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Abstract 

The research center of Zero Emissions Buildings (ZEB) has a goal of eliminating the greenhouse gas 

emissions associated with all phases of building development and use. This is achieved through more 

sustainable building construction and more efficient energy use. The Norwegian government has a 

similar goal of achieving zero energy buildings as a standard by 2020. This has led to proper 

investigation in technological solutions that can help to achieve these goals.  

 

In a net-ZEB perspective, combined heat and power (CHP) is considered as a potential energy supply 

solution for buildings. CHP is seen as an emerging technology which has the potential to reduce 

primary energy consumption and the associated greenhouse gas emissions. This is achieved through 

concurrent production of electricity and heat using the same fuel. However, since the thermal output of 

CHP is substantially larger than the electrical output, the potential offered by CHP systems depend on 

their suitable integration with the thermal demand of the building.  

 

In this thesis, a simulation model is used to investigate the performance of a CHP system compared to 

a conventional gas boiler system in a multi-family building that complies with the Norwegian building 

norm, TEK10. Different operational strategies are applied to the CHP model to investigate its optimal 

integration in domestic dwellings. Analyzing the simulation results indicates that the CHP system 

gives primary energy savings in all operational strategies, but operating the system in follow thermal 

mode represents the greatest savings. Applying load management resulted in further savings, and the 

fuel efficiency did increase, achieving a value of 75.1% on a higher heating value (HHV) basis. The 

CHP device is more capable of covering the electricity demand as peaks are shaved. This implies that 

CHP is better suited for buildings with stable electricity and heat demand. Electric demand following 

operation did however result in poorer primary energy savings and the corresponding CHP efficiency 

did decrease due to poorer heat recovery efficiency and frequent part load operation. Using renewable 

upgraded biogas as fuel in thermal following mode did result in the highest primary energy savings. 

Primary energy consumption was reduced by 34.3%, and the corresponding system efficiency based 

on primary energy was 70.7% on a HHV basis.  

 

From an environmental perspective, it has been found that the CHP system is more favorable when the 

CO2-emission factor for electricity is high. This is due to the reduction in electricity imports from the 

grid, and the part substituted electricity covered by the electricity exports from the CHP system. The 

greatest reduction in grid imports was seen when the CHP-device was set to follow the electrical 

demand of the building without restriction in thermal surplus. The CHP was able to cover 88.27% of 

the electricity demand, but the system efficiency decreased as significant amounts of heat was wasted 

due to overproduction. The highest amount of exports was seen when load management was 

implemented in thermal demand following mode, and represented 76.61% of the produced electricity. 

Using the current CO2-emission factor for the UCPTE electricity mix, a reduction in CO2 emissions 

was seen for all CHP configurations. The use of renewable fuel resulted in the greatest savings, and 

emissions were reduced by 71.91% compared to the gas boiler, representing a tremendous reduction. 

The use of natural gas as fuel resulted in significantly lower savings. The best case achieved a 26.58% 

reduction compared to the reference system. When using the net-ZEB definition, only CHP fuelled on 

renewable fuel did achieve CO2-savings. This questions the environmental viability of today’s CHP 

systems as the CO2-emission factor for electricity is expected to decrease over the coming years due to 

an expected increase in use of renewable fuels. Further research should therefore be done in order to 

enable an efficient CHP technology based on renewable fuels. This will decrease the emissions 

significantly, making CHP more competitive.  
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Sammendrag 

Forskningssenteret for Zero Emission Buildings (ZEB) har som mål å eliminere klimagassutslipp 

knyttet til alle faser av bebyggelse og bruk av bygninger. Dette oppnås gjennom mer bærekraftige 

bygningskonstruksjoner og et mer effektivt energiforbruk. Den norske regjeringen har som mål å få 

null energibygg som en standard innen 2020. Dette har ført til grundig forskning i teknologiske 

løsninger som vil bidra til å oppnå disse målene. 

Kombinert varme- og kraftproduksjon (CHP) er i henhold til ZEB ansett som en potensiell 

energiforsyningsteknologi for bygninger. CHP er sett på som en teknologi med potensial til å redusere 

primær energiforbruk og klimagassutslipp. Dette oppnås gjennom samtidig produksjon av elektrisitet 

og varme fra samme energikilde. Ettersom varmen produsert av CHP er vesentlig større enn den 

produserte elektrisiteten vil potensialet til CHP systemer avhenge av deres passende integrering med 

varmebehovet til bygningen. 

I denne masteroppgaven er det brukt en simuleringsmodell for å undersøke ytelsen til et CHP-system 

sammenlignet med et konvensjonelt system med gasskjel i et bolighus som er i samsvar med norsk 

byggeforskrift, TEK 10. Ulike driftsstrategier er anvendt på modellen for å undersøke dens optimale 

integrering i bolighus. Analyse av simuleringsresultatene indikerer at CHP-systemet gir 

primærenergibesparelser i alle driftsstrategier, men oppnår de største besparelsene når den er satt til å 

følge byggets varmebehov. Bruk av laststyring resulterte i ytterligere besparinger, og CHP 

virkningsgraden økte til 75,1 % basert på øvre brennverdi. CHP-enheten klarer bedre å dekke 

elektrisitetsbehovet til bygget ettersom de høye toppene er unngått. Dette tilsier at CHP er bedre egnet 

for bygninger med mer stabilt elektrisitet- og varmebehov. Å la CHP-enheten følge bygningens 

elektrisitetsbehov resulterte imidlertid i dårligere primærenergibesparelser og CHP virkningsgraden 

ble også redusert grunnet dårligere varmegjenvinning og mer del-last drift. De høyeste 

primærenergibesparelsene ble oppnådd når oppgradert biogass ble brukt som energikilde og 

generatoren var satt til å følge byggets varmebehov. Det primære energiforbruket ble da redusert med 

34,3 %, og systemvirkningsgraden basert på primærenergi var 70,7 % på øvre brennverdi basis. 

Miljømessig vil CHP være mest gunstig når CO2-utslippsfactoren for elektrisitet er høy. Dette er 

hovedsakelig grunnet reduksjon i importert elektrisitet fra kraftnettet, og den substituerte elektrisiteten 

dekket av eksportert elektrisitet fra CHP-systemet. Den største reduksjonen i import fra kraftnettet ble 

observert når CHP-enheten ble satt til å følge byggets elektrisitetsbehov uten begrensning i produsert 

overskuddsvarme. CHP var da i stand til å dekke 88,27 % av elektrisitetsbehovet, men systemets 

virkningsgrad ble redusert ettersom betydelige mengder varme ble tapt på grunn av overproduksjon. 

Eksport av elektrisitet var størst når CHP var satt til å følge byggets varmebehov med laststyring 

implementert, der 76,61 % av produsert elektrisitet ble eksportert. Ved å bruke dagens CO2-

produksjonsfaktor for UCPTE elektrisitetsmiks oppnådde alle CHP konfigurasjoner en reduksjon i 

CO2-utslipp. Bruken av fornybart brensel resulterte i størst besparelser, og utslippet ble redusert med 

71,91 % i forhold til den gassfyrte kjelen, noe som representerer en enorm reduksjon. Bruk av 

naturgass medførte imidlertid til betydelige lavere besparelser. Beste tilfellet oppnådde en reduksjon 

på 26,58 % i forhold til referansesystemet. Bruk av net-ZEB definisjon på CO2 utslippsfaktor for 

elektrisitet førte imidlertid kun til CO2-besparelser når CHP var drevet på fornybart brensel. Dette 

stiller spørsmål til den miljømessige gevinsten av dagens CHP systemer ettersom CO2-utslippsfaktoren 

for elektrisitet forventes å avta i løpet av de kommende årene grunnet en forventet økning i bruk av 

fornybare energikilder. Videre forskning bør derfor gjennomføres for å muliggjøre en effektiv CHP-

teknologi basert på fornybare energikilder. Dette vil redusere utslippene betydelig, noe som gjør CHP 

mer konkurransedyktig. 
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1. Introduction 
 

Generation of heat and electricity represented in 2010 41 % of the world’s CO2 emissions (IEA, 2012). 

The same year, the building sector represented 26.7 % of the final energy use in EU-27 (European 

comission eurostat, 2012), which shows that a significant amount of the energy produced is used in the 

building sector. According to UNs climate panel, it is in this sector that it is most economically viable 

to implement the actions for reducing the CO2 emissions. Therefore the research and development of 

zero emission buildings (ZEB) is an important action to defeat the climate change (ZEB, 2014). A zero 

emission building is a building with no CO2 equivalent emissions associated to its construction, 

operation and demolition. World business council for sustainable development has a vision of 50 % 

reductions of the total greenhouse gas emissions (GHG) by 2050 compared to 2005 – level (DiPiazza, 

Kreutzer, Mack, & Zaidi, 2010). 

 

The building sector is today highly dependent on electricity for heating purposes. 99 % of the 

electricity generation in Norway comes from hydropower, which is a renewable energy source 

(Vannkraft. Statkraft AS, 2013). On a global perspective, on the other hand only a small part of the 

electricity production comes from renewable energy sources, which makes it beneficial to reduce the 

overall electricity use. Reducing the energy use in building will also lead to lower GHG emissions. 

This reduction can be achieved through more energy efficient systems, use of renewable energy 

sources and energy efficient building constructions (low energy buildings, passive house or plus 

buildings) which minimizes the energy demand. The government in Norway has agreed that passive 

house standard is to be required for new buildings from 2015 and nearly zero energy buildings as a 

standard from 2020 (Ministry of the environment, 2012). A zero energy building is a building with a 

greatly reduced energy demand which is only covered by energy from renewable sources. (Graabak & 

Feilberg, 2011) 

The final energy consumption in buildings in EU27, Switzerland and Norway comes mainly from oil, 

gas and electricity (Buildings Performance Institute Europe (BPIE), 2011). This final energy 

consumption will likely continue, and therefore it is important to look at the potential of a more 

efficient use of these sources.  

This master thesis is defined by The Research Centre on Zero Emission Building at NTNU and 

SINTEF (FME ZEB). The main objective of FME ZEB is to develop solutions for existing and new 

buildings, with the aim to achieve ZEB standard. An energy efficient supply and control system is a 

key element in achieving this goal. In this concept, different technologies of both building structure 

and energy supply solutions have been and will be considered. Some energy generations are 

considered to contribute to CO2 emissions, while others contribute in reducing them. For example, 

energy imported from the grid accounts for certain emissions, while export of renewable energy from 

the building accounts for avoiding the similar emissions by other non-renewable energy producers 

connected to the same grid (Sartori, Andresen, & Dokka, 2010). 

Combined heat and power (CHP) is seen as an emerging technology in using fossil energy sources 

more efficiently as it produces electricity and heat from the same fuel source. It has the potential to 

reduce primary energy consumption and associated greenhouse gas emissions. CHP is considered as a 

potential energy supply solution within a net-ZEB concept due to these potential effects (Alanne & 

Saari, 2003). CHP can run on renewable fuels, but fossil fuels are most commonly used. However, 

even though the devices are usually fuelled with natural gas, it is considered a low-carbon technology 
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due to that it contributes to a more efficient use of the limited fossil resources (Day, Ogumka, Jones, & 

Dunsdonm, 2009).   

The energy demand of a building can be divided into electrical and thermal, where the electrical 

demand goes to lighting and electrical equipment and the thermal demand to space heating, ventilation 

and domestic hot water. CHP has the potential to cover both demands, but problems around its 

dynamics hamper its market penetration. CHP systems have large thermal outputs, while the thermal 

demand of buildings decreases through better insulated building envelopes. The benefits of using a 

CHP device compared to the problems around its dynamics need to be analyzed in order to evaluate 

the potential of integration in buildings. 

In this thesis, the CHP integration in a residential multi-family building (MFB) will be compared to a 

conventional gas boiler and different optimization strategies will be simulated and evaluated. The 

building complies with the Norwegian building norm, TEK10. Implementation of this technology in 

cooperation with other energy efficient solutions may help to reach FME ZEB’s goal. First, the most 

relevant performance assessment methodologies in a net-ZEB context are defined through a literature 

study. Then, the effect of the CHP-implementations with the different optimization approaches versus 

the conventional gas boiler is evaluated in terms of these methodologies. The methodologies are 

formulated in order to evaluate the performance of the systems in an energetic and environmental 

perspective. Finally, results from simulations of the different operating conditions of the CHP are 

compared to the conventional gas boiler system and the effect of each implementation is discussed 

based on the methodologies defined. The different optimizing approaches reviewed are load 

management, different power control options and implementation of thermal storage. The possibilities 

and benefits of electrical storage will be discussed, but not simulated. At last, the possibility of using 

renewable fuel, such as upgraded biogas will be evaluated.  

The scope for this thesis is to define an optimal control system for satisfying different energy demand 

variations in a multi-family dwelling. The energetic and CO2 benefits for the implementation of a 

micro-CHP system depend heavily on the “non-CHP” reference situation. As in this thesis, the 

reference case is a condensing gas boiler which has high efficiency; the benefit of using CHP will 

depend on the system configuration of the CHP. It is important that the CHP device operates as 

efficient as possible, and that the power and heat output is produced in a rate that achieves net benefits 

on a future basis regarding primary energy, energy efficiency, reduced grid interaction and CO2 

emission.  

Micro-CHP units are characterized principally by prime mover size (Poe), electrical efficiency and 

heat-recovery efficiency. The prime mover technology that is in focus in this thesis is the internal 

combustion engine. The tool used for analyzing the CHP system performance is the building 

simulation tool EnergyPlus. EnergyPlus is chosen as it is a well-developed simulation tool, and has an 

already existing CHP model integrated. The CHP model used is based on the international Energy 

Agency’s Energy Conservation in Buildings and Community Systems (IEA ECBCS) Annex 42 for a 

Senertech internal combustion engine production unit.   
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2. Parameter definitions and abbreviations 
 

 

Definition of parameters: 

 

Case:  A specific installation with its data set on environment, building, 

demand profiles and cogeneration system. 

 

Configuration:  A specific data set for individual cases in terms of cogeneration 

system and of components size/dimensions, and of the control strategy 

used. 

 

Cogeneration:   Combined generation of heat and electricity. 

 

Cogeneration device: The cogeneration plant or appliance, as provided by manufacturer.  

 

Cogeneration system:  The system providing heat and electricity. This includes the 

cogeneration device and other components such as storage, external 

pumps, auxiliary heater, and other supply components such as solar 

collector, heat pump etc.  

 

Performance assessment: Assessment of the performance of the system under investigation in 

regard to the selected performance criteria, by simulation.  
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Abbr. Description 

DHW Domestic hot water 

SH Space heating 

CHP Combined heat and power (=cogeneration) 

CO2 Carbon dioxide 

ICE Internal combustion engine 

HHV Higher heating value 

LHV Lower heating value 

SE Stirling engine 

ZEB Zero emission building 

El-Grid Electricity supplied from the grid 

El Electric, electricity 

El-NetGrid Net amount of electricity exported to grid, or net amount of electricity 

delivered from grid 

GHG Greenhouse gases 

RE Renewable energy generated on the building premises 

Del Delivered 

Exp Exported 

GB Gas boiler 

NG Natural gas 

El-Grid Electricity supplied from/to grid 
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3. Micro-CHP 

3.1  Technologies 
 

Combined heat and power are devices that generate both heat and electricity, and can be produced off-

site or on-site. Hence, the CHP- technology makes it possible to supply residential buildings with both 

electricity and heat. The electricity produced can either be used directly or exported to the grid. On the 

same hand, the heat generated can either be used directly or stored in a storage tank. CHP is an 

important technology for improving energy efficiency, security of energy supply and reduction of CO2 

emissions. It also reduces the dependence on non-renewable energy sources of the building while at 

the same time improve its interaction with the grid. CHP has been recognized by the European 

community as one of the first elements to save primary energy, to avoid network losses and to reduce 

the greenhouse gas emissions (Possidente, Roselli, Sasso, & Sibilio, 2006). 

