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Abstract

In this thesis, we consider optimal hedging decisions for an electricity producer. In ad-

dition to account for uncertain prices and production, we let the underlying probability

distribution in itself be subject to uncertainty. Distributional uncertainty is known as am-

biguity, and is accounted for by applying a multistage distributionally robust optimization

model. By modeling ambiguity as a so-called ambiguity set of possible probability dis-

tributions, the distributionally robust model finds the optimal hedging decision for the

probability distribution in the ambiguity set that causes the most harm. We extend an

existing framework for multistage distributionally robust optimization to incorporate risk

aversion, using time consistent conditional value at risk as a risk measure. The input

scenario tree is generated from a forecast fan with application of stochastic approxima-

tion.

We find that the hedging strategy from the distributionally robust model outperforms

a stochastic model under the worst case distribution from the ambiguity set, while it

su↵ers only a slight reduction in performance when the distribution is correctly estimated.

The risk is therefore reduced by applying a distributionally robust hedging model under

ambiguity. Backtesting the hedging strategy on historical data from 2014 to 2017 shows

that the distributionally robust model outperforms both the strategy from a stochastic

model and a strategy where hedging is absent, in terms of mean profits. Our findings

therefore suggest that distributional uncertainty should be accounted for when developing

optimal hedging strategies for electricity producers.
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Sammendrag

I denne oppgaven studerer vi optimale sikringsstrategier for en kraftprodusent. I tillegg

til å ta høyde for usikkerhet i priser og produksjon, tar vi høyde for at den underliggende

sannsynlighetsfordelingen i seg selv kan være usikker. Slik fordelingsmessig usikkerhet om-

tales i litteraturen som ambiguity. Vi tar høyde for fordelingsmessig usikkerhet ved å for-

mulere en distributionally robust optimeringsmodell, som modellerer den fordelingsmessige

usikkerheten gjennom et s̊akalt ambiguity set av mulige sannsynlighetsfordelinger. Opti-

meringsmodellen finner beslutningen som er optimal for den sannsynlighetsfordelingen fra

ambiguity settet som gjør mest mulig skade for beslutningstakeren. Vi utvider et eksis-

terende rammeverk for multistage distributionally robust optimering til å kunne ta høyde

for risikoaversjon, med bruk av tidskonsistent conditional value at risk som risikomål. Sce-

nariotreet som optimeringsmodellen tar inn genereres fra en vifte av simulerte prognoser

ved å benytte stokastisk approximering.

Funnene v̊are viser at sikringsstrategien fra en distributionally robust modell er signifikant

bedre enn strategien fra en stokastisk modell hvis den verst tenkelige sannsynlighets-

fordelingen i ambiguity settet skulle vise seg å være riktige. I tillegg presterer denne

modellen kun svakt d̊arligere hvis den estimerte sannsynlighetsfordelingen viser seg å

være riktig. Å ta høyde for fordelingsmessig usikkerhet resulterer derfor i beslutninger

med lavere risiko. Ved å studere historiske data fra 2014 til 2017 finner vi at distri-

butionally robust modellen oppn̊ar høyere gjennomsnittlig profitt enn b̊ade tilfellet der

man ikke hedger og der man bruker en stokastisk modell. Funnene v̊are viser derfor at

fordelingsmessig usikkerhet bør tas høyde for i optimeringsmodeller som søker optimale

sikringsstrategier for kraftprodusenter.
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Chapter 1

Introduction

Electricity producers are exposed to a considerable risk from uncertain spot prices and

production quantities. As an example to illustrate this, the spot prices in 2016 varied

from 15 EUR/MWh to 81 EUR/MWh. In order to reduce the risk exposure, hedging

has become an important part of most electricity producers risk management. While

reducing production risk through hedging is di�cult, price risk can be reduced by using

financial derivatives, which in the Nordic electricity market primarily involves application

of forward contracts. When entering into a forward contract, an electricity producer agrees

on selling electricity for a specified price at a future date. Consequently, the risk related

to decreasing spot prices is reduced, but so is also the potential upside. Hedging therefore

involves a trade-o↵ between risk and potential rewards. Following this, an important

and complex decision for electricity producers is to determine the hedging positions that

ensure as high potential profits as possible, while satisfying the company’s level of risk

aversion.

TrønderEnergi is a Norwegian electricity producer who lacks a hedging strategy for re-

ducing the risk exposure. This thesis therefore suggests an optimization based decision

support tool for determining an optimal hedging strategy for TrønderEnergi. In doing

this, a distributionally robust optimization model is proposed and compared against a

stochastic optimization model.

Stochastic optimization is a widely recognized optimization paradigm for decision making

under uncertainty, where the realization of a random variables is assumed to be governed

1



2 CHAPTER 1. INTRODUCTION

by a probability distribution. A fundamental limitation with stochastic models, however,

is the assumption that the probability distribution is known. Limited and inaccurate

distributional information, as well as changing statistical characteristics over time, are

both factors that makes it di�cult to accurately estimate probability distributions. It

is further recognized that estimation errors highly deteriorate the decision quality of

stochastic models. As a consequence of distributional uncertainty, Stochastic optimization

models are thus exposed to unwanted model risk, which in the literature is known as the

concept of ambiguity.

Distributionally robust optimization is on the other hand a modelling paradigm that

approaches ambiguity by letting the observed distributional information itself be subject

to uncertainty. This is achieved by considering a set of distributions in the proximity

of the one that is observed, and find the best decision for the one that would cause the

most harm. Even though this robustification on one hand comes at the cost of lower

expected profits, it on the other assures a considerable reduction in downside losses if a

more unfortunate distribution than the expected is the true.

The distributionally robust hedging model we develop and test in this thesis is applied

on the decision problem of an electricity producer, using historical data. This has to

our knowledge never been done. Because the literature on distributionally robust opti-

mization is highly theoretical, this thesis is an important contribution. In addition, while

the literature commonly regards single- or two stage distributionally robust optimization

problems, the model we develop can handle multistage decisions. Our model is based on

an existing framework for multistage distributionally robust optimization, which assumes

risk neutral decision making. We extend this framework to manage risk aversion and

incorporate conditional value at risk (CVaR) as a risk measure. CVaR is also is made

time consistent so that it can be applied to a multistage problem. The performance of

the distributionally robust hedging model is simulated and tested for di↵erent degrees of

ambiguity aversion on historical data, and compared to a stochastic model and a naive

strategy without hedging. In generating the scenario tree for the distributionally robust

hedging model, we apply a recently developed clustering algorithm for dynamic genera-

tion of multistage scenario trees. The method bases on the conditional distribution of a

set of forecasts paths, and the tree is generated using random draws from the conditional

distribution.

The outline of the report is organized as follows: Chapter 2 gives the necessary background
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information about hedging and the Norwegian electricity market. Chapter 3 is a literature

review, discussing how optimal hedging decisions have historically been approached. In

Chapter 4 a description of the hedging problem TrønderEnegi faces is elaborated. Chap-

ter 5 gives a detailed description of the solution methods applied to approach the hedging

problem. This involves the general approach for solving the multistage distributionally

robust optimization model, as well as the algorithm for generating the scenario tree. Fur-

ther, Chapter 6 presents the mathematical formulation of both a distributionally robust

and a stochastic hedging model. In Chapter 7 we present and discuss the results from

the hedging models, focusing on the di↵erences between the distributionally robust model

and its stochastic counterpart in a risk-reward perspective. The concluding remarks are

found in Chapter 8, followed by a discussion of future research in Chapter 9.
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Chapter 2

Background

The purpose of this chapter is to give the necessary background information for this thesis.

The chapter is organized in two, where the first section covers hedging, while we in the

second section present relevant information about the Norwegian energy market.

In this thesis we expect the reader to be familiar with the fundamental concepts and

terminologies within statistics, finance and optimization.

2.1 Hedging

The following section is structured in three. The concept of hedging is first introduced,

followed by a presentation of the most commonly applied hedging instruments. Lastly, a

discussion on literature investigating empirical findings from hedging among companies

is conducted, focusing on the motivation and implication of hedging.

Hedging is a risk reducing investment, widely applied for companies and investors that

are seeking to reduce the likelihood of large losses. A hedge normally involves investing

in a derivative, a financial instrument whose value is determined by an underlying asset

such as the electricity price (McDonald, 2014). When applying derivatives for hedging,

an o↵-setting position in the derivative is taken, meaning that the value of the instrument

increases when the value of the underlying asset decreases (Alexander, 2008). Hence, by

investing in derivatives written on the electricity price, an energy provider can reduce its

5
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sensitivity to volatile spot prices, and hence the risk of losses through periods of falling

prices. However, although hedging reduces potential losses, the potential profits are often

reduced as well. Hedging is thus a risk-reward trade-o↵ (McDonald, 2014), where the size

of the hedging positions depends on the company’s willingness to take risk, i.e. its risk

aversion.

Examples of derivatives that are widely applied for hedging includes forwards, futures

and options. A forward contract is an agreement between two parties to sell or buy a

quantum of the asset, for a specified price at a future date (McDonald, 2014). Consider the

following example on how an energy provider can apply forwards to hedge its exposure

to price risk. The provider can enter into a short position on forwards written on the

electricity price, which means agreeing on selling a defined quantum of electricity for a

specified price at a future date. This future date is known as the time of maturity. Then,

if the spot price at the time of maturity is below the predetermined forward price, the

company gains from the contract, while the opposite happens in cases where the spot price

is above the forward price. Consequently, the risk for large losses and the volatility in

the cash flow is reduced. Following this, an advantage of hedging is greater predictability

(McDonald, 2014). Further, by varying the quantity of electricity that is sold through

forward contracts, the company can adjust its risk exposure.

Future contracts are similar to forwards, but standardized with respect to the quantities,

maturities and the underlying assets. In addition, futures are traded on an exchange.

This is in opposition to forwards, which are traded over the counter (McDonald, 2014).

Following the ability to customize the contracts, forwards are suitable for hedging. How-

ever, a drawback with forwards compared to futures is that the liquidity often is lower,

and that the default risk often is higher for such contracts (Alexander, 2008).

An option gives the investor the right, but not the obligation, to buy (a call option) or

sell (a put option) an asset for a specified price (a strike price), at a future date. Hence,

oppositely from forwards and futures, the option is only exercised by the investor if the

strike price is favourable compared to the spot price at maturity. Put options are suitable

for hedging, as the downside risk of the spot price is eliminated, while the upside potential

of the spot price is maintained. On the other hand, options requires a premium to be payed

upfront of the investment, hence being more expensive than futures and forwards.

As indicated in this section, Tanlapco and Liu (2002) point out that the main motivation of
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hedging among companies is reducing the risk of unfortunate price movements, rather than

to profit from it. This is further elaborated in Stulz (1996), where it is argued that hedging

is about reducing the probability of large losses, while preserving the upside potential as far

as possible. In Sanda et al. (2013), the risk management among 12 Norwegian hydropower

companies is studied. Here, the stakeholders risk aversion is pointed out as one of the

major reasons why the considered companies enter into derivative positions. The authors

argue that this mainly is motivated by the companies’ ability of providing stable dividends

to the owners. Sanda et al. (2013) further show that hedging successfully has reduced

the downside risk for a majority of the studied hydropower companies. As hedging not is

expected to yield any profits, a more surprising result is that a majority of the companies

increased profits and did not reduce the cash flow volatility by entering into derivative

positions. An explanation for this is that these companies incorporate market views

into their hedging decisions. Including speculative considerations into hedging decisions

conflicts with Stulz (1996) and Tanlapco and Liu (2002), but is in line with Deng and

Oren (2006), where profit maximization is mentioned as a motivation for hedging.

Although hedging is proven as a useful tool for reducing a firm’s exposure to risk, it is

debated in the literature whether or not it increases the value of a firm. In a world where

investors are able to reduce risk on their own at no cost, Modigliani and Miller (1958)

argue that hedging does not increase firm value. However, this is under strict assumptions

of market e�ciency. Smithson and Simkins (2005) argue that following reduced cash flow

volatility, the value of a firm can be increased due to a reduced probability of financial

distress, and the ability to take advantage of attractive investment opportunities during

bad industry cycles. Froot et al. (1993) support the latter, arguing that this follows from

the additional cash flow that hedging positions create for a firm under tough market

conditions. Carter et al. (2006) investigate the relation between hedging and firm value

in the US airline industry. They find that the airlines that hedged against higher fuel

prices are higher valued than the airlines that did not hedge. The main reason is that

less risk exposed firms can take advantage of investment opportunities through cycles

of high fuel costs to increase their market shares. Further, Smith and Stulz (1985) find

that an important argument for why firms should hedge is that the expected costs of

financial distress are reduced. The reason for this is that hedging reduces the risk for

bankruptcy, which further should increase the value of a firm. Graham and Rogers (2002)

also emphasize this, and further argue that another important reason for firms to hedge is
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to increase the debt capacity. Following higher debt, additional tax benefits increases the

firm value. Jin and Jorion (2006) study the hedging activity among 119 US oil and gas

companies from 1998 to 2001. They verify that hedging reduces the sensitivity to volatile

oil prices. However, they find that it does not tend to increase the value of the involved

companies.

Although hedging is a useful tool for risk reduction, making the correct hedging decisions

can be challenging as it often requires expertise and application of decision supporting

tools. In Chapter 3 we discuss how the literature approaches optimal hedging strategies.

The next section presents information about the Norwegian energy market that is relevant

for this thesis.

2.2 The Norwegian electricity market

In the following section we discuss the Norwegian electricity market, focusing on aspects

that are relevant for hedging. In brief, the section covers the characteristics of the most

significant sources of risk in the market; the electricity production and the electricity

price. In addition, the types derivatives available in the market for handling this risk are

discussed. We lastly discuss the tax system that Norwegian hydropower producers are

exposed to, a system that influences the hydropwer producers’ hedging strategies.

Nearly all electricity production in Norway steams from hydropower, where the major

source of uncertainty is variations in hydro inflow. Further, a large share of the production

capacity is flexible, meaning that water can be stored as potential energy in reservoirs

(NVE, 2016). Non-storability of electricity is however an important characteristic of the

electricity market, meaning that it is consumed at the same time as it is produced (Ek

and Thorbjørnsen, 2014).

The main area for trading power is the Nord-Pool day-ahead marked, which is the electric-

ity spot market. Even though a spot market technically should hanlde immediate sales,

the electricity traded in the Nord-Pool day-ahead marked is sold the next day (Nord-Pool,

2017c). The Norwegian electricity market is divided into five price regions, NO1 to NO5,

where the price of each area is known as the area price. Area prices are determined by

the balance between supply and demand, where a major factor impacting supply and

demand in an area is changing weather conditions. The system price on the other hand
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is the unconstrained market clearing reference price for the entire Nord Pool exchange,

including all the orders from the Nordic and Baltic areas (Nord-Pool, 2017a).

Compared to traditional financial markets, electricity prices are known to be highly

volatile, emphasizing the relevance for risk management (Bystrøm, 2003). According

to Geman (2008), the nonstorability of electricity is a major reason for the high volatil-

ity. In addition, there are seasonal variations in the price, where the prices normally

are higher during the winter than during the summer. Further, Ek and Thorbjørnsen

(2014) find a positive linear relationship between prices and production in the electricity

market during the winter, and a weaker relationship during the summer. Following this,

the cash flow sensitivity for electricity producers is higher during the winter, which Ek

and Thorbjørnsen (2014) further use to argue that the need for hedging is higher through

these periods. However, Sanda et al. (2013) find that there is no trend among Norwegian

electricity producers to increase hedging during the winter.

The most liquid exchange traded derivatives available in the electricity market are traded

on NASDAQ OMX Commodities Europe. This exchange includes regular futures, de-

ferred settlement (DS) futures, options and Electricity Price Area Di↵erentials (EPADs).

Both futures and DS futures have identical characteristics, except of DS futures hav-

ing settlements during the whole delivery period (NASDAQ, 2017b). Despite of being

exchange traded, DS futures are therefore often seen as forward contracts according to

Sanda et al. (2013). For futures, DS futures and options, the reference price is the Nordic

system price, while the di↵erence between the area price and the system price is the ref-

erence for EPADs. In theory, futures in combination with EPADs are therefore suitable

for producers seeking to hedge against the area price risk in the price region they are

operating, and not only the system price risk (NASDAQ, 2017a).

All derivatives on NASDAQ are settled in cash, meaning that the di↵erence between

the spot price and the derivative price is payed at the settlement, instead of electricity

physically being exchanged. Further, there exists derivatives on NASDAQ with time

horizons up to ten years, with both daily, weekly, monthly, quarterly and annual delivery

periods (NASDAQ, 2017b).

The contracts traded on NASDAQ has delivery over a period, oppositely to the standard

for storable commodities, where delivery is at a specific time (Ek and Thorbjørnsen,

2014). Following this, the contracts are also commonly referred to as swaps, which is a
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derivative where a fixed price is switched with a floating price over a period with multiple

settlements (Benth and Koekebakker, 2008). However, irrespective of di↵erences in the

settlement, both forwards, futures and DS futures are referred to as forwards through the

rest of this thesis.

A problem discussed in Tanlapco et al. (2002) is limited liquidity for forwards with longer

maturities, where lack of potential buyers and sellers can be problematic. Sanda et al.

(2013) also point out that the low liquidity of EPADs make them less suitable to be applied

as hedging instruments. EPADs are therefor not considered as hedging instruments in

this thesis.

Note that none of the exchange traded financial derivatives cover the production risk

that mainly follows from uncertainty in hydro inflow. Hedging production uncertainty

is hence di�cult, although there exist alternatives such as weather derivatives where the

relationship between temperatures and demand for electricity can be utilized (Oum and

Deng, 2005). For examples of papers where the volumetric risk is approached, see Keppo

(2002), Oum and Oren (2010) and Yumi et al. (2006). In addition, under volumetric

uncertainty, Mo et al. (2001) argue that production planning and risk management should

be integrated to optimize the decision making.

Norwegian electricity producers are exposed to tax regulations that a↵ects the risk man-

agement. In addition to the corporate tax of 23%, electricity producers are also obligated

to pay a natural resource tax of 35,7% for hydropower production to compensate for the

use of natural resources (Finansdepartementet, 2018). While the basis for the corporate

tax is the attained income, the natural resource tax is based on the spot price when the

electricity is produced, unconditional on whether the electricity is sold in the spot market

or through forward contracts. Hence, producers risk to pay the natural resource tax on

non-earned revenues in cases where the spot price exceeds the forward price at maturity,

and vica versa in cases where the spot price is exceeded by the forward price. In under-

standing why the presence of the natural resource tax is decision relevant, the following

paragraph considers an example of a producer seeking to fully eliminate the price risk

exposure of a deterministic production quantum

For a producer seeking to fully hedge the price risk, the whole deterministic quantum of

electricity should be sold through forward contracts in the case where there is no natural

resource tax. That is, a hedge ratio of 1. When the natural resource tax is present we prove
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that the hedge ratio eliminating all price risk is 53.6%. A full hedge is a position such that

any change in price has no e↵ect on the profits. This can be expressed mathematically

as setting the di↵erentiated profit function with respect to price to zero. The hedging

position is found by solving this equation, which is written in equation (2.1) below. Here,

x is the hedge ratio and the produced quantum is set to one.

d

dSpot

⇣
x · Forward+ (1� x) · Spot�

Taxres · Spot� Taxcorp

�
x · Forward+ (1� x)

�⌘
= 0 (2.1)

Solving (2.1) gives a hedge ratio x of 0.536. Hence, the optimal hedging strategy depends

on the presence of natural resource taxes. Specifically, the tax system Norwegian hy-

dropower producers are exposed to gives incentives to less hedging (Ek and Thorbjørnsen,

2014) as there exists a risk that natural resource taxes must be payed on non-earned rev-

enues in cases where the spot price exceeds the forward price. These calculations are also

in line with Sanda et al. (2013).
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Chapter 3

Literature Review

This chapter contains an overview of how optimal hedging decisions have been approached

in the literature, focusing on applications in the electricity market. As Norwegian elec-

tricity producers rely on hydropower-production, the literature we present on hedging

has a focus on studies with hydropower applications. Among the variety of optimization

frameworks that historically have been applied to hedging decisions, some are better at

handling uncertainty than others. The importance of precisely capturing the underlying

uncertainty is emphasized by findings showing that failing to do so highly a↵ects the per-

formance of financial application optimization models (see e.g Chopra (1993), Chopra and

Ziemba (1993)). The literature presented in this chapter is therefore ordered according

to an increasing ability towards handling uncertainty.

3.1 Hedging based on the original mean-variance

analysis

The foundation of modern portfolio optimization was laid with the mean-variance anal-

ysis in Markowitz (1952). With the aim of maximizing return under risk constraints, or

minimizing risk given a required expected return, the analysis illustrates the trade-o↵ be-

tween reward and risk in a financial optimization problem. Markowitz’s modern portfolio

theory is applicable to hedging decisions as well, where the objective is to find the op-

timal allocation between derivatives and spot price exposure, given the decision maker’s

13
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risk preferences. This makes the mean-variance theory a fundamental staring point for

obtaining optimal hedging decision.

Several papers approaching optimal hedging strategies for electricity producers rely di-

rectly on Markowitz’ modern portfolio theory. In Woo et al. (2004), an e�cient frontier,

which gives the optimal risk-reward tradeo↵s for di↵erent degrees of risk aversion, is

constructed by combining di↵erent fractions of spot exposure to sales through forward

contracts. Further, while Woo et al. (2004) considers the UK and US market, a similar

study is conducted with focus on the Turkish electricity market in Gökgöz and Atmaca

(2012). In Ek and Thorbjørnsen (2014), optimal hedge ratios with forwards are found

for hydropower producers in the Norwegian electricity market. Specifically, the e↵ect

of seasonality on optimal hedging decisions is investigated The optimal hedge ratios are

found to be higher during the winter following a stronger positive dependency between

spot prices and production quantities through these seasons. In approaching the opti-

mal policies, di↵erent risk measures where optimized, hence disregarding the tradeo↵ to

expected revenues.

A major drawback with the original Markowitz model is that it is deterministic, meaning

that the uncertainty of its input parameters is disregarded. The approach is for this reason

inaccurate in every other scenario than when the estimates are correct. Consequently, an

important issue related to this approach is to estimate input data with su�cient precision

(Luenberger, 1980; Merton, 1961). The severity of this drawback is emphasized since it is

shown that erroneous estimates tend to strongly deteriorate the performance of classical

Markowitz models (Best and Grauer, 1991; Chopra, 1993; Michaud, 2001).

3.2 Hedging with stochastic optimization

Stochastic optimization is an optimization framework that addresses uncertainty better

than deterministic optimization. There are two primary benefits of this framework:

– Stochastic optimization accounts for uncertainty by incorporating possible outcomes

of the random variables, and allowing the realization of the random variables to

follow some probability distribution (Higle, 2005).

– In a model with multiple decision stages, stochastic optimization valuates flexibility,
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which allows the decision maker to adapt to new situations once the outcome of a

random variable is observed (Pflug and Pichler, 2014a).

As pointed out by Bertocchi et al. (2011), these two properties makes stochastic opti-

mization highly attractive for financial decision making. For this reason there exists a

substantial amount of literature approaching optimal hedging strategies for hydropower

producers with stochastic optimization. We now provide an overview of the similarities

and di↵erences between these approaches, and then show how this relates to the decision

problem covered in this thesis.

Overview of hydropower hedging problems approached with stochastic opti-

mization

We first present the similarities between the hydropower hedging problems approached

with stochastic optimization, and then categorize the di↵erences between them. We lastly

position the decision problem considered in this thesis.

A first common factor of the hydropower hedging problems approached with stochastic

optimization is the decision problem, which generally is formulated as a trade-o↵ between

expected profits and the level of risk related to a decision. In the overview of Wallace

and Fleten (2003) on literature concerning optimization for hydropower producers, the

following general decision problem for risk management through hedging is proposed. For

each stage of a planning period, the decision maker needs to find the optimal quantity or

proportion of forward contracts of a given type to enter into, so that expected profits are

maximized while satisfying some acceptable level of risk. This formulation is an instance

of the Asset-Liability-Management model of Kusy and Ziemba (1986), which is a general

framework for financial decision problems under uncertainty (Consigli et al., 2016).

A second common factor in modern literature concerning optimal hedging strategies for

electricity producers is the use of multistage stochastic optimization. Examples that show

beneficial results of forming hedging strategies for hydropower producers with multistage

stochastic optimization are Conejo et al. (2008), Pineda and Conejo (2012) and Fleten

et al. (2002). In particular, the latter of these papers compares the strategies made by

a multistage model against those of a static model. It is shown that the flexibility of

multistage models improves the decision quality in terms of a better risk reward trade-o↵,
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where one can sacrifice less expected profits for a higher reduction in risk.

Several aspects from which one can analyze the di↵erences between hydropower hedging

problems exist. The most important are discussed below with references to the litera-

ture.

– With or without production planning � Works such as Mo et al. (2001) and

Fleten et al. (2002) show an improved risk-reward trade-o↵ by integrating production

planning in the hedging decision. There are on the other hand instances where

hedging is separated from production. A common reason for separating hedging

and production decisions is that these decisions are made in di↵erent organizational

departments (Wallace and Fleten, 2003).

– Types of risk considered � Price risk is naturally the risk factor forming the

common ground in the literature. Another source to risk that often is considered

for hydropower producers is production risk, which largely is caused by uncertainty

in inflow to hydropower plants. Risk factors that are less common in the literature

includes the risk related to di↵erences in the area price and the system price, covered

in Woodard and Garcia (2008) and Broll et al. (2015), and Currency risk which for

instance is covered in (Wu and Sen, 2000).

– Choice of risk measure � One of the most accepted risk metrics today is the

conditional value at risk (CVaR), which considers the downside tail risk of a port-

folio. Applying a risk measure that consider the downside tailrisk is further in line

with Stulz (1996) who argues that risk management is more about reducing the

probability of large losses, than to reduce the volatility in the cash flow. CVaR is

measured as the expected loss, given that the loss exceeds the value at risk (VaR).

Further, VaR is defined as the threshold to which losses shall not exceed with a

given confidence level (Zenios and Markowitz, 2008). In addition to its financial

relevance, Rockafellar and Uryasev (2000) show that CVaR can easily be integrated

in stochastic problems. For this reason, CVaR is widely applied in the literature

on hedging with stochastic optimization (see e.g. Conejo et al. (2008), Pineda and

Conejo (2012), Shütz and Westgaard (2018)).

A problem with CVaR in multistage optimization models is that the risk measure is

time inconsistent, potentially leading to erroneous estimations of the risk at interme-

diate states (Rudlo↵ et al., 2014). The reason for this is that risk is not considered
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according to the conditional probabilities at intermediate stages, or as stated in

Rudlo↵ et al. (2014): ”at every state of the system, our optimal decisions should

not depend on scenarios which we already know cannot happen in the future”. A

time consistent formulation of CVaR was first formulated by Shapiro (2009). In con-

trast to the standard formulation of CVaR, the time consistent formulation assures

that the risk is regarded throughout the whole stochastic process, by ensuring that

only scenarios that are reachable from the current state (Shapiro, 2009). Rudlo↵

et al. (2014) show that applying a time consistent CVaR gives more conservative

decisions by using a time inconsistent CVaR formulation. Our model formulation

in Chapter 6 is based on the approach of Rudlo↵ et al. (2014), who ensure time

consistency with a recursive CVaR formulation. Applications of this formulation

within hedging and power production are presented in Shütz and Westgaard (2018)

and Pisciella et al. (2016).

Applications of alternative risk measures than CVaR are for instance presented

in Fleten et al. (2002), who consider the target shortfall exceeding a predeter-

mined target profit. Other risk measures such as total absolute deviation, value

at risk and variance are evaluated in Gómez-Villalva and Ramos (2004) and Ek and

Thorbjørnsen (2014).

– Types of derivatives � As emphasized in Chapter 2 lack of liquidity commonly

reduces the number of available derivatives. While this makes forward contracts the

most common type in the Nordic electricity market, applications using options are

for instance found in Conejo et al. (2008) and Pineda and Conejo (2012).

The decision problem we base on in this thesis considers a portfolio of hydropower plants,

where production planning is done separately from the hedging decision we approach.

Both production and price risk are considered, and a time consistent CVaR is used as risk

measure. As hedging instrument, forward contracts are regarded.

A fundamental challenge of stochastic optimization models is the assumption of the proba-

bility distribution of the random variable to be known, while in reality often being subject

to uncertainty. This is problematic because stochastic optimization problems tend to be

highly sensitive to wrongly estimated distributional parameters (Consigli et al., 2016).

Stochastic models thus often give rise to an overfitting problem referred to as the “Opti-

mizer’s curse”, causing poor performance on out of sample tests, despite of being perfectly
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optimized for in sample data (Smith and Winkler, 2006). In the literature, distributional

uncertainty is known as the concept of ambiguity (Ellsberg, 1961). Ambiguity aversion

therefore represents a decision maker’s preference for known probability distributions over

uncertain distributions. Risk aversion on the other hand describes a decision makers pref-

erence for less risky portfolios with lower expected payo↵s, under a known probability

distribution of the uncertain assets (Ellsberg, 1961).

The shortcoming of stochastic optimization when it comes to handling distributionally

uncertainty is approached by an optimization paradigm called distributionally robust

optimization. Relevant literature on this field of optimization is presented in the next

section. There are however no literature on distributionally robust optimization applied

on hedging problems.

3.3 Accounting for ambiguity

The paradigm of distributionally robust optimization approaches the problem of am-

biguity by letting the probability distribution be subject to uncertainty itself. This is

achieved by assuming that the true distribution of the random variable is contained in

a set of potential distributions, an ambiguity set, rather than assuming one specific dis-

tribution (Delage, 2017). As neatly illustrated by Consigli et al. (2016), distributionally

robust optimization can be interpreted as a game against ’nature’. The decision maker

first maximizes expected returns, and as a response, ’nature’ selects the distribution, from

a set of potential probability distributions, that inflicts maximum harm to the decision

maker. Consequently, the decision maker accounts for the distributional uncertainty by

making the decision that is optimal under the worst-case conditions.

