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Abstract—This paper adresses underwater localization for
an AUV using SLAM and Forward Looking Sonar (FLS)
data. The proposed method is Rao-Blackwellized Particle Filter
(RBPF) with grid mapping. The original RBPF uses multiple
suggested trajectories, where each of which has a occupancy
grid map. Analogously, range measurements from the FLS are
computed for each trajectory. A scan matching procedure is then
performed for the measurements of each trajectories and the
best matches are then chosen. The performance is confirmed
through simulations and experiments. The suggested method
enables SLAM in enclosed underwater environments using noisy
FLS measurements without any type of artificial landmarks
or assumption on the type of environment, and without any
increment in runtime complexity for long operation times.

I. INTRODUCTION

Nowadays, there is plenty of activity concerning underwa-
ter inspection operations. One example is in the Norwegian
aquaculture industry, where inspections are crucial to prevent
fish escape due to damage on a fish cage or on equipment
[1]. In the past few years, underwater inspection operations
have been performed by divers or manually operated ROVs,
which can turn out dangerous for the former and costly
for the latter. In addition, the lack of high communication
bandwidth in underwater environments leads to a need for
tethered vehicles in live monitoring, which can be a hazard
in the management of the vehicles. This motivates the use
of cable-free autonomous underwater vehicles (AUVs), under
supervisory human control. This should be able to decrease
the need for online data transfer since the AUV can gather
information autonomously and then transfer it after inspection.
AUVs are commonplace nowadays, but mostly in open water
surveys. There are only a few examples of survey operations in
more confined environments and one challenge, among others,
is to find the position of the vehicle relative to its surroundings
[2]–[5]. This problem is popularly known as Simultaneous
Localization and Mapping (SLAM) [6]. In recent years, it
has been increasingly more used in underwater navigation
[7] and a reason why is that it is fundamental for increased
autonomy in partly or completely unknown environments. The
most attractive SLAM solution is with the usage of unknown
data associations, which means doing SLAM in environments
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(a) Side view (b) Top view
Fig. 1. Forward Looking Sonar span

without making any assumptions or using artificial landmarks.
This provides a more flexible solution that can be used in any
environment without having to reconfigure the setup for each
operation. Regarding acoustic sensor evaluation in aquaculture
net pens, sonars were found to be able to determine a range
from an underwater vehicle to a fish net [8]. Therefore, a
solution using FLS in a RBPF framework will be investigated
here. The main contribution of this paper is the development
of a RBPF solution for online underwater navigation scenarios
using a FLS as shown in Figure 1a and 1b. The odometry
data is obtained from a Doppler Velocity Logger (DVL) and
a Fiber Optic Gyro (FOG), and depth measurements from a
pressure sensor. Since the AUV has no prior knowledge of the
environment, it needs to determine its position online along
with building a map. The developed SLAM approach is based
on methods presented in [9], that, to the best of the authors’
knowledge, has not yet been implemented before in this type
of system.

II. RELATED WORK

In recent years, underwater SLAM has gained increasing
popularity [7]. Many SLAM approaches have been devel-
oped for different types of sensor input and environments.
The typical sensors on ground vehicles are monocular and
stereo camera, and Light Detection And Ranging (LiDAR)
with high accuracy and fast update frequency. In underwater
environments these kinds of measurements are hard to obtain
and therefore are replaced with active sonars which are more
robust in underwater environments. However, the accuracy and
update rate can still not match that of the LiDAR and camera.
In this section we present three of the most important concepts
for the RBPF, which are; grid mapping, scan-matching and the



over all SLAM framework. This section will dive into previous
work in these fields.

A. Occupancy Grid Maps

Occupancy Grid maps are a way of representing space by a
finite number of grids. To each grid a value between [0, 1] is
assigned, which is the probability of a grid cell being occupied
[6]. The value is given by sensor updates from a vehicle
range sensor. The concept of occupancy grid mapping was
first brought up in [10] and [11].

B. Scan Matching

Scan Matching is the alignment of a point cloud in corre-
spondence to previous ones. Nearly all SLAM approaches have
some form of scan matcher, and the most popular is called
the Iterative Closest Point (ICP) [12]. It takes an unaligned
point cloud and a reference point cloud as input, and aims to,
first, find correspondence for each point, and then, to minimize
the distance between the correspondences. In [13], a variant
of the ICP algorithm was implemented, which was named
probabilistic Iterative Correspondence (pIC), and incorporated
the uncertainty of points by using a probabilistic length called
Mahalanobis distance instead of a metric measure as used
in the general ICP. This method was developed to take into
account noisy range measurements and errors in the position
due to the odometry error. This was in [14] further extended by
using a FLS in addition to removing distortions in each point
cloud due to vehicle motions, a method named Mechanical
Scanning Imaging Sonar pIC (MSISpIC). Another popular
method for scan matching is called the Normal Distributions
Transform (NDT) [15]. It uses local probability distributions
based on each cell in a grid map, along with a reference
point cloud and the following one. Its advantage is that no
correspondence needs to be established between the points,
which is ICP’s biggest bottleneck. Another scan matching
algorithm is one that maximizes the probability of each point
cloud through a gradient decent search of the vehicle pose in
relation to an occupancy grid map. This approach was applied
quite successfully in [16].