CHPFUEL

HEAT

ELECTRICITY

 

Figure 1: Basic illustration of CHP principle 

Micro-cogeneration is the production of combined heat and power on a smaller scale. It has the same 

efficiency advantages as CHP plants, and has therefore a potential as an alternative to the conventional 

energy production today regarding reduced grid interaction and lower energy demand. This technology 

has become economically viable since year 2000 because of the rising energy prices (John Kopf, 

2012). The European Cogeneration Directive defines micro-CHP as all units with an electrical 

capacity of less than 50 kW (Greenspec, 2013). Micro-CHP system used for single or multifamily 

dwellings are typically designed to provide electricity less than 10 kW and thermal heat less than 25 

kW (Knight & Urgursal, 2005). The core benefits of micro-CHP are emission reductions, cost 

reductions, empowering consumers and security of supply. Energy production for buildings is one of 

the most promising targets for the appliance of CHP (Alanne & Saari, 2003). The reason why this 

technology is so interesting and applicable for single- and multifamily houses is due to their technical 

and performance features: 

 High overall energy conversion efficiency. 

 Low maintenance requirements equivalent to a domestic gas boiler. 

 Very low noise and vibration levels for installation at home. 

 Very low emissions of NOx, COx, SOx and particulates.  

(Kuhn, Klemes, & Bulatov)  

 

In micro-CHP applications, the electricity is produced at the location where it is needed and the waste 

heat of generation is recovered and also used at the location. This leads to higher efficiency compared 

to central thermal generation stations which do not recover the waste heat, and transmission losses also 

occur when delivering the electricity from the station to the building.  
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A micro-CHP unit works as illustrated in Figure 2, converting the fuel, which is normally gas, and 

transforming it into heat energy for space heating and domestic hot water, and electricity for electrical 

appliances. In general >70 % is converted into heat, 10-25 % into electricity and 10-15 % are losses 

(Greenspec, 2013). These percentages will vary some depending on the CHP device chosen.  

 

Figure 2: CHP installation in building (Greenspec, 2013) 

Small- scale CHP devices have relatively low fuel- to- electrical conversion efficiencies compared to 

combined-cycle central power plants. Some existing prototypes have electric efficiencies as low as 5 

%, although some fuel cell technologies have the potential to achieve efficiencies of 45 % (Beausoleil-

Morison, April 2008). However, this has still not yet been achieved. Because of this relation, it is 

important that the thermal portion of the cogeneration device output is well utilized for space heating, 

space cooling, and/or domestic hot water heating. The residential cogeneration technologies cannot 

expect to deliver a net benefit relative to the best available central generation technologies if this 

thermal portion is not well utilized in the building.  

The existing types of micro- CHP systems are reciprocating internal combustion engine (ICE) based 

systems, reciprocating external combustion Stirling engine (SE) based system, fuel cell based systems 

and micro- turbine based systems. The most common used are the ICE and SE based systems, but fuel 

cell is also an emerging technology with growing potential. In this thesis, an ICE based system will be 

considered.  

Internal combustion Engine (ICE): 

The most established micro-CHP appliance is the ICE. The typical characteristics for an ICE-based 

micro-CHP are its low cost, high efficiency, wide power range and ability to run on different fuels 

(Klobut, Ikäheimo, & Ihonen). It is based on the automotive engine, and possible fuels are diesel, 

biodiesel, gasoline, natural gas, biogas and landfill gas. The possibility of using renewable fuels makes 

it an interesting choice for energy supply, even though natural gas and diesel oil are the most common 

fuels. These engines are well proven, robust and reliable, and therefore are these systems usually the 

prime mover of choice for small-scale cogeneration applications (Hongbo, Weijun, & Yingjun). The 

ICE unit uses an internal combustion process to generate both heat and electricity. An ICE depends on 

combustion of a chemical fuel, typically with oxygen from the air. The combustion chamber of the 

engine is an integral part of the working fluid flow circuit. The typical benefits of ICE devices are that 

they have high electrical efficiency, large power range and have the possibility of using a varying 

range of fuels. The drawbacks are that they need service regularly, are noisy, which is not desirable for 
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building application, and their emissions strongly depend on the fuel used (Alanne & Saari, 2003). 

These units are best applicable for buildings with smooth electricity and heat consumption profiles.  

Internal combustion engines can be divided into two main categories: Diesel engines and spark 

ignition engines. For diesel engines the usage of biodiesel and rape oil can be included. The use of 

rape oil/biodiesel for the deployment of CHP plants has due to the excellent biodegradability and to its 

low ecotoxicity received major attention in ecological sensible regions. These systems do as well 

achieve high efficiencies, do not produce any direct CO2 emissions and contribute to a sustainable 

energy supply in “green lodges” (Simader, Krawinkler, & Trnka, March 2006). A 100 % usage of 

biodiesel can be used in diesel engines without any problems. Rape oil can also be used. Biogas, 

however, can be used in both diesel engines and spark ignition engines. The market leader company to 

produce internal combustion engines is the Germany based company Senertec. The Senertec model –

called Dachs – generates around 5.5 kWel and a thermal power of 14 kW depending on the product 

model. This is the engine that Annex 42 bases its modulation in EnergyPlus (Simader, Krawinkler, & 

Trnka, March 2006). This device has a single-cylinder 4 stroke 580 cc special engine which is 

designed for a very long service (SenerTec AS, 2014). Figure 3 show the system configuration of a 

micro-CHP system based on combustion engine technology.  

 

Figure 3: System configuration of a micro-CHP system based on combustion engine technology (Klobut, Ikäheimo, & 

Ihonen) 

Micro-CHP appliances consume more fuel than condensing boilers, so the benefit of using CHP 

comes from the electricity generated (SEAI, 2011). If the engines do not run enough time to generate 

sufficient electricity, CHP can be more energy-and-carbon intensive than the condensing boilers they 

do replace. Therefore it is essential that the units are sized correctly, installed in the optimum location 

and configured with the correct control system. It is seen from previous studies that buildings with 

higher heat loads gives higher efficiency and use of the CHP units than buildings with lower heat 

loads. However, it is not good to artificially increase the heat loads to increase the operation of the 

micro-CHP. This will lead to higher CO2 emissions and higher primary energy consumption even 

though the efficiency of the system will be better. Therefore it is better to develop an optimal control 

configuration and operate the CHP at best possible practice to meet the building loads, both electrical 

and thermal. ICE units operate most effectively when they run for extended periods of time with very 

few start-up cycles. This is because most of the wear on the engine occurs during start-up (SEAI, 

2011).  
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Every micro-CHP uses in reality some electricity when in standby mode, which will affect the annual 

efficiency. This is because the system consumes imported electricity when the generator is in standby 

mode, which has high CO2 emission factor in areas where CHP is of interest, instead of generating 

onsite electricity for electricity consumption (SEAI, 2011). As the electricity consumption of the 

micro-CHP is considered small compared to the amount produced, the standby power for the generator 

is set to be zero for the systems evaluated in this thesis. The corresponding factor for the gas boiler is 

also set to be zero, and this will therefore not affect the comparison in energy efficiency or primary 

energy consumption, which is the main focus for this work.  

3.2  Integration of the CHP 
 

The micro-CHP system can be implemented in residential buildings with various ranges of purposes. 

It can either be integrated to cover both thermal and electrical demand, the thermal demand and part of 

the electrical demand, the electrical demand and part of the thermal demand or part of the thermal 

demand and part of the electrical demand. Due to efficiency reasons of the plant, the most common is 

to use the micro-CHP unit to cover part of the electricity demand and part of the thermal demand 

(Knight & Ugursal, 2005).  

Integration of micro- CHP systems into operating buildings may be challenging. This is because the 

loads are small and the load diversity is limited. The CHP device produces heat and electricity 

simultaneously, and in residential buildings there will be time where it requires one but not the other. 

Therefore it is difficult to define the best strategy for how it is optimal to use the micro-CHP for 

optimal efficiency and to cover the energy demand at the best rate possible. Factors like optimal sizing 

and control of the CHP system, how to meet peak loads (both electrical and thermal), need for and 

sizing of thermal storage, standardized technique for grid connection, ability to export electricity, 

emergency power operation (grid outage), safety, standards and code issues are important to look at 

when defining the system specifications and operating mode (Bell, et al., November 4, 2005). 

How well the thermal energy produced by the generator is utilized in the building depends on the 

system control and operation as the generator produces both electricity and thermal energy at the same 

time, while the electrical and thermal demand of the building does not usually happen at the same 

time. For instance, if the cogeneration device is configured to cover the electrical demand of a house, 

this peak load does not necessary happen at the same time as the thermal peak load. Often, the 

electrical demand may peak late in the evening. This results in a large thermal output from the 

cogeneration device. At this time in the evening, the thermal demand might be low since the building 

is allowed to cool slightly during the night. This results in an overproduction of heat which is not 

utilized. To solve this problem, a storage tank should be integrated to store the overproduced heat for 

use when the thermal demand is higher than the thermal energy produced from the generator. The 

volume and thermal characteristics of the storage tank, the occupant electrical and hot water usage 

patterns, the thermal characteristics of the house and weather does all influence whether the thermal 

energy will be exploited or wasted. There are lots of different design possibilities for these factors, and 

a lot of research is necessary to determine the optimal design and utilization. To be able to analyze the 

performance of the cogeneration system and the influence of different parameters, it is necessary to 

use whole- building simulation programs (Beausoleil-Morison, April 2008).  
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4. Performance assessment methodologies for micro-CHP in the 

NET-ZEB potential 
 

To get the reduction of the emissions related to the building sector to a sustainable level requires a 

tremendous effort in both increasing the energy efficiency in buildings and the share of renewable 

energies. Small combined heat and power systems may help to improve the situation on the energy 

supply side by cutting both the non-renewable energy demand for residential buildings and peak loads 

in the electric grid (Dorer & Weber, 2007). The performance assessment will be analyzed in terms of 

primary energy, energy efficiency, grid interaction and CO2 emissions. The different system cases will 

be defined in section 6. Possible solutions would be to couple the cogeneration device with other 

devices, such as other components of cogeneration system (e.g. water storage) and other energy supply 

components such as heat pump and solar thermal systems.  

 

Figure 4: Example of energy conversion process and energy terms in a residential building (CEN/TC 89 N1016, 2005) 

Figure 4 represents the energy conversion process and terms in a residential building. (1) is the energy 

demand, which is the amount of energy demanded by the building for heating and electrical 

appliances. (2) is the non-HVAC energy, which is the heat or cooling added to the building naturally 

through solar heating, daylight etc. (3) is the net energy, (4) is the delivered energy, (5) is the 

renewable energy, (6) is the exported energy, (7) is the primary energy, (8) is the primary energy 

equivalence locally generated renewable energy and (9) is the primary energy of the exported energy. 

The transformation process from primary energy to delivered energy depends on the type of energy 

delivered.  

The primary energy related to the exported energy will be subtracted from the total primary energy 

delivered to the building, and will be seen as primary energy savings. Equally, it will account for CO2 

savings as well as explained later. In the system cases reviewed in this thesis there will be no on site 
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renewable energy production. According to TEK10, 40 % of net heating demand should be covered by 

other energy supply solution than direct electricity or fossil fuels (Kommunal- og 

regionaldepartamentet, 2010).  

The first three performance assessment methodologies consider the energy analysis of the system, 

while the fourth considers the environmental analysis. The objectives of the performance assessment 

are mainly to demonstrate application potential of models and building simulation tools developed and 

quantify the performance of selected cogeneration systems in terms of energy and emissions compared 

to the conventional system. From this, the most successful elements of individual cogeneration 

configuration can be documented for the case study, and promising applications field for cogeneration 

systems can be discussed. 

Regarding energy, 3 types of energies are considered; Net energy demand, delivered energy and 

primary energy. The net energy demand is the energy demanded from the cogeneration, HVAC and 

the renewable energy systems to cover the demands for domestic hot water, space heating and for 

electricity. The delivered energy is the energy delivered to the building as fuel, heat or electricity. The 

primary energy is the energy source, which can be renewable energy or non-renewable energy 

(CEN/TC 89 N1016, 2005).  

4.1 Based on primer energy savings 
 

This assessment is based on primary energy consumption. The values will be derived in a post 

processing analysis based on the calculated values for the demand of delivered energy.  The delivered 

energy demand (electricity and fuel), based on the net energy demand for space heating, domestic hot 

water, and electrical demand, for the whole simulation period will be calculated in EnergyPlus.  

CHP
(ICE- unit)

PEEl-Grid

PEFuelDEFuel

DEEl-Grid

XEEl-Grid

Boundary of the plant

OEth-CHP

NESH NEDHW NEEl

OEEL-CHP

Boundary of the building

Storage 
tank

 

Figure 5: Control volumes and related energies. Based on drawing from (Dorer & Weber, 2007) 

Primary energy represents the energy use associated with the embodied energy in natural resources 

such as crude oil, coal, natural gas, sunlight etc. It represents the delivered energy before any 
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anthropogenic conversion or transformation. Primary energy can be divided into renewable and non-

renewable energy, where natural gas for instance represents a non-renewable energy source. Primary 

energy rating makes possible to sum different types of energies (e.g. thermal and electrical) as they 

integrate the losses of the whole chain, which includes the losses outside the building system boundary 

(prEN 15203/15315, 2006).  Figure 5 illustrates the control volumes and related energies for the 

micro-CHP system.  

The primary energy consumption to generate electricity and heat will be considered for both micro-

CHP and reference system. The primary energy demand is defined by equation 1: 

    ∑(               )  ∑                              (1)   

where 

PE  is yearly primary energy demand, in kWh; 

DEi  is yearly delivered energy for energy source i (electricity, oil, gas, district heating, 

biofuels or other energy source), in kWh; 

XEi is the yearly exported energy for energy source i; 

fprim,del,i  is primary energy factor for energy source i, in kWh/kWh;  

fprim,del,i  is the primary energy factor for the exported energy source i; 

(NS-EN 15603:2008, 2008). 

In the primary energy factor, the following factors are included:  

- Energy to extract the primary energy carrier.  

- Energy to transport the energy carrier from production place to user location.  

- Energy to process, store, generate, transfer and distribute, and all other elements that are 

necessary to deliver the energy to the building where the delivered energy is to be used.  

(NS 3031:2007+A1:2011, 2007/2011) 

 

Primary energy factors can be divided between non-renewable and total primary energy factors. Both 

take into consideration the above mentioned parameters, but the non-renewable excludes the 

renewable energy component of primary energy (prEN 15203/15315, 2006). This may lead to lower 

primary energy conversion factor for renewable energy sources.  For grid electricity, the non-

renewable and total primary energy demand and respective CO2-equivalent emission values depend on 

the generation mix of the electricity utility grid. For the consideration of the electricity mix, two 

electricity mixes will be considered, the UCPTE electricity mix and the net-ZEB definition.  

The delivered energies to the building are natural gas and electricity. To convert this amount of 

delivered energy to primary energy, a primary energy factor has to be multiplied as seen in equation 1. 

The net energy and the energy output of the cogeneration device will not be exactly the same due to 

losses in the distribution system, mainly due to losses in the storage tank. The electricity on the other 

hand is assumed to be delivered without losses, and the delivered electricity OEEl equals the demand 

of the building plus exports minus imports.  

When calculating the primary energy consumed by the cogeneration system, the amount of electricity 

produced and exported to the grid should be accounted for. This should be properly defined, and 

which primary energy factors to apply also needs to be determined. According to Annex 42, there are 
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two approaches to consider this; as an additional demand or with the substitution principle (Dorer & 

Weber, 2007). In the first approach, the net amount of electricity delivered back to the grid is 

accounted for as an additional demand covered by the cogeneration system. In the second approach 

this amount is accounted for as a substitution to the same amount produced by the electricity mix of 

the grid. In this approach, the exported electricity is seen as delivered energy to the grid, and the 

primary energy factor for grid electricity is used to calculate the primary energy of the exported 

electricity. Using the substitution principle, the displaced primary energy (PEEL-Dispaced) is given by 

equation 2. 

                                            (2) 

The substitution principle relates the energy input to the energy demand of the building only, and any 

surplus electricity produced is accounted for as a reduction in the energy input. Using this approach 

makes it more convenient to compare the CHP system directly to the conventional system in terms of 

primary energy consumption.  

