it is not guaranteed that cosine similarity is
a good measure of similarity when having the agent’s performance in mind. Even
though the agent has learned the complex relationships between the features in
the input state, including other samples based on a predefined similarity mea-
sure could de-correlate the relationship between the input state and the received
reward. This may be a possible reason to why the agent fails in improving its
selection strategy over numerous episodes.

Choice of reward function

Section 4.3.2 describes the reward function used in our architecture. Here we
discuss the possible consequences of choosing the total sum of recalls as the
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reward presented to the reinforcement agent.
As described in section 4, we need to select one domain as a primary domain,

and compute characteristics in the common embedding space based on that.
This may be framed as an n-way classification problem, where the classes are
the possible corresponding items in the secondary domain. This simplifies the
process of state generation and makes it easier to compute features that probably
encapsulates model uncertainty.

Nonetheless, defining features when selecting one domain as a primary do-
main may have consequences as to how the reward function should be defined.
The goal of active learning is to push decision boundaries apart using as few
samples as possible, and the choice of reward function should be correlated with
which decision boundaries are possible to separate, given the current state. Our
theory is that the state constructed by using images as the primary domain is
only correlated with the decision boundaries between di↵erent captions and not
between di↵erent images. We have defined di↵erent performance measures with
basis in retrieving the correct caption for a given image (caption recall), and re-
trieving the correct image for a given caption (image recall). We assume that a
possible explanation of the results is that it is erroneous to include image recall
related performance measures in the reward function. This motivates to work on
alternative reward functions and is a possible direction for future research.

6.2 Conclusion

In this master thesis, we have experimented with active learning and the ultimate
goal of general active learning. Based on the results and discussion in the previous
chapters we summarize our findings in relation to our research questions.

Research question 1 How may similarity between samples be utilized in order
to improve on existing active learning techniques?

Traditional active learning techniques are naive in that they neither perform any
calculations on the relationships between the items of the selected subset, nor
between the selected subset and the previously selected items, at each acquisi-
tion stage. We have proposed an architecture that leverages this information,
in which the model discards samples that are too similar to one another, given
a pre-defined threshold. The architecture has been tested on datasets with dif-
ferent characteristics, and proven to yield results outperforming traditional and
commonly used active learning strategies. These results underpin the relevance
of using similarity-based information in active learning. Similarity is moreover
information that is inherently indi↵erent of domain and application, and rein-
forces its relevance for future work towards a general active learning strategy.
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We therefore conclude that a simple, yet e↵ective, approach of discarding sam-
ples with similarity above a certain threshold, leads to a substantial increase in
performance when compared to traditional active learning strategies.

Research question 2 How may uncertainty be captured in Visual Semantic
Embedding?

Section 4.3.1 explains in di↵erent ways how uncertainty may be defined in VSE
and joint embeddings in general. The proposed architecture leverages, among
other things, distances to and between the closest assignments for a given image.
We provide an intuitive explanation of why we believe these features should be
representative of model uncertainty in the joint embedding space. To the best
of our knowledge, there is no other work on defining active learning techniques
applicable to VSE, and we provide insight into how such algorithms may be
designed.

Research question 3 By applying factors that encapsulate model uncertainty
in Visual Semantic Embedding, will a reinforcement agent be able to learn
which states lead to high rewards?

Our experimental results show, contrary to our initial hypothesis, that the re-
inforcement agent fails in learning anything useful with respect to model per-
formance, uncertainty, and reward. In section 6.1 we discuss the results and
possible explanations of why this is the case. Even though the features described
in section 4.3.1 make intuitive sense, reinforcement learning is very sensitive to
its input state. We provide insight into why the agent’s query strategy fails to
improve.

6.3 Contributions

This thesis proposes an architecture that makes use of similarity information
with the aim of improving traditional active learning scoring strategies. The ex-
perimental results show that the elimination of similar samples yields an increase
in performance. This is, to the best of our knowledge, the first work on using
similarity information in this way.

