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Abstract (150 words) 

The encoding of time and its binding to events are critical components for episodic 

memory, but how these processes are carried out in hippocampal-entorhinal circuits is 

unclear. Here we show in freely foraging rats that temporal information is robustly 

encoded across time scales from seconds to hours within the overall population state in 

lateral entorhinal cortex (LEC). Similarly pronounced encoding of time was not present in 

medial entorhinal cortex (MEC) or hippocampal areas CA3-CA1. When animals’ 

experiences were constrained by behavioral tasks to become similar across repeated trials, 

encoding of temporal flow across trials was reduced while encoding of time relative to the 

start of trials was improved. The findings suggest that populations of LEC neurons 

represent time inherently through the encoding of experience. This representation of 

episodic time may be integrated with spatial inputs from MEC in the hippocampus, 

allowing the hippocampus to store a unified representation of what/where/when. 

 

Introduction 

The representation of time is a critical component of episodic memory1-3. Although a significant 

body of work has now demonstrated that the hippocampus plays an essential role in generating a 



representation of time4-11, our understanding of how the brain represents time for episodic 

memory (episodic time) is still in a nascent stage. The primary function of episodic time is to 

record the order of events within experience, which does not require a precise representation of 

metric time, differentiating it from interval and circadian timing 12-14. Rather than being able to 

keep precise metric time, the neural code for episodic time should have the following two 

fundamental properties: 1) the code should arise automatically without any behavioral training, 

to support one-shot formation of episodic memory, and 2) the code should be able to capture the 

different scales of time at which experience may occur. Recently, two types of representation of 

time have been observed in the hippocampus and MEC: 'time cells' which fire at specific points 

in time as an animal performs a task15-19, and the decorrelation of place cell activity across hours 

to days20-25. However, neither of these representations of time has been shown to fully support 

one-shot formation of episodic memories in combination with variable timescales. Furthermore, 

how either of these representations of time arises is unknown. Here, we investigated temporal 

coding outside the place-cell system, in LEC. We focused on LEC because (i) this area is a major 

source of cortical input to the hippocampus, (ii) previous work has shown that responses in LEC 

to physical stimuli could be unstable across time26,27, and (iii) a clear underlying function has not 

yet been defined for LEC. We found a representation of time in LEC which exhibited both of the 

expected signatures of episodic time, and thus could support episodic memory.  

 

Temporal coding in individual LEC cells 

To explore temporal coding in LEC, we recorded neural activity over more than an hour while 

rats ran in a box whose walls alternated semi-randomly between black and white on 12 trials 

(BW12 experiment, Fig. 1a, Extended Data Fig. 1). An extended number of trials was used to 

increase the likelihood that animals defined multiple temporal contexts across the experiment, 

while the interleaved design was chosen to avoid confounding changes in wall color with 

progression of time. Data was also recorded from CA3 and MEC for comparison. Examining 

LEC responses by eye, we noticed that some cells exhibited clear ramping activity (Fig. 1a, b), 

raising the possibility that individual LEC cells track the passage of time through their firing 

rates. Responses to specific environmental features such as walls and cue cards26 were also 

observed, consistent with LEC’s established role in encoding environmental context28-30.  

 



We quantified the influence of wall color and time on the activity of single cells using a 

generalized linear model (GLM) incorporating time, wall color, and position as variables for 

fitting the firing rates of individual neurons, which were binned temporally into blocks of 500 ms 

(Extended Data Fig. 2a-d).  A significant number of LEC cells were selective specifically for 

time (20.4% of all recorded cells), while only 2.0% of CA3 cells and 4.5% of MEC cells were 

selective for time alone (number of cells significantly influenced by at least one variable for 

LEC: 186/451, 41.2%; CA3: 72/148, 48.6%; MEC: 49/133, 36.8%; Fig. 1c). The distributions of 

cell selectivities for LEC, CA3, and MEC were consistent across individual animals (Fig. 1c).  

 

Because time was modeled as a linearly-increasing function in the GLM, all time-selective cells 

exhibited some form of ramping activity. Both increasing and decreasing ramps across a range of 

time constants were observed (Extended Data Fig. 2c), as would be expected if they performed 

a Laplace transform of the recent past31. Ramping cells were found in both deep and superficial 

layers, with no clear difference in the time constants (see Supplemental text). Ramping 

responses, particularly across the entire recording session, were not due to recording instability 

(Extended Data Fig. 2e-g, see Methods).  We found little evidence in LEC for non-ramping 

time-specific activity similar to that of time cells (Extended Data Fig. 3).  

 

LEC population states encode temporal information 

We next focused on the overall population of LEC cells and asked whether its dynamics 

reflected time coding. We first visualized the overall population data from individual animals 

using linear discriminant analysis (LDA) to determine the dimensions which optimally 

discriminate the 24 experiment-defined states (12 trial, 12 intertrial), and plotting the 2D 

projection yielding the best discrimination (Fig. 2, Extended Data Fig. 4a-c). Population 

activity for the entire session separated into distinct modes corresponding to the environmental 

contexts of the experiment, as expected from previous work demonstrating LEC involvement in 

encoding context28-30. In addition, there was a prominent progression of states corresponding to 

the temporal order of the experiment. Thus, across the entire session, the three environmental 

contexts could be separated along one axis in state space, while the temporal epoch of each trial 

could be separated along another.  

 



To quantify the temporal information present, we trained a linear multiclass support vector 

machine (SVM) to identify temporal epochs (e.g. trial 1, intertrial 1, trial 2, etc.) based on neural 

activity from individual animals, pooled across recording sessions. Population activity defined 

by the firing rates of cells was binned into 10 s bins, with each bin labeled by the temporal epoch 

it was in. The decoder was then trained to identify temporal epochs based on population activity, 

with 10-fold cross-validation (Extended Data Fig. 4d). Statistical significance was evaluated 

using a permutation method (see Methods). Very high decoding accuracy for temporal epoch 

identity across the whole session spanning both trial and intertrial epochs was observed for all 

LEC animals during the BW12 experiment, indicating significant temporal information was 

present in LEC population activity (88.0% mean accuracy, chance level 4.2%; Fig. 3a). The high 

decoding accuracy was not due to pooling cells across recording days, changes in behavior or 

noise-driven variability of population activity states (Extended Data Fig. 4e, f, 5). To further 

verify our observations, we trained decoders using data from additional LEC animals which ran a 

simplified 4-trial version of the BW12 experiment (BW4), and obtained similar results (93.1% 

mean accuracy, chance level 25%; Extended Data Fig. 4g, h). Thus, population activity in LEC 

clearly defined a unique temporal context for every epoch of experience on the timescale of 

minutes.  

 

Visualization of data from CA3 and MEC revealed population activity patterns different from 

LEC (Fig. 2). Quantification of temporal information across the entire session, including both 

trial and intertrial periods, using decoders trained on CA3 and MEC data revealed decoding 

accuracies above chance, but lower than that found in LEC (23.0%, 34.4% mean accuracy for 

CA3, MEC respectively). In order to properly compare decoding accuracy across the three areas, 

we trained separate decoders for each area using populations with equal size to ensure that higher 

accuracy was not simply due to the data having higher dimensionality. LEC still contained 

significantly more temporal information than either CA3 or MEC, as decoding accuracy for 

temporal epoch was higher for LEC by a sizeable margin (45.5% vs. 20.4% vs. 26.2% mean 

accuracies for LEC, CA3, and MEC respectively; Fig. 3b-c). The difference in decoding 

accuracy was not simply due to temporal information being more distributed across the 

population in CA3 or MEC, as LEC required significantly fewer cells to reach high decoding 

accuracy (Fig. 3d, Extended Data Fig. 4i). In the simplified BW4 experiments, we also had data 



from CA2 and CA1, allowing us to compare decoding accuracies for temporal epoch across 

entorhinal cortex and all CA subfields. We again found, in separate animals, that decoding 

accuracy was highest for LEC (Extended Data Fig. 4h). In total, these observations point to 

LEC as a possible source of temporal context information necessary for episodic memory 

formation in the hippocampus. 

 

Is the robust encoding of time in LEC at the population level due primarily to cells with ramp-

like activity? To test whether cells not classified as selective for time nonetheless also encoded 

temporal information, possibly in a nonlinear form32, we trained decoders for temporal epoch 

using only cells which were not selective for time, and found that decoding accuracy remained 

very high. Comparing against size-matched populations with cells drawn randomly from the 

entire dataset, decoding accuracy for time using only non-selective cells was not significantly 

different (77.2% vs. 79.2% mean accuracy for trial identity using population with no time-

selective cells, compared to a size-matched randomly-drawn population, Fig. 3e).  

 

If the temporal information observed within LEC population activity is actually used as a 

temporal code, is it limited to representing just the macroscopic temporal context of experiences, 

on the timescale of minutes and longer, or is it also capable of representing the order of events 

within experiences, which may be on timescales shorter than minutes? We examined whether 

LEC could encode temporal epochs of shorter length than entire trial or intertrial periods by 

dividing trial-period data into shorter epochs and training decoders to identify these shortened 

epochs (Fig. 3f). Decoding accuracies for 20 s, 10 s, and 1 s epoch-lengths across the entire 

session were all significantly above chance (27.8%, 21.4%, 1.6% mean accuracy for 20 s, 10 s, 

and 1 s epochs respectively; chance levels 0.4%, 0.2%, 0.02% respectively; Fig. 3f, g, Extended 

Data Fig. 6a-c, see Supplemental text). Although decoding accuracy decreased with shorter 

epoch lengths, decoding errors predominantly predicted adjacent epochs, as opposed to 

temporally distant epochs (Fig. 3g). Decreased accuracy may have been due to the limited 

number of cells that we recorded from. Pooling together all recorded cells from every animal to 

generate a population of 451 cells, decoding accuracy for 20 s epochs was 86.0%, while 

decoding accuracy for 10 s and 1 s epochs were 83.0% and 30.5% respectively. Decoding 

accuracy for shortened epochs was not due to differences in population activity on the timescale 



of trial or intertrial periods, as decoding accuracy for shortened epochs within single trial and 

intertrial periods was still above chance (Extended Data Fig. 6d, e). Thus, temporal information 

in LEC was flexible enough to support encoding of events happening across a wide range of 

timescales.  

 

In a separate set of experiments, we tested whether changing the content of the animal’s 

experience affected temporal information in LEC by introducing an object into the recording 

environment. We found a similar representation of time at both the single-cell and population 

level (Extended Data Fig. 7).  Information about the current environmental context (B or W) as 

well as information about the immediately preceding context was also present in LEC (Extended 

Data Fig. 4j-l, see Supplemental Text). Overall, these results suggest a large component of 

LEC population activity codes for time across multiple scales, expressed both through cells 

explicitly coding time as well as cells having mixed selectivity for time that requires population 

decoding to extract. 

 

Temporal information arises inherently 

What is the mechanism by which time is incorporated into the population representation in LEC? 