The earliest approach in the direction of distributionally robust optimization is the work of

Žáčková (1966), who attempted to solve stochastic programs under limited distributional

information. Distributionally robust optimization did, however, not come to exist until

after robust optimization became popular in the late 1990s, as an alternative to stochastic

optimization (Postek et al., 2014).

Based on the work of Ben-Tal and Nemirovski (1997), robust optimization addresses dis-

tributional uncertainty by assuming the uncertain input parameter to be contained within

some uncertainty set, and then by optimizing for the worst-case. Robust optimization has
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proven to have a multitude of successful implementations in a wide range of industries

(Ben-Tal et al., 2009). Among these there are also examples applied to hedging (Shen

et al., 2013; Fonseca et al., 2009). The principle findings from these papers are that robust

models tend to perform better when expected return is overestimated, and that the worst-

case approach of robust optimization is useful for risk averse investors. However, robust

optimization is criticized for being too conservative, as all distributional information is

disregarded (Consigli et al., 2016).

Distributionally robust optimization came to rise during the 2000s, as a generalization of

robust and stochastic optimization. The di↵erent methods for formulating distributionally

robust optimization problems are often distinguished by how they model ambiguity. A

second factor that distinguishes the literature on distributionally robust optimization is

the amount of distributional information that is assumed available.

The di↵erences in the methods for modelling ambiguity is determined by how the ambi-

guity set is formulated. The ambiguity set is a set of possible probability distributions,

which is large enough to contain the unknown true probability distribution. There are

three common methods for formulating the ambiguity set.

The first method creates ambiguity sets based on statistical moments. Statistical moments

are quantitative measures of the shape of a probability distribution (Papoulis, 1965). A

statistical moment ambiguity set is formulated by constraining the statistical moments to

be within some interval around the moments of the baseline distribution (Delage and Ye,

2010; Goh and Sim, 2010).

The second method creates ambiguity sets from goodness of fit confidence regions, where

the ambiguity set contains distributions that have passed a statistical hypothesis test rela-

tive to the baseline distribution. This is for example done in Bertsimas et al. (2014).

The third method, which we rely on in this thesis, creates the ambiguity set based on a

distance metric. This type of ambiguity set can be considered as a ball around the em-

pirically observed baseline distribution, with radius according to some statistical distance

measure or probability metric. The ambiguity set then contains all probability distribu-

tions within some distance metric from the empirically observed distribution. Typical

statistical distance measures are �-divergence (Bayraksan and Love, 2015), or the nested

distance, which is the basis for the model applied in this thesis in Chapter 5. For examples

on papers applying distance metrics in creating the ambiguity set, see Pflug and Wozabal
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(2007), Esfahani and Kuhn (2015) and Analui and Pflug (2014). A further elaboration of

the pros and cons with the di↵erent approached is found in Appendix A.1.

The second distinction between the distributionally robust problem formulations in the

literature, is the assumptions about available information. The following examples em-

phasize the diversity in these assumptions. The early work of Shapiro and Kleywegt (2002)

assumes a finite set of distributions to be known, to which probabilities are assigned such

that distributionally robust problems can be solved as stochastic problems over the set

of probability distributions. Goh and Sim (2010) assume that only the support and co-

variance matrix are known, while the mean is subject to uncertainty. Similarly Xin et al.

(2013) assume the support of a distribution, that is the area where a probability distri-

bution is not zero, and the two first statistical moments to be known, while Esfahani and

Kuhn (2015) assume that the decision maker only has a set of observations and knows

the support of the distribution. Finally, Analui and Pflug (2014) require a scenario tree

for the baseline distribution, similar to what is required for a stochastic problem.

A problem with the field of distributionally robust optimization is that it is highly theo-

retical, with lack of application on real data. Hence, only a few papers have investigated

the gain of applying distributional robust optimization on real decision problems. Among

the applications, Pflug and Wozabal (2007) consider a portfolio optimization problem con-

sisting of six stocks, where the tradeo↵ between return, risk and robustness to ambiguity

successfully is illustrated. Pflug and Wozabal (2007) find that by increasing the robust-

ness against ambiguity, a relatively small reduction in expected returns is sacrificed for a

significant reduction in the risk, measured by CVaR. Hence, they find it advisable to ap-

ply distributionally robust optimization in portfolio optimization for risk averse investors.

Esfahani and Kuhn (2015) also approach a mean-risk portfolio optimization problem of

stocks, where similar results are obtained. In addition, the authors point towards a better

post decision disappointment for distributionally robust models, in contrast to stochastic

models, when comparing realized to expected revenues out of sample. Among other case

applications of distributionally robust optimization, Analui and Pflug (2014) approach a

simple inventory control problem. They show that the gain of applying a distributionally

robust model is found to be higher than the cost of ambiguity. That is, in cases where

the true probability distribution is worse than assumed, the gain of applying a distribu-

tionally robust model is greater that the loss in cases where the true distribution actually

is correctly estimated.
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Despite of promising results on portfolio optimization examples, there are still no applica-

tions of distributionally robust optimization on hedging problems. We therefore develop

a multistage distributionally robust optimization model when approaching the optimal

hedging strategy for an electricity producer. The distibutionally robust approach used in

this thesis bases on the work of Analui and Pflug (2014), but we extend it to incorporate

a risk measure. Specifically, a time consistent version of CVaR is applied to measure

the risk. As the distributionally robust optimization lack of applications and testing on

real-life data, we backtest and benchmark the performance of the model on historical

realizations of spotprices and production quantities.

The table below compares this thesis against central literature on distributionally robust

optimization. A clear distinction is the application on a practical case with historical data

and the use of multiple decision stages.

Literature Type of ambiguity set
Assumptions about

information

Recourse

decisions

Practical

application

This thesis Distance metric - nested distance A complete scenario tree. Yes (multistage) Yes

Shapiro and Kleywegt (2002) Non-existing
Distributions are assigned

probabilities.
No No

Pflug and Wozabal (2007) Distance metric - Wasserstein distance A set of observed sample points. No No

Delage and Ye (2010) Statistical moments Support and first two moments. No No

Goh and Sim (2010) Statistical moments Support and covariance matrix. Yes (two-stage) No

Xin et al. (2013) Statistical moments Support and first two moments. Yes (multistage) No

Bertsimas et al. (2014) Goodness of fit test
Support, mean and

covariance matrix.
Yes (two-stage) No

Analui and Pflug (2014) Distance metric - nested distance A complete scenario tree. Yes (multistage) No

Bayraksan and Love (2015) Distance metric - Phi divergences
Observed sample points or

discrete distributions.
Yes (two-stage) No

Esfahani and Kuhn (2015) Distance metric - Wasserstein distance A set of observed sample points. Yes (two-stage) No

Hanasusanto and Kuhn (2016) Distance metric - Wasserstein distance A set of observed sample points. Yes (two-stage) No

Table 3.1: A comparison of this this thesis and the literature on distributionally robust opti-
mization.

A detailed elaboration of the approach towards formulating and solving the general mul-

tistage distributionally robust problem is found in Chapter 5, while the hedging specific

model is elaborated in Chapter 6.
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Chapter 4

Problem Description

We consider TrønderEnergi AS, a small Norwegian energy producer and provider, oper-

ating in the NO3 market. Its portfolio of power plants primarily consists of hydropower

plants. Due to the high volatility in electricity prices, TrønderEnergi’s revenue is exposed

to a significant price risk. In addition, as the hydro inflow to power plants is uncer-

tain, there is a substantial production risk related to TrønderEnergi’s operations as well.

Hence, fluctuating electricity prices and production quantities may result in a volatile and

unpredictable cash flow for TrønderEnergi, potentially leading to large losses.

Managing production risk is di�cult in practice, but by hedging with financial instru-

ments, such as forward contracts, TrønderEnergi’s price risk exposure can be reduced.

TrønderEnergi therefore seeks a model for finding the optimal use of forward contracts,

so that expected profits are maximized and the company’s level of risk aversion is satis-

fied.

In addition to determining the optimal quantity to buy of forward contracts with di↵erent

maturity periods, TrønderEnergi has to consider at what time the respective forwards

should be entered. For the latter decision there is trade-o↵ between entering into a position

for an agreed price today and waiting for new information. TrønderEnergi considers a

planning horizon of 4-6 months as relevant for the decision problem, as this is the time it

normally takes to empty the water from a reservoir. Further, the company considers the

hedging decision of top on their production decision. Hence, no production decisions are

to be considered in this decision problem.

23
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TrønderEnergi considers the following revenue and cost components as decision relevant

when developing the optimal hedging strategy:

Revenue components

– The uncertain spot price and the quantity sold through the spot market for di↵erent

periods.

– The production quantity sold through forward contracts and the price of the respec-

tive contracts, for di↵erent periods. Following lack of liquidity, options written on

the Nordic system price are not applied, according to TrønderEnergi.

Cost components

– Transaction costs occur when entering into derivatives, giving TrønderEnergi incen-

tives for entering into a lower quantity of contracts. In addition, as transaction cost

are payed when the contracts are entered, this gives TrønderEnergi incentives to

wait longer before entering into contracts, as the time value of the transaction costs

is decreasing.

– Tax costs that have to be considered are the natural resource tax, and the corporate

income tax. The natural resource tax is, as opposed to the corporate tax, solely

based on the spot price during the production hours, independent on whether the

production is sold on contract or in the spot market. A consequence of this, as

explained in Section 2.2, is that TrønderEnergi risks to pay the natural resource

tax on non earned revenues in cases where the spot price exceeds the forward price

through maturity.

As of today, TrønderEnergi has no structured hedging strategy for approaching this de-

cision problem. This thesis suggests a decision support tool for determining an optimal

hedging strategy for the TrønderEnergi, given company’s level of risk aversion. In order to

develop a dynamic tool that properly captures the underlying risk of the electricity prices

and production quantities, a multistage distributionally robust optimization model is de-

veloped. The details of the model follows is Chapter 5 and Chapter 6. In the remainder

of this thesis we use decision maker and TrønderEnergi interchangeably.



Chapter 5

Solution Method

The purpose of this chapter is to present the general solution method used to solve the

hedging problem described in Chapter 4.

One of the most challenging aspects of formulating a hedging model for an electricity

producer, is to address uncertainty in price and production quantity. As presented in Sec-

tion 3.2, a limitation with stochastic optimization is the assumption of full distributional

information, which is problematic since accurate uncertain information in many instances

is limited. In turn, this can lead to badly estimated input parameters, which further

can deteriorate the quality of decisions given by these tools. Stochastic models hence

struggle with an undesired model risk. Recall that Distributionally robust optimization

on the other hand is an optimization paradigm that seeks to reduce the model risk of the

stochastic models by making the available distributional information in itself subject to

uncertainty.

To determine the optimal hedging strategy for TrønderEnergi, we create a multistage

distributionally robust optimization model. We also create a stochastic model in order to

benchmark the performance of the multistage distributionally robust model.

In Section 5.1 to Section 5.3 we elaborate on how a general multistage distributionally

robust problem is formulated and solved. Section 5.1 gives an introduction to the ap-

plied formulation and solution method, and provides understanding of how ambiguity is

accounted for. In Section 5.2 we use these insights to formulate the multistage distribu-

tionally robust optimization problem, starting from a familiar stochastic formulation. In
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Section 5.3 we present a solution algorithm for approximating the optimal solution of the

formulated problem.

In Section 5.4 we explain the method used to generate the scenario tree which is used as

input for the optimization models. An iterative clustering algorithm applying stochastic

approximation is used, where the tree is generated from a set of forecast paths.

5.1 Introduction to distributionally robust optimiza-

tion

Recall that a distributionally robust optimization problem can be understood as a game

between two actors. The first actor makes the optimal decision while knowing that the

other actor, who is in possession of a set of probability distributions, chooses the prob-

ability distribution that causes the most harm to the optimal decision. In the instance

where the objective is to minimize a cost function, this analogy can be elaborated as

follows: The decision problem consists of two optimization problems that are solved si-

multaneously. The outer problem sets the decision variables such that the cost function

is minimized. The inner problem finds the probability distribution from an ambiguity

set of probability distributions, with the purpose of maximizing expected costs. Because

of these two counteracting problems, distributionally robust optimization problems are

called minimax problems.

The purpose of this minimax structure is that it avoids making any assumptions about

the probability of choosing one probability distribution over another, which is achieved

by simply using the worst-case distribution from the ambiguity set (Consigli et al., 2016).

This underlines the importance of modelling ambiguity set properly, which usually is

a trade-o↵ between covering the true distribution with su�cient likelihood, while not

making the optimal decisions too conservative (Esfahani and Kuhn, 2015).

In this thesis the distributionally robust optimization problem formulation and solution

method are based on the work of Analui and Pflug (2014). Recall from Section 3.3 that

the di↵erent methods for modelling ambiguity can be regarded as a threefold, depending

on how the ambiguity set is modelled. Analui and Pflug (2014) formulate the ambigu-

ity set based on a probability metric. A probability metric is in Section 3.3 described
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as a measure of the extent to which two probability distributions di↵er. It can be re-

garded as the radius of a ball that circumfers the empirically observed baseline probability

distribution. Increasing this so-called ambiguity radius accounts for more and more prob-

ability distributions. If the ambiguity radius on the other hand is is zero, no ambiguity

is accounted for. The distributionally robust optimization problem is then reduced to a

stochastic problem (Pflug and Wozabal, 2007).

Analui and Pflug (2014) consider multistage distributionally robust optimization prob-

lems. Rather than capturing random outcomes at a single point in time, the applied

probability metric measures the di↵erence between two stochastic processes, each repre-

senting random outcomes over multiple points in time. This probability metric is called

the nested distance. We represent stochastic processes with probability models, which is

in the hedging model instance of Chapter 6 are in the form of scenario trees. We dis-

tinguish probability models from probability distributions, which only represent random

outcomes at a single point in time.

A first advantage with the approach of Analui and Pflug (2014) is that it allows multistage

formulations, which has been proven to be valuable due to the ability of incorporating

flexibility in the decision strategies.

A second advantage is the support for linear formulations with considerable modelling lee-

way. As a consequence, non-anticipativity constraints and suitable risk measures such as

CVaR can be modeled and solved with commercially available optimization software.

The primary disadvantage with this method is that it is an approximation method, that

cannot guarantee that the worst-case distribution in the ambiguity set is found. The

optimal solution can therefore neither be guaranteed, even though the solution method is

proven to always converge towards a stable solution.

Further, the problem uses a scenario tree to model uncertainty. According to Shapiro

(2018), there are two central drawbacks with this. First, as we describe in detail in Section

5.4, we often observe data as realizations, i.e. sample paths. This is also the situation

in our instance. A scenario tree requires that we evaluate the conditional distributions

of the stochastic process, and the only way to do so is to make assumptions about the

structure of this process. A second problem is that scenario trees heavily deteriorate the

computational performance.
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Another limitation is that the structure and values in the scenario tree are assumed to

be fixed, while only the probabilities of the scenarios themselves are allowed to vary.

Without this assumption the problem would very di�cult to solve due to its resulting size

and non-convexity.

Before formulating the distributionally robust optimization, we need to establish an un-

derstanding of how the ambiguity set is formulated. In order to do so, we need to un-

derstand the concept of nested distance. This concept is a multistage generalization of

another probability metric called the Wasserstein distance. An initial step is therefore to

comprehend the theory behind this probability metric.

5.1.1 The Wasserstein distance

The Wasserstein distance is a metric used to measure how di↵erent two probability dis-

tributions are. The Wasserstein distance is the optimal solution of a mass transportation

problem, which can be explained with the following analogy. Consider the probability dis-

tributions as piles of sand. The objective is to move as little sand as possible in the first

pile of sand, such that it becomes identical to the second. More precisely, the objective

is to transport the mass of one distribution, such that it becomes identical to the other,

by transporting the total mass the shortest possible distance.

The mass transportation problem is a linear optimization problem. Consider two distri-

butions P̂ and P , discretized as P̂i and Pj, where the points i and j belong to the sets

N̂ and N respectively. Consider also a distance measure dij between the points on the

probability spaces. A typical distance metric is the r-order distance, which we describe

in detail in the paragraphs below. We write the distance measure as drij, and denote the

decision variables as ⇡ij. The Wasserstein distance dW
r is found by solving
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dW
r = min

⇡

X

i2N̂

X

j2N

d
r
ij ⇡ij (5.1)

s.t.

X

j2N

⇡ij = P̂i i 2 N̂ (5.2)

X

i2N̂

⇡ij = Pj j 2 N (5.3)

⇡ij � 0 i 2 N̂ , j 2 N (5.4)

In the following paragraphs we first explain the objective function components, and then

explain the constraints of this problem.

The objective function (5.1) consists of two components. The first is the distance measure

d
r
ij, a matrix of dimensions N̂ ⇥N that denotes the distance associated with transporting

a unit of mass from point i in P̂ to j in P . We hereafter refer to d
r
ij with the more

general term, transportation cost. A typical distance metric is the r-order distance. For

the random variables ⇠̂i and ⇠j, which are vectors of length m, i.e. on Rm, with weights

w
m, the r-order distance is

dr(⇠̂i, ⇠j) =

 
MX

m=1

w
m
���⇠̂mi � ⇠

m
j

���
r
!1/r

(5.5)

The second component of the objective function (5.1) is the problem’s decision variables

⇡ij. When solved to optimality ⇡ij form the optimal transportation plan, which is the

amount of mass transported from each point i to j with the lowest possible total trans-

portation distance. Mass transportation with an optimal transportation plan between

two distributions is illustrated in Figure 5.1.

The transportation plan ⇡ij is a bivariate probability measure consisting of marginal

distributions P̂ and P (Pflug and Pichler, 2014b). Intuitively, ⇡ij contains information

about the mass transported from any point i in P̂ to j in P and the total mass to be
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transported hence sums up to one. The bivariate probability distribution ⇡ij therefore

has the following properties

X

i2N̂T

X

j2NT

⇡ij = 1 (5.6)

⇡ij � 0 i 2 N̂ , j 2 N

Constraints (5.2) and (5.3) are balance constraints that ensure consistency in the trans-

ported mass. (5.2) ensure consistency in the mass transported and the available mass at

each point in P̂ . Similarly (5.3) ensure that the mass received at P is neither more nor

less than what is demanded. Constraints (5.4) prevent negative probabilities.

Figure 5.1: The optimal transportation plans ⇡i3j between probability distributions P̂ and P
with N̂ = N = 3.

The Wasserstein distance is appropriate for measuring distance between probability dis-

tributions. However, as we elaborate in the following section, this distance measure is

insu�cient when measuring the distances between scenario trees in a multistage setting,

since it does not consider the stage at which information is received (Pflug and Pichler,

2014b).
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A distance measure that considers whole stochastic processes is a concept introduced by

Pflug and Pichler (2012) known as the nested distance. As we explain in the following

subsection, this is a multistage generalization of the Wasserstein distance. It is therefore

important to keep in mind that despite of increased complexity, the nested distance prob-

lem is also a mass transportation problem, where the goal is to transport the total mass

at minimal costs.

5.1.2 The nested distance

The nested distance is a metric for describing the extent to which two stochastic pro-

cesses, for instance scenario trees, di↵er. In contrast to the Wasserstein distance, nested

distance considers more than just the single random variables, but a collection of these

in entire stochastic processes. This allows nested distance to capture how the stochastic

information evolves over time (Pflug and Pichler, 2014b). The need for using another

distance measure than the Wasserstein distance to measure the distance between stochas-

tic processes is demonstrated in the following example. First, let P denote a probability

model, which is a representation of a random process. To express that P is composed of

a probability distribution P of unconditional probabilities at the leaf stage, and a tree

structure T, we write P = P(T, P ).

Consider the scenario trees P(1) and P(2), illustrated in Figure 5.2. Denote their respective

structures as T(1) and T(2). Since P is identical for both trees, we can express the trees

as P(1) = P(T(1)
, P ) and P(2) = P(T(2)

, P ).
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Figure 5.2: Two processes that have identical leaf node probabilities and states. The tree
structures are on the other hand di↵erent, causing the nested distance to be di↵erent between
the models.

Since the final stage also has identical node values, and since the Wasserstein distance

does not care about the evolution of information up to this point, the Wasserstein distance

between these trees is 0. On the other hand, the nested distance takes into account that

in P(1) the final observation is revealed earlier than in P(2), hence making the nested

distance non-zero. By implementing the nested distance optimization problem (5.8) to

(5.12), which we explain in detail in the following paragraphs, we confirm this by showing

that the nested distance dl1(P(1)
,P(2)) = 0.84.

In order to establish a thorough understanding of the nested distance, we first need to

define some notation. Consider the baseline probability model P̂ and the alternative

model P, which are trees of the same height. We denote stage t as a stage in the set

of stages T = {0, . . . , T}. Let i be a leaf node in the set of leaf nodes N̂T in P̂, and
j 2 NT a leaf node in P. For a stage t, let k be a node in the set of nodes at this stage

N̂t if t 2 T\{|T |}, and let k be a direct predecessor of node i
0 2 N̂t+1. We write the

direct predecessor relationship as k = i
0�. Similarly, let l 2 Nt and for node j0 2 Nt+1 let

l = j
0�. If i0 is a child in the set of children of k we write i0 2 k+. We further write j0 2 l+

if j0 is a child in the set of children of l. For any predecessor k and l that not necessarily

are direct predecessors of i0 and j
0, we write the predecessor relationship as k � i

0 and

l � j
0. Keep in mind that we distinguish between the leaf nodes i and j, and the successor

nodes i
0 and j

0. The two latter nodes may be intermediate nodes. When representing
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paths of predecessors we index i and the preceding nodes as i as i, iT�1, iT�2, . . . , i0. We

write the scenario probabilities P̂i and Pjfor i and j in N̂T and NT respectively.

According to Pflug and Pichler (2014b), the reason why the Wasserstein distance is not

suitable for measuring scenario trees, is that it does not consider the conditional proba-

bilities that reside within the tree structure. The nested distance problem addresses this

by ensuring consistency between conditional probabilities P̂ (i | k) and P (j | l) and con-

ditional transportation plans, or subplans ⇡(i, j | k, l). Following the mass transportation

analogy from Section 5.1.1, the conditional probabilities can be interpreted as the avail-

able or required mass for leaf nodes i and j respectively, under the condition of being in

the subtrees where k and l are the respective roots. Similarly the subplans can be inter-

preted as the transportation plans in these subtrees. The full transportation plan ⇡ij is

an aggregation of subplans, which can be interpreted as the transportation plan between

entire paths in each tree. ⇡ij is therefore defined over the leaf nodes i and j. ⇡(i, j | k, l)
can be defined from ⇡ij as the proportion of mass transported between the paths from

each respective root node down to i and j, relative to the total mass transported between

all paths that end up at leaf node successors of k and l. Or more specifically this can be

formulated by equation (5.7)

⇡(i, j | k, l) = ⇡ijP
ī�k

P
j̄�l ⇡ī,j̄

(5.7)

The nested distance problem can now be formulated by (5.8) to (5.12)
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dlr = min
⇡

X

i2N̂T

X

j2NT

⇡ij d
r
ij (5.8)

s.t.

X

j�l

⇡(i, j | k, l) = P̂ (i | k) k � i, k 2 N̂t, l 2 Nt, t 2 T\{|T |} (5.9)

X

i�k

⇡(i, j | k, l) = P (j | l) l � j, k 2 N̂t, l 2 Nt, t 2 T\{|T |} (5.10)

X

i2N̂T

X

j2NT

⇡ij = 1 (5.11)

⇡ij � 0 i 2 N̂T , j 2 NT (5.12)

Note that the distance measure d
r
ij has to be slightly modified in the nested distance

objective function (5.8), such that the distance measure now considers the entire paths

from the root down to leaf nodes i and j. The commonly used r-order distance, when

adapted to a stochastic process, is written

dr(⇠̂i, ⇠j) =

 
TX

t=1

MX

m=1

w
m
t

���⇠̂mit � ⇠
m
jt

���
r
!1/r

(5.13)

Even though being more complex, this problem highly resembles the Wasserstein distance

problem (5.1) to (5.4). As for the Wasserstein distance constraints, constraints (5.9) to

(5.11) ensure consistence in the total mass transported from the baseline distribution, and

consistence in the total mass received by the alternative distribution.

As an example, consider constraints (5.9) that require the mass transported from i, con-

ditional on k, to all leaf node successors of l to be neither more nor less than the available

mass P̂ (i | k). The similar consistence in what is received at j, conditional on l, is

ensured by constraints (5.10). To further exemplify the similarities to the Wasserstein

distance, consider the instance where the scenario tree only has two stages. Nodes k and

l then become root nodes. Consequently, P̂ (i | k) = P̂ (i) and P (j | l) = P (j), and
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⇡(i, j | k, l) = ⇡(i, j). Since the total mass of the distribution resides within P̂ and P ,

constraint (5.11) becomes redundant. The instance of the nested distance problem has

then become equivalent to the Wasserstein distance problem.

Pflug and Pichler (2014b) also present an equivalent linear formulation of problem (5.8)

to (5.12) that considers subplans only at successive stages. Even though the formulation

in itself is not of importance other than being equivalent to the one presented above, it

is important to understand that full transportation plans, as shown by Pflug and Pichler

(2014b), can be formulated as the product of the path of direct successor subplans by

relation (5.14)

⇡(i, j) = ⇡(i, j | iT�1, jT�1) · . . . · ⇡(i1, j1 | i0, j0) (5.14)

Remark how the product of direct successor subplans, from the leaf nodes along prede-

cessor path up to the root, resembles how the product of conditional probabilities along

a similar path forms the scenario probability.

This relation is particularly useful in this thesis since central components in the multistage

distributionally robust optimization problem, called transportation subkernels, closely

relate to direct successor subplans. We elaborate this relation in Section 5.3.2.

For now, recall that a distributionally robust optimization problem finds the worst-case

probability model from a set of probability models. Suppose then that we have a variant

of the nested distance problem above, with the purpose of changing P (j | l) in constraints

(5.10), while being constrained by the nested distance. Subkernels would then, in a

similar manner as subplans in the nested distance problem, be the decision variables in

this problem.

In the following section we show how a distributionally robust optimization problem can

be formulated with an ambiguity set that only contains scenario trees, or probability

models, within a certain nested distance from the baseline probability model.
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5.2 Creating a solvable problem

As introduced in Section 5.1, distributionally robust optimization problems are highly

complex. Our approach towards the final goal of solving a multistage distributionally

robust optimization problem therefore starts at the common ground that this problem

type shares with a more familiar problem type, multistage stochastic optimization. Once

the similarities and di↵erences between multistage stochastic and distributionally robust

optimization are properly explained, we proceed by formulating a general multistage dis-

tributionally robust problem. We then follow several steps for transforming the complex

general distributionally robust problem into one that is manageable. Finally, we elab-

orate on the approach for solving the manageable distributionally robust optimization

problem.

Consider first the linear multistage stochastic problem

min
x

{EP
⇥
H(x, ⇠)

⇤
: x 2 X, x / F; P ⇠ (⌦,F, P, ⇠)} (5.15)

H(x, ⇠) denotes a cost function consisting of the decision variables x, which in (5.15) is

a vector with components xt, and the random variable vector ⇠ with components ⇠t for

each stage t 2 T of the stochastic process. ⇠ describes the values of possible outcomes.

Both xt and ⇠t are vectors on Rm. The constraint x 2 X requires all x to be within

the feasible linear vector space X. The uncertainty is represented by a scenario tree,

which we represent with the probability model P. In problem (5.15), P is defined over

the probability space (⌦,F, P, ⇠). In brief, this formulation provides the same principal

information as the definition P = P(T, P ) from Section 5.1.2, stating that P in addition to

contain information about the uncertain values, also has information about the structure

of when information is available. The sample space ⌦ is the set of possible outcomes, i.e.

the set of paths through the tree, and the filtration F = (F1 . . .FT ) is the set of events,

representing the possible outcomes at each stage of the decision tree. x / F denotes the

non-anticipativity constraints, ensuring that xt only depends on information available

before or at stage t. P is the distribution of unconditional probabilities over the nodes in

NT .
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Distributionally robust optimization problems share the same basis as stochastic opti-

mization problems in terms of seeking to find the optimal expected value of the objective

function EP
⇥
H(x, ⇠)

⇤
. This means that the optimal decision is based according to the

uncertainty provided by the probability model P. As introduced in Section 5.1, the fun-

damental principle of distributionally robust optimization is to assume that we do not

know P for certain, but rather assume that it almost certainly resides within some am-

biguity set P of possible probability models. Since we cannot say anything about the

likelihood of choosing one probability model over another, we find the decision that is

optimal under the worst-case probability model from P .

A factor that increases the complexity of a distributionally robust optimization problem is

that it performs two counteracting actions at once. While x on one hand are decided such

that the objective function value is minimized, P is on the other simultaneously decided

with the goal of maximizing the objective function. Any solution to this problem can

therefore be regarded as the equilibrium of a game between two opposing actors, making

the distributionally robust optimization problem a so-called min-max problem. On its

general form, the distributionally robust counterpart of (5.15) is formulated

min
x

max
P2P

{EP
⇥
H(x, ⇠)

⇤
: x 2 X, x / F} (5.16)

Following the work of Analui and Pflug (2014) and according to the discussion in Section

5.1, we in this thesis formulate a multistage distributionally robust problem that considers

P as a ball of possible probability models. The radius of this ball is known as the ambiguity

radius ", and is measured in nested distance around the baseline model P̂

P := {P : dlr(P, P̂)  "} (5.17)

This problem is typically non-convex, which makes us unable to guarantee that a solution

exists. The problem does additionally have a size that makes it di�cult to solve. In the

first part of this section we therefore present the assumptions and structure that need to

be in place in order to create a solvable problem.
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5.2.1 Scoping down and convexifying the problem

In order to reduce the problem size, we assume the tree-structure T to be fixed, such

that only the scenario probabilities P = (Pi)i2NT are allowed to vary. Analui and Pflug

(2014) argue that the opposite case would require non-convex optimization even in the

single-stage case. Hence, we from now denote the set of nodes at stage t in the baseline

model or any alternative model as Nt. We can then write P as P(T, P ). We further

rewrite (5.17) as two components. The first is the ball B" that contains all probability

distributions that satisfy the following condition: When the probability distributions are

inserted into the probability model P(T, ·), this probability model has a nested distance

no more than " away from the baseline probability model P̂

B" := {P : dlr
⇣
P(T, P ), P̂(T, P̂ )

⌘
 "} (5.18)

The second component is the ambiguity set

P" := {P(T, P ) : P 2 B"} (5.19)

consisting of probability models P(T, P ) where every P satisfies (5.18). This reformulation

allows us to rewrite problem (5.16) as

min
x

max
P(T,P )2P"

{EP(T,P )

⇥
H(x, ⇠)

⇤
: x 2 X, x / F} (5.20)

Even though the fixed tree structure has reduced the problem size, a remaining problem

is the non-convexity of the distributionally robust problem. Recall from the introduction

to Section 5.2 that solutions to distributionally robust optimization problems can be

interpreted as an equilibrium strategy in a game between two actors. Whether or not

we can guarantee existence of such an equilibrium relies on whether we can satisfy the

min-max theorem (von Neumann, 1928) or not. In order to hold, this theorem requires
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the decision space to be convex, which is complicating in our case since neither B" nor P"

satisfy this criterion (Analui and Pflug, 2014). We proceed by presenting an approach for

convexifying the decision space, which in turn allows us to guarantee the existence of an

equilibrium decision.

