
A decomposition solution approach to the
troops-to-tasks assignment in military
peacekeeping operations

Nadia Chaudry
Ingunn Vermedal

Industrial Economics and Technology Management

Supervisor: Kjetil Fagerholt, IØT
Co-supervisor: Magnus Stålhane, IØT

Maria Fauske, FFI

Department of Industrial Economics and Technology Management

Submission date: June 2018

Norwegian University of Science and Technology

i

Problem Description

The purpose of this thesis is to study the troops-to-tasks problem for military peacekeeping
operations. Two exact mathematical models are formulated with the intent to find the
optimal schedule for a military battlegroup during a peacekeeping operation. Furthermore,
two different heuristic solution methods are analyzed to determine whether the model can
provide good solutions for realistic-sized test instances within a reasonable amount of
time, and hence present itself as a valuable decision support tool for operation planners.

ii

iii

Preface

This master thesis concludes our Master of Science at the Norwegian University of Science
and Technology (NTNU) during the spring of 2018. Our field of specialization is Applied
Economics and Operation Research at the Department of Industrial Economics and Tech-
nology Management. The problem studied in this thesis is at the behest of the Norwegian
Defense Research Establishment (FFI), and examines how an exact and heuristic optimiza-
tion solution approach can assist in the planning of military peacekeeping operations. This
thesis is a continuation of our project report written during the fall of 2017.

We would like to give a special thanks to our supervisors Professor Kjetil Fagerholt and
associate Professor Magnus Stålhane at the Department of Industrial Economics and Tech-
nology Management, and Maria Fleischer Fauske at FFI, for their thorough and valuable
guidance throughout the semester.

Nadia Chaudry and Ingunn Vermedal,
Trondheim, June 19 2018

iv

v

Abstract

Military peacekeeping operations are becoming increasingly complex, while at the same
time facing stricter budgetary restrictions. It is therefore imperative, now more than ever,
to have good operation plans that utilize resources efficiently. Currently, the assignment
of human resources to military operation tasks is carried out manually. A decision sup-
port tool has the potential to greatly improve this process, and simultaneously meet the
complexity and financial challenges that exist.

The assignment of human resources to tasks in military peacekeeping operations is defined
as a Peacekeeping-Troops-To-Tasks Problem (PTTP). The purpose of a troops-to-tasks
analysis in a military peacekeeping operation is to determine which troops are to be
assigned to which tasks, at any given time, during a certain planning period. The objective
is to find an operation schedule that maximizes the total utility value of completed tasks.
What distinguishes the PTTP in this thesis from previous research, is the combination
of complex task relations such as connected tasks and direct start requirements, the in-
troduction of long tasks, sleep tasks, rest tasks, and a security task, the possibility of
multiple time windows using duplicate tasks, unavailable time periods for resources, and
a longer planning horizon. Two exact models are formulated to solve the PTTP: One
compact model and one decomposed model. Three travel route generation methods are
proposed for the decomposed model, one exact, and two heuristic methods, of which the
exact method generates all feasible routes, and the heuristic methods look to only generate
the most promising routes.

Computational studies show that even though the decomposed model outperforms the
compact model, the PTTP is extensive and complicated to solve when using an exact
solution method. The exact decomposed model handles multiple locations well, but high
numbers of resources and tasks make it difficult to calculate good solutions in a reasonable
amount of time. The heuristic solution methods provide better results for larger instances
in the given run time, suggesting that the decomposed model using a heuristic method
to generate travel routes has the potential to become a useful decision support tool for
military operation planning.

vi

vii

Sammendrag

Militære fredsbevarende operasjoner blir stadig mer kompliserte, samtidig som de årlige
budsjettene kuttes. Dermed er det stadig viktigere å utvikle gode operasjonsplaner som
sørger for å utnytte ressurser på en effektiv måte. I dag foregår tildelingen av freds-
bevarende oppgaver blant militære ressurser manuelt. Et beslutningsverktøy vil kunne
forbedre en slik prosess, og samtidig løse de kompliserende og finansielle utfordringene
som finnes.

Fordelingen av oppgaver blant militære ressurser i en fredsbevarende operasjon er definert
som et Peacekeeping-Troop-To-Task Problem (PTTP). En slik analyse skal bestemme
hvilke ressurser som skal få tildelt hvilke oppgaver til enhver tid under en operasjon. Målet
er å finne oppgavefordelingen som maksimerer verdien som skapes av å utføre oppgaver.
Det som skiller PTTP i denne avhandlingen fra tidligere forskning er hvor mange forskjel-
lige måter oppgaver relaterer til hverandre på, som for eksempel koblede oppgaver og
direkte-start-oppgaver, introduksjonen av flere oppgavetyper som lange oppgaver, friopp-
gaver og sikkerhetsoppgaver, muligheten for en oppgave til å ha flere tidsvinduer ved bruk
av dupliserte oppgaver, tidsperioder hvor det er forbudt å gjøre oppgaver, og at den tar for
seg lengre tidsperioder. For å løse PTTP er det utviklet to eksakte modeller: En kompakt
modell og en dekomponert modell. Videre er tre rutegenereringsmetoder formulert for
den dekomponerte modellen: Én eksakt metode og to heuristiske metoder. Den eksakte
metoden generer alle lovlige ruter, mens de heuristiske metodene oppsøker kun de mest
lovende rutene.

Testresultatene viser at selv om den dekomponerte modellen yter bedre enn den kompakte
modellen, så er PTTP et omfattende problem å løse med en eksakt løsningsmetode. Den
eksakte dekomponerte modellen klarer å håndtere flere lokasjoner på en god måte, men
et større antall ressurser og oppgaver gjør det vanskelig å finne gode løsninger innenfor
en akseptabel kjøretid. De heuristiske løsningsmetodene finner bedre løsninger innenfor
den gitte kjøretiden. Basert på disse resultatene så er en dekomponert modell som bruker
en heuristisk rutegenereringsmetode et lovende beslutningsverktøy for planleggingen av
militære operasjoner.

viii

ix

Contents

List of Figures xiii

List of Tables xv

Acronyms xix

1 Introduction 1

2 Literature Review 5
2.1 The standard RCPSP and its most common

extensions . 5
2.2 Literature search strategy . 7
2.3 Objective function . 7
2.4 Activity characteristics . 8
2.5 Resource characteristics . 9
2.6 Temporal constraints . 9
2.7 Solution methods . 10
2.8 Our contribution . 11

3 Problem Description 15

4 Mathematical Model 21
4.1 Modelling assumptions . 21
4.2 Definitions . 30
4.3 Optimization model . 32

4.3.1 Objective function . 32
4.3.2 Constraints and requirements . 32

5 Decomposition Solution Approach 41
5.1 Decomposed Model . 41

5.1.1 Definitions . 42

x Contents

5.1.2 Constraints and requirements . 43
5.2 Travel Route Generation . 45

5.2.1 Label data . 45
5.2.2 Extending a travel route . 46
5.2.3 Valid travel routes . 48
5.2.4 Parameters for optimization . 50

5.3 Heuristic methods to generate travel routes 51
5.3.1 Assigning security task . 53
5.3.2 Limiting location visits . 54
5.3.3 Limiting super-resources per task 54
5.3.4 Dividing routes among similar super-resources 55
5.3.5 Branching strategy . 56

6 Instance Generator and Input Data 59
6.1 Instance Generator . 59

6.1.1 Structure of instance generator 59
6.1.2 Resource data . 62
6.1.3 Location and travel data . 62
6.1.4 Task data . 63
6.1.5 Implementation . 64

6.2 Input Data . 65
6.2.1 Time input data . 65
6.2.2 Task input data . 66
6.2.3 Resource input data . 67

7 Computational Study 69
7.1 Test instances . 70

7.1.1 Remarks on the test instances 71
7.2 Comparison of the exact models . 72

7.2.1 Increasing the number of resources 72
7.2.2 Increasing the number of locations 75
7.2.3 Increasing the number of tasks 76
7.2.4 Summary of comparison of the exact models 78

7.3 Analysis of the first heuristic decomposition 79
7.3.1 Increasing the number of resources 80
7.3.2 Increasing the number of tasks 83
7.3.3 Summary of the first heuristic decomposition 83

7.4 Analysis of the second heuristic decomposition 84
7.4.1 Increasing the number of resources 84
7.4.2 Increasing the number of tasks 85
7.4.3 Comparison of the heuristic methods 86
7.4.4 Summary of the second heuristic decomposition 88

Contents xi

8 Concluding Remarks 89

9 Future Research 91

Bibliography 93

A Deduction of divisible task duration constraints 97

B Decomposed Model of the PTTP 99
B.1 Definitions . 99
B.2 Optimization model . 101

B.2.1 Objective function . 101
B.2.2 Constraints and requirements . 102

C Battlegroup description 111

D Adjustable parameter values for instance generator 113

E Test results from computational study 115

F Run times and travel routes for the exact decomposed model 121

G Results from test set 3 applying the first heuristic method 125

xii

xiii

List of Figures

1.1 Soldiers planning during a NATO operation. Photo: The Norwegian Armed
Forces. 2

1.2 Soldier on patrol during a UN operation in Mali. Photo: The Norwegian
Armed Forces. 2

1.3 Transportation exercise of an injured soldier in Afghanistan. Photo: The
Norwegian Armed Forces. 3

1.4 Soldiers instructing Peshmerga soldiers in Kurdistan. Photo: The Norwe-
gian Armed Forces. 3

3.1 Securing a building during a training session in Lithuania. Photo: The
Norwegian Armed Forces. 15

3.2 Soldier searching an area for landmines during an operation in Iraq. Photo:
The Norwegian Armed Forces. 15

3.3 Example of two hierarchies and their sub-resources’ skill capacities. . . . 16
3.4 Task classification of exclusiveness and divisibility. 18

4.1 Illustration of the duration of divisible tasks. 23
4.2 Illustration of parent, sub-, and connected tasks. 24
4.3 Illustration of two super-resources making multiple location visits. 28

5.1 Illustration of the generation of travel routes using label branching. 48

6.1 Flowchart of the processes in instance generator. 61
6.2 Example of six locations in a coordinate system. 63
6.3 Overview of the instance generator’s input and output data. 64
6.4 Illustration of working and sleeping hours during planning period. 66

7.1 Exact decomposed models route generation and optimization run times for
test set 1. 73

7.2 Number of routes generated by exact decomposed model for test set 1. . 74
7.3 Illustration of branching with a 75% branching rate. 79

xiv List of Figures

7.4 First heuristic solutions’ deviation from decomposed exact method’s best
solutions after run time of one hour with an increase in resources. 81

7.5 First heuristic solutions’ deviation from decomposed exact method’s best
solutions after run time of 20 minutes with an increase in resources. . . . 81

7.6 Comparison of the number of routes generated by the first heuristic method
with an increase in resources. 82

7.7 Comparison of total run times for the first heuristic approach with an
increase in resources. 82

7.8 Comparison of the number of routes generated by the second heuristic
method, with an increase in resources. 85

7.9 Percentage of feasible routes removed by the different heuristic compo-
nents of H2, with an increase in resources. 86

7.10 Percentage of feasible routes removed by the different heuristic compo-
nents of H2, with an increase in tasks. 87

A.1 Relation between divisible task duration and assigned capacity. 98

F.1 The exact decomposed models’ route generation and optimization run times
for test set 2. 122

F.2 Number of routes generated by the exact decomposed model for test set 2. 122
F.3 The exact decomposed models’ route generation and optimization run times

for test set 3. 123
F.4 Number of routes generated by the exact decomposed model for test set 3. 123

G.1 The first heuristic solutions’ deviation from the decomposed exact method’s
best solutions after run time of one hour with an increase in tasks. 126

G.2 The first heuristic solutions’ deviation from the decomposed exact method’s
best solutions after run time of 20 minutes with an increase in tasks. . . . 126

G.3 Comparison of the number of routes generated by the first heuristic method
with an increase in tasks. 127

G.4 Comparison of total run times for the first heuristic approach with an
increase in tasks. 127

xv

List of Tables

2.1 Search words used in conjunction with the term RCPSP for literature review. 7
2.2 Comparison of the PTTP and existing literature. 13

3.1 Examples of military peacekeeping tasks. 17

4.1 Possible combinations of task characteristics. 29

5.5 Overview of components that constitute heuristic methods 1 and 2. 52

6.1 Linking the terms in flow chart to sets and parameters in mathematical
model. 60

6.2 Overview of predetermined data required to create test instances. 62
6.3 Description of the different types of super-resources and their respective

sub-resources. 68

7.1 Test set 1: Increasing the number of super-resources. 70
7.2 Test set 2: Increasing the number of locations. 71
7.3 Test set 3: Increasing the number of tasks. 71
7.4 Comparison of test set 1 with an increase in resources. 73
7.5 Comparison of the number of solutions for test set 1. 75
7.6 Comparison of test set 2 with an increase in locations. 75
7.7 Comparison of the number of solutions for test set 2. 76
7.8 Comparison of test set 3 with an increase in tasks. 77
7.9 Comparison of the number of solutions for test set 3. 78
7.10 Comparing results provided by H1–75 and H2–75. 87

C.1 Description of skill capacities according to sub-resource type. 111
C.2 Description of super-resources and their respective sub-resources. 112

D.1 Adjustable parameters needed to create a test instance. 113

E.1 Results from the exact models for test set 1. 116

xvi List of Tables

E.2 Results from the exact models for test set 2. 117
E.3 Results from the exact models for test set 3. 118
E.4 Results from the first heuristic approach. 119
E.5 Results from the first heuristic approach. 120

xvii

List of Algorithms

1 Pseudocode describing label generation. 46
2 Pseudocode describing the determination of valid locations for extending

a label. 50
3 Pseudocode describing generation of travel route parameters. 51
4 Pseudocode describing the assignment of the security task. 53
5 Pseudocode describing how a maximum number of location visits is en-

forced. 54
6 Pseudocode describing the selection of tasks being possible to complete

with a limited number of super-resources. 55
7 Pseudocode describing how travel routes are divided among resources of

the same type. 56
8 Pseudocode describing how locations are removed when using the heuris-

tic branching strategy. 57

xviii

xix

Acronyms

DM Decomposed model
DTCTP Discrete Time/Cost Trade-off Problem
FFI Norwegian Defence Research Establishment

(Forsvarets Forskningsinstitutt)
H1 Heuristic method 1
H2 Heuristic method 2
LP Linear programming
MMRCPSP Multi-Mode Resource Constrained Project Scheduling Problem
MSRCPSP Multi-Skill Resource Constrained Project Scheduling Problem
NATO The North Atlantic Treaty Organization
NPV Net present value
CM Compact model
PSP Project Scheduling Problem
PTTP Peacekeeping Troops-to-Tasks problem
RCPSP Resource Constrained Project Scheduling Problem
SB Sub-resource
SR Super-resource
UN United Nations

xx

Chapter 1

Introduction

The purpose of peacekeeping missions is to maintain and defend stability and security.
The United Nations (UN) currently have 14 international peacekeeping missions ongoing,
served by more than 110 000 military, police, and civilian staff. Of these 14 missions,
Norway is active in five: in Liberia, South-Sudan, Mali, Haiti, and a joint operation
in Lebanon, Israel, Syria, and Egypt (Section for Security Policy and North America,
2017). In addition, The North Atlantic Treaty Organization (NATO), of which Norway is
a founding member, have several active peacekeeping missions on the African continent
and in Eastern Europe (NATO, 2016).

Over the last few decades the purpose of peacekeeping missions has remained unchanged,
but the dynamics have shifted. From being about serving as a neutral buffer between con-
senting parties, peacekeeping has evolved into becoming a much more complex task where
political, economic, and social change all have to be managed simultaneously, and under
increasingly difficult circumstances (Eide, 2001). In fact, the UN regard peacekeeping as
one of their most complex operational tasks, as exemplified by their following statement
(United Nations, 2017b):

“UN Peacekeepers were now increasingly asked to undertake a wide variety
of complex tasks, from helping to build sustainable institutions of governance,
to human rights monitoring, to security sector reform, to the disarmament,
demobilization and reintegration of former combatants.”

In addition to peacekeeping operations becoming more complex, annual peacekeeping
budgets are declining. Between the fiscal year 2016–2017 and 2017–2018, the UN Peace-
keeping budget decreased by 7.5% to USD 6.8 billion. This budget funds 13 of the 14
current UN Peacekeeping operations (United Nations, 2017a). The complexity and finan-
cial challenges peacekeeping operations face, underline why it is increasingly important
to have good operation plans that utilize resources in an as effective manner as possible.

2

Figure 1.1: Soldiers planning during a
NATO operation. Photo: The Norwe-
gian Armed Forces.

Figure 1.2: Soldier on patrol during a
UN operation in Mali. Photo: The
Norwegian Armed Forces.

The most critical resource in peacekeeping operations is human capital. Deciding how to
best utilize this resource in military operation planning is often referred to as a troops-to-
tasks analysis. In such an analysis, military staff investigate who should do what, where,
when, and how in operations (Fauske, 2017). Typically, a troops-to-task problem is solved
manually. This thesis is motivated by a request from the Norwegian Defense Research
Establishment (FFI) who believe that the troops-to-tasks analysis can benefit from using
optimization techniques. Optimization could provide valuable decision support for op-
erations, ensuring the optimality and feasibility of a planning schedule, in a reasonable
amount of time. It could also be a tool for testing different alternatives by varying input
data and conditions to see how such variations affect the operation plan (Fauske, 2015).
At worst, it could provide a solution that operation planners can use as a starting point.

The specific problem scenario considered in this thesis is defined as the Peacekeeping
Troops-to-Tasks Problem (PTTP), and is outlined in collaboration with FFI. It consists of
a military battlegroup that has to handle different tasks at various locations, during a fixed
time period where there is no incentive to end ahead of schedule. Tasks have multiple
conditions relating to the time at which they can be handled, and the amount, and type
of skills needed to complete them. There is also a utility value related to each completed
task that reflects its importance. A battlegroup consists of units with differing qualities
and abilities that make them suited to handle certain types of tasks. They are bound by a
hierarchy of command, limiting their movement in relation to one another. In the PTTP,
the aim is to decide which tasks to complete, when, and by who.

Research on the application of optimization in general military operation planning is
scarce. This is despite the Norwegian Armed Forces and international organizations like
NATO being interested in such an approach. FFI has conducted some research on troops-
to-tasks analysis of high intensity operations, but not of low intensity operations of which
peacekeeping falls under. The PTTP is modelled as an extension of the well studied Re-
source Constrained Project Scheduling Problem (RCPSP). It is the first version where the
aim is to select which tasks to complete or leave undone based on the utility value of tasks,

Chapter 1. Introduction 3

Figure 1.3: Transportation exercise of an
injured soldier in Afghanistan. Photo:
The Norwegian Armed Forces.

Figure 1.4: Soldiers instructing Pesh-
merga soldiers in Kurdistan. Photo: The
Norwegian Armed Forces.

while considering resources with multiple skills of different levels and capacities who’s
movements between locations are bound by military hierarchy and rest periods. Others
have studied most of these aspects to some degree, but an extension with a combination
of these factors is lacking. Particularly, fundamental aspects of the PTTP, such as the
selection of tasks and the hierarchy of resources, are notably absent in previous research.

This thesis is a continuation of the work by Chaudry and Vermedal (2017) who model a
simple version of the PTTP. Their proposed model can only solve small problem instances
for a planning period of only one day, and lacks certain important aspects of the problem.
Therefore, it is not useful for solving realistic-sized problems. In this thesis, we look
to extend their model to consider a longer planning period, rest periods, and additional
task types and characteristics. The extended model is referred to as a compact model.
Furthermore, we present a decomposed solution approach which first generates travel
routes for the different units in a battlegroup, before finding the best routes, and the set
of tasks to complete, in an optimization model. We propose three methods to generate
travel routes: One exact method, and two heuristic methods. The objective of the compact
and decomposed model is to maximize the total realized value by completing tasks. Both
models can act as a decision support tool on multiple strategic levels because their flexi-
bility makes them applicable to large operations, sub-operations, and daily operations at a
camp.

The structure of this thesis is as followed: A literature study is presented in Chapter 2 to
provide an outline of previous research on problems that are comparable to the PTTP. A
detailed description of the problem studied in this thesis follows in Chapter 3. Chapter
4 presents a mathematical model of the PTTP, and Chapter 5 presents the reformulated,
decomposed model, and describes the three methods used to generate travel routes. Input
data used to test the models, and the generation of test instances, are described in Chapter
6. A computational study is presented in Chapter 7. Chapter 8 offers concluding remarks
on the findings of this thesis, and lastly, Chapter 9 discusses future research.

Chapter 2

Literature Review

This chapter is intended to provide an overview of current literature relevant to the PTTP.
Apart from the the paper by Fauske (2015), there is, to the best of our knowledge, very
limited research on applying optimization to military operation planning. The focus of
this literature review is therefore the standard RCPSP, of which the PTTP is an extension.
The standard RCPSP and its most common extensions are described in the first part of this
chapter in Section 2.1. A description of our research strategy for relevant literature follows
in Section 2.2. Sections 2.3–2.6 present the resulting literature and is structured according
to key aspects of the RCPSP. These aspects consist of a variety of objective functions,
resource- and activity characteristics, temporal constraints, and solution methods. Lastly,
Section 2.8, discusses how the models presented in this report relate to existing literature,
and describes our contribution to the field of optimization of military operation planning.

2.1 The standard RCPSP and its most common
extensions

A formulation of the standard RCPSP is given by equations (2.1)–(2.5). A project consists
of a set P of tasks i that have to be completed by a setK of resources k. The objective is to
find a schedule that minimizes the duration of the project while observing precedence and
resource constraints. Tasks require a certain amount of capacity Qik from resource k, and
resources have to be assigned to tasks such that the capacity requirements from the tasks
do not exceed the resource capacity Ck. Each task can only start once, and their duration
is given by the parameter Ui. Some tasks have precedence over others and are defined by
the set of precedence relations in set F . Time is represented as a set T of discrete time
points. The binary decision variable xit indicates whether task i starts at time t.

6
2.1. The standard RCPSP and its most common

extensions

Objective function for the standard RCPSP:

min z =
∑
i∈P

∑
t∈T

txit (2.1)

Subject to:

∑
t∈T

xit = 1 i ∈ P (2.2)

∑
t∈T

txit + Ui ≤
∑
t∈T

txjt (i, j) ∈ F (2.3)

∑
i∈P,t≤τ≤t+Ui

Qikxit ≤ Ck τ ∈ T , k ∈ K (2.4)

xit ∈ {0, 1} i ∈ P, t ∈ T (2.5)

Equation (2.1) minimizes the duration of the entire project, and constraints (2.2) ensure
that each task starts exactly one time. Constraints (2.3) ensure precedence is upheld by
forcing the start time for project j to be later than the addition of the start time and duration
time for project i, if i has precedence over j. Constraints (2.4) makes sure the combined
capacity requirements Qik for all tasks assigned to resource k at the same time do not
exceed the resources capacity Ck. Constraints (2.5) enforce binary values for variable xit.

The RCPSP is known to be NP-hard, making all of its extensions NP-hard as well. Well-
known extensions of the RCPSP address more challenging problems and include the multi-
mode and multi-skill extensions. In the Multi-Mode Resource Constrained Project Schedul-
ing Problem (MMRCPSP), a mode represents a feasible combination of a project dura-
tion and resource requests that allow the underlying tasks to be accomplished (Hartmann
and Briskorn, 2010). The Multi-Skill Resource Constrained Project Scheduling Problem
(MSRCPSP) considers resources with multiple skills. In this extension, with what skills
a resource contributes to which tasks must be determined (Almeida et al., 2016). In this
report, the PTTP is modeled as an extension of the MSRCPSP, because there are several
parallels between the two problems considering resource characteristics. It is also possible
to model the PTTP as a MMRCPSP. However, this is deemed highly impractical because
the pre-processing of data required to create modes would take a considerable amount of
time.

Chapter 2. Literature Review 7

2.2 Literature search strategy

Our search strategy for relevant literature is influenced by Hartmann and Briskorn’s (2010)
survey article on the variants and extensions of the RCPSP problem. The survey article
provides a thorough overview of the key features of this type of problem, and has therefore
shaped the structure of this review. To find subsequent relevant literature, searces for
RCPSP related terms, such as RCPSP + MMRCPSP have been conducted on Google
Scholar. All the terms used in conjunction with RCPSP in the search are presented in
the second row of Table 2.1. The first row of the table is a description of the related groups
of search words. The most relevant articles resulting from the searches are accounted for
in this review.

Table 2.1: Search words used in conjunction with the term RCPSP for literature review.

General Objective Activity Resource Temporal
terms function characteristics characteristics constraints

MMRCPSP Objective fnc Activity crashing Hierarchy Release, Deadline
MSRCPSP Tradeoff Precedence Capacity Night, Day

Exact method Quality Location Skill, Multi skill Traveltime
Solution method Multi-site Renewable Transfertime
Decomposition Value Discrete

Continous
Setup time

2.3 Objective function

The objective of a basic RCPSP is often time-based, and in most cases looks to minimize
the makespan of a project, which is defined as the total time that elapses from the beginning
to the end of a project. Minimizing the makespan is exemplified by the objective function
(2.1) in Section 2.1, and is also applied in the paper by Fauske (2015). Other time-
based objectives are related to the lateness, tardiness, and earliness of activities. These
characteristics can either be regarded separately as absolute, or combined as a weighted
sum. There are also objective variants based on minimizing the cost related to renewable
and nonrenewable resources whilst observing a project deadline. Tavana et al. (2014) and
Pollack-Johnson and Liberatore (2006) present further extensions that introduce quality
to the objective function. In the paper by Tavana et al. (2014), quality, cost and time are
considered in a multi-objective, multi-mode model.

8 2.4. Activity characteristics

2.4 Activity characteristics

Activity characteristics are characteristics that are expressed explicitly as a function of
the activity they describe. The characteristics discussed here are precedence, location,
divisibility, and value. The term activity and task are assumed synonymous in this report.

For scheduling problem, it is common for some activities to have to be carried out in
a certain order. Precedence, the term used to define a order of activities, is therefore
usually present in RCPSP problems, in most cases as a finish-to-start precedence relation
(Waligóra, 2014; Afshar-Nadjafi and Majlesi, 2014; Van Peteghem and Vanhoucke, 2010;
Ranjbar et al., 2009; Afruzi et al., 2014; Gacias et al., 2010; Moukrim et al., 2015; Laurent
et al., 2017). Other precedence relations are start-to-finish, start-to-start, and finish-to-
finish relations, which Tavana et al. (2014) also address. Fauske (2015) considers both
finish-to-start and start-to-start precedence.

In a standard RCPSP problem, tasks are assumed to be located at a single location or site.
There are extensions to the problem that allow for multiple sites. Fauske (2015) considers
multiple locations that each include tasks that all have to be completed. Laurent et al.
(2017) propose a multi-site RCPSP model where the site on which a task is completed is
not fixed, but to be determined by the model. Gacias et al. (2010) and Afshar-Nadjafi and
Majlesi (2014) do not consider multiple sites in their models, but do include setup times
which can be thought of as the traveling time between tasks at different locations. Hence
setup time between tasks can be used to model multiple locations in a RCPSP.

A task can be divisible, meaning that multiple resources or extra capacity can be assigned
to a task to reduce its duration. For multi-mode models, the processing time for a task
in a particular mode is dependent on the resources assigned to the task in that mode
(Hartmann and Briskorn, 2010). Therefore, all MMRCPSP models include the extension
of divisible tasks (see Table 2.2). Al-Anzi et al. (2010), on the other hand, relate the
processing time of a task to the skill level of the assigned resources in their MSRCPSP
model. Independent of multi-mode or -skill, Waligóra (2014) presents different classes
of processing rate functions, and applies an activity processing rate that is a continuous,
increasing function of the amount of continuous resource capacity assigned to an activity.

The value of a task can be interpreted in several different ways. By giving each task a
weight and a quality measure of how well it is completed, Pollack-Johnson and Liberatore
(2006) seek to maximize the total quality of completed tasks. Tavana et al. (2014) also
assign a quality measure to tasks, but in addition to maximizing the total quality they look
to simultaneously minimize cost and the makespan. Waligóra (2014), Schutt et al. (2012),
and Liu and Wang (2011) all associate monetary value to each task and seek to maximize
either NPV or profit.

Chapter 2. Literature Review 9

2.5 Resource characteristics

Resources in the standard RCPSP are of one type, most often manpower, renewable, can
operate at full capacity at all times, and may divide their individual capacity among several
tasks simultaneously. Hartmann and Briskorn (2010) point out that resources can also be
non-renewable, such as a budget, in multi-mode problems.