C. Simultaneous Localization and Mapping

There are three main SLAM paradigms, namely the Ex-
tended Kalman filter, the Graph-SLAM and the Particle Filter
(PF). An example of the Extended Kalman Filter used for
AUV SLAM is presented in [17], where the algorithm keeps
track on the associations between different poses. Associations
and alignment are performed by a pIC scan matcher. Graph-
SLAM has, the last years, become more and more popular
due to the increasing computational power available [18]. The
RBPF is the most popular PF solution for SLAM schemes,
and the algorithm was first suggested in [19] using known
landmark associations. It was later customized for grid map
representation, such that unknown data associations could be
used in [9]. The algorithm can be summarized in the following
steps:
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Fig. 2. A ground truth and odometry trajectory are plotted in red and cyan,
respectively. Simulated scans are shown in dotted cyan and red. The red
and cyan dashed lines illustrate sonar beams for ground truth and odometry,
respectively.

1) Sampling: Samples the next generation of particles from
a proposal distribution given by previous particle set,
odometery data and a scan matched point cloud.

2) Importance Weighing: Compute weight of each particle
by the proposal distribution.

3) Resampling: If the effective number of particles is
smaller than a certain threshold, the particles are chosen
by considering their respective weights computed in step
number 2.

4) Map Estimation: Insert point cloud for each particle into
their respective map.

The complexity of the RBPF is O(NM) [9], where N
is the number of particles, and M is the size of the map.
This is due to the fact that each particle has a map, and
under resampling each map has to be copied. However, due
to adaptive resampling, many of the steps have a complexity
of O(N) instead, which corresponds to linear complexity.

III. OVERALL FRAMEWORK

This section describes the overall system framework. The
vehicle dynamics are explained in Section III-A and the RBPF
design in Section III-B.

A. Vehicle Overview

The discrete 2D vehicle dynamics used are summarized by
the following:

ηt = ηt−1 +R(ψt−1)(νt−1 + wν)∆t (1)

where η =
[
x y ψ

]T
is the position given in the North-

East-Down (NED) frame [20], ν =
[
udvl vdvl rfog

]T
is

given in the body frame and R(ψ) ∈ R3×3 is the 2D rotation
matrix, that gives the corresponds between a vector in the body
frame and the NED frame. Further, wν ∼ N (

[
0 0 0

]T
, Q),

where Q = diag(σ2
dvl, σ

2
dvl, σ

2
fog) ∈ R3×3.



Algorithm 1 Scan building for each particle trajectory
1: N ← number of particles
2: M ← number of endpoint
3: ebuffer ← zeros(2,M,N)
4: count← 1
5: repeat
6: ut−1 ← [u, v, r]
7: if count > M then
8: St ← RBPF (ut−1, ebuffer)
9: count = 1

10: ebuffer ← zeros(2,M,N)
11: else
12: St ← RBPF (ut−1)
13: end if
14: zt ← [r, θ]
15: for i=1 to N do
16: ηit ← Sit
17: ebuffer ← insertMeasurement(et(zt, ηit))
18: end for
19: count← count+ 1
20: until End of SLAM

An overview of a sensor setup is shown in Table I. A
Fiber Optic Gyro (FOG) and a Doppler Velocity Logger
(DVL) provide the odometry data, and a pressure sensor
provides depth information. Note that the depth measurement
is not included in the vehicle’s dynamics due to the accurate
measurement obtained from the depth sensor. Further, range
data, denoted as zt, is obtained from a FLS. A collection of
these measurements is a scans and can be represented as a
point cloud. Figure 1a and 1b illustrate the reachable space
of the FLS beam from the side and top view, respectively.
The beam is wide when seen from the side and narrow from
the top view. Furthermore, the FLS is mechanically rotating
over the yaw angle as illustrated in Figure 1b. When obtaining
ranges from the FLS we assume that range and direction are
given directly from the sensor. The measurement is given by
the following equation:

zt =
[
r θ

]T
+
[
ωr ωθ

]T
(2)

where r is the range from the FLS, θ is the angle of the FLS
relative to the vehicle’s yaw angle. Further, ωr = N (0, σ2

r)
and ωθ = N (0, σ2

θ), which means that both are Gaussian
distributed with mean zero and standard deviation σr and σθ,
respectively. To obtain the NED frame position of each FLS
measurement at time t, denoted as et, we need to use the
following relation:

et(zt, ηt) = R(ψ)