The goal of this approach is to formulate the convex hull P̄" of P", which is the smallest

convex set containing all probability models in P". Under the assumption of having access

to all probability models within P", the set of these probability models and their convex

combinations form the convex relaxation of P", which is defined as the convex hull P̄".

The set of all probability models in P" is approximated by sampling P from B" and then

adding the corresponding probability model P(T, P ) to the finite set of other sampled

probability models, whose convex combinations form the approximation of P̄".

Since all sampled probability models are within B", they satisfy (5.18). Since we want

any convex combination of sampled probability models to also be within P", we need to

ensure that any convex combination between two sampled probability models also satisfy

(5.18). However, ensuring this is not a trivial task. In the following paragraphs we present

an approach for formulating convex combinations of probability models, such that this

criterion holds. We then rewrite the ambiguity set as its convex hull, and finally formulate

the convex distributionally robust problem.

Formulating convex combinations of probability models

We want to formulate a convex combination between two probability models, such that

the following criterion is satisfied: The nested distance between a baseline probability

model and the convex combination has to have a nested distance no greater than the

maximal nested distance between the baseline model and either of the two probability

models.

Pflug and Pichler (2014a) argue that for a fixed tree structure, there are at least two

approaches towards formulating such convex combinations. A first is to create a probabil-

ity model from the convex combination of the scenario probabilities from two probability

models within the ambiguity set. However as we show in Appendix A.2, this formulation

does not satisfy the above mentioned criterion.

On the other hand, Pflug and Pichler (2014a) show that a correct way of forming these
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convex combinations is by the use of compounding. Compounding can be understood as

adding a root on top of the probability models in the ambiguity set and then assigning

probabilities � for each probability model. For two probability models P(1) and P(2), the

compound C is given by

C(P(1)
,P(2);�) =

8
<

:
P(1) with probability �,

P(2) with probability 1� �.

(5.21)

C(P(1)
,P(2);�) is then a tree of height T + 1. Since the nested distance compares trees of

the same height, we need to denote P(0)
+ as a third probability model, which is the baseline

model P(0) with an additional root node. These two trees are illustrated in Figure 5.3

Figure 5.3: Left: The compound tree C(P(1),P(2);�), Right: The augmented tree P(0)
+

Following (A.1), we now have to show that the nested distance between C(P(1)
,P(2);�)

and P(0)
+ is no more than than the convex combination of dlr(P(0)

,P(1)) and dlr(P(0)
,P(2)).

To exemplify why this is relevant in the case of the ambiguity set, consider the con-

vex combination of two nested distances between the baseline model P(0) and any two

probability models P(1) and P(2) in the ambiguity set. If this convex combination is no

greater than the nested distance between the baseline model P(0)
+ and C(P(1)

,P(2);�), then

C(P(1)
,P(2);�) is also in the ambiguity set. This example is illustrated this in the Figure

5.4.
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Figure 5.4: If the nested distance dlr
⇣
P(0)
+ , C(P(1),P(2);�)

⌘
is less than or equal to the convex

combination of dlr(P(0),P(1)) and dlr(P(0),P(2)) then we know that also C(P(1),P(2);�) is within
the ambiguity set.

More specifically, we need to satisfy

dlr
⇣
P(0)
+ , C(P(1)

,P(2);�)
⌘r

 �dlr(P(0)
,P(1))r + (1� �)dlr(P(0)

,P(2))r (5.22)

Pflug and Pichler (2014a) prove that equation (5.22) holds by showing that there exists

a valid transportation plan such that C(P(1)
,P(2);�) equals the right hand side. In the

proof, ⇡1 is denoted as the optimal transportation plan for dlr(P(0)
,P(1)), and ⇡2 is the

optimal transportation plan for dlr(P(0)
,P(2)). Recall that a full transportation plan can,

by equation (5.14), be formulated as the product of subplans. Since the subtrees of

C(P(1)
,P(2);�) are identical to P(1) and P(2), then the optimal transportation subplans

between the subtrees are equal to ⇡1 and ⇡2. By taking the product of root probabilities

� and 1 � �, and ⇡1 and ⇡2 respectively, we get the valid transportation plan �⇡1 for

transportation between P(0) and the P(1)-subtree of C(P(1)
,P(2);�), and (1 � �)⇡2 for

transportation between P(0) and the P(2)-subtree of C(P(1)
,P(2);�).
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Since the values of the subtree root nodes in C(P(1)
,P(2);�) are equal, the only path dis-

tances that impact the nested distance (5.8) are those between the subtrees. Further,

since the transportation plans are identical to the weighted transportation plans on the

right hand side of equation (5.22), the two terms are equal. Since this is a valid trans-

portation plan, the optimal transportation plan can only be better. This proves that

(5.22) holds.

We have shown that compounding can be used to formulate convex combinations between

probability models. We now show how we can formulate the convex hull of the ambiguity

set as a compound tree made of a finite set of probability models, such that we can create

a distributionally robust problem where the existence of an equilibrium solution can be

guaranteed.

Formulating the convex hull of the ambiguity set

We convexify the ambiguity set P" by approximating the convex hull P̄" with a finite set

of sampled probability models from B". This is achieved by formulating P̄" as a compound

tree, to which each sampled probability model is added. Since we now know that convex

combinations of probability models within the compound tree also are within B", we can

regard the compound as the continuous image of all probability models within P̄".

Since we consider a fixed tree structure, our sampled probability models are actually sam-

pled scenario probability distributions P from the family of all probability distributions

on NT . In addition, all sampled P have to be valid in terms of satisfying (5.18), such that

they reside in B". We denote the probability distribution from which we can sample valid

probability distributions as ⇤. We then denote the compound C(P(T, ·),⇤) as the tree of

probability models formed by all sampled P

C(P(T, ·),⇤) = P(T, P ), where P is distributed according to ⇤ (5.23)

The convex hull P̄" of P" contains all probability models within P". The compound

structure ensures that any convex combination of probability models is within P", making

P̄" of P" the convex relaxation of P". This is defined as the hull P̄". If we consider a
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finite set of k probability distributions, the compound tree of (5.23) can be illustrated as

in Figure 5.5.

Figure 5.5: The convex hull of the ambiguity set is a compound, here consisting of k sampled
probability models and the convex combinations between them.

Since we know that P̄" is constructed by sampling probability distributions from B", and

since the samples from B" form elements in the convex decision space of P̄", the non-

convexity of B" does not a↵ect the decision space.

We rewrite the ambiguity set as the convex hull of (5.19) that samples distributions

from

B" := {P : dlr
⇣
P(T, P ), P̂(T, P̂ )

⌘
 "}

as

P̄" = {C(P(T, ·),⇤) : ⇤ is a probability distribution on B"} (5.24)

Since (5.24) is convex, we now have a decision space that satisfies the min-max theorem.
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We can therefore reformulate the distributionally robust problem (5.20) such that we can

guarantee the existence of an equilibrium solution. We can then write the convexified

distributionally robust problem as

min
x2X

max
P(T,P )2P̄"

{EP(T,P )

⇥
H(x, ⇠)

⇤
: x / F} (5.25)

5.3 The solution algorithm

As we elaborate in detail in this section, we approximate problem (5.25) by using a suc-

cessive convex programming algorithm, which is a heuristic for approximating a complex

optimization problem by iteratively solving a series of smaller optimization problems.

Our approach is based on the work of Analui and Pflug (2014), whose proposed solution

algorithm is best understood as an almost direct implementation of the game versus na-

ture-analogy from Section 3.3, which is as a game between of two actors. This procedure

is thoroughly explained in Algorithm 5.1. The first actor is the decision maker, who with

the outer optimization problem (5.26) aims to find the x 2 X that minimizes the expected

value of the objective function with respect to the worst-case distribution in the ambi-

guity set. The optimal outer problem decision is then handed over to the other actor,

’nature’. Based on this optimal decision, ’nature’ does in the inner problem (5.27) find a

new probability model that maximizes the expected value of the objective function. This

probability model is then added to the ambiguity set.

By iterating between the outer and inner problem, new worst-case probability distribu-

tions are gradually added to the ambiguity set, such that the actual ambiguity set (5.24)

is approximated by a finite set.

Optimality of the algorithm In contrast to Algorithm 5.1, the distributionally robust

problem (5.25) solves the outer and inner problem simultaneously. A necessary and suf-

ficient condition for finding the joint optimum decision is that x and P have to be chosen

simultaneously (Analui and Pflug, 2014). As a consequence, even though we can guaran-

tee the existence of an equilibrium solution based on a worst-case distribution within P",

we cannot guarantee that this is the joint optimum solution.
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An intuitive interpretation of this condition can be made by considering an analogy to

economic game theory. Recall that the optimal solution in a Cournot duopoly is based

on the assumption that the two actors make their decisions simultaneously. This optimal

solution is di↵erent from that of a sequential game, such as the Stackleberg model, where

one actor benefits from moving either before or after the other, depending on the type of

game (Pindyck and Rubinfeld, 2014).

Presenting the algorithm We now present the algorithm, and elaborate on how we

can formulate its outer and inner problem as linear programs.

Algorithm 5.1 Successive convex programming algorithm
• INITIALIZATION. Set iteration k = 1 and determine the value of ". Let the
initial ambiguity set be the baseline model, P (k)

" = {P}
• OUTER OPTIMIZATION. Solve the outer problem

min
u,x

u

s.t. (5.26)

EP
⇥
H(x, ⇠)

⇤
 u P 2 P(k)

"

x 2 X
x / F

resulting in the solution (x(k)
, u

(k)). If the solution is not unique, choose any solution
in the set of feasible solutions.

• INNER OPTIMIZATION. Fix x
(k) and solve the inner problem

max
P

EP(T,P )

⇥
H(x(k)

, ⇠)
⇤

s.t. (5.27)

P(T, P ) 2 P(k)
"

Call the solution P(k) and include it in the ambiguity set for the next iteration,
P (k+1)

" = P (k)
" [ {P(k)}. If the solution is not unique, choose any solution in the set

of feasible solutions.
• STOPPING CRITERION. A stopping criterion can either be chosen to be when
there is no improvement in the maximin solution, u(k+1)�u

(k)  ✓, or by in advance
defining a number of iterations k. Otherwise, set k := k + 1 and go to OUTER
OPTIMIZATION.
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The outer problem (5.26) is a slightly modified version of the multistage stochastic

problem (5.15), where u represents the minimum solution for the worst-case probabil-

ity model.

As opposed to the outer problem (5.26), which is quite easy to formulate, two modifi-

cations have to be made to the inner problem (5.27) in order to make it solvable. The

first modification is to formulate P as a set of variables, such that a worst-case proba-

bility model P(T, P ) within the nested distance ball (5.18), can be found by solving an

optimization problem. In the following Section 5.3.1 we show how this can be done by

the use of transportation kernels. However, since the resulting formulation is non-linear,

a second modification has to be made to ensure that this problem can be approximated

linearly. In section 5.3.2 we therefore present an iterative algorithm for approximating the

solution of (5.27) by solving a series of linear programs. In Section 5.3.3 we make a set

of adaptations to the solution algorithm, so that it can be applied to a financial decision

making context.

Since these modifications rely on transportation kernels, we first establish a clear under-

standing of this concept.

5.3.1 Transportation kernels

A transportation kernel K(i, j) from node i to j in NT can be interpreted as a modified

version of the optimal transportation plan ⇡ij in the nested distance problem (5.8) to

(5.12). The reason for using transportation kernels, or kernels for short, is that they allow

us to create a new probability distribution P from the baseline probability distribution

P̂ with the following relation

P (j) =
X

i2NT

K(i, j) · P̂ (i) (5.28)

If we now consider kernels as decision variables, then any alternative distribution P can

be formulated from P̂ . This principle is the basis for the kernel reformulation of inner

problem (5.27). This requires us to formulate the entire scenario tree structure with

kernels. We elaborate how this is done in the remainder of this section.
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Similar to transportation plans, kernels contain information about conditional proba-

bilities as they also are composed of sub-elements. These subelements are known as

subkernels Kt(j0|i0; k, l), and are defined for t 2 T\{|T |}. Recall that a transportation

subplan can be viewed as the amount of mass transported from one subtree to another.

Similarly, a direct successor subplan can be interpreted as the mass transported between

any subtrees consisting of only two stages. As mentioned in Section 5.1.2 direct successor

subplans closely relate to subkernels. An intuitive definition of subkernels is that they

represent the proportion of mass transported from node i
0 2 k+ to j

0 2 l+, relative to

what is transported from i
0 to the other children in l+. Thus, where a direct successor

subplan is an absolute measure of transported mass, the subkernel measures a proportion.

Subkernels are defined as

Kt(j
0|i0; k, l) = ⇡(i0, j0|k, l)P

j2l+ ⇡(i0, j|k, l) (5.29)

Since a single subkernel is a proportion, all subkernels Kt(·|i0; k, l) form a probability

distribution on the set l+, measuring the proportions of the mass at i
0, conditional on

k and l, that is transported to each successor of l. Hence, all Kt(j0|i0; k, l) are positive

values that collectively sum to 1

X

j2l+

Kt(j|i0; k, l) = 1 i
0 2 k+, (k, l) 2 Nt, t 2 T\{|T |} (5.30)

Kt(j
0|i0; k, l) � 0 i 2 k+, j 2 l+, k, l 2 Nt, t 2 T\{|T |}

We stated above that Kt(·|i0; k, l) are relative measures of the mass transported from i
0,

conditional on the direct predecessors k and l. Hence, we find the actual transported mass

by taking the product of the transported proportion and the available mass, Kt(j|i0; k, l) ·
P̂ (i0|k). By inserting this into the relation between the full transportation plan and its

subplan path (5.14), we get the relation between subkernels and the full transportation

plan ⇡(i, j)
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⇡(i, j) = K0(j1|i1; i0, j0) ·K1(j2|i2; i1, j1) · . . . ·KT�1(j|i; iT�1, jT�1)

·P̂ (i1|i0) · P̂ (i2|i1) · . . . · P̂ (i|iT�1) (5.31)

The product of subkernels in (5.31) can be interpreted as a measure of the proportions

of transported mass along the paths from the roots down to the leaf nodes i and j. This

composition of subkernels is what defines a transportation kernel for i and j.

K(i, j) = K0(j1|i1; i0, j0) ·K1(j2|i2; i1, j1) · . . . ·KT�1(j|i; iT�1, jT�1) (5.32)

Substituting (5.32) into (5.31) and setting the product of the path of conditional proba-

bilities as the unconditional probability P̂ (i), we get the relation between transportation

kernels and optimal transportation plans

⇡(i, j) = K(i, j) · P̂ (i) (5.33)

The relationships above are illustrated thoroughly in the following example, where we

show how the probability distribution P
(2) from the leaf nodes of Figure 5.6 can be

constructed from P
(1) and the optimal transportation subplan.
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Figure 5.6: Two trees with same structure T and di↵erent probabilities. Unconditional prob-
abilities are shown below the leaf nodes. Conditional probabilities are shown along arcs.

By using problem (5.8) - (5.12) to calculate dl1
�
P(T, P (1)),P(T, P (2))

�
for the trees illus-

trated in Figrue 5.6, we first find the optimal transportation plans. We then use the

transportation plan-subplan relation (5.7) to calculate the optimal subplans. The trans-

portation plans and subplans are presented in Table 5.1.

t = 1 t = 2 ⇡(k+i, l +j |k, l)
k, l ⇡(k, l|0, 0) k+i, l +j \k, l 00 01 10 11

00 0,5 00 0,45 0,45 0,45 0,45

01 0 01 0,05 0,05 0,05 0,05

10 0,05 10 0 0 0 0

11 0,45 11 0,5 0,5 0,5 0,5

Table 5.1: Optimal transportation subplans the example in Figure 5.6, where (k, l) 2 N1. k+i

and l+j are the direct successors of k and l, indexed from the left.

By using the relation between kernels and subplans (5.29) we can construct the corre-

sponding subkernels, presented in the following Table 5.2
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t = 1 t = 2 K1(l +j |k+i; k, l)

l, k K0(l|k; 0, 0) l+j, k +i \k, l 00 01 10 11

00 1 00 0,9 0,9 0,9 0,9

10 0 10 0,1 0,1 0,1 0,1

01 0,1 01 0 0 0 0

11 0,9 11 1 1 1 1

Table 5.2: Transportation Kernels created from the optimal transportation subplans of Figure
5.1.

We can now use the kernel-subkernel relation (5.32) to form kernels K(i, 0) for i 2 NT .

The results are presented in the Table 5.3 below

Kernel index Kernel Value Subkernel path values Subkernel path

K(0, 0) 0,9 1 · 0, 9 K0(l0|k0; 0, 0) ·K1(l +0 |k+0; k0, l0)

K(1, 0) 0 1 · 0 K0(l0|k0; 0, 0) ·K1(l +0 |k+1; k0, l0)

K(2, 0) 0,09 0, 1 · 0, 9 K0(l0|k1; 0, 0) ·K1(l +0 |k+0; k1, l0)

K(3, 0) 0 0, 1 · 0 K0(l0|k1; 0, 0) ·K1(l +0 |k+1; k1, l0)

Table 5.3: Kernels K(i, 0), i 2 NT made by the composition of subkernel paths from the root
down to the leaf nodes.

Finally, we can use the relation between transportation kernels and probability distribu-

tions (5.28) to compute P
(2)(0)

P
(2)(0) =

X

i2NT

K(i, 0) · P (1)(i)

0, 2475 = 0, 25 · 0, 9 + 0, 25 · 0 + 0, 25 · 0, 09 + 0, 25 · 0

Which shows that the leftmost leaf node probability in tree P(2) can be created form the

leaf node probabilities in tree P(1) and a set of transportation kernels. The process can

then be repeated for remaining j 2 NT\{0}.
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Using kernels to find conditional probabilities

The kernel formulations by Analui and Pflug (2014) described in the section above only

show formulations of the unconditional scenario probabilities, we propose a formulation

of conditional probabilities with transportation kernels. As we elaborate in Section 6, this

allows us to formulate an objective function that makes use of time consistent CVaR.

We therefore propose a formulation of conditional probabilities with transportation ker-

nels. The idea is to construct the conditional probability P (j | l) in the same manner as

the scenario probability P (j) is done in the whole tree, but here to consider the subtree

with node l as root node.

This implies that when we create a transportation kernel as the product of a subkernel

path with relation (5.32), we only consider the subkernels at stages succeeding the stage

of node l. We denote this transportation kernel K
0
(i, j). For node k in the initial tree

and l in the new tree, both at Nt, we now present an example showing that conditional

probabilities can be formulated by subkernels with the following relation

P (j | l) =
X

i2NT

K
0
(i, j) · P̂ (i | k) (5.34)

which expressed with subkernels is formulated according to (5.32) as

K
0
(i, j) = Kt(jt+1 | it+1; k, l) · . . . ·KT�1(j | i; iT�1, jT�1)

Consider again Figure 5.6. By using the subtree of P(1) with node 0 at stage t = 1 as root,

we can find the conditional probability of reaching leaf node 0 node in tree P(2), which is

0,45, by using kernels and the conditional probability of reaching node 0 in P(1).

Since we now consider the a subtree with only two stages, the kernel-subkernel path

relation (5.32) shows that the subkernel path only consists of a single subkernel. We can

thus write the subtree transportation kernels as K
0
(i, j) = K1(j | i; k, l).

In the same manner as in the previous example, we calculate the optimal transportation

subplan and subkernels, conditional on node k and l at stage t = 1, by applying (5.7) and
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(5.29) respectively.

t = 2

k, l ⇡(k, l|0, 0) j, i K1(j|i; 0, 0) = K
0
(i, j)

00 0,45 00 0,9

01 0,05 10 0

10 0 01 0,1

11 0,5 11 1

Table 5.4: Subkernels and optimal transportation subplan conditional on nodes 0 at stage
t = 1 in Figure 5.6.

By then using the relation between kernels and probability distributions (5.28) we can

show that for node k0 and l0 at stage t = 1, and for i0 and j0 at stage t = 2, that

P
(2)(j0 | l0) =

X

i2NT

K1(j0 | i0; k0, l0) · P (1)(i0 | k0) (5.35)

0, 45 = 0, 5 · 0, 9 + 0, 5 · 0

Similarly for i1 and j1 conditional k0 and l0 we get

0, 55 = 0, 5 · 1 + 0, 5 · 0, 1

which can be confirmed in Figure 5.6 as the correct conditional probabilities.

With an understanding of transportation kernels, we can proceed to reformulate the

distributionally robust problem (5.25).
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5.3.2 A multistage distributionally robust problem with trans-

portation kernels

In this section we show how the multistage distributionally robust problem (5.25) can be

solved, by using transportation kernels to find the worst-case probability distribution in

the inner problem (5.27). We then present an algorithm for solving the inner problem as

a sequence of linear programs.

The purpose of the inner problem is to find the probability distribution that maximizes

the expected cost function EP(T,P )

⇥
H(x(k)

, ⇠)
⇤
. This is done by setting transportation

kernels and subkernels as decision variables, and by using the relations from Section 5.3.1

as constraints, which ensure that the inner problem outputs a valid worst-case probability

model.

When formulating the inner problem with kernels, Analui and Pflug (2014) write the

relations from Section 5.3.1 on a more compact format. They denote the kernel-probabiltiy

distribution relation (5.28) as P = K�P̂ , whereK is theNT⇥NT matrix of transportation

kernels K(i, j). They also set Kt as the NT ⇥ NT matrix of subkernels Kt(j0|i0; k, l) at

stage t, that precede leaf nodes i and j. The kernel-subkernel path relation (5.32) is

written K = K0 � · · · �KT�1.

Recall relation (5.33), which is written

⇡(i, j) = K(i, j) · P̂ (i)

An important observation is that we can reformulate the nested distance objective function

(5.8)

dlr =
X

i2NT

X

j2NT

⇡ij d
r
ij

to include kernels by substituting ⇡ij with the right hand side of (5.33) and get
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dlr =
X

i,j2NT

d
r
ij K(i, j) P̂ (i) (5.36)

The multistage multistage distributionally robust problem (5.25) can then be rewritten

with transportation kernels as

min
x2X

max
K,Kt

{EP(T,K�P̂ )

⇥
H(x, ⇠)

⇤
s.t. K = K0 � · · · �KT�1,

X

i,j2NT

d
r
ij K(i, j) P̂ (i)  "}

(5.37)

It should be noted that the relation K = K0�· · ·�KT�1 is non-linear due to the product of

subkernels, which are all variables. Analui and Pflug (2014) propose the following Algo-

rithm 5.2 to linearly approximate the optimal solution of the inner problem (5.27).

Algorithm 5.2 Stepwise linearization of the inner problem (5.27)

At iteration k in Algorithm 5.1 the inner problem (5.27) has to be solved. Suppose that

P
(k�1), the worst-case probability distribution from the previous step, is on the form

P
(k�1) = K � P̂ (old)

0 � · · · �K(old)
T�1 .

If k = 0: Let K(old)
t be the identity matrix, i.e. K(old)

t (i0|j0; k, l) = 1 if i0 = j
0, otherwise

0.

STAGEWISE ITERATION:

• For t = 0 to t = T � 1 solve

max
K,Kt

EP(T,K�P̂ )

⇥
H(x(k)

, ⇠)
⇤

(5.38)

s.t.

K = K
(new)
0 � · · · �K(new)

t�1 �Kt �K(old)
t+1 � · · · �K(old)

T�1 (5.39)

dlr
�
P(T, K � P̂ ),P(T, P̂ )

�
 " (5.40)

then set K(new)
t as the solution K

⇤
t .

Update the worst-case probability distribution P
(k) = K � P̂ (new)

0 � · · · �K(new)
T�1
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Linearity in Algorithm 5.2 is ensured by only setting subkernels at stage t as variables

within an iteration . The inner problem (5.27) is then approximated by iterating through

all stages from the root down to the leaf nodes.

All other subkernels are set as constants, either as old constants K
(old)
t0 from P

(k�1) for

every t
0 such that t0 > t, or as new constants K(new)

t0 from P
(k) ig t

0
< t. An approach for

achieving this is to initialize each iteration (k, t) from Algorithms 5.2 and 5.1 respectively,

with a constant C(k,t)
ji such that

C
(k,t)
ij = K

(old)
0 (j1|i1; i0, j0) · . . . ·K(old)

t�1 (jt|it; it�1, jt�1)

·K(new)
t+1 (jt+2|it+2; it+1, jt+1) · . . . ·K(new)

T�1 (j|i; iT�1, jT�1) (5.41)

Constraints (5.39) for iteration (k, t) is then linearized as

K(i, j) = C
(k,t)
ij Kt(j

0
t+1|i0t+1; k, l) i, j 2 NT k, l 2 Nt

I addition we have to add (5.30) as a constraint to ensure that all mass that is transported

from i
0 to all j0, conditional on k and l, adds up to one

X

j2l+

Kt(j|i0; k, l) = 1 i
0 2 k+, (k, l) 2 Nt, t 2 T\{|T |}

Constraint (5.40), which ensures that the nested distance from the baseline model P̂ is no

more than " is in the general distributionally robust problem (5.37) written

X

j2NT

X

i2NT

d
r
ij K(i, j) P̂ (i)  "

This constraint already linear and can therefore be applied directly.
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In addition, we have to ensure that any alternative distribution P (j) from the kernel-

probability distribution relation (5.28) is a valid probability distribution, by constraining

it to sum to 1

X

j2NT

X

i2NT

K(i, j) · P̂ (i) = 1

Finally, the inner problem objective function (5.38) can be linearized by inserting (5.28),

such that we get

max
K(i,j)

X

j2NT

X

i2NT

K(i, j) · P̂ (i) · x(k)
j (5.42)

The inner problem objective function (5.38) is in Analui and Pflug (2014) the expected

objective value at the final stage of the stochastic process. Specifically, the objective is

formulated as the product of scenario probabilities and accumulated cost function values

at the leaf stage. We denote the accumulated cost function value at the leaf stage for

scenario j as HjT . The objective is then written as

max
K(i,j), Kt(j0|i0;k,l)

X

i,j2NT

HjT K(i, j) P̂ (i)

We have now seen how the multistage distributionally robust problem has been made

solvable from the general formulation, and the assumptions that apply. We have also seen

how this problem can be solved by iteratively solving two counteracting subproblems. To

ensure a correct understanding of the problem formulation and solution method, we have

implemented the inventory control example presented in Analui and Pflug (2014). The

results correspond well with the theory, and are explained in detail in Appendix A.3.

A final problem that has to be overcome, is to ensure that the distributionally robust

model can be formulated with the conditional value at risk (CVaR) risk measure, which is
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the risk measure we apply in the hedging problem in Section 6.2.2. In the following section

we show that in order to write a linear formulation of the inner problem when CVaR is

included, we need to define a new optimization problem within the inner optimization

problem.

5.3.3 The CVaR optimization problem

Recall that the convex distributionally robust optimization problem with fixed tree struc-

ture is written as

min
x2X

max
P(T,P )2P̄"

{EP(T,P )

⇥
H(x, ⇠)

⇤
: x / F} (5.43)

where H(x, ⇠) is a cost function which we seek to minimize. In financial applications it

is common to consider the objective as a utility function, which trades o↵ expected costs

and its related risk. We therefore expand the objective function in (5.43) such that the

disutility from expected costs and the related risk is minimized. CVaR is used as risk

measure.

Recall from Section 3.2 that CVaR is defined as the average costs exceeding the Value at

Risk (VaR), where VaR is defined as the threshold that costs shall not exceed with a given

confidence level ↵. Since we in a distributionally robust problem consider the probability

model as a variable, CVaR has to be evaluated for varying probability distributions in

addition to varying decisions. CVaR is therefore a function of both the probability model

and the cost function. A formulation of CVaR, based on the work of Rockafellar and

Uryasev (2000), can be written as the following optimization problem

CVaR↵

�
H(x, ⇠), P(T, P )

�
= min

⌧
⌧ +

1

1� ↵
EP(T,P )

⇥
H(x, ⇠)� ⌧

⇤
+

(5.44)

The costs exceeding VaR, i.e. the shortfall costs, are here represented as the positive

di↵erence between H(x, ⇠) and the auxiliary variable ⌧ . When solved to optimality ⌧ is
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the Value at Risk. By formulating the utility function as the disutility caused by expected

costs and the related risk, the objective in problem (5.43) is reformulated as

EP(T,P )

⇥
U(x, ⇠)

⇤
= EP(T,P )

⇥
H(x, ⇠)] + CVaR↵

�
H(x, ⇠), P(T, P )

�

which transforms problem (5.43) to

min
x2X

max
P(T,P )2P̄"

{EP(T,P )

⇥
U(x, ⇠)

⇤
: x / F} (5.45)

Formulating CVaR linearly in standard maximization or minimization problems, where

the probability distribution is known, can easily be done. The procedure is for instance

well documented in Zenios and Markowitz (2008). Including CVaR in the min-max prob-

lem (5.43) is on the other hand a complicated procedure. This is because the inner

problem turns the probability model into a variable, which when solved simultaneously

as the CVaR problem (5.44) causes the expected shortfall costs EP(T,P )

⇥
H(x, ⇠)� ⌧

⇤
+
to

be a product of two variables. This makes the optimization problem non-linear and hence

di�cult to solve.