To limit the resources to one task at a time, Bianco et al. (1998) study dedicated resources
with an availability limit for the number of tasks a resource can undertake simultaneously.
Fauske (2015) handles availability by characterizing tasks as exclusive or non-exclusive.
Exclusiveness implies that resources can only process that task at a certain point in time.
Furthermore, Fauske (2015) restricts the assignment of resources to tasks by considering
the military hierarchy which forces all resources in a group to travel as a collective unit.

Heimerl and Kolisch (2010), Wang and Zheng (2017), Al-Anzi et al. (2010), Myszkowski
et al. (2015), Bellenguez and Néron (2005), and Fauske (2015) all consider noninter-
changeable resources that may possess different sets of skills or skill levels. For a resource
to be assigned to a task, they must have a skill that matches the task’s requirements.
Myszkowski et al. (2015) and Bellenguez and Néron (2005) model tasks to require a
minimum skill level to be completed, while Al-Anzi et al. (2010) let higher skill levels
lead to faster completion times of tasks. Wang and Zheng (2017) and Heimerl and Kolisch
(2010) discuss how to best utilize a workforce with different skills and performance levels
to meet requirements and minimize costs. Both Myszkowski et al. (2015) and Heimerl and
Kolisch (2010) let the skill level of the workers affect the cost, and prioritize to meet the
requirement of the lowest possible skill level to sufficiently complete a task.

2.6 Temporal constraints

In the basic formulation of the RCPSP presented in Section 2.1, time is discretized, mean-
ing that tasks can only have start and end times at discrete points in time. Time can also
be modelled as continuous with the use of time variables, enabling activities to start at
any time. In their brief study, Kopanos et al. (2014) observe that discrete time models
perform better than continuous time models when the number of tasks increases because
the number of variables do not increase as fast.

Some models might need to include time periods within the project horizon where no
activity can occur, or one or more resources cannot be utilized, for example during breaks.
Time-switch constraints can limit work to be done in chosen time windows by dividing
the planning horizon into cycles of work and rest time windows (Hartmann and Briskorn,
2010). Drexl et al. (2000) introduce extensions to the standard RCPSP to model issues
like labour time regulations. One such extension is to let resources be partly renewable,

10 2.7. Solution methods

limiting them to be assigned only a given number of times in a series of time periods,
hence forcing each resource to have individual forbidden periods that are not predefined.

Release times and deadlines for tasks are common extensions to add to the RCPSP. Usu-
ally, a task has to start after its release time and be complete before its deadline. Alter-
natively, the model can penalize solutions where deadlines are exceeded (Hartmann and
Briskorn, 2010). Batptiste et al. (1999) finds that release times and deadlines can be useful
when modeling problems without preemption, where tasks can be put on hold, or as an
alternative to a strict precedence between tasks, instead using release times and deadlines
to give an outline of the order of activities.

Even though the time spent and the costs associated with the transport of resources is
a relevant factor, particularly when considering multi-project scheduling, they tend to
be neglected by most research (Krüger and Scholl, 2010). H’Mida and Lopez (2013)
argue that the coordination of transportation cannot be neglected, as it affects the optimal
solution. Recent research on multi-site RCPSPs that do consider travel time includes
papers by Laurent et al. (2017), H’Mida and Lopez (2013), Adhau et al. (2013), and Fauske
(2015).

2.7 Solution methods

Because the RCPSP is NP-hard, it is generally difficult to solve real-sized problem in-
stances. For this reason, the majority of the literature studied here examines various
heuristics to find practical and efficient solution methods that are capable of handling
realistic instances. Fauske (2017), Tavana et al. (2014), Afruzi et al. (2014), Van Peteghem
and Vanhoucke (2010), Afshar-Nadjafi and Majlesi (2014), and Debels and Vanhoucke
(2007) all test different versions of evolutionary algorithms. Their results are exclusively
positive, suggesting that evolutionary algorithms are efficient in solving the RCPSP and
its extensions.

Another approach to solving nontrivial RCPSPs is a decomposition approach. A problem
can be decomposed in different manners. Debels and Vanhoucke (2007), Zamani (2011),
Sprecher (2002) and Rihm and Trautmann (2014) all decompose their projects into sub-
parts and iteratively concatenate the solutions. Trautmann and Schwindt (2005) decom-
pose a short-term batch production problem into batching and scheduling, where batching
converts the primary requirements for products into individual batches, and scheduling
allocates the batches to limited resources. Tian et al. (2014) decompose a project into a se-
ries of time windows. The decomposition approaches in these papers prove to outperform
exact methods.

Chapter 2. Literature Review 11

2.8 Our contribution

The standard RCPSP is a well known and studied problem. However, it is in many ways
overly simplistic to be of practical use. For this reason, researchers have added various ex-
tensions to make the model more applicable to real life problems. Of the papers reviewed
here, a few tailored their models to specific applications. Pollack-Johnson and Liberatore
(2006) for example, relate quality to project scheduling in the construction industry, Gacias
et al. (2010) present different methods for solving parallel machine scheduling problems
including setup times, Al-Anzi et al. (2010) consider staffing of software engineers with
different skill levels, and Fauske (2015) models a high intensity military operation. Most
of the remaining papers address different RCPSP extensions, but to more generic project
scheduling applications.

The problem studied in this report is a specialized case of the general RCPSP, specifically
applicable to military operation planning. For this reason, it includes a distinctive com-
bination of aspects that give rise to a high degree of complexity (Fauske, 2015). These
aspects include resource hierarchy, multiple locations, resource skills and capacity, and in
the case of a military peacekeeping operation, a distinctive objective function. Table 2.2
provides a comparative overview of the PTTP and the most relevant literature reviewed in
this chapter. Aspects consistent with our problem are highlighted in green. Based on this
comparison and online searches, we do not believe that there exists RCPSP optimization
models with similar aspects as the ones presented in this thesis.

The most obvious difference between our models and existing models are their objective
functions, which look to maximizes the total value of completed tasks. Value differs from
quality as it is described in Tavana et al. (2014), because value is a function of tasks and
skill level, and quality is only dependent on tasks. This is also the case with the papers that
seek to minimize cost or maximize NPV; cost and profit are not defined to be dependent on
skill level (Santos and Tereso, 2011; Heimerl and Kolisch, 2010; Waligóra, 2014; Schutt
et al., 2012; Gacias et al., 2010). The quality quantification described by Pollack-Johnson
and Liberatore (2006) is comparable to value as it is defined in our models. It is worth
noting though, that because they intend all tasks to be completed, the overall intention of
their model is to decide what skill level to complete tasks at, subject to time and cost. The
goal with our models is to provide information on which subset of tasks to complete at
what time, with which resources and what skill capacity.

Multiple locations is another aspect of the RCPSP there is relatively limited research on,
that we include in our models. Of the papers reviewed in this chapter, only Laurent
et al. (2017) and Fauske (2015) extend the RCPSP to include multiple locations. In the
paper by Laurent et al. (2017), rather than tasks being fixed to given locations, a subset
of resources are tied to certain locations. A task can therefore be completed at various
locations. Comparatively, the paper by Fauske (2015) and our problem assume that tasks
are fixed to given locations and that resources are free to move between locations. Strict
hierarchy associated with military personnel does, however, directly affect the mobility of

12 2.8. Our contribution

resources and hence adds an additional layer of complexity to our problem.

Compared to the model outlined in the project report by Chaudry and Vermedal (2017), the
models studied in this thesis regard a longer project planning period and are more encom-
passing, including additional task characteristic, and rest period extensions. Task char-
acteristics are extended upon because military operation tasks are rarely self-contained,
and are often connected to other tasks in more ways then can be described by precedence
alone. The additional characteristics regard tasks that have to be completed right after
each other, or pairs of tasks where if one is completed, then the other has to be completed
also. Apart from Liu and Wang (2011), who include interdependent pairs of tasks, these
distinctive connections or relationships and extensions are not considered by the other
papers reviewed in this chapter. Furthermore we extend our models to consider predefined
and non predefined rest periods similar to Drexl et al. (2000), but subjective to standard
practices in military operations.

One of our two models takes a decomposition solution approach to solve the PTTP. Al-
though a decomposition approach is promising, there is relatively limited research on
the application of it to the RCPSP, compared to for example metaheuristic approaches
(Sprecher, 2002; Rihm and Trautmann, 2014). Especially regarding military operation
planning, a decomposition approach is a novel solution method.

C
hapter2.

L
iterature

R
eview

13

Table 2.2: Comparison of the PTTP and existing literature.

Paper

O
bj

ec
tiv

e
fu

nc
tio

n

D
iv

is
ib

le
ta

sk
s Ti

m
e

Pr
ec

ed
en

ce

M
ul

ti-
m

od
e/

sk
ill

M
ul

tip
le

lo
ca

tio
ns

So
lu

tio
n

m
et

ho
d

Standard RCPSP min makespan no discrete yes n/a no n/a

Our problem, PTTP max value yes continuous yes skill yes decomposition and branch &
bound

Fauske (2015) min makespan no discrete yes skill yes branch & cut
Fauske (2017) min makespan no discrete yes skill yes genetic algorithm
Pollack-Johnson and Liberatore (2006) max quality yes discrete no mode no goal programming
Ranjbar et al. (2009) min makespan yes discrete yes mode no scatter search and path relinking
Tavana et al. (2014) multiobjective yes discrete yes mode no evolutionary algorithm
Liu and Wang (2011) max NPV no discrete yes n/a no tabu search algorithm
Schutt et al. (2012) max NPV no continuous yes n/a no lazy clause generation
Waligóra (2014) max NPV yes continuous yes n/a no tabu search algorithm
Afruzi et al. (2014) multiobjective yes continuous yes mode no evolutionary algorithm

Gacias et al. (2010) min makespan yes continuous yes mode no branch & bound and climbing
discrepancy search

Van Peteghem and Vanhoucke (2010) min makespan yes continuous yes mode no genetic algorithm
Moukrim et al. (2015) min makespan yes continuous yes mode no branch & bound
Afshar-Nadjafi and Majlesi (2014) min makespan yes discrete yes no no genetic algorithm
Laurent et al. (2017) min makespan no discrete yes n/a yes metaheuristic (approx. methods)
Bianco et al. (1998) min makespan yes continuous yes mode no heuristics

Wang and Zheng (2017) min makespan yes continuous yes mode no knowledge-guided fruit-fly algo-
rithm

Heimerl and Kolisch (2010) min cost no discrete no skill no generic MIP
Al-Anzi et al. (2010) min makespan yes discrete yes skill no LP aprroximation

Myszkowski et al. (2015) min cost and
makespan no continuous yes skill no ant colony heuristic

Bellenguez and Néron (2005) min makespan no continuous yes skill no branch & bound and heuristics
Sprecher (2002) min makespan no discrete yes n/a no decomposition

Zamani (2011) min makespan no discrete yes n/a no decomppsition and genetic algo-
rithm

Chapter 3

Problem Description

The PTTP presented in this report is a variant of the RCPSP. The decisions to be made in
the planning of a peacekeeping operation concern which tasks resources are to perform at
any given time. Resources consist of army resources and supporting airborne resources.
Tasks can for example be road patrol, securing an area, or of the kind given in Table
3.1. A task’s importance and a resource’s ability to execute the task, both affect the
value generated by completing the task. The objective of a troops-to-tasks analysis in
a peacekeeping operation will often be to maximize the total realized value, given the
resources and time available.

Figure 3.1: Securing a building during a
training session in Lithuania.
Photo: The Norwegian Armed Forces.

Figure 3.2: Soldier searching an area for
landmines during an operation in Iraq.
Photo: The Norwegian Armed Forces.

In our problem, an active army battlegroup is assigned to a given area at all times. An area
consists of several locations, and at each of these locations, there are different tasks to be
completed. One of these locations is base camp, where the army troops spend their nights
and free time. During the day, they can be assigned to tasks, either at base camp or at other

16

locations. Because the locations are geographically dispersed, travel time between them
has to be considered. Locations can be visited multiple times a day.

The army resources in this problem are the different units in a battlegroup. The units
are ordered in a two-level hierarchy, where each level 1 resource is a super-resource
(SR) consisting of one or more level 2 sub-resources (SB). A super-resource cannot be
spread over several locations, meaning that its sub-resources have to travel as a collective
unit. If a super-resource is assigned to a location, it is because the sub-resources subject
to it are assigned to tasks there, and the super-resource cannot leave before all of its
sub-resources have completed their tasks in that location. Hierarchy therefore restricts
movement between locations for army resources. Army resources can be supported by
airborne resources consisting of aircraft and helicopters. The supporting resources are
not bound by the same hierarchy system as the army resources, and can therefore travel
independently. In modelling terms this means that a single aircraft is both a super-resource
and a sub-resource.

Sub-resources have sets of skills, and for each skill, each sub-resource has a given capacity.
Demining, surveillance, neutralizing targets, and transporting people are examples of
skills a sub-resource can have. Sub-resources that possess the exact same combination
of skills and skill capacities, are said to be of the same type. Super-resources consisting
of the same type of sub-resources are also said to be of the same type. Skills may be of
different levels, such as sufficient or excellent, depending on the amount of training and
the type of equipment the resources have, regarding a particular skill. All resources are
renewable, meaning they do not lose capacity or skill by completing a task. Figure 3.3
presents examples of hierarchies for both an army resource and a supporting resource, as
well as the skill capacities of their respective sub-resources.

Figure 3.3: Example of two hierarchies and their sub-resources’ skill capacities.

Chapter 3. Problem Description 17

A peacekeeping operation consists of a set of unique tasks of varying importance, and
hence value. It is generally not possible to complete all tasks because of the limited amount
of time and resources. Resources are to be assigned to these tasks. Some tasks require
other tasks to be completed before they can be undertaken. Other tasks, such as training
local forces, consist of several sub-tasks, in this case different training sessions, and can
thus be completed in parts at different occasions. With such tasks, all sub-tasks have to be
completed if one of them is undertaken, by the same army resources.

Table 3.1: Examples of military peacekeeping tasks.

Operational planning and management
Camp security

Quick reaction force
Medical preparedness and sick quarters

Headquarters management
Air defence alert

Search and seizure
Check point

Observation point
Social patrol

Road reconnaissance
Escort of VIP

Intelligence, surveillance, and reconnaissance
Humanitarian support

A task has to be completed in a continuous, uninterrupted fashion by the same resources,
meaning that once a task has started, it is not possible to stop and then start it again,
i.e. preemption is not permitted. The time window in which a task can be completed is
dependant on the task. Moreover, some tasks have multiple time windows, meaning that
they have several possible start and end times. For example, a task can have a time window
between 08:00–10:00 on day 1, and another between 12:00–16:00 on day 3. However,
because preemption is not permitted, the task can only be completed during one of them.

Most tasks have to be completed within regular daytime working hours because of the
tasks’ nature. In military peacekeeping operations, a regular working day is 16 hours long.
Some tasks, such as Humanitarian support at a local village, can span over multiple days.
During the completion of these long tasks, resources do not need to travel back to base
camp at night. These lengthy tasks do, however, require the assigned resources to take
time off at base camp directly after completion, so that they can have some restitution.
During this time, resources cannot be assigned to other tasks.

Tasks require certain skills of certain capacities to be completed. These requirements can
be met by one or more resources. For example, if task A requires a capacity of 3 of
skill type s, then a resource with a capacity equal to or higher than 3 of skill s will meet

18

the requirement to complete the task. Alternatively, multiple resources with a combined
capacity of 3 or higher of skill s can complete the same task. Some tasks, like searching
an area for landmines, can be completed in a shorter time if extra capacity is assigned to
them. These tasks are referred to as divisible tasks. Completion time of indivisible tasks,
such as escorting a VIP or monitoring a building, must be done for a fixed period of time,
and can not be shortened regardless of the capacity assigned to them. Resources’ skill
levels affect how well a task is done and hence the value of completing the task, but not
the time it takes to complete it.

A resource’s ability to work on several tasks simultaneously depends on the exclusiveness
of a task. Exclusiveness entails that resources completing an exclusive task cannot under-
take other tasks at the same time. Non-exclusiveness means that resources can undertake
more than one non-exclusive task simultaneously, given that the resource has the skill and
capacity required, and that the tasks are in the same location. For example, a resource can
use its capacity of 1 on two different tasks simultaneously, each one requiring a capacity
of 1, if both tasks are non-exclusive and at the same location. The grey area of the Venn
diagram in Figure 3.4 illustrates the exclusiveness and divisibility characteristics a single
task can have.

Figure 3.4: Task classification of exclusiveness and divisibility.

To ensure safety and order at base camp, camp security is a mandatory task, and is the
only task that does not require a certain skill from assigned resources. It is also the only
task that requires one entire super-resource to complete it, rather than one or more sub-
resources. The super-resource assigned to camp security has to be an army resource and
there must be someone assigned to the task at all times. Camp security is an exclusive
task, hence the sub-resources belonging to the assigned super-resource cannot be assigned
to any other tasks. A super-resource is assigned to security for a continuous period lasting
a given number of days or weeks, before switching with another super-resource.

Chapter 3. Problem Description 19

As mentioned previously, the value of completing a task depends on the task itself, and the
skill level of the resource or resources undertaking the task. Important tasks or a higher
skill level, obtain a higher value compared to less important tasks or a lower skill level.
The objective of solving this scheduling problem is to realize as much value as possible,
given the resources and time available. The effective outcome of solving this problem is
deciding which resources are assigned to which tasks at what time.

Chapter 4

Mathematical Model

This chapter presents a compact mathematical formulation of the PTTP described in Chap-
ter 3. Section 4.1 gives an account of the modelling assumptions, and Section 4.2 presents
all sets, parameters, and variables used in the model. A step-by-step description of the
mathematical formulation follows in Section 4.3.

4.1 Modelling assumptions

This section provides an overview of the assumptions made for the mathematical model
presented in Section 4.3. The assumptions are largely based on the nature of peacekeeping
operations and made with the intent to formulate a linear model.

Deterministic model

It is assumed that the PTTP is a deterministic problem. In reality, the duration of a task,
travel time of a super-resource, and resource capacity, all have an element of uncertainty
related to them. Travel times, for example, are in our model assumed to be constant no
matter the conditions between locations, but in reality travel times can be affected by road
conditions, weather, and human and mechanical errors etc. Furthermore, sub-resources’
capacity might vary, based on their mood or health, and the availability of resources could
be uncertain, as damage to personnel and equipment is likely to occur. These factors,
in addition to other uncertainties, can affect the duration of a task. Nevertheless, given
the disciplined nature of military operations, these uncertain elements are ignored in our
model because they are assumed to be minuscule and have a negligible effect on the final
outcome of the operations.

22 4.1. Modelling assumptions

Problem structure

The PTTP can be interpreted as a two-tier problem with movement of super-resources
between locations on one level and task assignment to resources on the other. The move-
ment of super-resources between locations can be regarded as a network flow problem,
where the task scheduling at each location restricts the time windows for travel. Task
assignment to resources addresses the matching of task requirement with resource capacity
and skill. The mathematical model in Section 4.3 is structured according to this two-tier
interpretation of the PTTP.

Task value

Tasks can either be completed or not completed, they cannot be partly completed. In
our model, completed tasks generate a certain value depending on the skill level they
are completed at. For some tasks, such as training local troops, there might be a large
difference in the value generated with a high skill level compared to a low skill level,
while for other tasks, such as setting up medical quarters, the value would be almost the
same. Task value is not contingent on cost or any other quantifiable measurements, but
based solely on judgment. An important assumption for this model is therefore that this
judgment is sound.

All tasks require certain skill capacities. Our model awards solutions where, for each
completed task, the summation of these capacities are at a higher skill level. For tasks that
require more than one skill, we assume that it is the aggregate of capacities at different
skill levels that is decisive for task value. For example, if a task provides a value of three
if completed at an excellent skill level, and a value of two if completed at sufficient level,
then completing it 50% excellently and 50% sufficiently will result in a value of 2.5. The
alternative to calculating task value this way, would be to determine value for each skill,
at each skill level, for each task. Given that value is a difficult measurement to quantify,
having to determine a larger set of values would introduce a larger amount of uncertainty
to the model. Therefore, the assumption of task value depending on the aggregate of
capacities at different skill levels is considered a reasonable simplification.

Divisible tasks and processing time

The processing time of a task is assumed constant if the task is indivisible, and negatively
correlated to its assigned capacity if it is divisible. This is due to the varying nature of
different tasks. A task such as search and seizure might for example only take half the
normal processing time if it is assigned twice as much resource capacity, whilst escort of
VIP will take a fixed amount of time no matter how much extra capacity is assigned to it.

Chapter 4. Mathematical Model 23

The processing time for divisible tasks is assumed to be a linear function of assigned
capacity as illustrated in Figure 4.1. To ensure that the model does not assign an exceed-
ing amount of capacity to divisible tasks such that the tasks’ processing times become
minuscule, we assume that there is a lower limit to the time it takes to complete a task.
This limit and its binding capacity is given for each divisible task. For indivisible tasks,
processing time is set to the maximum processing time. Consequently, indivisible tasks
will never be assigned extra capacity. See Appendix A for a more detailed account of the
linear interpretations of processing time. The skill level a task is completed at is assumed
to have no effect on the processing time.

Figure 4.1: Illustration of the duration of divisible tasks.

Precedence

Although there exists four types of precedence, we only consider finish-to-start precedence
in our model. A finish-to-start precedence means that one task cannot start until another
task is finished. It is not limited to pairs of tasks; a single task might have to wait until
several other preceding tasks are finished, or several tasks might have to wait until the
same preceding task is finished. For example, it is not possible to undertake any task

24 4.1. Modelling assumptions

at a certain location until the task of securing location is complete. Chains of finish-to-
start precedence relations are also possible, for example, if task A precedes B, and task
B precedes task C. Henceforward, the term precedence implies finish-to-start precedence,
unless stated otherwise.

Connected tasks

In an operation, some tasks consist of multiple subtasks, where each subtask is modelled as
a normal task. Subtasks related to the same parent task are referred to as connected tasks,
as illustrated in Figure 4.2. If one subtask is completed, then all its connected tasks have
to be completed. Connected tasks can be undertaken simultaneously or have exclusive
or precedence restrictions, and can have equal or different time windows. However, they
are assumed to require skills and capacities such that they can be completed by the same
resources. We further assume that connected tasks require that the same army resources
complete them, but that this does not apply to supporting resources. The idea behind
modelling parent and subtasks in this manner instead of modelling the parent task as one
single large task, is to allow for distinct breaks in the completion of the parent task.
Examples of connected task, are multiple training local forces tasks, all parts of one
training program. All or no parts of the program have to be completed, and some of
the training exercises may require others to be completed beforehand, creating precedence
relations.

Figure 4.2: Illustration of parent, sub-, and connected tasks.

There are cases with one-way connections as well. This occurs when all resources assigned
to a task must also be assigned to a second task, but may be joined by other resources. Then
the first task is connected to the second, but not the other way around. An example of a
one-way connection is provided in the next section under "Long and rest tasks".

Chapter 4. Mathematical Model 25

Long and rest tasks

Tasks such as training local forces, are an example of tasks that are both connected and
long. It usually spans over multiple days at a location some distance away from base
camp, making it convenient to stay over night. The time off resources are entitled to
after completing long tasks are modelled as tasks themselves, and referred to as rest tasks.
The relation between long and rest tasks is further modelled by defining the rest tasks as
exclusive tasks with zero value, and subject to precedence from a long task with a one-way
connection to the rest task. As an entire super-resource will be away from camp when a
long task is undertaken, even if only by a few of its sub-resources, it is assumed that all
sub-resources are entitled to the same amount of time off afterwards. Supporting resources
are assumed to not require time off after completing a lengthy task.

It is further assumed that if several super-resources work on the same long task, then their
travel time to and from the long task’s location and base camp is equal. Finally, we assume
that army resources have to travel to base camp and complete a rest task immediately after
completing a long task. In the mathematical model and for programming purposes, rest
tasks are also defined as long tasks. In all other parts of this thesis, however, long task and
rest task are treated as separate terms.

Direct start

One task having to be completed immediately after another is referred to as a direct start.
A rest task, for example, has to start directly after a long task. As such, the tasks completed
first will inherently have precedence over the tasks that starts directly after them. Not all
task pairs that have a direct start have to be connected. The first task can be completed
without the second one having to be completed. Even if both are completed, the resources
assigned to the first task do not have to be assigned to the second one. In the event where
both tasks must be completed if the first task is undertaken, but not necessary by the same
resources, the total value of both tasks must be given to the second one, and the first task
has to have zero value.

Task pairs that have a direct start can have different locations. This would mean that the
same army resources can not be assigned to both tasks because their travel time between
locations would violate the requirement of a direct start. If the pair happen to be connected,
meaning that both tasks have to be completed, and by the same resources, then the travel
time between the different task locations is taken into consideration. The second task then
has to start a time period equivalent to the travel time between the locations, after the first
task.

26 4.1. Modelling assumptions

Security task

The model assumes that all army resources can undertake the camp security task regardless
of their size, skill or skill capacity. In reality, this would mean that a super-resource con-
sisting of very few sub-resources can complete the task as well as a larger super-resource
with many sub-resources. Note that the number of sub-resources does not necessarily
correspond with the size of the unit, nor with the capacities of the resources. It is also
assumed that the planning period is of a length appropriate for one single super-resource
have to be assigned to the security task for the entire planning period. The super-resource
cannot be assigned to any other tasks during the planning period, even if the other tasks
are located at base camp.

Sleep task

Army resources require a period of continuous free time every day. This free time is
modelled as obligatory sleep tasks with no value. The time period of the sleep tasks
are assumed to be concurrent for all army resources. A single day therefore includes
a continuous work period and a continuous sleep period that are identical for all army
resources. Free time for supporting resources is not considered in this model because
the operation staff for the aircraft and helicopters rotate their shifts so that they get the
required rest periods without the machinery becoming unavailable. All tasks that have a
duration time that make them lengthy enough to include one or more nights, are assumed
to incorporate sleep time in their duration. Therefore, resources undertaking long tasks are
exempt from sleep tasks during the completion time of the long task.

Traveling at night

Traveling at night, during sleep periods, is generally not permitted. Some long tasks lasting
into the night may, however, finish in the middle of a sleep period. Due to the assumption
that sleep is incorporated in the duration times of these tasks, it is deemed acceptable for
resources to travel at night after completing a long task, to the location of its connected
task, such as a rest task at base camp.

Long tasks can have a start time that is during the night. Resources assigned to such tasks
can arrive at the task location at night, but they have to leave the previous location before
the sleep period starts. Thus, a resource cannot undertake two tasks that are not connected
and in separate locations during one night, as this would make it more complicated to
ensure regular sleep is included in all long tasks.

Chapter 4. Mathematical Model 27

Duplicate tasks and multiple time windows

In a realistic operation, some tasks might be possible to complete in different time win-
dows. This is modelled with the use of task duplicates. For example, a tasks such as
escorting a VIP might have to adhere to different requirements. The requirement could
be to retrieve the VIP after 08:00 and arrive at the destination before 16:00, but due to
security restrictions no travel can happen between 10:00 and 12:00. This is one task, with
two possible time windows for completion: 08:00–10:00 and 12:00–16:00. It is modelled
as two tasks, one task with time window 08:00–10:00 and a second task with time window
12:00–16:00. These tasks are referred to as duplicates. Combined, they form a group of
duplicates, as they are part of the same unique task. Only one of the duplicates can be
completed.

All tasks in a group of duplicates have the exact same properties and requirements for
skills and capacities. They may, however, have distinct values if some time windows are
deemed more favorable than others. In the example with the VIP, it may be desirable to
complete the task as early as possible, making the duplicate task with the time window
of 08:00–10:00 more valuable. This may be the case for tasks with only one continuous
time window as well, and duplicates can therefore be used to assign different value for
different completion times. Furthermore, duplicates can be used for tasks that are possible
to undertake at several alternative locations, such as a training exercise.

Start and end locations

In reality, resources might have different start locations or be occupied with a lengthy task,
making them unavailable for a certain time period when the planning period starts. We
however assume that all resources start at base camp at time zero, and terminate at base
camp at the end time of the planning period. We model this by introducing a dummy
start and end location, and respectively forcing the travel times from and to them, to be
equivalent to the travel times from and to base camp. The travel time between the dummy
start and end locations, and base camp is set to zero. The dummy start and end locations
do not have any tasks associated with them. From hereon out, the term locations will refer
to physical locations, not including the dummy start and end location, unless otherwise
specified.

Upper limits for the number of visits and resources per task

A super-resource can visit the same location more than once. Several visits to the same lo-
cation might in some cases be unwanted, either due to conditions in the practical execution
of the operation, or for modeling purposes. The possibility to impose an upper limit on the
number of visits any super-resource can have to the same location is therefore included in
the model. Multiple visits to one location is modeled as duplicate locations, as illustrated

28 4.1. Modelling assumptions

in Figure 4.3. The figure shows a possible travel route for a super-resource, including
several visits to one location. In this example, a super-resource can visit a location a
maximum of three times. The limit applies per super-resource, meaning that the travel
route of super-resource SR2 is not affected by how many times a particular location has
been visited by SR1. An upper limit is also assigned to the number of resources that can
work on the same task because it is assumed impractical and unrealistic for a large number
of resources to work on the same task. This does not apply to rest and sleep tasks.