One possibility (“explicit mechanism”) is that LEC actively, in a clock-like manner, generates 

timestamps for representations of experience. Another possibility (“inherent mechanism”) is that 

temporal information in LEC arises simply due to the fact that the animal’s moment-to-moment 

experience constantly changes, and time can be extracted from this changing flow of experience 

by integrating the amount of change9,12,33 (Extended Data Fig. 8, 9a). We sought to distinguish 

these two possibilities by constraining experience through the use of a more structured task in 

which the animal’s behavior was stereotyped. If the temporal information present within LEC 

arose from an explicit clock-like process, we would expect to see no change in the amount of 

temporal information present when compared to results from the free-foraging BW experiments. 

By contrast, if the temporal information within LEC arose inherently through its encoding of 

experience, we would expect to see a decrease in the amount of temporal information due to the 

repetitive nature of the task.  

 



We examined the variability of temporal representation in LEC in a separate experiment where 

animals performed a learned continuous-alternation task (figure-eight task, Fig. 4a). Trials were 

aligned by the time-point at which the animal entered the central stem, and trials consisted of 

activity spanning from three seconds before to three seconds after entering the central stem. 

Visualizing the data, we observed the separation between trials was reduced in comparison to 

BW data (Fig. 4b). Decoding accuracy for trial identity across the entire session was above 

chance, but much lower than for matched BW data (figure-eight, 10.6% vs. BW, 21.5% mean 

accuracy, chance level 5%; Fig. 4c, Extended Data Fig. 9b). In a separate experiment where 

animals ran repeated laps on a circular track, reduced decoding accuracy for trial identity during 

repetitive experience was also observed (Extended Data Fig. 9c-e). Overall, these results are 

consistent with temporal information in LEC arising not in an explicit clock-like manner, but 

inherently from the dynamics underlying LEC’s representation of ongoing experience. 

 

Temporal coding varies under changing behavioral conditions 

The hippocampus represents learned time intervals15,16,19,34, and this representation of time may 

depend on the retrieval of stable temporal contexts35. Does the reduction in across-session 

temporal information during learned behavior reflect a similar instatement of a stable temporal 

context in LEC for the purpose of representing the relevant features of the task, which may 

include the progression of time within single trials? Analysis of single-cell responses using a 

GLM incorporating trial type (left/right turn), trial time (time within single trials), and session 

time showed that the ratio of cells encoding trial time versus session time was significantly 

altered, with more cells encoding trial time and fewer cells encoding session time in the figure-

eight experiment (5.7% vs. 34.0% vs. 18.2% cells selective for session time or mixed session 

time [session time+trial type] for figure-eight, BW12, and object experiments respectively; 

35.7% vs. 6.2% vs. 7.7% cells selective for trial or mixed trial time [trial time+trial type] for 

figure-eight, BW12, and object experiments respectively; Fig. 5a, Extended Fig. 10b-e). The 

proportion of cells selective for trial type also differed significantly (20.8% vs. 4.9% vs. 8.0% 

cells selective for context for figure-eight, BW12, and object experiments respectively; Fig. 5a).  

 

Visualization of overall population activity using PCA to plot 2D projections of neural 

trajectories through population activity space showed that neural trajectories were relatively 



constant across trials, suggesting that LEC was in fact in a different, more stable mode of activity 

compared to that observed during free foraging (Fig. 5b, Extended Data Fig. 10f). Consistent 

with this observation, decoding accuracy for time relative to the start of each trial was 

significantly above chance and much higher than for matched BW data (45.3% vs. 18.3% mean 

accuracy, chance level 16.6%, Fig. 5c). Although trial time was tightly correlated with position, 

the significant decoding of trial time did not appear to be due purely to LEC activity reflecting 

spatial location (10.0% cells selective for trial time exclusively, Fig. 5d). In addition to changes 

in the type of temporal information present in LEC population activity, the amount of task-

related information also appeared to change, as the decoding accuracy for trial type was higher 

for figure-eight data than the decoding accuracy for wall color using matched BW data (81.3% 

vs. 72.1% mean accuracy, chance level 50%; Fig. 5e). Finally, the degree to which information 

was distributed across the entire population was decreased compared to BW experiments, as 

decoding accuracy for both trial type and trial time were significantly reduced compared to size-

matched randomly-drawn controls when cells selective for trial type or trial time respectively 

were removed (56.1% vs. 76.4% mean accuracy for trial type, 32.2% vs. 41.9% mean accuracy 

for trial time, Fig. 5f). Overall, our results suggest that as animals engaged in a structured, 

learned task, the dynamics of LEC activity became significantly more stable compared to when 

animals were engaged in free behavior. 

 

Discussion 

Being able to recall the temporal details of past experiences is a fundamental element of episodic 

memory. Our recordings demonstrate a unique temporal signal in LEC that can encode time 

across multiple scales from seconds to hours and across different environmental contexts. 

Ordinarily this code for time marks the free-flowing progression of time, reflecting the structure 

of ongoing experience. However, when animals engage in a structured behavioral task in which 

experience is similar across repeated trials, time coding becomes relative, encoding time with 

respect to temporal landmarks. The adaptable nature of this code for time makes it particularly 

well-suited for defining the temporal component of episodic memory (´episodic time´) and 

differentiates it from previously-described interval-timing mechanisms36-38.  

 



What mechanism could produce spontaneous representations of episodic time in LEC? Our 

results support recent theoretical work demonstrating that encoding of time can arise inherently 

as a result of interactions between externally- and internally-driven states31,33,39. This form of 

time coding represents different points in time using different high-dimensional population states 

that can be easily differentiated by downstream readout neurons (Extended Data Fig. 8). In 

LEC, such high-dimensional states may be generated by a combination of the recurrent local 

connectivity of LEC40 and the uniquely diverse set of inputs that the LEC receives41. Given 

LEC’s anatomical position as a major gateway for information entering the hippocampus, it is 

possible that representations of time outside of the entorhinal/hippocampal circuit42,43 are 

integrated in LEC to form a single representation of time for episodic memories. 

 

Within the entorhinal/hippocampal circuit, two representations of time have been identified in 

previous work: 'time cells' which fire at specific points in time as an animal performs a task15-19, 

and the decorrelation of place cell activity across hours to days20-25. Continuously-changing LEC 

activity may underlie both scales of temporal representation: drift of place cell activity in may be 

governed by a constantly-changing LEC input which is time-varying on the scale of minutes to 

hours, while sequential activity of time cells may be driven in part by LEC input which is time-

varying relative to task events on the scale of seconds 31,44. Thus, while an episodic memory may 

contain both a fine-grained representation of the sequence of events composing that memory as 

well as a coarser temporal context for the overall episode, both of these scales of temporal 

representation may originate from a single temporal signal within LEC. This signal may then 

reach the hippocampus to become part of a unified what-when-where representation of 

experience, space, and time3, in which the representation of experience and time arising in LEC 

is integrated with the representation of space arising in MEC45.  
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Figure 1 

Temporal information within LEC single-cell activity 

a, Experiment structure: animals ran twelve 250 s trials in a box with either black or white walls. 

Trials were separated by 140 s intertrial periods where the animal was placed in a holding pot. 

Total session length was 1.3 h.  

b, Four example LEC cells. Left: Path plots showing animal’s location in grey and cell spikes in 

red. Right: Firing rate plots for the same cells. Dark and light grey indicate trial periods with 

black and white walls respectively. Unshaded regions indicate intertrial periods. Cells 1-3 

responded to features of the recording box with no obvious temporal component to their activity, 

while cell 4 exhibited ramping activity across each trial.  

c, Left, example GLM fit results for four cells with selectivity for different features, with 

observed firing rate shown in grey, predicted firing rate in blue. Right, average tetrode 

waveforms for first (green) and last (black) quarter of the session. 

d, Distribution of selectivity for wall color, position, time, and mixtures of variables for LEC 

(top, n = 3 animals with 90, 141, 220 cells), CA3 (middle, n = 3 animals with 78, 42, 28 cells), 

and MEC (bottom, n = 2 animals with 31, 102 cells). Circles indicate individual animals, solid 

lines indicate mean ± s.e.m., shade indicates individual animals. 

 

Figure 2 

Visualizing LEC population activity 

2D projections of neural population responses. Axes correspond to the first two linear 

discriminants (LD1, LD2, arbitrary units). Left column shows LEC population responses, middle 

column shows CA3 population responses, right column shows MEC population responses, each 

from an example animal. Each trial’s wall color indicated by a shade of green (black walls) or 

purple (white walls); intertrial periods shown in grey. Progression of shade from dark to light for 

trial and intertrial periods indicates progression of time. Note progression by time for LEC (see 

also Extended Data Fig. 4a). LDA projections were used for visualization purposes only. 

 

 

 

 



Figure 3 

Temporal information within LEC population activity 

a, Decoding accuracies for trial-length temporal epochs from whole recording session for LEC (n 

= 3 animals), CA3 (n = 3 animals), and MEC (n = 2 animals).  

b, same as a, but for size-matched populations (unpaired t-test with Bonferroni correction, LEC 

vs. CA3: t(4) = 5.77, P < 0.01, LEC vs. MEC: t(3) = 4.81, P < 0.05, matched population size = 

28 cells). 

c, Confusion matrices from example animals. Each matrix shows entire session, with each entry 

corresponding to a single epoch (i.e., trial 1, intertrial 1, trial 2, etc.). Epoch type indicated along 

left and bottom (grey for intertrial periods, black for black wall trial periods, white for white wall 

trial periods).  

d, Relation between population size and decoding accuracy. Lines indicates exponential curve fit 

to data (shown as points, pooled across n = 3, 3, 2 animals for LEC, CA3, MEC respectively). 

e, Decoding accuracy for temporal epoch using subpopulations with all time-selective cells 

removed, compared to randomly drawn size-matched controls (paired t-test, t(2) = 1.00, P = 

0.42, n = 3 animals with 150, 107, 62 cells not selective for time). 

f, Decoding accuracies for different temporal epoch lengths for LEC. Left, method for 

constructing trial-length epochs. Right, decoding accuracies for different epoch lengths (n = 3 

animals, matched population size = 90 cells).  

g, Confusion matrix for 20 s epochs from example animal. The matrix contains 228 epochs (each 

trial period truncated to 240 s and divided into twelve 20s epochs, each intertrial period of 140 s 

divided into seven 20s epochs, nineteen epochs per trial/intertrial pair, twelve total pairs across 

the session, giving 228 epochs). Left, confusion matrix for the entire session. Right, sum across 

trial/intertrial sections of the whole session matrix (outlined by dotted line in whole session 

matrix).  

Circles indicate individual animals, solid lines indicate mean decoding accuracies ± s.e.m., 

dashed lines indicate chance.  