The different forms of delivered energy to the building are calculated by equation 3 and 4: 

Delivered energy as natural gas:       
          

   
    (3) 

Delivered energy as electricity from grid:                                    (4) 

where,  

DENG  is the yearly delivered energy of natural gas to the building; 

DEEl-Grid is the yearly delivered electricity to the building; 

NESH  is the yearly net energy going to space heating; 

NEDHW  is the yearly net energy going to domestic hot water;  

NEEl  is the yearly net energy going to electricity; 

OEEL,CHP is the yearly electricity produced by the CHP; 

XEEl-Grid  is the yearly exported electricity from the building to the grid; 

nDE  is the system efficiency based on delivered energy; 

 

From this, the total primary energy demand for the system cases analyzed will be: 

                                                                       (5)

  

For comparison between the micro-CHP system and the conventional reference system, the primary 

energy savings (PES) will be evaluated. This is given by the equation 6: 

 

    
                  

        
               (6) 

where 

PETOT,GB is the primary energy of fuel and electricity consumed by the conventional system; 

PETOT,CHP is the primary energy of fuel and electricity consumed by the CHP system; 
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The main purpose of the conversion to primary energy is to quantify the total amount of energy 

including conversion, transmission and distribution losses. In this way, different system can be 

compared on the actual energy consumption in its primary form before conversion. Energy conversion 

that occur onsite, as in the case of both gas boiler and CHP, accounts for the losses from the 

conversion in site energy because the building is assessed based on the fuel that is purchased. In this 

case, the primary energy factor for natural gas only accounts for the transmission and distribution 

losses. While for electricity purchased, the primary energy factor includes both conversion factors for 

converting the primary energy from its primary source to electricity as well as the transmission and 

distribution losses (Energy Star, 2011). 

For the amount of primary energy used for the CHP to produce electricity and heat to be less than the 

primary energy used for the gas boiler to produce heat, and electricity imported from the grid, the 

conversion efficiency has to be better. The CHP has to produce these loads more efficiently. As the 

primary energy factor for natural gas is lower than the primary energy factor for electricity, the 

reduction in electricity imported from the grid will be beneficial. The net benefit of the CHP 

installation in primary energy consumption depends on how efficiently the CHP operates.   

4.2 Based on energy efficiency 
 

The overall energy efficiency depends on several factors; the prime mover, the size of the plant, the 

temperature at which the recovered heat can be utilized and conditioning and operating regime of the 

cogeneration unit. It is a measure of how efficient the energy is produced, distributed, stored, 

converted and used (Dorer & Weber, 2007).  

 

This assessment is based on an analysis of the building energy supply system (cogeneration and other 

HVAC components) in terms of net power.  Both system size and storage devices will affect the 

efficiency of the cogeneration device and system. Energy performance factors are a measure of how 

efficiently the delivered or primary energy is utilized by the analyzed building and its cogeneration 

system to cover the annual electricity and net heat demand of the building (Dorer & Weber, 2007). 

These efficiency factors describe the whole system including the storage tank, and are given by 

equation 7 and 8:  

    
                 

                           
 

               

∑   
      (7) 

    
                 

                         
 

               

∑   
       (8)

    

Where 

 

nDE  is the energy performance factor of the system based on delivered energies; 

nPE  is the energy performance factor of the system based on primary energies; 

DEi  is the delivered energy of source i; 

PEi  is the primary energy of source i; 

 

Using the substitution principle for the exported electricity produced by the cogeneration system, the 

delivered and primary energy denominators in equation 7 and 8 will be (DEEl-Grid – DEEl-Displaced) + 
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DENG and (PEEl-tGrid – PEEl-Displaced) + PENG, respectively. When evaluating the system performance it is 

better to use the efficiency based on primary energy as this takes into consideration the energy quality.  

Efficiencies regarding the specific efficiencies of the CHP unit and the reference case of a condensing 

gas boiler are defined by equations 9-12, and are based on equations from EN 15316-4-4:2007 (NS-

EN 15316-4-4:2007, July 2007). 

CHP efficiency:         
                 

                
 

                  

      
    (9) 

 

CHP thermal efficiency:        
                  

                
 

         

      
    (10) 

 

CHP electrical efficiency:            
                     

                
 

        

      
    (11) 

    

Boiler efficiency:            
                    

                   
 

 
           

      
    (12) 

 

Where  

OEth,CHP  is the thermal output of the CHP device; 

OEEl,CHP  is the electrical output of the CHP device; 

OEth,boiler is the thermal output of the boiler; 

DEFuel   is the gross input to the generator; 

 

When evaluating the annual performance of the system, the following parameters should be taken into 

account: 

- Water temperature (return/flow) 

- Start/stop effects 

- Part load operation 

- Air inlet temperature 

(NS-EN 15316-4-4:2007, July 2007) 
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4.3 Based on reduced grid interaction 
 

This assessment is based on an analysis of the building related to the reduced grid interaction. In this 

context, reduced grid interaction means reduced grid imports as exported electricity is assumed 

beneficial for CHP. This is only an assumption, and in reality a grid structure has to be organized to 

make electricity export feasible economically as well as environmentally. A feasibility analysis should 

be done in this context. However, this is not the main objective of this thesis, and the assumption of an 

existing electricity structure is considered as an appropriate approach for the comparison.  

The annual electricity generated by the cogeneration unit OEel,CHP can either be demanded by the 

building or exported to the electricity grid, as illustrated in Figure 5. The amount exported or imported 

electricity depends on the demand of the building NEEL compared to what is produced by the 

cogeneration device. If the electricity demand is higher than what is produced, electricity is imported. 

Likewise, if the electricity demand is lower than what is produced by the cogeneration device, 

electricity is exported. 

The exported and delivered electricity from/to grid can be explained by equation 13 and 14, 

respectively: 

             {
                                                                   
                                                                                       

          (13) 

And 

             {
                                                                   
                                                                                       

          (14) 

 

Where,  

XEEL-NetGrid  is the net amount of electricity exported to the grid; 

DEEL-NetGrid  is the net amount of electricity delivered from the grid; 

 

For the electricity produced locally from the CHP unit, delivered into the grid and consumed later on 

again from the grid, a grid loss factor, flEl-Grid may be considered. Then the electricity exported back to 

the grid can be defined by equation 15.  

          
         

             
          (15) 

 

The loss factor is normally set to 10 % (Dorer & Weber, 2007). 
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4.4 Based on CO2 savings 
 

The last performance assessment methodology is based on CO2 savings. Each of the case systems will 

be evaluated and compared with the reference system, and the corresponding C02 savings will be 

considered.  

The CO2 emissions are calculated by the equation 16: 

      ∑             ∑                   (16) 

where, 

mco2  is the yearly CO2 emissions, in kilograms; 

DEi   is the yearly delivered energy for the energy source i, in kWh; 

XEi   is the yearly exported energy for the energy source I, in kWh; 

Kdel,i  is the CO2 factor for the delivered energy source i, in kg/kWh. 

Kexp,i  is the CO2 factor for the exported energy source i, in kg/kWh. 

 

The coefficients Kdel,i and Kexp,i can be the same value (NS-EN 15316-4-4:2007, July 2007), and this is 

assumed for the electricity in this report.  

The performance criterion regarding emissions is the amount of CO2 emitted by the CHP unit during 

the simulation period. For the CHP system, equation 16 reduces to equation 17: 

                                                 (17) 

The CO2 factors of each unit delivered energy will be set. The CO2 factor is the amount of carbon 

dioxide that is emitted to the atmosphere per unit delivered energy (NS 3031:2007+A1:2011, 

2007/2011). In order to compare the CO2 equivalent emissions by the CHP system and the reference 

system, equation 18 is used. 

      
    

       
   

    
                (18) 

Where,  

       is the CO2-savings using the CHP system, in % ; 

    
    is the CO2-emissions for the reference system, in kg/kWh; 

    
     is the CO2-emissions for the CHP system, in kg/kWh; 

 

This parameter gives us the avoided CO2 emissions by implementing the micro- CHP system. The 

environmental impact is an important parameter when choosing one technology over another. As CHP 

is considered a low carbon technology, this assessment is an interesting point of view in evaluating the 

reliability of this statement. The emissions from an ICE generator depend on the operation and the fuel 

used. For an optimal operation regarding CO2 emissions, a renewable fuel should be used, such as 

biogas and biodiesel.  
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5. CHP modeling: 
 

The main objective with CHP modeling is to predict the thermal and electrical outputs of a 

cogeneration device as precise as possible. An ICE- plant consists of a generator linked to an engine, 

and a gas-to water heat exchanger and other system components such as circulation pumps and control 

configurations (Alanne, Söderholm, & Sirén, 2009). 

The internal combustion engine used in this thesis is a Senertech ICE, which is based on an Otto cycle 

(Thomas, 2008). This unit is chosen because it exists already calibrated data for this engine in the 

simulation tool used, EnergyPlus. Since this engine is one of the market leading micro-CHP 

appliances, an evaluation of its optimal performance is of interest. In the simulations, the ICE 

cogeneration model consists of two sub-models:  

1) An engine/generator unit model that predicts the heat production and the electrical generation 

in response to changing building energy demand.  

2) A thermal storage model that predicts the energy and mass flows in all other portions of the 

ICE cogeneration systems.  

A thermal storage is included as this ensures a more stable and secure operation of the CHP.  

5.1  Model control volumes 
 

The control volume of the model is illustrated in Figure 6. 

Energy conversion 
control volume

Engine control volume

Cooling water 
control volume

Fuel

Air

Power

Exhaust

Heat absorbed by engine block

Skin heat loss

Heat recovery by coolant

Cooling water in Cooling water out

 
Figure 6: Control volume micro CHP 

 

The model used is based on the generic ICE/Stirling engine model developed by Annex 42, and 

represents any combustion-based cogeneration device (Ian, Ferguson, Griffith, Kelly, & Weber, 2007). 

It represents 3 basic control volumes, the energy conversion control volume, the engine control 

volume and the cooling water control volume. The energy conversion control volume represents the 
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combustion process taking place within the cylinder of the engine unit. This expresses the conversion 

of fuel to electricity and heat in the engine under steady state conditions. This control volume uses 

generic polynomial performance equations derived by Annex 42 to relate the fuel consumption and the 

fuel heat release (heat absorbed by the engine block and exhaust gases) to the electrical power 

production of the device (Beausoleil-Morison, April 2008). 

The efficiencies that relate useful energy production to fuel energy consumption are modelled as 

functions of the electrical output, coolant flow rate and coolant temperature. This modelling leads to 

more simplicity, ease of calibration, and reduced data collection burden (Beausoleil-Morison, April 

2008). The drawback of this method is that the model must be calibrated using empirical data which 

results in that each set of model inputs only is applicable to one engine type, capacity and fuel type.  

The engine control volume models the thermal transients in combustion engines. The energy balance 

is represented by a first order differential equation. This equation accounts for the thermal storage 

within the engine, skin losses of the engine and heat exchange between the engine and the cooling 

water control volume. The cooling water control volume represents the heat uptake from the engine to 

the cooling water. The equations behind the CHP model in EnergyPlus can be found in appendix F.  

5.2  Simulation tool: EnergyPlus 
 

As it was desired to use a simulation program with an already developed model of micro-CHP, 

EnergyPlus was chosen. EnergyPlus is chosen as it is a well-developed simulation tool, and the CHP 

model integrated is based on the international Energy Agency’s Energy Conservation in Buildings and 

Community Systems (IEA ECBCS) Annex 42 for a Senertech internal combustion engine production 

unit. As the model is not normalized, and data on different micro-CHP units are limited, this model 

will be used in all evaluations of this thesis. Different system control and configurations will be 

applied to this model within a multifamily building to evaluate its performance in regard to the 

methodologies defined in section 4. Micro-CHP models have been implemented in the modelling 

platforms TRNSYS, ESP-r, EnergyPlus and IDA-ICE in order to be available to as broad a user base 

as possible (Beausoleil-Morison, April 2008). As EnergyPlus had available models of fuel cell, 

internal combustion engine and Stirling engine, this simulation tool was considered as a good fit for 

the work of this thesis. IDA-ICE was also considered, but since it here only was developed a model for 

fuel cells it was not used. This, because it was desired to evaluate today’s most developed and market 

entered technology of the CHP, which is the internal combustion engine. Also it is noted that the 

existing models on fuel cells currently only calculate the steady-state performance at a particular 

simulation step, while the combustion engine based models account for thermal transient effects in 

cooling water outlet temperature as well (Beausoleil-Morrison, Ferguson, Griffith, Kelly, Maréchal, & 

Weber, 2007).  

EnergyPlus is a collection of many program modules that works together to calculate the energy 

required for heating and cooling a building by using a variety of systems and energy sources. The 

program simulates the building and associated energy systems when they are exposed to different 

environmental and operating conditions. The tool receives inputs from text files in an .idf format, 

which makes it possible to define all necessary input values. 

EnergyPlus enables the simulation of various buildings performances. It simulates dynamically the 

energy use and corresponding emissions in buildings. It makes it possible to simulate a building, the 

technical installations in buildings and the energy supply system within the building at the same time. 

In this way the output result for the energy demand of the building will be more realistic and exact 

than it would have been if the simulations of each part had been done separately.  
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The three system cases that will be simulated are defined in section 6, and EnergyPlus makes it 

possible to compare the energy demand of the energy supply solutions, and gather an understanding of 

the impact and benefits of choosing a micro-CHP system compared to the conventional system with a 

gas boiler and electricity imported from the grid. The possible operating strategies which will be 

applied to these models are defined in section 7. 

5.3  Building 

The building construction model used for simulation is drawn in ScetchUp, a 3D drawing tool to build 

buildings. The building model is based on the building made by bachelor students of Natasa Nord, and 

has 3 floors
 
(Rausand & Iordache, 2012). The total floor area is of 450 m

2
, each floor having 150 m

2
. 

Each floor represents one thermal zone, which makes the total building structured with 3 thermal 

zones. Each floor has the same temperature levels as it is assumed to be three identical apartments. 

Therefore, the three zones made are gathered together to represent one united zone for the whole 

building. This is done to make it easier to check temperature levels and calculate the demand of the 

building. Also, the simpler the building model is, the easier it is to identify possible sources of errors.  

The building is shown in Figure 7 and Figure 8.  

 
Figure 8: Building model seen from south 

 

When making a building more energy efficient, one has to consider the following actions; reduce the 

energy demand of the building through efficient building construction, then apply energy efficient 

management of energy equipment within the building and energy recovery, and then choose the best 

energy supply technology.  

 U – values (W/m2 K) 

 Walls Ground floor Roof Window Door 

Building 0.16 0.145 0.113 1.016 1.181 

TEK 10 measures 0.18 0.15 0.13 1.2 1.2 

Table 1: U-values building shell 

To reduce the energy demand of the building, the model has been built in a way that complies with the 

requirements in TEK10. As can be seen in Table 1, each building part fulfils the requirements 

(Kommunal- og regionaldepartamentet, 2010). The building is tight and compact, which makes the 

building shell robust and the transmission losses small.  

The floor elevation of the building is 3 m, and the windows cover 63.36 m
2
 of the walls. In TEK10 

there is a requirement that the windows should not cover more than 20 % of the heated floor area of 

Figure 7: Building model seen from north 
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the building. Since the floor area of the building is 450 m
2
, the windows cover 14.08 %, and the 

building therefore complies with the requirement (Kommunal- og regionaldepartamentet, 2010).  

The energy demand of the building depends on the building construction and the external and internal 

loads. The external loads are affected by the weather, and therefore a weather file is used for the 

energy simulation of the building. EnergyPlus uses weather files with the format .epw to collect the 

necessary weather information for the location. The location of the building simulated in this project is 

Oslo Fornebu and the weather file is taken from EnergyPlus official website (U.S Department of 

Energy, 2013). The internal loads are defined as loads from people, electrical devices, lights and hot 

water equipment. The sizing of these loads depends on the type of building and the number of people 

living there. In this project there were assumed to live 4 people in each apartment, lights were defined 

to be 1.95 W/m
2
, electric equipment of 1.80 W/m

2
 (NS 3031:2007, 2007), and hot water equipment is 

supplied by a stratified hot water tank supplied with heat from either a gas boiler or the micro-CHP 

unit as will be mentioned later in the report. The size of these loads depends on the actual use of a 

room or a building. Some assumptions were therefore necessary to estimate these values in order to do 

the energy simulation of the building. The occupancy and activity profiles for the people in the 

building are based on the reference report of task 32 from IEA and can be found in appendix H 

(Heimrath & Haller, 2007). 