Figure 4.3: Illustration of two super-resources making multiple location visits.

Chapter 4. Mathematical Model 29

Overview of task characteristics

Table 4.1 presents the various characteristics a task can have, and how those characteristics
relate to one another. A bullet point means that the given combination is possible. For
example, an exclusive task can be non-divisible or divisible. Combinations that are not
possible are marked with an "x". A rest task cannot, for example, be divisible. The cells
highlighted in green are combinations of characteristics that are binding. For example, if a
task has a direct start after another task, then the other task naturally has to have precedence
over the given task.

Table 4.1: Possible combinations of task characteristics.

If a
task is/has

then the
task can
be/have

L
oc

at
ed

at
ba

se
ca

m
p

L
on

g

R
es

t

Sl
ee

p

D
up

lic
at

es

E
xc

lu
si

ve

N
on

-e
xc

lu
si

ve

D
iv

is
ib

le

N
on

-d
iv

is
ib

le

Pr
ec

ed
en

ce
ov

er
ot

he
rt

as
k

O
th

er
ta

sk
ha

s
pr

ec
ed

en
ce

C
on

ne
ct

ed
to

ot
he

rt
as

k

D
ir

ec
ts

ta
rt

af
te

ro
th

er
ta

sk

V
al

ue

Located at
base camp - • • • • • • • • • • • • •

Long • - • x • • • • • • • • • •
Rest • • - x • • x x • • • • • x
Sleep • x x - x • x x • x x x x x
Duplicates • • • x - • • • • • • • • •
Exclusive • • • • • - x • • • • • • •
Non-exclusive • • x x • x - • • • • • • •
Divisible • • x x • • • - x • • • • •
Non-divisible • • • • • • • x - • • • • •
Precedence
over other task • • • x • • • • • - • • • •

Other task
has precedence • • • x • • • • • • - • • •

Connected
to other task • • • x • • • • • • • - • •

Direct start
after other task • • • x • • • • • • • • - •

Value • • • x • • • • • • • • • -

30 4.2. Definitions

4.2 Definitions

Indices
g Super-resource
k Sub-resource
p Task
i, j Location
s Skill
l Skill level
m,n Visit number of a location
d Group of duplicate tasks

Sets
G Set of super-resources
GARMY Subset of army super-resources not including supporting super-resources
Kg Set of sub-resources that belong to super-resource g
K Union of all Kg sets
I Set of locations including dummy locations 1 and |I|
P Set of all tasks
PE Subset of exclusive tasks
PDIV Subset of divisible tasks
PLOCi Subset of tasks that are located at location i
PLONG Subset of long tasks, including rest tasks
PREST Subset of rest tasks
PSLEEP Subset of sleep tasks
PDUPd Subset of tasks that are duplicates of task d
D Set of unique tasks, each representing a group of duplicate tasks
S Set of skills
L Set of skill levels
Ni Set of possible visits to location i

Parameters
TTRAV ELgij Travel time for super-resource g between locations i and j

TTASKp Standard time it takes to complete task p

Chapter 4. Mathematical Model 31

TMIN
p Minimum percentage of standard time it can take to complete task p

TRLp Release time for task p

TDDLp Deadline for task p

CREQps Capacity requirement for task p of skill s

CMAX
p Maximum excess capacity task p can utilize as a percentage of CREQps

CRESksl Capacity of resource k of skill s at skill level l

Hps 1 if task p requires skill s, 0 otherwise

Vpl Value of completing task p with skill level l

FPRECdd′ 1 if group of duplicates d has precedence over group d′, 0 otherwise

FCONdd′ 1 if resources assigned to a task in groups d must also be assigned to
a task in group d′, 0 otherwise

FDIRdd′ 1 if a task in group d′ is to start directly after the end time of a task
in group d, 0 otherwise

R Maximum number of resources that can be assigned to any task

T End time of operation

M Big M

Variables
xkp 1 if resource k is assigned to task p, 0 otherwise

qp 1 if task p is completed, 0 otherwise

ug 1 if super-resource g is assigned to security, 0 otherwise

wkpsl The capacity of skill s, at skill level l, resource k contributes to meet the
capacity requirement of task p

epl Portion of task p completed at skill level l

tSTARTp Time task p starts

tENDp Time task p finishes

agim Arrival time of super-resource g at location i for the mth time

bgim Departing time of super-resource g from location i for the mth time

yLOCgim 1 if super-resource g visits location i for the mth time, 0 otherwise

yTRAV ELgimjn 1 if super-resource g travels directly between its mth visit at location i
and nth visit at location j, 0 otherwise

okpp′ 1 if resource k is occupied with long task p′ and therefore not required to
complete sleep-task p, 0 otherwise

δpp′ 1 if task p is completed before task p’, 0 otherwise

32 4.3. Optimization model

γkpm 1 if resource k completes task p on the mth visit of the task’s location,
0 otherwise

θgimp 1 if super-resource g travels to location i for the mth visit before sleep task p,
0 otherwise

4.3 Optimization model

4.3.1 Objective function

max z =
∑
p∈P

∑
l∈L

Vplepl (4.1)

The objective function (4.1) maximizes the total value achieved by completing tasks in
the military peacekeeping operation. The given value of each task being completed at a
certain skill level is multiplied by the proportion of the task being done at that skill level.
For uncompleted tasks, the proportions will be zero, ensuring that no value is added for
these tasks.

4.3.2 Constraints and requirements

Super-resource network constraints

agim − T (1− γkpm) ≤ tSTARTp g ∈ G, i ∈ I, k ∈ Kg,m ∈ Ni, p ∈ PLOCi (4.2)

bgim + T (1− γkpm) ≥ tENDp g ∈ G, i ∈ I, k ∈ Kg,m ∈ Ni, p ∈ PLOCi (4.3)

bgim ≥ tENDp − T (θgimp +
∑
k∈Kg

∑
d′∈D,
p′∈Pd′

∑
d∗∈D,

p∗∈Pd∗∩PLONG

FDIRd′d∗ F
CON
d′d∗ okpp′)

g ∈ GARMY , i ∈ I,m ∈ Ni, p ∈ PSLEEP (4.4)

bgim ≤ tSTARTp + T (1− θgimp +
∑
k∈Kg

∑
d′∈D,
p′∈Pd′

∑
d∗∈D,

p∗∈Pd∗∩PLONG

FDIRd′d∗ F
CON
d′d∗ okpp′)

g ∈ GARMY , i ∈ I,m ∈ Ni, p ∈ PSLEEP (4.5)

Chapter 4. Mathematical Model 33

Constraints (4.2) and (4.3) handle the hierarchy requirements associated with super- and
sub-resources. They state that for a task to be completed by a certain sub-resource, the
super-resource that sub-resource is a part of has to arrive at the task’s location before the
task begins, and can only leave after the task is completed. Constraints (4.4) and (4.5)
ensure no resources leave a location during sleep periods, unless they travel from a long
task ending during the night, to the location of a connected rest task with a direct start
condition. d∗ in (4.4) and (4.5) represent duplicate groups of only long tasks.

bgim + TTRAV ELgij ≤ agjn +M(1− yTRAV ELgimjn)
g ∈ G, i, j ∈ I,m ∈ Ni, n ∈ Nj , i 6= j (4.6)

∑
i∈I

∑
m∈Ni

∑
j∈I

∑
n∈Nj

TTRAV ELgij yTRAV ELgimjn +
∑
i∈I

∑
m∈Ni

(bgim − agim) = T g ∈ G

(4.7)

Constraints (4.6) specify that if a super-resource travels directly between two locations,
then it can only arrive at a location a period at least equal to the travel time TTRAV ELgij

after it has left from its previous location. Big M for constraints (4.6) equals the sum
of the end time T and the highest travel time for any super-resource between any two
locations, i.e. the highest TTRAV ELgij value. Constraints (4.7) ensure that, at all times, a
super-resource is either traveling or at a location.

agim ≤ TyLOCgim g ∈ G, i ∈ I,m ∈ Ni (4.8)

bgim ≤ TyLOCgim g ∈ G, i ∈ I,m ∈ Ni (4.9)

yLOCgim ≤
∑
k∈Kg

∑
p∈PLOC

i

γkpm g ∈ G, i ∈ I\(1, |I|),m ∈ Ni (4.10)

xkp ≤
∑
m∈Ni

yLOCgim g ∈ G, i ∈ I, k ∈ Kg, p ∈ PLOCi (4.11)

∑
m∈Ni

γkpm = xkp i ∈ I, k ∈ K, p ∈ PLOCi (4.12)

Constraints (4.8) and (4.9) assert that a super-resource cannot arrive or leave a location it is
not visiting. Constraints (4.10) limit unnecessary travel by stating that if a super-resource
visits a location for the mth time, then a sub-resource belonging to that super-resource has
to be assigned to a task in that location on that particular visit. Exceptions are the start
and end locations, as there are no tasks at these locations. Constraints (4.11) state that if

34 4.3. Optimization model

a sub-resource is assigned to a task, then it has to visit the task’s location at least once.
Constraints (4.12) couple the variables γ and x.

∑
i∈I

∑
m∈Ni

yTRAV ELgimjn = yLOCgjn g ∈ G, j ∈ I\1, n ∈ Nj , i 6= j (4.13)

∑
j∈I

∑
n∈Nj

yTRAV ELgimjn = yLOCgim g ∈ G, i ∈ I\|I|,m ∈ Ni, i 6= j (4.14)

Constraints (4.13) and (4.14) represent route continuity between locations for the super-
resources.

yLOCgim ≥ yLOCgi(m+1) g ∈ G, i ∈ I,m ∈ Ni\|Ni| (4.15)

To avoid symmetric solutions, constraints (4.15) state that a super-resource cannot visit a
location for the (m + 1)th time unless it has visited the location an m number of times
already.

Start- and end location

ag11 = 0 g ∈ G (4.16)

ag|I|1 ≥ agim g ∈ G, i ∈ I,m ∈ Ni (4.17)

Constraints (4.16) and (4.17) handle start and end locations for all super-resources. Con-
straints (4.16) specify that all super-resources start at location 1 at time zero, and (4.17)
state that all resources ultimately must arrive at location |I|. Constraints (4.16) and (4.17)
also ensure no super-resources can travel to the start location or from the end location.

Resource capacity constraints

∑
s∈S

CREQps epl =
∑
k∈K

∑
s∈S

wkpsl p ∈ P, l ∈ L (4.18)

∑
k∈K

∑
l∈L

wkpsl = CREQps qp p ∈ P, s ∈ S (4.19)

Chapter 4. Mathematical Model 35

wkpsl ≤ CRESksl xkp k ∈ K, p ∈ P, s ∈ S, l ∈ L (4.20)

Constraints (4.18) provide the proportion of a task that is carried out with each skill level.
Constraints (4.19) ensure that this proportion is only positive if a task is completed. They
also ensure that a task can only be completed if the task’s skill requirements are met, and
that the model does not award value to unnecessary work. Constraints (4.20) state that a
resource’s contribution to a task cannot be more than its own capacity.

xkp ≤
∑
s∈S

∑
l∈L

wkpsl k ∈ K, p ∈ P\PDIV (4.21)

xkp ≤
∑
s∈S

∑
l∈L

CRESksl CREQps k ∈ K, p ∈ PDIV (4.22)

Constraints (4.21) and (4.22) forbid the assignment of resources to tasks which they cannot
undertake. Constraints (4.21) state that, for indivisible tasks, xkp can only be set to 1 if k
contributes to the adding of value for task p, and that its total capacity contribution has to
be at least 1. For divisible tasks, wkpsl may be zero for resource k and hence not generate
any task value, even if k is assigned to task p. This occurs if the capacity assigned to
a divisible task exceeds the requirement of that task. The reason for exceeding capacity
without adding value is to reduce the duration it takes to complete a task. In this case,
constraints (4.19) and (4.20) do not provide any restrictions to the skill requirement for
resource k to be assigned to tasks p. Constraints (4.22) therefore make sure resource k is
not assigned to a divisible task unless it has the skills required to complete the task. Note
that these constraints imply that all capacities are above 1.

Task scheduling constraints

∑
k∈K

xkp ≥ qp p ∈ P (4.23)

∑
k∈K

xkp ≤ Rqp p ∈ P\PSLEEP (4.24)

∑
p∈PDUP

d

qp ≤ 1 d ∈ D (4.25)

Constraints (4.23) and (4.24) guarantee that a task can only be completed if one or more
resources are assigned to it, and that they cannot be assigned to a task unless that task is

36 4.3. Optimization model

selected. Constraints (4.24) also limit the number of resources that can work on a single
task. Sleep tasks are not subject to this limit. Constraints (4.25) make sure that tasks with
multiple time windows cannot be completed more than once, meaning that only one task
in a group d of duplicate tasks can be completed.

∑
g∈GARMY

ug = 1 (4.26)

xkp ≤ 1− ug g ∈ GARMY , k ∈ Kg, p ∈ P\PSLEEP (4.27)

Constraint (4.26) ensures that one army super-resource is assigned to the security post,
and constraints (4.27) make sure that sub-resources belonging to that super-resource are
not assigned to any tasks during the planning period, with the exception of sleep tasks.

Exclusive task constraints

tENDp − T (2− (xkp + xkp′)) ≤ tSTARTp′ + T (1− δpp′)
k ∈ K, p ∈ P, p′ ∈ PE , p 6= p′ (4.28)

tENDp′ − T (2− (xkp + xkp′)) ≤ tSTARTp + Tδpp′

k ∈ K, p ∈ P, p′ ∈ PE , p 6= p′ (4.29)

Constraints (4.28) and (4.29) deal with the exclusiveness of certain tasks, forcing all tasks
handled by resource k to either end before an exclusive task handled by the same resource
k, starts, or start after the exclusive task is completed. The binary variable δ ensures that
the same task is not affected by both constraints.

Sleep and long task constraints

xkp +
∑

p′∈PLONG
okpp′ ≥ 1 g ∈ GARMY , k ∈ Kg, p ∈ PSLEEP (4.30)

Constraints (4.30) require resources to be assigned to all sleep tasks, unless the resource
or other resources belonging to the same super-resource are occupied with a long task at
the time. This only applies to army resources.

tSTARTp −M(1− okpp′) ≤ tENDp′ k ∈ K, p ∈ PSLEEP , p′ ∈ PLONG (4.31)

Chapter 4. Mathematical Model 37

tSTARTp′ −M(1− okpp′) ≤ tENDp k ∈ K, p ∈ PSLEEP , p′ ∈ PLONG (4.32)

okpp′ ≤
∑
k′∈Kg

xk′p′ g ∈ GARMY , k ∈ Kg, p ∈ PSLEEP , p′ ∈ PLONG (4.33)

Constraints (4.31)–(4.33) make sure resources are allowed to undertake long tasks or rest
tasks during sleep periods. This is only the case for sleep tasks p overlapping with long
or rest tasks p′, and only for army resources k belonging to super-resource g where one
or more resources k′ are assigned to long or rest task p′. Constraints (4.31) and (4.32)
allow okpp′ to be 1 for sleep task p only when there is a long task or rest task p′ starting
before the end, and ending after the start of sleep task p. Constraints (4.33) force okpp′
to zero for sub-resource k if none of the sub-resources belonging to its super-resource are
assigned to the long or rest task p′. Thus, the variable okpp′ is zero unless requirements in
all three equations are met. Big M in constraints (4.31) and (4.32) equals the duration of
the shortest sleep task subtracted from the end time T .

Precedence constraints

∑
p′∈PDUP

d′

qp′ ≤
∑

p∈PDUP
d

qp d, d′ ∈ D, d 6= d′, FPRECdd′ = 1 (4.34)

tSTARTp′ + T (1− qp′) ≥ tENDp

d, d′ ∈ D, p ∈ PDUPd , p′ ∈ PDUPd′ , d 6= d′, FPRECdd′ = 1 (4.35)

Constraints (4.34) state that a task or one of its duplicates cannot be completed unless a task
in the group(s) of duplicate tasks with precedence over it are completed, and constraints
(4.35) set the start time for task p′ after the end time of task p. Constraints (4.35) are not
to be binding unless task p′ is completed, hence the term T (1− qp′).

Connected task and direct start constraints

∑
p∈PDUP

d

xkp ≤
∑

p′∈PDUP
d′

xkp′

g ∈ GARMY , k ∈ Kg, d, d′ ∈ D, d 6= d′, FCONdd′ = 1 (4.36)

xkp = xk′p g ∈ GARMY , k, k′ ∈ Kg, p ∈ PREST (4.37)

38 4.3. Optimization model

Constraints (4.36) deal with connected tasks, ensuring that that if task p is connected to
task p′, i.e. FCONdd′ equals 1, then any army resource k assigned to task p must also be
assigned to task p′. For pairs of connected tasks where both tasks need to be completed by
the same combination of resources, FCONdd′ and FCONd′d equal 1. When one of the connected
tasks is rest task p′, all resources assigned to task pmust be assigned to p′, but the opposite
is not true, and more resources may be assigned to p′ than p. Constraints (4.37) forces all
or no sub-resources in a super-resource to be assigned to rest task p if it is a rest task.

tENDp + FCONdd′ TTRAV ELgij ≥ tSTARTp′ g ∈ GARMY , i, j ∈ I
d, d′ ∈ D, p ∈ (PDUPd ∩ PLOCi), p′ ∈ (PDUPd′ ∩ PLOCj), d 6= d′, FDIRdd′ = 1 (4.38)

For some tasks, there is a requirement that another task starts directly after the first task
is completed. Constraints (4.38) ensure that these requirements are fulfilled, taking into
account travel time between the tasks’ locations.

Time scheduling constraints

tSTARTp ≥ TRLp qp p ∈ P (4.39)

tENDp ≤ TDDLp qp p ∈ P (4.40)

If a task is realized, constraints (4.39) make sure task p starts after its release time Rp, and
constraints (4.40) ensure its completion before its deadline Dp.

tENDp ≤ tSTARTp + TTASKp qp p ∈ P (4.41)

tENDp ≥ tSTARTp + TMIN
p TTASKp qp p ∈ P (4.42)

tENDp ≥ tSTARTp + TTASKp

(
CMAX
p − TMIN

p

CMAX
p − 1 qp

)

+ TTASKp

(
TMIN
p − 1∑

s∈S C
REQ
ps (CMAX

p − 1)

∑
k∈K

∑
s∈S

∑
l∈L

CRESksl Hpsxkp

)
p ∈ PDIV

(4.43)

Constraints (4.41)–(4.43) handle task duration and ensure that tasks are completed in a
continuous fashion. Constraints (4.41) make sure that completing a task does not take

Chapter 4. Mathematical Model 39

longer than necessary, while constraints (4.42) and (4.43) limit the shortest time a task
can take to complete. TTASKp is the given time it takes to complete task p when minimum
capacity requirements are met, and TMIN

p is the minimum proportion of time it may take if
the capacity requirements are exceeded. For indivisible tasks, it is not possible to shorten
the duration and TMIN

p equals 1. For divisible tasks the duration can be shortened by
the proportion of exceeding capacity down to the minimal proportion TMIN

p . Constraints
(4.43) set the end time of task p according to this. A deduction of constraints (4.43) is
presented in Appendix A.

Non-negativity constraints

wkpsl ≥ 0 k ∈ K, p ∈ P, s ∈ S, l ∈ L (4.44)

epl ≥ 0 p ∈ P, l ∈ L (4.45)

tSTARTp ≥ 0 p ∈ P (4.46)

tENDp ≥ 0 p ∈ P (4.47)

agim ≥ 0 g ∈ G, i ∈ I,m ∈ Ni (4.48)

bgim ≥ 0 g ∈ G, i ∈ I,m ∈ Ni (4.49)

Binary requirements

xkp ∈ {0, 1} k ∈ K, p ∈ P (4.50)

qp ∈ {0, 1} p ∈ P (4.51)

ug ∈ {0, 1} g ∈ G (4.52)

yLOCgim ∈ {0, 1} g ∈ G, i ∈ I,m ∈ Ni (4.53)

yTRAV ELgimjn ∈ {0, 1} g ∈ G, i, j ∈ I,m ∈ Ni, n ∈ Nj (4.54)

40 4.3. Optimization model

okpp′ ∈ {0, 1} k ∈ K, p, p′ ∈ P (4.55)

δpp′ ∈ {0, 1} p, p′ ∈ P (4.56)

γkpm ∈ {0, 1} i ∈ I, k ∈ K,m ∈ Ni, p ∈ PLOCi (4.57)

θgimp ∈ {0, 1} g ∈ G, i ∈ I,m ∈ Ni, p ∈ PSLEEP (4.58)

Constraints (4.44)–(4.49) ensure non-negativity for continuous variables. Constraints (4.50)–
(4.58) enforce binary values for all binary variables.

Chapter 5

Decomposition Solution
Approach

This chapter presents an alternative mathematical model to solve the PTTP, where possible
travel routes for the resources are predetermined, and the optimization model selects an
optimal combination of routes. Because the route generation is removed from the compact
model and carried out as a separate operation, this alternative model can be regarded as a
decomposition of the compact model in Chapter 4, hence the title Decomposition Solution
Approach. Section 5.1 presents the new definitions and the alternative mathematical for-
mulation. Section 5.2 follows, offering a description of the three methods used to generate
travel routes: One exact method, and two heuristic methods.

The motivation for testing a decomposition solution approach is twofold. Firstly, because
the PTTP can be interpreted as a two-tier problem with movement of super-resources
between locations on one level and task assignment to resources on the other, its structure
makes it well suited to be decomposed accordingly. Secondly, the results attained by
Debels and Vanhoucke (2007), Zamani (2011), Sprecher (2002), Rihm and Trautmann
(2014), Trautmann and Schwindt (2005) and Tian et al. (2014) carrying out a decomposi-
tion approach, are strictly positive.

5.1 Decomposed Model

The essential difference between the compact model and the decomposed model is that in
the decomposed model, the travel routes for resources are not a variable, but a parameter
of which one route has to be selected for each resource for the given planning period. In

42 5.1. Decomposed Model

mathematical terms, this means that the variables yLOCgim and yTRAV ELgimjn become param-
eters Y LOCrgim and Y TRAV ELrgimjn , and that the variable λrg is added to constraints 4.6–4.11.
Furthermore, constraints 4.13–4.17, 4.53, and 4.54 are removed, and 5.7 and 5.12 added.
The model is otherwise equivalent to the compact model presented in Chapter 4. For this
reason, only the constraints that differ from the compact model are presented here. The
entire decomposed model is given in Appendix B.

5.1.1 Definitions

Indices
g Super-resource
k Sub-resource
p Task
i, j Location
m,n Visit number of a location
r Travel route

Sets
G Set of super-resources
Kg Set of sub-resources that belong to super-resource g
I Set of locations including dummy locations 1 and |I|
PLOCi Subset of tasks that are located at location i
Ni Set of possible visits to location i
Rg Set of possible routes for super-resource g

Parameters
TTRAV ELgij Travel time for super-resource g between locations i and j

Y TRAV ELrgimjn 1 if for route r, super-resource g travels directly between its mth

visit at location i and nth visit at location j, 0 otherwise

Y LOCrgim 1 if for route r, super-resource g visits location i for the mth time,
0 otherwise

T End time of operation

M Big M

Chapter 5. Decomposition Solution Approach 43

Variables
xkp 1 if resource k is assigned to task p, 0 otherwise

agim Arrival time of super-resource g at location i for the mth time

bgim Departing time of super-resource g from location i for the mth time

γkpm 1 if resource k completes task p on the mth visit of the task’s location,
0 otherwise

λrg 1 if super-resource g travels route r

5.1.2 Constraints and requirements

bgim + TTRAV ELgij ≤ agjn +M(1−
∑
r∈Rg

λrgY
TRAV EL
rgimjn)

g ∈ G, i, j ∈ I,m ∈ Ni, n ∈ Nj , i 6= j (5.1)

∑
r∈Rg

∑
i∈I

∑
m∈Ni

∑
j∈I

∑
n∈Nj

λrgT
TRAV EL
gij Y TRAV ELrgimjn +

∑
i∈I

∑
m∈Ni

(bgim − agim) = T

g ∈ G (5.2)

Constraints (5.1) specify that if a super-resource travels directly between two locations,
then it can only arrive at a location a period at least equal to the travel time TTRAV ELgij

after it has left from its previous location. Big M for constraints (5.1) equals the sum
of the end time T and the highest travel time for any super-resource between any two
locations, i.e. the highest TTRAV ELgij value. Constraints (5.2) ensure that, at all times, a
super-resource is either traveling or at a location.

agim ≤
∑
r∈Rg

λrgTY
LOC
rgim g ∈ G, i ∈ I,m ∈ Ni (5.3)

bgim ≤
∑
r∈Rg

λrgTY
LOC
rgim g ∈ G, i ∈ I,m ∈ Ni (5.4)

∑
r∈Rg

λrgY
LOC
rgim ≤

∑
k∈Kg

∑
p∈PLOC

i

γkpm g ∈ G, i ∈ I\(1, |I|),m ∈ Ni (5.5)

xkp ≤
∑
m∈Ni

∑
r∈Rg

λrgY
LOC
rgim g ∈ G, i ∈ I, k ∈ Kg, p ∈ PLOCi (5.6)

44 5.1. Decomposed Model

Constraints (5.3) and (5.4) assert that a super-resource cannot arrive or leave a location it
is not visiting. Constraints (5.5) limit unnecessary travel by stating that if a super-resource
visits a location for the mth time, then a sub-resource belonging to that super-resource has
to be assigned to a task in that location on that particular visit. Exceptions are the start
and end locations, as there are no tasks at these locations. Constraints (5.6) state that if a
sub-resource is assigned to a task, then it has to visit the task’s location at least once.

∑
r∈Rg

λrg = 1 g ∈ G (5.7)

Constraints (5.7) state that for all super-resources, exactly one route must be selected from
the given set of possible routes.

Non-negativity constraints

agim ≥ 0 g ∈ G, i ∈ I,m ∈ Ni (5.8)

bgim ≥ 0 g ∈ G, i ∈ I,m ∈ Ni (5.9)

Binary requirements

xkp ∈ {0, 1} k ∈ K, p ∈ P (5.10)

γkpm ∈ {0, 1} i ∈ I, k ∈ K,m ∈ Ni, p ∈ PLOCi (5.11)

λrg ∈ {0, 1} g ∈ G, r ∈ Rg (5.12)

Constraints (5.8) and (5.9) ensure non-negativity for continuous variables. Constraints
(5.10)–(5.12) enforce binary values for all binary variables.

Chapter 5. Decomposition Solution Approach 45

5.2 Travel Route Generation

This section describes a labeling algorithm method used to generate feasible travel routes
for all super-resources in a battlegroup. The algorithm utilizes partial routes, and extends
them for all possible additional locations in multiple stages. The result is a set of possible
travel routes for each super-resource which determine the parameters Y TRAV ELrgimjn and
Y LOCrgim described in Section 5.1. Y TRAV ELrgimjn divides each travel route r of super-resource
g into travel distances, from visit number m at location i to visit number n at location j.
Y LOCrgim equals 1 for all visits m to locations i included in route r for super-resource g. The
optimization model presented in Section 5.1 finds the optimal combination of routes for a
battlegroup, to find the best solution value.

5.2.1 Label data

For each super-resource in the given battlegroup, the labeling algorithm calculates travel
routes. For every location in the travel route, a label keeps track of the state of parameters
such as the time used up to this point. The result is multiple possible travel routes, each
unique for a certain super-resource.

A label L is written as L = (i, t, c, l, r), and contains the following information:

• Current location, i. This is the last location visited for a complete or incomplete
travel route.

• Minimum time spent from the beginning of the planning period, t, when the super-
resource is ready to leave location i.

• The least amount of time that can elapse, c, since the super-resource’s last visit to
base camp.

• A binary notation, l, indicating whether or not the super-resource is visiting a lo-
cation where it could be assigned to a long task. If so, l is True, and if not, l is
False.

• Finally, the label contains the commenced travel route, r, consisting of a list of
all locations the super-resource has visited, including the current visit to i. The
locations are given in chronological order of travel, and a location is included again
for each new visit.

For each super-resource, the initial label is L0 = (1, 0, 0, False, [1]). L0 represents a
partial travel route where location 1, the dummy start location, is visited at time zero, and
the super-resource is not able to be assigned to a long task. This is referred to as an active
label, as it can, and must, be extended with additional travel. When the current location i
of a label is set to the end location, the label is no longer active. This is because resources
cannot travel from the dummy end location to any other location, and hence the label

46 5.2. Travel Route Generation

cannot be further extended. A label that cannot be extended is referred to as a finalized
label. All labels for a super-resource have to be finalized before the algorithm moves on
to generate routes for the next super-resource.