 

 

 

 



Figure 4 

Temporal information arises inherently 

a, Continuous alternation task, where animals alternated between left- and right-turns when it 

reached the top of the central stem for 40 total trials. Black circle indicates base of central stem.  

b, Left: 2D projection of LEC neural population response during figure-eight experiment from 

example animal. Right: 2D projection of LEC neural population response during matched 

periods from BW experiments.  

c, Left, decoding accuracy for trial identity during figure-eight experiment compared to decoding 

accuracy for temporal epoch using matched data from BW experiments (unpaired t-test, t(8) = 

8.35, P < 0.0001, matched population size = 31 cells, n = 3, 7 animals for figure-eight and BW 

respectively). Circles indicate individual animals, solid lines indicate mean decoding accuracies 

± s.e.m, dashed lines indicate chance. Right, confusion matrix for figure-eight experiment from 

example animal.  

 

Figure 5 

Temporal coding depends on behavioral context 

a, Proportion of cells exhibiting selectivity for session time, trial time, and trial type for figure-

eight (light blue), BW12 (purple), and object experiments (magenta). Session/mixed session 

time: figure-eight vs. BW12, t(4) = 4.35, P < 0.05, figure-eight vs. object, t(4) = 10.10, P < 0.01; 

Trial/mixed trial time: figure-eight vs. BW12, t(4) = 6.70, P < 0.01, figure-eight vs. object, t(4) = 

7.28, P < 0.01; Trial type: figure-eight vs. BW12, t(4) = 5.56, P < 0.01, figure-eight vs. object, 

t(4) = 4.45, P < 0.05; unpaired t-test with Bonferroni correction, n = 3 animals for all.  

b, 2D projection of neural trajectories for LEC data during figure-eight experiment from example 

animal. Axes correspond to the first two principal components (PC1, PC2; arbitrary units).  

c, Decoding accuracy for trial time compared to matched BW data (unpaired t-test, t(8) = 38.98, 

P < 10-10, matched population size = 31 cells, n = 3, 7 animals for figure-eight, BW 

respectively).  

d, Decoding accuracy for trial time using subpopulations with all spatially-selective cells 

removed, compared to randomly drawn size-matched controls (paired t-test, t(2) = 2.17, P = 

0.16, n = 3 animals with 38, 44, 22 cells not selective for space). 



e, Decoding accuracy for trial type compared to decoding accuracy for wall color using matched 

BW data (unpaired t-test, t(8) = 2.74, P < 0.05, matched population size = 31 cells, n = 3, 7 

animals for figure-eight, BW respectively). 

f, Decoding accuracy for trial type (left) or trial time (right), with cells selective for decoded 

variable removed, compared to randomly drawn size-matched controls (paired t-test, trial type: 

t(2) = 4.83, P < 0.05; trial type: t(2) = 4.40, P < 0.05; n = 3 animals with 29, 31, 15 cells not 

selective for trial type, 27, 29, 8 cells not selective for trial time). 

Circles indicate individual animals, solid lines indicate mean ± s.e.m. of described measurement, 

dashed lines indicate chance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Methods summary  

Methods, along with any additional Extended Data display items, are available in the online 

version of the paper; references unique to this section appear only in the online paper. 

Subjects 

Experiments were carried out using twenty-one male Long Evans rats at NTNU and two male 

Long-Evans rats at Johns Hopkins University. Animals were housed individually in Plexiglas 

cages. Ten rats had tetrodes in LEC, two rats had tetrodes in LEC and CA3, two rats had tetrodes 

in MEC, and nine rats had tetrodes in either CA3, CA2, or CA1. Data from seven of the LEC 

animals and the nine animals with tetrodes solely in hippocampus have been published 

previously, but examined activity of individual cells rather than the overall population46,47. 

Animals were maintained on a 12-h light/12-h dark schedule, and kept at 85-90% of free-feeding 

body weight. Experiments were performed in accordance with the Norwegian Animal Welfare 

Act and the European Convention for the Protection of Vertebrate Animals used for 

Experimental and Other Scientific Purposes, or the Institutional Animal Care and Use 

Committee at Johns Hopkins University. The study contained no randomization to experimental 

treatments and no blinding. Sample size (number of animals) was set based on conventions in the 

field.  

 

Surgery and electrode preparation 

Rats were anesthetized with isoflurane (air flow: 1.0 L/min, 0.5-3% isoflurane, adjusted 

according to physiological monitoring). For LEC recordings, either one microdrive with four 

tetrodes (10 rats) or one hyperdrive with 18 tetrodes was targeted to LEC (2 rats). Coordinates 

for microdrive LEC animals were: AP: 0-0.2 mm anterior to lambda, ML: 5.3-5.5 mm lateral to 

midline, DV: 4.3-5.0 mm below dura, 4-8 degree angle in the coronal plane, with electrode tips 

pointing away from midline. Coordinates for hyperdrive LEC animals were: AP: 7.5-7.6 mm 

posterior to bregma, ML: 3.0 mm lateral to midline, DV: at brain surface, 25-degree angle in the 

coronal plane, with electrode tips pointing away from midline. For MEC recordings, one 

microdrive was targeted to MEC with coordinates: AP: 0.2-0.4 mm anterior to the transverse 

sinus, ML: 4.6 mm lateral to midline, DV: 1.8 mm below dura, 20-degree angle in the sagittal 

plane, with electrode tips pointing towards bregma. For hippocampal recordings, either one 

microdrive was targeted to CA3, with coordinates: AP: 3.8 mm posterior to bregma, 3.0 mm 



lateral to midline, DV: 1.5 mm below dura (3 rats), or one hyperdrive was placed over 

hippocampus with coordinates: AP: 2.5-4.3 mm posterior to bregma, ML: 2.2-3.8 mm lateral to 

midline (9 rats). Drives were fixed to the skull using jeweller’s screws and dental cement. One 

screw served as a ground for each drive. Tetrodes were made from four twisted 17 µm 

polyimide-coated platinum-iridium (90%-10%) wires (California Fine Wire, CA). Electrode tips 

were plated with platinum to reduce electrode impedances to between 150-300 kΩ at 1 kHz. 

 

Recording procedures 

Microdrives were connected to a multi-channel unity gain headstage, which was connected via a 

cable to a Neuralynx recording system for BW12 and circular-track experiments, or an Axona 

recording system for object and figure-eight experiments (Axona Ltd., Hertfordshire, U.K.). Unit 

activity was amplified by a factor of 1000-10000 and band-pass filtered from 600 to 6000 Hz for 

Neuralynx recordings or from 800 to 6700 Hz for Axona recordings. Spike waveforms above a 

set threshold were time-stamped and digitized at 32 kHz for 1 ms for all recordings. Tetrodes 

were lowered in 50 µm steps while the rat rested on a towel in a flower pot on a pedestal. 

Turning stopped when well-separated units appeared. Data collection started when signal 

amplitudes exceeded approximately 5 times the noise level (root mean square 20-50 µV) and 

units were stable for >3 hours. Animal position was tracked at 25-30 Hz for Neuralynx 

recordings or 50 Hz for Axona recordings using an overhead video camera and either two (for 

microdrive animals) or multiple (for hyperdrive animals) LEDs attached to the headstage.  

 

Behavioral procedures 

For BW12, BW4, and object experiments, animals were trained to collect randomly scattered 

chocolate cereal crumbs in a square box. For BW12 experiments, animals ran in an 80 cm × 80 

cm × 50 cm box with interchangeable walls, a single cue card along one wall, and curtains on 

two sides of the box. For BW4 experiments, the box was 100 cm × 100 cm. For object 

experiments, the box was 100 cm × 100 cm, the walls were black with a single cue card, and no 

curtains were present, such that there were many distal cues. Once animals were able to achieve 

good coverage of the recording environment, they began running standard sessions of 12 trials 

for BW12 experiments or 4 trials for BW4 experiments, during which wall color was changed 

across trials. For object experiments, animals ran 3 trials, during which an object consisting of a 



6 cm × 6 cm × 37 cm tower made of Legos was placed in a fixed location during the second 

trial59.  

 

For circular track experiments, animals were trained to run back and forth between food wells for 

food pellets (BioServ, NJ) on a circular track (diameter 97 cm, width 10 cm). The food wells 

were separated by a 15 cm-tall black barrier with 0.4 cm sidewalls. For figure-eight experiments, 

animals were trained to run in a figure-eight pattern on a square figure-eight maze made of 

plexiglass with vinyl flooring which had runways 15 cm wide with 2 cm high side walls, a 

central stem that was 150 cm long, and total dimensions of 150 cm × 150 cm. Rewards were 

placed in dishes at the end of each goal arm. The maze was elevated 50 cm above the ground, 

surrounded by black curtains with a cue card 100 cm × 25 cm on the left side of the maze. 

Animals were trained in three stages48. In the first stage, wood-block barriers were placed at the 

bottom and top of the central stem so that rats could only run a fixed path. The position of the 

barriers was alternated on each trial once the rat reached the reward zone, and animals remained 

at this stage until they ran >20 trials within a 20-minute session. In the second stage, the barrier 

at the top of the central stem was phased out so that animals could enter either reward arm. Only 

correct alternating choices were rewarded, and animals were blocked from backtracking to 

explore the stem or other reward arm once a choice was made. In the third and final stage, the 

barrier at the bottom of the central stem was phased out, and animals had to continue to run in a 

figure-eight pattern, with backtracking blocked by a barrier. After reaching the third stage, 

animals ran 20-minute sessions, averaging ≥50 trials per session with >95% correct choices.  

 

Spike sorting and cell classification 

Spike sorting was performed offline using graphical cluster-cutting software to examine two-

dimensional projections of the multidimensional parameter space (Tint [Neil Burgess] for Axona 

data; MClust [A.D. Redish] or custom-written spike-sorting software for Neuralynx data). Spike 

clusters were compared across successive days to ensure that the same cell was not counted 

twice. 

 

Cell stability across BW12 experimental sessions was determined by checking for stationarity of 

spike waveforms. For each cell, the Euclidean distance between spike waveforms across the 



recording session and the average waveform of the first ten spikes was measured. For each spike, 

the four spike waveforms were compressed into a single point in a 128-dimensional space (4 

waveforms, each with 32 values), and Euclidean distance was measured in this 128-dimensional 

space.  Subsequently, the stationarity of this distance was determined using three tests: 

augmented Dickey-Fuller test, the Kwiatkowski-Phillips-Schmidt-Shin test, and the Ljung-Box 

test, with stable cells being those which were categorized as stationary across all three tests. 

Following this stability test, stability was additionally assessed by calculating the Pearson 

correlation between the measured Euclidean distances across the recording session and firing rate 

across the recording session. Cells were excluded from further analysis if their correlation values 

exceeded chance levels. Chance levels were estimated individually for each cell by temporally 

shuffling the firing rate for a given cell and calculating the correlation between the cell’s 

waveform distance and the shuffled firing rates, repeating this process 1000 times, and taking the 

95th percentile as the threshold. Firing rate was estimated for 500 ms bins, with no smoothing or 

additional preprocessing. 