5.4  Energy demand 

The energy demand and heat balance of the building will be dynamically calculated by EnergyPlus. 

This means that it takes into consideration the changing outdoor climate over the simulation period, 

and the changing use thereafter. The use of each load is defined by schedules, and EnergyPlus uses 

differential equations to describe time varying conditions. The heat balance in the building is described 

by equations that form an algorithm. This algorithm calculates the heat energy condition at one point 

in time by taking basis on the previous point in time. Each period of time is one hour, and EnergyPlus 

makes it possible to define how many steps you would like to have in the period of time. Sixty steps 

are the maximum, where each minute is simulated. Normally six steps are sufficient and recommended 

to avoid errors in complex building calculation (EnergyPlus- US Department of Energy, 2013). Since 

the micro-CHP model developed by Annex 42 is not recommended to use with half-hourly or hourly 

time-step since their accuracy can be compromised, a minutely time-step (60 time-step per hour) is 

used for optimal accuracy in results (Beausoleil-Morrison, Ferguson, Griffith, Kelly, Maréchal, & 

Weber, 2007).  

The building is made with simple balanced constant air ventilation (CAV) system predefined by 

EnergyPlus and water based floor heating as heat distribution system. A simple balanced CAV is 

implemented in the three main rooms, while the bathrooms are designed with a simple exhaust CAV 

using the outdoor air. For balanced ventilation an appropriate amount of fan heat is added to the 

stream of air entering. Both an intake and an exhaust fan are assumed to co-exist, and have the same 

flow rate and power consumption. The balanced ventilation system consumes twice the fan electricity 

than the exhaust ventilation as it employs two fans instead of one (EnergyPlus- US Department of 

Energy, 2013). Balanced ventilation is the most common form of ventilation used in buildings 

(Novakovic, Hanssen, Thue, Wangensteen, & Gjerstad, 2007). 

Space heating and hot domestic tap water are supplied by a condensing gas boiler, a micro-CHP unit 

or a combination of both, depending on the system configuration used. This is the thermal demand of 

the building. The electrical demand goes to lighting in each room, electrical equipment and the 
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electrical fan for ventilation. This is supplied by electricity imported from the grid in the case of a gas 

boiler system, and partly or fully by the ICE- generator in the case of a micro-CHP system.  

The electrical demand of the building is modeled by taking basis on data from CREST domestic 

electricity demand model. The CREST model was downloaded from Loughborough University’s 

homepage (Richardson & Thomson, 2010). The model provides a high-resolution model of domestic 

whole house electricity demand. It is possible to choose month, number of people in the dwelling and 

if it is a weekday or weekend. For the profiles made and used in the model, no differences are made 

between weekdays and weekends. This is done to ease the implementation of the load profiles in 

EnergyPlus, and it is considered that these differences will not have too much impact on the yearly 

electricity use. One yearly profile was made for the lighting appliances and another one for the 

electrical appliances. For comparison of the user profiles, the master thesis by Eline Rangøy is used 

(Rangøy, 2013). The electricity use of the electrical appliances depends on which electrical appliances 

that exist in the building. For the building model made in the master, the electrical appliances within 

the building are shown in Table 2. 

 Mean cycle power 

TV 128 W 

Dish washer 1264 W 

Microwave 1250 W 

Washing machine 2056 W 

Washer dryer 2500 W 

Freezer 190 W 

Fridge 112 W 

PC 147 W 

Hob 2125 W 

Table 2: Mean cycle power of electrical appliances in the building (Richardson & Thomson, 2010) 

Activity schedule are made on an hourly basis based on the daily consumption profiles made in the 

CREST domestic electricity demand model.  It is assumed that the use of the electrical appliances is 

the same during the year. Daily profiles for each appliance is made, and thereafter weekly profiles 

based on the daily profiles are made. At the end, the yearly profiles are made based on the weekly 

profiles. Some appliances, which will not be used each day, have two options for the daily schedules. 

One option is when the appliance is not utilized, and the other when it is utilized. The use of each 

appliance can be seen in appendix J. These activity schedules are made based on the minutely power 

values for each appliances calculated in CREST model. The power output is then divided by the mean 

cycle power to get the fraction to be used as a schedule in EnergyPlus.  

For the electrical appliances it is assumed that each week will be have the same load profiles. For the 

lighting, the demand profiles will be separated into four periods. One is defined from December to 

February (winter), one from March to May (spring), one from June to August (summer) and one from 

September to November (autumn). The lighting demand is taken from CREST domestic electricity 

demand model, doing one simulation for January to get the winter profile, one for May to get the 

spring profile, one for July to get the summer profile and then one for October to get the autumn 

profile. This approach is considered to give a sufficient lighting profile throughout the year. In reality 

there are slightly differences from day to day and month to month, but moreover this approach will 

represent the buildings lighting demand sufficiently. The lighting profiles can be found in appendix I.  
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When making the reference load profiles for electricity in EnergyPlus, schedules had to be made to 

represent the usage pattern from the CREST domestic electricity model. As the values from the model 

were on a minute basis, these had to be converted to hourly values to be implemented in EnergyPlus. 

From these hourly values, schedules were made for a day, and from this day schedule for a month 

were made, and then for a whole year.  The schedules objects in EnergyPlus allows the user to 

influence scheduling of many items (such as occupancy density, lighting, thermostatic controls, 

occupancy activity etc.) (EnergyPlus- US Department of Energy, 2013).  

The day schedules perform the assignment of pieces of information across a 24 hour day. This can 

occur in various fashions including a 1-per hour assignment, a user specified interval scheme or a list 

of values that represent an hour or portion of an hour. The day schedules made in the models are based 

on hourly values to represent the demand. The week schedule object(s) perform the task of assigning 

the day schedule to day types in the simulation. As some devices may be used some days, but not 

others, a week schedule has to be made. Then a combination of the daily profiles for each device is set 

together on a weekly basis. The yearly schedule is used to cover the entire year using references to 

week schedules (which in turn reference day schedules). If the entered schedule does not cover the 

entire year, a fatal error will result (EnergyPlus- US Department of Energy, 2013). 

For flexibility, a schedule can be entered in “one fell swoop”. Schedule:Compact object are used to 

model all the features of the schedule components in a single command. Each schedule made as 

compact must cover all days of the year (EnergyPlus- US Department of Energy, 2013). The schedule 

for hot water usage, activity schedules for people etc. are made based on this schedule form and can be 

seen in appendix H. 
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6. Description of system cases 

6.1  Energy Supply system 
 

In the case of micro-CHP system, the total energy supply system is illustrated in Figure 9. For the 

reference case, a gas boiler is coupled to the cylindrical hot water storage tank instead of the CHP 

device. Space heating water for the low radiant floor heating is tapped directly from the storage tank, 

while domestic hot water is heated by a heat exchanger from the storage tank. Electricity demand, 

which is not covered by the CHP unit, will be imported from the grid. A controller is placed in the 

storage tank to assure that the tank temperature is acceptable and the deliver from the supply device 

corresponds to the demand of the building.  

 
Figure 9: Supply system in simulation model. 

 

As it can be seen, the thermal demand of the building is the domestic hot water heating and the radiant 

floor heating in each floor. Hydronic radiant floor heating system represents a better choice for low 

energy buildings as it brings higher exergy efficiency and increases thermal comfort (Hugo, 

Zmeureanu, & Rivard). The floor heating system is set to have a supply temperature of 40°C and a 

return temperature of 35°C based on the heating system parameters from Task 32 from the IEA 

(Heimrath & Haller, 2007). A circulation pump is implemented in the system to make the water 

circulate. Floor heating is schedule to be on during the heating season and off during the summer. The 

heating season is assumed to be from 20/09 to 01/06, which is a little longer than the heating season 

defined in Hugo, Zmeureanu and Rivards work (Hugo, Zmeureanu, & Rivard), as the weather 

properties is Oslo climate.  The domestic hot tap water is designed with a supply temperature of 55 °C 

and cold water supply with a temperature of 7°C. The target temperature at which the cold and hot 

water is mixed to attain is 38°C. The amount of heat needed for space heating in comparison with 

domestic hot water during a year depends on the building size, the thermal insulation, ventilation, 

passive solar use, internal heat loads as well as the number of people in the building (IEA, 2000). To 
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be able to supply the two heat consumers (DHW and space heating), the supply water needs to be 

available at two different temperature levels. This can be done either by implementing two separate 

storage tanks, or implementing one single storage tank with stratification. In a stratified storage mixing 

is avoided, and there will be different temperature levels in the tank. Hot water has a lower density 

than cold water, and therefore will the hot water always be located in the upper part of the storage 

tank, and the colder water will be found at the bottom. The stratification in the tank can be built up by 

adding heat to the tank (charging) or removing heat from the tank (discharging). This can be done 

either indirectly or directly. If it is done directly, water is added to or removed from the storage via 

water inlets/outlets of the tank. If it is done indirectly, heat exchangers are placed inside the storage 

surrounded by water. The indirectly charging/discharging has higher possibility of destroying existing 

stratification in the tank as it tend to create zones of uniform temperature above (in the case of 

charging) or below (in the case of discharging) the heat exchanger.  The direct charging/discharging 

can create good stratification, but this requires that the inlets and outlets are placed correctly according 

to the desired temperature levels (Suter, Weiss, & Letz, 2000). As the stratified water heater does only 

have the possibility to model one use side outlet and one source side outlet, the loop set point 

temperature will be based on the domestic hot water as this has the highest temperature level. The loop 

temperature is therefore set to have a flow temperature of 55°C and a temperature difference of 40°C, 

where each load has the set temperatures defined in the design specifications.  

As the building simulated is placed in Oslo climate, it is assumed that no cooling is required during the 

year. Since no cooling device will be implemented in the model, slightly high room temperatures may 

happen during the summer since the building envelope is well insulated.  

6.2  System configurations 
 

Different system configurations:  

I. Reference case: gas boiler system with heat storage. 
II. ICE- based micro- CHP system with heat storage. 

III. ICE-based micro-CHP system with heat storage and gas boiler as auxiliary heater. 
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Figure 10: Energy flows of compared system (I and III) 

 

Figure 10 show the basic principle of the comparison between the traditional system of a gas boiler 

and grid electricity and the alternative system with a CHP device, gas boiler and grid electricity.  
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To be able to compare the effect of micro-CHP integrated in a residential building, a model for a 

conventional system with a gas boiler has been developed. To be able to compare the systems 

properly, it is important that the reference case uses the same model for the building and the respective 

heat distribution and ventilation system, the same level of detail considering parasitic losses and 

distribution losses, the same DHW and electrical load profiles and the same weather files (Dorer & 

Weber, 2007). As no changes will be done to the building or the distribution system within the 

building, these requirements are fulfilled. The systems will be compared after the methodologies 

reviewed in section 4. All cases are modeled with thermal storage to assure a more continuously 

operation of the gas boiler and the CHP device. 

For the CHP case, another possibility would be electrical storage to store the surplus electricity 

generated. This could be stored in fuel cells or batteries for use when the electricity demand is higher 

than the generated electricity. However, in this study this type of storage is not considered, and all 

electricity surplus generated by the cogeneration system is directly delivered to the grid.  

All pipes in the system models are made adiabatic, which means that there will be no heat losses 

though the piping of the system. In real life, there would however be some losses through the piping.  

6.2.1 Definition of storage tank  

 

As a large part of the building sector is characterized by a highly variable demand, the system cases 

are modeled with a storage tank. This eases the operation of the plant, as it meets the mismatch 

between production and demand (Celador, Odriozola, & Sala, 2011). The tank used for hot water 

storage is a vertical stratified cylindrical tank. The tank shape is chosen to be vertical cylindrical in 

EnergyPlus because this describes best residential water heaters (EnergyPlus- US Department of 

Energy, 2013). Having a thermal storage tank in cooperation with CHP prolongs the yearly operation 

time and allows the CHP-unit to operate more continuously. This avoids the frequent occurrence of 

transient behavior during start-up and shutdown (Rosato, Sibilio, & Ciampi, February 2013).  

Micro-CHP appliances are often installed with buffer tanks to reduce cycling and increase the 

likelihood of long periods of operation (SEAI, 2011). This is desired as it maximizes the electricity 

produced, and wear on the engine is reduces as there will be less frequent stop/start cycles. A buffer 

tank of 1 m3 can buffer 23kWh between 80°C and 60°C, which says that it can store about 2 hours of 

operation for the micro-CHP device with a thermal output of 12kW (SEAI, 2011). Larger tank sizes 

may lead to higher operating times of the CHP as this makes it possible to store more produced heat in 

the buffer tank. However, if buffer tanks are oversized, the standing heat losses can become large, 

especially if the tank is located outside the heated part of the building. Therefore, the tank used in the 

simulation is placed inside the heated part of the building to avoid large losses and the skin losses of 

the water tank will contribute to the internal gains of the building. It is also modelled with good 

insulation to minimize tank losses. The level of insulation of the tank and the system characteristics 

have an impact of how the losses in the system will be. The tank’s U-value is calculated based on the 

following equation taken from PhD. Student Usman Ijaz Dar’s work (NTNU, 2014): 

      
      

    
          (  

     

  
)         (19) 

Where, 

       is the uniform skin loss coefficient per area to ambient temperature, in W/m
2
K; 

     is the thickness of insulation, in m; 



26 
 

       is the volume of the tank, in m
3
. 

The uniform skin loss coefficient accounts for the tank insulation and applies during both off- and on 

cycle operation. In the tank modelling, it is assumed that this represents the only tank losses and no 

overall losses at any particular node to account for thermal shorting due to pipe penetration, water 

heater feet or any loss effects are included (EnergyPlus- US Department of Energy, 2013). The 

equation shows that for increased tank sizes the uniform skin loss coefficient (U-value) of the tank 

becomes smaller due to that the thermal bridges become smaller with increased tank size. The off-

cycle losses are set to zero in the design specifications for the tank, and the following insulation 

thickness is set to 15 cm to give the tank a good U-value. There are assumed no losses due to pipe 

connections on supply and demand side, and it is therefore likely to believe that the corresponding 

tank losses would have been higher in real life installations.   

The heat loss from a storage tank is usually expressed through the product of the heat loss coefficient 

of the storage and the temperature difference between the storage and the surroundings (Departmant of 

Civil Engineering Technical Univercity of Denmark, 2013). The tank used in the modelling will have 

more stable temperature throughout the storage, and therefore it is assumed that the thickness of 

insulation in the tank is the same for the side, the top and for the bottom. If there were to be larger 

differences in temperatures in the tank, a thicker insulation should be used in the top of the tank as the 

heat losses would have been greater here.  

The tank height depends on the volume, and is calculated by the following formula, also given from 

PhD. Student Usman Ijaz Dar’s work (NTNU, 2014): 

                                                  (20) 

In EnergyPlus the water heater objects are components for storing and heating water. The stratified 

water heater used in the simulations is coupled to a plant loop simulation. The water heater 

applications are for domestic hot water heating, low-temperature radiant space heating, and energy 

storage of waste heat recovery from the gas boiler or the micro-CHP unit (EnergyPlus- US Department 

of Energy, 2013). 

In both configuration systems, the water heater is coupled 

together with the corresponding plant loop. When the water 

heater is coupled in this way, it has an inlet node and an 

outlet node on the “source side” and an inlet and outlet node 

on the “use side” as seen in Figure 11. On the “source side”, 

cold water is drawn from the tank and warmer water is 

returned. On the “use side”, hot water is taken from the tank, 

and cooler water is returned from the outlet of the heating 

system or from the cold water supply mains (EnergyPlus- US 

Department of Energy, 2013). The source side is towards the 

CHP or gas boiler, while the use side is toward the heating 

loads of the building. 

A stratified water heater is used because it has the advantage of giving a better modeling of thermal 

storage applications, which rely on stratification to improve heat transfer performance. Thermal 

stratification increases the performance of the heat storage in hot water tanks. This is because of the 

different density of hot and cold layers of water within the tank, which makes the hot water remaining 

Figure 11: Water heater configuration 
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on the top and the cold water on the bottom. This makes it possible to have higher temperatures sent to 

the load and lower ones to the heat source (Celador, Odriozola, & Sala, 2011). 