5.2.2 Extending a travel route

Active labels must be extended. A label being extended is removed from the set of active
labels and referred to as the current label. If the current label is Lcurrent = (i, t, c, l, r),
a new active label Lnew is created for all viable locations apart from i, where each viable
location j results in a valid travel route r(Lnew). The pseudocode for label extension
and data configuration of new labels is presented in Algorithm 1. The criteria for valid
travel routes and the function GETROUTEEXTENSION are explained in Section 5.2.3. The
minimum time for the new label, t(Lnew), is calculated as t(Lcurrent) plus the minimum
amount of time the super-resource g must use until it is able to travel from j, minTime.
minTime is the aggregate of the travel time TTRAV ELij from i to j, the duration time for
a task p, and the waiting time if p is not released when g arrives at j. Hence, t(Lnew) is
always equal to or greater than t(Lcurrent). c(Lnew) equals zero if location j is the base
camp location, otherwise it equals c(Lcurrent) plus minTime. l(Lnew) is True if it is
possible for the super-resource to undertake a long task at location j, and r(Lnew) is equal
to r(Lcurrent), but with the addition of j as the last location visited.

Algorithm 1 Pseudocode describing label generation.

1: procedure GENERATELABELS(super-resource g, set Pj of solvable tasks for the
super-resource at each location, set I of locations, travel time parameter TTRAV ELgij)

2: L0 = (1, 0, 0, False, [1])
3: LA ← L0
4: LF ← Ø
5: while Set LA of active labels is not empty do
6: LC ← first element of LA
7: for locations j | j 6= 1 do
8: Empty label LE is created.
9: if j 6= i(LC) then

10: canVisit, minTime, canDoLong← GETROUTEEXTENSION(...)
11: if canVisit or j = end location then
12: r(LE)← r(LC)
13: j added as last element in r(LE)
14: i(LE)← j
15: if j is base camp then
16: t(LE)← t(LC) + minTime + TTRAVEL

gij

Chapter 5. Decomposition Solution Approach 47

17: c(LE)← 0
18: l(LE)← False
19: LA ← LE

20: else if j is end location then
21: t(LE)← t(LC) + TTRAVEL

gij

22: c(LE)← 0
23: l(LE)← False
24: LF ← LE

25: else
26: t(LE)← t(LC) + minTime + TTRAVEL

gij

27: c(LE)← c(LC) + minTime + TTRAVEL
gij

28: l(LE)← canDoLong
29: LA ← LE

30: end if
31: end if
32: end if
33: end for
34: end while
35: return LF
36: end procedure

One current label may result in multiple new active labels, which can each be further
extended. We refer to this method of extending travel routes as branching. An example of
branching, and of extending travel routes, is given if Figure 5.1. The initial label, L0, is
marked in blue. It is the first and only active label when the branching begins, and thus
removed from the set of active labels, and selected as the first current label. If we assume
that location 5 is the dummy end location, a new label L1 = (5, 0, 0, False, [1 − 5]) will
be a possible extension, and a final label. If there were no more valid travel destinations
from location 1, the travel route extension for the given super-resource would be complete,
as there are no more active labels. However, traveling to base camp is always allowed,
resulting in L2 = (2, 0, 0, False, [1 − 2]) as an extension of L0 and a new active label.
Note that base camp is location 2. Assuming location 3 may be visited after the visit to
base camp, L3 = (3, 13, 13, False, [1 − 2 − 3]) becomes a new active label in the next
iteration, in addition to L4 = (0, 24, 0, False, [1− 2− 5]) as a final label, both extended
from the current label L2. The active label must again be extended, until there are no more
active labels. The result in this example is the six final labels marked in light green in
Figure 5.1, and thus six possible travel routes for the given super-resource.

48 5.2. Travel Route Generation

Figure 5.1: Illustration of the generation of travel routes using label branching.

5.2.3 Valid travel routes

The travel route generator does not discriminate between travel routes that can result in a
high, or a low solution value. Moreover, when generating a set of travel routes for a given
resource, the labeling algorithm does not consider the travel routes of other resources.
It can, however, limit the generation of travel routes that are always unfeasible for a
certain super-resource, regardless of which travel routes the optimization model selects
for the other resources in the battlegroup. To minimize the generation of unfeasible routes,
some of the constraints from the mathematical model are implemented in the travel route
generating algorithms. These are described below.

• Super-resources must start at the dummy start location and end up at the dummy
end location. Hence, as stated in Section 5.2.1, all travel routes begin with the start
location and end with the end location.

• Super-resources must return to base camp to sleep. Therefore, resources can maxi-
mum be as many hours as the length of the work day away from base camp, unless
assigned to a long task.

Chapter 5. Decomposition Solution Approach 49

• Super-resources may only travel to locations where there is at least one suitable task
its sub-resources are able to complete during that visit.

– There cannot be more visits to a location than there are suitable tasks there for
a certain super-resource.

– There must exist a task at the considered location with a deadline such that the
super-resource has time to travel to the location and complete the task before
the deadline.

– A super-resource cannot arrive at a location unless a task it is able to undertake
at that location is either long, or has a release time early enough for the super-
resource to complete it and then make it back to base camp before the working
day is over.

– Only tasks that one or more of the super-resource’s sub-resources have the
skills to contribute to are considered, meaning that a sub-resource must have a
capacity of one or more for at least one of the skills required.

– The tasks must be possible to complete with the combination of sub-resources
in the given battlegroup. Meaning that the combination of all sub-resources
must possess the required amounts of capacities of the required skills.

– The tasks cannot be subject to precedence from, connected to, or have direct
start conditions with another task, if that other task is not possible to complete
with the combination of resources in the battlegroup considered.

• Super-resources cannot travel to any location unless it has time to travel to that
location, complete a task and travel to the end location before the end time of the
planning period.

When extending a travel route, locations recognizing these conditions are added as sepa-
rate extensions, each creating a new label. Furthermore, the base location and the dummy
end location are always added as two separate labels because the generator always leaves
enough time to travel back to these locations. A simplified pseudocode describing how
valid locations for extending a label are found, is presented in Algorithm 2. This function
returns the parameters canV isit, minTime and canDoLong which are further used in
Algorithm 1. These parameters respectively indicate whether a location can be visited, the
minimum time the super-resource must use to get to the location and complete a task there,
and whether the super-resource may undertake a long task at this location or not.

50 5.2. Travel Route Generation

Algorithm 2 Pseudocode describing the determination of valid locations for extending a
label.

1: procedure GETROUTEEXTENSION(super-resource g, location for consideration j,
label LC , set Pj of solvable tasks for g at location j, T , TTRAV ELij , TTASK , TMIN ,
PLONG , PSLEEP)

2: canVisit← False
3: canDoLong← False
4: minTime← T
5: if number of solvable tasks at j > number of visits to j then
6: for task in Pj do
7: if deadline of task ≥ t(LC) + TTRAV ELj,end + TTASKTMIN then
8: if T− t(LC) ≥ TTRAV ELij +TTASKTMIN+TTRAV ELj,end then
9: if l(LC) or task is sleep task then

10: canVisit← True
11: minTime← minimum of the duration time of task and the
12: duration time plus time spent waiting for the release of task
13: end if
14: if TTRAV ELij +TTASK TMIN+TTRAV ELj,END ≤ 16− c(LC) then
15: canVisit← True
16: minTime← minimum of the duration time of task and the
17: duration time plus time spent waiting for the release of task
18: end if
19: if l(LC) then
20: canVisit← True
21: canDoLong← True
22: minTime← minimum of the duration time of task and the
23: duration time plus time spent waiting for the release of task
24: end if
25: end if
26: end if
27: end for
28: end if
29: return canVisit, minTime, canDoLong
30: end procedure

5.2.4 Parameters for optimization

When all travel routes are calculated, Y TRAV ELrgimjn and Y LOCrgim are given the appropriate
parameter values. All travel routes are created as discussed in Section 5.2.2, making each
route unique for a given super-resource. Because only a string of visited locations is
logged, visit numbers are not assigned in the route generator. In addition, tasks are not

Chapter 5. Decomposition Solution Approach 51

assigned to a particular visit. In other words, the travel routes may indicate a super-
resource travels from location 3 to location 2 and back to location 3, but does not dis-
tinguish between completing task 1 at location 3 on the first visit and task 2 on the second
visit, or the other way around. Hence, there is no symmetry in the travel routes generated.
Travel routes can be the same for multiple super-resources, but because different skill
levels distinguish sub-resources of the same type from each other, and several similar
resources may be required to complete a single task, the exact solution method must keep
all routes.

From the final labels generated, only the travel routes are of interest to set the parameters.
The travel routes are segmented to provide the data required for individual travel distances
and visited locations, as showed in Algorithm 3. For a problem with one super-resource
with two possible travel route, from location 1 to location 3 or from location 1 via location
2 to location 3, the Y TRAV ELrgimjn parameter would consist of the element (1 1 1 1 3 1) 1 for
travel route 1, and (2 1 1 1 2 1) 1 and (2 1 2 1 3 1) 1 for travel route 2.

Algorithm 3 Pseudocode describing generation of travel route parameters.

1: procedure GENERATEPARAMETERDATA()
2: Reads instance data from datafile
3: for super-resource in battlegroup do
4: travelData ← Ø
5: visitData ← Ø
6: final labels← GENERATELABELS(super-resource, instance data)
7: for label in final labels do
8: for location in travel route of label do
9: travelData ← [label,super-resource,location,visit,next location,visit]

10: visitData ← [label,super-resource,location,visit]
11: end for
12: end for
13: Saves travelData, visitData to other datafile
14: end for
15: end procedure

5.3 Heuristic methods to generate travel routes

A possible measure to reduce computational time and improve the performance of the
decomposition model is to limit the number of travel routes generated. A non-exact,
heuristic approach is therefore introduced. Such an approach looks to remove routes that
are assumed to be less likely to be part of an exact optimal solution. Theoretically, if a
heuristic method is able to only remove redundant routes, the problem size will shrink and
the computation time will shorten, but the solutions will be equivalent to those provided

52 5.3. Heuristic methods to generate travel routes

by an exact model. If the heuristic method removes routes that would otherwise be part
of an exact optimal solution, then the solution will necessarily be suboptimal. Hence, the
aim is to reduce the number of routes generated by only removing redundant routes.

In this section, we present two heuristic methods and their components. The first method is
based on three different assumptions about the PTTP. It assumes that the least able super-
resource is assigned to the security task, that the number of locations a super-resource visits
during an operation is limited, and that tasks with a higher value per capacity required are
more likely to be part of an optimal solution. The first method uses these assumptions to
steer the travel route generator and reduce the number of routes generated. The second
heuristic method looks to reduce the number of generated routes even more. Like the
first method, it assumes that the least able super-resource is assigned to the security task,
and that the number of locations a super-resource visits during an operation is limited.
However, it differs by prioritizing total task value at a location, rather than value per
capacity required. Additionally, it assumes that super-resources with equal skill sets will
not travel the same routes in an optimal solution, and tasks that require more than two
super-resources to complete them are not likely to be selected. An overview of the two
heuristic methods’ components is given in Table 5.5.

The two heuristic methods have different challenges and advantages. The first method is
simpler as only the branching rate has to be decided upon. It is also not as dependent on
what super-resources a test instance includes. It is probable that the branch rate will have to
increase for larger instances, for the heuristic to reduce the number of routes by an amount
that makes it efficient. The second method is more suitable for larger instances because
one of its components, dividing routes among similar super-resources, is dependent on
there being several of the same type of super-resource in an instance, which only occurs
for larger instances. What could prove challenging for the second method is ensuring that
all its components work in tandem and are adjusted in such a way that the heuristic reduces
the number of routes enough to make the problem faster to solve, but does not remove too
many favorable routes. A possible advantage of basing the reduction of routes on multiple
components, is that fewer of the most favorable routes might be removed. For example,
dismissing 50% of 20 routes based on one criteria, might cut off more optimal routes than
cutting 50% off based on five different criteria.

Table 5.5: Overview of components that constitute heuristic methods 1 and 2.

Heuristic method 1 Heuristic method 2
Assigning the security task Assigning the security task
Limiting number of location visits Limiting number of location visits
Branching strategy: task value/capacity re-
quired

Branching strategy: task value

Dividing routes among similar super-resources
Limiting the number of super-resources per task

Chapter 5. Decomposition Solution Approach 53

5.3.1 Assigning security task

In the exact decomposed model, which super-resource is assigned to the security task, is
decided upon in the optimization model. Because the security task does not have any
skill or capacity requirement, but rather just demands that its assigned super-resource
pays full attention to the task during the entire planning period, an obvious simplification
of the PTTP is to assign the least capable super-resource to security beforehand. To
decide which super-resource is the least capable, the model calculates the number of
tasks each super-resource can contribute to based on skill and capacity requirements, as
illustrated in Algorithm 4. Of the super-resources that can be assigned to the least amount
of tasks, the one with the lowest total capacity across all of its sub-resources is assigned
to security. By predetermining the assignment of the security task, one super-resource
is, in effect, removed from the problem. This restricts the problem size by reducing the
number of possible travel routes for the assigned super-resource to one, and limiting the
possible combinations of routes for the rest of the battlegroup because fewer resources
will necessarily limit the number of tasks that can be completed and routes that are then
feasible.

Algorithm 4 Pseudocode describing the assignment of the security task.

1: procedure ASSIGNTOSECURITY(super-resources G, resource skills and capacities,
tasks P)

2: securityResource ← 0
3: leastNumberOfTasks ← length of (P)
4: lowestCapacity ← largest possible amount of capacity
5: for superResource in G do
6: numberOfTask ← 0
7: for task in P do
8: if superResource has skill to undertake task then
9: numberOfTask ← numberOfTask + 1

10: end if
11: end for
12: if numberOfTask < leastNumberOfTasks then
13: securityResource ← superResource
14: else if numberOfTask ≤ leastNumberOfTasks then
15: if capacity ofsuperResource < lowestCapacity then |
16: securityResource ← superResource
17: end if
18: end if
19: end for
20: return securityResource
21: end procedure

54 5.3. Heuristic methods to generate travel routes

5.3.2 Limiting location visits

In reality, super-resources do not usually have time to travel to multiple locations in a
single day, as most travel times and task duration times make it unpractical. This will
most likely also be the case for the solutions provided by the exact decomposed model.
Both heuristic methods therefore restrict the number of locations a super-resource can visit
during the operation. The limit is set such that it is equivalent to a super-resource visiting
only one other location apart from base camp, on average, once each day. To provide some
flexibility, the limitation applies for the entire operation period, and not for each day. For
example, if it leads to a better solution, a resource still has the option to visit two locations
in one day, and then stay at base camp another day, without breaking the restriction.
The restriction leads to one small modification in line 11 of GENERATELABELS from
Algorithm 1. This modification is described in Algorithm 5, and assumes that there are
seven days at locations and seven nights at base camp, in addition to traveling from the
dummy start location, and to the dummy end location. The maximum number of travels is
therefore 16.

Algorithm 5 Pseudocode describing how a maximum number of location visits is
enforced.

procedure GENERATELABELS(super-resource g, set Pj of solvable tasks for the
super-resource at each location, set I of locations, travel time parameter TTRAV ELgij)
...

if (canVisit and length of(r(LC) ≤ 16) or j = end location then
r(LE)← r(LC)
j added as last element in r(LE)
i(LE)← j

end if
...
end procedure

5.3.3 Limiting super-resources per task

A single task is often completed by only a couple of super-resources in actual operations.
The exact decomposed approach does not take this into account, and therefore will gener-
ate several routes which are based on tasks being possible to be completed by more than
two super-resources, even if the routes are less likely to be part of a good solution. To
avoid generating these routes, the second heuristic method takes into account a maximum
number of super-resources that can work together on a task. This reduces the total number
of generated routes, when compared to the exact decomposition method. When calculating
possible tasks for a certain super-resource, the capacity requirement of each available task
is measured against the combined capacity of the super-resource and a selection of one

Chapter 5. Decomposition Solution Approach 55

less than the given limit other super-resources. This is illustrated in Algorithm 6.

Algorithm 6 Pseudocode describing the selection of tasks being possible to complete with
a limited number of super-resources.

1: procedure CANDOTASKINCOMBINATION(super-resource g, task p, set of all super-
resources G, limit of super-resources per task, security resource, skills and capacities
of resources)

2: Creates all possible combinations of limit − 1 number of super-resources from G
3: for combination in combinations do
4: canDoTask ← True
5: combined skills and capacities ← capacity of super-resource
6: for SR in combination do
7: if SR 6= security resource and SR 6= g then
8: combined skills and capacities← capacity of SR
9: end if

10: end for
11: if capacity requirement of task ≥ combined skills and capacities then
12: canDoTask ← False
13: end if
14: if canDoTask then
15: return True
16: end if
17: end for
18: return False
19: end procedure

5.3.4 Dividing routes among similar super-resources

Battlegroups frequently consist of multiple super-resources that are of the same type.
Resources of the same type possess the same skill set. These super-resources have the
same possible travel routes, but we assume that in most cases, there is no need for more
than one to travel the exact same route. Therefore, the second heuristic method generates
routes for one of a certain type of super-resource, and then divides those routes equally
among equivalent super-resources, as described in Algorithm 7. This way, the number
of generated routes for two super-resources of the same type, for example, is halved. A
special case is the travel route only going from the start location, to base camp and then to
the end location, which all resources must have as not to produce unfeasible solutions in
the optimization model. This heuristic will be more effective for larger problems, where
there is a higher probability of having multiple identical super-resources.

56 5.3. Heuristic methods to generate travel routes

Algorithm 7 Pseudocode describing how travel routes are divided among resources of the
same type.

1: procedure GENERATEPARAMETERDATA()
2: Reads instance data from datafile
3: for SRType in TypesOfResources do
4: numberOfType ← length of(SRType)
5: final labels ← GENERATELABELS(SRType[first element], instance data)
6: for superResource in SRType do
7: travelData ← Ø
8: visitData ← Ø
9: for first label and then every numberOfType labels in final labels do

10: for location in travel route of label do
11: travelData ← [label, SR, location, visit, next location, visit]
12: visitData ← [label, SR, location, visit]
13: end for
14: end for
15: Saves travelData, visitData to other datafile
16: end for
17: end for
18: end procedure

5.3.5 Branching strategy

As described in Section 5.2, the travel route generator applies a branching strategy when
generating routes for super-resources. For the exact method, it has to generate all possible
routes, such that the optimization model has all feasible alternatives available, and can
find the optimal solution. A heuristic approach is not bound by this requirement. By only
selecting the most promising choices for travel every time the model is about to add a
location to a travel route being generated, the total number of routes generated could be
greatly reduced. The two heuristic methods differ in their assessments of what locations
should be prioritized. For the first method, the total value and total capacity required for
all tasks the given resource can be assigned to at each location, are calculated. Only a
predetermined percentage of the locations with the highest combined value per capacity
required needs to be selected. Total task value is divided by the capacity required to
prioritize locations where value is easier to realize. If only total task value was considered
for this heuristic method, it is possible that many of the tasks would not be completed
because resources lacked the capacity required. This increases the likelihood that routes
generated based on task value alone will not be part of an optimal solution.

Because only tasks that can be completed by one or two super-resources are considered in
the second heuristic, the task capacities required will more closely match the resources’

Chapter 5. Decomposition Solution Approach 57

abilities than for the first method. Hence resources lacking the capacity to complete tasks
is not as likely for the second heuristic method as it is for the first method. The second
heuristic method therefore only considers total task value when prioritizing locations to
minimize the risk of removing travel routes including the most valuable tasks. As with
the first method, a given percentage of the locations is branched on, and the rest of the
locations are discarded. Algorithm 8 describes the branching strategy for the second
heuristic, where total task value at a location is prioritized. The process is similar for
the first heuristic method.

Algorithm 8 Pseudocode describing how locations are removed when using the heuristic
branching strategy.

1: procedure GENERATEPRIORITIZEDLOCATIONS(super-resource g, locations I, cur-
rent label LC , solvable tasks Pi for g at each locations at t(LC), branching rate)

2: possibleLocations ← 0
3: valueAtLocationList ← Ø
4: for i in I do
5: if canVisit for i is True then
6: possibleLocations ← possibleLocations + 1
7: valueAtLocationList(possibleLocations) ← total value of task in Pi
8: end if
9: end for

10: bestLocationsList← sort valueAtLocationList
11: remove thepossibleLocations × rate last items from bestLocationsList
12: return bestLocationsList
13: end procedure

Chapter 6

Instance Generator and Input
Data

This chapter offers a description of the method used to generate instances that can be
used to test the mathematical models presented in Chapters 4 and 5. This method will
from here on be referred to as the instance generator. Section 6.1.1 presents the overall
structure of the instance generator, and an overview of the input data required to produce a
test instance using this method. Sections 6.1.2–6.1.4 provide more information about the
different segments that make up the generator. Lastly, Section 6.2 describes the input data
used in the generation of test instances.

6.1 Instance Generator

6.1.1 Structure of instance generator

The instance generator is required to produce a text file of the sets and parameters referred
to in Sections 4.2 and 5.1.1. The sets and parameters can be segmented into three main
categories, namely resources and their skills, tasks and their requirements, and locations
and travel times. The structure of the instance generator is based on this segmentation.

Generating values is based on predetermined (fixed) data of resources and their skill
capacity, and on randomly generated data of tasks and their requirements. Locations,
travel times, and skill level are initially randomly generated, and then fixed. Fixed data is
data that is equivalent for all test instances, and of which the generator can draw different
amounts of on accord. For example, it is possible to draw five super-resources for one

60 6.1. Instance Generator

instance, and ten super-resources for another, or five locations for one instance and ten
for another. They will, however, be the same five and ten super-resources and locations
every time those numbers are drawn. Furthermore, regarding resources, the instance with
ten super-resources will include the same resources as the instance with five resources.
Adjustable parameters are the input data that can be varied for every instance, and are
presented in Appendix D. The predetermined data and adjustable parameter values used to
generate the random data are created in cooperation with FFI.

A visual representation of the instance generator is given in Figure 6.1. In the figure,
adjustable parameters are given in blue and predetermined data is given in light green.
Both the blue and light green boxes are input data for the process-boxes that they are
placed above in the figure. The data in bold is data input for more than one process, and is
therefore repeated in multiple boxes. The desired output is given in turquoise and linked
to the mathematical models’ sets and parameters in Table 6.1, and the new abbreviations
used for resource data are explained in Table 6.2 in the following section.

Table 6.1: Linking the terms in flow chart to sets and parameters in mathematical model.

Output of flowchart
Equivalent
to set or
parameter

BelongToArmyResource GARMY

BelongToSuperResource Kg

BelongToTaskExclusive PE

BelongToTaskDivisible PDIV

BelongToLocation PLOC
i

BelongToTaskLong PLON G

BelongToTaskRest PREST

BelongToTaskSleep PSLEEP

BelongToTaskDuplicate PDUP
d

MaximumVisits Ni

Ttravel TT RAV EL
gij

Ttask TT ASK
p

Tmin TMIN
p

Releasetime TRL
p

Deadline TDDL
p

CapacityRequirement CREQ
ps

CapacityMaximum CMAX
p

CapacityResource CRES
ksl

TasksSkills Hps

Value Vpl

Precedence FP REC
dd′

Connected FCON
dd′

DirectStart FDIR
dd′

Chapter 6. Instance Generator and Input Data 61

Fi
gu

re
6.

1:
Fl

ow
ch

ar
to

ft
he

pr
oc

es
se

s
in

in
st

an
ce

ge
ne

ra
to

r.

62 6.1. Instance Generator

6.1.2 Resource data

An overview of the predetermined data is presented in Table 6.2. This data is a refor-
mulation of the battlegroup description that is used for all test instances. The battlegroup
description includes what super-resources and respective sub-resources it is made of, what
type the sub-resources are, and what skill capacity each type has of each skill. This requires
the number of skills to be predetermined as well. The battlegroup description is provided
in Appendix C. An example of a battlegroup, bg, consisting of super-resources 1–9 and
their respective sub-resources is: {1:[1], 2:[2], 3:[3,4,5], 4:[6], 5:[7,8,9], 6:[10], 7:[11],
8:[12,13,14,15], 9:[16,17,18,19,20]}. An example of the same super-resources and their
sub-resource types, bgt, is: {1:[1], 2:[2], 3:[3,3,3], 4:[4], 5:[5,5,5], 6:[6], 7:[7], 8:[8,8,8,8],
9:[9,9,9,10,10]}. Here super-resource 9 consists of sub-resources 16, 17, 18, 19, and 20,
of where 16, 17, and 18 are of type 9, and 19 and 20 are of type 10.

Table 6.2: Overview of predetermined data required to create test instances.

Predetermined data Description
Equivalent
to set or
parameter

bg Battlegroup described in terms of super-resources
and their respective sub-resources

bgt Battlegroup described in terms of super-resources
and the type of sub-resources they consist of

rsd Resource skill data describing the skill capacity
each type of sub-resource has of each skill

nSkills Number of different resource skills S
nSkillLevels Number of resource skill levels L

We use two different skill levels, where excellent is the high skill level, and sufficient is
the low skill level. All resources of the same type have the same set of skills, given by
the predetermined resource skill data. The same type of resources do not, however, need
to have the same skill level for the same skill. What skill level a resource has for each
of its skills, is randomly assigned to a certain extent. In most cases, army resources are
trained to be very good at the skills they specialize in. This means that it is more likely for
a skill level to be excellent than sufficient. This is taken into consideration in the instance
generator by imposing a parameter, pSuff, that represents the probability of a skill level
being sufficient.

6.1.3 Location and travel data

Location and travel data is based on randomly generated points on a two-dimensional
coordinate system, where the only limitation is the size of the coordinate system. The
size of the coordinate system is such that it is possible to travel from base camp to any

Chapter 6. Instance Generator and Input Data 63

other location, have time to complete a task, and travel back to base camp before the end
of a workday. The travel times between locations is assumed to have a 1:1 relation with
the linear distance between locations, meaning that if there is a distance of 4 between
two locations, then the travel time between those locations is four hours. In the instance
generator, it is assumed that supporting resources have negligible travel times, and that all
army resources have equal travel times. There is no special criteria for the location of base
camp. Maximum number of visits allowed for each super-resource to a certain location, is
set equal to the number of tasks located at that location.

An example of a coordinate system with six locations is given in Figure 6.2, where base
camp is marked with a green circle. In some cases, it might be preferred to generate a set
of locations and use the same coordinates of locations for multiple test instances, rather
than generate new random locations for each test instance. In this case, the locations are
referred to as fixed locations.

Figure 6.2: Example of six locations in a coordinate system.

6.1.4 Task data

Task data consists of all the sets and parameters that characterize tasks: what type they are,
what time windows they can be completed in, how long they take to complete, their relation
to other tasks, and what skills and capacity requirements they have. As such, a number of
adjustable input parameters are required, as presented in Figure 6.1 and Appendix D. Apart
from the relation between long and rest tasks, there is no other predetermined relations
between tasks. There are, however, several links between the different characteristics of a
single task as presented in Table 4.1. These links provide the framework for determining
the characteristics of the randomly generated tasks.

64 6.1. Instance Generator

6.1.5 Implementation

Figure 6.3 illustrates how an instance is generated given the predetermined data and fixed
locations. In practical terms, the predetermined data and the fixed locations have to be
manually implemented as a text file. This only needs to be done once since all instances
are based on the same battlegroup data, and the locations remain the same. The adjustable
parameters have to be given for each instance generated, and can be adjusted in a single
file. The predetermined data and fixed locations are given in light green in the figure. The
adjustable parameters are given in blue, and the desired output is given in turquoise.

Figure 6.3: Overview of the instance generator’s input and output data.

Chapter 6. Instance Generator and Input Data 65

6.2 Input Data

The data implemented in this report is fictional and generated in collaboration with FFI.
This section provides an overview of the parameters used to generate all test instances and
a description of the test instances themselves. The input data consists of several adjustable
parameters whose values can, theoretically, be varied for each instance. However, for
instances to be comparable, most of these values are unaltered for all test instances used
in this thesis. The values are given in Appendix D. There are four parameters that are kept
alterable to test how they affect the the models performances. These are the number of
super-resources, tasks, duplicates of tasks, and locations. The number of sub-resources
is given by the number of super-resources, and therefore also varies, but without being
an adjustable parameter. It is worth repeating that the resource and location data is fixed,
whilst the task data is randomly drawn given certain constraints.

6.2.1 Time input data

Our models’ configurations are based on a planning period of one week, and the time unit
is set to hours. Thereby, the end time is at 168 hours. The length of the planning period
affects the models’ configurations because it defines what decisions the models are re-
quired to make, for them to be helpful decision support tools. If, for example, the planning
period was a year, the tasks to be considered would be of a different characteristic, and
there would be other criterion regarding time off, rotation, and so forth. These divergences
would require a different set of constraints, and hence a different model.