A solution is to exploit that CVaR is an optimization problem, and that this makes

problem (5.45) a min-max-min problem. By solving for one subproblem at the time and

keeping all other variables fixed, this problem can be approximated in the same successive

manner as in Algorithm 5.11. In the following section we explain that this can be done in

practice by introducing a CVaR subproblem. By applying an iterative procedure between

this and the inner problem, we ensure that the worst-case probability model is calculated

for a correct value of CVaR.

1We are grateful to Alois Pichler who pointed this out under a meeting in Trondheim in May 2018
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Adapting the solution algorithm to the CVaR optimization problem

Integrating CVaR or any other risk measures to the solution algorithm of Analui and

Pflug (2014) has to our knowledge not been covered in the literature. In this section we

therefore present our proposed solution method.

In brief, this approach attempts to approximate the optimal solution, where the CVaR

variables and worst-case probability model are decided simultaneously. This is done by

iterating between solving the inner- and the CVaR optimization problem. While one of

these subproblems is solved, the decision variables of the other are fixed. The optimal

decision variables are then input as parameters when solving the other problem.

Recall that Algorithm 5.1 finds a solution to the general distributionally robust problem

(5.16) by solving the opposing outer and inner problems in sequence, where each problem

uses the opponent’s newest optimal solution as input. As we saw in the preceding sections

this eventually results in an equilibrium strategy. Even though this does not guarantee an

optimal solution, the iterative procedure gives an approximation of what the equilibrium

would be if the outer and inner problem decisions were decided simultaneously.

Our approach for approximating problem (5.45) is based on the same idea. The purpose

is to iterate between the inner- and the CVaR problem until there are no further im-

provements in the worst-case probability model. This is an approximation of the optimal

worst-case probability distribution when CVaR variables are decided simultaneously. We

emphasize that we in this thesis do not aim to prove the convergence of this procedure.

However, in Section 7.2.3 we compare the model performance when this approach is in-

cluded, against the instance when the CVaR variables are confined to only vary in the

outer problem.

The iterative procedure does not apply to the outer problem. This is because Algorithm

5.1 already treats the probability model from the inner problem as fixed when the outer

problem is solved. This means that the outer problem can be solved simultaneously as

the CVaR optimization problem. In practice, the CVaR problem (5.44) is integrated in

the outer problem with a fixed P(T, P ).

We now describe the details of the iterations between the inner problem and the CVaR

problem. Recall from Algorithm 5.2 that we in the inner problem iterate stagewise down

the scenario tree. For our proposed CVaR extension, we for a given stage t add an inner
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loop that iterates over the nodes l 2 Nt. For every node we solve problem (5.44) and

store the CVaR variables. Once the final node at that stage has been reached, all CVaR

variables are input to the inner problem. The inner problem then finds a new worst-

case probability distribution for that stage, and then uses the new stagewise probabilites

as input for the next CVaR problem iterations. A proposed stopping criterion is to

require the absolute deviation of the probabilities between two iterations to be below a

predetermined threshold. The inner problem then repeats the sequence for the succeeding

stage. The iteration sequence between the inner problem and the CVaR problem are

illustrated in Figure 5.7.

Figure 5.7: The inner problem solution algorithm for solving the distributionally robust opti-
mization problem with CVaR.
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With an understanding of how a distributionally robust optimization model with CVaR

as risk measure can be formulated and solved, one remaining step remains before we can

proceed towards adapting it to a hedging instance. Up to this point we have assumed

to be in possession of a baseline probability model, or more specifically a scenario tree,

which is estimated from empirically observed data. In the remainder of this chapter we

present the approach for creating the scenario tree from a series of forecast paths.

5.4 Scenario tree generation

For multistage stochastic optimization problems, scenario trees are commonly used to

represent the uncertainty in the underlying stochastic variable. A Scenario tree is a

discrete representation of the uncertainty in a distribution, consisting of a finite number

of stages and nodes per stage. In the tree, each node represents a potential realization of

the stochastic variable at a certain stage, where new information is revealed (Kaut and

Wallace, 2003). Further, a path of nodes through the tree represents a potential series of

realizations of the stochastic variable, which is realized with a certain probability. This

is known as a scenario.

As illustrated in Figure 5.8, a scenario tree consists of a branching structure where each

node may have several successors. Hence, new information of the future distribution is

obtained at each stage in the tree. An important property of a scenario tree is further that

it accounts for the conditional probabilities between nodes at di↵erent stages (Shapiro,

2003).

When observing a set of simulations or historical time series, the information about a

stochastic process is often observed as a scenario fan. A scenario fan is a set of paths

evolving from the root node to the leaf nodes, where each intermediate node, except

for the root node and the leaf nodes, has only one direct successor. Hence, as opposed

to a scenario tree, full information is obtained after the first stage, with no uncertainty

related to the succeeding stages (Pflug and Pichler, 2015). This property makes scenario

fans unsuitable for multistage stochastic optimization. A methodology for transforming

a scenario fan into a scenario tree is required in order to apply multistage stochastic

optimization on this type of data.
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Figure 5.8: The scenario tree generation method transforms a scenario fan(left) to a scenario
tree(right).

The literature on methods to generate scenario trees is rich, and an overview of the

evolution of the most common approaches is found in Kaut and Wallace (2003). A more

recent state of the art overview is also covered in Perez-Valdes et al. (2016). Briefly,

one may divide the methods into two: Forecast-based methods and scenario clustering

methods. The forecast-based approach typically involves fitting a forecast model to the

input data before generating the scenario tree from its residuals. The scenario clustering

methods generate scenario trees from scenario fans by clustering paths from the fan to

achieve the desired tree structure.

A method developed by Nowak and Tomasgard (2007) is an example of a scenario tree

generation method that applies a forecasting model in scenario generation. Based on time

series of historical data, an autoregressive model is adapted to capture the underlying

process of the stochastic variable, as for instance is explained Alexander (2008). Further,

the 4 statistical moments of the error terms from the model are calculated, before scenarios

that satisfy these statistical moments are generated by the moment matching method from

Høyland et al. (2003). The scenario tree is then generated by combining the autoregressive
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model with scenarios from the moment matching at each non-leaf node in the tree, starting

from the root.

The method of Nowak and Tomasgard (2007) is well suited for transferring the serial

correlation in the underlying process and the statistical moments of the underlying data

to the scenario tree. Another advantage is that the sampled input data does not limit

size of the scenario tree. On the other hand, this method does not prevent unrealistic

outcomes of the random variable, such as price scenarios below zero, from being generated.

This scenario tree generation method is for instance used in Schütz et al. (2009), where

they also apply a principal component analysis (PCA) on the error term distribution to

reduce the number of stochastic variables to the most important ones. This is done before

conducting the moment matching.

There are also alternatives to the moment matching when generating scenarios based on

the method of Nowak and Tomasgard (2007). Examples are to sample scenarios directly

from the discrete distribution of the error terms, as done in Ladurantaye et al. (2009), and

the copula-based method, as described in Kaut (2014). We do not cover these methods

in further detail.

Instead of the forecast-based method, an alternative is to apply a clustering method

when creating a scenario tree. In these methods a scenario tree is generated from a

scenario fan, which is beneficial as stochastic information commonly is obtained on this

form. Examples of such formats are historical time series and outputs from forecasting

and simulation models. In general, clustering methods seek to generate a scenario tree

with a predetermined structure that describes the statistical moments of the scenario

fan as well as possible. A general drawback of clustering methods is however that they

require assumptions to be made about the dependency between scenarios at di↵erent

stages (Shapiro, 2018). A further drawback is that the number of scenarios at the last

stage in the tree is limited to the total number of scenarios from the scenario fan it is

made from. This limits the branching factor at each node. Generating scenario trees

from scenario fans is therefore a tradeo↵ between the depth of the tree and the number

of branches per stage.

An example of a clustering method is the approach of Heitsch and Römisch (2009). The

method is for instance applied in Gabriel et al. (2009) and Fleten et al. (2002). Here,

a fan is transformed to a tree by combining nearby nodes at a stage. The probabilities
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of the clustered nodes are further aggregated, and the predecessor relations are retained.

The number of nodes that are combined per stage depends on a predetermined number

of scenarios per stage in the tree. A drawback with this clustering method is that only

the node probabilities are adjusted during the clustering, while the new node value is

simply assigned the value of the most likely old node. Hence, the expected value of the

tree changes when this clustering method is conducted. This drawback is overcome by

the clustering method applied in this thesis.

In the following sections give a detailed presentation of the clustering method applied

for scenario generation in this thesis. This method uses method bases on stochastic

approximation when generating the scenario tree from the scenario fan.

5.4.1 Scenario tree generation by stochastic approximation

The scenario tree generation method applied in this thesis is a clustering method based on

the work of Pflug and Pichler (2015), Pflug and Pichler (2016) and Séguin et al. (2017).

The method seeks to create a scenario tree from a scenario fan of forecasts, which from here

are called the input paths, by minimizing the di↵erence between the generated tree and the

set of input paths. This is achieved by applying techniques from stochastic approximation,

which is an iterative algorithm that is suitable for solving complex optimization problems

(Pflug and Pichler, 2015).

Recall from Section 5.1.2 that the nested distance has been proven as a suitable metric for

measuring the di↵erence between two scenario trees. This metric is used to measure the

extent to which the input paths and the generated tree di↵er, and hence to quantify the

quality of the approximation. Nested distance for this reason also used as a convergence

criterion. In addition to being beneficial relative to other scenario generation methods,

this yields particularly interesting in the context of distributionally robust optimization.

Recall from Section 5.2 that the nested distance defines the ambiguity radius of the

ambiguity set in the distributionally robust optimization model. The decision maker can

therefore use the nested distance convergence criterion to determine the lowest amount

of ambiguity to account for, to address possible approximation errors from the scenario

tree generation.

Another important advantage is that the new nodes values are randomly from the condi-
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tional distribution of the input paths. According to Séguin et al. (2017) this ensures that

all available data is applied in each iteration to improve the values of the tree, which to a

large extent retains the statistical properties and serial correlation. This is a solid benefit

relative to the method of Heitsch and Römisch (2009).

The scenario generation method considered this thesis can be divided into two steps,

initialization and improvements of the scenario tree. The first step is the initialization

step, where the structure of the scenario tree is specified and a clustering algorithm is

applied on the input data to initialize the node values in the tree. The second step aims

to improve the values and assign probabilities to the nodes in the initiated tree. The

improvement step is iterative. It first generates a random path, based on the distribution

of the input paths and conditional on the preceding stages. Secondly, the randomly

generated path is used to update the values and probabilities of the scenario tree with

the application of stochastic approximation. The improvement step is repeated until the

convergence criterion of a su�ciently small nested distance between the scenario tree and

the input data is reached. The details of this method follow in the following subsections,

and are summarized in Algorithm 5.3.

Step 1: Initialization of the scenario tree

First, the structure of the scenario tree is specified and an empty tree with this structure is

created. Fixing the structure of the tree involves specifying the following properties: The

number of stages, the number of nodes per stage, the predecessor relations between the

nodes and the duration between the stages. Secondly, a clustering algorithm is applied on

the input paths to cluster the paths at each stage according to the predetermined number

of nodes per stage in the tree. The values obtained from the clustering are assigned

as initial node values in the scenario tree. All scenario probabilities are initially set to

zero.

K-means is applied as clustering algorithm, based on the work of Lloyd. (1982). The

algorithm seeks to allocate data observations into a number of clusters, where the distance

from the observations to the mean of the cluster they belong to, is minimized. This is done

by denoting node i 2 N̂t from the input paths at stage t 2 T as Xit, where Xit is a vector

in Rm andm is the dimension of each observation. Since N̂t is equal for all stages except of

the first, we set N̂t = N̂ for t 2 T\{1} and let the node index i also denote the input path
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index. The algorithm seeks to cluster the observations into |Nt|  ˆ|N | scenarios per stage,
where Nt is the set of nodes at stage t in the predetermined tree structure. The clustering

is carried out so that the within-cluster sum of squares from the nodes to their cluster

mean is minimized. Normally, an iterative algorithm is applied to achieve this. Initially,

|Nt| clusters are arbitrary chosen, for instance by randomly choosing observations from

the input paths. Subsequently, each observation is assigned to the cluster to which its

squared Euclidian distance is the the least. The cluster means are then updated according

to the centroid of the new cluster of observations. The algorithm iterates until there are

no reassignments of observations to new clusters.

Step 2: Improvement of the scenario tree

Once the scenario tree is initilized, the values of the nodes are improved and their re-

spective probabilities are calculated. The improvement step is iterative and consists of

generating a random path from the distribution of the input paths, and applying this

in a stochastic approximation to improve the values in the tree. The algorithm applies

a nested distance criterion to determine convergence, and to quantify the quality of the

approximation.

Generating a random path A random path is generated from the root stage to the

leaf stage, where the value at each stage is based on the distribution of the input paths,

conditional on the path’s values at preceding stages. Accounting for the conditional prob-

abilities ensures that the serial correlation in the data set is incorporated when generating

the random path.

The process of generating a random path can be divided in two. First, a smoothed

approximation of the conditional distribution of the input paths is generated with use of

kernel density estimation. Secondly, random values are obtained based on the smoothed

approximation of the conditional distribution until a path from the root stage to the leaf

stage is generated. Specifically, we utilize the so-called weight distribution of the input

paths, which is obtained from the expression of the smoothed conditional distribution,

when generating the random values of the path. The detailed description of the method

follows.



5.4. SCENARIO TREE GENERATION 67

In order to generate multiple random paths based on the conditional distribution of input

paths, we require a smoothed approximation of the conditional distribution. A smoothing

convolution adapted from kernel density estimation is therefore employed to approximate

the conditional density distribution of the input paths. From statistics, kernel density

estimation is a well known non-parametric approach to approximate a smooth density

function from a set of discrete observations. To achieve this, a smooth kernel function is

applied, which allows interpolation between the observed samples to estimate the density

at points where no samples have been observed (Chen, 2017).

We now proceed to the details on how the random path is generated. For the random

variable ⇠t 2 Rm, the random path (⇠0, . . . , ⇠T ) is drawn from the conditional density

distribution of the input paths (Xi0, . . . , XiT ). In order to find the conditional density

distribution over the input data, we first define the pure density distribution, which is un-

conditional on realizations of the random variable at previous stages. As discussed above,

kernel density estimation is applied to make a smooth approximation of the distribution.

The density distribution of the input paths is therefore referred to as the kernel den-

sity estimator. Based on the definition in Chen (2017), the unconditional kernel density

estimator of the observed paths at stage t is then (5.46).

f̂(⇠t) =
1

ˆ|N | · ht

X

i2N̂



✓
⇠t �Xit

ht

◆
(5.46)

In equation (5.46),  is the smooth kernel function which determines the shape of the

distribution in the kernel density estimation (Chen, 2017). There exists a wide range of

kernel functions that are commonly used. Jones (1990) proposes that the chosen function

has no significant importance for the quality of the estimation. In this thesis the logistic

kernel from (5.47) is applied. For further discussions on the choice of kernel functions,

see Pflug and Pichler (2015).

(⇠) =
1

e⇠ + 2 + e�⇠
(5.47)

In equation (5.46), ht is the bandwidth applied in the kernel estimation at stage t. The
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bandwidth is a parameter that depends on standard deviation of the input paths at a

given stage. In (5.46) it is used to control the degree of smoothing in the kernel density

estimation. The choice of bandwidth has a stronger influence on the performance of the

estimation than the kernel function, , and there exists a high variety of approaches to

select the best bandwidth (Chen, 2017). We apply Silverman’s rule of thumb, which is an

approach that is particularly suitable when the underlying distribution is close to normal

(Silverman, 1986). Equation (5.48) shows how ht is found based on Silverman’s approach,

where �(Xit) is the standard deviation of the data paths at stage t.

ht = �(Xit) · ˆ|N |
� 1

m+4 (5.48)

Samples from (5.46) can be applied to draw a random path that is unconditional on

its previous stages. However, to make the random path conditional on its preceding

stages, such that serial correlation is accounted for, (5.46) is combined with the definition

of conditional density functions. From Pflug and Pichler (2015), a conditional density

function is defined as follows: f(x | y) = f(x,y)
f(y) , where f(x, y) is a multivariate density

function. Further, by inserting ⇠t for x, and ⇠0, . . . , ⇠t�1 for y, and then applying that

the multivariate density function f(x, y) = f(x) · f(y), the kernel density estimator,

conditional on the preceding stages, ⇠0, . . . , ⇠t�1, becomes (5.49).

f̂(⇠t | ⇠0, . . . , ⇠t�1) =
X

i2N̂

t�1Y

t0=0



⇣
⇠t0�Xit0

ht0

⌘

P
i02N̂ 

⇣
⇠t0�Xi0t0

ht0

⌘ · 
✓
⇠t �Xit

ht

◆
· 1

ht
(5.49)

By drawing samples from expression (5.49), a random path based on the distribution of the

input paths and conditional on the values of previous stages, can be generated. According

to Pflug and Pichler (2016), these samples from (5.49) can be found without calculating

the analytical representation (5.49). In stead, one can utilize that
Qt�1

t0=0



✓
⇠t0�Xit0

ht0

◆

P
i02N̂ 

✓
⇠t0�Xi0t0

ht0

◆

in (5.49) is the weight wit(⇠0, . . . , ⇠t�1) of the input path i at stage t. The weight, wit,

indicates how close the randomly generated path has been to input path i at preceding
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stages 0, . . . , t� 1 relative to the other input paths. The closer an input path i has been

to the values of the randomly generated path at preceding stages, the higher is the weight

of input path i at stage t. The higher the wit, the higher is the probability that the

randomly sampled path ⇠t is placed closer to this input data path Xit at stage t.

At each stage we therefore get a weight distribution of the di↵erent input path

w0t, . . . , w|N̂ |t, which further is used to obtain a random sample from (5.49) at stage t.

To obtain the weight of input path i at stage t, its weights from all preceding stages

0, . . . , t�1 are multiplied. All the weights are positive and sum to 1 at each stage. At the

first stage, the weights for all input paths are equal, meaning the weight distribution is

uniform where each path’s weight is 1/n. By employing this, (5.49) becomes (5.46).

When using the weight distribution, a random sample from (5.49) is obtained in the

following way: First, the input path with index i
⇤ is randomly drawn from the weight

distribution. Input paths with high weights, which are those that historically have been

close to the randomly generated path, have higher probabilities of being drawn as i⇤. The

probability that the random path is close to the input path with index i
⇤ at subsequent

stages, is then increased. In that way, the randomly generated path depends on preceding

stages, and conditional probabilities are therefore accounted for. In Séguin et al. (2017),

i
⇤ is identified as the input path index satisfying equation (5.50), where randu is randomly

drawn from the uniform distribution in the interval [0,1].

i⇤�1X

i=1

wit(⇠0, . . . , ⇠t�1)  randu 
i⇤X

i=1

wit(⇠0, . . . , ⇠t�1) (5.50)

In (5.50), i⇤ at stage t is identified as the index of the first input path which makes the

accumulated weights of input paths, w1t + . . .+ wi⇤t, exceed randu.

According to Pflug and Pichler (2015), the value of the randomly generated path ⇠t at

stage t is found by adjusting the value of the identified input path i
⇤ at stage t, with

a random deviation drawn from the kernel density function. The size of the random

deviation depends on the bandwidth of the input paths at stage t. (5.51) below gives the

mathematical expression used to obtain the value of the random path ⇠t at stage t. In

the expression, Xi⇤t is the observed value of the input path with index i
⇤ at stage t, Z is
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a random deviation from the kernel density function and ht is the bandwidth. Sampling

the values of Z is done according to the composition method (for further details see Pflug

and Pichler (2014a)).

⇠t = Xi⇤t + (Z · ht) (5.51)

Ultimately, to obtain a random path from root to leaf, ⇠0, ..., ⇠T , the approach presented

above is repeated for for all stages from t = 0 to t = T .

Stochastic approximation After generating the random path ⇠0, . . . , ⇠T according to

the input paths, it is used to improve the values and probabilities in the scenario tree

through stochastic approximation. First, the closest path in the scenario tree to the

randomly generated path is identified. Secondly, the values and probabilities of the nodes

in the identified path are updated.

The path in the scenario tree that is closest to the randomly generated path is identified

as the one minimizing some distance measure, for instance the r-order distance (5.13),

to the random path. This path that is the closest to the random path is according to

Pflug and Pichler (2015) found by solving (5.52). To understand (5.52) we denote a path

of nodes in the scenario tree, from the root to a leaf, !jT = j0 . . . , jT , where jt 2 Nt is

a node at stage t with predecessors j0, . . . , jt�1. For each stage t, Nt(j0, . . . , jt�1) is the

set of all the nodes with predecessors j0, . . . , jt�1. Further, the values of a scenario tree

node jt is Yjt on Rm, corresponding to Xit from the input paths. Then, the path of nodes,

j0 . . . , jT , with the minimum distance measure to the random path, ⇠0, . . . , ⇠T , is identified

as follows:

jt 2 argmin

j0t2Nt(j0,...,jt�1)
dr(Yj0t

, ⇠t) (5.52)

In practice, the path is identified by sequentially navigating through the stages in the tree,

from the root node to the leaf nodes. For each stage, the node minimizing the distance

measure to the random path at the respective stage is identified. Then, for the subsequent
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stage, the children nodes of the identified node are considered in the similar way. This

continues until a leaf node as been reached. The identified path, j0, . . . , jT , is then the

path in the scenario tree that minimizes the distance measure to the randomly generated

path, ⇠0, . . . , ⇠T .

The values of the nodes in the identified path are then improved to better approximate

the randomly generated path, and hence the forecast fan. The improvement is done

according to the stochastic gradient descent method, a frequently used method to update

parameters of a function when an optimum is sought through stochastic approximation.

According to Pflug and Pichler (2015), the values of the identified nodes j0, . . . , jT can

then be updated according to (5.53) after each iteration k = 1, 2, 3, . . .. The states of the

nodes at k = 0 are the initial values from the K-means clustering, which we explained

in section 5.4.1. To simplify the calculations, the r-order distance dr(·, ·)r is applied as

the distance measure between the nodes in the random path and the identified path.

We denote ↵(p) as the step-size, which can be interpreted as the learning factor of the

approximation. In Pflug and Pichler (2016) it is proven that the approximation converges

if ↵(p) > 0,
P

p ↵(p) = 1 and
P

p(↵(p))2 < 1. Séguin et al. (2017) set ↵(p) =
1

p+30
3
4
in the

following equation (5.53).

Y
(k)
jt = Y

(k�1)
jt � ↵

(k) · rdr(⇠(k)t , Y
(k�1)
jt )r�1 ·rdr(⇠

(k)
t , Y

(k�1)
jt ) (5.53)

Lastly, the probabilities of the nodes in the scenario tree are updated. Initially, all nodes

are assigned a counter which is set to zero. For each iteration when a path that is chosen

as the closest path to the randomly generated path, the counter for all nodes in this path is

increased by one. When the approximation has converged, the unconditional probability

of any node is obtained by dividing its counter by the total number of iterations. The

conditional probability of a node is obtained by dividing its unconditional probability by

the unconditional probability of its preceding node. Finally, the scenario probabilities in

the tree is the product of the conditional probabilities of the nodes the scenario consists

of.
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Convergence The stochastic approximation of the scenario tree terminates when the

approximation of the nested distance E(dlr) between the generated tree and the input

paths converges. For instance, Séguin et al. (2017) require that the change in the approx-

imated nested distance �E(dlr) is within a certain ✏ for the ten latest iterations in order

to determine convergence. The algorithm iterates between the random generation of a

path and stochastic approximation, where the tree is improved for each iteration until

this criterion is met.

Based on the works of Pflug and Pichler (2015) and Séguin et al. (2017), we explain how the

nested distance between the tree and the input paths is calculated after each iteration in

the algorithm. For clarity we denote the closest to the randomly generated path ⇠0, . . . , ⇠T

as j⇤0 . . . , j
⇤
T hereafter. Recall that we write ⌦T = !0T , . . . ,!NT T as the set of |NT | paths

in the scenario tree. Then, !(k)
j⇤T

consists of the nodes (j⇤1
,
. . . , j

⇤
T )

(k) and is the path that

at iteration k is the one closest to the randomly generated path ⇠
(k) = ⇠

(k)
1 , . . . , ⇠

(k)
T .

Following this, the distance measure at iteration k between the randomly generated path

⇠
(k) and the values of path !

(k)
j⇤T

, which we denote Y
(k)
!j⇤

T
= (Yj⇤1

, . . . , Yj⇤T
)(k), is found from

(5.54).

d
(k)
!j⇤

T

= dr(⇠
(k)
, Y

(k)
!j⇤

T

)r (5.54)

The calculated distance d
(k)
!j⇤

T
is further added to the accumulated distance from previous

iterations, for this specific path. We denote the accumulated distance after iteration k,

for the path with index j
⇤
T at iteration k, as D

(k)
!j⇤

T
. Be aware that D

(k�1)
!j⇤

T
refers to the

accumulated distance after iteration k�1, but still for the path with index j
⇤
T at iteration

k. Then, D(k)
!j⇤

T
is found by (5.55).

D
(k)
!j⇤

T

= d
(k)
!j⇤

T

+D
(k�1)
!j⇤

T

(5.55)

For all paths except for !j⇤T , the accumulated distance is unchanged from the previous

iteration. That is, for all paths !jT 2 ⌦T\{!j⇤T
}, D(k)

!jT
= D

(k�1)
!jT

.

Finally, the nested distance between the generated scenario tree and the input paths is
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approximated according to (5.56), where P (!jT ) is the probability of path !jT . It is

written as

E(dlr) =
NTX

j=1

 
D

(k)
!jT

k
· P (!jT )

(k)

!
(5.56)

The approximation of the nested distance from (5.56) can be interpreted as the expected

distance between a randomly drawn path from the distribution of the input paths to its

closest path in the generated scenario tree. Hence, this is an indication of how well the

generated tree approximates the scenario fan.

(5.56) is an approximation of the definition of nested distance, which is formulated exactly

as problem (5.8) to (5.12) in Section 5.1.2. Since the approximation contains a distance

measure and probabilities, which is the same components as the objective of the nested

distance definition, there is a clear resemblance. A proof of why (5.56) can be applied as

an approximation of the nested distance is found in Pflug and Pichler (2015).

In conclusion, we have generated a scenario tree from a set of forecast paths, based on an

approach that applies stochastic approximation. The scenario tree is generated so that

it minimizes the nested distance to the forecast paths. Algorithm 5.3 summarizes the

approach in a structured way.

In Chapter 6 we formulate the specific distributionally robust hedging model for

TrønderEnergi, based on the theoretical foundation established in this chapter.
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Algorithm 5.3 Scenario tree generation by stochastic approximation
Input: The method takes in a scenario fan, i.e a set of input paths.

1) Initialization:
Set k = 1 and the node counter c(jt)(k�1) = 0 for each node jt 2 Nt and each t 2
T . Let the accumulated distance for each path in the tree, !jT = j0, . . . , jT , be D

(k�1)
!jT

= 0.

1.1) Tree-structure: Decide the number of stages and the number of nodes pr
stage. For all nodes, set their values, Yjt , and probabilities, Pr(jt), to 0.

1.2) Clustering: Apply a clustering algorithm on the input paths to allocate initial
values to the nodes in the tree.

2) Iteration: Improve the states and probabilities of the tree.

2.1) Random path: Generate a random path, ⇠0, . . . , ⇠T that is based on the
distribution of the input paths and conditional on its preceding stages.

2.2) Stochastic approximation:

2.2.1) Identify the path of nodes in the tree, !jT that minimizes the dis-
tance measure, dr, to the random path.

2.2.2) Update the values of the identified path of nodes according to the
gradient descent method:

Y
(k)
jt = Y

(k�1)
jt � ↵

(k) · rdr(⇠(k)t , Y
(k�1)
jt )r�1 ·rdr(⇠

(k)
t , Y

(k�1)
jt )

2.2.3)For each node in the identified path, set: c(jt)(k) = c(jt)(k�1) + 1

For the identified path, set: D(k)
!jT

= dr(⇠(k), Y
(k)
!jT

)r +D
(k�1)
!jT

.

2.2.4)The nested distance between the fan and the tree is approximated,

E(dl(k)r ) =
PNT

j=1

✓
D

(k)
!jT
k · P (!jT )

(k)

◆
, where P (!jT ) = C(jT )

k is the unconditional

probability of a path !jT .

3)Convergence: If �Edl(k)r = (Edl(k)r �Edl(k�1)
r ) < ✏ for the q last iterations: Terminate.

Else: set k = k + 1 and go to ”2.1) Random path”.

Output: The method gives a scenario tree that minimizes the nested distance to the
scenario fan.



Chapter 6

Electricity price hedging model

The purpose of this chapter is to develop the stochastic and distributionally robust hedging

model, according to the problem description presented in Chapter 4, and based on the

solution method presented in Chapter 5. Recall that the stochastic model approaches

uncertainty in the input parameters by assigning probabilities to the potential scenarios,

which are assumed to be known. The multistage distributionally robust model on the other

hand considers model uncertainty, by also letting the scenario probabilities themselves be

subject to uncertainty.

We first present any further assumptions and specifications to the hedging problem. Sec-

ondly, the multistage stochastic hedging model is developed. Lastly, this model is ex-

tended to the distributionally robust hedging model.