The stratified water heater is divided into 10 nodes of equal volume. These nodes are coupled by 

vertical conduction effects, intermodal fluid flow, and temperature inversion mixing (EnergyPlus- US 

Department of Energy, 2013). The model solves the differential equations governing the energy 

balances on the nodes simultaneously using a numerical method. The object allows simulation of two 

heating elements. These two elements can cycle on and off to maintain the node temperature within 

the dead band. The dead band tells the sensor how many degrees the indoor temperature is allowed to 

decrease below the set temperature. It reflects the maximum temperature difference between the set 

point and the cut-in temperature for water heater 1 and 2, respectively.  

The tank volume is the actual volume of the fluid in the tank, measured in m
3
. For the systems, the 

heat storage tank size used is 500 liters, which equals 0.5 m
3
. The parameters for the water heater is 

taken from the existing example file for micro-cogeneration based on annex 42 in EnergyPlus with 

modification in tank size, height and U-value based on equation 19 and 20, and can be found in 

appendix A. The engineering description of the stratified tank can be found in appendix G. 

To model the stratification in the tank, the inlet mode of the entering fluid from the use and source 

sides can either be set to fixed or seeking. If it is set to fixed mode, the fluid will enter at the fixed 

height specified. If it is set to seeking mode, the fluid “seeks out” the stratified node that is closest to 

the inlet temperature and adds all flow to that node. Maximum stratification is provided in the seeking 

mode (EnergyPlus- US Department of Energy, 2013). Seeking mode is therefore chosen for the 

stratified tank used in this thesis.  

6.2.2 Definition of reference system with condensing gas boiler  

 

The reference system consists of a condensing gas boiler coupled together with a stratified storage 

tank to produce heat, and electricity is directly imported from the grid. The system is illustrated in 

Figure 12.  
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Figure 12: Configuration system with gas boiler 
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The space heating illustrates the floor heating in the main rooms and the bathrooms in the three floors 

of the building. When energy is delivered to different heat loads, EnergyPlus uses a concept of a 

splitter and a mixer to divide and mix the stream of heat from the heat supply source. The condensing 

gas boiler has a nominal efficiency of 0.89 and a capacity of 25 000 kW and is fuelled with natural 

gas. The gas boiler is designed to cover the entire heat demand. All the electrical devices in the 

building are covered by electricity imported from the grid.  

 

The efficiency of the boiler is based on nominal thermal efficiency. This nominal efficiency input is 

based on higher heating value, and efficiencies from manufacturer based on lower heating value have 

to be converted to an efficiency based on higher heating value. For a more accurate representation of 

the performance, a normalized efficiency performance curve can be used, but it is not a required input. 

To modulate the condensation effect of the gas boiler, a normalized efficiency curve was therefore 

chosen. Using only the nominal efficiency, the fuel consumption output will be the theoretical fuel 

use. The fuel used by the boiler model is calculated by equations 21 and 22: 

                    
           

                          
      (21) 

          
                  

                                         
      (22) 

The nominal thermal efficiency of the boiler is the heating efficiency of the boiler’s burner, and 

relative to the higher heating value of the fuel at a part load ratio(PLR) of 1.0 and the temperature 

entered for the Design Boiler Water Outlet Temp (EnergyPlus- US Department of Energy, 2013). A 

normalized boiler efficiency curve is used to describe the normalized heating efficiency of the boiler’s 

burner as the efficiency is not constant and depends on factors such as the PLR and the boiler outlet 

water temperature (Tw). A biquadric curve is used to model the efficiency of the condensing gas boiler. 

The biquadric curve uses the equation 23 to model the efficiency:  

                             
           

             (23) 

The specifications of the boiler and the efficiency value used are given in appendix B. These values 

are based on the condensing gas boiler example in the input/output reference of EnergyPlus 

(EnergyPlus- US Department of Energy, 2013). 
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6.2.3 Definition of ICE- based micro-CHP systems 

 

The existing system model for micro-CHP developed in EnergyPlus is applicable for both internal 

combustion and Stirling cycle engines. Since an example file with already existing parameters was 

developed for an ICE engine device, this is used. The calibration parameters are taken from 

measurements conducted by the IEA/ECBCS Annex 42 for a Senertech internal combustion engine 

production unit (EnergyPlus- US Department of Energy, 2013). The model might be used for other 

types of residential CHP devices as well, but since it was developed for the two earlier mentioned 

technologies, no modifications in the model parameters will be done. This is because the model is not 

normalized, and therefore performance coefficient developed for one type and capacity of CHP device 

cannot be used for a device with a different capacity.  

 

In the model, both the electrical efficiency, ηe, and the thermal efficiency, ηq, is a function of the 

cooling water mass flow rate, mcw, the temperature of the cooling water at the inlet, Tcw, and the steady-

state net electrical power produced, Pnet,ss. The ICE-generator has a rated electric power output of 5500 

W, and a rated thermal to electrical power ratio of 2,444. This implies that the maximum rated thermal 

output is 13 450 W. The generator has a rated thermal efficiency of 0.66 and an electrical efficiency of 

0.27. These efficiencies are based on the lower heating value of the fuel, while for the evaluation of 

the systems compared to the conventional system are based on higher heating value of the fuel. This 

will result in slightly lower efficiencies than it would be if the lower heating value of the fuel where to 

be used. Higher heating value is used as the standard output of EnergyPlus. The system will first be 

analyzed in a heat-demand-following operation scheme as the generator is designed to cover the entire 

energy demand of the building. Then load management will be applied to this system configuration. 

Load management will be further discussed in section 7.1.  

 

For real life installation, the micro-CHP device would have been placed in a technical room in the 

basement of the building. As the building model used in the project is not designed with a technical 

room, the generator is placed inside the building. This result in some skin losses from the generator to 

the building, which will result in a slightly reduced energy demand compared to gas boiler. However, 

this amount is small and will not result in dramatically changes. In theory, according to the 

input/output reference of EnergyPlus (EnergyPlus- US Department of Energy, 2013), the field zone 

name could be left blank if the cogeneration device would be wanted outside or not to add skin losses 

to a zone. However, during the modeling this was not possible as the simulations would not run 

without this specification.  

EnergyPlus uses nodes to connect systems together. The micro-CHP device is modeled with water 

nodes and air nodes, which couple the generator together with the rest of the system. The cooling 

water inlet node and a cooling water outlet node connect the generator to the plant loop that receives 

heat, in our case to the stratified water heater. The cooling water inlet node is where the cooling water 

for the CHP device enters, and the cooling water outlet node is where it exits. The cooling water inlet 

node is connected to the storage tank source side outlet node, which draws cooling water from the 

tank. The cooling water outlet node is connected to the storage tank source side inlet node, which 

supplies the tank with hot water. 

The air inlet node supplies the CHP unit with air for use inside the generator, while the air outlet node 

receives the exhaust from the CHP unit. The predefined specifications for the micro-CHP unit used 

can be found in appendix C. 

The system is illustrated in Figure 13.  



30 
 

COLD WATER

DHW

SPACE 
HEATING

CHP-ICE
STORAGE 

TANK

COLD WATER

SOURCE SIDE USE SIDE

 

CONTROLLER

Inlet/ return 
temperature

Outlet/ supply 
temperature

ELECTRICITY

 
Figure 13: Configuration system with CHP.  

 

In the specifications of the model, maximum and minimum electrical power restrictions are set. If the 

electrical demand is higher than the maximum electrical power defined, the unit will restrict its output 

to this level. If the electrical demand is less than the minimum electric power, the unit will hold its 

output to this level. The maximum restrictions will be the rated thermal output of the device, as it is 

modeled in a follow thermal mode. The minimum cooling water flow rate is defined to protect the 

device from overheating. This is the minimum flow rate of cooling water that must be available for the 

unit to operate, and if the flow is less than this, the generator will shut down. As will be seen in the 

configurations later in the report, this factor will have its impact on the system in follow electrical 

mode. Also there is set a maximum cooling water temperature at the inlet or outlet to protect from 

overheating. This maximum value is set to be 80°C in all cases simulated and is taken from the 

existing example file in EnergyPlus (EnergyPlus- US Department of Energy, 2013). If the generator 

exceeds this limit, the generator will shut down. This is connected to a controller in the storage tank, 

which controls the cooling water outlet. In appendix I, the implementation of the model in EnergyPlus 

can be seen with all the connecting nodes. The cooling water temperature is measured at node 2.  

 

In the modeling of the combustion micro-CHP device model in EnergyPlus, an enhanced system- level 

approach was deployed. This means that the device is represented as a single functional element. 

However, when the governing balance equations were formulated, the physical processes in each 

control volume where considered. Due to a lack in internal details of the device, empirically derived 

expressions has been used to represents these processes (Beausoleil-Morison, April 2008). 
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Figure 14: Control volumes of the CHP system 

 

Figure 14 shows the control volumes of the CHP system, with the corresponding energy input and 

outputs in the system as defined in section 4. The energy supplied to the loads equals the thermal 

output of the generator minus the energy loss of the storage tank. In this illustration the skin losses of 

the CHP device and the total system losses are included. The system losses include the storage loss 

and the distribution loss. It is desirable that these losses are as low as possible to achieve a high allover 

performance. In this study the heat dumped from the tank is considered as losses, which will affect the 

system performance. 
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Figure 15: Configuration system with CHP and gas boiler 

The system illustrated in Figure 15, has an auxiliary boiler coupled in the supply side of the system. 

The gas boiler and the CHP is coupled in parallel due to that it is used a condensing gas boiler and the 
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design system has low return flow temperature. Parallel integration is often used for larger micro-CHP 

units and more complex heating systems (Simader, Krawinkler, & Trnka, March 2006). This is done 

to make it possible to let the gas boiler cover the peak loads, and ensure a more stable operation of the 

CHP as it can produce the same amount of electricity and heat during the whole day. The 

implementation of a gas boiler is relevant if the CHP device is set to follow the electrical demand 

instead of the thermal demand. This is because the thermal demand of the building used in the 

simulations has higher thermal demand than electrical demand throughout the year, except for some 

peaks, which makes it necessary with an auxiliary boiler to cover the thermal demand not covered by 

the CHP. This system scheme is therefore applied to all cases simulated without follow thermal mode. 

Operational strategies reviewed in section 7.2 will be applied to this model. In EnergyPlus, this is 

modeled by a plant equipment list in the supply loop. The first equipment defined in this list has the 

highest priority and will run whenever available. When the first equipment is not available or has 

produced its upper capacity, the next equipment in the list will be applied to cover the rest 

(EnergyPlus- US Department of Energy, 2013). In this way, a modelling of using the CHP to cover 

base load and the gas boiler to cover the peaks is enabled. A sketch of the model implementation with 

the following node placements can be seen in appendix M. The operation of the CHP and gas boiler 

will be based on the supply loop temperature at node 8. When the CHP device is not able to keep the 

desired supply temperature, the gas boiler cut in to ensure that the desired temperature is set for the 

loop. Similarly when the temperature exceeds its upper limit, the generator shut down to protect from 

overheating.  

  

6.3  Control configurations 

 

Boiler control: 

How the boiler operates depend on the boiler flow mode chosen. There are three choices for operating 

mode of the expected flow behavior. These are “NotModulated”, “Constant flow”, and 

“leavingSetpointModulated”. The first option can be used for both variable and constant pump 

arrangements, and the boiler is passive in the sense that it can operate at varying flow rates although it 

makes a nominal request for its design flow rate. The “Constant flow” is used when there is a constant 

speed pumping. The “leavingSetpointModulated” makes the boiler model to internally vary the flow 

rate so that the temperature leaving the boiler matches a set point (EnergyPlus- US Department of 

Energy, 2013). The chosen flow mode in the system models is “NotModulated” as there is placed a 

variable speed pump at the inlet of the boiler loop. For the gas boiler coupled with the CHP as an 

auxiliary boiler, it is activated when the CHP device is not able to meet the heat demand of the loop. 

 

Micro- CHP control mode: 

For the micro-CHP systems analyzed, a heat- demand-following and an electric-demand following 

control mode is used. These control modes and further adaptions of these will be reviewed in section 

7.2. For the CHP system without auxiliary boiler, heat-led operation is the only supply option for heat 

as it has to be integrated to cover the whole thermal demand. 

 

Control for the micro-CHP generator: 

The generator is modeled as always on for all cases, meaning that the device is available any time the 

value is greater than zero. This means that the generator might consume standby power at times when 

there is no power requested from the electric load center.  

 

To control the cooling water mass flow rate, an internal control is chosen. This indicates that the flow 
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of cooling water is controlled inside the CHP device, similarly to an automobile’s thermostat 

(EnergyPlus- US Department of Energy, 2013). The maximum cooling water temperature is set to be 

80°C, as can be seen in the model specifications in appendix C. With the internal control, the generator 

turns off when the internally-measured return temperature (generator sensor) exceeds the set value 

(SenerTec UK- GB, 2014). The minimum cooling water flow rate is set to be 0.055 kg/s to protect the 

generator from overheating. If the cooling water flow rate is low, the system may overheat and must 

be deactivated (Beausoleil-Morrison, Ferguson, Griffith, Kelly, Maréchal, & Weber, 2007).  

Stratified heat tank storage control:  

To avoid overheating of the storage, a maximum temperature limit is set for the storage tank. This is 

the temperature where the tank water becomes dangerously hot and is vented through boiling or an 

automatic safety. Any extra heat added to the tank after this maximum temperature is immediately 

vented. This temperature is set to 98°C. 

 

Pump control: 

Both pumps in the plant loops (supply loop and demand loop) are modeled with intermittent control 

type. This means that if there is no load on the loop, the pumps can shut down. Otherwise, the pumps 

will operate and select a flow which is somewhere between the minimum and maximum flow limits 

defined. The pumps will try to meet the flow request made by the demand side components. In the 

supply loop (loop between the CHP device and the stratified tank), the stratified tank will be the 

demand side component. Similarly for the demand loop (loop between the stratified tank and the space 

heating and domestic hot water components), the demand side components will be the space heating 

and domestic hot water (EnergyPlus- US Department of Energy, 2013).  The pump specifications can 

be seen in appendix E. 
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Figure 16: Temperature control system configurations 

 

To control the system configurations, temperature sensors are placed on the supply water from the heat 

source equipment, in the storage tank and on the supply water to domestic hot water to ensure 

acceptable temperatures in the system. In EnergyPlus, the modelling of the controls is based on 

temperature sensors on certain points in the supply loop and the demand loop. Also, the tank is 

controlled to not exceed its maximum temperature limit, and does also have a set point temperature to 
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follow. Sensor S3 in Figure 16 ensures that the supply water is set to have a temperature of 70°C until 

the storage tank sensor S1 is heated up to its temperature set point of 60°C. The supply temperature in 

the supply loop is set to be 70°C to fit the specific DHW user’s set temperature of 55°C. If the supply 

equipment does not provide sufficient heat to keep the set point temperature level, a heater device in 

the tank is turned on to provide the rest. Sensor S1 is set to have a set point temperature with a dead 

band of 10°C, which means that if the temperature in the tank sinks below 50°C, water heater 1 is 

turned on. Similarly if the temperature exceeds 70°C, the supply equipment is turned off.  Sensor S2 

has a set point temperature of 50°C with a dead band of 10°C. This means that if the temperature falls 

below 40°C heater 2 is turned on. This sensor is however just a back-up and the heater capacity of 

heater 2 is 0 as it is assumed that heater 1 at sensor S1 is sufficient as back-up. Sensor S4 ensures that 

the domestic hot water is provided at a minimum temperature of 55°C to avoid legionella. From this, 

cold and warm water is mixed to attain its target temperature of 38°C. For the electrical follow 

operation with thermal surplus restriction, a supplementary control is set on sensor S1 to avoid 

overheating of tank as the operation is not controlled by the tank sensors but of the electrical demand 

of the building. In this operation, the heat supply from the supply equipment will be forced off if the 

temperature at sensor S1 is measured to exceed 75°C. In EnergyPlus, this will correspond to the 

temperature at node 1 in the tank. The minimum and maximum allowable return temperature to the 

CHP device is set to 10°C and 70°C, respectively, based on Senertech instruction document for 

installation (Dachs Senertec UK, 2014).  