[
r cos (θ)
r sin (θ)

]
+

[
x
y

]
(3)

B. Rao-Blackwellized Particle Filter using Forward-Looking
Sonar

The key idea of this paper is that the FLS data is integrated
into the RBPF presented in this section. The problem can be

visualized in Figure 2 from a simulated ground truth in a solid
cyan line and the scan, which is the collection of all the cyan
dots. When the same scan is viewed from the trajectory based
on noisy odometry in the red dots, there is a clear distortion.
In [9], the RBPF uses multiple suggested trajectories each of
which has a map. Analogously, a scan for each trajectory has
also been adapted, which increase the chances of finding the
true path. The procedure of is summarized in Algorithm 1.
Initialization is performed on Line 1-4, by defining the number
of particles and desired FLS measurements in each scan. For
each iteration the odometry, denoted ut−1, is used in the RBPF
to update all particles and obtaining the new particle set St
given as:

St = {η1t , . . . , ηit, . . . , ηNt } (4)

At Line 14-18 is the FLS measurement inserted into ebuffer
given by Equation (3) for each particle. The structure of the
ebuffer set is shown in Equation (5). At Line 19, the count of
the number of scans inserted is incremented. The procedure
is repeated until the scan buffer reaches a predefined size,
denoted as M . When ebuffer is full, it is sent into the RBPF at
Line 8. Note that the count and buffer are reinitialized at Line
9 and 10.

ebuffer = {{e1t1 , . . . , e
1
tM }, . . . , {e

i
t1 , . . . , e

i
tM },

. . . , {eNt1 , . . . , e
N
tM }} (5)

The RBPF function in Algorithm 1 is summarized in
Algorithm 2. It is similar to the one given in [9], but with
some differences. The first difference is the scan matching
algorithm used. It is to time consuming to acquire enough
measurements to use an gradient decent search approach due
to a low update rate from the FLS in comparison to a LiDAR,
as used in [9]. For that reason, the ICP algorithm is chosen
instead, since it only requires one reference scan for each
particle. The reference scans are stored after each iteration,as
seen at Line 16. Note that also when resampling at Line 25,
a copy of the scans is required. The reference scan is stored
in eref and has the following structure:

eref = {{e1t1 , . . . , e
1
tM×R

}, . . . , {eit1 , . . . , e
i
tM×R

},
. . . , {eNt1 , . . . , e

N
tM×R

}} (6)

where R is the number of scans stored. When all R
scans have been inserted, the old scans are replaced, as in
a sliding window approach. The ICP variant used here is an
implementation from MATLAB described in [21]. Furthermore,
on Lines 2-17, the measurement update is performed for each
particle. Firstly, in Line 3, a new pose x is suggested from
the ICP algorithm. If the root mean square error (rmse) for
the scan match is larger than a threshold T1, the particle
is updated on the basis of odometry in Line 5-6. If not, a
set of points x1:K = {x1, x2, . . . , xK} is chosen from an
uniform distribution, denoted as U at Line 8. This distribution



Algorithm 2 RBPF [9]
1: if ebuffer available then
2: for i = 1 to N do
3: x, rmse← ICP(eibuffer,e

i
ref)

4: if rmse > T1 then
5: Sit ← Sit−1 +N (ut−1, Q)
6: wi = p(ebuffer|mi

t−1, St
i)

7: else
8: x1:K ← U(x, ε)
9: w1:K ← p(xk|ut−1, S

i
t−1)p(ebuffer|mi

t−1, x
k)

10: µt ← mean(x1:K , w1:K)
11: Σt ← cov(µt,x1:K , w1:K)
12: Sit ← N (µt,Σt)
13: wit ← wit−1

∑K
k=1 wk

14: end if
15: mi

t ← updateMap(Sit , ebuffer)
16: eref ← insertScan(Sit , ebuffer)
17: end for
18: else
19: for i = 1 to N do
20: Sit ← Sit−1 +N (ut−1, Q)
21: end for
22: end if
23: Neff = 1/

∑N
i=1(w̃i)

24: if Neff < T2 then
25: {St,mt, eref} = resample(St,mt, eref, wt)
26: wit ← 1/N
27: end if

is centered around x with a size given by ε. In Line 9, each
point xk gets a weight depending on the probability of location
given the odometry , the scan and the occupancy grid map [22].
Thereafter, the weighted mean and covariance are computed.
This is further used to estimate an Gaussian distribution, from
where the next particle pose is drawn, as seen in Line 12. The
particle weight is updated in Line 13 followed by an update of
the map and scan reference for each particle. In Line 23, the
effective number of particles is computed. This is a measure on
how well the weights are distributed on each particle and are
used to determine, by a threshold T2, when the resampling step
is necessary. Note that w̃i in Line 23 denotes the normalized
particle weight. For more details and derivation of RBPF, see
[9].