 

GLM fitting 

A Poisson generalized linear model was fit to each cell individually using the MATLAB 

stepwiseglm function. The variables used to fit the model for BW12 data were wall color, 

position, trial time, and session time. A single predictor was used for each variable. Session time 

was the total elapsed time, and took into account intertrial periods. Adjusted R2 was used as the 

criterion for adding or removing terms (0.01 for adding, 0.005 for removing). Firing rate was 

estimated for 500 ms bins, with no smoothing or additional preprocessing. The same process was 

used for object and figure-eight data, excluding position as a variable.  

 

Estimating time constants 

For cells that were classified as selective for trial or session time, a single-term exponential 

model was fit to each cell's firing rate 𝑓 𝑎𝑒  where f is the firing rate of the cell, a and b are 

constant coefficients, and b is the cell's time constant. For cells selective for session time, the 

firing rate across all trial periods was used. For cells selective for trial time, the average firing 

rate across trials was used. 

 



Dimension-reduced visualization of data 

2D projections of population activity states were constructed by reducing the dimensionality of 

raw neural data using PCA, followed by applying LDA to the dimension-reduced data and taking 

the top two linear discriminants. Dimension reduction for visualization was carried out 

separately for ‘Whole session’ and ‘Trial periods only’ plots. For neural trajectories, PCA was 

applied to spiketrains which were first smoothed using a Gaussian kernel 500 ms wide. The top 

two PCs were taken for 2D projections. In both cases, neural data were from single animals but 

pooled across recording days. Bin size was 500 ms for both projections of population activity 

states and neural trajectories.  

 

Decoding analysis 

Decoding was done with linear SVM classifiers implemented using the LIBLINEAR package49, 

specifically using L2-regularized L2-loss SVC, 10-fold cross-validation, and cost parameter C = 

1. Data consisted of raw spike counts from individual animals, pooled across recording days, and 

binned in 10 s bins, except for results varying epoch length, circular track, and figure-eight 

experiments. For shortened epochs, bin size was 1 s for 20s-long epochs, 500 ms for 10s-long 

epochs, and 50 ms for 1s-long epochs. For circular track and figure-eight results, bin size was 

500 ms. Multiclass decoding was done using the one-versus-all method. The cost parameter was 

varied between 10-3 and 103 with no significant effect. 10-fold cross-validation was implemented 

by splitting the data into 10 subsamples, each randomly drawn from across the entire session. 

Decoders were then trained on 9 of the subsamples, and tested on the remaining subsample, with 

this process repeated using all 10 subsamples were used as test data once (Extended Data Fig. 

4d). Bin-size was sufficiently shorter than epoch length to ensure that training data covered all 

temporal epochs. Decoding accuracy was taken as the average accuracy across all 10 trained 

decoders. Cross-validation was repeated 1000 times with overall decoding accuracy taken as the 

mean across the 1000 repetitions, except for when population subsampling occurred, in which 

case 1000 different subsamples were taken, each with 10 repetitions of cross-validation. For 

comparing decoding accuracies across areas, size-matched populations were used. Size-matched 

populations were generated by subsampling the total population of cells for a given animal 

without replacement. For each animal, subsampling was repeated 1000 times, and the mean was 

taken as the decoding accuracy for that animal. For decoding analyses in which GLM-classified 



cells were removed, the size-matched populations for comparison were randomly drawn from the 

full population of cells recorded for each individual animal without replacement.  

 

For figure-eight and circular track experiments, matched BW data consisted of 6s long epochs 

with 500 ms bins and an intertrial interval of 22 seconds. Because inclusion of a matched 

intertrial interval caused matched data to exceed the length of a single BW trial, matched data 

spanned across 3 trials of BW data. Wall color in matched BW data corresponded to trial type for 

figure-eight data (black walls/left trial, white walls/right trial), and running direction for circular 

track data (black walls/clockwise, white walls/counterclockwise). Twenty epochs were used for 

figure-eight data to match the twenty trials from the experiment, with population size set to 31 

cells. Fifteen epochs were used for circular track data to with population size set to 47 cells. 

Figure-eight and circular track data were also compared against matched BW data which did not 

account for the intertrial period. In this case, matched data was generated by taking activity from 

the first trial only of each session, with matched bin size and population size (twenty epochs, 

each 6 s long, made up of twelve 500 ms bins, in total spanning the first 120 s of the first trial, 

with population size set to 31 cells for figure-eight data; fifteen epochs, each 6 s long, made up 

of twelve 500 ms bins, in total spanning the first 90 seconds of the first trial, with population size 

set to 47 cells for circular track data).  

 

Determining statistical significance for decoding accuracies 

Statistical significance for decoding accuracy was determined by comparing mean decoding 

accuracy from the original data against mean decoding accuracy from temporally shuffled data. 

Shuffled comparisons were generated by first temporally shuffling population activity such that 

the shuffled order was the same for each cell within the population. Decoding accuracy was then 

determined using the original labels for time bins and 10-fold cross-validation. This process was 

repeated 1000 times to generate shuffled comparisons for full-population decoding accuracies, 

and 1000 times for each subsampled population of cells to generate shuffled comparisons for 

size-matched decoding accuracies. All decoding accuracies were significantly above chance, 

with the least significant decoding accuracy having P < 10-5.  

 

 



Estimates of distance between high-dimensional population states 

For within-trial or intertrial period distances, distance between the population state in the first 

time bin and population states in all subsequent time bins within a trial or intertrial period was 

measured. Population states were defined by the firing rates of cells from individual animals, 

pooled across recording days, for 10 s time bins. Firing rates were not smoothed. This process 

was repeated twelve times, once for each trial or intertrial period, and then the average was taken 

as the final result. For across-trial or intertrial period distances, population states were defined in 

the same way, but then the average population state for each trial or intertrial period was 

calculated. Distance was then measured from the average state of the first trial or intertrial to all 

the average states of all subsequent trials or intertrials. Because the data were high-dimensional, 

Manhattan distance was used instead of Euclidean distance50.  To account for differences in 

dimensionality across animals and facilitate comparison, distance measures were z-scored.  

 

Classifying spatial cell types and measuring spatial tuning 

Spatial rate maps were generated by binning activity into 3 cm × 3 cm spatial bins, calculating 

firing rates for each spatial bin, and then applying a two-dimensional Gaussian kernel with 

standard deviation of 7 cm in both directions. Only spikes recorded during running speeds above 

2.5 cm s-1 were used. Place cells were classified by comparing spatial information scores against 

a shuffled distribution51. Grid cells were classified by comparing autocorrelogram-based gridness 

scores against a shuffled distribution51. Speed cells were classified by comparing Pearson 

correlation values against a shuffled distribution52. Velocity, acceleration, and head direction 

were calculated using methods published previously52. Spatial selectivity for LEC cells was 

determined by measuring spatial information53 for each cell and comparing against a distribution 

generated by calculating spatial information for data shuffled temporally using wrap-around 

shuffling.  

 

Code and data availability 

Custom code used and datasets generated and/or analysed during the current study are available 

from the corresponding author upon request.  
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Extended Data Figure 1 

Histology for LEC animals 

Nissl-stained coronal sections showing recording locations for LEC animals used in BW12 

experiments (a), BW4 and figure-eight experiments (b), circular track experiments (c), and 

object experiments (d). Red arrows indicate tetrode locations. Activity was recorded from 

neurons in all layers of the lateral half of LEC, across all layers. Dashed lines indicate 

approximate anatomical borders of LEC.  

 

Extended Data Figure 2 

Single-cell responses in LEC related to time 

a, Schematic of the GLM used for determining cell selectivity. Learned weights for the relevant 

predictors, as determined by the stepwise selection process, were put through an exponential 

nonlinearity that returned the mean rate of a Poisson process from which spikes were drawn 

(14.0% selective for session time, 3.8% selective for trial time, 2.7% selective for a mixture of 

trial and session time, percentages averaged across all animals).  

b, Explained variance for all LEC cells fit by the GLM for BW12 experiment (n = 186 cells). 

Average explained variance was 0.05. 

c, Distribution of time constants for trial- or session-time selective cells (n = 80 cells). Time 

constants were estimated for each cell classified as trial- or session-time selective by fitting a 

single-term exponential.  

d, Left, five additional example cells exhibiting ramping activity across the session. Each cell’s 

firing rate is shown in grey, with the model-predicted firing rate in blue. R2 value is shown in 

upper right corner for each cell. Right, average waveforms across four recording channels for the 

first quarter of the session (green line) and the last quarter of the session (black line).  

e, Pearson correlation between waveform distances (Euclidean distance between pairs of 

consecutive spike waveforms) and firing rate for all LEC cells used in the BW12 experiment (n = 

451 cells).  

f, Comparison of the correlation between waveform distance and firing rate, as in j, for time-

selective LEC cells (n = 92 cells) and all other LEC cells used in the BW12 experiment (n = 359 

cells).  



g, Six example cells demonstrating that significant fluctuations in firing rate can occur during 

stable recordings. For each cell, left top row shows activity during trial periods, left bottom row 

shows activity during intertrial periods, and right shows average waveforms as in d.  

 

Extended Data Figure 3 

Time cell-like activity 

a-h, Temporal specificity examined as a function of peak firing times of individual cells.   

a, b, Mean activity for trial (a) and intertrial (b) periods, ordered by time of peak firing rate from 

example animals. Rows show mean firing rates for individual cells. Actual data shown in left 

column and shuffled data shown in right column. Shuffling was performed by time-shifting each 

cell's firing rate by a random amount with the end of the trial wrapped around to the beginning. 

Cell identities were not maintained across actual and shuffled data.  

c, Fraction of cells with temporally significant activity for trial (top) and intertrial (bottom) 

periods (n = 3, 3, 2 animals for LEC, CA3, and MEC respectively).  

d, Time of peak activity for cells with temporally-significant activity.  

e, Same as d, but for intertrial periods. 

f-h, Temporal specificity examined by calculating temporal information. 

f, Fraction of cells with significant temporal information for trial (top) and intertrial (bottom) 

periods (n = 3, 3, 2 animals for LEC, CA3, and MEC respectively).  

g, Distribution of significant temporal information scores for trial periods. 

h, Same as g, but for intertrial periods. 

i, Predictors added for expanded GLM: symmetrical ramps and single-trial ramps. Both 

predictors would reveal cells with increased activity within a specific range of time, whereas the 

trial and session ramping variables of the original GLM would identify cells whose activity was 

continuously changing across the session. This type of activity would be more similar to time 

cells, which fire at specific points in time, albeit at a much shorter timescale. Both predictors 

were synchronized to the start of trials, while the symmetrical ramps spanned a range of slopes, 

dependent on which trial was being synched to. Colored lines highlight the predictors for the 

respective trial indicated on top, gray lines are the rest of the available predictors.  

j, Explained variance for all LEC cells fit by expanded GLM for BW12 experiment (n = 350 

cells). Average explained variance was 0.03.  



k, Distribution of selectivity for time, wall color, and position for single LEC cells, determined 

using the expanded GLM (n = 3 animals). Shade indicates individual animals.  

l, Examples of expanded GLM fit results for four cells with selectivity for different features. 