6.1 Assumptions

We assume that TrønderEnergi only considers hedging, and not speculation, as the un-

derlying motivation for entering into derivatives. Recall that this is in line with how

Stulz (1996) and Tanlapco and Liu (2002) define hedging, and how Fleten et al. (2002)

approach a similar decision problem with stochastic optimization. To make sure that de-

cisions are made with the purpose of reducing risk, and not to increase profits, the prices

of the forward contracts are derived to be consistent with the conditional expected spot

prices in the scenario tree. This is further elaborated in Section 7.1.1. In reality, entering

75
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into forwards often combines hedging and speculative considerations, as we recall from

Sanda et al. (2013) who investigate the Norwegian electricity market. The advantage

of distinguishing between these decisions in an optimization model is however that the

hedging decisions can be isolated. The alternative is to incorporate speculative decisions

by including the decision maker’s market view in the model. .

As hedging and not speculation is considered, the decision maker can only short, i.e sell,

forward contracts written on the electricity price. Hence, speculating in terms of entering

into long forward positions is not allowed. This assumption is common in other papers

approaching optimal hedging decisions, such as in Shütz and Westgaard (2018).

For the hedging model, a planning horizon on 4 months with monthly stages is considered.

At the first stage in the model, the decision maker decides how much of the expected

production for succeeding stages that should be sold to an agreed forward price. At

each succeeding stage, rebalancing decisions can be made based on new information. The

remaining production at a stage that not is delivered through forward contracts, is sold to

an uncertain spot price. In reality, hedging and rebalancing decisions can be made daily.

This however requires an undesirably large scenario tree, which e↵ects the computational

performance of the model.

For simplicity, only forward contracts with monthly maturity periods are considered. For

the regarded planning horizon, these contracts are considered more relevant as contracts

with longer maturity periods normally are entered earlier relative to their maturity dates

(Sanda et al., 2013). Further, we assume the contracts to be infinitely liquid so that there

is no lack of potential buyers and sellers causing problems. As we consider forwards, we

also assume that the required contract size is available. In addition, we assume there is

no bid-ask spread on the contracts.

In reality, forward contracts written on the Nordic system price are settled in cash. For

speculators who are not interested in ownership of the physical commodity, cash settle-

ment is therefore suitable. As speculation is not considered in this model, it is however

more convenient in a hedging setting to regard physical settlement of contracts. This

has no direct implications for the outcome of the model, but makes it easier to relate to

hedging as a physical amount of electricity that actually is being sold on contract. The

same assumption is for example made in Fleten et al. (2002).

We assume that any lack of production, following situations where the quantity of elec-
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tricity sold through contracts exceeds the actual production for the same period, has to

be immediately covered from the spot market by the decision maker. This equals a short

position in the spot market and we hereafter refer to shortage production in these situa-

tions. Shortage production is however assumed to be covered with a marginal additional

cost to the spotprice, representing an additional e↵ort of this process.

The transaction costs, corporate tax and natural resource tax are assumed to be the only

decision relevant costs. Transactions costs are set to be proportional to the quantity of

contracts shorted, according to the standards formulated in Zenios and Markowitz (2008),

and are payed at the time the contract is entered. For further details on the tax system

and why this is relevant for the hedging decision, see Chapter 2.

Ultimately, no other sources to risk than price risk and production risk are assumed

relevant for the decision problem.

In the next section we formulate the hedging specific stochastic optimization model.

6.2 The multistage stochastic hedging model

In both the stochastic and distributionally robust hedging model, the purpose is to find

the optimal hedging strategy, defined as the one maximizing the decision maker’s util-

ity. In achieving this, the model determines the optimal quantity of forward contracts

with di↵erent maturities to be entered, depending on the decision maker’s risk aversion.

An important consideration is also when to enter the respective contracts, following the

trade-o↵ between entering into a position for an agreed price today and waiting for new

information. In both the stochastic and distributionally robust hedging models, the elec-

tricity prices, production quantities and the evolution of forward prices with di↵erent

maturity dates are considered as the uncertain parameters.

When formulating the multistage stochastic hedging model, we first explain the com-

ponents of the objective with related constraints and secondly present the complete

model.
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6.2.1 Formulating the objective function

As indicated above, the objective is a utility function which represents the trade-o↵ be-

tween expected profits and risk. The purpose is to find the allocation of forward contracts

that maximizes the decision maker’s utility. Since we consider multistage optimization

models, a starting point is to ensure that the risk measured by CVaR is appropriately

taken into account for each stage in the model. This is achieved by formulating the utility

function recursively, which ensures a time consistent CVaR as presented in as presented in

Section 3.2. Our implementation follows the recursive formulation of Rudlo↵ et al. (2014).

The authors emphasize that a major problem with utilizing the recursive formulation is

the lack of a clear economic interpretation, as opposed to for formulations with time in-

consistent risk measures. They however suggest that the recursive formulation should be

interpreted as ”the certainty equivalent of the portfolio value w.r.t the time consistent

dynamic utility generated by one period preference functional”. This can be interpreted

as the deterministic profits that makes the decision maker indi↵erent to an uncertain

alternative, whose expected utility is attained by following the optimal strategy.

The recursive formulation of the utility function consists of two components, the ensured

profits in a current state and the expected utility over the directly succeeding states. The

objective is then recursively formulated for each state in the scenario tree, from the root

to the leave nodes. Since every direct successor also incorporates the expected utility from

their direct successors, we get a recursive structure that ultimately nests up the expected

utility from all succeeding nodes at the root node.

The first component of the objective function is the ensured profits at a state, which

includes sales in the spot market and forward contracts entered into at the current state.

These profits are deterministic, and hence ensured as they are independent of any scenario

realizations at succeeding stages. The second component is the expected utility over the

directly succeeding states. This component can be divided into the expected profits

over directly succeeding states and the related risk. These are further weighted with

a parameter � 2 [0, 1] which represents the decision makers risk aversion. A higher

� represents the preferences of a more risk averse investor, who prefers lower risk over

potential profits. � = 0 models the preferences of a risk neutral investor, while � = 1

models the preferences of a fully risk averse investor.

For simplicity we hereafter refer to the expected utility over the directly succeeding states
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as expected future utility, and the expected profits over the directly succeeding states as

the expected future profits.

The utility at a state in the objective function, constructed from ensured profits and the

expected future utility, can therefore be written as follows:

utility = ensured profits + expected future utility

Where the two components are further denoted as follows

ensured profits = ensured revenues - ensured costs

expected future utility = (1� �) · expected future profits + � · risk

In order to provide a proper understanding of the objective function, the following para-

graphs thoroughly explain the components in the objective function. The components

composing ensured profits are first presented in detail, secondly the same is done for the

expected future utility. We lastly present the mathematical formulation of the complete

hedging model is presented.

Ensured profits

The profits that are ensured in a state include the revenues and decision relevant costs,

whose uncertainty is eliminated. These profits are therefore independent of the succeeding

scenarios. The revenues are determined by spot and forward sales, while taxes, transaction

costs and shortage costs compose the costs.

The ensured revenues and costs occur as a consequence of receiving new information at

a stage, and can further be distinguished into two groups - those that are ensured and

realized at the stage, and those that are ensured, but realized at later stages. The revenues

that are ensured and immediately realized include sales in the spot market. On the other

hand, entered forward contracts represent revenues that are ensured but realized at later

stages, when the contracts mature.

Costs that are ensured and immediately realized include corporate taxes on spot sales, in

addition to the natural resource tax. The natural resource tax is included since it is fully
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based on realized spot prices and production. The costs of buying electricity in the spot

market in cases of shortage production are also realized immediately. While the corporate

taxes on entered forward contracts are realized when the contracts mature, the transaction

costs for entering into the contracts are both ensured and realized when the contracts are

entered. As the latter gives incentives to wait before entering into contracts with a certain

maturity date, the transaction costs are discounted according to the time when they are

entered. All other cash flows than transaction costs are realized at a predetermined stage,

independent on whether sales are through spot or forwards entered at other stages. Hence,

discounting these revenues and costs is not decision relevant. In addition, since only a

decision horizon on 4 months is considered, discounting is practically negligible.

In formulating the mathematical expression of the ensured profits, we denote each scenario

as i 2 NT , and write the monthly decision stages as t 2 T . We then represent the ensured

profit function in a given state, that is for a given scenario i at stage t, by hit. Revenues

and costs are denoted as rit and costs cit, respectively.

hit = rit � cit (6.1)

We proceed by presenting the detailed formulations of the ensured revenues and the

ensured costs.

Ensured revenues The ensured revenues for scenario i at stage t are written rit, and are

a function of forwards entered and spot sales realized at stage t. For the set of remaining

time periods Mt, we then define the maturity dates of forwards as m stages after the time

t they are entered. The quantity bought of contracts with maturity in m months at stage

t in scenario i is then denoted ximt. Note that m = 0 refers to spot sales, making xi0t the

quantity sold in the spot market in scenario i at time t. Further, the corresponding prices

for forwards entered at the state is Fimt, where Fi0t is the spot price for scenario i at time

t. We then express the ensured revenues for scenario i at stage t, rit, as (6.2).

rit =
X

m2Mt

Fimt ximt (6.2)
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Ensured costs The second term in (6.1), cit, represents the decision relevant costs that

correspond to the ensured profits, and can further be divided into three components:

Taxes cTAX
it , transaction costs cTR

it and the shortage costs, cSit, as shown in (6.3).

cit = c
TAX
it + c

TR
it + c

S
it (6.3)

The taxes, cTR
it , can further be divided into natural resource taxes and corporate taxes.

We denote TR as the tax rate for the natural resource tax, and T
F as the tax rate for the

corporate tax. Recall that the natural resource taxes for scenario i at stage t are based

on the realized production Qit and the spot price Fi0t. On the other hand, the revenues

rit form the basis for the corporate taxes.

The transaction costs on forwards for scenario i at stage t are written c
TR
it , and are

assumed to be proportional with a factor CTR to the amount of shorted contracts ximt,

where m > 0. In line with the discussion in the initial paragraphs of this section, these

costs are discounted with a factor ⇢ according to the time t they are entered at.

The shortage costs cSkt are obtained from the shortage quantity zit, which represents the

quantum delivered on contract that exceeds the production in scenario i at stage t. In

cases where the produced quantity equals or exceeds the quantum delivered on contract,

the shortage quantity zit is zero and the excess production is sold in the spot market.

Shortage production is covered in the spot market with a marginal additional cost, ✏,

representing the additional e↵ort of this process.

Equation (6.3) can now be expressed in detail as

cit = (T F
rit + T

R
Fi0t Qit

�
+
� X

{m2Mt | m>0}

1

(1 + ⇢)t/12
C

TR
ximt

�
+
�
(Fi0t + ✏) zit

�
(6.4)

Remarks concerning the initial stage Because realized spot sales at the first stage

are not considered decision relevant, these are assumed to be zero. Consequently, neither

natural resource taxes nor shortage costs are present at the initial stage. The same

accounts for corporate taxes on spot sales.
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Expected future utility

The second component of the recursive objective function is the expected future utility,

which we recall is the expected utility over the directly succeeding states. This component

is risk exposed and consists of two terms: the expected future profits and the related

risk.

Expected future profits For node k at stage t the expected profits at stage t+1 is the

sum of the profit functions for all nodes at stage t+1 that are direct successors of node k,

denoted i
0 2 k+. The direct successors are weighted with their conditional probabilities

Pt(i0 | k+). The expected future profits, conditional on the direct predecessor k, can then

be expressed as in (6.5), where vi0(t+1) is the objective value for node i0 at stage t+1.

X

i02k+

Pt(i
0 | k) vi0(t+1) (6.5)

Observe that we use the objective function value when calculating what we refer to as the

expected future profits. This follows as we apply the recursive formulation of Rudlo↵ et al.

(2014) that ensures a time consistent risk measure. The way we interpret and formulate

(6.5) is also in line with Shütz and Westgaard (2018) and Pisciella et al. (2016). They

apply a similar recursive formulation based on Rudlo↵ et al. (2014), when approaching

hedging of salmon prices and a capacity expansion problem of a power producer, respec-

tively. By setting � = 0 it becomes more intuitive that (6.5) represents the expected

future profits.

Risk The risk related to potential profits in nodes that directly succeed node k, repre-

sents a disutility for a risk averse decision maker. In the following paragraphs we explain

the time consistent CVaR formulation applied to quantify the risk.

Recall from Chapter 3.2 that CVaR is defined as the expected loss, given that the loss

exceeds the value at risk (VaR). Further, VaR is defined as the threshold to which losses

shall not exceed with a given confidence level. This general definition applies when con-

sidering a cost or a loss function. In our instance, where we consider positive profits, we
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define CVaR as follows. CVaR is the expected profits, given that the profits are lower than

the VaR. The VaR which is modelled by ⌧ , is in this instance defined as the threshold that

profits ought to be greater or equal to, with a confidence level ↵. We hereafter denote the

positive di↵erence between the VaR threshold and profits as shortfall profits, where the

shortfall profits are zero if profits are greater than or equal to the VaR. When considering

profits instead of costs, formulation (5.44) from Section 5.3.3 becomes (6.6).

CVaR↵

�
H(x, ⇠), P(T, P )

�
= max

⌧
⌧ � 1

1� ↵
EP(T,P )

⇥
⌧ �H(x, ⇠)

⇤
+

(6.6)

Recall that the time consistent recursive CVaR formulation from Rudlo↵ et al. (2014)

is achieved by recursively formulating the objective function. This further ensures that

the CVaR only is measured over the direct successors of a node at a given stage, and

is often referred to as the nested CVaR. For node k at stage t, the nested CVaR over

the direct successors of node k are expressed by (6.7). Here, Pt(i0 | k) is the conditional

probability of reaching node i
0 at stage t + 1 from node k, while yi0(t+1) is an auxiliary

variable representing the shortfall profit of node i
0. The shortfall profit is expressed by

constraints (6.8) and (6.9) which ensure that yi0(t+1) is the maximum of ⌧kt � vi0(t+1) and

0, where ⌧kt is the VaR threshold at a given significance ↵ for node k at stage t. Be

however aware that ⌧kt is evaluated over the uncertainty exposed direct successor nodes

of k. Constraints (6.8) and (6.9) are necessary constraints in formulating CVaR linearly,

see for instance Rockafellar and Uryasev (2000). Equations (6.7) to (6.9) are formulated

for a specific k 2 Nt at a given t 2 T

X

i02k+

Pt(i
0 | k) yi0(t+1) (6.7)

⌧kt � vi0(t+1)  yi0(t+1) (6.8)

0  yi0(t+1) (6.9)

Observe that the shortfall profits in (6.8) are calculated relative to the objective function
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value. The discussion of this is in line with the discussion conducted above related to

(6.5).

Based on the presented components of the objective function, the hedging specific opti-

mization model with the time consistent CVaR is now formulated in its whole.

6.2.2 Formulating the optimization model with a time consis-

tent risk measure

For the reader’s reference, an overview of the nomenclature applied in the stochastic

hedging model is presented.

Nomenclature

Sets

k+ Set of direct successors i0 of k. k 2 Nt, t 2 T\{|T |}
Mt Set of maturities at stage t. t 2 T

Nt Set of nodes at stage t. t 2 T

NT | i � k Leaf node successors of k. k 2 Nt, t 2 T\{|T |}
T Set of stages.

Tt Set of stages from 0 up to t. t 2 T

Indices

i Scenario and leaf node. i 2 NT

k Node at stage t. k 2 Nt, t 2 T\{|T |}
i
0 Direct successor i0 of k. i 2 N(t+1), t 2 T\{|T |}
m Stages to maturity m, in months. m 2 Mt, t 2 T

t Decision stage. t 2 T
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Parameters

Pt(i
0 | k) Probability of reaching node i

0

conditional on its direct predecessor. i
0 2 k+, k 2 Nt, t 2 T\{|T |}

Xt Quantity from contracts bought in

previous planning periods,

to be delivered at stage t. t 2 T

↵ CVaR confidence level at ↵ ⇤ 100%. ↵ 2 [0, 1]

✏ Additional cost of buying electricity

in case of shortage production.

� Risk aversion parameter. � 2 [0, 1]

Variables

hit Realized profits in scenario i,

at stage t. i 2 NT , t 2 T

h
N
kt Auxiliary node indexed variable. k 2 Nt, t 2 T\{|T |}

vkt Objective function value in

node k at stage t. k 2 Nt, t 2 T

ximt Quantity sold on contracts bought

at stage t, to be sold after m stages,

in scenario i. m = 0 are spot sales. i 2 NT , m 2 Mt, t 2 T

yi0(t+1) Shortfall profit in direct successor

node i
0 of k at stage t+ 1. k 2 Nt, t 2 T\{0}

zit Quantity to buy in case of shortage

production, in scenario i at stage t. i 2 NT , t 2 T

⌧kt Value at Risk for node k at stage t. k 2 Nt, t 2 T\{|T |}
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The stochastic hedging model

In the stochastic model presented below, we have for ease of notation only shown the

profits hit, and not the decomposition, which we explained above. Nevertheless, a reca-

pitulation of the profit term is presented as follows

hit Profits i 2 NT , t 2 T

rit Revenue i 2 NT , t 2 T

cit Costs i 2 NT , t 2 T

c
TAX
it Tax costs i 2 NT , t 2 T

c
TR
it Transaction costs i 2 NT , t 2 T

c
S
it Shortage costs i 2 NT , t 2 T

Fimt Price of a forward contract

bought at stage t, with maturity m,

in scenario i, m = 0 denotes spot sales. i 2 NT , m 2 Mt, t 2 T

Qit Produced quantum in scenario i, i 2 NT , t 2 T

at stage t.

T
F Corporate tax

T
R Natural resource tax

C
TR Transaction cost per unit

⇢ Discount rate

hit = rit � cit

=
⇣ X

m2Mt

Fimt ximt

⌘
�
⇣
c
TAX
it + c

TR
it + c

S
it

⌘

=
⇣ X

m2Mt

Fimt ximt

⌘
�
✓�

T
F
rit + T

R
Fi0t Qit

�
+ (6.10)

� X

{m2Mt | m>0}

1

(1 + ⇢)t/12
C

TR
ximt

�
+
�
(Fi0t + ✏) zit

�◆

The complete mathematical formulation of the hedging problem with nested CVaR to

guarantee time consistency, follows. A similar recursive model formulation with time
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consistent CVaR is also applied by Shütz and Westgaard (2018) to approach hedging of

salmon with a multistage stochastic model. The same is also done in Pisciella et al. (2016)

who approaches a capacity expansion problem of a price-taking power producer.

max
x

v00 (6.11)

s.t.

h
N
kt + (1� �)

X

i02k+

Pt(i
0 | k) vi0(t+1)+

�
�
⌧kt �

1

1� ↵

X

i02k+

Pt(i
0 | k) yi0(t+1)

�
= vkt k 2 Nt, t 2 T\{|T |} (6.12)

hiT = viT i 2 NT (6.13)

⌧kt � vi0(t+1)  yi0(t+1) i
0 2 k+, k 2 Nt, t 2 T\{|T |} (6.14)

Xt +
X

t02Tt

X

{m2Mt0 | t0+m=t}

ximt0 = Qit + zit i 2 NT , t 2 T (6.15)

ximt = x(i�1)mt i � 1 i 2 {NT | i � k}, k 2 Nt, m 2 Mt t 2 T\{|T |} (6.16)

zit = z(i�1)t i > 0 i 2 {NT | i � k}, k 2 Nt, t 2 T\{|T |} (6.17)

hit = h
N
kt i 2 {NT | i � k}, k 2 Nt, t 2 T\{|T |} (6.18)

ximt � 0 i 2 NT ,m 2 Mt, t 2 T (6.19)

ykt � 0 k 2 Nt, t 2 T (6.20)

zit � 0 i 2 NT , t 2 T (6.21)
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Based on the discussion in the previous subsections, the objective with the nested CVaR

implementation is formulated in constraints (6.11), (6.12) and (6.13). The essence of

this formulation is given by the recursive expression (6.12), where we recognize the de-

terministic profit term, the expected future profits and the risk. The expression forms a

recursive formulation as it incorporates expected utility for the directly succeeding states

when calculating the objective for the current state. Since every direct successor also

incorporates the expected utility from their direct successors, we get a structure that

ultimately nests up the expected utility from the leaves up to the root. The recursive

function (6.12) is solved stage-wise for every state in the scenario tree. Also recall that

expected profits and risk are weighted according to the decision maker’s risk aversion,

represented by the parameter �. The CVaR percentile ↵ also strengthens these e↵ects.

A lower CVaR percentile increases the decision maker’s propensity towards selling in the

spot market.

The objective (6.11) maximizes the objective function of the initial decision stage, while

constraints (6.13) represent the objective at the last stage. Since there are no states

succeeding the last stage, (6.13) only consists of the deterministic profit term from

(6.12).

Constraints (6.15) ensure consistency between produced quantity and quantity delivered

through contracts and spot sales at a stage t. We therefore impose a constraint that

requires the sum of spot sales and contract sales with maturity at stage t, to be as close

to the produced quantity as possible. When the produced quantity exceeds the quantity

sold on contract, the excess production is sold in the spot market. Oppositely, we recall

from Section 6.1 that in case of shortage production, we assume that the remaining

quantity is covered from the spot market.

For constraints (6.15), the quantity sold through forwards includes previously contracts

entered within the current planning period (ximt0 | m > 0) and contracts entered in pre-

vious planning periods Xt. The reason why we include contracts from previous planning

periods is to enable a rolling horizon approach to the decision making. This means that

when running the optimization model at sequential stages, optimal decisions from pre-

vious planning periods are taken into account in the current planning period (Sethi and

Sorger, 1991). For each stage in the planning horizon, the multistage hedging model is

then solved again based on new information. Hence, only the first stage solution, which

is the quantity of contracts shorted for di↵erent maturity periods at the time the model
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is solved, is kept from each time the model is solved. The same approach is for instance

applied in Séguin et al. (2017).

Constraints (6.16) and (6.17) are non-anticipativity constraints, ensuring that all decisions

that are based on the same information ought to be equal. In practice this means that all

scenarios that pass through a node have to make the same decision in that node.

Constraints (6.18) ensure that h
N
kt is are equal to any hit for i � k. This is a technical

adjustment that enables us to use hN
kt as a single term in the node indexed utility function

(6.12).

The remaining constraints are non-negativity constraints.

In the next section we develop the distributionally robust hedging model by adapting the

stochastic hedging formulation presented in this section to the general solution algorithm

for distributionally robust problems, presented in Chapter 5.

6.3 The distributionally robust hedging model

Recall from Section 5.1 that we in distributionally robust optimization find the best

decision for the worst-case probability model from a set of probability models in the

proximity of the one we have observed. In this way we account for the model risk related

to not knowing the underlying true probability distribution for certain.

In Section 5.3 we saw that the solution algorithm consists of three optimization problems.

The outer problem that finds the optimal decision for the worst-case scenario tree. The

inner problem that runs through every stage in the current worst-case tree to make it even

worse. The last problem is the CVaR optimization problem that adapts CVaR to every

new modification made to the probabilities in the inner problem. Also recall from Section

5.3.3 that these three problems formed a min-max-min problem, where the objective was

a cost function. In the stochastic hedging model presented in Section 6.2 we however

consider profits, and seek to maximize the utility. The distributionally robust hedging

model we develop in this section therefore becomes a max-min-max problem.

In the following subsection we first modify the stochastic hedging model from Section

6.2, so that it can be applied as the outer problem (5.26) from Section 5.3. This involves
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including the probability models within the ambiguity set, and to ensure that the outer

problem maximizes the utility function for the probability model that provides the lowest

expected utility.

We then consider the inner problem and the CVaR problem. The primary challenge is

here to adapt the kernel solution method in Section 5.3.2 to the nested CVaR objective

function (6.12).

6.3.1 Modifying the outer problem

In order to apply the stochastic hedging model (6.11) to (6.21) as the outer problem (5.26)

in the distributionally robust problem, the following modifications need to be made. The

first modification involves adapting the model with respect to the probability models P in

the ambiguity set P". We hereafter consider probability models as scenario trees. Recall

the assumption that the tree structure is fixed, and from the outer problem (5.26) that

any feasible decision is bounded by the worst-case scenario tree. We do for these reasons

not need to extend all decision variables to include scenarios for every scenario tree in

the ambiguity set. Rather, we only have to modify the constraints from the stochastic

formulation that contain probabilities, which in this instance applies to the variables of

the CVaR formulations (6.12) to (6.14).

We adapt the constraints with probabilities by rewriting the conditional probabilities

to PPt(i0 | k), such that they now are indexed according to their current tree. This

modification also a↵ects the auxiliary objective function variables vkt, yi0(t+1) and ⌧kt,

which we now denote vkPt, ykPt and ⌧kPt, respectively.

We then modify the nested CVaR objective function, given by constraints (6.12) and

(6.13), so that they apply for every scenario tree in the ambiguity set

h
N
kt + (1� �)

X

i02k+

PPt(i
0 | k) vi0P(t+1)+

�
�
⌧kPt �

1

1� ↵

X

i02k+

PPt(i
0 | k) yi0P(t+1)

�
= vkPt k 2 Nt, P 2 P", t 2 T\{|T |}
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hiT = viPT i 2 NT , P 2 P"

⌧kPt � vi0P(t+1)  yi0P(t+1) i
0 2 k+, k 2 Nt, P 2 P", t 2 T\{|T |}

A second modification is to reformulate the objective function so that it finds the maxi-

mum utility under the worst-case probability distribution. We first introduce the auxiliary

variable u. We then apply a constraint assuring that u cannot be bigger than than the

lowest root node objective variable v0P0

u  v0P0 P 2 P"

By then setting the objective as

max u

we know that the binding constraint is the one with the lowest of all v0P0, and that u

therefore maximizes with regards to the worst-case distribution.

6.3.2 Formulating the inner problem

Recall from Section (5.3) that in order to solve the inner problem (5.27), we run a suc-

cessive convex programming algorithm that iterates through every stage in the scenario

tree. It then returns the scenario probabilities that make the expected objective function

value as bad as possible. The inner problem objective is therefore similar to that of the

outer problem, but with other decision variables. In the instance of the electricity hedg-

ing problem (6.11) to (6.21), we have to make the following modifications to the original

formulation of Analui and Pflug (2014):

– The recursive formulation of the objective (6.11) - (6.13) requires us to consider

the utility function for every stage, rather than for the terminal values at the leaf

nodes. This requires us to formulate conditional probabilities as variables for every
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stagewise iteration. The respective adaptations also have to be made to the kernel

formulations.

– A further problem is to integrate the objective formulation with nested CVaR, which

we recall from Section 5.3.3 turns the inner problem non-linear.

– The inner problem-CVaR iterations from Section 5.3.3 is already an extension of

the risk neutral solution algorithm from Analui and Pflug (2014). This procedure

has to be adapted to the nested CVaR formulation used in the hedging problem.

We first adapt the inner problem to the recursive objective formulation. We then make the

adaptions to the inner problem to address the non-linearity of integrating nested CVaR.

This allows us to formulate the hedging specific inner problem. Lastly, we adapt the CVaR

optimization problem from Section 5.3.3 to the recursive objective formulation.

Adapting the inner problem to the recursive objective function

As discussed in Section 5.3, the inner problem in the original framework of Analui and

Pflug (2014) inputs only the optimal objective values at the leaf stage from the outer

problem. Recall that in this context the optimal objective values are profits. These

profits are the realized profits at the end of each scenario path in the scenario tree, when

having input the outer problem optimal decision variables. The worst-case scenario tree is

then calculated so that the expected scenario profits are minimized. An intuitive example

is the inventory control model presented in Section A.3. Here, the scenario profits are the

accumulated profits from sales at every stage in the planning period.

The original accumulated objective function formulation does not fit well with the recur-

sive structure we use to make CVaR time consistent. We emphasize that in the objective

of the stochastic hedging model (6.11) it is the root node utility that is maximized. At-

tempting to accumulate the utility from the root down to the leaf nodes would eventually

nest up the constraints to one single constraint, where all objective function variables can-

cel each other out. In addition to make little sense, the problem then becomes infeasible.

An illustrative example is presented in Appendix A.4.

In the following paragraphs we first present the modifications of the inner problem because

of the recursive objective formulation. We also present a set of necessary transportation

kernel adaptations.
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Presenting the approach Formulating the inner problem of Analui and Pflug (2014)

for a recursive formulation of the objective is to our knowledge not covered in the litera-

ture. We therefore propose the following approach: We know from the stochastic problem

(6.11) to (6.21) that the objective consists of sub-objective functions at each node and

every stage, that calculate the node-wise expected utility. Recall from (6.12) that this

recursive structure is written as

hkt + (1� �)
X

i02k+

Pt(i
0 | k) vi0(t+1) +

�
�
⌧kt �

1

1� ↵

X

i02k+

Pt(i
0 | k) yi0(t+1)

�
= vkt k 2 Nt, t 2 T\{|T |} (6.22)

We seek to adapt this formulation to Algorithm 5.2, which solves the inner problem by

updating scenario tree probabilities one stage at a time. Note that in (6.22) the expected

utility is calculated from the subtrees spanning out from each node at every intermediate

stage in the scenario tree. We therefore have to formulate the conditional probabilities

for every stagewise iteration. As can be seen in (6.22) it is in particular the conditional

probability of reaching a node from its direct predecessor that needs to be calculated.

Recall that the inner problem objective for a given iteration is to adjust the probabilities,

such that the utility obtained from the outer problem decision is as low as possible.

Following constraints (6.22), this means that the inner problem has to find the conditional

probabilities such that the expected value over all current stage objective variables vkt

are minimized. Because of the recursive structure, the new values of these variables

propagate up along the path of predecessors up to the root node. Whereas the outer

problem maximizes the root node utility, it is minimized in the inner problem. Note that

we define the decision variables over the successor nodes of those at the current stage. In

other words, the inner problem adapts the conditional probabilities of reaching a successor

node, conditional on its predecessor at the current stage, so that the root node utility is

minimized.

Formulating the stagewise objective function We now show how the the minimal

expected root node utility can be formulated for every inner problem iteration. The prin-
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ciple is to formulate the root node utility as the expected leaf node utility in the subtrees

spanning from the root down to the considered stage in the current iteration.

First, we note that the probability of reaching a current stage node is given from the

path of predecessors. More specifically, we show that all other terms in (6.22) become

constants when calculating the root node utility based on the current stage utilities. Note

that it therefore is fine to fix the successor node utilities vj0(t+1). They are adjusted in the

following iterations anyway.