IV. SIMULATIONS

This section presents results of the simulations of the
method described in Section III. The parameters used in the
simulations are shown in Table II and I. As illustrated in
Figure 2, the simulation environment is a 8m×8m pool and all
measurements are taken at the same depth. The AUV follows a
path along the pool walls based on its odometry data while the
FLS is scanning in 360 degree. Two simulations are performed
with the following difference:

1) No sonar noise included.
2) Sonar noise included.
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Fig. 3. Particle covariance of simulation 2.
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Fig. 4. Effective number of particles in simulation 2.

Simulations 1 and 2 are presented in Figures 5 and 6,
respectively. They show the estimated trajectories along with
the grid map. The main plot illustrates an overview, where
odometry is plotted in a dashed blue line, the weighted particle
mean in a red solid line and the ground truth in a thick
green solid line. The occupancy grid map for the particle
with highest weight is shown by a gray scale ranging from
[0.5, 1]. The right subplot in both figures is a blown up view
of the trajectories. One color corresponds to one round and is
enumerated in the legend. Table III shows the RMSE errors
for each of the simulations for both the particle mean and
the odometry trajectory. Furthermore, in Figures 4 and 3,
the effective number of particles and the particle covariance
estimative are plotted for simulation 2.
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TABLE I
SENSOR OVERVIEW

Sensor Notation Update Rate [Hz] Noise Std.
FOG r 5 σFOG [deg/s]
DVL ν 5 σDVL [m/s]

Pressure sensor d 10 0.02 [m]
Tritech Micron z 20 (0.08[m], 1.5[deg])

TABLE II
RBPF PARAMETERS

RBPF Parameter Value
N 10

M 200

K 500

R 10

ε (0.01, 0.01, 2.5)[m,m,deg]
σFOG 0.075[deg/s]
σDVL 0.00084 + 0.038

√
|ν| [m/s]

(phit, pmiss) (0.6, 0.5)
T1 0.1

T2 0.5N

Resolution of grid map 0.05[m]

V. EXPERIMENTS

This section describes experiments conducted in a pool of
7.5m× 7.5m at Institute of Industrial Science, The University
of Tokyo. Section V-A presents a noise analysis of the FLS
and Section V-B shows the conducted SLAM experiment.

A. FLS Noise Analysis Experiment

In order to ensure correct noise properties implemented into
simulations, an noise analysis was performed in a water tank
with the FLS, a Tritech Micron [23]. The tests were conducted
by pointing the sonar towards the pool floor instead of pointing
it forward. This allowed us to measure the range of the beam
for different depths and also compare the results with the
ranges obtained from the DVL. The result is shown in the
sensor overview at Table I. The standard deviation of the
range was 0.08m after removing outliers. The angular standard
deviation was not measured, but it was set to 1.5 degrees which
correspond to the beam width. Note that the DVL and FOG
standard deviation are also given in Table I and are obtained
from [24].

B. RBPF SLAM Experiment

A pool experiment was conducted in order to verify the
simulation results. A trail of 1100 seconds were performed
and the vehicle used was the Tri-Dog 1 (TD1) [25], shown in
Figure 7. TD1 was programed to run a predefined path doing 4
rounds in a square of 2.5m×2.5m at a speed of 0.075m/s and
diving one meter down at the second round. However, since
the proposed method only consider the XY-plane, the depth
will not be taken into consideration. The vehicle navigated
using odometry data from the DVL and FOG while gathering

TABLE III
RMSE FOR ESTIMATED VS. GROUND TRUTH IN SIMULATIONS

Error Measure RMSE [m] RMSE [deg]
Odometry RMSE 0.0985 0.7096

SLAM RMSE without sonar noise 0.0382 0.2746

SLAM RMSE with sonar noise 0.0590 0.4928

Fig. 7. The hovering type AUV called Tri-Dog 1 (TD1).