A regular working day is 16 hours. The remaining 8 hours of the day are sleeping hours.
All regular tasks therefore have a release time and deadline within regular working hours,
as illustrated by the green zones in Figure 6.4. Exactly when the release times and
deadlines are, are randomly provided for each task. The release time and deadline for
a task are both during the same working day, and the time between them is at least as long
as the standard time it takes to complete the task. The exceptions are long and rest tasks,
which have a duration of 48 and 24 hours respectively, and are therefore not bound to start
or finish within regular working hours. The release time for a long tasks can be at any time,
as long as there is enough time for a rest task afterwards. In practical terms this means
that the release time for a long task has to be in the interval [0, 96]. Consequently, the
deadline for a long task has to be in the interval [release time of task + 48, 144], to ensure
the resources have time to complete both the long task and a rest task. Rest tasks are only
limited to start directly after a long task, and end before the end time of an operation.

All tasks except long and rest tasks, are assigned a standard completion time in whole
hours, within a given interval. The upper limit of this interval for a task is dependent on
the time it takes to travel to and from base camp and the tasks location. This is to ensure
that it is possible to travel from base camp, complete a task at a location, and have enough

66 6.2. Input Data

time to travel back to base camp. The lower limit is given as two hours because there are
rarely any peacekeeping tasks that take a shorter amount of time to complete. Divisible
tasks can be completed in a shorter time than the standard completion time.

Travel times are directly correlated with the linear distance between locations, as explained
in Section 6.1.3. Travel times from the dummy start location to all other locations, and
from all locations to the dummy end location is set to be equivalent to the travel times to
and from base camp, so as to model the dummy start and end location as the base camp.
All travel times for aircraft are, as mentioned, assumed negligible and therefore set to zero.
All army super-resources have the same traveling times because they are assumed to be
operating with the same means of transport.

Figure 6.4: Illustration of working and sleeping hours during planning period.

6.2.2 Task input data

Tasks are randomly generated for each instance. To maintain consistency, all instances
have ten tasks that are duplicates of other tasks. For example, if there are 50 unique task, a
random selection of these tasks are duplicated one or more times until there are a total of
60 tasks. Tasks are assigned to locations, including base camp, at random.

A task can be long, divisible, exclusive, or a combination of these. In addition, a task can
have precedence, a direct start after, or be connected to other tasks. Table 4.1 in Chapter
4 illustrates these characteristics and how they relate to each other. A task has a 10%
chance of being a long task, a 50% chance of being exclusive, and a 10% chance of being
divisible. A divisible task has two additional characteristics; the minimum time it takes
to complete it and the maximum capacity allowed to work on it. The minimum time any
task can take to complete is 50% of its standard duration time. The maximum capacity
that can be assigned to a divisible task is 300% of the minimum capacity required. Hence,
if a divisible task requires a total amount of eight in capacity and has a standard duration
time of four hours, it could be completed in two hours if the resources assigned have a
combined capacity of at least 24 of the skills required.

Furthermore, a task has a 10% chance of having precedence over other tasks, a 10% chance
of being connected to other tasks, and a 10% chance of having a direct start before other
tasks. This is in addition to the cases where precedence, direct start, and being connected is
required because of other characteristics such as being a long or sleep task. The maximum
number of tasks a single task can have precedence over is two. The same applies for direct
start and being connected.

A task’s value is dependent on the skill level it is completed at and the standard time it
takes to complete the task. This way, the value indicates the utility of every hour spent

Chapter 6. Instance Generator and Input Data 67

undertaking a task with a given skill level. A random integer between one and three is
first picked as a temporary parameter associated with completing the task at an excellent
skill level. If this number is one, then the task’s value is the same whether the task is
completed at an excellent or sufficient level. If the number is two or three, then the
temporary parameter for a sufficient completion is one less than that of an excellent. Once
this is decided upon, the value of the task is given as the temporary value multiplied by the
standard duration of the task. Sleep and rest tasks do not have any value.

A task’s capacity requirement of each skill is generated at random with some given limita-
tions. The limitations are set to enable tasks to be completed by one to three sub-resources,
as the maximum number of sub-resources allowed to undertake the same task is set to
three. In collaboration with FFI, The number of skills are set to 15, where skill 1 is the
ability to sleep. The complete list of skills is presented in Table C.1 in Appendix C. Sleep
tasks and rest tasks require a single skill that all army resources have. All other tasks
require between one and five skills, and the total capacity requirement is between two and
15. Additionally, each of the required skills are to have a random capacity requirement of
between one and five. To decide which skills to select, all skills are assigned a probability
according to how common they are among the sub-resources: Low, medium and high.
Medium probability skills are twice as likely to be selected as skills in with low probability,
and high probability skills are twice as likely as skills of medium probability. Skills 2–7
are low of probability, skills 8–12 are of medium probability, and skills 13–15 are of high
probability.

6.2.3 Resource input data

The relation between super-resources and sub-resources, and the number of each type
of resource is based on a realistic composition of a battlegroup. There are 10 different
types of super-resources and 11 types of sub-resources. As mentioned in Chapter 6, the
types of sub-resources belonging to a certain type of super-resource are constant. The
resource types used as input data are given in Table 6.3. One complete battlegroup of
21 super-resources and their sub-resources is given in Table C.1 in Appendix C. A top-
down selection is applied to all test instances, meaning that a selection of six super-
resources consists of the super-resources indexed 1–6 and the sub-resources indexed 1–10,
a selection of 10 super-resources consists of the super-resource indexed 1–10 and the sub-
resources indexed 1–24, and so on. This is both to limit the selection’s influence on the
different test instances, and to ensure a realistic composition of the smaller battlegroups.
For instance, there should be a headquarter platoon in all instances. Also, for every fourth
infantry platoon, there should be a new infantry company headquarter.

Of the 15 skills, all sub-resources have capacities as integer numbers from one to three for
one to five different skills that they master. For non-mastered skills, the capacities are zero.
Furthermore, army sub-resources have a capacity of skill 1, the sleeping skill, equal to the
total number of sub-resources, which again is equal to the capacity required for rest tasks

68 6.2. Input Data

and sleep tasks. This way, all sleep and rest tasks may be undertaken by anything from
one to all sub-resources, as each sub-resource alone is able to contribute anything from
one capacity to all the capacity required. Which skills and capacities each sub-resource
possesses are predetermined and equal for all sub-resources of the same type, as presented
in Table C.1 in Appendix C. Which skill level a resource has of a given skill is generated
at random, with a 75% probability that a certain skill is excellent. Thus, two sub-resources
of the same type will always have the same capacities of the same skills, but may have
different skill levels for each skill.

Table 6.3: Description of the different types of super-resources and their respective sub-
resources.

Super-resource Index (g) / SR type Sub-resources Index (k) SB type
Infantry company
headquarter 1 1 Infantry company headquarter 1 1 1

Headquarter
platoon 2 Headquarter platoon 2 2

Infantry platoon 1 3
Infantry section 1.1 3 3
Infantry section 1.2 4 3
Infantry section 1.3 5 3

Reconnaissance
team 1 4 Reconnaissance team 1 6 4

Medical platoon 1 5
Medical section 1.1 7 5
Medical section 1.2 8 5
Medical section 1.3 9 5

Sanitary
helicopter 6 Sanitary helicopter 10 6

Transport
helicopter 7 Transport helicopter 11 7

Mortar platoon 8

Mortar section 1.1 12 8
Mortar section 1.2 13 8
Mortar section 1.3 14 8
Mortar section 1.4 15 8

Combat service
support platoon 9

Combined maintenance team 1.1 16 9
Combined maintenance team 1.2 17 9
Combined maintenance team 1.3 18 9

Recovery team 1.1 19 10
Recovery team 1.2 20 10

Anti-aircraft
platoon 10

Anti-aircraft 1.1 21 11
Anti-aircraft 1.2 22 11
Anti-aircraft 1.3 23 11
Anti-aircraft 1.4 24 11

Chapter 7

Computational Study

In this chapter the performances of the different models and solution methods presented
in Chapters 4 and 5 are tested and analyzed. The instances used to test the models are
presented in Section 7.1. Section 7.2 presents the computational results and analysis of
the exact models. A comparison of the exact decomposition solution approach and the
two heuristic decomposition approaches follows in Sections 7.3 and 7.4.

The purpose of testing and comparing the compact model with the decomposed model,
is to evaluate whether a decomposition solution approach provides better solutions within
a given run time. Furthermore, we wish to evaluate the applicability and limitations of
the decomposed model with respect to solving realistic instances of military peacekeeping
operations. We hypothesize that the exact decomposition approach will prove to be more
efficient than the compact model, but not efficient enough to handle realistic instances. We
therefore also test two different heuristic decomposition approaches, and compare them to
the exact decomposition approach, to evaluate whether they are more applicable to real-
sized problems.

The instance generator described in Chapter 6, and travel route generator described in
Chapter 5.2 is implemented in Python version 3.6.4. The model and the test instances
are solved using the commercial optimization software FICO Xpress IVE 8.3, which is
set to apply the branch-and-bound solution method with a depth-first search strategy. The
generation of test instances and travel routes are carried out on a computer with a 2.6GHz
Intel Core i5 CPU, 8GB RAM, running a 64 bit macOS High Sierra version 10.13.4. All
other computational testing is performed on a computer with a 3.6 GHz Intel(R) Core(TM)
i7-7700 CPU, 32 GB RAM, running a 64 bit Windows 10 operating system. The maximum
run time for each test instance is for practical reasons set to one hour (3600 seconds) in
FICO Xpress.

70 7.1. Test instances

7.1 Test instances

This section describes the three test instance sets used to compare the compact and de-
composed model. The instances are created using the input data presented in Section 6.2.
The first set is designed to test how the models handle a varying number of resources.
The second set tests for an increasing number of locations, and the third set tests for
an increasing number of tasks. These three sets are given by tables 7.1, 7.2, and 7.3
respectively.

As presented in the tables, each set consists of five subsets. Each of these subsets have
five test instances. As a result, each set consists of 25 test instances. Because task
characteristics are generated at random for every test instance, the test instances belonging
to the same subset differ even though their other parameters are equivalent. Running five
test instances for each subset is a corrective measure against the uncertainties and variance
introduced by randomly generating task data in the test generator.

The identification for every subset has the following logic: [set–number of super-resources–
number of total tasks–number of locations]. Set 1 is labeled "R" for resource, set 2 is
labeled "L" for location, and set 3 is labeled "T" for tasks. The identification for test
instances are equivalent to their respective subsets, but are in addition numbered from 1–
5. The identification for a subset with four super-resources, 30 tasks and eight locations is
for example "R–4–30–8", and one of its test instances is "R–4–30–8–1".

The three sets reflect the three most prominent dimensions that determine the size of
the problem the models are to solve. Testing along these dimensions makes it possible
to study how the models react to an increase in resources, tasks, and locations. As a
decision support tool in military peacekeeping operations, FFI are most interested in how
the models perform given an increasing number of resources. Given that battlegroups are
regarded as collective units in operation planning, the number of resources the models
can handle is a good indication of how useful they are. If for example the models cannot
handle more than five super-resources, and a battlegroup consists of 20 super-resources,
then the models are not of practical use. The number of locations is also of interest
because it reflects the geographical area the models can encompass. Considering tasks
in a peacekeeping operation, there will often be many more than can be completed, given
the limited resources and time. However, it is still of interest to test for how many tasks
the models can handle, because it could distinguish different traits in the two models.

Table 7.1: Test set 1: Increasing the number of super-resources.

Subset #Super-resources #Sub-resources #Total tasks #Unique tasks #Locations
R-4-30-8 4 6 30 20 8
R-6-30-8 6 10 30 20 8
R-8-30-8 8 15 30 20 8
R-10-30-8 10 24 30 20 8
R-12-30-8 12 30 30 20 8

Chapter 7. Computational Study 71

Table 7.2: Test set 2: Increasing the number of locations.

Subset #Super-resources #Sub-resources #Total tasks #Unique tasks #Locations
L-6-30-4 6 10 30 20 4
L-6-30-6 6 10 30 20 6
L-6-30-8 6 10 30 20 8
L-6-30-10 6 10 30 20 10
L-6-30-12 6 10 30 20 12

Table 7.3: Test set 3: Increasing the number of tasks.

Subset #Super-resources #Sub-resources #Total tasks #Unique tasks #Locations
T-6-30-8 6 10 30 20 8
T-6-40-8 6 10 40 30 8
T-6-50-8 6 10 50 40 8
T-6-60-8 6 10 60 50 8
T-6-70-8 6 10 70 60 8

7.1.1 Remarks on the test instances

The input data used to generate the test instances are decided upon in cooperation with FFI,
but are based on assumptions, and not on real data. This is because similar models to the
ones in this thesis have not been studied before, so there has not been a need to quantify the
input parameters that are required. In addition, the military operation data FFI has access
to is classified, making it difficult to analyze previous operations which would provide a
better estimate for the parameters. Many of the parameters are also difficult to quantify,
for example skills and the value of tasks.

The consequence of the test instances being based on assumptions and parameters that
are difficult to quantify, is that tasks might have characteristics that make them difficult
to complete, for example time windows might be narrow, or capacity requirements might
be high. This restricts the problem and reduces the solution space, and could lead to
solutions including time periods where resources are idle. Results from these instances
might therefore be more positive than if resources were expected to be in constant activity,
as that they might be easier to calculate.

However, the results are still relevant because they can speak to how the models perform
relative to each other. In addition, the models might be considered to schedule larger, more
important tasks. Idle time between tasks will then be inherent in a solution. The idle time
that will be inherent in these solutions can then be used to carry out routine tasks such as
maintenance. Moreover, FFI has stated that in their experience, there can be a lot of idle
time, also in manually scheduled operation plans.

72 7.2. Comparison of the exact models

7.2 Comparison of the exact models

This section presents the results and analysis of the application of the exact models to test
sets 1–3. Tables 7.4, 7.6, and 7.8 compare the best solution found, the best solution after
20 minutes, the optimality gap, and the total run time of the compact model (CM) and
the decomposed model (DM). The best solution found after 20 minutes is a measurement
that is included in the analysis because 20 minutes is deemed the longest acceptable run
time in a real military operation planning context (Fauske, 2015). For the DM, the total
run time is the aggregate of the time it takes to generate travel routes in Python, and run
the optimization model in FICO Xpress. For the CM, the total run time is only the time it
takes to run the optimization model in FICO Xpress.

The results for each subset are calculated as the average of its five instances, with the
exception of the optimality gap. The optimality gap is calculated using the average upper
bound and average best solution. The results for every test instance are provided in
Appendix E. In the cases where no solution is found, the best solution after 20 minutes and
the best solution found after one hour are both set to zero. These cases are marked with an
asterisk (*). An alternative would be to omit these cases when calculating the average, but
this would skew the results because for subsets where fewer than all instances are solved,
it could lead to higher average values. Also note that because average values are used as
a base for analyzing the results, there may be discrepancies between total run times and
optimality gaps. This is especially considering subsets that have a high optimality gap, but
also a total run time that is less than the maximum time permitted.

7.2.1 Increasing the number of resources

Table 7.4 suggests that the DM dominates the CM when increasing the number of re-
sources. This is based on the DM having equal or better results regarding the best solution
found, the best solution found after 20 minutes, the optimality gap, and run time, for all
five subsets. Furthermore, for some test instances including eight, ten, and twelve super-
resources, the CM did not find any solution in the given run time of one hour. The DM
found at least one solution for all instances (see Appendix E).

Larger instances naturally have longer run times for both models. Figure 7.1 provides
a breakdown of the DM’s total run times. Although the overall trend is an increase in
duration for both the route generation and optimization, the optimization duration seems
to increase at a higher rate, as generating routes seems to take a decreasing proportion of
the total run time. This suggests that an increase in the problem size due to an increase in
the number of resources does not affect the route generation algorithm as much as it does
the optimization model, and that for even larger instances, the time saved by decomposing
the compact model, is worth the time it takes to generate routes.

Chapter 7. Computational Study 73

Table 7.4: Comparison of test set 1 with an increase in resources.

Subset Best solution Best solution
after 20 min

Optimality gap
after an hour

Total run time [s]

CM DM CM DM CM DM CM DM
R-4-30-8 7.3 12.5 7.3 12.5 71.4% 0.0% 721 0.9
R-6-30-8 21.5 21.5 21.5 21.5 0.0% 0.0% 6.3 1.7
R-8-30-8 20.4* 41.2 20.4* 41.2 102%* 0.0% 1485 21.2
R-10-30-8 16.4* 72.4 16.4* 68.8 548%* 37.3% 3600 2215
R-12-30-8 24.6* 54.2 24.6* 40.0 270%* 67.9% 2973 2210
Average 18.0 40.4 18.0 36.8 - - 1757 890

Note that these results are only strictly accurate for the instances where the optimal solu-
tion was found within a total run time of one hour. For the cases where an optimal solution
was not found within an hour, the percentage of time it takes to generate routes as shown
in Figure 7.1, is higher than is actually the case. This is because the route generation is run
to completion first, and the optimization model is cut short if it has not found an optimal
solution within an hour. If given enough time to find an optimal solution the optimization
model would necessarily take a larger portion of time than is currently implied, and the
portion of time it takes to generate routes would be even smaller.

Figure 7.1: Exact decomposed models route generation and optimization run times for test
set 1.

The total number of routes generated might have been expected to increase linearly with
the number of resources, because each resource’s set of possible routes is generated in-
dividually, independent of other resources. However, this is not the case. An increase in
resources, and hence number of skills and capacity available, will in most cases lead to a

74 7.2. Comparison of the exact models

higher number of tasks being possible to complete, in addition to tasks being possible
to complete by several additional combinations of resources. Because of these extra
possibilities, the number of routes that are generated for the DM increase in an exponential
fashion, as illustrated in Figure 7.2. The extra tasks that can be completed, and the
additional combinations of resources that can complete tasks, also affect the performance
of the CM. The number of routes generated for a certain instance therefore indicate, to a
certain extent, how well the CM will perform, even though the CM does not apply them.

Figure 7.2: Number of routes generated by exact decomposed model for test set 1.

The results in Table 7.4 show that the CM is capable of handling most test instances up
to six super-resources, and the DM up to 10 super-resources, before the optimality gap
becomes significant, and the solutions suboptimal. Based exclusively on these results, the
DM is a significant improvement on the CM. Table 7.5 provides additional information on
the number of solutions found for each model and subset within 20 minutes and one hour.
This table corroborates the advantage the DM has over the CM. The cells highlighted in
green show that the DM finds an optimal solution in 76% of its cases, compared to 52%
for the CM. The cells highlighted in blue show that for 92% of its cases, the DM found its
best solution within 20 minutes, compared to 74% for the CM, suggesting that the DM is
more likely to provide a good solution within the acceptable amount of time of 20 minutes,
and hence be of more practical use. In addition, the DM finds at least one solution for all
its instances within an hour. The CM fails to do so for 24% of its instances. This is
especially true for larger instances, exemplified by the cells highlighted in red. Both the
DM and CM have high optimality gaps for these larger instances, but the DM does at least
find a feasible solution for all instances. In practical situations, and especially for larger
problems, having these feasible solutions can be a useful starting point to base planning
decisions on.

Chapter 7. Computational Study 75

Table 7.5: Comparison of the number of solutions for test set 1.

Within 20 minutes Within one hour
Subset Optimal

solution Best solution At least
one solution

Optimal
solution

At least
one solution

CM DM CM DM CM DM CM DM CM DM
R-4-30-8 4 5 5 5 5 5 4 5 5 5
R-6-30-8 5 5 5 5 5 5 5 5 5 5
R-8-30-8 3 5 4 5 4 5 3 5 4 5
R-10-30-8 0 2 2 4 2 5 0 2 2 5
R-12-30-8 1 2 3 4 3 5 1 2 3 5
Average 2.6 3.8 3.8 4.6 3.8 5.0 2.6 3.8 3.8 5.0

7.2.2 Increasing the number of locations

The results in Table 7.6 indicate that the DM provides better or equal results, in a shorter
amount of time than the CM. For a few test instances regarding 10 and 12 locations, the
CM did not find any solution within an hour of run time. The DM found at least one
solution for all instances, but did not find the optimal solution for all the instances in the
subset including twelve locations (see Appendix E). This suggests that the CM is able to
efficiently handle up to eight locations, and the DM up to 10 locations.

Table 7.6: Comparison of test set 2 with an increase in locations.

Subset Best solution Best solution
after 20 min

Optimality gap
after an hour

Total run time [s]

CM DM CM DM CM DM CM DM
L-6-30-4 34.7 35.3 34.7 35.3 1.7% 0.0% 723 1.8
L-6-30-6 30.8 35.2 29.4 35.2 14.3% 0.0% 1445 2.6
L-6-30-8 21.5 21.5 21.5 21.5 0.0% 0.0% 6.3 1.7
L-6-30-10 25.8 37.4 25.8* 37.4 54.7% 0.0% 1445 16.4
L-6-30-12 6.4* 33.0 1.3* 23.8 643%* 39.4% 1523 734
Average 23.8 25.9 22.5 30.6 - - 1029 151

The average run times for the DM are well within the practical limit of 20 minutes for the
given subsets, but it appears to increase exponentially for large instances. In comparison,
the average run times for the CM are considerably higher, and with the exception of L-6-
30-8, have a more linear trend. This could suggest that for smaller instances with fewer
locations, the route generator is able to restrict the scope of the problem to a large degree.
It can restrict the scope of the problem because having fewer locations leads to fewer
possible routes, and hence more variables in the optimization model become fixed. For the
CM, there is no procedure that fixes variables to the same extent.

Similar to the case for test instance set 1, the time it takes to generate routes for test
instance set 2 is an insignificant amount compared to the optimization time (see Figure F.1
in Appendix F). There is, however, less of a trend regarding the time it takes to generate

76 7.2. Comparison of the exact models

routes. This would indicate that increasing the number of locations does not affect the
route generation as much as increasing the number of tasks does.

Studying the average number of routes generated for each subset would, however, suggest
that there is an increase in the number of possible routes with an increase in locations (see
Figure F.2 in Appendix F). One cause for this is for example, if 20 tasks with the same
time windows are at the same location, then a resource can only travel there once, but if
the same 20 tasks are at 20 different locations, then the resource has 20 different travel
options.

Because the run time and number of routes generated do not have as clear a trend with
an increase in locations as with an increase in resources, it is more difficult to predict the
DMs behaviour for larger instances. Nevertheless, the results in Table 7.6 strongly suggest
that the DM is an improvement over the CM. Moreover, the green cells in Table 7.7 show
that for 96% of its cases, the DM managed to find an optimal solution within 20 minutes,
in contrast to 60% for the CM. The blue cells highlight the instances where the model did
not find a better solution after 20 minutes. The CM finds its best solution for 76% of its
instances within 20 minutes, the DM 96%. This means that for most of their cases, there is
nothing to gain by running the model for more than 20 minutes, but the DM is more likely
to provide a good solution within the acceptable amount of time. As with an increase in
resources, the conclusion for test set 2 is that the DM is a better solution approach than the
CM.

Table 7.7: Comparison of the number of solutions for test set 2.

Within 20 minutes Within one hour
Subset Optimal

solution Best solution At least
one solution

Optimal
solution

At least
one solution

CM DM CM DM CM DM CM DM CM DM
L-6-30-4 4 5 5 5 5 5 4 5 5 5
L-6-30-6 3 5 4 5 5 5 4 5 5 5
L-6-30-8 3 5 4 5 5 5 5 5 5 5
L-6-30-10 3 5 4 5 4 5 3 5 5 5
L-6-30-12 2 4 2 4 3 5 3 4 4 5
Average 3.0 4.8 3.8 4.8 4.4 5.0 3.8 4.8 4.8 5.0

7.2.3 Increasing the number of tasks

The results in Table 7.8 show that both models struggle to efficiently handle instances
with a large number of tasks. Comparing the two models, the DM provides an equal or
better solution for four out of the five subsets within an hour of run time. Within a run
time of 20 minutes, it provides an equal or better solution for three out of the five subsets.
Furthermore, the DM does in general take a shorter amount of time to solve the instances,
but the optimality gaps are significant. The mixed results mean that the DM does not
dominate the CM for this test set, even though it is better for most subsets.

Chapter 7. Computational Study 77

Table 7.8: Comparison of test set 3 with an increase in tasks.

Subset Best solution Best solution
after 20 min

Optimality gap
after an hour

Total run time [s]

CM DM CM DM CM DM CM DM
T-6-30-8 21.5 21.5 21.5 21.5 0.0% 0.0% 6.3 1.7
T-6-40-8 39.6* 57.2 39.6* 57.2 97.5%* 35.1% 2882 1449
T-6-50-8 60.5* 50.5* 60.5* 50.5* 95.4%* 134.6%* 2181 2285
T-6-60-8 21.8 62.8* 21.8 61.6* 300% 50.0%* 2232 1622
T-6-70-8 54.7 60.2* 54.7 51.7* 84.9% 65.4%* 3012 2286
Average 39.6 50.4 39.6 48.5 - - 2063 1529

There seems to be an overall increase in the time it takes to generate routes, and carry
out the optimization for the DM (see Figure F.3). As with an increase of resources and
locations, the time it takes to generate routes is still only a small fraction of the overall run
time. However, for the subsets with 50 and 70 tasks, it takes over 90 seconds to generate
travel routes, which is markedly higher than any of the subsets tested for in test set 1 and
2. This indicates that the DM is not as effective at handling an increase in tasks, as it is an
increase in resources or locations.

The subsets with 50 and 70 tasks also have a considerable number of possible routes (see
Figure F.4). When the number of routes is of this scale, the decomposed model is either
incapable of finding any solution, or finds a solution that is far from optimal, within one
hour of run time. This is because the text files that contain the travel routes are very large,
and hence it takes FICO Xpress a substantial amount of time to only read the file. To test
how long it could take to read a large file, instance T-6-70-8-1, comprising of 1 309 144
routes, was allowed to run till completion in FICO Xpress. It took 165 minutes to read
the file, and an additional 87 minutes to solve to optimality. At 20 minutes after the file
had been loaded, the optimality gap was 78%, and after one hour the gap was 15%, both
consistent with the other results in the same subset. What this test proves is that the loading
time of the route file to FICO Xpress is a factor that greatly affects the effectiveness of the
DM for large instances.

Compared to the CM, the green cells in Table 7.9 do, however, suggest that it is more
likely the DM will find an optimal solution within 20 minutes. The CM, on the other hand,
finds more of its best solutions within 20 minutes, marked in blue. Furthermore, the CM
does not seem to do any worse than in the other test sets when it comes to finding at least
one solution within an hour. Regarding the DM, this test set is the only set where it has not
found at least one solution for every instance, as marked in red. What this confirms is that
while the CM does not struggle more with an increase in tasks than it does an increase in
resources or locations, the DM is sensitive to the number of tasks in a problem.

78 7.2. Comparison of the exact models

Table 7.9: Comparison of the number of solutions for test set 3.

Within 20 minutes Within one hour
Subset Optimal

solution Best solution At least
one solution

Optimal
solution

At least
one solution

CM DM CM DM CM DM CM DM CM DM
T-6-30-8 5 5 5 5 5 5 5 5 5 5
T-6-40-8 1 3 3 5 3 5 1 3 3 5
T-6-50-8 2 2 4 2 4 2 2 2 4 2
T-6-60-8 2 3 3 3 3 4 2 3 3 4
T-6-70-8 1 2 5 2 5 4 1 2 5 4
Average 2.2 3.0 4.0 3.4 4.0 4.0 2.2 3.0 4.0 4.0

7.2.4 Summary of comparison of the exact models

An analysis of the results from test set 1, where the number of resources is increased,
strongly implies that the DM is superior to the CM. The CM can efficiently handle six
super-resources and 10 sub-resources, whilst the DM can handle 10 super-resources and
24 sub-resources. The DM is also faster, and finds more solutions within 20 minutes,
making it more practical than the CM for instances with a larger number of resources.

The results from test set 2, where the number of locations varies, also suggest that the DM
performs better than the CM. The CM does not show any clear trend, but generally does
not perform well for this test set. It is therefore difficult to identify how many locations it
can handle efficiently, but an optimistic estimate would be eight locations. The DM can
handle 10 locations well. Furthermore, the DM provides better solutions in a fraction of
the time.

An increasing number of tasks proves to be a challenge for both models. Overall, the DM
performs slightly better than the CM, but the results are more difficult to interpret than it
is for the two first sets. What is noteworthy of the results from this test set is that while an
increase in the number of tasks does not seem to affect the performance of the CM a great
deal more than increasing the number of resources or locations, it does seem to greatly
affect the performance of the DM. Why the DM is not as effective at handling an increase
in tasks, as it is an increase in resources or locations, is most likely because more tasks
increases the number of possible routes considerably. A large increase in the number of
routes increases the time it takes to generate the routes, but also the time it takes for FICO
Xpress to read the text file that includes the routes.