Remember that we in Chapter 5 distinguished the new scenario tree, with changed prob-

abilities, from the baseline scenario tree. Recall that the new scenario tree node l 2 Nt

corresponds to nodes k at the same stage in the baseline scenario tree. We similarly write

the direct successor as j0 2 l+. Further, we hereafter distinguish parameter probabilities

P̂t(j0 | l) from variable probabilities pt(j0 | l). We now show that the root node utility,

which is captured in the root node objective variables v00, can be written based on the

current stage objective variables vlt. For ease of notation we for now disregard the CVaR

term. Consider the root node utility

v00 = h00 +
X

j02N1

P0(j
0 | l0)vj01

For node l at stage 1 the same utility function is

vl1 = hl1 +
X

j02l+

P1(j
0 | l1)vj02

By inserting the latter function into the first we get

v00 = h00 +
X

j02N1

P0(j
0 | l0)

�
hl1 +

X

j02l+

P1(j
0 | l1)vj02

�
(6.23)

If we assume that the current iteration is at stage 2, so that we for a given node l have
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the utility

vl2 = hl2 +
X

j02l+

p2(j
0 | l2)vj03 (6.24)

then adjusting p2(j0 | l2) makes vl2 vary accordingly. This does not a↵ect any of the profit

terms hkt in (6.23), which therefore can be considered constant in the current iteration.

Adding the CVaR term to (6.24) would change the value of vl2, but would not a↵ect the

constant terms in (6.23). If we denote the constant profit terms as C, we can write the

root node utility as the sum of current stage utilities, weighted by their path probabilities.

We here refer to l1 and l0 as predecessors of l.

v00 = C +
X

l2N2

P0(l1 | l0) · P1(l2 | l1) vl2

Generally for the current iteration t we can write

v00 = C +
X

l2Nt

�
P(t�1)(l | l�) · . . . · P0(l1 | l0)

�
vj2

Since C does not a↵ect the optimal decision it can be disregarded. We further denote the

path of conditional probabilities P(t�1)(l | l�) · . . . ·P0(l1 | l0) down to current stage node

l as P (new)
t (l | l0). We can now write the objective as

min
pt(j0 | l)

X

l2Nt

P
(new)
t (l | l0) vlt

Formulating conditional probabilities with subkernels We emphasize that con-

ditional probabilities only need to be calculated for the direct successor nodes Pt(j0 | l).
Recall from the conditional probability kernel example (5.35) in Section 5.3.1 that for
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direct successor conditional probabilities, the path of subkernels from relation (5.32) con-

tains only a single subkernel. According to relation (5.34), we formulate the relation

between kernels and conditional probabilities as

Pt(j
0 | l) =

X

i02k+

Kt(j
0
(t+1) | i0(t+1); k, l) · P̂t(i | k) l 2 Nt (6.25)

We set this relation as constraints in the inner problem, and thus get a relation between

kernels and probabilities. As we know from Section 5.3.2, the actual decision variables in

the inner problem are the subkernels at the current stage. Constraints (6.25) therefore

restrain the optimization problem from finding conditional probabilities that cannot be

formulated with the adjustable subkernels at that stage. The constraints that ensure

consistency between kernels are the same as those described in Section 5.3.2.

Addressing non-linearity of the CVaR term

We now consider the CVaR term of the utility function. Recall from Section 5.3.3 that

CVaR causes the inner problem to become non-linear. As we can see for constraints

(6.12), this is caused by the product of the probability variables and the CVaR auxiliary

variables in the terms

(1� �)
X

i02k+

pt(j
0 | l) vi0(t+1)

and

�
�
⌧kt �

1

1� ↵

X

i02k+

pt(j
0 | l) yi0(t+1)

�

Recall that this non-linearity issue is the reason why we in Section 5.3.3 extended Algo-

rithm 5.1 such that it includes a CVaR optimization problem within the inner problem.

This allows us to approximate the inner problem probabilities as if they were decided
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simultaneously as the CVaR variables.

Nevertheless, in order to linearize the inner problem, we need to determine which variables

to fix. To our knowledge there is no literature addressing this issue. Our two options

are

1. Fixing vj0(t+1) and yj0(t+1) and allowing ⌧lt to adapt according to the decision vari-

ables. As a consequence ⌧lt and pt(j0 | l) can be determined simultaneously, which

is ideal. A problem is on the other hand that shortfall profit yj0(t+1), which by

definition is a di↵erence, is fixed.

2. An alternative is fix ⌧lt and then replace pt(j0 | l) yi0(t+1) with the auxiliary variable

wlt. In this way we can allow pt(j0 | l) to vary, while at the same time ensuring

that the shortfall profit is consistent with ⌧lt. We denote the fixed values of ⌧lt and

vj0(t+1) as Tlt and Vj0(t+1) respectively. We still need to ensure that the outer problem

CVaR constraints (6.14), which are written

⌧kt � vi0(t+1)  yi0(t+1) i
0 2 k+, k 2 Nt

are satisfied. We do this by multiplying both sides with pt(j0 | l) and get

pt(j
0 | l)Tlt � pt(j

0 | l)Vj0(t+1)  wj0(t+1) j 2 l+, l 2 Nt (6.26)

A drawback with this approach is that ⌧lt is fixed, which is suboptimal as the

shortfall profits in this case are not calculated relative to the VaR threshold, with

the intended confidential level ↵.

Alternative 2 is in our opinion the most attractive as it allows the shortfall profit to vary.

While a fixed ⌧lt on one hand is suboptimal, fixing the shortfall profit yi0(t+1) does on

the other make little sense when calculating CVaR. The equivalence between the new

inequality (6.26) and (6.14) can easily be seen by solving a linear equality and compare

it to the same inequality, but with each side multiplied with a scalar.

We now have a linear formulation where conditional probabilities can be adjusted to
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minimize the stagewise utility, with shortfall profit that adapts to these decisions. We

can now proceed towards formulating the inner optimization problem for a given stage in

the stagewise iteration of Algorithm 5.2.

Inner problem formulation

We now know that the purpose of the inner problem is to minimize the root node utility.

This is done by adjusting current stage conditional probabilities with the use of the

subkernels at the current stage. We recall that the root node utility is formulated as a

product of the path of direct successor probabilities P
(new)
t (l | l0) and the current stage

objective variables vlt for all l 2 Nt. For the root node this probability is set to 1. From

the outer problem, the inner problem inputs the following optimal variable values as

parameters: The optimal profits Hkt, the successor stage optimal objective values Vj0(t+1)

and the Value at Risk Tkt. We first write the nomenclature and then present the inner

problem.
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Sets

Nt Set of nodes in the current stage iteration.

NT Set of leaf nodes.

k+ Set of direct successors i0 of k.

l+ Set of direct successors j0 of l .

Indices

k Node index in the old scenario tree k 2 Nt

i
0 Direct successor node i

0 of k i
0 2 k+

l Node index in the new scenario tree l 2 Nt

j
0 Direct successor node j

0 of l j
0 2 l+

Parameters

d
r
ij The r-order distance between

paths down to leaf nodes i and j. i, j 2 NT

Hlt Profit function with fixed variables. l 2 Nt

Vj0(t+1) Successor stage objective function. j 2 l+, l 2 Nt

Tlt Current state Value at Risk. l 2 Nt

P̂i Baseline model scenario

probability probability. i 2 NT

P̂t(i0 | k) Baseline model direct successor

conditional probability. k 2 Nt

P
(new)
t (l | l0) Path of direct successor conditional

probabilities down to node l. l 2 Nt

" Ambiguity radius.

� Risk aversion parameter.

↵ CVaR confidence level.

Variables

K(i, j) Transportation kernel. i, j 2 NT

Kt(j0 | i0; k, l) Subkernel at stage t. k, l 2 Nt

pt(j0 | l) Conditional probability of reaching

direct successor node j
0 of l0. j 2 l+, l 2 Nt

vlt Current stage objective value. l 2 Nt

wj0(t+1) Auxiliary variable describing

weighted expected loss for node j
0. j

0 2 l+, l 2 Nt
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min
pt(j0 | l)

X

l2Nt

P
(new)
t (l | l�) vlt (6.27)

s.t.

Hlt + (1� �)
X

j02l+

pt(j
0 | l)Vj0(t+1)+

�
�
Tlt �

1

1� ↵

X

j02l+

wj(t+1)

�
= vlt l 2 Nt (6.28)

pt(j
0 | l)Tlt � pt(j

0 | l)Vj0(t+1)  wj0(t+1) j 2 l+, l 2 Nt (6.29)

X

i2k+

Kt(j
0
t+1 | i0t+1; k, l) P̂t(i

0 | k) = pt(j
0 | l) j 2 l+, k, l 2 Nt (6.30)

C
(k,t)
ij Kt(j

0
t+1 | i0t+1; k, l) = K(i, j) i � k, j � l, (k, l) 2 Nt (6.31)

X

j2NT

X

i2NT

d
r
ij K(i, j) P̂i  " (6.32)

X

j02l+

Kt(j
0
t+1 | i0t+1; k, l) = 1 i

0 2 k+, (k, l) 2 Nt (6.33)

X

j2NT

X

i2NT

K(i, j)P̂i = 1 (6.34)

Kt(j
0 | i0; k, l) � 0 i 2 k+, j 2 l+, k, l 2 Nt (6.35)

wj0(t+1) � 0 j
0 2 l+, l 2 Nt (6.36)

The objective (6.27) minimizes the expected value of the current stage objective variables,

conditional on the preceding nodes.

This objective variable inputs the current stage utility function (6.28), which is similar to

the utility function in the outer problem. For every node in the current stage, we vary the

conditional probabilities of reaching the direct successor leaf nodes. Once a probability

is varied and the objective function is changed, the shortfall profit in the CVaR term is

adjusted accordingly.
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The shortfall profit is ensured consistent as the positive di↵erence between the fixed Value

at Risk and the current objective function value by constraints (6.29).

As elaborated in the paragraphs above, constraints (6.30) ensure consistency between

subkernels and conditional probabilities. Similarly, constraints (6.31) ensure that relation

(5.32) holds by defining the transportation kernel as the path of subkernels from the

root node. Recall that future and past stage subkernel values are stored in the C
(k,t)
ij

parameter.

Constraint (6.32) limits the nested distance between the new probability model and base-

line model to be no more than ". Recall from Section 5.2 that this constraint constructs

the boundaries of the ambiguity set, which can be regarded as the nested distance ball

(5.18).

Constraints (6.33) ensure that the total mass transported to all j from a given i
0, condi-

tional on k and l, forms a probability distribution that adds up to 1.

Similarly, constraint (6.34) requires that the new probability distribution, formed as the

product of kernels and the baseline probability distribution, adds to 1.

Since subkernels form probability distributions, constraints (6.33) ensure that they are

non-negative and no larger than 1. Lastly, the non-negativity constraints (6.36) ensure

that shortfall profits are positive.

As discussed in the sections above, fixing the auxiliary CVaR variables in this problem

is not optimal. With the purpose of finding an approximation of the CVaR values as if

they were decided simultaneously as the inner problem probabilities, we iteratively run

the inner optimization against the CVaR optimization problem. In the following section

we elaborate on how the CVaR optimization problem is formulated.

CVaR optimization formulation

Before the inner problem continues on a new stagewise iteration, the optimal inner prob-

lem decision is input to the CVaR optimization problem to see whether if an updated

Value at Risk can make the probability distribution even worse. In a similar manner as

the inner problem runs from stage to stage, the CVaR optimization problem runs from

node to node within the current stage. Therefore, for the optimization problem at a given
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node l and stage t, we only have a single CVaR optimization problem decision variable ⌧lt.

The optimization problem considers only the CVaR term within the inner optimization

problem for a given node l, and the uncertainty determined by the direct successors j0. We

input the optimal probabilities from the inner problem Pt(j0 | l), and the optimal direct

successor objective variables from the outer problem Vj0(t+1). Since these values are fixed,

we can formulate the shortfall profit balance constraint as is done in constraints (6.14) in

the outer problem. For a given node l and stage t we formulate the CVaR optimization as

Sets

l+ The direct successors of l

Indices

j
0 Direct successor node j

0 of l. j
0 2 l+

Parameters

Vj0(t+1) Successor stage objective function

values from the outer problem. j 2 l+

Pt(j0 | l) Optimal stagewise probabilities

from the inner problem. j
0 2 l+

↵ CVaR confidence level.

Variables

⌧lt CVaR decision variable for the

current node l at stage t.

yj0(t+1) Shortfall profit. j
0 2 l+

max
⌧lt

⌧lt �
1

1� ↵

X

j02l+

Pt(j
0 | l) yj0(t+1) (6.37)

s.t.

⌧lt � Vj(t+1)  yj0(t+1) j
0 2 l+ (6.38)

yj0(t+1) � 0 j
0 2 l+ (6.39)
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The objective function (6.37) is the CVaR term of the utility function, and constraints

(6.38) and (6.39) ensure consistency between the CVaR variables.

Even though including the CVaR optimization problem improves the quality of the inner

problem decisions, this is still an approximation. In the following chapter we discuss

the computational results found by running the hedging model on a real data instance.

One of these tests is to study how including the CVaR optimization problem impacts the

worst-case probability distribution and the corresponding optimal decisions.
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Chapter 7

Computational Study

The purpose of this chapter is to present the results of the hedging models developed

in Chapter 6. This chapter is organized into two sections. In Section 7.1 information

about the problem instance in this thesis is described, while the numerical results of the

multistage stochastic and multistage distributionally robust hedging model are presented

and analyzed in Section 7.2.

7.1 Problem instance

In this section we describe the input data applied in the hedging problem covered in this

thesis. First, details about the scenario tree applied in the hedging models, are presented.

These details include a description of the input data that the scenario tree is created from.

Secondly, a description of the test data and the rolling horizon approach is presented. In

addition, the remaining parameters that need to be defined in order to run the hedging

models are quantified.

7.1.1 Scenario tree and input data

In this subsection we discuss the specific scenario tree used in this thesis, in addition

to a presentation of the input data the scenario tree is generated from. While both the

electricity spot price and production quantity scenarios are generated based on the same

105
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method, the forward price scenarios are generated di↵erently. This subsection is therefore

organized in two. In the first part we present the input data for prices and production,

and describe how scenarios are generated based on the input data. In the second part we

similarly present a description of the input data and scenario generation for the forward

prices. In brief, for the spot prices and production quantities, the scenario tree is generated

from a scenario fan based on the clustering approach described in Section 5.4.1. The

scenarios for forward prices are further constructed such that they are consistent with the

spot price scenarios, according to the description in Chapter 6.

Scenario generation for spot prices and production quantities

In creating the scenarios of spot prices and production quantities, the scenario tree gen-

eration method from Section 5.4.1 is applied. Further, a scenario fan of forecasts from

the EFI’s Multi-area Power-market Simulator (EMPS) is applied as a basis for the ap-

plied scenario tree generation method. EMPS is a market equilibrium model, developed

by SINTEF for optimization and simulation of hydro thermal power systems based on

supply and demand of electricity (SINTEF, 2017). The model is for instance applied in

forecasting inflow scenarios, which are highly correlated with production quantities, and

in forecasting electricity price scenarios. The EMPS model uses statistical time series of

50 to 75 years as a basis when generating the di↵erent forecasts.

We first describe the data extracted from the EMPS model, and show how this data is

processed in order to create the scenario fan that the scenario tree generation method

is based on. The scenario fan from the EMPS model consists of 55 scenarios for each

week over a time horizon of approximately 4 years. Further, each scenario gives a pair

of spot prices and production quantities, based on market equilibrium calculations from

one historical time series of inflow. The correlation between spot prices and production

quantities is hence accounted for. TrønderEnergi considers only the 20 hydropower plants

of most significant size as relevant for the hedging problem regarded in this thesis. In

the EMPS model the spot prices and production scenarios are based on the assumption

that the market participants are price takers in a market of perfect competition. This is

a reasonable assumption for TrønderEnergi, which is a small company.

As the hedging models consider a time horizon of 4 months, with a monthly duration

of each stage, the hourly price forecasts from the EMPS model are averaged, while the
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production forecasts are aggregated over each month before being applied in the scenario

tree generation approach. We assume that the inflow scenarios for similar months are

independent from year to year. This allows us to apply all scenarios from the EMPS

model as forecasts for the year which we run the optimization models for. Hence, the

scenario fan is yielding a total of 220 (55 · 4) scenarios.

As described in Section 5.4, a scenario fan as the one output from the EMPS model is

not appropriate for multistage distributionally robust optimization models, because all

information is received at the second stage of the fan, with no remaining uncertainty at

the succeeding stages. Hence, in this thesis a scenario tree is generated from forecasts

from the EMPS model, based on the clustering approach described in Section 5.4.1.

For the scenario generation approach we specify prices and production as uncertain vari-

ables, i.e. set m = 2. Recall from Section 5.4.1 that the scenario generation approach

ensures that the correlation from the EMPS model between these dimensions is retained.

Ultimately, the r-order distance is set to 2 as it simplifies the calculations, hence mak-

ing the Euclidian distance the chosen distance metric. An illustration of how a scenario

fan is transformed into a scenario tree is shown in Figure 7.1. Note that neither the

scenario fan, nor the tree, are displayed with real scenario values as this information is

confidential.
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Figure 7.1: A scenario tree (right) is generated from a scenario fan (left) based on stochastic
approximation. In the hedging models, the scenario fan consists of 220 forecast paths from the
EMPS model. The generated scenario tree contains 5 stages and 192 scenarios at the last stage,
where each scenario contains information about the spot price and production.

The structure of the generated scenario tree is chosen as the one that minimizes the

nested distance to the scenario fan. Table 7.1 gives a summary of the alternative tree

structures, the respective number of scenarios per stage and their average nested distance

over five generated scenario trees. The structure represents the branching factor, i.e.

the number of direct successors at each stage, for every node in the tree. The scenario

generation method is implemented in MATLAB and the average computational time for

the preferred structure, in bold in Table 7.1, is 26 seconds when ✏ = 0.0005.
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Structure Scenarios pr stage nested distance

6-4-3-3 6-24-72-216 2.5

4-4-4-3 4-16-64-192 1.9

3-3-4-6 3-9-36-216 3.1

3-4-4-4 3-12-48-192 2.4

Table 7.1: Alternative structures for the scenario tree, including the number of scenarios per
stage and average nested distance to the scenario fan. The chosen structure is in bold.

Although the scenario generation approach enables us to generate a scenario tree from the

EMPS model, a drawback is as we recall from Section 5.4, that the number of scenarios

at the last stage in the tree is limited to the total number of scenarios from the EMPS

model (220). Since we consider a five stage model, this limits the branching factor at each

node and hence making it di�cult to capture all potential outcomes. From table 7.1, we

see that the tree with structure 4-4-4-3 and 192 scenarios gives the lowest nested distance.

This structure is therefore applied in the optimization models.

Scenario generation for forward prices

Even though the prices on forward contracts with di↵erent maturities are known at the

point of time they can be entered, the development of the forward prices is uncertain as

time approaches the maturities. For instance, the price of a forward contract maturing

three months from now is known today, but unknown tomorrow. Hence, as for spot prices

and production quantities it is necessary to represent the uncertainty of the forward prices

in the scenario tree.

As discussed under the assumptions in Chapter 6, this thesis only considers hedging, and

not speculation, as the underlying motivation for entering into forward contracts. The

forward prices are therefore required to be consistent with the conditional expectation

of the spot price scenarios. By employing this, scenarios for the forward price can be

derived as illustrated in Figure 7.2. Further, Figure 7.3 illustrates a forward curve, a

graph showing current forward prices for contracts with di↵erent maturities. This graph

clearly shows the seasonality in electricity prices, an observation that is common in the

electricity market.
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Figure 7.2: A scenario tree for the price of a forward contract with maturity in period 2. The
forward price at a stage is consistent with the conditional expectation of the spot price at the
maturity period

Figure 7.3: The forward curve for monthly contracts with maturities from January to Septem-
ber. The forward price is consistent with the expectation of the spot price at maturity.
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7.1.2 Test data and the rolling-horizon procedure

The hedging models are run with monthly decision stages over a planning horizon of

5 months, for each year ranging between 2014 and 2017. Recall from Chapter 6 that

the decision problem is to decide the proportion to be sold either on contract, or to an

uncertain future spot price. For each year a rolling horizon approach is applied. This

means that the multistage hedging models are solved five times each year, where the first

stage decisions are stored each time a model is solved. These decisions are then input as

parameters when the model is solved again for the next month. The initial decision is

made at the end of December in the preceding year, hedging the prices from January to

April. The model is then solved for January with a new scenario tree based on an updated

fan from the EMPS model, hedging for February to May, and so forth. We assume that

the only contracts with maturity within the planning period are relevant for the decision.

TrønderEnergi is further assumed to hold no contracts at the initial decision stage, for a

given year.

The transaction costs are set to 0.01 EUR/MWh (Nord-Pool, 2017b), and the buyback

cost in cases where the quantity of electricity sold on contract exceeds the actual produc-

tion for the same period, is set to 1EUR/MWh. Further, the discount rate ⇢ is set to

0.05.

Ultimately, the stochastic hedging model is solved for di↵erent degrees of risk aversion, �,

and CVaR confidence level ↵. The distributionally robust hedging model is also solved for

varying ambiguity radius ". According to Esfahani and Kuhn (2015), the ideal ambiguity

radius should be large enough to capture the true probability distribution, but low enough

so that the model does not give too conservative results. In this instance, we solve the

distributionally robust hedging model for " = 2 to " = 50. Recall that the nested distance

between the generated scenario tree and the input forecasts from the EMPS model was

approximately 2, hence " = 2 is chosen as the minimum ambiguity radius. As discussed

in Section 5.1, we are able to capture the distributional di↵erences between the applied

scenario tree and input data. Further, higher ambiguity radii captures the decision makers

increasing ambiguity aversion.



112 CHAPTER 7. COMPUTATIONAL STUDY

7.1.3 Computational performance

Before proceeding towards analyzing the numerical results, we make a brief comment on

the runtime of the optimization models. Solving the distributionally robust model with a

stop criterion of observing improvements less than 1% over the last three iterations, takes

approximately 400 seconds. This corresponds to a 68 times higher computational e↵ort

than for the stochastic counterpart. Whether or not one should apply distributionally

robust optimization with this framework should for this reason rely on the importance of

computational e�ciency. For instance, high need for frequently running the optimization

problem would reduce the usefulness of the distributionally robust model. For running

the optimization model on monthly basis, as is in this instance, distributionally robust

optimization with the applied framework is adequate from a computational e�ciency

viewpoint.

7.2 Numerical results

In this section we present and interpret the results from having run the distributionally

robust hedging model. Our approach is to examine the results from three perspectives.

First, we present and evaluate the hedging decisions obtained from the respective models.

We here aim to characterize how decisions made by the distributionally robust model di↵er

from those of the stochastic model, and further discuss why we observe these di↵erences.

Secondly, we compare the di↵erences in expected implications of applying decisions of the

stochastic model against the distributionally robust model. Lastly, we conduct out-of-

sample performance tests on the respective hedging strategies, which include simulations

from potential probability distributions as well as backtesting on realized data. This is

to investigate the extent to which an electricity producer can benefit from accounting for

ambiguity when making hedging decisions.

We first present an in sample stability test in order to investigate the consistency of the

scenario generation method.



7.2. NUMERICAL RESULTS 113

7.2.1 In Sample Stability

The purpose of an in sample stability test is to verify if the applied scenario generation

approach is consistent (Séguin et al., 2017). The test is based on King and Wallace (2012),

and is conducted by investigating the variation in the optimal objective value for di↵erent

scenario trees. In this hedging context, a relatively stable optimal objective is desirable

as it indicates that the optimization model gives approximately equal expected utilities

independent on the applied scenario tree. For a discussion on why it is more interesting

to consider optimal objective values than optimal decisions when measuring in sample

stability, see King and Wallace (2012).

We generate six scenario trees based on the scenario fan from January 2014, before running

the hedging model independently on each of the trees. The test is conducted for both the

stochastic model, as well as the distributionally robust model with two di↵erent degrees

of ambiguity. The results are shown in Table 7.2. For the stochastic model, we observe

that the optimal utilities are relatively stable for the di↵erent trees. Further, for the

distributionally robust model we observe that the optimal objective values are slightly

more sensitive to varying scenario trees. Intuitively, one could expect the in sample

stability to increase for higher degrees of ambiguity since the distributionally robust model

accounts for model risk. The explanation of why the in sample stability decreases is

however that we observe the worst-case scenarios in the scenario tree to commonly be

outliers, which tend to vary more than the rest of the scenario tree. Recall that the applied

distributionally robust model handles model risk by accounting for more conservative

probability distributions, which is achieved by weighting the worst-case scenarios more.

It is therefore expected that the in-sample stability of the distributionally robust model

is lower when the worst-case scenarios of the trees the test is conducted on tend to vary

more than the rest of the scenario tree.
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SO DRO, " = 5 DRO, " = 10

Data Tree Utility, MEUR di↵, abs Utility, MEUR MEUR Utility, MEUR MEUR

Jan, 2014

-

Jun, 2014

1 10.025 1.2% 9.921 1.3 % 9.787 1.5 %

2 10.025 1.2% 9.881 1.7 % 9.709 2.3 %

3 10.152 0% 10.033 0.2 % 9.851 0.9 %

4 10.180 0.3% 10.063 0.1 % 10.065 1.3 %

5 10.223 0.7% 10.142 0.9 % 9.955 0.2 %

6 10.294 1.4% 10.259 2.1 % 10.259 3.2 %

Mean 10.150 0.8% 10.050 1.0% 9.938 1.6%

Table 7.2: In-sample stability test for the stochastic hedging model (SO) and the distribution-
ally robust model with " = 5 and " = 10. The di↵erence is the represented as the percent-wise
absolute deviation from the mean.

In the following section we present and evaluate the hedging decisions obtained from the

stochastic- and distributionally robust hedging model.

7.2.2 Presenting and evaluating the hedging decisions

The purpose of this section is to understand how the hedging decisions from the distribu-

tionally robust model di↵ers from the stochastic model. In order to uncover the principal

di↵erences between the models we first study the aggregated hedge-ratios over the four

years of test data, for di↵erent levels of ambiguity. We then seek to explain these results

by elaborating on how the scenario tree in the distributionally robust model changes with

increasing ambiguity radius. We further study the detailed set of hedging decisions within

a year in order to find di↵erences in when contracts are entered, when they mature and

the quantities hedged. Lastly, we conduct a sensitivity analysis on how varying the CVaR

significance level and the degree of risk aversion a↵ect optimal decisions.

Figure 7.4 shows the average hedge ratios in the period from 2014 to 2017 for the stochastic

model and the distributionally robust model with di↵erent levels of ambiguity ". For the

four future months included in a planning horizon, the hedge ratios are calculated as

the sum of all contracts that have maturity at a specific month, relative to the expected

production in that month. The expected production for a month is calculated from

the empirically based scenario tree P̂ . Further, the monthly expected hedge ratios are

averaged in order to obtain the yearly expected hedge ratios. The CVaR significance level
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and level of risk aversion are respectively set to ↵ = 0.9 and � = 0.5.

Figure 7.4: Average yearly hedge ratios over the period 2014-2017, achieved by the stochastic
and distributionally robust hedging model with varying ambiguity radius.

On average we observe that the expected hedge ratios are approximately 40%. As we

recall from Section 2.2, the tax system causes the position that neutralizes price risk

under a deterministic production to be at 53%, which we hereafter refer to as a full

hedge. This means that the models on average recommend hedging about 75% of the risk

neutralizing hedge ratio. We observe that the expected hedge ratios tend to increase when

the ambiguity radius " increases, approaching a full hedge. This increased conservatism

for higher ambiguity aversion is in accord with what one would expect from a more

robust solution. As we however elaborate in the sections below, there are several factors

influencing this relation. In general, the degree of conservatism is largely decided by the

worst-case probability model in the ambiguity set. Our findings suggest that for small to

moderate ", an increased focus on low-price scenarios, and therefore an increased tail risk,

incentivizes more hedging. A counteracting e↵ect is however that low volume scenarios

also are assigned more weight for increasing ambiguity. Hence, these hedging decisions

are based upon estimates of lower production, causing lower hedged quantities. When "
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becomes very large, extremely low production levels tend to become the most significant

contributor to low profits in the scenario tree. In a few of these scenarios the prices might

even be higher than the forward price, despite that the correlation between spot prices

and production quantities in general is positive. These e↵ects explain the finding that

the hedge ratios for " = 25 and " = 50 in average are lower than for the more moderate

choices of ".

Explaining the relationship between hedge ratios and increased ambiguity

In order to understand why hedging decisions change when " increases, we study how the

worst-case probability distribution evolves according to variations in ". We therefore run

the distributionally robust model on the same data for a broad specter of ", and observe

the evolution in the scenario probabilities in the scenario trees. Recall that the higher

the ambiguity radius, the further we allow the worst-case distribution to deviate from

the baseline probability model. Further, since we optimize for the worst-case probability

model, we would expect that an increased ambiguity radius would narrow down the sce-

nario probabilities to revolve around a few specific scenarios that cause the lowest profits

and highest risk. In Figure 7.5, we present the findings for " = 0, 7.5, 10, 15, 20, 50. For

illustrative purposes, we have aggregated the total 192 scenarios into 16 discrete scenarios.

Further, note that the depicted scenario tree is not intended to have the same structure as

the one used in the model. It does rather serve the purpose of illustrating that a scenario

probability represents a given path through the scenario tree.
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Figure 7.5: When the ambiguity radius increases, the worst-case scenario trees narrow down
to single scenarios. Note that the scenarios are not presented in the order of increasing profits.

From Figure 7.5 we observe that when " increases the tree complexity is reduced, including

less and less scenarios. In the extreme case we observe that the worst-case probability

distribution considers only the single scenario causing the most harm to the decision

maker, making the model deterministic. This is in accord with how the scenario tree in the

examples in Analui and Pflug (2014) evolves when the ambiguity radius increases. Recall

that the structure of the scenario trees is the same, while only the scenario probabilities

themselves are subject to variations.