 

Theoretically, the domestic hot water supply will be taken from the top of the tank, while supply water 

for floor heating will be taken from a node placed lower in the tank. This is the purpose of the 

stratification effect of the tank, to achieve different temperature levels in the tank (Streicher, Heimrath, 

& Bales, 2007). However, the stratified tank in EnergyPlus is only constructed with one possible outlet 

and inlet on the demand side of the tank, where in real life constructions multiple outlets of the tank 

are possible. This is because of the concept of a mixer and a splitter who splits the supply water to the 

different loads depending on the heat requirement demanded by each of the loads. Therefore, the 

supply temperatures to the low radiant heating system will be higher than what was predicted in the 

design requirements. However, as the simulation program is constructed in this way, the elevated 

temperatures will not affect the space heating demand. The demand demanded by the floor heating 

equipment will be the same as the mass flow of water is changed depending on the water inlet 

temperature and the heat demanded by the device. The ΔT value is the same, and that is the parameter 

of interest for the energy demand calculation. The floor heating demands the heat required to meet is 

operating floor surface temperature of 18°C. Further description of the modelling of the plant loops in 

EnergyPlus can be found in appendix N, with corresponding sketches of configuration II and III in 

appendix L and M, respectively. 
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7. Optimizing system configurations 
 

How the micro-CHP system is integrated with the rest of the buildings HVAC system has an effect on 

its performance, and control strategies that ensure optimum running pay a high importance regarding 

achieving primary energy and emission savings compared to the reference system. Also, the appliance 

of buffer tanks helps to ensure steady and consistent operation of the appliance (SEAI, 2011). 

It is uncertain which types and sizes of prime mover, and which configurations and operating modes of 

micro-CHP system that will penetrate the market most in the long term. Therefore an increased focus 

on research is needed to identify strategies that will maximize the long-term benefits of the micro-CHP 

approach with respect to CO2 emissions, energy costs for consumers, and demand-side management in 

the electricity industry (Peacock & Newborough, 22. June 2005). Technical features of micro-CHP 

technologies are in general well documented, but the published evidence of their performance in 

meeting transient heat and electrical load profiles is limited. To make CHP an attractive option 

compared to the commonly used conventional gas boiler, research has to be done to enable an 

operation as optimal as possible for the CHP device.  

A micro-CHP technology has essential characteristics (e.g. operating efficiency, load following 

capability, set back capability, stop-start characteristics, servicing requirements, life expectancy) that 

will influence its supply and demand matching performance. To enable better performance of the CHP 

and make it better match the building’s demand, CHP systems may often include a thermal storage, an 

auxiliary boiler, and even electrical storage/reconversion equipment (Peacock & Newborough, 22. 

June 2005). This was more specifically reviewed in section 6. The operation of the system can be 

regulated by controls based on the home’s changing requirements for heat and power, and external 

factors such as the import and export price for micro-CHP generation. Since micro-CHP units are 

often not able to cover a dwellings entire demand, most systems are designed with an auxiliary boiler, 

a thermal storage and a network connection. The CHP-system analyzed in this thesis is able to cover 

the entire thermal demand of the building if operated in heat-led operation, but a storage tank is 

implemented in all system configurations to ensure a stable supply.  

Accordint to a study by N.J Kelly, J.A Clarke, A.Ferguson and G. Burt, recent studies have shown that 

the CO2 savings of the CHP system depend on different factors such as the operation and control of the 

unit, the prevailing climate, the behavior of the building’s occupants and the size of the heat and power 

demands (Kelly N. , Clarke, Ferguson, & Burt, 2008). These issues will be further investigated in this 

thesis and how to optimally operate the CHP device depending on the buildings thermal and electrical 

loads will be discussed.  

Studies by Peacock and Newborough (Peacock & Newborough, 22. June 2005) and Cockroft and 

Kelly (Cockroft & Kelly, 19 January 2006) showed that under certain circumstances CO2 emissions 

may increase with the installation of micro-CHP. These studies did, however, rely on static models of 

both building and CHP device. Dynamical modelling is more appropriate to use as evaluation method 

due to the temporal variations in demand and the operational characteristics of the CHP device. The 

model does then provide an appropriate platform to evaluate not only likely carbon savings from the 

micro-CHP but also to explore specific factors of performance such as rates of on/off switching, 

temporal variations in efficiency and interactions with thermal storage and other balance of plant, all 

under realistic operating conditions (Kelly N. , Clarke, Ferguson, & Burt, 2008). 
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From end-user perspective, the main requirement of a micro-CHP model is to predict accurately the 

varations in thermal and electrical outputs and their interaction with the building’s envelope, thermal 

plant and control system. The important parameters to simulate are therefore those that couple the 

CHP device together with other parts of the building simulation model, specifically, the heat output, 

electrical power output, and heat losses. From an environmental perspective, the fuel 

input/consumption does also need to be predicted.  Mode of operation, the season and insulation levels 

will have an impact on the temporal characteristics of the micro-CHP system’s heat and power output. 

Minimizing the cycling frequency is also beneficial for the durability of the micro-CHP device and 

will reduce maintenance (Kelly N. , Clarke, Ferguson, & Burt, 2008).  

Further in this section the different operating strategies that can be applied to improve the operation of 

the CHP device coupled to the building envelope will be presented. The different operational strategies 

reviewed are load management, power control, thermal and electrical storage and the use of renewable 

fuels.  

 

7.1  Load management 

 

Load management or demand management is a method to adjust the electrical demands rather than the 

output of the plant. This can be done by for example forced switch-off of large power consumers such 

as sauna stoves and ovens or by limited simultaneous use of electrical appliances (Alanne, Micro-

Cogeneration-I: Introduction). Today, demand management usually concerns the demand for 

electricity, but in the future demand management for other utilities such as natural gas or water might 

be possible.  The main principle with the demand management controls is to shut off or reduce the 

power to non-essential loads. This is done in order to reduce the overall building demand, which will 

be beneficial for the CHP device as it can cover a larger part of the building’s demand, and thus reduce 

the amount of imports from the electricity grid. Typical controls are: 

 Shut off or dim electric lights, equipment, or HVAC systems 

 Reset the thermostatic set points on HVAC systems (if electrical) 

 Reduce the load of a set of similar components by rotating one or more components “off” for a 

short time interval 

 Turn on generators to meet some or all the building’s demand 

(EnergyPlus- US Department of Energy, 2013) 

 

In EnergyPlus, the demand limiting controls implemented are intended to model some of the more 

common demand limiting strategies. One of the objects to use is called 

DemandManagerAssignmentList, and is a high level control that makes demand limiting decisions 

based on a list of possible demand limiting strategies. Each of the demand limiting strategy will be 

described in a separate object called DemandManager. Each DemandManager object will control a 

group of similar load objects of same type, such as lights, electrical equipment or thermostats 

(EnergyPlus- US Department of Energy, 2013). The Demand Manager is built into the overall solution 

method for the program. Three major segments of code are executed by the program for each time 

step: 

- Exterior energy use 

- Zone heat balance (surface heat balances, internal gains and air flows). 

- HVAC system simulation (air and plant loops). 
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The exterior energy use is independent of the zone heat balance and the HVAC system simulation. 

This energy use handles energy use regarding exterior lights and exterior equipment that are placed 

outside the building, and which do not contribute to the zone’s heat balance. In the building model 

used in this thesis, there is no exterior energy use as there are no exterior lights or equipment. The zone 

heat balance  includes all of the surface heat balances, internal heat gains and airflows. The HVAC 

system simulation includes air and plant loops with their associated HVAC components. The HVAC 

system’s behavior depends on the results of the building’s heat balance at each timestep. During the 

simulation, the DemandManager is called after each HVAC simulation step. First, the 

DemandManagerAssignmentList object is evaluated and the DemandManager then decides if demand 

limiting is required depending on the current load of the building. If it is required, the demand limiting 

objects are limited after priority. Based on the Demand Manager Priority selected, the Demand 

Manager then decides which DemandManager objects should be activated. In turn, the activated 

DemandManager objects limits the respective load objects. As one or more of the DemandManager 

objects has been activated, a time step has to be re-simulated as the load conditions have changed (US 

Department of Energy, 2013).  

There are two options for the DemandManager Priority; sequential Priority or all priority. For 

sequential priority, each DemandManager in the list is sequentially activated from first to last until the 

demand is reduced below the limit or until all managers are activated. A DemandManger is skipped if 

it is not possible to reduce the demand. Reasons that make it impossible to reduce the demand are that 

there is not enough load to limit, the demand is not available because of is on-schedule defined, or it is 

already activated because it reached its load limit during a previous time step. For All Priority, all 

DemandManagers in the list are activated simultaneously to achieve the maximum demand reduction. 

Using this priority option, only one final re-simulation is required after all DemandManagers are 

activated (US Department of Energy, 2013). Sequential priority is chosen for the load management 

applied in this thesis as some loads of the building are considered less essential than others.   

The first approach in the load management will be to reduce the electricity demand below the standard 

values for yearly electricity in NS 3031:2007+A1:2011 (NS 3031:2007+A1:2011, 2007/2011).  This 

value is in total 28.9 kWh/m2 a. The building is implemented with relatively low energy demand for 

lighting, while the energy demand for electrical appliances are high. Therefore, the majority of the 

demand management should be done here.  

The load management is implemented such that the CHP generator can be able to cover the whole 

electricity demand. The maximum electricity demand limit is therefore set to be 4000 W. This is 

implemented with a safety fraction of 0.8, which implies that electricity demand over 3200W is 

adjusted by a damand manager assignment list as was explained in the previous paragraphs. This is 

under 5500 W, which is the amount of electricity possible to produce by the generator. Avoiding the 

high peaks will make it possible to reduce the dependence on the electricity grid as the CHP unit can 

produce a larger amount of the buildings demand, especially since the thermal and electrical peaks 

often do not happen at the same time.  Load management will be tried implemented in both heat-led 

and electricity-led operation to see where the effect of the load management will have greatest impact 

on the operation of the CHP. When implemented in electricity-led operation, the demand limit is set to 

be 5500 W, instead of 4000 W since it is expected that the generator is more capable at meeting peaks 

when it follows the buildings electrical demand. However, since high electricity production is 

followed by high heat production, it is expected that high electricity peaks may result in overheating of 

storage tank.  
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7.2  Power control 
 

In order to achieve an optimum match between demand and supply it is possible to implement the 

CHP with several operation modes. The control of the micro-CHP device defines the basis on when 

the prime mover is activated, deactivated or turned down. The device can be set to operate in a heat 

following mode, electrical follow mode, a time-led mode or a hybrid approach may be adopted 

(Peacock & Newborough, 22. June 2005). This thesis will focus on heat following and electrical 

following mode, but the other possible modes are also briefly described in this section.  

 

For the heat following operation mode, start and stop control decisions will be based on temperature 

differences between the indoor and outdoor temperature. The micro-CHP device will operate to cover 

the whole thermal demand of the building, and electricity will be produced thereafter. This can, 

however result in a more frequent on-off operation of the device, at least in periods when the thermal 

demand of the building is not stable. The benefit is that the whole thermal demand will be covered by 

the CHP device, and a supplementary boiler is not necessary as long as the thermal output of the 

generator is large enough to cover the peak.  

The electrical excess produced by the CHP in the case of thermal load following mode is stored in 

batteries or fed into the grid. It is assumed that the exports from the CHP incur negligible distribution 

losses before it reaches its point of use. Electrical shortage is covered by grid electricity or by 

discharging the battery storage. In the system cases reviewed in this thesis, only grid electricity will be 

an option in the simulated cases. However, the concept of battery storage will be presented in section 

7.3.  

For electricity following mode, the cogeneration device is operated to cover the electrical demand of 

the building as far as possible. This will reduce the amount of imports significantly, but thermal 

surplus may be generated at times when it is not needed. Also, when the electricity demand is low, the 

CHP device will then not be able to cover the thermal demand of the building. This makes it necessary 

to have a large enough storage tank to store the surplus heat, and a supplementary boiler to cover the 

thermal demand at times when the CHP-device is unable to cover the demand. If it is not possible to 

store the surplus heat, it is dumped to the environment. For this operating mode, the electrical demand 

will be the controlling variable for the power output from the CHP system. 

 

In general, three operations will be possible for the electrical load following control: parallel power 

applications, grid independent applications and back-up power applications. In parallel power 

applications, the CHP system is working in parallel with other systems. Then the CHP system will 

supply the consumer until it reaches it maximum electrical output. The part not covered by this output 

is imported from the electricity grid. For parallel power applications, the micro-CHP and utility grid 

can operate simultaneously, and power can be supplied into the utility grid (Klobut, Ikäheimo, & 

Ihonen).  For grid independent applications, the CHP has to cover the consumer’s demand on its own. 

In this case, the CHP system is often coupled in combination with a battery system or multiple CHP 

devices is coupled in parallel. For back-up power application, the CHP system is operated as a stand-

by power supply system to improve reliability. In this case, grid electricity is typically as primary 

source and CHP is the supporting source (Klobut, Ikäheimo, & Ihonen). In these cases, the thermal 

output produced simultaneously should be used as well as possible. Here, appropriate heat storage 

tanks or other measures may be used to store the surplus heat (Simader, Krawinkler, & Trnka, March 

2006). For the cases simulated in this thesis, the case were micro-CHP and grid power are coupled in 

parallel will be of interest. The thermal output of the system will be used whenever possible, and 
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rejected to the atmosphere otherwise. If biomass is used as fuel, the rejected heat can also be used to 

dry the fuel (Klobut, Ikäheimo, & Ihonen). 

For the follow electrical mode two different control options will be investigated for the ICE: 

1. Unrestricted thermal surplus, ICE. In this case, the operation of the micro-CHP system 

depends on the electricity demand of the building, and heat is produced thereafter independent 

on the thermal demand of the building. Thermal surplus is allowed, and will get stored in the 

storage tank as far as possible and wasted when the tank exceeds its upper limit. 

2. Restricted thermal surplus, ICE. The CHP system is set to follow the electricity demand as in 

(1), but only if (NESH+NEDHW)>OEth,CHP, or if (NESH+NEDHW)< OEth,CHP and Tstore<Tmax. 

Applying this control ensures that the thermal output of the micro-CHP system will better 

match the thermal demand of the building, and thermal surplus is avoided. However, this may 

result in more start/stop events of the device (Peacock & Newborough, 22. June 2005). 

 

Tmax = maximum temperature setting of thermal storage, °C. 

 

For time-led operation, the users will set the start and stop times for space and hot-water heating, and 

the supply device will follow the heat demand during these specified periods. Then the CHP device 

will only be on during these specified “on” periods. The advantage of this method is that the user can 

specify the amount of start-up cycles, and limit the use. The disadvantage is that it is not necessarily 

easy to know exactly when space heating and DHW is demanded. This can lead to overproduction in 

some period, while in other periods the demand will not be covered as the device is off. Due to that the 

CHP-device used in this thesis produces general more heat if operated at full power than the demand 

of the building, and that for time-led operation the CHP will operate at constant power output during 

its operation, such operation mode is not implemented. If the CHP model were not normalized, the 

capacity could have been reduced, and the CHP could have been set to operate at constant full-load 

output during the specified on periods and off else. This could have led to better efficiency as the 

generator would have operated the whole time at full-load, which optimizes the efficiency. An 

auxiliary gas boiler has to be implemented for this operation mode to ensure supply in the specified off 

periods.  

Other control approaches may also be considered. Operation at constant power (base load) is one 

option. In this case, the CHP system is operated to only cover the base load, and thermal and electrical 

storages, heat sink, auxiliary boiler and grid is employed when needed. It is also possible to apply a 

combined operation mode. Example of such operation modes are (1) heat driven with peak-electricity 

function; (2) maximum electricity and/or heat demand, and (3) minimum electricity and/or heat 

demand (Simader, Krawinkler, & Trnka, March 2006). A last possible approach is to develop a hybrid 

function to attempt to improve the supply/demand matching performance. This can for example be 

done by including some measure of the predicted demand (Peacock & Newborough, 22. June 2005).  

The operation of the CHP device may also be controlled by the temperature of the buffer storage. The 

purpose of the buffer storage is to deliver heat to the hydronic heating system and to shave the peak 

thermal demands. By using the storage tank as the basis of control, the operation of the CHP device 

can either be controlled by letting the set point temperatures for the storage determine the on/off- 

operation of the micro-CHP plant or controlling the temperature of supply water to the radiator 

network by mixing supply and return water according to the outdoor temperature.  