Overall, the DM performs better than the CM, indicating that a decomposed solution
approach is effective. The DM does nonetheless, struggle to handle the largest instances
efficiently. The number of resources and tasks seem to be the most prominent factors in
the DM. In particular, an increase in resources and tasks seem to greatly affect the number
of routes generated, which again affects the performance of the model. An increase in the
number of locations does not seem to affect the DM to as great a degree. An analysis of the

Chapter 7. Computational Study 79

run time for the DM shows that, for most subsets, the time it takes to generate routes takes
less than 10% of the total run time. For instances with a large number of travel routes, a
considerable portion of the remaining run time is the time it takes the optimization model
to read the travel route files. One measure to reduce the time it takes to read the file and
improve the performance of the DM, is to reduce the number of routes generated. The next
section examines this measure.

7.3 Analysis of the first heuristic decomposition

This section presents test results and an analysis of the heuristic decomposition solution
approach using the first heuristic method to generate routes. The first heuristic method
is hereby referred to as H1 and is described in Section 5.3. A heuristic method does not
generate all possible routes. The reason for using such an method is that a reduction in
travel routes can improve the overall performance of the decomposed model. Test sets
1 and 3 presented in Tables 7.1 and 7.3 are tested on H1 and compared to the exact
decomposition model discussed in Section 7.2. Further testing of test set 2 is not prioritized
because the number of locations does not seem to affect the number of generated routes to
the same extent as the number of resources and tasks. In addition, FFI does not consider
the number of locations to be as critical as the number of resources and tasks. H1 is tested
for four different rates of travel route branching: 75%, 50%, 30%, and 15%, also referred
to as branching rates. With 75% branching, the heuristic is referred to as H1–75. This
percentage only considers the 75% best alternative destinations each time the procedure
adds a location to a travel route, thereby cutting off 25% of the possible branches at each
decision node in the route generator. Figure 7.3 illustrates a branching of H1–75. Here
location 6, 10, and 11 are the best 75% alternative destinations that a resource has from
location 2, and hence the procedure cuts off the branch that would travel to location 5. The
heuristic model tested with the other rates are referred to as H1–30, H1–30 and H1–15.
The exact decomposed model is still referred to as the DM.

Figure 7.3: Illustration of branching with a 75% branching rate.

80 7.3. Analysis of the first heuristic decomposition

7.3.1 Increasing the number of resources

Figures 7.4 and 7.5 compare the solutions of the four different branching rates for the first
heuristic approach, with the solution for the exact decomposition. The graphs show the
heuristics’ deviation from the exact method’s best solution, represented by the 0% line on
the horizontal axis. Results below 0% mean the heuristic solution is worse than the best
solution from the exact model, indicating that it cuts off too many suitable travel routes.
The comparison is carried out for the exact method’s best found solution within one hour
and best found solution within 20 minutes. This is because the purpose of the comparison
is to judge whether or not the heuristic looks promising as an alternative in practical
settings where the exact decomposition method has proven to have some limitations.

For low numbers of super-resources, where the exact decomposed model is able to find an
optimal solution in a few seconds, the heuristic model is inferior. For these small instances,
the solutions seem to worsen as more routes are cut. However, Figure 7.4 shows that for
higher numbers of super-resources, the versions of the heuristic cutting fewest routes, H1–
75 and H1–50, perform better or as well as the exact decomposition with an hour of run
time. For solutions found within 20 minutes, Figure 7.5 shows that H1–50 is better at
10 super-resources, and that the heuristic is as good or better at 12 super-resources for
all the different branching rates tested. A comparison of R–8–30–8 in Figures 7.4 and
7.5 proves that a heuristic approach is dominant for this subset given 20 minutes, but
not so when the model is allowed to run for an hour. When run for an hour H1–30 and
H1–15 underperform. The tests seem to indicate that reducing travel routes will provide
better solutions where the exact methods struggle, but there is a trade-off between making
the problem simple enough to provide a solution in reasonable time, and getting the best
possible solution.

As the number of super-resources increases, the number of routes increases exponentially
for all branching rates, as illustrated in Figure 7.6. However, there are consistently fewer
travel routes for the models with higher removal rates compared to the ones with lower
removal rates, for all subsets. This is because of how the travel route generator works;
A higher branching rate which cuts off fewer options has a higher growth rate, with an
increasing amount of super-resources, than a lower branching rate. The heuristics with
a removal rate of 50% or higher have an almost minuscule number of traveling routes
compared to H1–75 and H1–100, for the largest test subsets.

Comparing the number of travel routes with the run time from Figure 7.7, there seems to be
some relation between number of routes and run time. There is no conclusive correlation,
as H1-75 has a higher run time than the exact method for multiple test subsets, and the
run time decreases from 10 to 12 super-resources even though the number of travel routes
increases. Nevertheless, apart from H1–75, the graph shows that the run time decreases
with a decreasing branching rate, and hence with a decreasing number of routes. An
interesting observation is that even though H1–50 only has a fraction of the routes and
reduces the run time by more than 50% compared to the exact model and H1–75, it

Chapter 7. Computational Study 81

provides a better solution within 20 minutes, and is within an acceptable range of the
solution H1–75 finds within one hour. H1–15 and H1–30 have few routes, which result in
very good run times. However, the restricted amount of routes also overly simplifies the
problem, and can lead to solutions that are far from optimal, as Figure 7.4 proves.

Figure 7.4: First heuristic solutions’ deviation from decomposed exact method’s best
solutions after run time of one hour with an increase in resources.

Figure 7.5: First heuristic solutions’ deviation from decomposed exact method’s best
solutions after run time of 20 minutes with an increase in resources.

82 7.3. Analysis of the first heuristic decomposition

Figure 7.6: Comparison of the number of routes generated by the first heuristic method
with an increase in resources.

Figure 7.7: Comparison of total run times for the first heuristic approach with an increase
in resources.

Chapter 7. Computational Study 83

7.3.2 Increasing the number of tasks

The results for test set 3 are illustrated in figures given in Appendix G. They suggest that
for instances including more than 40 tasks, branching rates H1–75, H1–50 and H1–30
provide better solutions than the exact model after an hour of run time. The results also
show a decreasing quality in solutions as the branching rate decreases and an increasing
number of routes are cut, meaning that travel routes that are part of better solutions are
removed. Solutions within 20 minutes have similar results. 75% seems to be the best rate
for these five subsets, but might have more trouble with larger numbers of tasks, as the
other branching rates seem to be closing the gap for the one hour solution and provide
better solutions within 20 minutes, for the largest subset.

Test subset T–6–50–8 is the subset where all branching rates perform better than the exact
model, and represents the highest deviation between several of the rates and the exact
model. This is also the subset with the highest number of routes, and where the exact
model has the most trouble in finding an exact solution, based on its optimality gap of
134.6% (Table 7.8). As the number of routes correspond with the optimality gap for all
subsets for the exact model, it is not surprising that it also reflects the performance of the
heuristic models. The subsets with a high number of routes also have high run times, but
the run times and number of routes are not proportional. Results show that H1–30 has a
consistently low run time and provides almost as good solutions as H1–50 for these test
subsets. The deviation in solutions between H1–30 and H1–50 might however increase for
larger instances. If this is the case, then the trade-off between a short run time and good
solution, which H1–30 provides, and a longer run time, but better solution, which H1–50
provides, has to be made.

7.3.3 Summary of the first heuristic decomposition

The analysis of test set 1 indicates that the first heuristic approach, given the right branch-
ing rate, provides better solutions in a reasonable amount of time than the exact decom-
posed model, for larger test instances with an increasing number of super-resources. For
test set 1, H1–50 is the most promising, when considering both solution value and run
time. H1–75 seems best overall for test set 2 with an increasing number of tasks, but both
H1–50 and H1–30 are better for the largest test subset, and might be more promising for
even higher numbers of tasks.

Considering all 50 test instances for each branching rate across test subsets, H1–75 reaches
optimality in 78% of the cases, H1–50 reaches optimality in 90%, and H1–15 and H1–30
reach optimality for all instances. Note that the optimal value is not the same for all
branching rates, and that optimal values for lower rates are in most cases lower. This
means that although H1–15 and H1–30 are easier to solve, they might be oversimplified,
and hence provide results of lower value.

84 7.4. Analysis of the second heuristic decomposition

Regarding the run time, all instances apart from two H1–75 instances, found their best
solution within 20 minutes, suggesting that it is needless to run the models for more than
20 minutes. Overall, while this heuristic method does remove some favorable travel routes
that are part of exact solutions, reducing the number of routes generated proves an effective
method to provide solutions within a shorter computation time.

7.4 Analysis of the second heuristic decomposition

This section provides an analysis of a heuristic decomposition solution approach which
uses the second heuristic method to generate routes. The second heuristic method is hereby
referred to as H2. This method is described in Section 5.3 and is designed to remove
more routes than H1. The reason for testing H2 is to investigate how the second heuristic
approach compares to the first approach, and the exact decomposed model. In addition,
testing this method can provide some insight into how the different components that make
up H2 affect the solution.

This method is only applied to the three largest instances of test set 1 and 3 presented
in tables 7.1 and 7.3. The smaller instances are omitted from this analysis because, as
the results from Section 7.3 show, the exact decomposed method outperforms the first
heuristic method for these instances, and would most likely also outperform the second
method.

The second heuristic decomposed solution approach is tested for two different rates of
travel route branching: 100% and 75%, referred to as H2–100 and H2–75 respectively.
For all cases, the maximum number of super-resources per task is set to two. As described
in Table 5.5, the second heuristic method consists of five different components, where
a branching strategy based on task value is one of them. Testing a branching rate of
100% would in effect mean that only the other four components of the heuristic actively
reduce the number of routes generated. This makes it possible to analyze the effect of
the branching strategy, and the other four components separately. Note that because
the two methods have different configurations, the same branching rate would result in
a lower number of generated routes for the second method than it would the first method.
Therefore, branching rates of 30% and 50% are not tested as they are expected to reduce
the number of generated routes by an amount that will result in unacceptably low solution
values. All test results are given in Table E.5 in Appendix E.

7.4.1 Increasing the number of resources

With an increase in the number of resources, the exact method seems to do better for
the smallest instance. For larger instances, this heuristic method provides better solutions
within 20 minutes. H2–75 yields better results than H2–100 for the first two instances,

Chapter 7. Computational Study 85

but H2–100 has a steady positive trend for solutions provided within 20 minutes. This
suggests that H2–100 might be more promising in a practical setting, but it could be due
to coincidence.

A comparison between the exact method and H2, as presented in Figure 7.8, confirms that
the second heuristic method greatly reduces the number of routes generates. This is most
likely the reason both H2–100 and H2–75 have shorter run times than the exact method for
the largest subsets. A breakdown of how many routes the different heuristic components
remove relative to the exact method is illustrated in Figure 7.9. The branching rate used for
this analysis is 75%. It is clear that the other components, and not the branching strategy,
remove the majority of generated routes. This is most likely because there are many routes
and tasks that the other components can effectively remove, before the branching strategy
is put into effect in the travel route generator. A possible conclusion from this observation
is that, for an increase in resources, the other components of H2 are very efficient in
reducing the number of routes, more so than the branching strategy, and still lead to
acceptable solutions. A higher branching rate would lead to a higher amount of routes
being removed by the branching strategy, but then probably at the cost of solution value.

Figure 7.8: Comparison of the number of routes generated by the second heuristic method,
with an increase in resources.

7.4.2 Increasing the number of tasks

With an increase in the number of tasks, the second heuristic approach provides better
solutions than the DM measured at 20 minutes and an hour, even though the total run
times are fairly similar. Of the two branching rates, H2–75 has better solutions for the

86 7.4. Analysis of the second heuristic decomposition

Figure 7.9: Percentage of feasible routes removed by the different heuristic components
of H2, with an increase in resources.

two largest instances after an hour of run time, and for all instances with a run time of 20
minutes. H2–75’s advantage over H2–100 implies that for problems with a large number
of tasks, a branching strategy is effective.

Similar to the case with an increase in resources, Figure 7.10 presents a breakdown of the
number of routes the different heuristic components remove relative to the exact method.
A branching rate of 75% is still applied. The figure shows that the number of routes
generated for subsets T–6–50–8 and T–6–70–8 are markedly reduced by introducing a
branching strategy. Subset T–6–60–8 is not reduced to the same extent. An explanation
for this could be that the subset already had a relatively low number number of routes
before the branching strategy is put in to effect, and therefore the branching strategy has a
limited number of options to cut. Another observation based on the same figure is that the
other components have a diminishing effect on the number of routes that are generated,
with an increase in the number of tasks. This would suggest that for problems with a large
number of tasks, a branching rate is an efficient method to reduce the number of generated
routes. More so than the other components of H2.

7.4.3 Comparison of the heuristic methods

Table 7.10 compares the results from H1 and H2. With a branching rate of 75%, H2 does,
as expected, generate a lower number of routes than H1, for all subsets. Furthermore, H2

Chapter 7. Computational Study 87

Figure 7.10: Percentage of feasible routes removed by the different heuristic components
of H2, with an increase in tasks.

reduces the number of generated routes more for the subsets in test set 1 than in test set
3. This is possibly the reason that the second heuristic approach halves the run time of
the first approach, on average, for subsets in test set 1. H2 also provides better solutions
than H1, both within 20 minutes and within one hour. For an increase in resources, H2
therefore seems a more efficient method to reduce the number of generated routes. With
an increase in tasks, H2 actually leads to a longer run time on average, but does provide
better or equal solutions than H1. It is therefore difficult to distinguish which method is
better for an increase in tasks.

Table 7.10: Comparing results provided by H1–75 and H2–75.

Subset Routes generated Total run time [s] Best solution
within 20 min

Best solution
after an hour

H1-75 H2-75 H1-75 H2-75 H1-75 H2-75 H1-75 H2-75
R-8-30-8 5440 1665 734 726 28 27.9 28 27.9
R-10-30-8 13378 2077 2741 882 56.2 84 68.7 84.4
R-12-30-8 60176 14118 2091 1382 48.6 42.6 67.2 61.6
Average 26331 5953 1855 997 44 52 55 58

T-6-50-8 70188 33818 1649 2234 91.7 83.3 99.7 111.4
T-6-60-8 15392 14199 141 1577 85.9 76.8 85.9 86.7
T-6-70-8 106642 89762 1678 1582 53.8 71.3 85.2 94.0
Average 64074 45927 1156 1797 77 77 90 97

88 7.4. Analysis of the second heuristic decomposition

7.4.4 Summary of the second heuristic decomposition

A source of error in this analysis is the limited number of subsets that are tested, and
therefore, absolute conclusions should not be drawn from this particular analysis. Never-
theless, it is possible to detect certain trends. Based on the results from test set 1 and
3, H2 generates fewer routes, and looks to perform better than the exact method for
larger instances, especially for instances with a large number of tasks. Comparing H1
and H2 with a branching rate of 75%, H2 is superior when considering problems with a
larger number of resources. For problems with many tasks, it is not possible to make any
conclusions of which heuristic method performs better.

Considering the different components that make up H2, the branching strategy seems to
be effective when there are a large number of tasks, and the other components seem to be
very effective for a large number of resources. Why the other components are effective
in reducing the number of generated routes for a larger number of resource is presumably
because of the two particular components that look to limit the number of super-resources
per task, and divide routes among similar super-resources. Dividing routes among similar
super-resources is only effective if the battlegroup in question is big enough to includes
several of the same type of super-resources. Therefore, it will only remove routes for
instances that have a a high number of resources. Limiting the number of super-resources
per task is a component that works by removing all tasks in an instance that cannot be
completed by one or two super-resources. In theory, it removes routes for all instances
tested here. However, because an increase in resources means that more tasks become
possible to complete and more routes become feasible, limiting the number of resources
per task becomes increasingly effective for instances with a larger number of resources.

Dividing routes among similar super-resources, and limiting the number of super-resources
per task are components that are part of H2, but not H1. Of the instances tested here, only
R–12–30–8 has more than one of the same type of super-resource, and hence it is the
only instance where dividing routes among similar super-resources reduces the number
of generated routes. The subpar solutions provided by H2–75 compared to H1–75 for
this test instance, would however suggest that this component removes routes that would
otherwise be part of a good solution, and is therefore not an efficient heuristic component.
To verify this conclusion would require further testing of additional instances with multiple
super-resources of the same type. Limiting the number of super-resources per task is a
component that is more difficult to interpret, but there is nothing to suggest that it leads
to diminished solutions. It does effectively reduce the number of generated routes, which
most likely leads to a shorter run time. Based on this argument, it is a useful heuristic
component.

Chapter 8

Concluding Remarks

The models presented in this thesis are extensions of the model presented in the project
report by Chaudry and Vermedal (2017), and are intended as a decision support tool for
military peacekeeping operations. The problem considered is termed a Peacekeeping-
Troops-To-Tasks Problem (PTTP). What distinguishes the PTTP in this thesis from its
predecessor in the project report, is the combination of complex task relations such as
connected tasks and direct start requirements, the introduction of long tasks, sleep tasks,
rest tasks and a security task, the possibility of multiple time windows using duplicate
tasks, unavailable time periods for resources, and that it considers a longer planning period.
The mathematical models are based on the notion that the PTTP is a two-tier problem
consisting of a network-flow problem for super-resources moving between locations, and
a multi-skill scheduling problem for assigning tasks to sub-resources at each location.

Due to the complexity of the problem, it is difficult to solve large instances using a
model based on a compact formulation of the problem. A decomposition approach is
introduced as an alternative solution method, where possible travel routes are generated
a priori. Furthermore, two heuristic solutions methods are proposed, both aiming to
generate fewer travel routes to reduce the size of the problem and make it easier to solve.
The second heuristic method is an extension of the first, and as such generates fewer
travel routes. A computational study shows that, in general, using the decomposed model
formulation gives shorter computing times and provides better solutions than the compact
model formulation. This is especially true as the number of resources, tasks, and locations
increase, proving that a decomposed solution approach is effective. However, even the
decomposed model is unable to handle the largest test instances efficiently. For these
instances, both heuristic solution methods provide better solutions in the given run times
of twenty minutes and of one hour.

Analysis of the largest instances tested for an increase in the number of resources and

90

tasks shows that for the first heuristic approach, a 50% branching rate is efficient. For
the second heuristic approach, the computational study indicates that a branching strategy
seems especially efficient when having to consider many tasks, while limiting the numbers
of super-resources per task seems more effective for instances with a large number of
resources. Furthermore, there is a slight indication that dividing routes among similar
super-resources removes too many favorable routes, and hence is not a preferable heuristic.

For the instances with the largest number of resources, results indicate that the second
heuristic method is more promising than the first heuristic method. For the instances
with the largest number of tasks, the results are inconclusive. For both methods, a higher
branching rate seems necessary to solve even larger test instances, and the test results
prove that this negatively affects the solution value. The heuristic methods therefore have
potential for improvement.

Nevertheless, the PTTP seems to rely on the use of a heuristic solution approach in order
to provide solutions for instances of realistic proportions, which often include at least 20
super-resources. Even though the solutions provided by a heuristic are most likely not the
optimal solutions, FFI has stated that any solution would be of great interest as a starting
point for an operation planner. It is then preferable to have a short computation time to
enable re-runs where adjustments can be made to the parameter data, and different plan-
ning options can be tested and analyzed. With the right use of a heuristic decomposition
approach, the computational study in this thesis indicates that the model is able to provide
a solution to most problems. Furthermore, it seems sufficient to have a run time of 20
minutes, as the solutions provided rarely improve by running the model for a longer time
than this. These results suggest that the model has the potential to become a useful decision
support tool for military peacekeeping operation planning.

Chapter 9

Future Research

In this thesis, we seek to develop a model and solution method that solves the PTTP
in an efficient manner. A decomposition solution approach combined with a heuristic
method for generating routes has proved itself to be promising, solving smaller instances
effectively. However, we realize that for the model to be a useful decision support tool for
military operation planning, it has to be improved upon to handle larger instances.

Alternative solution methods, such as more advanced heuristics, have the potential to do
just this. Research shows that heuristic solution methods such as genetic algorithms have
lead to good results for the RCPSP (Tavana et al., 2014; Schutt et al., 2012; Afruzi et al.,
2014; Van Peteghem and Vanhoucke, 2010; Afshar-Nadjafi and Majlesi, 2014). Heuristic
solution methods combining a genetic algorithm with a decomposition approach such as
the ones Debels and Vanhoucke (2007) and Zamani (2011) present, seem particularly
promising, and would be an interesting continuation of the study conducted in this thesis.
Regarding the generation of travel routes for a decomposed model, alternative search
strategies could prove to enhance the performance of such a solution approach.

An alternative to a heuristic approach is to move more of the PTTP to the travel route
generation. For example, deciding what tasks to be completed during each location visit
when calculating travel routes, will make the optimization easier. On the other hand, it will
also greatly increase the number of routes generated, lengthening both the time it takes to
generate routes and the time it takes the optimization model to load the text files containing
the generated routes. Future research on this strategy would therefore also have to consider
programming the travel route generator and optimization model in a more effective manner
to save computational time.

A simplification of the model is another viable method of making the model more efficient,
and should be considered in future studies. An observation made during the computational
study is that the model is very complex, especially regarding task characteristics and

92

how they relate to one another. Though this makes the model more encompassing, the
complexity also makes the problem more difficult to solve, and hence negatively affects
how the models perform. Thus, all the complicating factors are not necessarily beneficial
to model. Removing long and rest tasks from the model would, for example, simplify the
model without greatly affecting the effectiveness of operation planning. This is because
long and rest tasks are relatively lengthy tasks, which might be more practical to schedule
manually.

Extensions of the objective function could also be of interest for future research. The
computational results in Chapter 7 suggest that there are some trade-offs to consider in
a PTTP. For example, maximizing value does not necessarily lead to more tasks being
completed. The value of tasks makes it possible to rank their importance, but it is an
imaginary parameter that is difficult to define. Consequently, maximizing value might
not lead to the best practical solutions. Maximizing the number of tasks is an alternative
objective, but will render task values and skill levels nonfunctional, and hence the model
will lose some of its generality and complexity. It may therefore be more fitting to include
both value and the number of tasks completed in the objective function. Minimizing
idle time for resources during an operation might also be desirable for logistical and
economical reasons, and could either be part of a multi-objective function, or a singular
objective function.

Discretizing time would be another interesting direction for future research. Regarding
time as discrete is a simplification, but in the case of military peacekeeping operations
where tasks are lengthy, it might be a reasonable simplification. In fact, Kopanos et al.
(2014) finds that time discrete models perform better than continuous models for when
there are a large number of tasks to complete, which is the case for the PTTP.

Bibliography

Adhau, S., Mittal, M. L., and Mittal, A. (2013). A multi-agent system for decentralized
multi-project scheduling with resource transfers. International Journal of Production
Economics, 146(2):646–661.

Afruzi, E. N., Najafi, A. A., Roghanian, E., and Mazinani, M. (2014). A multi-objective
imperialist competitive algorithm for solving discrete time, cost and quality trade-
off problems with mode-identity and resource-constrained situations. Computers &
Operations Research, 50:80–96.

Afshar-Nadjafi, B. and Majlesi, M. (2014). Resource constrained project scheduling prob-
lem with setup times after preemptive processes. Computers & Chemical Engineering,
69:16–25.

Al-Anzi, F. S., Al-Zame, K., and Allahverdi, A. (2010). Weighted multi-skill resources
project scheduling. Journal of Software Engineering and Applications, 3(12):1125.

Almeida, B. F., Correia, I., and da Gama, F. (2016). Priority-based heuristics for the
multi-skill resource constrained project scheduling problem. Expert Systems with
Applications, 57:91–103.

Batptiste, P., Pape, C. L., and Nuijten, W. (1999). Satisfiability tests and time-bound
adjustments for cumulative scheduling problems. Annals of Operations Research,
92(0):305–333.

Bellenguez, O. and Néron, E. (2005). Lower bounds for the multi-skill project scheduling
problem with hierarchical levels of skills. In Practice and Theory of Automated
Timetabling V, pages 229–243. Springer.

Bianco, L., Dell’Olmo, P., and Speranza, M. (1998). Heuristics for multimode scheduling
problems with dedicated resources. European Journal of Operational, 107(2):260–271.

Chaudry, N. and Vermedal, I. (2017). Optimization of the troops-to-tasks assignment in
military peacekeeping operations.

94 Bibliography

Debels, D. and Vanhoucke, M. (2007). A decomposition-based genetic algorithm for
the resource-constrained project-scheduling problem. Operations Research, 55(3):457–
469.

Drexl, A., Nissen, R., Patterson, J. H., and Salewski, F. (2000). Progen/πx–an
instance generator for resource-constrained project scheduling problems with partially
renewable resources and further extensions. European Journal of Operational Research,
125(1):59–72.

Eide (2001). The peacekeeping challenge. https://www.
nato.int/docu/review/2001/Peacekeeping-Challenge/
Peacekeeping-past-present/EN/index.htm. Accessed: 2018-06-07.

Fauske, M. F. (2015). Optimizing the troops-to-tasks problem in military operations plan-
ning. Military Operations Research, 20(4):49–57. doi: 10.5711/1082598320449.

Fauske, M. F. (2017). Using a genetic algorithm to solve the troops-to-tasks problem
in military operations planning. The Journal of Defense Modeling and Simulation,
14(4):439–446.

Gacias, B., Artigues, C., and Lopez, P. (2010). Parallel machine scheduling with prece-
dence constraints and setup times. Computers & Operations Research, 37(12):2141–
2151.

Hartmann, S. and Briskorn, D. (2010). A survey of variants and extensions of the resource-
constrained project scheduling problem. European Journal of operational research,
207(1):1–14.

Heimerl, C. and Kolisch, R. (2010). Scheduling and staffing multiple projects with a
multi-skilled workforce. OR Spectrum, 32(2):343–368.

H’Mida, F. and Lopez, P. (2013). Multi-site scheduling under production and trans-
portation constraints. International Journal of Computer Integrated Manufacturing,
26(3):252–266.

Kopanos, G. M., Kyriakidis, T. S., and Georgiadis, M. C. (2014). New continous-time and
discrete-time mathematical formulations for resource-constrained project scheduling
problems. Computers & Chemical Engineering, 68:96–106.

Krüger, D. and Scholl, A. (2010). Managing and modelling general resource transfer in
(multi-)project scheduling. OR spectrum, 32(2):369–394.

Laurent, A., Deroussi, L., Grangeon, N., and Norre, S. (2017). A new extension of the
rcpsp in a multi-site context: Mathematical model and metaheuristics. Computers &
Industrial Engineering, 112:634–644.

Liu, S.-S. and Wang, C.-J. (2011). Optimizing project selection and scheduling problems
with time-dependent resource constraints. Automation in Construction, 20(8):1110–
1119.

https://www.nato.int/docu/review/2001/Peacekeeping-Challenge/Peacekeeping-past-present/EN/index.htm
https://www.nato.int/docu/review/2001/Peacekeeping-Challenge/Peacekeeping-past-present/EN/index.htm
https://www.nato.int/docu/review/2001/Peacekeeping-Challenge/Peacekeeping-past-present/EN/index.htm
10.5711/1082598320449

Bibliography 95

Moukrim, A., Quilliot, A., and Toussaint, H. (2015). Branch and price for preemptive
and non preemptive rcpsp based on interval orders on precedence graphs. In Recent
Advances in Computational Optimization, pages 85–106. Springer.

Myszkowski, P. B., Skowroński, M. E., Olech, Å. P., and OślizÅ‚o, K. (2015). Hybrid
ant colony optimization in solving multi-skill resource-constrained project scheduling
problem. Soft Computing, 19(12):3599–3619.

NATO (2016). Operations and missions: past and present. https://www.nato.int/
cps/en/natohq/topics_52060.htm. Accessed: 2018-08-07.

Pollack-Johnson, B. and Liberatore, M. J. (2006). Incorporating quality considerations
into project time/cost tradeoff analysis and decision making. IEEE Transactions on
Engineering Management, 53:534–542.

Ranjbar, M., De Reyck, B., and Kianfar, F. (2009). A hybrid scatter search for the discrete
time/resource trade-off problem in project scheduling. European Journal of Operational
Research, 193(1):35–48.

Rihm, T. and Trautmann, N. (2014). A mip-based decomposition heuristic for resource-
constrained project scheduling. In 14th International Conference on Project Manage-
ment and Scheduling, page 193.

Santos, M. and Tereso, A. (2011). On the multi-mode, multi-skill resource constrained
project scheduling problem - a software application. In Soft Computing in Industrial
Applications, pages 239–248. Springer.