In the following paragraphs we elaborate on how the changes in the probability model

for increasing " a↵ects the hedge ratios. As mentioned in the previous subsection, a first

finding is that the hedge ratios are a↵ected by two counteracting e↵ects. For higher values

of " we observe an increased weighting of the downside profit scenarios, which in general

involves the scenarios with low prices. In turn, this increases the tail risk which makes

higher hedge ratios more attractive. In addition, increased weighing of scenarios with low

prices reduces expected future spot prices, which further reduces attractiveness of spot

price exposure. A full hedge should occur if the deterministic forward price exceeds the

expected spot price under deterministic production. On the other hand, a factor that

moderates the e↵ect of higher hedge ratios as " increases, is that a higher " also tends to

increase the weights of scenarios with low production. Isolated, this incentivizes towards

hedging lower quantities, which further gives lower hedge ratios relative to the baseline

expected production. Too high hedge ratios under uncertain production involves a risk,
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as it potentially leaves the decision maker incapable of supplying the agreed quantity in

scenarios where the produced quantity is low.

From Figure 7.4 we recall that hedge ratios increase for higher ", but only up to some

point. We also observed in Figure 7.5 that increasing " makes the model more and more

deterministic, as fewer and fewer worst-case scenarios are increasingly weighted. A further

explanation for why we observe the di↵erent hedging decisions can be derived by observing

Figure 7.6 below, showing how expected price and production in every month are reduced

when ambiguity increases.

Figure 7.6: Expected production for increasing ambiguity radius (left), and expected spot price
for increasing ambiguity radius (right). The figure is based on the optimizations conducted on
an arbitrary year within the considered time horizon.

In general we observe the previously discussed trend of decreasing expected prices and

production for increasing ". However, for some values of " we observe the opposite.

In these cases a high " has a higher expected price than for lower ". For April it is

even the case that the expected price under " = 50 is higher than in the stochastic

model. Seemingly paradoxically, even though expected profits are lower for high ", the

narrow focus on a few worst-case scenarios where the production is extremely low, in some
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instances can cause reduced hedging.

A hypothesis is therefore that this e↵ect is eliminated when production risk is removed.

In this situation an increased " only increases the weighting of the low price scenarios,

which further gives strictly increasing hedge ratios. The following Figure 7.7 confirms this

hypothesis. Note that to avoid immediate full hedges when increasing ", a risk-premium

is added.

Figure 7.7: Expected hedge ratios for increasing ambiguity, illustrated with uncertain produc-
tion (dark columns) and with deterministic production (light columns).

By eliminating the uncertainty in production, the previously discussed counteracting e↵ect

of increasing ambiguity radius is also removed.

Summarized we generally observe higher hedge ratios for increased ambiguity, following

more weighting of the scenarios with low prices, which subsequently increases the risk.

Lower expected production does on the other hand moderate the e↵ect of increased hedge

ratios. For very high ambiguity we observe decreased hedge ratios as a consequence

of a more and more deterministic scenario tree, which narrows the focus on scenarios

that at times have very low production. This makes the average hedge ratios lower for
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the highest degrees of ambiguity. In the following paragraphs we regard the hedging

decisions on a more detailed level, seeking to uncover di↵erences between the stochastic

and distributionally robust model concerning the time when contracts are entered, their

maturities, and the quantities hedged. We also perform a sensitivity analysis to see the

e↵ects of modifying risk the risk aversion parameters.

Detailed hedging decisions and risk sensitivity analysis

Detailed hedging decisions The following results of the distributionally robust (" =

5) and stochastic model are run on rolling horizon over five months of test data for 2017,

with monthly decisions. For every decision the first-stage decisions from the previous

planning period are kept. Figure 7.8 considers a single year and shows hedge ratios over

the first five months, distinguishing between the month when contracts were entered. As

for the figures presented in the preceding section, hedge ratios are relative to expected

production for the baseline probability model. CVaR significance level and risk aversion

are unchanged, respectively ↵ = 0.9 and � = 0.5.
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Figure 7.8: Hedge ratios for the considered months in 2017, split on entrance date of the
contracts. The strategies from the stochastic model (left) and distributionally robust model
with " = 5 (right) are shown

For both models in Figure 7.8 we observe relatively low hedge ratios in March and high

hedge ratios in May, which is because the scenario tree captures a higher degree of price

risk in May than in March. In May the hedge ratios are at almost 90% of the expected

production, meaning that the model overhedges relatively to a full hedge of 53% for

a deterministic production. This is likely due to the uncertain production. A notable

di↵erence between the decisions from the stochastic and distributionally robust model

for this year is that the distributionally robust model already in February hedges a more

considerable proportion of the expected production in May than the stochastic model.

The stochastic model does on the other hand adapt to the same hedge ratio in March.

This is according to what one would expect from more risk averse actors, as there is a

risk related to the development of forward prices with a specific maturity. However, as

seen by studying the detailed hedging decisions for the other years of test data, which are

attached in Appendix B.1, earlier contract entries are not significantly more common in

the distributionally robust model.
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Sensitivity analysis In the following paragraphs we study how the solutions di↵er

when varying the CVaR significance level ↵ and risk aversion parameter �. Recall that

for higher values of ↵ the impact of losses exceeding VaR is increased, hence the risk

increases. Similarly, an increased � increases the decision maker’s weighting of risk relative

to expected profits. How variations in ↵ a↵ects the decisions as expected. We expect that

a higher confidence level would lead to more conservative decisions, which as in Figure

7.9 is what we observe for all months when ↵ increases.

Figure 7.9: The monthly hedge ratios for 2017 for various levels of ↵.

We also study how varying � a↵ects the decisions in the stochastic and distributionally

robust model. Figure 7.10 shows the hedge ratios for the considered months in 2017, for

di↵erent values of the risk aversion, �. The purpose is to study the e↵ects of increas-

ing risk aversion on the hedging strategies of the stochastic and distributionally robust

optimization model.
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Figure 7.10: The monthly hedge ratios for 2017 for various levels of risk aversion, �. The
stochastic model (left) and distributionally robust model with " = 10 (right) are shown.

As expected, a higher degree of risk aversion gives higher hedge ratios. The most consid-

erable di↵erence between the two models is how they perceive the risk in April. While

the stochastic model has relatively low hedge ratios in this month, the distributionally

robust here weights the price risk as significantly higher, and therefore has a higher hedge

ratio. This graph does however not show when contracts were entered. This information

is exemplified for di↵erent contract types with maturity in February 2017 by the following

Figure 7.11, which shows how hedge ratios vary with increasing � for di↵erent types of

contracts.
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Figure 7.11: Hedge ratios in February 2017 for di↵erent types of contracts from the stochastic
model.

Increasing risk aversion reduces spot sales and contracts entered in Januray, while con-

tracts entered in December increase. This is in line with what one would expect from

risk averse actors, who have increased willingness to enter into contracts earlier. This is

a similar finding as those in Shütz and Westgaard (2018). We also observe that by in-

creasing risk aversion, the optimal hedge ratios approach a full hedge of 53%. The results

are taken from the stochastic model, but the findings are similar for the distributionally

robust model.

Remarks on the overall findings

A question that arises is how the e↵ects of increasing ambiguity on the optimal decisions

di↵er from the e↵ects of increasing the risk aversion. Recall that the principal di↵erence

between risk aversion and ambiguity aversion it that while risk aversion applies to the un-

certainty within an observed probability model, ambiguity aversion subjects the observed

probability model itself to uncertainty.
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The common observation for both increased ambiguity and risk aversion is increased hedge

ratios. A factor that on the other hand solely applies when increasing the ambiguity aver-

sion under situations where production risk also is present, is that more conservative

production scenarios also are weighted more, as we saw in Figure 7.6. This e↵ect incen-

tivizes towards hedging smaller quantities. Besides of this we have not uncovered any

apparent di↵erences between the decisions made by the distributionally robust model

and those of the stochastic. Understanding further di↵erences between risk aversion and

ambiguity aversion is an interesting venue for future research.

We have up to this point evaluated the di↵erences between decisions of the distribution-

ally robust and the stochastic model. In the following section we compare the expected

implications of applying decisions from the stochastic model compared to decisions from

the distributionally robust model. Specifically, we focus on the expected performance

under varying distributional assumptions.

7.2.3 The expected results of implementing the models

The purpose of this section is to evaluate the expected benefits of having applied a distri-

butionally robust model instead of a stochastic model, in cases when there is distributional

uncertainty. We therefore compare the performance of the decisions from each model un-

der di↵erent assumptions about the realized probability model. Lastly, we evaluate the

performance of the distributionally robust model with and without the CVaR-inner prob-

lem iterations explained in Section 5.3.3.

Comparing the performance under di↵erent realized probability models

We are interested in comparing how the optimization models perform if the baseline

probability model is realized, and similarly how they perform if the worst-case probability

model is realized. This allows us to evaluate the value of applying distributionally robust

optimization. Since the objective function is an utility function based on the trade-o↵

between risk and expected profits, the performance is measured as the expected utility

under the given assumptions about the realized probability model. We could alternatively

have used expected profits, but this would disregard the risk term in the objective.
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We study the decisions made in January 2014. In order to increase the significance of

our findings we generate 6 scenario trees on the January 2014 data, and find the optimal

decisions for every scenario tree under di↵erent levels of ambiguity. Our approach follows

that of Pflug and Pichler (2014c), where the model performance is evaluated from two

perspectives, the instance when the realized probability model in fact is the baseline

model P̂ and the one where the realized probability model is the worst-case model P⇤ 2 P".

Naturally, one pays a price for making the solution distributionally robust. Comparing the

two perspectives allows us to compare the loss of having robustified the solution against

the loss su↵ered if P⇤ is realized. We denote the distributionally robust solution x
⇤(P")

and the stochastic solution x
⇤(P̂). The value of having implemented the distributionally

robust model is measured by two key figures.

The first key figure is a measure of the expected utility sacrificed for making the solution

distributionally robust. It is therefore called the price of ambiguity. Specifically, the price

of ambiguity is defined as the expected utility loss of having implemented x
⇤(P") instead

of x⇤(P̂) in the instance when P̂ is the realized probability model. The price of ambiguity

is defined as

EP̂
⇥
U(x⇤(P̂), ⇠)

⇤
� EP̂

⇥
U(x⇤(P"), ⇠)

⇤
(7.1)

The second key figure considers the instance when the worst-case probability model P⇤ is

realized. We are here interested in measuring how much the decision maker gains from

having robustified the solution instead of having chosen the stochastic model. For this

reason the key figure is called the gain for distributional robustness. Note that P⇤ is the

P that minimizes the objective value. The key figure is then written

min
P2P"

EP
⇥
U(x⇤(P), ⇠)

⇤
� min

P2P"

EP
⇥
U(x⇤(P"), ⇠)

⇤
(7.2)

An increased ambiguity radius includes worse and worse probability models. This does

on one hand increase the conservatism of the distributionally robust solution, but does on

the other hand reduce the potential downside of the stochastic solution. Therefore, both

key figures increase when the ambiguity radius increases. We show that TrønderEnergi

can gain from implementing the distributionally robust model when facing model risk.

The reason is that gain for distributional robustness increases faster than the cost of
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distributional robustness. Consider the following presentation of how these key figures

evolve for an increasing ambiguity radius

Figure 7.12: The price of ambiguity, marked as di↵erence between the solid and the dashed
line, and the gain for distributional robustness, marked as the di↵erence between the dotted and
the dash-dotted line. The gain for distributional robustness is higher than the price of ambiguity.

In the extreme setting of " = 50 the cost of ambiguity at 10,5% shows that the decision

maker is expected to sacrifice this proportion to robustify the solution. On the other

hand, the gain for distributional robustness at 15,1% shows that the worst-case expected

utility is increased more than what is traded o↵ for robustness. Note that these findings

are in line with the results in the simple inventory control example presented in Analui

and Pflug (2014).

A practical interpretation of these results is that planning for profits of 25 000 and poten-

tially attaining an additional 1 500, is more preferable situation than planning for profits

of 30 000 but possibly ending up with only 22 000. Note that since the objective in this

instance considers utility, to relate profits directly to these figures is not entirely precise.

The principle holds all the same.

Further elaborations on the calculations and data are described in Appendix B.2. The
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input data is here presented in tables from which one can confirm what can be glimpsed

from Figure 7.12, that gain for distributional robustness in this instance exceeds the cost

of ambiguity for any choice of ".

In order to study whether these results apply out-of-sample, we conduct the same analysis

under simulations under di↵erent probability models in Section 7.2.4.

The e↵ects of including the inner problem-CVaR iterations

We here study how including the iterative CVaR optimization procedure from Section

5.3.3 and Section 6.3.2 a↵ects the performance of the distributionally robust optimization

problem. We study two versions of the distributionally robust optimization problem,

one with the CVaR optimization iterations and one without. Recall that the CVaR

optimization problem updates CVaR for every new worst-case distribution provided by

the inner problem, while the one without the CVaR optimization problem only adjusts

CVaR in the outer problem. We therefore expect the version that includes the CVaR

optimization problem to find a worse probability distribution than the version without

the CVaR optimization problem. We compare the two versions by running them on

equivalent data from January 2014. In Figure 7.13 below we show how the objective

value of the two versions decreases for every outer problem iteration
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Figure 7.13: Reduction in objective function value per outer problem iteration for problems
with and without the CVaR problem iterations.

As expected, we see an improvement in the objective value of the problem that includes

the CVaR iterations. This is however a very slight improvement, which comes at the cost

of considerably decreased computational e�ciency. We also observe that the problem

without CVaR iterations converges after fewer iterations than the alternative approach.

As a consequence, fixing CVaR in the inner problem might be viable if computational

e�ciency is more preferable than finding the optimal solution.

We have seen that distributionally robust optimization is beneficial when there is dis-

tributional uncertainty, because the gain for distributional robustness exceeds the price

of ambiguity. The benefit of using distributionally robust optimization is amplified by

iteratively updating CVaR between the inner problem iterations. Having studied the ex-

pected performance of the two models, we can proceed towards studying the out-of-sample

performance of the two optimization models on simulated and historical data.
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7.2.4 out-of-sample performance

The purpose of this subsection is to investigate the out-of-sample performance of both

the stochastic and distributionally robust hedging model. In doing this, we conduct

simulations as well as backtesting on historical spot prices and production quantities. A

naive hedging strategy with no hedging is also tested and applied as a benchmark for the

hedging models. This represents a risk neutral strategy. When evaluating the performance

of the respective models we focus on the risk and potential profits, under varying degrees

of ambiguity aversion.

Simulations

The applied simulation approach is based on Banks et al. (2010) and involves randomly

generating potential realizations of spot prices and production quantities. Here, one

realization is simulated by randomly drawing a path of spot prices and associated pro-

duction quantities from the EMPS model. Recall that the EMPS model is the set of

forecast paths that the scenario tree is generated based on. We therefore assume that the

EMPS model covers the potential realizations of spot prices and produced quantities. The

performance of the respective hedging strategies is further evaluated based on multiple

simulations.

The primary purpose of the simulations is to investigate the robustness of the stochastic

and distributionally robust hedging model against distributional uncertainty. An opti-

mization model has high distributional robustness if deviations from the empirically ob-

served probability model has low impact on the performance of the optimization model.

Testing for distributional robustness is achieved by studying the performance of the re-

spective models under simulations from the baseline probability distribution, as well as

from potential worst-case distributions. Specifically, we first simulate over the baseline

probability model, where the scenarios in the EMPS model are equally weighted. We then

simulate again, but this time with with higher probabilities assigned to the low-profit sce-

narios in the EMPS model.

Although simulation does not give the actual realizations of the spot price and production

quantity for the considered time horizon, it enables us to conduct multiple imitations of

the outcome, making it possible to analyze expected profits and risk with significant
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precision. Simulation also permits us to predetermine the probabilities of the potential

spot price- and production scenarios, hence making is possible to test the performance

under alternative probability distributions.

The simulations are conducted to evaluate the hedging strategies from 2015, where the

subjective risk aversion � is set to 0.5, and CVaR is calculated with a 90% confidence

level. The risk aversion in the stochastic and distributionally robust hedging decisions are

therefore equal, while the ambiguity varies. Note that all following hedging decisions can

be found in tables in Appendix B.1.

We first present a brief presentation of the optimal decisions that the following simulations

are based on. The average hedge ratios over the planning horizon for the stochastic and

distributionally robust model, under varying degrees of ambiguity, are presented in Figure

7.14. This figure gives no information regarding the maturity or entrance of forward

contracts. The purpose of showing the figure is, however, to illustrate that the general

hedging activity is higher for the distributionally robust than for the stochastic model,

and tends to increase further with higher degrees of ambiguity aversion. Ultimately, for

the highest degrees of ambiguity aversion, the average hedge ratios are slightly lower. This

is in line with the discussion in Section 7.2.2.
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Figure 7.14: Average hedge ratios 2015 for the stochastic- and distributionally robust hedging
model with varying ambiguity radius.

As we consider the hedging strategies for 2015, the random realizations of the spot price

and production quantities are drawn from the EMPS model generated at the end of

December 2014. Further, 25.000 simulations are conducted in order to achieve a significant

indication of the performance.

Simulations from the baseline probability distribution We firstl conduct the sim-

ulations by drawing realizations from the baseline probability model, where all scenarios

in the EMPS model are equally weighted, as illustrated in Figure 7.19. These simulations

evaluate the performance of the models in the instances when the empirically observed

baseline probability model actually is realized.
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Figure 7.15: Illustration figure: The scenarios from the EMPS model and their corresponding
probabilities under the assumed baseline probability distribution. All the scenarios have equal
probabilities of being drawn in the simulation.

In analyzing the performance of the hedging models, we calculate the average profit

and risk over the 25.000 simulations, where risk is measured by the standard deviation,

90%VaR and 90%CVaR. In Figure 7.16, the outcome of the simulations is illustrated.

The expected profits are highest for the naive strategy, followed by the stochastic and

distributionally robust model, respectively. Further, among the considered ambiguity

radii in the distributionally robust model, profits tend to decrease for " = 2 to " = 10,

before slightly increasing for higher degrees of ambiguity aversion. The latter is related to

lower hedged quantities for the distributionally robust model with high ambiguity radius,

according to the discussion in Section 7.2.2.
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Figure 7.16: Mean profits and tail risk under the simulations from the baseline probability
distribution. The performance is shown for the naive-, stochastic- and distributionally robust
hedging model

Higher expected profits, however, come at the cost of higher risk, which is in line with

traditional financial theory, see e.g. Zenios and Markowitz (2008). Both the expected

profits and the risk of the di↵erent models are clearly correlated with the average hedge

ratios for the di↵erent degrees of ambiguity, as presented in Section 7.2.2.

Specifically from Figure 7.16, the expected profits are approximately 12 million EUR for

the naive strategy, 11 million EUR for the stochastic strategy and 10.6 million EUR for

the distributionally robust strategy with " = 10. On the other hand, the 90%CVaR is

7, 8.9 and 9.2 million EUR respectively, indicating a significant reduction in tail risk for

strategies with higher hedge ratios. The risk-reward trade-o↵ for the di↵erent models is

further illustrated in Figure 7.17, where the deviation of expected profits and the risk

measures are calculated relative to the naive strategy.
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Figure 7.17: Deviations in expected profits and tail risk under the simulations from the baseline
probability distribution. Shown for the stochastic- and distributionally robust hedging model,
relative to the naive strategy

As can be seen from the figure, the decision maker is able to reduce the tail risk with 26%

by trading away 8% of expected revenue in the stochastic model. Also notice that the

volatility in the profits, measured by the standard deviation, is reduced by more than 50%

when comparing the stochastic model against the naive strategy. Further, by comparing

the stochastic model with the distributionally robust model with " = 10, an additional tail

risk reduction of 5 percentage points is achieved by reducing the expected profits with an

additional 3 percentage points. Hence, this illustrates trade-o↵ between risk and expected

profits achieved by a distributionally robust hedging model, in the situation where the

probability distribution is correctly assumed.

Under the assumption that there is no distributional uncertainty, the optimal strategy is

the one maximizing the decision marker’s utility under the simulations from the baseline

distribution. The utility is calculated similarly as in the objective function (6.12) in

Section 6.2.2, as

(1� �) · expected profits+ � · 90%CV aR
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where the risk aversion � is set to 0.5. Based on the simulations, the achieved utility for the

naive strategy, and the stochastic- and distributionally robust model, are shown in Figure

7.18. The utility is maximized for the stochastic model. This is as expected, since the

stochastic model is optimized under the assumption that the baseline probability model is

perfectly known. We also observe that the simulated utility for both the stochastic and the

distributionally robust model are higher than for the naive strategy. We lastly note that

the strategies from the distributionally robust model turns out to only be slightly worse

performing than the stochastic model, in terms of utility under the estimated baseline

distribution.

By subtracting the utility of the distributionally robust model from the utility of the

stochastic model, we get an indication on how suboptimal the distributionally robust

model are under the assumed baseline distribution. That is, the reduction in utility

when accounting for distributional uncertainty, if the probability distribution is correctly

estimated. Hence, through the simulations, we achieve a measure of the price of ambiguity,

similar to to what was calculated in Section 7.2.3. The simulated price of ambiguity is

illustrated in Figure 7.18 as the bars, measured on the right vertical axis. For ambiguity

radii less than " = 25, the price of ambiguity increases with higher values of ", since the

deviation between the alternative distribution and the estimated baseline distribution in

the optimization increases. This is in line with what one would expect. For very high

degrees of ambiguity aversion, however, the price is reduced as hedge ratios closer to

the stochastic model is recommended, again because of the extraneously low production

expectations that are accounted for. For " = 10, the price of ambiguity is 0.6%, while for

" = 2 and " = 5 it is just above 0.2%.
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Figure 7.18: Utilities for the naive-, stochastic- and distributionally robust hedging strategies
under the assumed baseline distribution, measured on the primary axis. The price of ambiguity
for the distributionally robust strategies, measured on the secondary axis.

In cases where there is distributional uncertainty, but the distribution is correctly esti-

mated, the performance of the stochastic hedging model gives, as expected, the highest

utility. The performance of the distributionally robust model are, however, only slightly

worse performing. It is further interesting to investigate the performance and reduction

in utility of the respective hedging models in situations where the baseline distribution

does not turn out to be correctly estimated.

Simulations under alternative probability distribution We now analyze the per-

formance of the stochastic and distributionally robust hedging model for probability mod-

els that deviate from the one that is empirically observed. This is done by conducting

simulations where the scenario probabilities from the EMPS model are changed. Specif-

ically, as we are interested in potential distributions that can cause more harm for the

decision maker, we first simulate from a distribution where the low-profit scenarios are

given a 50% higher probability. The new distribution is illustrated in Figure 7.19. The

scenario values are still the same as in the baseline probability model, which is in line
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with how we model the distributional uncertainty in the distributionally robust hedging

model. In Appendix B.3, we show the results from a simulation where solely the lower 25%

percentile of the revenue scenarios are weighted with higher probabilities. We hereafter

refer to this distribution as the alternative distribution.

Figure 7.19: Illustration figure: The potential scenarios from the EMPS model and their
corresponding probabilities under the alternative probability distribution. Compared to the
assumed distributions, the downside revenue scenarios are weighted with higher probabilities.

In Figure 7.20, the expected profits and risk related to the respective hedging strategies

is shown. Relative to the simulations from the baseline distribution, a significant drop in

expected profits is observed for the naive strategy and the stochastic strategy. Specifically,

for the stochastic model the expected profits drops approximately 14%, from about 12

millions EUR under the baseline distribution, to 10.3 millions EUR under the alternative

distribution. On the other hand, for the distributionally robust model with " = 10, which

now gives the highest expected profits, the simulated expected profits have dropped less

than 1%, from 10.6 millions EUR to 10.5 millions EUR. We further observe that this

makes the expected profits about 3% higher for the distributionally robust model than

for the stochastic model.

This emphasizes that a problem with stochastic optimization models is that the perfor-

mance tends to be highly sensitive to badly estimated distributional parameters, as is

widely recognized in the literature (Consigli et al., 2016). This proves that such models

are significantly vulnerable under distributional uncertainty. Further, it gives rise to what

we referred to as the Optimizer’s curse in Section 3.2, where stochastic models tend to



7.2. NUMERICAL RESULTS 139

be overfitted on in-sample date, causing poor performance on out-of-sample tests. The

distributionally robust hedging model, however, yields more stable and less risky prof-

its under distributional uncertainty. These findings are in line with Esfahani and Kuhn

(2015), who find the post decision disappointment to be higher for stochastic models than

for distributionally robust model.

From Figure 7.20, we further observe that 90%VaR and 90%CVaR is increasing for ambi-

guity radii up to " = 10, before being slightly reduced for higher ambiguity radii. Recall

that higher values of VaR and CVaR is equivalent with lower risk. Therefore, as op-

posed to the simulations from the baseline probability model, we experience lower risk

for models with higher expected profits. The distributionally robust optimization model

with ambiguity radius " = 10 is the most attractive under simulations from the alternative

probability distribution, since it is the model providing the lower risk and highest expected

profits. We further observe that the 90%CVaR is about 5% lower for the distributionally

robust model with " = 10, than for the stochastic optimization model.

Figure 7.20: Mean profits and tail risk under the simulations from the alternative probability
distribution. The performance is shown for the naive-, stochastic- and distributionally robust
hedging model
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Figure 7.21 shows the deviations in the risk measures and expected profits for the re-

spective models, relative to the naive strategy, for the simulations conducted under the

alternative distribution. This figure emphasizes the findings discussed related to Figure

7.20.

Figure 7.21: Deviations in expected profits and tail risk under the simulations from the alter-
native probability distribution. Shown for the stochastic- and distributionally robust hedging
model, relative to the naive strategy

Further, Figure 7.22 gives the profit density distributions from the 25.000 simulations for

three di↵erent strategies: The naive-, the stochastic- and the distributionally robust strat-

egy with " = 10. The figure shows expected profits 90%VaR and 90%CVaR. By observing

the leftmost figure against the center and right we get a clear indication of reduced risk

and increased expected profits by hedging with a stochastic and distributionally robust

model. As expected, we also observe that the potential profits are highest under the naive

strategy.
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Figure 7.22: The profit density functions of di↵erent hedging strategies under the alternative
probability distribution

Similarly as for the simulations from the estimated baseline probability model, we cal-

culate the utility of the stochastic and distributionally robust optimization models with

varying degrees of ambiguity, but now based on the simulations from the alternative prob-

ability model. The risk aversion � is still 0.5 for both optimization models. The results

are shown in Figure 7.23. While the stochastic hedging model gave the highest utility

under the simulations from the baseline distribution, the distributionally robust model

with " = 10 is the best in terms of utility under the simulations from the alternative

distribution. Further, we observe that all the distributionally robust model give higher

utility than the stochastic model.

In the same manner as we calculated the price of ambiguity for simulations from the

baseline probability model, simulating from the alternative probability model allows us

to calculate the gain for distributional robustness. This is achieved by subtracting the

utility of the stochastic hedging model from the respective distributionally robust model

with varying ambiguity radii, and is illustrated by the bars in Figure 7.23. This gives

an indication on the relative gain of applying a distributionally robust hedging model in

a situation where the empirically observed probability distribution is over-optimistically

estimated.
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Figure 7.23: Utilities for the naive-, stochastic- and distributionally robust hedging strategies
under the alternative distribution, measured on the primary axis. The gain for distributional
robustness is measured on the secondary axis.

We find that the price of ambiguity is lower than the gain for distributional robustness.

Specifically, the gain for distributional robustness when " = 10 is above 4%, while the

price of ambiguity for the same model is just above 0.6%. The results from the simulations

also correspond well with the expected price of ambiguity and gain for distributionally

robustness that we calculated in Section 7.2.3.

Final remarks on the simulations The results from the conducted baseline- and al-

ternative probability model simulations show that distributionally robust hedging model

is highly attractive for electricity producers when exposed to distributional uncertainty.

Based on the simulations, the distributionally robust model tend to be slightly subopti-

mal in situations where the probability model is correctly estimated, while being highly

advantageous when the probability model is wrongly estimated.

Compared to the stochastic model, the distributionally robust model therefore give more

stable profits, independent on the underlying probability model. Hence, the model risk
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in situations with ambiguity is reduced. In turn, this reduces the post decision disap-

pointment of decisions from distributionally robust model, which is highly favorable for

electricity producers that seek a hedging strategy that ensures more stable profits.

We lastly emphasize the benefits of carefully specifying the ambiguity radius of the dis-

tributionally robust model. From the simulations we observe that a too low ambiguity

radius tend to give suboptimal solutions as the true distribution not is captured by the

ambiguity set. A too high ambiguity radius tends to give supoptimal solutions, as overly

conservative assumptions regarding the production quantities and prices are made.

The simulation from the distribution where the lower 25% percentile of the revenue scenar-

ios are weighted with higher probabilities, as attached in Appendix B.3, give similar results

as the simulation from the alternative distribution presented in this subsection.

With an understanding of the benefits of using distributionally robust optimization to

support hedging decisions for an electricity producer, we proceed towards backtesting the

hedging strategies from 2014-2017 on real historical data. This enables us to show how

TrønderEnergi would have benefitted from accounting for distributional uncertainty over

the considered time horizon.

Backtesting

Backtesting involves testing both the naive-, stochastic- and distributionally robust hedg-

ing strategies on historical spot prices and production quantities over the considered time

horizon. The purpose of doing this is to show that TrønderEnergi would have benefitted

from applying a distributionally robust hedging model.

Figure 7.24 shows the yearly average profits of the respective hedging strategies, for the

period 2014-2017. The absolute profits are shown by the bars, while the line gives the

deviation of the respective strategies, relative to the naive strategy. Recall that we only

consider profits for the first five months of each year, as this is the planning horizon of

the hedging strategies.
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Figure 7.24: Average yearly profits from backtesting the naive-, stochastic- and distributionally
robust hedging strategies for 2014-2017 on historical data. The relative deviation in profits from
the naive strategy is shown on the secondary axis.