Furthermore, active learning and uncertainty in VSE both represent areas
which are complicated to define. Nonetheless, in section 4.3.1 we provide an in-
tuitive proposition to how this may be done. We also propose an architecture that
may leverage such information to make informed and intelligent active learning
query decisions.

Finally, we present an analysis of the e↵ectiveness of the proposed RL ar-
chitecture. The results show that our approach does not succeed in learning a
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usable query strategy, and we provide a qualitative analysis to each component
of the state generation procedure to shed light on why the agent is unsuccessful.
Even we did not succeed in learning a general active learning strategy for joint
embeddings, we believe the approach has potential and may yield results in the
future.

Our main contributions are as follows:

1. An e↵ective approach for exploiting similarity between samples in order to
improve on existing active learning techniques

2. Insight to how to encapsulate model uncertainty in visual semantic embed-
ding

3. An attempt to utilize model uncertainty to train a reinforcement agent to
make labeling decisions in visual semantic embedding

4. A qualitative analysis of the e↵ectiveness of the proposed approach

6.4 Future Work

During the work on this thesis, we encountered several alternative approaches
that warrant further exploration. This section describes interesting directions for
future work.

6.4.1 More advanced representations for similarity calcu-

lation

Section 4.1 described two possible ways of representing samples for calculating
cosine similarity. A third option is to apply the representational power of au-
toencoders. An autoencoder is a type of neural network that has the objective
of reproducing its input. It is then possible to extract a di↵erent, more con-
densed representation of the input at either of the hidden layers of its network
that may represent the input sample in a better way. Being able to reconstruct
the sentence as its output, is proof that the representation from the hidden lay-
ers actually contains useful information. Instead of applying the average word
vectors or CNN representations directly, it is possible to choose a down-sampling
autoencoder to calculate a more compact representation, and use this as basis
for similarity. This, as with other representations, is grounds for future work on
similarity in active learning.
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6.4.2 Automatic determination of similarity threshold

Section 6.1.1 describes the e↵ect of the similarity threshold, and how there is a
trade-o↵ between high performance and discarding all unlabeled data. Further-
more, when using a representation of samples that change as we add more samples
to the labeled data pool, the threshold should be reevaluated at each stage. A
natural question is then how to determine the threshold. In our experiments, the
threshold has been determined empirically through a trial-and-error approach.
However, to attain our goal of moving towards a general active learning strategy,
the threshold should be automatically determined. One simple idea is to define
the threshold as percentage-based, where the model may discard a percentage
of the selected subset according to their similarity. Other ideas for automatic
determination of similarity threshold are valid directions for future work.

6.4.3 More advanced similarity measures

This thesis has proven that using similarity information in active learning im-
proves traditional active learning techniques. This information may also be used
in a reinforcement active learning for VSE setting, where a similarity measure can
be calculated between the sample to-be-added, and the already added samples in
the labeled data pool. However, as previously mentioned, by using cosine simi-
larity or other pre-defined similarity measures, we are defining how a similarity
function should operate. These definitions of similarity may not coincide with
what the reinforcement agent deems important, and the notion of using more
advanced similarity measures is an interesting direction for future work.

6.4.4 Agents with memory

The previous subsection elaborates more advanced measures of similarity. We be-
lieve that the relationships between the samples selected at each acquisition stage
are interesting, and furthermore, the relationships between the samples selected
and the existing labeled data pool should be explored as well. If constructing
a state that has the intention to capture model uncertainty, our hope is that
the predicted model uncertainty for samples similar to what the model has seen
before is lower than for unseen samples, and thus results in the sample being
discarded. However, as explained above, the state may be insu�cient in captur-
ing the significant factors for this, and needs help in capturing the relationships
between current and previously seen data. Moreover, simple similarity measures
such as cosine similarity may not be an accurate measure when the goal is to
calculate similarity with the intention of maximizing reward.

An interesting approach would be to have a separate reinforcement agent with
memory that also predicts the long-term values of labeling the current sample.
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The state provided to that agent may be the same state as explained in section
4.3.1, or simply the representation of the sample itself. Adding samples similar
to what has already been added should be less beneficial than adding samples
that better represent the data distribution. A reinforcement agent with memory
should be able to remember what samples have already been added, and adjust
its predicted values accordingly.