Schutt, A., Chu, G., Stuckey, P. J., and Wallace, M. G. (2012). Maximising the net
present value for resource-constrained project scheduling. In CPAIOR, pages 362–378.
Springer.

Section for Security Policy and North America (2017). FNs fredsoperasjoner.
https://www.regjeringen.no/no/tema/utenrikssaker/
sikkerhetspolitikk/fredsbevarende_operasjoner/fn_
fredsoperasjoner/id86766/. Accessed: 2017-12-03.

Sprecher, A. (2002). Network decomposition techniques for resource-constrained project
scheduling. Journal of the Operational Research Society, 53(4):405–414.

Tavana, M., Abtahi, A.-R., and Khalili-Damghani, K. (2014). A new multi-objective multi-
mode model for solving preemptive time–cost–quality trade-off project scheduling
problems. Expert Systems with Applications, 41(4):1830–1846.

The Norwegian Armed Forces. Mediearkiv. https://mediearkiv.forsvaret.
no/fotoweb/. Accessed: 2017-12-08.

Tian, J., Liu, Z., and Yu, W. (2014). An approach with decomposition on time windows
for resource-constrained project scheduling. In Control and Decision Conference (2014
CCDC), The 26th Chinese, pages 4897–4903. IEEE.

https://www.nato.int/cps/en/natohq/topics_52060.htm
https://www.nato.int/cps/en/natohq/topics_52060.htm
https://www.regjeringen.no/no/tema/utenrikssaker/sikkerhetspolitikk/fredsbevarende_operasjoner/fn_fredsoperasjoner/id86766/
https://www.regjeringen.no/no/tema/utenrikssaker/sikkerhetspolitikk/fredsbevarende_operasjoner/fn_fredsoperasjoner/id86766/
https://www.regjeringen.no/no/tema/utenrikssaker/sikkerhetspolitikk/fredsbevarende_operasjoner/fn_fredsoperasjoner/id86766/
https://mediearkiv.forsvaret.no/fotoweb/
https://mediearkiv.forsvaret.no/fotoweb/

96 Bibliography

Trautmann, N. and Schwindt, C. (2005). A minlp/rcpsp decomposition approach for the
short-term planning of batch production. In Computer Aided Chemical Engineering,
volume 20, pages 1309–1314. Elsevier.

United Nations (2017a). How we are founded. https://peacekeeping.un.org/
en/how-we-are-funded. Accessed: 2017-06-07.

United Nations (2017b). Our history. https://peacekeeping.un.org/en/
our-history. Accessed: 2018-06-07.

Van Peteghem, V. and Vanhoucke, M. (2010). A genetic algorithm for the preemptive
and non-preemptive multi-mode resource-constrained project scheduling problem.
European Journal of Operational Research, 201(2):409–418.

Waligóra, G. (2014). Discrete-continuous project scheduling with discounted cash inflows
and various payment models - a review of recent results. Annals of Operations Research,
213(1):319–340.

Wang, L. and Zheng, X.-l. (2017). A knowledge-guided multi-objective fruit fly opti-
mization algorithm for the multi-skill resource constrained project scheduling problem.
Swarm and Evolutionary Computation. doi: 10.1016/j.swevo.2017.06.001.

Zamani, R. (2011). A hybrid decomposition procedure for scheduling projects under
multiple resource constraints. Operational Research, 11(1):93–111.

https://peacekeeping.un.org/en/how-we-are-funded
https://peacekeeping.un.org/en/how-we-are-funded
https://peacekeeping.un.org/en/our-history
https://peacekeeping.un.org/en/our-history
10.1016/j.swevo.2017.06.001

Appendix A

Deduction of divisible task
duration constraints

This appendix presents a deduction of constraints 4.43 in Section 4.3, Chapter 4. These
constraints limit the time it takes to complete a divisible task taking into account assigned
sub-resources and capacity.

Constraints 4.43:

tENDp ≥ tSTARTp + UTASKp

(
CMAX
p − UMIN

p

CMAX
p − 1 qp

)

+ UTASKp

(
UMIN
p − 1∑

s∈S C
REQ
ps (CMAX

p − 1)

∑
k∈K

∑
s∈S

∑
l∈L

CRESksl Hpsxkp

)
p ∈ PDIV

(A.1)

The duration of a divisible task is assumed to be linearly proportional to its assigned ca-
pacity. For a task to have a duration, i.e. be completed, its minimum capacity requirement,∑
s∈S C

REQ, has to be met. At this amount of assigned capacity, the task will take the
standard amount of time to complete, UTASKp . This relationship is represented by the
point (z1, y1) in Figure A.1. Point (z2, y2) represents the relation between the minimum
duration a task can have, HMINUTASKp , and the maximum capacity a task can wield,∑
s∈S C

MAX
p CREQps . Knowing these two points, it is possible to linearly interpolate

between them and deduce a linear function for the duration of a divisible task.

y = tENDp − tSTARTp p ∈ PDIV (A.2)

98

Figure A.1: Relation between divisible task duration and assigned capacity.

z =
∑
k∈K

∑
s∈S

∑
l∈L

CRESksl Hpsxkp p ∈ PDIV (A.3)

y = αz + β (A.4)

Equations (A.2)-(A.3) apply to every divisible task. (A.4) is a standard linear equation
where α is the slope of the function and β is the intersection point of the vertical axis.
The slope can be calculated using the aforementioned points, (z1, y1) and (z2, y2), as
presented in (A.5). Using the slope and point (z1, y1), β is given in (A.6). Equation (A.1)
is the result of combining equations (A.2)-(A.6). qp is multiplied with the first terms to
ensure that tENDp is not forces to be positive for tasks that are not completed.

α = y2 − y1

z2 − z1

=
UTASKp (UMIN

p − 1)∑
s∈S C

REQ
ps (CMAX

p − 1)

(A.5)

β = y1 − αz1

= UTASKp −
UTASKp (UMIN

p − 1)∑
s∈S C

REQ
ps (CMAX

p − 1)

∑
s∈S

CREQps

(A.6)

Appendix B

Decomposed Model of the PTTP

B.1 Definitions

Indices
g Super-resource
k Sub-resource
p Task
i, j Location
s Skill
l Skill level
m,n Visit number of a location
d Group of duplicate tasks
r Traveling route

Sets
G Set of super-resources
GARMY Subset of army super-resources not including supporting super-resources
Kg Set of sub-resources that belong to super-resource g
K Union of all Kg sets
I Set of locations including dummy locations 1 and |I|
P Set of all tasks
PE Subset of exclusive tasks

100 B.1. Definitions

PDIV Subset of divisible tasks
PLOCi Subset of tasks that are located at location i
PLONG Subset of long tasks, including rest tasks
PREST Subset of rest tasks at camp
PSLEEP Subset of sleep tasks at camp
PDUPd Subset of tasks that are duplicates of task d
D Set of unique tasks, each representing a group of duplicate tasks
S Set of skills
L Set of skill levels
Ni Set of possible visits to location i
Rg Set of possible routes for super-resource g

Parameters
TTRAV ELgij Travel time for super-resource g between locations i and j

TTASKp Standard time it takes to complete task p

TMIN
p Minimum percentage of standard time it can take to complete task p

TRLp Release time for task p

TDDLp Deadline for task p

CREQps Capacity requirement for task p of skill s

CMAX
p Maximum excess capacity task p can utilize as a percentage of CREQps

CRESksl Capacity of resource k of skill s at skill level l

Hps 1 if task p requires skill s, 0 otherwise

Vpl Value of completing task p with skill level l

FPRECdd′ 1 if group of duplicates d has precedence over group d′, 0 otherwise

FCONdd′ 1 if resources assigned to a task in groups d must also be assigned to
a task in group d′, 0 otherwise

FDIRdd′ 1 if a task in group d′ is to start directly after the end time of a task
in group d, 0 otherwise

Y TRAV ELrgimjn 1 if for route r, super-resource g travels directly between its mth

visit at location i and nth visit at location j, 0 otherwise

Y LOCrgim 1 if for route r, super-resource g visits location i for the mth time,
0 otherwise

R Maximum number of resources that can be assigned to any task

T End time of operation

M Big M

Appendix B. Decomposed Model of the PTTP 101

Variables
xkp 1 if resource k is assigned to task p, 0 otherwise

qp 1 if task p is completed, 0 otherwise

ug 1 if super-resource g is assigned to security, 0 otherwise

wkpsl The capacity of skill s, at skill level l, resource k contributes to meet the
capacity requirement of task p

epl Portion of task p completed at skill level l

tSTARTp Time task p starts

tENDp Time task p finishes

agim Arrival time of super-resource g at location i for the mth time

bgim Departing time of super-resource g from location i for the mth time

okpp′ 1 if resource k is occupied with long task p′ and therefore not required to
complete sleep-task p, 0 otherwise

δpp′ 1 if task p is completed before task p’, 0 otherwise

γkpm 1 if resource k completes task p on the mth visit of the task’s location,
0 otherwise

θgimp 1 if super-resource g travels to location i for the mth visit before sleep task p,
0 otherwise

λrg 1 if super-resource g travels route r

B.2 Optimization model

B.2.1 Objective function

max z =
∑
p∈P

∑
l∈L

Vplepl (B.1)

The objective function (B.1) maximizes the total value achieved by completing tasks in
the military peacekeeping operation. The given value of each task being completed at a
certain skill level is multiplied by the proportion of the task being done at that skill level.
For uncompleted tasks, the proportions will be zero, ensuring that no value is added for
these tasks.

102 B.2. Optimization model

B.2.2 Constraints and requirements

Super-resource network constraints

agim − T (1− γkpm) ≤ tSTARTp g ∈ G, i ∈ I, k ∈ Kg,m ∈ Ni, p ∈ PLOCi (B.2)

bgim + T (1− γkpm) ≥ tENDp g ∈ G, i ∈ I, k ∈ Kg,m ∈ Ni, p ∈ PLOCi (B.3)

bgim ≥ tENDp − T (θgimp +
∑
k∈Kg

∑
d′∈D,
p′∈Pd′

∑
d∗∈D,

p∗∈Pd∗∩PLONG

FDIRd′d∗ F
CON
d′d∗ okpp′)

g ∈ GARMY , i ∈ I,m ∈ Ni, p ∈ PSLEEP (B.4)

bgim ≤ tSTARTp + T (1− θgimp +
∑
k∈Kg

∑
d′∈D,
p′∈Pd′

∑
d∗∈D,

p∗∈Pd∗∩PLONG

FDIRd′d∗ F
CON
d′d∗ okpp′)

g ∈ GARMY , i ∈ I,m ∈ Ni, p ∈ PSLEEP (B.5)

Constraints (B.2) and (B.3) handle the hierarchy requirements associated with super- and
sub-resources. They state that for a task to be completed by a certain sub-resource, the
super-resource that sub-resource is a part of has to arrive at the task’s location before the
task begins, and can only leave after the task is completed. Constraints (B.4) and (B.5)
ensure no resources leave a location during sleep periods, unless they travel from a long
task ending during the night to the location of a connected long and rest task with a direct
start condition. d∗ in (B.4) and (B.5) represent duplicate groups of only long tasks.

bgim + TTRAV ELgij ≤ agjn +M(1−
∑
r∈Rg

λrgY
TRAV EL
rgimjn)

g ∈ G, i, j ∈ I,m ∈ Ni, n ∈ Nj , i 6= j (B.6)

∑
i∈I

∑
m∈Ni

∑
j∈I

∑
n∈Nj

∑
r∈Rg

λrgT
TRAV EL
gij Y TRAV ELrgimjn +

∑
i∈I

∑
m∈Ni

(bgim − agim) = T

g ∈ G (B.7)

Constraints (B.6) specify that if a super-resource travels directly between two locations,
then it can only arrive at a location a period at least equal to the travel time TTRAV ELgij after
it has left from its previous location. Big M for constraints (B.6) equals the sum of the end
time T and the highest travel time for any super-resource between any two locations, i.e.

Appendix B. Decomposed Model of the PTTP 103

the highest TTRAV ELgij value. Constraints (B.7) ensure that, at all times, a super-resource
is either traveling or at a location.

agim ≤
∑
r∈Rg

λrgTY
LOC
rgim g ∈ G, i ∈ I,m ∈ Ni (B.8)

bgim ≤
∑
r∈Rg

λrgTY
LOC
rgim g ∈ G, i ∈ I,m ∈ Ni (B.9)

∑
r∈Rg

λrgY
LOC
rgim ≤

∑
k∈Kg

∑
p∈PLOC

i

γkpm g ∈ G, i ∈ I\(1, |I|),m ∈ Ni (B.10)

xkp ≤
∑
m∈Ni

∑
r∈Rg

λrgY
LOC
rgim g ∈ G, i ∈ I, k ∈ Kg, p ∈ PLOCi (B.11)

∑
m∈Ni

γkpm = xkp i ∈ I, k ∈ K, p ∈ PLOCi (B.12)

Constraints (B.8) and (B.9) assert that a super-resource cannot arrive or leave a location
it is not visiting. Constraints (B.10) limit unnecessary travel by stating that if a super-
resource visits a location for the mth time, then a sub-resource belonging to that super-
resource has to be assigned to a task in that location on that particular visit. Exceptions
are the start and end locations, as there are no tasks at these locations. Constraints (B.11)
state that if a sub-resource is assigned to a task, then it has to visit the task’s location at
least once. Constraints (B.12) couple the variables γ and x.

∑
r∈Rg

λrg = 1 g ∈ G (B.13)

Constraints (B.13) state that for all super-resources, exactly one route must be selected for
the given set of possible routes.

Resource capacity constraints

∑
s∈S

CREQps epl =
∑
k∈K

∑
s∈S

wkpsl p ∈ P, l ∈ L (B.14)

104 B.2. Optimization model

∑
k∈K

∑
l∈L

wkpsl = CREQps qp p ∈ P, s ∈ S (B.15)

wkpsl ≤ CRESksl xkp k ∈ K, p ∈ P, s ∈ S, l ∈ L (B.16)

Constraints (B.14) provide the proportion of a task that is carried out with each skill level.
Constraints (B.15) ensure that this proportion is only positive if a task is completed. They
also ensure that a task can only be completed if the task’s skill requirements are met, and
that the model does not award value to unnecessary work. Constraints (B.16) state that a
resource’s contribution to a task cannot be more than its own capacity.

xkp ≤
∑
s∈S

∑
l∈L

wkpsl k ∈ K, p ∈ P\PDIV (B.17)

xkp ≤
∑
s∈S

∑
l∈L

CRESksl CREQps k ∈ K, p ∈ PDIV (B.18)

Constraints (B.17) and (B.18) forbid the assignment of resources to tasks which they
cannot undertake. Constraints (B.17) state that, for indivisible tasks, xkp can only be set to
1 if k contributes to the adding of value for task p, and that its total capacity contribution
has to be at least 1. For divisible tasks, wkpsl may be zero for resource k and hence not
generate any task value, even if k is assigned to task p. This occurs if the capacity assigned
to a divisible task exceeds the requirement of that task. The reason for exceeding capacity
without adding value is to reduce the duration it takes to complete a task. In this case,
constraints (B.15) and (B.16) do not provide any restrictions to the skill requirement for
resource k to be assigned to tasks p. Constraints (B.18) therefore make sure resource k is
not assigned to a divisible task unless it has the skills required to complete the task. Note
that these constraints imply that all capacities are above 1.

Task scheduling constraints

∑
k∈K

xkp ≥ qp p ∈ P (B.19)

∑
k∈K

xkp ≤ Rqp p ∈ P\PSLEEP (B.20)

∑
p∈PDUP

d

qp ≤ 1 d ∈ D (B.21)

Appendix B. Decomposed Model of the PTTP 105

Constraints (B.19) and (B.20) guarantee that a task can only be completed if one or more
resources are assigned to it, and that they cannot be assigned to a task unless that task is
selected. Constraints (B.20) also limit the number of resources that can work on a single
task. Sleep tasks are not subject to this limit. Constraints (B.21) make sure that tasks with
multiple time windows cannot be completed more than once, meaning that only one task
in a group d of duplicate tasks can be completed.

∑
g∈GARMY

ug = 1 (B.22)

xkp ≤ 1− ug g ∈ GARMY , k ∈ Kg, p ∈ P\PSLEEP (B.23)

Constraint (B.22) ensures that one army super-resource is assigned to the security post,
and constraints (B.23) make sure that sub-resources belonging to that super-resource are
not assigned to any tasks during the planning period, with the exception of sleep tasks.

Exclusive task constraints

tENDp − T (2− (xkp + xkp′)) ≤ tSTARTp′ + T (1− δpp′)
k ∈ K, p ∈ P, p′ ∈ PE , p 6= p′ (B.24)

tENDp′ − T (2− (xkp + xkp′)) ≤ tSTARTp + Tδpp′

k ∈ K, p ∈ P, p′ ∈ PE , p 6= p′ (B.25)

Constraints (B.24) and (B.25) deal with the exclusiveness of certain tasks, forcing all tasks
handled by resource k to either end before an exclusive task, handled by the same resource
k, starts, or start after the exclusive task is completed. The binary variable δ ensures that
the same task is not affected by both constraints.

Sleep and long task constraints

xkp +
∑

p′∈PLONG
okpp′ ≥ 1 g ∈ GARMY , k ∈ Kg, p ∈ PSLEEP (B.26)

Constraints (B.26) require resources to be assigned to all sleep tasks, unless the resource
or other resources belonging to the same super-resource are occupied with a long task at
the time. This only applies to army resources.

106 B.2. Optimization model

tSTARTp −M(1− okpp′) ≤ tENDp′ k ∈ K, p ∈ PSLEEP , p′ ∈ PLONG (B.27)

tSTARTp′ −M(1− okpp′) ≤ tENDp k ∈ K, p ∈ PSLEEP , p′ ∈ PLONG (B.28)

okpp′ ≤
∑
k′∈Kg

xk′p′ g ∈ GARMY , k ∈ Kg, p ∈ PSLEEP , p′ ∈ PLONG (B.29)

Constraints (B.27) – (B.29) make sure resources are allowed to undertake long tasks or
rest tasks during sleep periods. This is only the case for sleep tasks p overlapping with
long or rest tasks p′, and only for army resources k belonging to super-resource g where
one or more resources k′ are assigned to long or rest task p′. Constraints (B.27) and (B.28)
allow okpp′ to be 1 for sleep task p only when there is a long task or rest task p′ starting
before the end and ending after the start of sleep task p. Constraints (B.29) force okpp′
to zero for sub-resource k if none of the sub-resources belonging to its super-resource are
assigned to the long or rest task p′. Thus, the variable okpp′ is zero unless requirements in
all three equations are met. Big M in constraints (B.27) and (B.28) equals the sum of the
duration of the shortest sleep task and the shortest long task, subtracted from the end time
T .

Precedence constraints∑
p′∈PDUP

d′

qp′ ≤
∑

p∈PDUP
d

qp d, d′ ∈ D, d 6= d′, FPRECdd′ = 1 (B.30)

tSTARTp′ + T (1− qp′) ≥ tENDp

d, d′ ∈ D, p ∈ PDUPd , p′ ∈ PDUPd′ , d 6= d′, FPRECdd′ = 1 (B.31)

Constraints (B.30) state that a task or one of its duplicates cannot be completed unless a
task in the group(s) of duplicate tasks with precedence over it are completed, and con-
straints (B.31) set the start time for task p′ after the end time of task p. Constraints (B.31)
are not to be binding unless task p′ is completed, hence the term T (1− qp′).

Connected task and direct start constraints

∑
p∈PDUP

d

xkp ≤
∑

p′∈PDUP
d′

xkp′

g ∈ GARMY , k ∈ Kg, d, d′ ∈ D, d 6= d′, FCONdd′ = 1 (B.32)

Appendix B. Decomposed Model of the PTTP 107

xkp = xk′p g ∈ GARMY , k, k′ ∈ Kg, p ∈ PREST (B.33)

Constraints (B.32) deal with connected tasks, ensuring that that if task p is connected to
task p′, i.e. FCONdd′ equals 1, then any army resource k assigned to task p must also be
assigned to task p′. For pairs of connected tasks where both tasks need to be completed
by the same combination of resources, FCONdd′ and FCONd′d equals 1. When one of the
connected tasks is rest task p′, all resources assigned to task p must be assigned to p′, but
the opposite is not true, and more resources may be assigned to p′ than p. Constraints
(B.33) forces all or no sub-resources in a super-resource to be assigned to rest task p.

tENDp + FCONdd′ TTRAV ELgij ≥ tSTARTp′ g ∈ GARMY , i, j ∈ I
d, d′ ∈ D, p ∈ (PDUPd ∩ PLOCi), p′ ∈ (PDUPd′ ∩ PLOCj), d 6= d′, FDIRdd′ = 1 (B.34)

For some tasks, there is a requirement that another task starts directly after the first task
is completed. Constraints (B.34) ensure that these requirements are fulfilled, taking into
account travel time between the tasks’ locations.

Time scheduling constraints

tSTARTp ≥ TRLp qp p ∈ P (B.35)

tENDp ≤ TDDLp qp p ∈ P (B.36)

If a task is realized, constraints (B.35) make sure task p starts after its release timeRp, and
constraints (B.36) ensure its completion before its deadline Dp.

tENDp ≤ tSTARTp + TTASKp qp p ∈ P (B.37)

tENDp ≥ tSTARTp + TMIN
p TTASKp qp p ∈ P (B.38)

tENDp ≥ tSTARTp + TTASKp

(
CMAX
p − TMIN

p

CMAX
p − 1 qp

)

+ TTASKp

(
TMIN
p − 1∑

s∈S C
REQ
ps (CMAX

p − 1)

∑
k∈K

∑
s∈S

∑
l∈L

CRESksl Hpsxkp

)
p ∈ PDIV

(B.39)

108 B.2. Optimization model

Constraints (B.37) - (B.39) handle task duration and ensure that tasks are completed in
a continuous fashion. Constraints (B.37) make sure that completing a task does not take
longer than necessary, while constraints (B.38) and (B.39) limit the shortest time a task
can take to complete. TTASKp is the given time it takes to complete task p when minimum
capacity requirements are met, and TMIN

p is the minimum proportion of time it may take if
the capacity requirements are exceeded. For indivisible tasks, it is not possible to shorten
the duration and TMIN

p equals 1. For divisible tasks the duration can be shortened by
the proportion of exceeding capacity down to the minimal proportion TMIN

p . Constraints
(B.39) set the end time of task p according to this. A deduction of constraints (B.39) is
presented in Appendix A.

Non-negativity constraints

wkpsl ≥ 0 k ∈ K, p ∈ P, s ∈ S, l ∈ L (B.40)

epl ≥ 0 p ∈ P, l ∈ L (B.41)

tSTARTp ≥ 0 p ∈ P (B.42)

tENDp ≥ 0 p ∈ P (B.43)

agim ≥ 0 g ∈ G, i ∈ I,m ∈ Ni (B.44)

bgim ≥ 0 g ∈ G, i ∈ I,m ∈ Ni (B.45)

Binary requirements

xkp ∈ {0, 1} k ∈ K, p ∈ P (B.46)

qp ∈ {0, 1} p ∈ P (B.47)

ug ∈ {0, 1} g ∈ G (B.48)

okpp′ ∈ {0, 1} k ∈ K, p, p′ ∈ P (B.49)

δpp′ ∈ {0, 1} p, p′ ∈ P (B.50)

Appendix B. Decomposed Model of the PTTP 109

γkpm ∈ {0, 1} i ∈ I, k ∈ K,m ∈ Ni, p ∈ PLOCi (B.51)

θgimp ∈ {0, 1} g ∈ G, i ∈ I,m ∈ Ni, p ∈ PSLEEP (B.52)

λrg ∈ {0, 1} g ∈ G, r ∈ Rg (B.53)

Constraints (B.40) - (B.45) ensure non-negativity for continuous variables. Constraints
(B.46) - (B.53) enforce binary values for all binary variables.

Appendix C

Battlegroup description

This appendix provides a description of the battlegroup that is used as a basis for gener-
ating test instances in this thesis, as referred to in Chapter 6. Table C.1 presents the skill
capacities resources have, which is dependent on the type of resource they are. Sleep is
included as a skill because it is modelled as such in the mathematical models presented in
this thesis. All resources have a sleep skill. There is no value assigned to it in the table
because the value is dependent on the number of resources in a test instance. Table C.2
presents the super-resources and their respective sub-resources and sub-resource types.

Table C.1: Description of skill capacities according to sub-resource type.

Sub-resource type
Skill 1 2 3 4 5 6 7 8 9 10 11

1 Sleep x x x x x x x x x x x
2 Fly 0 0 0 0 0 3 3 0 0 0 0
3 Planning 2 1 0 0 0 0 0 0 0 0 0
4 Coordinating 2 0 0 0 0 0 0 0 0 0 0
5 Attacking 0 0 2 0 0 0 1 2 0 0 0
6 Explosives 0 0 0 2 0 0 0 0 0 0 0
7 Run headquarter 0 3 0 0 0 0 0 0 0 0 0
8 Bomb disposal 0 0 0 0 0 0 0 2 0 0 0
9 Anti-aircraft 0 0 0 0 0 0 0 0 0 0 3

10 Navigation 0 0 0 3 0 0 0 0 0 0 0
11 Demining 0 0 0 3 0 0 0 0 0 0 0
12 Sanitary 0 0 0 0 2 0 0 0 0 0 0
13 Medical 0 0 0 0 3 2 0 0 0 0 0
14 Human transport 0 0 0 0 2 3 0 0 0 1 0
15 Maintenance 0 0 1 0 0 0 0 2 0 0 0
16 Logistics 0 0 0 0 0 0 3 0 2 0 0
17 Support 0 0 0 0 0 0 0 0 3 2 0
18 Security 0 0 2 0 0 0 1 2 0 0 1
19 General 0 0 2 2 2 0 0 2 2 2 0
20 Patrol 0 0 2 1 0 0 0 0 0 0 0

112

Table C.2: Description of super-resources and their respective sub-resources.

Super-resource Index (g) Sub-resources Index (k) SB type
Infantry company headquarter 1 1 Infantry company headquarter 1 1 1

Headquarter platoon 2 Headquarter platoon 2 2

Infantry platoon 1 3
Infantry section 1.1 3 3
Infantry section 1.2 4 3
Infantry section 1.3 5 3

Reconnaissance team 1 4 Reconnaissance team 1 6 4

Medical platoon 1 5
Medical section 1.1 7 5
Medical section 1.2 8 5
Medical section 1.3 9 5

Sanitary helicopter 6 Sanitary helicopter 10 6
Transport helicopter 7 Transport helicopter 11 7

Mortar platoon 8

Mortar section 1.1 12 8
Mortar section 1.2 13 8
Mortar section 1.3 14 8
Mortar section 1.4 15 8

Combat service support platoon 9

Combined maintenance team 1.1 16 9
Combined maintenance team 1.2 17 9
Combined maintenance team 1.3 18 9

Recovery team 1.1 19 10
Recovery team 1.2 20 10

Anti-aircraft platoon 10

Anti-aircraft 1.1 21 11
Anti-aircraft 1.2 22 11
Anti-aircraft 1.3 23 11
Anti-aircraft 1.4 24 11

Infantry platoon 2 11
Infantry section 2.1 25 3
Infantry section 2.2 26 3
Infantry section 2.3 27 3

Medical platoon 2 12
Medical section 2.1 28 5
Medical section 2.2 29 5
Medical section 2.3 30 5

Infantry platoon 3 13
Infantry section 3.1 31 3
Infantry section 3.2 32 3
Infantry section 3.3 33 3

Reconnaissance team 2 14 Reconnaissance team 2 34 4
Infantry company headquarter 2 15 Infantry company headquarter 2 35 1

Infantry platoon 4 16
Infantry section 4.1 36 3
Infantry section 4.2 37 3
Infantry section 4.3 38 3

Infantry platoon 5 17
Infantry section 5.1 39 3
Infantry section 5.2 40 3
Infantry section 5.3 41 3

Reconnaissance team 3 18 Reconnaissance team 3 42 4

Infantry platoon 6 19
Infantry section 6.1 43 3
Infantry section 6.2 44 3
Infantry section 6.3 45 3

Medical platoon 3 20
Medical section 3.1 46 5
Medical section 3.2 47 5
Medical section 3.3 48 5

Reconnaissance team 4 21 Reconnaissance team 4 49 4

Appendix D

Adjustable parameter values for
instance generator

This appendix presents the adjustable input data the instance generator in Chapter 6 re-
quires to create test instances. The values for the parameters that are unaltered for all
instances are also given. The parameters that are kept alterable are not given a value here.

Table D.1: Adjustable parameters needed to create a test instance.