It is also possible to let the generator operate after power requirements in the public grid. This 

operation supplies power to the network to counteract for a drop in the network voltage, and stops the 
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supply to the network to counteract a network rise. For this to be possible, some control configurations 

has to be set to ensure the thermal comfort of the building. According to (Kelly N. , Clarke , Ferguson, 

& Burt, 2008), three responses to external request for control are possible:  

1. Positive participation: In this mode, the CHP device can be switched on to provide power to 

the network (to counteract a drop in the network voltage) if it is off and the buffer tank 

temperature is below its upper limit. Then the generator can operate until the buffer tank’s 

upper limit is reached.  

2. Negative participation: For this operation, the CHP device can be switched off to counteract a 

network rise if the device is on and the buffer tank temperature is above its lower limit. Then 

the generator can be off until the buffer tank temperature falls below its lower limit.  

3. Unavailable: The device will be unavailable for use in network control if the generator is on 

with a buffer temperature below its lower limit and off with a tank temperature of above its 

upper limit because the thermal demand of the building has priority.  

 

In EnergyPlus, the Electric load center distribution objects are used to include on-site electricity 

generators in the simulation. Depending on the operation scheme chosen, the electric load center 

dispatches the generator and tracks and reports the amount of electricity generated and purchased. A 

net electricity report is then reported with values to an excel file where it can be seen how much the 

total electricity purchased from the grid is reduced by the on-site power generation. Generators which 

follows the thermal demand uses internal load calculations from the plant simulation (EnergyPlus- US 

Department of Energy, 2013).  

 

Different generator operation scheme types are available in EnergyPlus. The available schemes are 

base load, demand limit, track electrical, track schedule, track meter, follow thermal and follow 

thermal limit electrical. Using the base load scheme, the generator will operate at their rated electric 

power output when the generator is scheduled on. The base load scheme will request all generators 

which are schedule to be on to operate, even if they exceed the electricity demand of the facility. 

Using the DemandLimit Scheme, the amount of purchased electricity from the utility will be limited to 

the amount specified in the input object. This scheme tries to let the generator meet all of the electrical 

demand that exceed the limit of purchased electricity which is set by the user. Using the 

TrackElectrical scheme, the generators will try to meet the entire electrical demand of the building. 

Using the TrackSchedule scheme, the generator will try to meet the whole electrical demand 

determined in a user defined schedule. Using the trackMeter scheme, the generators will try to meet 

the electrical demand from a meter. This meter can also be a user-defined custom meter. Using the 

DemandLimit, TrackElectrical, TrackSchedule, and TrackMeter schemes, the available generators will 

sequentially be loaded. The demand which is not met by the available generators will be purchased 

from the electricity grid. If the electrical demand is small and less than the minimum part load ratio of 

the generator, the generator will operate at its minimum part load generator, and the excess will either 

reduce the demand or be exported to the electric grid. Using the follow thermal and follow thermal 

limit Electrical scheme, set the cogeneration device to meet the thermal demand of the building. Using 

follow thermal scheme, electrical excess is allowed to be exported to the grid. For follow thermal limit 

electrical, the thermal output of the generator is restricted to a maximum of the building’s current 

electricity demand, and no electricity will be exported. The electrical load center converts the thermal 

load to an electrical load using a nominal ratio of the thermal to electrical power production for the 

generator (EnergyPlus- US Department of Energy, 2013).  
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The baseload operation scheme was considered, but cannot be applied to the system configuration and 

building analyzed in this thesis due to that the micro-CHP model is not normalized. For baseload 

operation, the generator would operate at full load (5.5 kW electric output) whenever scheduled on. If 

the generator operates in this mode in the building analyzed, it will produce more heat and electricity 

than required by the building. The generator should therefore be sized differently if this mode were to 

be applied. As the model is not normalized, it is more difficult to change its capacity as all the 

parameters only works for the capacity specified. Due to lack in existed calibrated data, this mode was 

therefore not implemented.  

 

Another operational strategy is to let the generator only run during daytime. Then the generator is only 

allowed to operate during daytime, but has the possibility to store heat during this period for use 

during the night time. In this mode, the cogeneration device operates at full load continuously until it 

has to stop at the end of the day or when the storage tank is fully heated. When the generator is off, 

heat is primarily taken from the storage tank. The rest of the heat is supplied by the auxiliary boiler. 

This mode can be designed to deliver peak demand and only part of the peak demand. For the 

modelling in EnergyPlus, this strategy would have been done by setting the generator to meet baseload 

and then define the availability schedule of the cogeneration device. A control device which shut down 

the generator when the tank is fully heated has to be implemented as well to ensure acceptable 

temperatures in loop and storage tank. This strategy will not be implemented, but is included as an 

interesting possibility for further investigation in future studies. 
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7.3  Thermal and electrical storages 
 

This thesis only evaluates the implementation of buffer tanks, which represents short-term thermal 

storage, and electricity feed-in to the public grid. However, the concept of seasonal thermal storage 

and electrical storage are also presented in this section. 

One common form for short-term storage is the usage of buffer tanks in the system configurations. The 

buffer tank utilized in this thesis is the stratified storage tank represented in section 6.2.1. Stratification 

in a storage tank depends mainly on the volume of the tank, the size, location and design of the inlets 

and outlets, and the flow rates of entering and leaving streams. Stratified tanks are useful for 

maximizing the thermal energy efficiency of non-continuous and semi-continuous processes. Liquid at 

two or more different temperatures is stored within the same tank to provide a buffer for variations in 

heating and cooling loads. Control of the thermocline between the hot and cold fluid regions is needed 

to minimize thermocline growth and maximize operation of the storage tank (Walmsley, Atkins, & 

Riley). Two storage tank sizes will be analyzed in this thesis: 500 l and 1000 l. Buffer storage 

integrated in a building’s heating system helps reducing the peak demand and energy consumption, 

especially when energy costs during peak periods are much higher than those in off-peaks periods 

(Nelson, Balakrishnan, & Murthy, 24 September 1998). Thermal storage tank is used to provide 

greater operational flexibility during transient load demands.  

However, the use of buffer storage does not help the variation between production in cold and warm 

season as it cannot store heat over seasons. It is seen that thermal surplus during warm season often 

occurs in micro-CHP systems when the plant can be operated close to constant power only and 

shutdowns are not preferred. This is most typical for fuel cell plants (SOFC plant). This leads to 

significantly thermal losses, which again leads to poor annual efficiency. To avoid this, seasonal 

thermal storage may be implemented. Different thermal storage technologies available are mass 

storage, phase change materials (PCM) and thermo chemical energy storage (Alanne, Micro-

Cogeneration-I: Introduction). The applicability of seasonal thermal storages depends on the 

operational environment, the inlet temperature of the heating system and the trade-off between storage 

capacity and storage losses. Regarding the operational environment, the climatic conditions and the 

geological structure of the building site are factors of interest. Here parameters like ground 

temperature and if the ground is covered by snow affect the implementation of seasonal heat storage. 

The temperature level of the heat storage is also a parameter of interest which affects the storage 

capability. For instant seasonal storage for low temperature heating system at 40°C are more efficient 

than for conventional radiator heating at 70°C. This is because a heat storage to supply 40°C heating 

systems are less sensitive for tank losses than a storage at 70°C (Alanne, Micro-Cogeneration-I: 

Introduction). Thermal storage is, compared to electrical storage in batteries, much cheaper, but has a 

slightly lower energy storage density (Klobut, Ikäheimo, & Ihonen). 

Electrical storage enables the possibility to cover the whole electrical demand of the building only by 

the micro-CHP device, and thus eliminate the dependence on grid electricity. The basic requirements 

for electrical storage is that it has large charge-discharge quantities, must tolerate high discharge 

power, has minor service requirements, is safe, longevity and has high energy density. Some electrical 

storage alternatives that are already on the market are lead-acid battery, NiMH-battery, and LiFePO4-

battery. The lead-acid-battery has good availability at low price (4-6Wh/€), but has low energy density 

(60-75 Wh/L). The NiMH-battery has high energy density (140-300 Wh/L) and high self-discharge, is 

already in the market but has a high price (1Wh/€). The LiFePO4-battery has high energy density (170 
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Wh/L) and low service requirement, but is still an emerging technology at high price (<1 Wh/€) 

(Alanne, Micro-Cogeneration-I: Introduction).  

In EnergyPlus, there are two models for storing electrical energy, a simple mode that is not intended to 

represent a specific type of storage technology but rather a general concept, and a battery model that 

represents the kinetic battery model originally developed by Manwell and McGowan (US Department 

of Energy, 2013).  The simple model is like a constrained bucket with energy losses, and the bucket 

holds a quantity of Joules of electrical energy. Losses and limits to storing and drawing are specified, 

but otherwise the bucket just holds the electricity. Constrains on the rates of charging, Pstor-charge, max, 

and drawing, Pstor-draw,max, efficiencies for charging, Ɛcharge, and drawing, Ɛdraw are specified by the user. 

The kinetic battery model is primarily used to model hybrid energy systems. It is called kinetic due to 

that it is based on chemical kinetics process to simulate the battery charging and discharging behavior. 

This model is used to model the electrical storage module of hybrid and distributed power systems. In 

other words, the kinetic battery model illustrates better real life electrical storage appliances, but the 

modelling is also more detailed than the simple electrical storage model in EnergyPlus.  

Another option for surplus electricity is to feed it into the electricity grid. To make this work, some 

sort of arrangement has to be done. The monetary compensation for the electricity fed into the grid 

may be based on feed-in tariffs, net- metering or time- of use metering. The feed- in tariffs makes the 

utilities obliged to buy electricity from small producers at rates set by the government (buyback rate). 

To make this possible, a two-directional electricity metering is required. This is applied in many 

European countries, for instance Germany. Net-metering works such that both electricity imported and 

exported from/to the utility are metered. The amount of electricity produced onsite and fed into the 

electricity grid is deducted from the metered energy inflow and compensated through a retail credit by 

the utility. Time-of use metering is a two-directional metering strategy that allows rate schedule 

depending on peak demands hours (Alanne, Micro-Cogeneration-I: Introduction). Grid electricity is 

expensive in peak demand hours, while it is less expensive otherwise. Using time-of use metering, 

imports in peak hours can be avoided and thus reduce the energy cost. However, for all these methods 

of coupling small-scale producers to the grid, the stability of the grid limits the amount connected.  
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7.4  Using renewable fuel: Upgraded biogas 

 

To lower the CO2 emissions, the use of biogas as a fuel instead of natural gas has been reviewed as an 

option. Biogas is considered as a more renewable fuel than natural gas, and since it comes from 

sources which naturally would have contributed to CO2 emissions, the contribution of CO2 emissions 

will be remarkably smaller. Principally biogas can be produced from household waste and agrifood 

industry. During the processing of biogas, generally approximately 65% methane (CH4) and about 

30% carbon dioxide (CO2) is produced (Malik & Mohapatra, 2012). 

The global issues regarding sustainable energy and greenhouse gas emissions set the use of biomass as 

a potential source for power generation in increased focus. Biomass is a non-fossil biogenic organic- 

inorganic product which is generated by both natural and anthropogenic processes. It is also 

considered as the most profitable renewable energy source after hydropower. Some examples of 

biomass are wood, herbs and agricultural, aquatic, animal and human (bones, manures) and charcoal. 

For gasification, charcoal and wood are the most preferred fuels. For use in internal combustion engine 

the biomass has to undergo biomass gasification. Since any biomass material can undergo gasification, 

this process is much more attractive than ethanol production or biogas where only selected biomass 

materials can produce the fuel (Rajvansh, 2014). Biomass gasification means incomplete combustion 

of biomass resulting in production of combustible gases consisting of Carbon monoxide (CO), 

Hydrogen (H2) and traces of Methane (CH4). This mixture is called producer gas (Rajvansh, 2014). 

This would be a sustainable option, and researches have concluded that the use of producer gas from 

biomass gasification in internal combustion engines is a viable option, and can contribute in a lower 

use of fossil fuels which will results in lower CO2 emissions and lower primary energy consumption. 

When the efficiency of an internal combustion engine is accounted for, 1 kWh of electricity needs 

about 2.4 m3 of wood gas as fuel. Wood gas has a much smaller energy content that biogas, 5 MJ/m3 

compared to 18-26 MJ/m3. Biomass gasifiers combined with internal combustion engines are 

commercially available. An existing technology using wood, chips, pellets or bio-waste as fuel for 

gasification+ ICE produces 50-500 kWh electrical output and 100-1000 kWh thermal energy (Klobut, 

Ikäheimo, & Ihonen). However, it is not possible to modulate the producer gas for micro-CHP in 

EnergyPlus, as the possible gas mixtures do not include carbon monoxide (CO).  

Another option is to upgrade the biogas as it can be upgraded to be a substitute for natural gas. As it 

has the same characteristics as natural gas, this can easily be applied to the simulation model. No 

change in the simulation parameters is therefore necessary as the heating value of the fuel will be the 

same. Normal biogas consist roughly of 60 % CH4, 39 % CO2, <1% N2+O2, between 50-3000 ppm 

H2S and Saturated H20. The upgraded biogas (biomethane) consist of 98 % CH4, 1 % CO2, about 1 % 

N2+O2, <1ppm H2S and <1ppm H20 (Mezei, 2010). To produce upgraded biogas from raw biogas, a 

process where CO2 and CH4 is separated is necessary. Normally components with high carbon dioxide 

absorption capacity are used to separate the CO2 from the CH4 in the biogas. Upgraded biogas, also 

called biomethane, can be interchangeable with natural gas and is also superior to natural gas is several 

aspects. Biomethane is cleaner as it does not contain hydrocarbons heavier than CH4. Biomethane does 

also offer the opportunity for a carbon negative fuel, not just carbon neutral, as it is a renewable source 

of CH4 and the biogas source can be from waste (Mezei, 2010). From the efficiency and economical 

aspect, the upgrading of biogas to natural gas quality is a vital criterion for its optimum utilization. The 

biogas production and upgrading processes are according to Bioferm energy systems proven 

technologies. They are reliable, efficient and safe and have the advantage of full integration into new 

and existing power and heat generation plants (Bioferm energy systems, 2014). The upgraded biogas 



45 
 

can be supplied to the already developed natural gas grids and delivered to households and industry. 

The expected energy requirement for a single produced cubic meter of natural gas substitute (upgraded 

biogas) is equal to around 0.3 kWh (Makaruk, Milthner, & Harasek, 2010). 

According to SEAI report on biogas upgrading and utilization (Persson & Wellinger, 2006) biogas 

from AD has a lower heating value of 6.5kWh/nm3 and from landfill gas 4.4kWh/nm3. Natural gas on 

the other hand has a lower heating value of 11kWh/nm3. In the upgraded biogas, the carbon dioxide is 

removed. Removing CO2 from the biogas increases the heating value and the required Wobbe index of 

the gas is reached (SEAI, 2014). To upgrade the biogas to natural gas standard, some restrictions has 

to be set to assure the quality of the gas. Exemplary limits from an Austrian natural gas standard can 

be seen in Table 3. 

Gas components Limit Unit 

Oxygen ≤0.5 % m/m 

Carbon dioxide ≤2.0 % m/m 

Nitrogen ≤5.0 % m/m 

Hydrogen sulphide ≤5.0 mg/m3 

Total silicon ≤10 mg/m3 

Table 3: Exemplary limits natural gas standard (Makaruk, Milthner, & Harasek, 2010) 

In the modeling of the case of using biogas as a fuel instead of natural gas it is assumed that upgraded 

biogas is used. This biogas is upgraded to have the same calorific value as natural gas, and thus the 

primary energy factor and emission factor for biogas will be applied. The energy of upgrading the 

biogas to natural gas standard will not be considered. Therefore it is reasonable to believe that the CO2 

emissions and the primary energy usage will be higher than what is presented in this master if all 

phases where included.  
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8. Results 
 

To investigate the impact of the different operating strategies presented in this thesis, different cases 

have been simulated. The main findings of the simulations are the following cases: 

Case 

number 

Description 

1 Reference case: GB, storage tank with reference parameters 

2 CHP only with storage and follow thermal mode 

3 CHP only with storage, follow thermal mode and load management 

4 CHP and GB with storage and follow thermal, limit electrical surplus mode 

5 CHP and GB with storage tank size 0.5 m
3
 and follow electrical mode with restricted 

thermal surplus 

6 CHP and GB with storage tank size 0.5 m
3
 and follow electrical mode with unrestricted 

thermal surplus 

7 CHP and GB with storage tank size 0.5 m
3
 , follow electrical mode as in 5 and with load 

management 

8 CHP only follow thermal mode tank size 1.0 m
3
 

9 CHP only with storage, follow thermal mode and upgraded biogas as fuel 
Table 4: Cases simulated 

8.1  Energy Demand building 
 

As can be seen in Figure 17, the building has high space heating demand during the heating season 

depending on the outdoor temperature, and peaks in the coldest winter months. The demand for hot 

water and electricity remains constant, and are defined by schedules in the modelling phase. As it can 

be seen, the thermal demand represents the major part of the building’s energy demand during the 

coldest months. 