Each cell’s firing rate is shown in grey, with the model-predicted firing rate in blue. R2 value is 

shown in upper right corner for each cell. Average waveforms shown on right, as in d.  

Circles indicate individual animals, solid lines indicate mean fraction of cells ± s.e.m. 

 

Extended Data Figure 4 

Decoding of temporal epochs 

a, 2D projections of neural population responses during BW12 experiment for trial periods only. 

Axes correspond to the first two linear discriminants (LD1, LD2, arbitrary units). Left column 

shows LEC population responses, middle column shows CA3 population responses, right 

column shows MEC population responses, each from an example animal. Each trial’s wall color 

is indicated by a shade of green (black walls) or purple (white walls), with progression of shade 

from dark to light indicating progression of trials.  

b, Fraction of variance explained by the first 20 principal components for each area. Principal 

components were computed using PCA on raw data. Lines indicate variance explained for 

individual animals (n = 3, 3, and 2 animals for LEC, CA3, and MEC respectively).  

c, Regressing the first two principal components from PCA results for individual animals against 

time leads to significant fits for all areas, but substantially higher explained variance for LEC 

(unpaired t-test, LEC vs. CA3: t(4) = 9.79, P < 0.001, LEC vs. MEC: t(3) = 6.13, P < 0.01). Top 

row, example fits for individual animals are shown with black lines indicating time and colored 

lines indicate regression fit, and R2 indicated for the example fit. Bottom two rows, first two PCs 

for example fits.  

d, Illustration of cross-validation procedure: 5-fold cross-validation is shown for data containing 

four temporal epochs, with five time bins in each epoch. A different subset of time bins is used 

as test data for each iteration of the cross-validation procedure. Actual data consisted of 24 

epochs (trial and intertrial periods) with 25 or 14 time bins in each epoch, and 10-fold cross-

validation was used.  

e, Z-scored decoding accuracy using cells recorded in a single day (left, one-sided binomial test, 

P = 0.68, n = 46 days), pairs of consecutive days (middle, one-sided binomial test, P = 0.29, n = 



72 pairs), pairs of days separated by half the total number of recording days (right, one-sided 

binomial test, P = 0.37, n = 44 pairs).  

f, Decoding accuracy for temporal epoch using behavior tracking data in place of neural activity 

(n = 3 animals). ‘All’ tracking data consisted of the animal’s position, velocity, acceleration, and 

head direction.  

g, Left, decoding accuracy for temporal epoch using BW4 data, compared to decoding accuracy 

using BW12 data (unpaired t-test, t(5) = 1.09, P = 0.32, matched population size = 47 cells, n = 

4, 3 animals for BW4 and BW12 respectively). Right, decoding accuracy for wall color from the 

BW4 experiment, compared to decoding accuracy using matched data from BW12 experiment 

(unpaired t-test, t(5) = 1.03, P = 0.35, matched population size = 47 cells, n = 4, 3 animals for 

BW4 and BW12 respectively,).  

h, Decoding accuracy for temporal epoch using BW4 data from LEC, MEC, CA3, CA2, and 

CA1 (one-way ANOVA, F(4) = 20.78, P < 1×10-5, post-hoc Bonferroni multiple comparisons 

test, P < 0.005 for all LEC comparisons, matched population size = 24 cells, n = 7, 2, 7, 3, 3 

animals for LEC, MEC, CA3, CA2, and CA1 respectively).  

i, Relation between population size and decoding accuracy for LEC, CA3, and MEC. Left, 

decoding accuracy for varying population sizes; each line indicates the curve fit to data (shown 

as points) from one animal, with colors indicating recording area (n = 3, 3, 2 animals for LEC, 

CA3, MEC respectively). Right, relation between population size and decoding accuracy for 

LEC and CA3, pooled across animals from BW12 and BW4 experiments (data pooled from n = 

7 animals for both LEC and CA3).  

j, Decoding accuracy for wall color from trial period activity alone for LEC, CA3, and MEC 

(unpaired t-test, LEC vs. CA3: t(4) = 0.81, P = 0.47, matched population size = 28 cells, n = 3, 3, 

2 animals for LEC, CA3, and MEC respectively).  

k, Decoding accuracy for wall color using data which was shuffled in time (two-tailed paired t-

test, t(2) = 0.38, P = 0.74, n = 3 animals). 

l, Decoding accuracy for wall color using a subpopulation with all time-selective cells removed, 

compared to size-matched populations which were randomly drawn from full population (paired 

t-test, t(2) = 2.66, P = 0.12, n = 3 animals with 77, 126, 195 cells not selective for wall-color). 

For f, g, j-l, circles indicate individual animals, solid lines indicate mean decoding accuracy ± 

s.e.m., dashed lines indicate chance. 



Extended Data Figure 5 

Evolution of LEC population dynamics 

Structure and evolution of LEC (purple, n = 3 animals), CA3 (blue, n = 3 animals), or MEC 

(gold, n = 2 animals) activity, quantified by applying several distance measures to population 

activity states, see Supplementary Text.  

a, Manhattan distance between the population state for the middle time bin of a trial or intertrial 

period and all other time bins within that period.  

b, Manhattan distance between the population state for the last time bin of the preceding 

trial/intertrial period and all time bins within the current intertrial/trial period, z-scored.  

c, Left, Manhattan distance between the population state for the first time bin of a trial or 

intertrial period and all subsequent time bins within that period. Right, fitting distance using an 

autoregressive model. Red line indicates model fit.  

d, Manhattan distance between consecutive pairs of population states across trial or intertrial 

periods.  

e, Pairwise angles, measured across consecutive points in time along neural trajectories during 

trial or intertrial periods as the angle between two vectors, each defined as the difference of 

consecutive population states.  

f, Manhattan distance between the overall mean population state for the first trial or intertrial 

period and the overall mean population states of all subsequent trial or intertrial periods.  

Solid lines indicate mean distance across all animals, shaded area indicates s.e.m., distance 

measures were all z-scored.  

 

Extended Data Figure 6 

Decoding shortened temporal epochs 

a, Decoding accuracies for different temporal epoch lengths across LEC, MEC, CA3, CA2, and 

CA1 using BW4 data (matched population size = 24 cells, n = 7, 2, 7, 3, 3 animals for LEC, 

MEC, CA3, CA2, and CA1 respectively). Decoding accuracy for 20s epochs using LEC data was 

significantly better than all hippocampal areas (one-way ANOVA, F(17) = 20.69, P < 1×10-5, 

post-hoc Bonferroni multiple comparisons test, LEC vs. MEC: P < 0.05; LEC vs. 

CA3/CA2/CA1: P < 0.001; matched population size = 24 cells). Decoding accuracy was higher 

for LEC and MEC than CA3 for 10s epochs (one-way ANOVA, F(17) = 8.00, P < 0.001; post-



hoc Bonferroni multiple comparisons test, LEC vs. CA3: P < 0.001, all other comparisons were 

not significant; matched population size = 24 cells). Decoding accuracy was similar across all 

areas for 1s epochs (one-way ANOVA, F(17) = 2.95, P = 0.05).  

b, Confusion matrix from an example LEC animal for 10 s epochs. The matrix contains 468 

epochs (each trial period of 250 s divided into twenty-five 10 s epochs, each intertrial period of 

140 s divided into fourteen 10 s epochs, thirty-nine epochs per trial/intertrial pair, 12 total pairs 

across the session, giving 468 epochs. Left shows confusion matrix for the entire session, right 

shows sum across trial/intertrial sections of the whole session matrix (outlined by dotted line in 

whole session matrix).  

c, Decoding accuracy for re-binned confusion matrices (circles and solid lines with black 

indicating mean and shade indicating individual animals, comparing across epoch-lengths: one-

way ANOVA, F(3) = 32.28, P < 1×10-4, P = 0.12 for trial vs. 20s, P < 0.001 for trial vs. 10s and 

trial vs. 1s) compared to decoding accuracy for re-binned confusion matrices following shuffling 

along columns, with diagonals preserved (triangles and dashed lines, with black indicating mean 

and shade indicating individual animals, comparing decoding accuracies from shuffled and 

unshuffled confusion matrices: two sided paired t-tests, for 20s: t(2) = 7.42, P < 0.05; for 10s: 

t(2) = 14.31, P < 0.01; for 1s: t(2) = 4.46, P < 0.05;). Gray dashed line indicates chance at 4.2%, 

shade indicates individual animals.  

d, Decoding accuracy for different temporal epoch lengths for LEC (matched population size = 

90 cells, n = 3 animals), based only on activity within individual trial or intertrial periods (top 

and bottom, respectively). Decoding accuracy was measured for each trial or intertrial period 

individually, and then the average was taken across all trials or intertrial periods, respectively, 

for each animal. Temporal bin size was: 1 s for 20s-long epochs, 500 ms for 10s-long epochs, 

and 50 ms for 1s-long epochs. Chance levels for trial periods were 8.3%, 4.0%, and 0.4%, and 

14.3%, 7.1%, and 0.7% for intertrial periods.  

e, Confusion matrices from an example LEC animal for single-trial or intertrial periods as in c, 

using 20 s (top) and 10 s (bottom) epochs, with intertrial results on left and trial results on right.  

For a, d, circles indicate individual animals, solid lines indicate mean decoding accuracies ± 

s.e.m., dashed lines indicate chance. 

 

 



Extended Data Figure 7 

Temporal coding within a fixed environmental context 

a, Experimental paradigm:10 minutes without object, 10 minutes with object, and 10 minutes 

without object. Right:  

b, Predictors used for object GLM: object presence, trial time, and session time (24.0% selective 

for session time, 4.8% selective for trial time, 4.3% selective for a mixture of trial time and 

session time, percentages averaged across all animals). 

c, Explained variance for all LEC cells fit by GLM for object experiments (n = 150 cells). 

Average explained variance was 0.05. 

d, Distribution of selectivity for time, object, and mixtures of time and object for single LEC 

cells, determined using a GLM (n = 3 animals with 56, 57, 150 cells). Shade indicate individual 

animals 

e, Examples of GLM fit results for twelve cells from the object experiment with selectivity for 

different features. Each cell’s firing rate is shown in grey, with the model-predicted firing rate in 

blue. R2 value is shown in upper right corner for each cell.  

f, 2D projection of LEC neural population response during object experiment from example 

animal.  

g, Decoding accuracy for trial identity or object presence (n = 3 animals). 

h, Decoding accuracies for temporal epochs of shortened length (n = 3 animals, matched 

population size = 56 cells). 

i, Decoding accuracy for trial identity (left) or object presence (right), with cells selective for 

decoded variable removed, compared to size-matched populations randomly drawn from full 

population (paired t-test, trial identity: t(2) = 4.95, P < 0.05, n = 29, 26, 79 cells not selective for 

time; object presence: t(2) = 7.17, P < 0.05, n = 39, 47, 110 cells not selective for object 

presence). 