range data from the FLS, which was scanning in a ±60 deg
sector relative to the AUV’s heading. In post-processing, all
gathered sensor data was run through the RBPF SLAM in the
same manner as the simulated data. All parameters in the filter
have the same values as used in the simulated cases. Note that
odometry measurements are in a 5 Hz rate while the update
frequency of the FLS in 20 Hz, therefore is an interpolated
scheme for each particle necessary at one time instant to the
next. However, since we have low velocity 0.075m/s in this
case, we assume that the the errors are low. An overview
of the run is shown in Figure 8 and the particle covariance
and effective number of samples is shown in Figures 9 and
10, respectively. Since there are no ground truth available, it
is difficult to obtain a value for the RMSE. However, some
shells were scattered over the pool floor to have a reference
point and pictures where taken of the floor. Since the camera
configurations are known the position is computed for the first
and last encounter. With no error the shell should have the
same position. The computed position one shell is illustrated
in the right subfigure of Figure 8, where the red and blue
star illustrate the computed shell position for the odometry
trajectory for first and last encounter respectively, and in a red
and blue circle for the SLAM trajectory. The errors from the
first to the last encounter is shown in Table IV, where the
SLAM trajectory has a much lower error than the odometry.

VI. DISCUSSION

This section discusses the results presented in Section IV
and V. Starting with simulation 1, where no sonar noise is
included, the RBPF shows an excellent accuracy as can be
seen from the low RMSE in Table III. For Simulation 2, there
is an expected increase when the sonar noise is included, but it
still manages to follow the ground truth trajectory, which can
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TABLE IV
ESTIMATE OF SHELL POSITION ERROR FROM FIRST TO LAST ENCOUNTER

Trajectory dx [m] dy [m]
√
dx2 + dy2[m]

Odometry Trajectory 0.0547 0.2068 0.2139

SLAM Trajectory −0.0236 0.0487 0.0553
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Fig. 9. Particle covariance for the experiment

also be seen in Figure 6, and from the low RMSE values in
Table III. Besides, in the grid maps of Figure 5 and 6 the sonar
noise is noticeable by the thickness of the walls. Note that the
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Fig. 10. Effective number of particles for the experiment

resolution of each cell is 0.05 meters. For the noisy sonar
case, the update of the map is an issue if cells are considered
free when updating, which lowers its probability value. So, in
this case, the probability value of a free update in the inverse
sensor model is set to 0.5, which leads to not updating and
inserting only the endpoint into the grid map.

Particle covariance of simulation 2 and the experiment run
are plotted in Figure 3 and 9, respectively, where the values
plotted correspond to the diagonal elements of the particle



covariance matrices. As seen in the figures, the covariance
increases due to the odometry error, but for each measurement
update the covariance gets reduced and is thereby bounded.
Note that the experimental particle covariance is about two
times higher than the simulated one, which is likely due to
the presence of outliers in the sonar measurements in the
real case. This can also be seen in the occupancy grid map
in Figure 8, and leads to worse scan matching conditions
for the ICP algorithm, making the measurement update more
dependent on the odometry, as seen in Line 5-6 of Algorithm
2. However, the method is robust despite the outliers as seen
by the relative estimated shell position from the first to last
encounter, illustrated in Figure 8.

The effective number of particles is plotted in Figure 4 and
10 for simulation 2 and experiment respectively. It indicates
how well the weights are distributed over the particles. Their
effective number is always at a maximum of 10 after each
resampling, and decreases monotonically after each measure-
ment update. If the effective number of particles is higher than
5, it is possible to skip the resampling step since the particles’
spread is large enough.

Regarding the run time, it takes 5.3 minutes to run through
the experiment simulation offline in MATLAB using a HP
EliteBook with Intel(R) Core(TM) i7-6500U CPU at 2.5GHz.
In comparison, the full operation takes about 18 minutes,
which means that it uses only 29.5% of the time when run
offline. These numbers indicates that the data can be processed
before a new update is performed, therefore, being able to be
used in online applications.

VII. CONCLUSIONS

In this paper we presented a method called Rao-
Blackwellized Particle Filter using grid maps in a new ap-
plication. This method was here implemented for SLAM in
enclosed underwater environments using noisy FLS measure-
ments. This approach has the benefit of not depending on
any type of artificial landmarks or assumption about the type
of environment. Simulations of the algorithm showed that,
by correcting the measurements and this way bounding the
error, the performance was improved in comparison to the
odometry trajectory. In order to confirm the simulation results,
an experiment was performed in a test basin at Institute of
Industrial Science, in The University of Tokyo, with a hovering
type AUV called TD1, which gathered data that was later post-
processed using the proposed algorithm. The experimental
results support the simulations by showing that the AUV drifts
less, having a more accurate positioning then when relying on
odometry data only.
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