Adjustable
Parameter Description Value

Equivalent
to set or
parameter

nSR Number of super-resources - G
nDuplicates Number of unique tasks - D

nTasks
Number of total tasks including dupli-
cates

- P

nLoc Number of locations - I
nEndTime Planning time period in hours 168 T

nResourcesPerTask
the maximum number of sub-resources
that can be assigned to a task

3 R

long_pntg Probability of a task being long 10%
exc_pntg Probability of a task being exclusive 50%

prec_pntg
Probability of a task having precedence
over other tasks

10%

con_pntg
Probability of a task being connected to
other tasks

10%

dir_pntg
Probability of a task having to having
direct starts after other task

10%

114

Adjustable
Parameter Description Value

Equivalent
to set or
parameter

div_pntg Probability of a task being divisible 10%

tmin_pntg
The minimum time a divisible task can
take as a percentage of the regular time

50%

capres_max_pntg
The maximum capacity that can be as-
signed to a divisible task as a percentage
of the regular capacity

3

ttask_min The minimum time any task can take 2

pSuff
The probability of a resources skill be-
ing at a sufficient level

25%

value_max
The maximum value a task can have
before taking the length of the task into
account

3

maxtaskprec
The maximum nr of tasks a single task
can have precedence over

2

maxtaskcon
The maximum nr of tasks a single task
can be connected to

2

maxtaskdir
The maximum nr of tasks a single task
can have a direct start with

2

nSkillsLow Number of skills with low occurrence 6

nSkillsMedium
Number of skills with medium occur-
rence (twice as likely to be required)

5

SkillsHigh
Number of skills with high occurrence
(four times as likely to be required)

3

capreq_min
The minimum sum of capacity a task
can require

2

capreq_max
The maximum sum of capacity a task
can require

15

nSkillsMin
The minimum number of skills a task
can require

1

nSkillsMax
The maximum number of skills a task
can require

5

capPerSkillMin
The minimum capacity a task can re-
quire of each skill

1

capPerSkillMax
The maximum capacity a task can re-
quire of each skill

5

routeSelection
The percentage of possible travel routes
to be selected when branching

-

SRperTask
The assumed maximum number of
super-resources working together on
one a task

2

Appendix E

Test results from computational
study

This appendix presents results from the testing of the models presented in Chapter 4 and
5. Tables E.1–E.3 present the results from applying the exact compact and decomposed
models to test sets 1–3. Highlighted in blue are the subset results. They are calculated
by using the average results of the five test instances that make up a subset. The only
exception is the calculation of the optimality gap which is based on the average best bound
and solution.

Table E.4 presents the results from applying the exact and first heuristic method rates of
the decomposed model to test sets 1 and 3. Table E.5 presents the results from applying
the second heuristic method rates to the three largest instances in test set 1 and 3. The cells
highlighted in green are the different percentages of routes that the travel route generator
chooses to branch on. 30%, for example, means that the generator only chooses to branch
on 30% percent of the possible travel routes. The rows marked "Exact" present the exact
decomposed solutions.

116Table E.1: Results from the exact models for test set 1.

Compact model Decomposition model

Test
instance To

ta
l

ru
n

tim
e

L
P-

re
la

xa
tio

n

B
es

ts
ol

ut
io

n

O
pt

im
al

ity
ga

p
af

te
r

on
e

ho
ur

B
es

t
so

lu
tio

n
af

te
r

20
m

in

R
ou

te
ge

ne
ra

-
tio

n
tim

e

R
ou

te
s

ge
ne

r-
at

ed

O
pt

im
iz

at
io

n
ru

n
tim

e

To
ta

lr
un

tim
e

L
P-

re
la

xa
tio

n

B
es

ts
ol

ut
io

n

O
pt

im
al

ity
ga

p
af

te
r

on
e

ho
ur

B
es

t
so

lu
tio

n
af

te
r

20
m

in

R-4-30-8-1 0.7 16.0 16.0 0.0% 16.0 0.1 16 0.7 0.8 16.0 16.0 0.0% 16.0
R-4-30-8-2 3600 26.0 0.0 2600% 0.0 0.1 24 0.8 0.9 26.0 26.0 0.0% 26.0
R-4-30-8-3 0.7 0.0 0.0 0.0% 0.0 0.8 28 0.7 1.5 0.0 0.0 0.0% 0.0
R-4-30-8-4 0.7 6.0 6.0 0.0% 6.0 0.1 8 0.6 0.7 6.0 6.0 0.0% 6.0
R-4-30-8-5 0.6 14.4 14.4 0.0% 14.4 0.1 114 0.6 0.7 14.4 14.4 0.0% 14.4
R-4-30-8 720.5 12.5 7.3 0.0% 7.3 0.2 38.0 0.7 0.9 12.5 12.5 0.0% 12.5

R-6-30-8-1 3.4 25.0 25.0 0.0% 25.0 0.1 332 1.3 1.4 25.0 25.0 0.0% 25.0
R-6-30-8-2 23.0 47.0 47.0 0.0% 47.0 0.1 192 1.8 1.9 47.0 47.0 0.0% 47.0
R-6-30-8-3 1.0 0.0 0.0 0.0% 0.0 0.1 272 1.1 1.2 0.0 0.0 0.0% 0.0
R-6-30-8-4 3.2 36.0 35.6 0.0% 35.6 0.1 210 2.9 3.0 36.0 35.6 0.0% 35.6
R-6-30-8-5 1.0 0.0 0.0 0.0% 0.0 0.1 46 1.0 1.1 0.0 0.0 0.0% 0.0
R-6-30-8 6.3 21.6 21.5 0.0% 21.5 0.1 210 1.6 1.7 21.6 21.5 0.0% 21.5

R-8-30-8-1 3600 48.0 28.0 71.4% 28.0 2.8 24762 53.6 56.4 48.0 48.0 0.0% 48.0
R-8-30-8-2 1.7 0.0 0.0 0.0% 0.0 0.3 2530 3.3 3.5 0.0 0.0 0.0% 0.0
R-8-30-8-3 3600 84.0 - -% - 0.6 4644 29.4 29.9 84.0 84.0 0.0% 84.0
R-8-30-8-4 218 43.0 43.0 0.0% 43.0 0.5 4550 11.3 11.8 43.0 43.0 0.0% 43.0
R-8-30-8-5 4.9 31.0 31.0 0.0% 31.0 0.6 3917 3.8 4.3 31.0 31.0 0.0% 31.0
R-8-30-8 1485 41.2 20.4 19.6% 20.4 0.9 8081 20.3 21.2 41.2 41.2 0.0% 41.2

R-10-30-8-1 3600 88.5 - -% -% 4.4 36154 3600 3604 88.5 75.0 14.7% 75.0
R-10-30-8-2 3600 103.0 - -% -% 6.7 52058 173 180 73.0 73.0 0.0% 73.0
R-10-30-8-3 3600 86.0 50.0 72.0% 50.0 0.9 7436 84.3 85.2 125 86.0 0.0% 86.0
R-10-30-8-4 3600 85.0 31.8 163% 31.8 1.7 12205 3600 3602 85.0 73.8 13.6% 55.8
R-10-30-8-5 3600 169 - -% -% 1.8 16501 3600 3602 169 54.4 210% 54.4
R-10-30-8 3600 106 16.4 108% 16.4 3.1 24871 2212 2214.6 108 72.4 37.3% 68.8

R-12-30-8-1 3600 77.0 - -% - 4.0 32555 3600 3604 89.0 16.0 381% 16.0
R-12-30-8-2 3600 108 - -% - 40.5 295062 3600 3641 126 26.0 315% 26.0
R-12-30-8-3 464 103 103 0.0% 103 0.5 4480 13.0 13.5 103 103 0.0% 103
R-12-30-8-4 3600 13.0 6.0 117% 6.0 11.6 91132 140 151 13.0 13.0 0.0% 13.0
R-12-30-8-5 3600 154 14.0 1000% 14.0 38.7 282304 3600 3639 154 113 36.3% 42.0
R-12-30-8 2973 91.0 24.6 120% 24.6 19.1 141107 2191 2210 97.0 54.2 67.9% 40.0

A
ppendix

E
.

Testresults
from

com
putationalstudy

117

Table E.2: Results from the exact models for test set 2.

Compact model Decomposition model

Test
instance To

ta
l

ru
n

tim
e

L
P-

re
la

xa
tio

n

B
es

ts
ol

ut
io

n

O
pt

im
al

ity
ga

p
af

te
r

on
e

ho
ur

B
es

t
so

lu
tio

n
af

te
r

20
m

in

R
ou

te
ge

ne
ra

-
tio

n
tim

e

R
ou

te
s

ge
ne

r-
at

ed

O
pt

im
iz

at
io

n
ru

n
tim

e

To
ta

lr
un

tim
e

L
P-

re
la

xa
tio

n

B
es

ts
ol

ut
io

n

O
pt

im
al

ity
ga

p
af

te
r

on
e

ho
ur

B
es

t
so

lu
tio

n
af

te
r

20
m

in

L-6-30-4-1 3.7 3.0 3.0 0.0% 3.0 0.1 44 1.1 1.2 3.0 3.0 0.0% 3.0
L-6-30-4-2 3.0 32.3 32.3 0.0% 32.3 0.1 20 1.2 1.3 32.3 32.3 0.0% 32.3
L-6-30-4-3 1.1 60.0 60.0 0.0% 60.0 0.1 20 1.0 1.1 60.0 60.0 0.0% 60.0
L-6-30-4-4 3600 55.0 52.0 5.8% 52.0 0.1 48 2.8 2.9 55.0 55.0 0.0% 55.0
L-6-30-4-5 7.0 26.0 26.0 0.0% 26.0 0.1 40 2.5 2.5 26.0 26.0 0.0% 26.0
L-6-30-4 723 35.3 34.7 1.7% 34.7 0.1 34.4 1.7 1.8 35.3 35.3 0.0% 35.3

L-6-30-6-1 3600 28.0 22.0 27.3% 15.0 0.1 136 5.4 5.5 28.0 28.0 0.0% 28.0
L-6-30-6-2 5.2 68.0 68.0 0.0% 68.0 0.1 297 1.3 1.4 68.0 68.0 0.0% 68.0
L-6-30-6-3 3600 42.0 26.0 61.5% 26.0 0.1 128 2.9 3.0 42.0 42.0 0.0% 42.0
L-6-30-6-4 2.1 22.0 22.0 0.0% 22.0 0.1 28 1.1 1.1 22.0 22.0 0.0% 22.0
L-6-30-6-5 15.0 16.0 16.0 0.0% 16.0 0.1 44 1.9 1.9 16.0 16.0 0.0% 16.0
L-6-30-6 1445 35.2 30.8 14.3% 29.4 0.1 127 2.5 2.6 35.2 35.2 0.0% 35.2

L-6-30-8-1 3.4 25.0 25.0 0.0% 25.0 0.1 332 1.3 1.4 25.0 25.0 0.0% 25.0
L-6-30-8-2 23.0 47.0 47.0 0.0% 47.0 0.1 192 1.8 1.9 47.0 47.0 0.0% 47.0
L-6-30-8-3 1.0 0.0 0.0 0.0% 0.0 0.1 272 1.1 1.2 0.0 0.0 0.0% 0.0
L-6-30-8-4 3.2 36.0 35.6 0.0% 35.6 0.1 210 2.9 3.0 36.0 35.6 0.0% 35.6
L-6-30-8-5 1.0 0.0 0.0 0.0% 0.0 0.1 46 1.0 1.1 0.0 0.0 0.0% 0.0
L-6-30-8 6.3 21.6 21.5 0.0% 21.5 0.1 210 1.6 1.7 21.6 21.5 0.0% 21.5

L-6-30-10-1 1.3 27.0 27.0 0.0% 27.0 0.1 20 1.0 1.1 27.0 27.0 0.1% 27.0
L-6-30-10-2 15.2 80.0 80.0 0.0% 80.0 0.1 360 2.8 2.9 80.0 80.0 0.0% 80.0
L-6-30-10-3 3600 32.0 0.0 3156% 0.0 0.1 128 1.8 1.9 32.0 31.6 0.0% 31.6
L-6-30-10-4 3600 61.2 15.0 260% 15.0 0.1 502 74.9 75.1 61.2 41.2 0.1% 41.2
L-6-30-10-5 9.0 7.0 7.0 0.0% 7.0 0.1 46 1.1 1.1 7.0 7.0 2.1% 7.0
L-6-30-10 1445 41.4 25.8 54.7% 25.8 0.1 211 16.3 16.4 41.4 37.4 0.1% 37.4

L-6-30-12-1 410 27.0 27.0 0.0% 0.0 0.1 146 1.4 1.5 27.0 27.0 3.8% 27.0
L-6-30-12-2 1.0 0.0 0.0 0.0% 0.0 0.1 336 1.1 1.2 0.0 0.0 3.2% 0.0
L-6-30-12-3 3600 26.8 0.0 2680% 0.0 0.2 668 64.0 64.2 26.8 26.8 0.0% 26.8
L-6-30-12-4 1.5 5.0 5.0 0.0% 5.0 0.1 32 1.1 1.2 5.0 5.0 0.0% 5.0
L-6-30-12-5 3600 179 0.0 -% 0.0 1.7 15668 3600 3602 179 106 0.4% 60.0
L-6-30-12 1523 47.6 6.4 83.8% 1.0 0.4 3370 734 734 47.6 33.0 85.8% 23.8

118Table E.3: Results from the exact models for test set 3.

Compact model Decomposition model

Test
instance To

ta
l

ru
n

tim
e

L
P-

re
la

xa
tio

n

B
es

ts
ol

ut
io

n

O
pt

im
al

ity
ga

p
af

te
r

on
e

ho
ur

B
es

t
so

lu
tio

n
af

te
r

20
m

in

R
ou

te
ge

ne
ra

-
tio

n
tim

e

R
ou

te
s

ge
ne

r-
at

ed

O
pt

im
iz

at
io

n
ru

n
tim

e

To
ta

lr
un

tim
e

L
P-

re
la

xa
tio

n

B
es

ts
ol

ut
io

n

O
pt

im
al

ity
ga

p
af

te
r

on
e

ho
ur

B
es

t
so

lu
tio

n
af

te
r

20
m

in

T-6-30-8-1 3.4 25.0 25.0 0.0% 25.0 0.1 332 1.3 1.4 25.0 25.0 0.0% 25.0
T-6-30-8-2 23.0 47.0 47.0 0.0% 47.0 0.1 192 1.8 1.9 47.0 47.0 0.0% 47.0
T-6-30-8-3 1.0 0.0 0.0 0.0% 0.0 0.1 272 1.1 1.2 0.0 0.0 0.0% 0.0
T-6-30-8-4 3.2 36.0 35.6 0.0% 35.6 0.1 210 2.9 3.0 36.0 35.6 0.0% 35.6
T-6-30-8-5 1.0 0.0 0.0 0.0% 0.0 0.1 46 1.0 1.1 0.0 0.0 0.0% 0.0
T-6-30-8 6.3 21.6 21.5 0.0% 21.5 0.1 210 1.6 1.7 21.6 21.5 0.0% 21.5

T-6-40-8-1 7.3 102 102 0.0% 102 0.1 780 4.0 4.1 102 102 0.0% 102
T-6-40-8-2 3600 85.0 60.0 41.7% 60.0 0.1 386 25.0 25.1 85.0 80.0 0.0% 80.0
T-6-40-8-3 3600 26.0 0.0 - 0.0 0.1 396 3600 3600 26.0 20.0 0.3% 20.0
T-6-40-8-4 3600 104 36.0 133% 36.0 0.2 2026 13.5 13.7 1034 83.8 0.0% 83.8
T-6-40-8-5 3600 94.2 0.0 -% 0.0 0.1 678 3600 3600 94.2 0.0 94.2% 0.0
T-6-40-8 2882 82.2 39.6 97.4% 39.6 0.1 853 1449 1449 82.2 57.2 0.4% 57.2

T-6-50-8-1 3600 176 40.0 340% 40.0 65.3 430526 3600 3665 176 0.0% -% 0.0
T-6-50-8-2 91.2 113 113 0.0% 113 1.0 9016 143 144 113 113 0.0% 113
T-6-50-8-3 3600 95.8 0.0 -% 0.0 167 883347 3600 3767 97.0 0.0 -% 0.0
T-6-50-8-4 14.5 155 140 0.0% 140 0.2 734 4.9 5.1 155 140 0.0% 140
T-6-50-8-5 3600 66.6 10.0 566% 10.0 244 1148580 3600 3844 66.6 0.0 -% 0.0
T-6-50-8 2181 121 60.5 95.4% 60.5 95.4 494441 2190 2285 121 50.5 1.3% 50.5

T-6-60-8-1 3600 165 4.0 3060% 4.0 1.9 15960 705 707 169 126 0.0% 126
T-6-60-8-2 3600 92.6 0.0 -% 0.0 7.2 59528 3600 3607 130 0.0 -% 0.0
T-6-60-8-3 3600 113 0.0 -% 0.0 0.5 4258 3600 113 112.5 110 0.0% 104
T-6-60-8-4 260 30.0 30.0 0.0% 30.0 2.0 15460 75.8 77.8 30.0 30.0 0.0% 30.0
T-6-60-8-5 99.6 75.0 75.0 0.0% 75.0 3.1 21182 3600 3603.1 75.0 48.0 0.6% 48.0
T-6-60-8 2232 95.0 21.8 300% 21.8 2.9 23278 2316 1622 103 62.8 0.5% 61.6

T-6-70-8-1 3600 142 76.0 87.1% 76.0 345 1309144 3600 3945 -% 0.0 -% 0.0
T-6-70-8-2 3600 109 42.7 155% 42.7 0.1 520 9.8 9.9 109 101 0.0% 101
T-6-70-8-3 3600 58.0 22.0 158% 22.0 103 576892 3600 3703 58.0 38.8 0.5% 0.0
T-6-70-8-4 3600 159 93.0 70.0% 93.0 17.7 120812 3600 3618 205 121 0.3% 117
T-6-70-8-5 657 40.0 40.0 0.0% 40.0 0.6 4104 17.1 17.6 40.0 40.0 0.0% 40.0
T-6-70-8 3012 102 54.7 84.9% 54.7 93.3 402294 2165 2259 103 60.2 65.4% 51.7

Appendix E. Test results from computational study 119

Table E.4: Results from the first heuristic approach.

Test subset %
R

ou
te

s
br

an
ch

ed
on

R
ou

te
ge

ne
ra

tio
n

tim
e

R
ou

te
s

ge
ne

ra
te

d

O
pt

im
iz

at
io

n
ru

n
tim

e

To
ta

lr
un

tim
e

L
P-

re
la

xa
tio

n

B
es

tb
ou

nd

B
es

ts
ol

ut
io

n

O
pt

im
al

ity
ga

p
af

te
r

on
e

ho
ur

B
es

t
so

lu
tio

n
af

-
te

r
20

m
in

R-4-30-8

Exact 0.2 38 0.7 0.9 12.5 12.5 12.5 0.0% 12.5
75% 0.1 31.6 0.7 0.7 10.1 10.1 10.1 0.0% 10.1
50% 0.1 19.2 0.7 0.8 10.1 10.1 10.1 0.0% 10.1
30% 0.1 16 0.7 0.8 10.1 10.1 10.1 0.0% 10.1
15% 0.1 16 0.7 0.7 10.1 10.1 10.1 0.0% 10.1

R-6-30-8

Exact 0.1 210 1.6 1.7 21.6 21.5 21.5 0.0% 21.5
75% 0.1 201 1.5 1.6 21.6 21.5 21.5 0.0% 21.5
50% 0.1 97.2 1.4 1.5 20.5 20.5 20.5 0.0% 20.5
30% 0.1 69.6 1.4 1.5 15.6 15.5 15.5 0.0% 15.5
15% 0.1 57.6 1.4 1.5 15.6 15.5 15.5 0.0% 15.5

R-8-30-8

Exact 0.9 8081 20.3 21.2 41.2 41.2 41.2 0.0% 41.2
75% 0.7 5440 734 734 41.2 41.2 28 47.1% 28
50% 0.2 878 4.8 5 29.3 28.2 28.2 0.0% 28.2
30% 0.1 360 3.1 3.2 26.3 25.2 25.2 0.0% 25.2
15% 0.1 166 2.3 2.4 19.7 16.8 16.8 0.0% 16.8

R-10-30-8

Exact 3.1 24871 2212 2215 108 99.4 72.4 37.3% 68.8
75% 2.2 13378 2739 2741 106 97.4 68.7 41.9% 56.2
50% 0.3 1619 734 734 82.9 80.3 77.9 3.1% 77.9
30% 0.2 641 45.1 36.2 75.1 67.5 65.1 3.7% 65.1
15% 0.1 226 13.6 13.7 68.6 54.9 54.9 0.0% 54.9

R-12-30-8

Exact 19.1 141107 2191 2210 97 91 54.2 67.9% 40
75% 9.7 60176 2081 2091 94.2 88.2 67.2 31.3% 48.6
50% 0.8 4868 122 122.3 75.4 61 61 0.0% 61
30% 0.3 1516 22 22.3 59.6 51.2 51.2 0.0% 51.2
15% 0.1 290 4.1 4.2 40.6 40.6 40.6 0.0% 40.6

T-6-30-8

Exact 0.1 210 1.6 1.7 21.6 21.5 21.5 0.0% 21.5
75% 0.1 201 1.5 1.6 21.6 21.5 21.5 0.0% 21.5
50% 0.1 97.2 1.4 1.5 20.5 20.5 20.5 0.0% 20.5
30% 0.1 69.6 1.4 1.5 15.6 15.5 15.5 0.0% 15.5
15% 0.1 56 1.4 1.5 15.6 15.5 15.5 0.0% 15.5

T-6-40-8

Exact 0.1 853 1449 1449 82.2 77.2 57.2 35.1% 57.2
75% 0.2 528 1450 1450 81.5 75.7 56.4 34.3% 56.4
50% 0.1 160 721.7 722 55.6 50.2 49 2.5% 49
30% 0.1 89.6 2.9 3 54.4 48 48 0.0% 48
15% 0.1 59.8 2.9 2.8 42.7 37.9 37.9 0.0% 37.9

T-6-50-8

Exact 95.4 494441 2190 2285 121 118 50.5 135% 50.5
Exact 13.1 70188 1636 1649 119 119 99.7 19.4% 91.7
50% 0.7 3942 2162 2163 98.4 97.7 72.6 34.7% 72.6
30% 0.1 549 47.3 47.5 89.5 69.5 69.5 0.0% 69.5
15% 0.1 97.6 6 6.1 74.2 57.2 57.2 0.0% 57.2

T-6-60-8

Exact 2.9 23278 2316 1622 103 94.2 62.8 50.0% 61.6
75% 2.6 15392 138 141 102 85.9 85.9 0.0% 85.9
50% 0.3 1439 40.2 40.5 80.9 67 67 0.0% 67
30% 0.1 477 32.6 32.7 77.9 64.6 64.6 0.0% 64.6
15% 0.1 100 514 513.9 49.7 31.5 31.5 0.0% 31.5

T-6-70-8

Exact 93.3 402294 2165 2259 103 99.6 60.2 65.4% 51.7
75% 21.1 106642 1657 1678 111 93.8 85.2 10.1% 53.8
50% 0.8 3909 411 411 106 80.8 80.8 0.0% 80.8
30% 0.2 892 10.2 10.4 79.1 73 73 0.0% 73
15% 0.1 159 7.6 7.7 68.5 59.6 59.6 0.0% 59.6

120

Table E.5: Results from the first heuristic approach.

Test subset %
R

ou
te

s
br

an
ch

ed
on

R
ou

te
ge

ne
ra

tio
n

tim
e

R
ou

te
s

ge
ne

ra
te

d

O
pt

im
iz

at
io

n
ru

n
tim

e

To
ta

lr
un

tim
e

L
P-

re
la

xa
tio

n

B
es

tb
ou

nd

B
es

ts
ol

ut
io

n

O
pt

im
al

ity
ga

p
af

te
r

on
e

ho
ur

B
es

t
so

lu
tio

n
af

-
te

r
20

m
in

R-8-30-8
Exact 0.9 8081 20.3 21.2 41.2 41.2 41.2 0.0% 41.2
100% 0.3 1882 1442 1443 37.6 37.6 17.6 114% 17.6
75% 0.3 1665 726 726 37.5 27.9 27.9 0.0% 27.9

R-10-30-8
Exact 3.1 24871 2212 2215 108 99.4 72.4 37.3% 68.8
100% 0.4 2543 1459 1459 97.5 96.6 67.7 42.8% 68
75% 0.4 2077 882 882 93.9 91.0 84.4 7.8% 84

R-12-30-8
Exact 19.1 141107 2191 2210 97 91 54.2 67.9% 40
100% 4.0 26836 1453 1457 81.8 77.2 58 33.1% 58
75% 2.4 14118 1379 1382 79.6 73.8 61.6 19.8% 42.6

T-6-50-8
Exact 95.4 494441 2190 2285 121 118.4 50.5 135% 50.5
100% 35.7 181794 1891 1939 112 111 103 8.5% 71.2
75% 6.2 33818 2227 2234 112 111 92.1 21.0% 83.26

T-6-60-8
Exact 2.9 23278 2316 1622 103 94.2 62.8 50.0% 61.6
100% 2.5 16428 2286 2289 103 87.3 77.2 13.1% 76.4
75% 2.0 14199 1575 1577 103 86.7 81.8 6.0% 76.8

T-6-70-8
Exact 93.3 402294 2165 2259 103 99.6 60.2 65.4% 51.7
100% 89.6 382099 2055 2144 82.3 71.2 67.7 5.2% 53.7
75% 16.9 89762 1565 1582 110 94.0 90.7 3.7% 71.3

Appendix F

Run times and travel routes for
the exact decomposed model

This appendix includes figures illustrating the run times, and number of routes generated,
by applying the exact decomposed model presented in Chapter 5 to test set 2 and 3. An
interpretation of these figures is given in Section 7.2.

122

Figure F.1: The exact decomposed models’ route generation and optimization run times
for test set 2.

Figure F.2: Number of routes generated by the exact decomposed model for test set 2.

Appendix F. Run times and travel routes for the exact decomposed model 123

Figure F.3: The exact decomposed models’ route generation and optimization run times
for test set 3.

Figure F.4: Number of routes generated by the exact decomposed model for test set 3.

Appendix G

Results from test set 3 applying
the first heuristic method

This appendix presents results from applying the first heuristic method to test set 3. Figure
G.1 and G.2 show the heuristics’ deviation from the exact method’s best solution, repre-
sented by 0% line on the horizontal axis. Figures G.3 and G.4 illustrate the number of
routes generates and the run times for each subset and branching rate.

126

Figure G.1: The first heuristic solutions’ deviation from the decomposed exact method’s
best solutions after run time of one hour with an increase in tasks.

Figure G.2: The first heuristic solutions’ deviation from the decomposed exact method’s
best solutions after run time of 20 minutes with an increase in tasks.

Appendix G. Results from test set 3 applying the first heuristic method 127

Figure G.3: Comparison of the number of routes generated by the first heuristic method
with an increase in tasks.

Figure G.4: Comparison of total run times for the first heuristic approach with an increase
in tasks.

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Literature Review
	The standard RCPSP and its most common extensions
	Literature search strategy
	Objective function
	Activity characteristics
	Resource characteristics
	Temporal constraints
	Solution methods
	Our contribution

	Problem Description
	Mathematical Model
	Modelling assumptions
	Definitions
	Optimization model
	Objective function
	Constraints and requirements

	Decomposition Solution Approach
	Decomposed Model
	Definitions
	Constraints and requirements

	Travel Route Generation
	Label data
	Extending a travel route
	Valid travel routes
	Parameters for optimization

	Heuristic methods to generate travel routes
	Assigning security task
	Limiting location visits
	Limiting super-resources per task
	Dividing routes among similar super-resources
	Branching strategy

	Instance Generator and Input Data
	Instance Generator
	Structure of instance generator
	Resource data
	Location and travel data
	Task data
	Implementation

	Input Data
	Time input data
	Task input data
	Resource input data

	Computational Study
	Test instances
	Remarks on the test instances

	Comparison of the exact models
	Increasing the number of resources
	Increasing the number of locations
	Increasing the number of tasks
	Summary of comparison of the exact models

	Analysis of the first heuristic decomposition
	Increasing the number of resources
	Increasing the number of tasks
	Summary of the first heuristic decomposition

	Analysis of the second heuristic decomposition
	Increasing the number of resources
	Increasing the number of tasks
	Comparison of the heuristic methods
	Summary of the second heuristic decomposition

	Concluding Remarks
	Future Research
	Bibliography
	Deduction of divisible task duration constraints
	Decomposed Model of the PTTP
	Definitions
	Optimization model
	Objective function
	Constraints and requirements

	Battlegroup description
	Adjustable parameter values for instance generator
	Test results from computational study
	Run times and travel routes for the exact decomposed model
	Results from test set 3 applying the first heuristic method