Circles indicate individual animals, solid lines indicate mean ± s.e.m. of described measurement, 

dashed lines indicate chance. 

 

 

 

 



Extended Data Figure 8 

Explicit vs. inherent mechanisms for temporal coding 

a, Top: a series of experiences occurs, each containing different event content and spanning 

different amounts of time. Bottom: two different ways in which temporal information within this 

series of experiences may be encoded. For both cases, a population code is used, but this may 

just as easily be replaced by a rate code within single cells. An explicit mechanism (left) 

purposely represents the passage of time, such that each chunk of time is represented equally. 

Thus, two experiences with the same temporal length but differing numbers of events would 

correspond to the same change in activity. An inherent mechanism (right) encodes temporal 

information entirely by representing the events within each experience. Thus, two experiences 

with the same temporal length but differing numbers of events would correspond to differing 

changes in activity. In either case, the high dimensionality of the representations would allow 

temporal information to be read out easily by downstream readout neurons, e.g. cells in the 

hippocampus.  

b, Same as in a, but in this example, instead of a series of different experiences, the same 

experience is repeated three times (analogous to performing a learned task three times). Here, an 

explicit mechanism for temporal coding would exhibit the same amount of change in activity as 

in a, whereas an inherent mechanism would exhibit significantly reduced differences in activity 

across the experiences.  

 

Extended Data Figure 9 

Decoding trial identity with additional matched data  

a, Euclidean distance between mean LEC population states for pairs of adjacent trials with 

different or same wall color (unpaired t-test, t(31) = 8.81, P < 10-10; n = 12, 21 same color and 

different color transitions respectively, pooled from three animals).  

b, Decoding accuracy for trial identity during figure-eight experiment, compared to decoding 

accuracy for temporal epoch using matched data from BW experiment which did not account for 

intertrial intervals or trial type (unpaired t-test, t(8) = 4.91, P < 0.01, matched population size = 

31 cells, n = 3, 7 animals for figure-eight and BW respectively).  

c, Circular-track task, where animals alternated between clockwise and counter-clockwise runs 

for 15 consecutive back and forth laps. Black circle indicates midpoint of the track.  



d, Left: 2D projection of LEC neural population response during circular track experiment from 

example animal. Right: 2D projection of LEC neural population response during matched 

periods from BW experiments.  

e, Left, decoding accuracy for trial identity during circular track experiment compared to 

decoding accuracy for temporal epoch using matched data from BW experiments (unpaired t-

test, t(7) = 6.21, P < 0.0001, matched population size = 47 cells, n = 2, 7 animals for circular 

track and BW respectively). Right, same as left, but using temporally consecutive data which did 

not account for intertrial intervals or running direction (unpaired t-test, t(7) = 3.17, P < 0.05, 

matched population size = 47 cells, n = 2, 7 animals for circular track and BW respectively).  

f, Confusion matrix for decoding trial identity in the circular track experiment from example 

animal.  

Circles indicate individual animals, solid lines indicate mean ± s.e.m. of described measurement, 

dashed lines indicate chance. 

 

Extended Data Figure 10 

Additional characterization of LEC activity during figure-eight task 

a, Manhattan distance between consecutive pairs of population states (binned in 500 ms time 

bins) across single trials, averaged across all animals.  

b, Predictors used for figure-eight GLM: trial type, trial time, and session time (1.3% selective 

for session time , 9.3% selective for trial time, 6.5% selective for a mixture of trial time and 

session time, percentages averaged across all animals). 

c, Explained variance for all LEC cells fit by GLM for figure-eight experiment (n = 149 cells). 

Average explained variance was 0.10. 

d, Distribution of selectivity for time, trial type, and a mixture of time and trial type for single 

LEC cells, determined using a GLM (n = 3 animals with 72, 76, 31 cells). Circles indicate 

individual animals, solid lines indicate mean fraction of cells ± s.e.m., shade indicates individual 

animals.  

e, Examples of GLM fit results for six cells from the figure-eight experiment with selectivity for 

different features. Each cell’s firing rate is shown in grey, with the model-predicted firing rate in 

blue. R2 value is shown in upper right corner for each cell. 



f, LEC activity for twelve example cells during the figure-eight task. Each plot shows mean 

firing rate (top, 95% percentile confidence interval shaded), and peristimulus time histograms for 

left- (middle) and right-turn trials (bottom), with time centered on the point at which the animal 

reaches the base of the central stem on each trial. Cells 7-12 exhibited similar firing patterns for 

both left- and right-turn trials, including during the first three seconds of the trial, in which the 

animal occupied a different spatial location for left- versus right-turn trials. Such activity may be 

used for temporal information. Cells 13-18 exhibited highly divergent firing patterns for left- and 

right-turn trials, which may reflect the animal’s spatial location, the behavioral context of the 

trial, or a combination of the two variables. All example cells exhibited relatively stable firing 

across trials, a common feature observed during the figure-eight task.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental materials and methods 

1. Single cell activity in LEC related to time 

Mixed selectivity incorporating time 

For the BW12 experiment, the GLM analysis showed that a fraction of cells in all three recorded 

brain areas exhibited selectivity for a mixture of time and non-time variables (8.4% for LEC, 

7.3% for CA3, and 4.7% for MEC, percentages averaged across all animals; Fig. 1c). We 

employed a stepwise model-fitting procedure, where the first variable to be added to the model is 

the one explaining the most response variance. In LEC, 15/40 of time/non-time mixed selective 

cells were selective first for time, while 2/11 of CA3 time/non-time mixed selective cells were 

selective first for time and 0/5 of MEC time/non-time mixed selective cells were selective first 

for time. For CA3 cells exhibiting mixed selectivity, 9/11 satisfied criteria for place cells, while 

for MEC cells exhibiting mixed selectivity, 2/5 were tuned for a spatial feature (1 speed cell and 

1 grid cell). Thus, cells exhibiting mixed selectivity in LEC, CA3, and MEC had differing 

primary selectivities, with almost half of LEC cells being primarily selective for time. In total, 

the selectivity of LEC single-cell responses reflected the significant influence of time on LEC 

activity, in contrast to CA3 and MEC.  

 

LEC single-cell time constants 

The distribution of time constants for ramping cells spanned a broad range of time, from a few 

minutes to hundreds of minutes, and although a greater number of cells had negative time 

constants, the distribution was not significantly biased (52/80 LEC cells had negative time 

constants; one-sample t-test, P = 0.46; Extended Data Fig. 2c). There was not any apparent 

anatomical organization to the distribution of time constants between deep and superficial layers 

of LEC, as the absolute value of time constants in deep layers was not different than for 

superficial layers (mean for superficial layers: 48.9 min, mean for deep layers: 41.3; unpaired t-

test, P = 0.80) and the distribution of time constants between deep and superficial layers was not 

different for trial-selective (short time constant) versus session-selective (long time constant) 

cells (two-proportion z-test, P = 0.46). Up-ramping and down-ramping cells were observed 

simultaneously on seven out of the seventeen instances where more than one ramping cell was 

recorded in a single session. The presence of cells with positive time constants, over a wide 



range of timescales, suggests that the ramping activity we observe is not simply an effect of 

habituation54, and may be generated by intrinsic mechanisms55,56.  

 

Ramping activity is not due to recording instability 

One possible concern, given that the vast majority of time-selective cells encoded time across the 

entire session rather than across single trials, is that this apparent temporal coding merely reflects 

unstable recordings. This is unlikely, as only cells which passed spike waveform stationarity 

tests checking for stability across the entire recording session were included in analyses 

(Extended Data Fig. 2e, f, see Methods). Additionally, although cells firing during a few trials 

in the middle of a session may have reflected legitimate time-influenced activity, only cells 

which fired spikes in both the first and last trial or intertrial periods were included for analysis. 

Finally, for some cells showing significant changes in firing rate across trial periods (intertrial), 

activity during intertrial (trial) periods was relatively consistent across the session (Extended 

Data Fig. 2g), demonstrating that significant changes in activity across an experimental session 

were not simply an artifact of poor recording stability.  

 

Time cell-like activity 

In the hippocampus, time cells fire in relation to events15,16 (e.g. the start of a delay period). Do 

such cells exist also in LEC? In the context of the BW12 experiment, synchronizing events may 

be distributed across the entire session without appearing in any obvious way to an observer. If 

this is the case, because we have not recorded the same cells across days, we would not be able 

to distinguish time cell activity from activity due to random fluctuations of external stimuli. 

However, it is also possible that time cells in the BW12 experiment are synchronized to the 

structure of the task, e.g. the beginning of trial or intertrial periods. If this is the case, we would 

expect to see repeated activity at the same time relative to the start of a trial or intertrial period. 

We tested the latter possibility in our data.   

 

We began by ordering cells from individual animals by the latency of their peak firing rate and 

looking for sequential activity. Although a ridge of peak activity was present, consistent with 

sequential time cell-like activity, a similar ridge of peak activity was present for both actual and 

shuffled data across all areas, suggesting that time cell-like activity may not have been present in 



LEC during the BW12 experiment (Extended Data Fig. 3a, b). . The low ratio of peak-to-

background activity, in contrast to that of time cells which are mostly silent outside of their time 

field15,16, also suggested a lack of time cell-like activity. We quantified these observations by 

calculating a peak-to-background ratio. The peak was defined as the mean rate within a 10 s 

window centered on the time point of the cell’s peak firing rate, and the background was defined 

as the mean rate across the rest of the session. Significance was determined by comparing to a 

distribution generated by calculating peak-to-background ratios for temporally shuffled data 

(1000 shuffles per cell, shuffling was done as in a) and using the 95th percentile as a significance 

threshold. The number of cells in LEC with significant temporal information during trial periods 

was below that expected by chance (number of cells with significant temporal information 

during trial periods for LEC: 3.5%, 16/451; CA3: 2.0%, 3/148; MEC: 7.5%, 10/133; mean peak 

time during trial periods for LEC: 67.7 s; CA3: 3 s; MEC: 25.1 s; number of cells with 

significant temporal information during intertrial periods for LEC: 3.8%, 17/451; CA3: 2.7%, 

4/148; MEC: 7.5%, 10/133; mean peak time during intertrial periods for LEC: 58.9 s; CA3: 73.3 

s; MEC: 108.9 s, Extended Data Fig. 3c-e). A number of cells did have significant peak activity 

at the beginning of trial periods, which may reflect actual time cell-like coding, given that time 

cells have been observed to have more accurate timing closer to the start of their sequences16. 

However, we are unable to distinguish between this and the possibility that these cells are merely 

responding to the change in context from holding pot to recording box.  