Over the considered time horizon, the distributionally robust hedging model with " = 2

shows the highest profits, with an average close to 10.9 million EUR. Further, this is

about 0.1 million EUR, or 1%, above the yearly average profits from the naive strategy.

The distributionally robust model with " = 10 and " = 50 give marginally lower profits

than the naive strategy. In addition to the distributionally robust model with " = 2, the

hedging model with " = 5 also shows higher profits than the strategy from the stochastic

optimization model.

These findings show that TrønderEnergi could have increased their profits with up to

1% in the period 2014-2017 by applying a stochastic or distributionally robust hedging

strategy. In addition, accounting for low degrees of ambiguity in the hedging models

turned out to be more profitable than applying a stochastic model. This indicates that

the spot prices and production quantities were exposed to some degree of ambiguity.
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We further analyze the volatility in the yearly profits from the respective hedging models.

In Figure 7.25, the standard deviation of yearly profits from 2014-2017 is shown together

with the yearly average profits.

Figure 7.25: The standard deviation of the average yearly profits from backtesting the respec-
tive hedging models, measured on the secondary axis. Average yearly profits are shown for the
hedging models are shown on the primary axis.

Compared to the naive strategy, there is a decreasing tendency in the volatility of profits

for higher ambiguity radii. This is expected as we recall from Section 7.2.2 that the

general hedging activity tends to increase with higher ambiguity radii. For the stochastic

model and the distributionally robust model with " = 2 and " = 5 however, the volatility

over the four years is rather stable. Since we observed higher profits for these ambiguity

radii, this indicates an improved risk-reward trade-o↵ for decisions of the distributionally

robust model.

The findings above are emphasized in Figure 7.26, which shows the yearly profits for the

naive-, stochastic- and distributionally robust strategy with " = 5 and " = 50 over the

time horizon, 2014-2017. The figure shows that profits tend to be slightly more stable for

the distributionally robust model than for the stochastic and naive strategies.
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Figure 7.26: Yearly profits for the naive-, stochastic- and distributionally robust strategy with
" = 5 and " = 50. Backtested on historical data from 2014-2017

We observe that the stochastic and distributionally robust model gave higher profits than

the naive strategy in 2014 and 2015. This is because of the higher hedge ratios in these

models, which has proven to be beneficial since spot prices in general were below the

achieved forward prices in this period. For 2016 and 2017 the opposite is observed.

As only four years are considered, the 90%CVaR is simply the minimum yearly profit

for the respective models over the considered period. As seen from Figure 7.26, these

minimum profits occur in 2016 for all of the strategies, where the forward prices in gen-

eral were significantly lower than through the remaining years. The average spot prices in

2016, however, turned out to exceed the forward price in all considered months, expect for

February. A perhaps contra-intuitive finding is therefore that the stochastic and distribu-

tionally robust hedging models show a lower 90%CVaR than the naive strategy over the

studied period. This is likely to change when considering a greater time perspective.

In Appendix B.4, further details on the backtests of the di↵erent hedging strategies are

found for each of the considered years. Specifically, the realized profits and hedge ratios

for the respective models is illustrated on a yearly basis, as well as the di↵erence between
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the achieved forward price and the historical spot price for the di↵erent months. These

figures explain the performance of the hedging models for each year. In addition, the

relative deviations between the expected and realized production is shown for each of

the considered months. The principal findings are that both the deviation in produc-

tion quantities and spot prices tend to be highly volatile relative to their expectations,

hence emphasizing the risk related to uncertain production quantities and spot prices.

This emphasizes the need for an active risk management strategy for electricity produc-

ers. However, it also accentuates the risk related to hedging too much of the expected

production, as the producer can end up with a production shortage.

We should ideally have backtested for more than four years in order to get a significant

indication. However, a larger amount of data for both developing and backtesting the

hedging strategies was not available. The clear results from these tests are neverthe-

less good indications of the e↵ects of accounting for ambiguity when developing hedging

strategies.

By backtesting the hedging models on historical data from 2014-2017, higher profits and

lower volatility is generally observed for the respective optimization models, relative to

the naive strategy. Further, the highest profits are observed for the distributionally robust

hedging model with low ambiguity radius. This indicates that accounting for some degree

of ambiguity was favourable over the considered time horizon, in terms of profits.

Although the backtesting is performed on too few years to conclude that the findings apply

on a significant basis, the findings clearly show the benefits of applying distributionally

robust optimization relative to a naive hedging strategy and a stochastic optimization

model. With an additional support from the conducted simulations, we conclude that

distributionally robust optimization outperforms both a naive strategy and stochastic

optimization for risk- and ambiguity-averse electricity producers seeking to reduce the

downside risk under distributional uncertainty.
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Chapter 8

Concluding Remarks

Following the shortcoming of traditional stochastic optimization models in handling distri-

butional uncertainty, known as ambiguity, we have developed a multistage distributionally

robust optimization model for finding optimal hedging decisions for TrønderEnergi, a Nor-

wegian electricity producer. In this thesis, scenario uncertainty as well as ambiguity are

considered for both spot prices and production quantities. Forward contracts are applied

as hedging instruments. The optimal strategy is found as the one maximizing the utility

under a given degree of risk aversion and ambiguity.

The optimal hedging decisions are backtested on historical price and production realiza-

tions, and profits are compared to what was realized for TrønderEnergi. The practical

perspective of this thesis is therefore a unique contribution to the otherwise highly theo-

retical literature on distributionally robust optimization.

Ambiguity is managed by optimizing with respect to the probability distribution that

inflicts the most harm, chosen from an ambiguity set of possible distributions. The size of

the ambiguity set is limited to the probability distributions that di↵er from the empirically

observed distribution up to a certain extent, measured in nested distance. An increased

tolerance in nested distance therefore ensures higher robustness towards distributional

uncertainty. The method for solving the distributionally robust problem is based on an

existing successive convex programming algorithm for approximating the optimal solution.

We have extended this algorithm to account for risk aversion by incorporating a time

consistent formulation of CVaR as risk measure.
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The scenario tree that the optimization model is based on is generated from a clustering

approach that seeks to minimize the nested distance to a set of forecast paths. The

approach involves generating a random path of spot prices and production volumes based

on kernel density estimation, and then identifying the path of nodes in the scenario tree

that is closest to the generated path. Ultimately, the values of the identified path are

improved with stochastic approximation. Iterations are conducted until convergence in

nested distance between the generated tree and the set of forecast paths.

By applying a rolling horizon approach on data from 2014 to 2017, the following findings

rise from analyzing the performance of the distributionally robust hedging model and

comparing it to the stochastic model:

Accounting for distributional uncertainty in general gives higher hedge ratios, which tend

to increase further for larger ambiguity sets. This comes as a consequence of a higher

weighting of low-price scenarios as more ambiguity is accounted for in the model. The

e↵ect of increasing hedge ratios is, however, moderated as scenarios with lower expected

production also tend to be increasingly weighted for higher degrees of ambiguity. In turn,

this makes risk management relevant for lower expected production quantities, which for

the highest degrees of ambiguity actually gives slightly decreasing hedge ratios.

Our findings show that there is a considerable benefit of applying a distributionally ro-

bust model under distributional uncertainty. By simulating from the empirically observed

baseline distribution we observe only a slight reduction in the performance of the distribu-

tionally robust optimization model, compared to the stochastic model. Under alternative

worst-case distributions, however, the distributionally robust model shows a significantly

better performance than the stochastic model. This shows that the gain for having made

the solution distributionally robust when the realized distribution di↵ers from the one

that was estimated, is higher than the price of accounting for ambiguity. Specifically, we

find the gain for distributionally robustness and price of ambiguity to be 4% and 0.6%

respectively, for the distributionally robust model with ambiguity radius " = 10. These

findings demonstrate that a relatively small proportion of expected returns can be traded

away for a significant reduction in risk when applying a distributionally robust hedging

model under ambiguity.

The results from backtesting on TrønderEnergi’s historical data from 2014 to 2017 show

that the hedging strategies of a distributionally robust optimization model that accounts
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for small degrees of ambiguity give the highest average profits. Compared to the current

situation where hedging is absent, the hedging strategies of the distributionally robust

model increases average profits over the period by 1%, while also ensuring more stable

profits. The distributionally robust model outperforms a stochastic model with an increase

in average profits of 0.5%, while the volatility in profits remains stable. In conclusion,

our findings suggest that accounting for ambiguity is favourable when developing hedging

strategies for electricity producers.
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Chapter 9

Future Research

In this chapter we discuss the potential for further research based on the findings of this

thesis. We here cover two principal topics. The first considers venues for improving the

distributionally robust optimization solution model. The second topic regards measures

for increasing the relevance of the hedging problem for the decision maker.

Our approach towards solving the general distributionally robust optimization problem

extends the original approximation approach of Analui and Pflug (2014). There is no

literature evaluating the extent to which the original approach deviates from the optimal

solution, nor is this covered in this thesis. We do on the other hand test how including

the CVaR-inner problem iterations a↵ects the optimality. Tests on a larger dataset would

increase the significance of the findings. Studies of the approximation quality of both

these approaches would increase their usefulness, and is therefore of interest for future

studies.

A considerable impairment of our proposed distributionally robust optimization problem

is the considerably low computational e�ciency. A venue for further studies is the for-

mulation of computationally tractable multistage distributionally robust problems that

incorporate time consistent risk measures.

We consider a fixed scenario tree structure and accounted for distributional uncertainty

by only varying scenario probabilities. A desirable field of study is development of com-

putationally tractable algorithms that handle varying tree structures as well as uncertain

scenario probabilities.
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The principle improvements to the hedging model is to increase the number of scenarios

and stages of the scenario tree, as well as to improve the time resolution. This would

provide a more accurate representation of the possible uncertain outcomes. It is also

relevant to study the performance of the hedging model with speculative considerations.

This can be achieved by using actual forward prices, and by adapting the scenario tree so

that it considers subjective opinions. Other interesting extensions of the model includes

incorporating options as hedging instruments.

Our findings uncovered that studies of the di↵erences between the e↵ects of varying the

ambiguity aversion and risk aversion would be valuable contributions to understanding

the usefulness of distributionally robust optimization in a hedging context.

The literature on distributionally robust optimization lacks practical applications. Even

though this thesis is a contribution, the literature would benefit from increasing the sig-

nificance of our findings.
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Žáčková, J. (1966). On minimax solution of stochastic linear programming problems.

Casopis pro Pestovani Matematiky, 91:423–430.

Wallace, S. W. and Fleten, S.-E. (2003). Stochastic programming models in energy. In

Stochastic Programming, volume 10 of Handbooks in Operations Research and Manage-

ment Science, pages 637 – 677. Elsevier.

Woo, C.-K., Horowitz, I., Horii, B., and Karimov, R. I. (2004). The e�cient frontier for

spot and forward purchases: an application to electricity. Journal of the Operational

Research Society, 55(11):1130–1136.



BIBLIOGRAPHY 163

Woodard, J. D. and Garcia, P. (2008). Basis risk and weather hedging e↵ectiveness.

Agricultural Finance Review, 68(1):99–117.

Wu, J. and Sen, S. (2000). A stochastic programming model for currency option hedging.

Annals of Operations Research, 100(1):227–249.

Xin, L., Goldberg, D. A., and Shapiro, A. (2013). Distributionally robust multistage

inventory models with moment constraints. arXiv preprint arXiv:1304.3074.

Yumi, O., Shmuel, O., and Shijie, D. (2006). Hedging quantity risks with standard power

options in a competitive wholesale electricity market. Naval Research Logistics (NRL),

53(7):697–712.

Zenios, S. and Markowitz, H. (2008). Practical Financial Optimization: Decision Making

for Financial Engineers. Wiley.



164 BIBLIOGRAPHY



Appendices

165





Appendix A

Distributionally robust

optimization

This appendix contains the supplementary work on distributionally robust optimization

referred to in Chapters 3, 5 and 6. Section A.1 gives a broader description than the one

found in Chapter 3 on the di↵erent approaches to generate the ambiguity set. Section

A.2 proves that it is not satisfactory to formulate a convex combination between two

probability models within the ambiguity set. Section A.3 presents the results from our

implementation of the inventory control problem example in Analui and Pflug (2014).

Ultimately, Section A.4 shows why the nested CVaR does not allow an accumulated

formulation of the stage-wise utilities.

A.1 Approaches to generate the ambiguity set

Considering the approaches towards handling ambiguity, a shared assumption is that

there exists an unknown underlying probability distribution that governs the uncertainty.

This distribution is assumed to be somewhere in the proximity of the empirically observed

data, and is more specifically assumed to reside within a so-called ambiguity set of possible

distributions that might govern the uncertainty. There are no assumptions made about

the probability of choosing one probability distribution over another. Rather, the chosen

distribution is the one that causes the worst possible expected objective value. There is
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no superior way of forming an ambiguity set. The di↵erent approaches towards handling

ambiguity therefore concern how the ambiguity set is formed. The primary approaches

are:

– Statistical moments. This approach regards the ambiguity set as intervals around

the statistical moments of a distribution. Hence, distributional information has to

satisfy a set of statistical moment constraints, typically being not to deviate more

than a certain amount from the empirically observed moments. Two primary ben-

efits of this approach is that it has proven to have high computational tractability,

in addition to giving the modeller high flexibility in adjusting ambiguity sets, since

the moments of a distribution can be customized. Delage and Ye (2010) provide a

thorough description of this approach.

– Goodness-of-fit confidence regions. The ambiguity set in this approach contains dis-

tributions that have passed a statistical hypothesis test relative to the empirical

distribution with some level of confidence. This is for instance done by Bertsimas

et al. (2014). A benefit of this method is that a statistical guarantee that the under-

lying probability distribution is within the ambiguity set is obtained. In addition,

the method is computational tractable.

– Probability metrics. This type of ambiguity set can be considered as a ball around

the empirically observed data with radius according to some statistical distance

measure, or probability metric. The ambiguiy set contains all probability distri-

butions within the ball. Benefits of these ambiguity sets are that the degree of

conservatism can be specified by adjusting the radius of the ball, as well as often

being able to give statistical guarantees in the same manner as for goodness-of-fit

ambiguity sets. Typical statistical distance measures are �-divergences (Bayraksan

and Love, 2015), or the nested distance, which is the basis for the distributionally

robust models used this paper.

A.2 An incorrect convex combination

Following the example of Pflug and Pichler (2014a), we show why formulating the convex

combination between two probability models in the ambiguity set is an approach that does

not satisfy the following criterion. The nested distance between a baseline model and the
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convex combination has to be no greater than the maximal nested distance between the

baseline model and one of the two probability models.

We first consider a baseline model P(0) and the alternative models P(1) and P(2). According

to Pflug and Pichler (2014a), in order to satisfy the above mentioned criterion, we have

to evaluate the nested distance from P(0) to the probability model formed by the convex

combination of leaf node probability distributions �P (1) + (1 � �)P (2), which we denote

P(T, P (�)). This nested distance has to be less than the convex combination dlr(P(0)
,P(1))

and dlr(P(0)
,P(2)). More specifically, we have to find an instance where

dlr
�
P(T, P (0)),P(T, P (�))

�r  �dlr(P(0)
,P(1))r + (1� �)dlr(P(0)

,P(2))r (A.1)

does not hold. We now show that such an instance can be found for convex combinations

of leaf node probabilities.

Example 1. It su�ces to only use the convex combination between two trees in this in-

stance, hence we write P(2) in (A.1) as P(1), and write P(1) in (A.1) as P(0). We then

compare the convex combinations of dl1(P(0)
,P(0)) and dl1(P(0)

,P(1)) against the nested

distance from P(0) to the probability distribution formed by the convex combination

P(0,5) = 0, 5P (0) + 0, 5P (1), which we denote P
(0,5) = P(T, P (0,5)). Now consider prob-

ability models as scenario trees, as shown in the following Figure A.1.

Figure A.1: The arc values are conditional probabilities, the nodes values are the values in the
state space.
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We can easily see that dl1(P(0)
,P(0)) = 0. We find dl1(P(0)

,P(1)) = 0, 1 thus requiring the

left hand side of (A.1) to be less than or equal to 0, 5 · 0 + 0, 5 · 0, 1 = 0, 05. However

dl1
�
P(T, P (0)),P(T, P (0,5))

�
= 0.1, hence (A.1) does not hold.

A.3 Results from the Inventory Control Problem

Example

We here present the results from our implementation of the inventory control problem

example in Analui and Pflug (2014). We first present the problem and the instance

information. We then confirm the diminishing complexity of the scenario probabilities

and reduced expected objective function value when the ambiguity radius increases.

The authors present an inventory control problem with the objective of maximizing total

expected profits. The nomenclature is defined as follows

The model is presented below. For elaboration on the constraints, we refer to Analui and

Pflug (2014).
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We confirm that when the ambiguity radius " increases, the problem narrows down the

scenario tree to focus on a few worst case scenarios.
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Figure A.2: When the ambiguity radius increases the scenario tree narrows down to focus on
only a few scenarios.

We emphasize that these worst case probabilities di↵er from those presented in Analui

and Pflug (2014). An explanation is that we believe the stochastic baseline problem

presented in by Analui and Pflug (2014) is incorrect. The authors have implemented the

stochastic optimization example in Chapter 17 of Bisschop (2006). However, where we

confirm the optimal stochastic model solution of EUR 76 482.406 from this book, this

does not correspond with the optimal value claimed by Analui and Pflug (2014) of EUR

7 688. Nor does this value correspond with the optimal initial stage profits.

We further confirm that the increased conservatism of the model decreases the objective

function value. The ensured robustness against the worst case probabilities in Figure A.2

comes at a maximal cost of 7, 94%.
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Figure A.3: Decline in objective function value when the ambiguity radius increases.

A.4 An accumulated formulation with Nested CVaR

As discussed in Section 5.3, the inner problem in the original framework of Analui and

Pflug (2014) inputs only the optimal objective values at the leaf stage from the outer

problem. An intuitive example is the inventory control model presented in Section A.3.

Here, the scenario profits are the accumulated profits from sales at every stage in the

planning period. In this section, we present an illustrative example of why an accumulated

formulation of the stage-wise utilities does not fit well in our instance. This problem

follows from the recursive structure we use to make CVaR time consistent. We observe

that attempting to accumulate the utility from the root down to the leaf nodes would

eventually nest up the constraints to one single constraint, where all objective function

variables cancel each other out. In addition to make little sense, the problem then becomes

infeasible.

Consider a tree of two stages where we attempt to accumulate the utilities by adding the

root node utility to the leaf stage utilities. Exemplified for two scenarios with probability

P and 1� P and assuming � = 0, we write the leaf node utilities (6.13) as
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v01 = h01 + v00

v11 = h11 + v10

Since we know from (6.12) that the root node utility is written

v00 = h00 + Pv01 + (1� P )v11 (A.2)

By inserting the leaf node utilities we end up with

0 = h00 + Ph01 + (1� P )h11 (A.3)

which requires negative profits, and further makes the problem infeasible.



Appendix B

Numerical results

In this appendix we present the numerical results referred to in Chapter 7. Section B.1

contains the hedge ratios from running the distributinally robust and stochastic hedging

models, Section B.2 presents the data of which the gain for distributional robustness and

price of ambiguity is calculated, Section B.3 contains the results from simulating from an

alternative worst case distribution, and Section B.4 contains complementary analysis for

the backtesting.

B.1 Hedging strategies from the optimization

models

The hedging strategies achieved from applying a rolling horizon approach on scenario

trees from 2014 to 2017 follows in tables B.1, B.2, B.3 and B.4. The tables give the

entrance period and maturity periods of the forward contracts recommended from both

the stochastic- and distributionally robust hedging models with varying ambiguity radii,

". The hedging activity is given as hedge-ratios, meaning that the hedged quantum

is divided by the expected production for the relevant maturity period. Consider the

following example that clearly illustrates how the expected production is obtained: As

contracts maturing in February can be entered both in December and January, the ex-

pected production for February is found as the average of the expectations obtained from

the scenario tree generated in December and January. Recall that a planning horizon in
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the models is 4 months, and that the rolling horizon approach is applied over a window

of 5 months.

Forwards entered

✏ Des Jan Feb Mar Apr Hedge-ratio

M
at
u
ri
ty

Jan

SO 23 % 23 %

2 23 % 23 %

5 19 % 19 %

10 24 % 24 %

25 20 % 20 %

50 - 0 %

Feb

SO - 2 % 2 %

2 - 9 % 9 %

5 - 9 % 9 %

10 - 13 % 13 %

25 - 13 % 13 %

50 - - 0 %

Mar

SO - 16 % 62 % 78 %

2 - 30 % 57 % 87 %

5 - - 93 % 93 %

10 - - 98 % 98 %

25 - - 98 % 98 %

50 - - 98 % 98 %

Apr

SO - - 76 % - 76 %

2 - - 82 % - 82 %

5 - - 77 % - 77 %

10 - 69 % 1 % - 70 %

25 - 69 % - - 69 %

50 - 93 % - - 93 %

May

SO - - - 32 % 32 %

2 - - - 32 % 32 %

5 - - - 39 % 39 %

10 - - - 50 % 50 %

25 - - - 51 % 51 %

50 - - - 49 % 49 %

Table B.1: 2014 : Detailed hedging strategies from the stochastic- and distributionally robust
hedging models.
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Forwards entered

✏ Des Jan Feb Mar Apr Hedge-ratio

M
at
u
ri
ty

Jan

SO 61 % 61 %

2 86 % 86 %

5 86 % 86 %

10 86 % 86 %

25 86 % 86 %

50 84 % 84 %

Feb

SO 35 % - 35 %

2 36 % - 36 %

5 36 % - 36 %

10 13 % 37 % 50 %

25 13 % 44 % 57 %

50 - 57 % 57 %

Mar

SO - 45 % - 45 %

2 - 46 % - 46 %

5 - 48 % - 48 %

10 - 45 % - 45 %

25 2 % 43 % - 45 %

50 - 43 % - 43 %

Apr

SO - - 35 % - 35 %

2 - - 36 % - 36 %

5 - - 38 % - 38 %

10 - 6 % 46 % - 52 %

25 - - 46 % - 46 %

50 - - 46 % - 46 %

May

SO - - 35 % - 35 %

2 - - 43 % - 43 %

5 - - 43 % - 43 %

10 - - 35 % - 35 %

25 - - 5 % - 5 %

50 - - 4 % - 4 %

Table B.2: 2015 : Detailed hedging strategies from the stochastic- and distributionally robust
hedging models.
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Forwards entered

✏ Des Jan Feb Mar Apr Hedge-ratio

M
at
u
ri
ty

Jan

SO 9 % 9 %

2 8 % 8 %

5 6 % 6 %

10 3 % 3 %

25 - 0 %

50 - 0 %

Feb

SO 36 % - 36 %

2 36 % - 36 %

5 38 % - 38 %

10 40 % - 40 %

25 40 % - 40 %

50 40 % - 40 %

Mar

SO - 17 % 8 % 25 %

2 - 17 % 8 % 25 %

5 - 10 % 15 % 25 %

10 - - 24 % 24 %

25 - 14 % 20 % 34 %

50 - 12 % 21 % 34 %

Apr

SO - - 51 % - 51 %

2 - - 76 % - 76 %

5 - - 76 % - 76 %

10 - - 78 % - 78 %

25 - - 76 % - 76 %

50 - - 76 % - 76 %

May

SO - - - 29 % 29 %

2 - - - 30 % 30 %

5 - - - 29 % 29 %

10 - - - 34 % 34 %

25 - - - - 0 %

50 - - - - 0 %

Table B.3: 2016: Detailed hedging strategies from the stochastic- and distributionally robust
hedging models.
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Forwards entered

✏ Des Jan Feb Mar Apr Hedge-ratio

M
at
u
ri
ty

Jan

SO 13 % 13 %

2 23 % 23 %

5 21 % 21 %

10 16 % 16 %

25 28 % 28 %

50 3 % 3 %

Feb

SO 24 % 14 % 38 %

2 21 % 22 % 43 %

5 27 % 15 % 42 %

10 9 % 32 % 41 %

25 - 44 % 44 %

50 - 44 % 44 %

Mar

SO - 8 % - 8 %

2 - 9 % - 9 %

5 - 10 % - 10 %

10 - 9 % - 9 %

25 - 12 % - 12 %

50 - 12 % - 12 %

Apr

SO - 20 % - - 20 %

2 - 21 % - - 21 %

5 - 19 % - - 19 %

10 - 6 % - 84 % 90 %

25 - 20 % - 70 % 90 %

50 - 20 % - 70 % 90 %

May

SO - 46 % 37 % 5 % 88 %

2 - 53 % 29 % 7 % 90 %

5 - 57 % 26 % 9 % 92 %

10 - 26 % 57 % 9 % 92 %

25 - 33 % 50 % 10 % 92 %

50 - 32 % 51 % 10 % 93 %

Table B.4: 2017: Detailed hedging strategies from the stochastic- and distributionally robust
hedging models.

B.2 Gain for distributional robustness and Price of

ambiguity

We here present the data of which the gain for distributional robustness and price of

ambiguity is calculated. The data are found by running the distributionally robust model

for the January data for years 2014 to 2017, for " = 0, 5, 10, 15, 20, 25, 50. Recall that
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" = 0 equals the stochastic model. The presented values are the average values over the

four observations.

It should be noted that we here have simplified the recursive utility function. For a

given scenario we have calculating the utility as the sum of all stagewise utilities for that

scenario. This is slightly incorrect, since the utility at a stage in a given scenario already

contains information about the utility at the succeeding stages. The reason for this

adjustment is because it makes the computations easier. The e↵ects of this simplification

is that the utilities in the lower stages of the tree are assigned too much weight. We could

alternatively have calculated gain for distributional robustness and price of ambiguity

based on the profits. We however find this to be inadequate since the risk would not be

considered, which indeed is an important component of the objective function.

The detailed results are presented below, where we first show the gain for distributional

robustness (GFDR).

" DRO worst case utility SO worst case utility GFDR

0 29 889 29 889 0 %

5 29 036 28 274 2,6 %

10 28 406 27 163 4,4 %

15 26 516 23 570 11,1 %

20 25 701 22 337 13,1 %

25 25 206 21 558 14,5 %

50 25 140 21 341 15,1 %

Table B.5: Expected utility for the distributionally robust (DRO) and stochastic model (SO)
if the realized probability model is the worst case model. This is presented for a set of ". The
di↵erence, gain for distributional robustness (GFDR), is here represented in percent.

Further we present the price of ambiguity (POA).
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" DRO baseline utility SO baseline utility POA

0 29 889 29 889 0,0 %

5 29 145 29 889 2,5 %

10 29 079 29 889 2,7 %

15 27 508 29 889 8,0 %

20 27 131 29 889 9,2 %

25 26 869 29 889 10,1 %

50 26 743 29 889 10,5 %

Table B.6: Expected utility for the distributionally robust (DRO) and stochastic (SO) models
if the realized probability model is the baseline model. The price of ambiguity (POA) is the
di↵erence between the stochastic and the distributionally robust expected utility, here presented
in percent.
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B.3 Simulations from alternative probability

distribution II

In order to analyze the performance of the stochastic and distributionally robust hedging

models under distributions that deviate from the assumption, we conduct simulations

where the scenario-probabilities from the EMPS model, as explained in Chapter 7, are

changed. As we are interested in potential distributions that can cause more harm for

the producer, we here simulate from a distribution where the lower 25% percentile of the

revenue scenarios are given twice as high probabilities to occur, see figure B.1. This com-

plements the analysis in Chapter 7, where a simulation was conducted from an alternative

worst case probability distribution in order to investigate the models robustness towards

distributional uncertainty.

Figure B.1: Illustration figure: The potential scenarios from the EMPS model and their
corresponding probabilities under the probability distribution the simulations are conducted
from. Compared to the baseline distributions, the downside revenue scenarios are weighted with
higher probabilities.
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Figure B.2: Mean profits and tail risk under the simulations from the worst case probability
distribution. The performance is shown for the naive-, stochastic- and distributionally robust
hedging models. We observe that the mean profits and the tail risk is respectively the highest
and lowest for the distributionally robust model with " = 10

Figure B.3: Deviations in mean profits and tail risk under the simulations from the worst
case probability distribution. Illustrated for the stochastic- and distributionally robust hedging
models, relative to the naive strategy
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Figure B.4: The utilities for the naive-, stochastic- and distributionally robust hedging strate-
gies under the worst case distribution are measured on the primary axis. The gain of distribution-
ally robustness is measured on the secondary axis. We observe that the gain of distributionally
robustness is highest for the distributionally robust model with " = 10. Further, this gives a
significantly higher gain of distributionally robustness than price of ambiguity, as is shown in
Chapter 7.
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B.4 Details from backtesting the hedging models

This section complements the backtesting of the hedging strategies on historical data from

2014 to 2017, conducted in Chapter 7. Each of the figures below show the following for

the considered year: Realized profits at from the di↵erent hedging models (left). Realized

hedge ratios from the di↵erent models split on months, as well as historical spot prices and

the average achieved forward prices on the hedged quantum (middle). Relative deviations

in historical production quantities compared to the expected production (right).

Figure B.5: 2014 : We observe that the realized profits tend to increase with higher degrees of
". This is because the achieved forward prices exceed the spot price for the first four months.
The realized hedge ratios are over 100% in March following the negative deviation in realized
production relative to the expectation for that month. The latter emphasizes the risk of high
hedge ratios under production uncertainty.
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Figure B.6: 2015 : We observe that high hedge ratios was favourable in terms of profits because
the achieved forward price exceeded the spotprice for all months. We further observe low hedging
for " = 50 in May, in line with the discussion in Chapter 7. In turn this gives slightly lower
profits for this model.

Figure B.7: 2016 : We observe decreasing realized profits for strategies up to " = 10. For
higher ambiguity radii however, profits are higher. This follows as " = 25 and " = 50 gave close
to zero hedging in May, in line with the discussion in Chapter 7, and that the spotprice in this
month was significantly higher than the achieved forward price.
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Figure B.8: 2017 : We observe strictly decreasing revenues for the models with higher ambigu-
ity radii as forward prices were exceeded by the spotprice in every month. Further, we observe
a high deviation between the expected and realized production in April.
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