The decision of whether or not to label the current sample in the stream may
then be a joint formulation of predicted values from the two reinforcement agents.
A possibility for future work is to utilize a separate reinforcement agent to reason
about label decision history.

6.4.5 Alternative grouping mechanisms

Section 4.3.3 described the notion of selection radius, and how it is required in
order to reduce the runtime to an acceptable length. To summarize, whenever
the agent outputs a label-action, we also add the images and their corresponding
captions that have a state most similar to the current one. Similarity is calculated
using common similarity measures, e.g. cosine similarity.

By adding additional images based on cosine similarity between states, we are
essentially stating that all features in the state-vector are equally important. This
is due to the fact that in cosine similarity, the di↵erent elements in the vectors are
weighted the same. On the other hand, when a reinforcement agent is presented
with a state, it performs complex and intricate calculations in its neural network
and may give more attention to certain factors and relationships that are not
e↵ectively captured by cosine similarity. By including images based on cosine
similarity between states, we may in reality be adding a bias to the reward seen
by the agent, and may counteract the calculation done in its network. This may
lead to an unstable approximate reward function.

Thus, an alternative grouping strategy makes for an interesting take on future
work. Chapter 3 describes [33], in which such a grouping mechanism is employed.
Contrary to our architecture, where the agent sees one image at the time and
multiple are added by cosine similarity, the authors of [33] first split the unlabeled
dataset into k subsets, where k is a hyperparameter. Then the reinforcement
agent then makes decisions on which subset to label at each time step. This is
one example of alternative grouping mechanisms and should be further explored
in the future.

6.4.6 The Hungarian Algorithm

The Hungarian algorithm is an algorithm that solves the bipartite matching prob-
lem, more commonly known as the assignment problem, in polynomial time. The
assignment problem consists of agents and tasks. Each agent can perform any
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task with a specific cost, and the problem may be written as an assignment matrix
where xi,j is the cost of assigning agent i to task j.

A solution to the problem is an assignment that assigns one agent to one task.
The total assignment cost is the least possible cost for that problem.

In section 4.3.1 we described the process of state generation for the current
sample in the stream. The state was constructed using the similarity matrix D
consisting of pairwise distances between images and captions, repeated here for
readability:

D =

2

666664

x0,0 x0,1 x0,2 . . . x0,n

x1,0 x1,1 x1,2 . . . x1,n

x2,0 x2,1 x2,2 . . . x2,n
...

...
...

. . .
...

xn,0 . . . . . . . . . xn,n

3

777775
(6.1)

D is identical to the assignment matrix used in the Hungarian Algorithm, and
thus a solution to this may be found. Our datasets have a one to one relationship,
where each point in the dataset consists of one image and one caption. An
optimal assignment of images to captions captures the model’s predictions in an
appropriate manner and exploits the fact that a label cannot belong to multiple
captions simultaneously.

Instead of using each row in D as a basis for state-construction and stream-
based active learning, an alternative approach is to construct an optimal assign-
ment using the Hungarian algorithm over D. This assignment can be used to
make the agent reason about which entries in D should be fixed (queried).

However, to use the solution of the Hungarian algorithm in a deep learning
pipeline, the algorithm itself needs to be di↵erentiable. In its natural state, this
is not the case. Several projects have tried to use neural networks to approx-
imate an a↵ordable, but non-optimal, solution of the Hungarian algorithm [3],
[16]. The approximate solution may then be used in the way described in the
previous paragraph. This may be a feasible approach, despite the fact that the
approximate solution is not an optimal one. If the approximate solution yields a
fairly low-cost assignment, the total performance of the approach should still be
beneficial.

In the early stages of this thesis, we experimented with an approximate, dif-
ferentiable solution to the Hungarian algorithm to utilize the approach described
above, but we were not successful in achieving acceptable results. An alternative
approach could incorporate a di↵erentiable solution to the Hungarian algorithm
to make a reinforcement agent query labels for samples and fix entries in the
assignment matrix.
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