 

In a separate quantification, we calculated a temporal information score for each cell, analogous 

to the commonly-used spatial information score53. For a given cell, temporal information was 

calculated as ∑𝑃 𝑙𝑜𝑔 , where i is the time bin number, Pi is the probability of 

occupancy for time bin i (5s time bins were used), Ri is the mean firing rate for bin i, and R is the 

overall mean firing rate, analogous to the commonly used spatial information score. Significance 

was determined by comparing to a distribution generated by calculating temporal information for 

temporally shuffled data (1000 shuffles per cell, data was first binned into 1s time bins, wrap-

around shuffling was performed individually on activity from each trial or intertrial prior to 

taking trial or intertrial averages, and temporal information were then calculated by binning the 

trial/intertrial-averaged shuffled data into 5s time bins). The 95th percentile of the shuffled 

distribution was taken as a significance threshold. The number of cells in LEC with significant 



temporal information during trial periods was barely above that expected by chance (number of 

cells with significant temporal information during trial periods for LEC: 5.5%, 25/451; CA3: 

4.7%, 7/148; MEC: 9.8%, 13/133; mean temporal information during trial periods for LEC: 1.11 

bits/s; CA3: 3.36 bits/s; MEC: 0.53 bits/s; number of cells with significant temporal information 

during intertrial periods for LEC: 7.3%, 33/451; CA3: 6.8%, 10/148; MEC: 11.3%, 15/133; 

mean temporal information during intertrial periods for LEC: 0.67 bits/s; CA3: 1.61 bits/s; MEC: 

0.47 bits/s, Extended Data Fig. 3f-h). 

 

In addition to looking for time cell-like activity specifically, we also ran an expanded GLM 

which included single-trial ramps and symmetrical ramps, which have been suggested as inputs 

to time cells31 (Extended Data Fig. 3i). Many cells were classified as exhibiting single-trial 

ramps, raising the possibility that ramping cells in LEC provide input to time cells (Extended 

Data Fig. 3i-l). Overall, the small number of temporally-selective cells detected by either 

method suggests a limited presence of time cell-like activity, with the exception of a few cells 

with activity locked to the start of trials. However, time cell-related activity may not necessarily 

be synchronized to the start of trials, and may instead by distributed across the entire 

experimental session, expressing time relative to any number of unaccounted-for events (e.g. 

random noises).  

 

2. Population activity in LEC related to time 

Regressing for time using dimension-reduced data 

Given that a progression of population states across time could be seen in the dimension-reduced 

visualization of LEC data, was it possible to regress for time using the first few principle 

components from this dimension-reduced data? Regression was carried out using the linear 

model 𝑦  𝛽 ∗ 𝑃𝐶1 𝛽 ∗ 𝑃𝐶2, with y being time, PC1 and PC2 the first two principal 

components, and β1, β2 the fitted coefficients.  Regressing the first two principal components 

from PCA results for individual animals against time lead to significant fits for all areas, but 

substantially higher explained variance for LEC (70.9% vs. 10.5% vs. 12.9% mean explained 

variance for LEC, CA3, and MEC respectively; Extended Data Fig. 4b, c). The improved fit for 

all LEC animals is due to one of the top two PCs exhibiting the session-length exponential decay 

seen in PC1 of the example LEC fit, and suggests a significant impact of time on LEC activity 



during unconstrained behavior. For the specific example shown, the poorer fit towards the end of 

the session for LEC reflects the flattening of the first PC, while the oscillating nature of the fit 

for CA3 reflects rate remapping due to wall color being picked up by both PCs, and the predicted 

time for both CA3 and MEC being centered on the mean overall time reflects the minimization 

of error by the regression.  

 

Decoding controls for across-day pooling and behavior 

Given that decoding accuracy was determined using cell populations which were pooled across 

recording sessions, the concern arises that pooling cells across days would reduce the covariance 

amongst neurons and drive an artificial increase in decoding accuracy for temporal epochs. We 

first computed decoding accuracy for temporal epoch using groups of simultaneously-recorded 

cells, and found that all single-day decoding accuracies were significantly above chance (16.9% 

median decoding accuracy compared to 4.2% chance level, n = 46 single days). We then 

compared single-day decoding accuracy against a distribution of decoding accuracies formed 

using subpopulations with the same number of cells, but randomly drawn from the overall 

population pooled across days. This was done by calculating a z-score for the single-day 

decoding accuracy using the mean and standard deviation of the randomly-drawn distribution. 

Red line indicates 95th percentile boundary for null hypothesis that single-day decoding accuracy 

was not significantly lower than across-day decoding accuracy. Only 2 out of 46 single-day 

decoding accuracies were significantly lower than randomly-drawn decoding accuracies (mean 

z-score -0.39, Extended Data Fig. 4d). Comparison of randomly drawn data to data taken from 

consecutive pairs of days (middle, n = 72 days), or data taken from pairs of days which were 

separated by half of the overall number of recording days (right, n = 44 days), gave similar 

results (-0.24, -0.19 mean z-score for consecutive day-pairs and across-experiment day-pairs 

respectively, Extended Data Fig. 4e). 

 

If decoding of temporal epoch were in part due to changes in animals’ behavior across time, it 

would be possible to decode temporal epoch with accuracy greater than chance using just 

behavior tracking data. We trained separate decoders using behavior tracking data and compared 

against decoders trained using neural activity. Both tracking data and neural activity were binned 

into 500 ms bins. Decoding accuracy using just behavior tracking data did not exceed chance, 



indicating that the high decoding accuracy for temporal epoch observed using LEC population 

activity was not due to behavioral changes across experimental sessions (Extended Data Fig. 

4f).  

 

Decoding errors for CA3 and MEC reflect non-temporal coding 

In addition to lower decoding accuracy for temporal epoch, both CA3 and MEC also exhibited 

significantly more erroneous predictions for trials with the same wall color than trials with 

different colors (14.9% vs. 36.1% vs. 23.9% mean percentage of same-colored errors for LEC, 

CA3, and MEC respectively; unpaired t-test, LEC vs. MEC: P < 0.05, LEC vs. CA3: P <0.01; 

Fig. 3c), consistent with a role for CA3 and MEC in representing aspects of the environment that 

are constant over time.  

 

Temporal information in CA3 and MEC is limited 

Although decoding accuracy for temporal epoch was significantly higher for LEC than CA3 or 

MEC, decoding accuracies for CA3 and MEC were nonetheless greater than chance. Was this 

simply due to a more widely distributed temporal code in each of these structures, such that with 

a sufficient number of observed cells, both MEC and the CA areas would reach similar decoding 

accuracies as LEC? We examined this possibility in the BW12 experiment by quantifying 

decoding accuracy for temporal epochs as a function of population size, and found that CA3 and 

MEC began to plateau before reaching accuracies close to what LEC achieved (Fig. 3d). 

Extending population sizes by pooling cells across animals gave similar results (Extended Data 

Fig. 4i). Thus, although the decoding accuracies for time in CA3 and MEC were above chance, 

temporal information was greater in LEC, requiring significantly fewer cells to reach high 

decoding accuracy.  

 

Additional evidence for temporal coding in LEC using BW4 data 

Existing BW4 data offered us a chance to compare temporal coding properties across CA2 and 

CA1, which have been shown to exhibit more significant place cell decorrelation than CA322,24.  

Decoding accuracies for both trial identity and wall color using matched BW12 data restricted to 

the first four trials were comparable, suggesting that there were no conspicuous differences 

between the two data sets besides the reduced number of trials (trial identity: 88.0% vs. 83.1% 



mean decoding accuracy for BW4 vs. BW12; wall color: 91.2% vs. 86.8% for BW4 vs. BW12; 

Extended Data Fig. 4g).  

 

Subsequently, we compared decoding accuracy across all areas at several epoch lengths. 

Decoding accuracy for trial-length epochs using LEC data was significantly better than all 

hippocampal areas (mean accuracy for LEC: 75.1%; MEC: 39.8%: CA3: 44.4%; CA2: 51.6%; 

CA1: 51.1%; chance level 25%; Extended Data Fig. 4h). Decoding accuracy for 20s epochs 

using LEC data was significantly better than all hippocampal areas (mean accuracy for LEC: 

16.4%; MEC: 12.2%: CA3: 8.5%; CA2: 8.3%; CA1: 9.2%; chance level 0.4%; Extended Data 

Fig. 6a). Decoding accuracy was higher for LEC and MEC than CA3 for 10s epochs (mean 

accuracy for LEC: 12.4%; MEC: 11.4%: CA3: 6.5%; CA2: 7.4%; CA1: 8.1%; chance level 

0.2%; Extended Data Fig. 6a). Decoding accuracy was similar across all areas for 1s epochs 

(mean accuracy for LEC: 0.54%; MEC: 0.99%: CA3: 0.76%; CA2: 0.65%; CA1: 0.82%; chance 

level 0.02%; Extended Data Fig. 6a). The parity between areas at shorter epoch lengths is 

potentially due to similar dynamics across all areas at these short timescales but may also reflect 

the fact that time cells in MEC and hippocampus are capable of coding for time at these short 

timescales. 

 

Reduced temporal precision in LEC at shortest timescales 

The differences in decoding accuracy across epoch-lengths suggest a basic limitation in temporal 

precision within LEC (Extended Data Fig. 6c). We examined whether temporal information 

was in fact reduced at shorter timescales compared to longer, trial-length timescales. First, we re-

binned confusion matrices for shorter-epoch decoders to match the size of confusion matrices for  

trial/intertrial-length epoch decoders (e.g. for 10s decoders, prediction counts within 25×25 bin 

areas and 14×14 bin areas were summed to match trial- and intertrial-epochs of the 

trial/intertrial-length epoch decoder, so that the 39×12 classes of the 10s decoder were converted 

into 24 classes, matching the trial/intertrial-length epoch decoder). We then calculated the 

decoding accuracy for this re-binned confusion matrix from its diagonal, and found that decoding 

accuracy was in fact decreased when epoch length was shortened, suggesting that decoders using 

shorter temporal epochs were comparatively worse than decoders using longer temporal epochs 

(mean accuracy for trial: 88.6%; 20s: 76.6%: 10s: 56.5%; 1s: 24.9%; chance level 4%; Extended 



Data Fig. 6c). Even though decoding accuracy for shorter temporal epochs was worse, decoding 

errors may nonetheless have been close to the correct epoch. In order to examine whether errors 

were close to the correct epoch, we shuffled the confusion matrix entries for each row, but kept 

the diagonal original. We then applied the same re-binning procedure and compared decoding 

accuracies to those found using unshuffled data. If errors were close to the correct epoch, 

decoding accuracies should decrease for shuffled data compared to the decoding accuracies 

found using unshuffled data, which is in fact what we observed (Extended Data Fig. 6c).  

 

Distributed population coding of environmental context in LEC 

In addition to temporal information, it was clear from 2D visualizations of LEC population 

activity during the BW12 experiment that environmental context was also encoded within LEC 

population states (Fig. 2). The amount of information present about the current environmental 

context (B or W) could be measured using a linear binary classifier. Decoding accuracy for wall 

color was very high for LEC population activity (91.9% mean accuracy). Similar decoding 

accuracies were observed for CA3, suggesting that environmental context is represented robustly 

at the population level in both regions (78.6% vs. 83.1% mean accuracies for LEC and CA3, 

matched population sizes; Extended Data Fig. 4j).  

 

High decoding accuracy for wall color was not simply an artifact of the separation of population 

states across temporal epochs, as decoding accuracy using data which was shuffled temporally 

while maintaining the original wall color condition was similarly high, suggesting that wall color 

defines two regions in population state space, within which different temporal epochs are 

encoded (91.8 vs. 91.9% mean accuracy for original and temporally shuffled data, Extended 

Data Fig. 4k). Information about wall color in LEC was also distributed across the population, 

as wall color could be decoded with high accuracy (77.9% vs. 91.4%, mean accuracy for wall 

color using population with no wall color-selective cells, compared to a size-matched randomly-

drawn population; Extended Data Fig. 4l).  

 

Information about the immediately preceding context was also present in LEC, as decoders 

trained on intertrial period activity could infer the preceding wall color with high accuracy when 

the data were labeled by the wall color of the previous trial (74.1% mean accuracy), in agreement 



with previous work30,47. Thus, while temporal information was encoded through a continuously-

changing population state, other streams of information such as environmental context and recent 

experience had a significant impact on this changing population state, constraining it to a limited 

range for any given period of time. 

 

3. LEC population dynamics 

High decoding accuracy for temporal epochs could be caused by purely random fluctuations in 

LEC activity, raising the possibility that temporal information emerges from a stationary noise-

related process (e.g. white noise) that may not have any actual connection to temporal coding. 

The presence of a fair number of ramping cells argues against this possibility. Nonetheless, we 

further examined the structure of neural trajectories by measuring the distance between 

population states across trial and intertrial periods to population states at specific points in time. 

 

First, we measured the distance between population states at all time bins within a trial period or 

intertrial period to the middle time bin of the same trial or intertrial period (Extended Data Fig. 

5a), the last time bin of the preceding intertrial or trial period (Extended Data Fig. 5b), or the 

first time bin of the same trial or intertrial period (Extended Data Fig. 5c). If LEC activity was 

generating temporal information purely through stationary noise-related processes, one would 

expect no difference in population dynamics at the start versus the end of a trial. If LEC activity 

was instead representing time as it related to experience, one might expect differential dynamics 

at prominent temporal landmarks such as the start and the end of a trial or intertrial periods, 

given the significant change in external environment at the start of a trial. Across all three 

measures, changes in distance were indeed larger at the start of trials than the end, suggesting 

that the temporal information did not arise purely from trivial noise sources.  

 

For LEC and MEC, the distance between the population state for the first time bin and all 

subsequent time bins in the same trial or intertrial period could be fit by an autoregressive model 

(Extended Data Fig. 5c). A fifth-order autoregressive model was used, with the order 

determined by looking at the autocorrelations of the distance measures for all three areas. The 

LEC model incorporated significant terms for lags of 1, 4, and 5, suggesting that activity at time 

points of 1, 4, and 5 time bins prior to the current time bin influence current time. The MEC 



model incorporated a significant term for lag 1. Applying the autoregressive model to CA3 data 

did not lead to any significant terms. This influence of preceding activity may be due to decay of 

externally-driven activity that takes longer than the time bin length, with more lag terms 

implying that longer periods of preceding time are influencing current activity. 

 

We also measured pairwise distances between consecutive population states, both directly 

(Extended Data Fig. 5d) and in terms of the angle formed between vectors defined by the 

consecutive population states (Extended Data Fig. 5e). For distance measured directly using the 

population states themselves, we found significantly longer distances at the start of epochs, 

which may reflect significantly more variability in activity when the animal is first placed in the 

recording box, as we observed a number of cells with higher firing rates for the first 5-10 

seconds of each trial compared to the rest of the trial (data not shown). The short period of initial 

variability was followed by settling into a stable state, as indicated by the roughly uniform 

pairwise distances across the rest of the trial or intertrial periods.  

 

For measuring pairwise angles across consecutive points in time, population state vectors were 

defined as the difference between consecutive population states, and the angle between them was 

calculated (Extended Data Fig. 5e). If trajectories evolved according to a stationary process 

(e.g. white noise), one would expect the distribution of angles across an epoch to be uniform. For 

LEC, we observed clustering around angles which were greater than 90 degrees although not 

quite reaching 180 degrees, indicating that LEC activity did not evolve as a stationary process. 

Both CA3 and MEC exhibited a wider range of angles, including instances which were less than 

90 degrees (corresponding to a reversal in direction), suggesting that they were less structured. 

 

Finally, we measured the distance between the overall mean population state for the first trial or 

intertrial period and the overall mean population states of all subsequent trial or intertrial periods 

for LEC (Extended Data Fig. 5f). A non-stationary progression was observed across trials. As a 

whole, these results indicate that population activity in LEC evolved in a non-stationary manner, 

as expected for a system expressing the evolution of time. 

 

4. Temporal coding within a fixed environmental context 



A robust temporal code for episodic experience should function across a range of external 

conditions. To what extent do the results observed during the BW12 experiment generalize to 

other contexts? We looked at LEC activity in a separate experiment where the environment was 

kept constant, and an object was present on a subset of trials (Extended Data Fig. 7a). First, we 

examined the activity of single cells using the same GLM method that we used for the BW12 

experiment, incorporating the presence/absence of the object, trial time, and session time as 

variables. More than half of the cells we recorded were found to be selective for at least one of 

the variables used in the model (Extended Data Fig. 7b-e), with 31.6% of cells exhibiting 

selectivity for time and 8.0% exhibiting selectivity for the presence of the object (number of cells 

significantly influenced by at least one variable: 150/263, 57.0%; Extended Data Fig. 7d). For 

cells exhibiting mixed selectivity, 34/46 were primarily selective for time.  

 

Next, we visualized LEC population activity and observed once again a separation of the three 

trials across the session, suggestive of temporal coding at the population level (Extended Data 

Fig. 7f). Decoders trained to determine trial identity using LEC population activity achieved 

near-perfect accuracy (98.7% mean accuracy, chance level 33.3%; Extended Data Fig. 7g). 

Object presence could also be decoded with near-perfect accuracy (98.4% mean accuracy, 

chance level 50%; Extended Data Fig. 7g). In addition to decoding trial-length epochs, it was 

also possible to decode shorter epoch-lengths within trials with accuracies well-above chance 

(14.7% mean accuracy for 20 s epochs, chance level 1.1%; 11.1% mean accuracy for 10 s 

epochs, chance level 0.6%; 1.1% mean accuracy for 1 s epochs, chance level 0.05%; Extended 

Data Fig. 7h).  

 

Finally, we examined whether temporal information was distributed across the entire population, 

as observed in the BW12 experiment. We trained decoders for trial identity using only cells 

which were not characterized by the GLM to be selective for time. Decoding accuracy was 

reduced compared to decoding accuracy for size-matched populations which were randomly 

drawn from the full population, but still well above chance (84.2% vs. 93.8% for data with time-

selective cells removed vs. randomly drawn control; Extended Data Fig. 7i). Similarly, 

decoding accuracy for object presence using cells not selective for object presence was reduced 

but still well above chance (81.5% vs. 96.9% for data with object-selective cells removed vs. 



randomly drawn control; Extended Data Fig. 7i). Consequently, the encoding of information 

within LEC was again distributed across the general population. Importantly, the GLM and 

decoding results together suggest that under a different set of external conditions than the BW12 

experiment, time nonetheless significantly influences LEC activity and both the population and 

single-cell level.  

 

5. Additional evidence that temporal information arises inherently in LEC 

Within the BW12 experiment, repetition of experience was potentially present in the pairs of 

trials for which wall color remained constant. We examined whether the population response to 

trials with repeated wall color differed from trials with changing wall color by measuring the 

Euclidean distance between mean LEC population states for pairs of adjacent trials with different 

or same wall color. Mean population states were calculated by taking the population activity 

vector (dimensionality equal to number of recorded cells pooled from all sessions) for each 10s 

bin, and averaging across all 25 of these vectors for each trial (trials 250s long). Distances were 

z-scored to allow comparison between animals. Population states for pairs of consecutive trials 

with the same wall color in the BW12 experiment were in fact more similar than population 

states for pairs of trials in which wall color changed, consistent with temporal information 

arising inherently in LEC through changing experience (Extended Data Fig. 9a). 

 

Along this line, we also measured the distance between the population state for the first time bin 

and all subsequent time bins in each trial (Extended Data Fig. 10a). We observed fluctuations in 

distance which may have reflected significant changes in activity corresponding to when the 

animal was encountering features within the task (e.g., time bin 5 corresponded to when animal 

was at base of central stem, time bin 10 corresponded to when animal was turning onto the goal 

arm). The consistency of these fluctuations was again consistent with a change in dynamics 

compared to BW12 data: whereas activity evolved in a roughly uniform manner during free 

foraging in the BW12 experiment tracking the general flow of time, during performance of a 

stereotyped, learned behavior in the figure-eight task, activity instead became aligned to time 

within individual trials.  

 



Finally, we examined the variability of temporal representation in LEC in a second experiment in 

which animals were trained to run back and forth on a circular track, alternating between 

clockwise and counter-clockwise laps for reward at a turnaround point (Extended Data Fig. 9c). 

As with the figure-eight experiment, animal behavior was much more structured than during free 

foraging in an open field, and was likely goal-oriented towards the reward location. Trials were 

aligned temporally by the time-point at which the animal reached the middle of the track halfway 

to the turnaround point, and trials consisted of activity spanning from 3s before to 3s after 

reaching the midpoint. Looking at 2D projections of LEC population states for each trial, there 

was a clear decrease in the separation between trials when compared to matched BW data 

(Extended Data Fig. 9d). Consistent with this, although decoding accuracy for trial identity 

across the entire session was above chance, it was far lower than for matched BW data (17.6% 

vs. 30.5% mean accuracy, chance level 6.6%; Extended Data Fig. 9e). In conjunction with the 

figure-eight experiment, these results suggest that constraining behavior to be more stereotyped 

reduced the amount of separation between population states encoding different epochs of time.  

 

6. Interpretation of discrepancies in past studies of LEC responses  

Overall, our results provide an explanation for discrepancies in previous recordings from LEC. 

During free exploration, LEC cells often display inconsistent responses to objects and other local 

cues26,27,57,58. In contrast, reliable selectivity for task-related features including objects has been 

observed during experiments where animals performed a structured behavioral task29,44. Since 

the representation of physical stimuli encountered during free foraging (e.g. objects or walls) is 

mixed with a representation of time, inconsistent responses would be expected across repeated 

exposures to these stimuli. During structured behavior, the influence of time decreases as mixed 

selectivity is reduced, leading to more consistent representations of task-related features. The 

mixing of time with other variables may be present in other brain areas as well, given that time is 

not important solely for episodic memory. 
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