 
Figure 17: Monthly energy distribution of reference building 

 Electricity Domestic hot water Space heating Total 

Specific energy demand GB case 

(kWh/m2) 

31.93 29.95 58.75 120.63 

Specific energy demand CHP case 

(kWh/m2) 

31.93 29.95 50.33 112.23 

Table 5: Specific yearly energy demand by end user 

As it can be seen by Table 5 and Figure 17, the space heating demand reduces some when 

implementing CHP. This is due to the skin losses of the CHP that contributes to some heating of the 
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zone. As can be seen for the CHP case, the total yearly specific energy demand of the building is 

112.22kWh/m
2
. Space heating, domestic hot water and electricity represents 45%, 27% and 28% of 

total energy demand, respectively. The space heating demand could have been lowered if heat 

recovery in ventilation was implemented. One of the energy measures in TEK 10 implies that the heat 

recovery should be ≥70 % for building built after 2010 (Kommunal- og regionaldepartamentet, 2010). 

Since this was not included in the ventilation predefined by EnergyPlus, this was not implemented. 

The domestic hot water represents well the standard value of NS3031, which is 29.8kWh/m
2
 (NS 

3031:2007+A1:2011, 2007/2011). The amount used for electricity is close to the standards value of 

NS3031, which is 28.9kWh/m
2 

(11.4kWh/m2 and 17.5kWh/m2 for lighting and electrical appliances, 

respectively).  

 
Figure 18: Duration curve heating 

Figure 18 shows the duration curve for heating for the building. The total energy demand for heating 

peaks at a value of 19.97 kW. This leads to a problem for the micro-CHP, as it has a rated thermal 

capacity of 13.45 kW. This implies that it will not be able to cover the peaks. However, since it is 

coupled with a storage tank, these peaks may be covered by the heat stored in the tank from periods 

where the demand is low. 

 

 
Figure 20: Power and heat demand for a warm day when 

the temperature reaches its maximum 

As it can be seen from Figure 19 and Figure 20, the electricity production is moreover constant during 

the year with some small variations, while the heating demand is much smaller during the summer 

compared to the winter. It is therefore important to try to integrate the CHP at best possible practice to 

meet the variations in demand without decreasing the efficiency of the device to much. For some 

buildings, the building is allowed to cool during the night time, and the building has a set point 

temperature lower than during the day time. However, for the building simulated this is not considered 

and the room set point temperature remains constant during day and night at a temperature of 20°C. 

Therefore it can be seen that the space heating demand depends on the outdoor temperature and 

Figure 19: Power and heat demand for a cold day when 

the temperature reaches its minimum 
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remains high during night time as well. Compared to former studies of M. Howing, R.R Negenborn 

and B. De Schutter, these heat profiles present the heat demand of a domestic building well. As the 

building in these studies was allowed to cool during the night, the heat demand was lower during these 

hours compared to the building used in this study (Howing, Negenborn, & De Schutter, Jan 2011).  

8.2 Implementing load management 

 

The aim of implementing load management is to lower the electrical demand peaks and thus lower the 

amount of electricity imports. This can be done by lower the use of controllable electrical appliances 

such as washing machine, dishwasher, TV, microwave, washer dryer and PC. Fridge, freezer and hob 

are considered as uncontrollable loads and do therefore remain the same. When load management is 

implemented in case 3, the demand for space heating increases slightly due to the fact that the internal 

gains from the electrical appliances will be reduced. The electricity demand is set to have a limit of 

3200 W, which means that the electricity use never exceeds this value (schedule 4000 W, with a 

security of 20 %).  

 

 
Figure 22: Monthly electricity demand by user case 3 

 

As can be seen from Figure 21 and Figure 22, the electricity use for electrical appliances is 

significantly reduced by implementing load management. The electricity demand is relatively stable 

during the season and the only user who varies some is lighting. Electrical appliances represent the 

largest part of the total electricity demand, and it is therefore here the largest load management is 

done. The reduction is done by the load manager shaving the electricity peaks according to the 

scheduled control which can be found in appendix K.  

 
Figure 24: Electricity demand with load management, 

case 3 

Figure 21: Monthly electricity demand by user base case 

Figure 23: Electricity demand without load management, 

base case 
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As seen from Figure 23 and Figure 24, the electricity peaks are shaved significantly by implementing 

the load management. This will affect the amount of exports and imports as the electricity produced by 

the CHP device is more or less the same as before, or even higher as the thermal demand of the 

building increases.  This makes the CHP able to cover a higher amount of the electricity demand, 

which leads to a significant reduction in imports and an increase in exports. 

 

 
Figure 26: Electric demand versus produced CHP cold 

period, case 3 

As the generator is set to follow the building’s heat demand, the electricity production will be high 

during the cold period. Figure 25 and Figure 26 represents the electricity demand versus the produced 

electricity from the CHP for a cold period for case 2 and 3, respectively. For case 2 without load 

management, it can be seen that the CHP is not able to cover the peak demands of electricity, while 

electricity surplus is seen when the demand is low. For case 3 with load management, the CHP will be 

able to cover all peak demands during the winter period, but a large amount of surplus electricity is 

seen. As electricity surplus is exported to the grid and thus avoids electricity production from larger 

power plants with higher emission, it is seen beneficial to export electricity in a micro-CHP context. 

As long as there will be an integrated system for electricity feed in to the grid, this will not be a 

problem and is beneficial as it reduces the dependency of large central power stations to supply the 

grid with electricity.  

 

 
Figure 28: Electrical demand versus produced CHP 

warm period, case 3 

As it can be seen from Figure 27 and Figure 28, the CHP device is more capable of covering the 

electrical demand of the building with the implementation of load management as the electricity peaks 

Figure 25: Electric demand versus produced CHP cold 

period, case 2 

Figure 27: Electrical demand versus produced CHP warm 

period, case 2 
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are shaved. However, since the thermal demand of the building is low during the summer months, the 

amount of electricity produced is also low and therefore even with the implemented load management; 

the generator is still not able to cover the entire demand during periods with low heat demand.   

8.3 Implementing power control 

 

The aim of power control is to make the CHP device able to better meet the electrical demand of the 

building without affecting the thermal supply demand matching remarkably. This may be difficult as 

micro-CHP produces heat and electricity simultaneously, while the thermal and electrical demand of 

the building do often not happen at the same time. For the evaluation of power control, two operating 

mode is considered:  follow thermal and limit electrical surplus, and follow electrical. Both operating 

modes will be applied to the system configuration with CHP and auxiliary gas boiler to ensure heat 

supply. For the follow electric mode, three cases are evaluated; one with restricted thermal surplus 

(case 5), one with unrestricted thermal surplus (case 6) and one with restricted thermal surplus and 

load management (case 7).  

8.3.1 Implementing follow thermal mode with electrical surplus limit 

 

To evaluate the operation of the CHP, the temporal characteristics of the building’s demand is of 

interest, especially when the generator is set to operate in a follow thermal mode. The difference in 

temporal variations for both case 2 and case 4 is reviewed to see the effect of implementing electrical 

surplus restriction on the generator in follow thermal mode. How the generators operates in follow 

thermal mode depend on the outdoor temperature, the internal loads of the building and thereafter the 

space heating and DHW demand.  

 
Figure 29: Building room temperature, outdoor temperature, internal gains and SH demand during a cold period. 

 

Figure 29 show the characteristics of the space heating demand and the internal gains versus the 

indoor- and outdoor temperature for a cold period. As it can be seen, at times when the internal gains 

from electrical appliances, people etc. are high, the space heating demand becomes lower. It can also 

be seen that the space heating demand varies and does not have a stable demand rate. Due to this, the 

storage implementation has an important impact as it shaves the peak and assures a more stable and 

continuously supply. As the generator follows the thermal demand of the building in this operation 

mode, the tank temperature is dependent on this operation. For the case with the electrical surplus 

restriction, the tank temperature is affected differently than for case 2 without the restriction as can be 

seen in Figure 30 and Figure 31.   
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Figure 31: Temperature versus power produced during 

a cold period, case 4 

 

The buffer tank temperature is lower when the thermal output of the generator is lower. This 

represents a peak in demand for space heating and domestic hot water, and more heat is withdrawn 

from the tank than what is supplied. However, the temperature remains at an acceptable level, which 

means that the generator supplies sufficient heat to keep the tank temperature within its dead band. If 

exports are not possible, the device should be implemented to follow the thermal demand of the 

building as long as it does not exceed the electrical demand of the building, which is done in case 4. In 

this case, the system has to have a gas boiler to ensure stable heat supply. As can be seen in Figure 30 

and Figure 31, the storage temperature reaches a higher temperature in case 2 when the surplus 

restriction is off. This is because less heat is supplied from the generator to the tank. For case 2, the 

temperatures remain within an acceptable range, but the auxiliary boiler is frequently used due to 

deficit of heat supply from the CHP during the cold period.  Comparing to the temperature of case 2, it 

can be seen that the storage temperature in case 4 with the limitation in electric surplus varies more 

depending on the demand. This is because the generator is not allowed to produce heat if this exceeds 

the electrical demand of the building, and therefore more heat is withdrawn from the tank in these 

periods. The connected gas boiler does however ensure a stable supply temperature to the tank.  

 
Figure 32: Building room temperature, outdoor temperature, internal gains and SH demand during a warm period. 

As can be seen from Figure 32, the room temperature depends on the outdoor temperature and the 

internal gains. Some cooling demand could be implemented as the temperature reaches 30°C when the 

outdoor temperature is highest. However, it is assumed that this could be naturally ventilated by 

opening windows, and therefore no cooling equipment is implemented in the model as the evaluation 

Figure 30: Temperature versus power produced during a 

cold period, case 2 
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is regarding micro-CHP which only supplies heat and electricity. There exists generators that provide 

both cooling and heating, and this could be an option for places with higher cooling demand.  

 
Figure 34: Temperature versus power produced during 

a warm period, case 4 

Since there is no space heating demand during the warmest period of the year, the only heat demand is 

domestic hot water. Since the total thermal demand is significantly lower than during the cold period, 

it can be seen in Figure 33 for case 2 that the hot water storage remains relatively stable at its upper 

temperature limit. The tank temperature at node 1 (top of tank) remains stable below its upper 

temperature limit of 70 degrees. The small variations in tank temperature indicate that the supply 

equipment generally supplies sufficient heat to the tank compared to the heat withdrawal from the 

demand side loads. For case 4 it can be seen in Figure 34 that the upper tank temperature varies more. 

This is because the electric demand restricts the thermal output of the generator slightly, which result 

in higher heat withdrawal from the tank when no heat is supplied to the tank. The tank temperatures 

depend heavily on the heat supply and the supply is remarkably different in the two cases due to the 

surplus restriction.  

 

 
Figure 36: Heating demand versus thermal output CHP 

and GB during cold period, case 4 

 

As shown in Figure 35 and Figure 36, the electric surplus limitation restricts the thermal output of the 

generator, which makes the generator less able to cover the thermal demand of the building during 

cold periods. An auxiliary gas boiler coupled to the loop is compulsory for this operation.  This is 

especially necessary during the heating season when the heating demand of the building is high. 

 

Figure 35: Heating demand versus thermal output CHP 

and GB during cold period, case 2 

Figure 33: Temperature versus power produced during a 

warm period, case 2 
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During the warm period, it was seen that the electrical limitations did not affect the operation of the 

CHP as much as during the cold period. The CHP was then able to cover the major part of the heat 

demand, which made the dependence on the auxiliary gas boiler smaller. This is because the heat 

demand is substantially smaller during the warm period compared to the cold period. Limiting the 

electrical output to not exceed the electrical demand of the building does limit the CHP device 

possibility to produce sufficient heat to cover the demand, and therefore the auxiliary gas boiler is 

frequently used. The amount of heat produced by the CHP has decreased with 66 %. The CHP and 

tank losses have however decreased some, but compared to the thermal output of the CHP, the losses 

pays a larger part of the total output. This has its impact on the efficiency, which is reviewed later.  

With the electrical surplus restriction, the generator will better meet the electricity demand. As no 

exports are allowed, this will however result in a frequent use of the auxiliary gas boiler, especially 

during the heating season. The electricity demand met by the CHP has increased significantly as 

exports are not allowed. The main reason for this is that when exports are allowed, the model exports 

more electricity to the grid than only the surplus electricity. To demonstrate the effect of the 

implementation, the electricity production versus demand is presented for a cold period for each of the 

cases. The cold period is chosen due to the fact that this is when the heating effect is highest. During 

the summer months there were less electricity surplus in case 2, and therefore the effect of the 

implementation was less remarkable.  

 

 
Figure 38 Electricity produced versus demand cold 

period, case 4 

As it can be seen from Figure 37 and Figure 38, the electricity produced matches better the electricity 

demand in case 5 where electricity surplus is limited. However, if it is possible to export electricity 

and there is an existing infrastructure for this, this would be more beneficial for the CHP, as it can 

cover a larger part of the thermal demand of the building as well as it can operate more frequently at 

higher partial loading. 

8.3.2 Implementing follow electrical mode 

 

To avoid overheating of the tank, and thus surplus heat that will be wasted, control sensors has to be 

implemented. This will ensure an acceptable supply temperature to the radiant heating and the 

domestic hot water. A temperature sensor has been set on the supply water from the tank to the 

thermal loads of the building. To enable the generator to meet a larger part of the electricity demand, 

the supply temperature limit is set to be in the range of 55-75°C.  If the supply water in the tank 

exceeds its upper limit of 75°C, the generator is forced to shut down. If the temperature is below its 

Figure 37: Electricity produced versus demand cold 

period, case 2 
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lower limit of 55°C, the supply equipment is turned on. In this mode an auxiliary gas boiler is coupled 

to the loop to ensure heat supply when the electricity demand is low. The restriction is implemented in 

both case 5 and 7, and results in lower usage of the CHP compared to the gas boiler. To view the effect 

of the implementation, a case where thermal surplus is allowed is presented in case 6. The tank is then 

allowed to exceed 75°C until it reaches the boiling temperature of 98°C. At this point heat is vented 

from the tank and thus wasted. 

 
Figure 40: Heat production versus demand cold period, 

case 6 

 

As can be seen from Figure 39 and Figure 40, the thermal output from the CHP device is restricted 

according to the thermal demand of the building in case 5. In case 6 on the other hand, it can be seen 

that the thermal output of the generator exceeds the thermal demand of the building occasionally. 

However, as the demand is relatively high during the cold period, the impact of the thermal surplus 

restriction is not that present. Also, since the relation between the electrical demand and thermal 

demand of the building is during major parts of time lower than the heat to power ratio of the CHP, the 

auxiliary gas boiler is frequently used.  

 
Figure 42: Heat production versus demand warm period, 

case 6 

As can be seen from Figure 41 and Figure 42, thermal surplus is present in case 6, while remarkably 

avoided in case 5. The impact of the restriction is more present during the warm period, as the thermal 

demand of the building is lower. In the graphs, negative values of the heat produced are seen. This 

does probably represent times when the skin losses of the generator makes a larger part than the useful 

heat produced, which make the total value negative. These values are seen when the electricity 

production is low due to low electricity demand (lower than 1kW). For many CHP generators, when 

operating at low part load ratio they may be unable to recover the heat. Some manufacturers therefore 

Figure 39: Heat production versus demand cold period, 

case 5 

 

Figure 41: Heat production versus demand warm period,  

case 5 
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restrict the minimum allowable electricity output of the generator to be over 1kW, while others 

research studies have stated lower restrictions, typically being 5% of the device’s rated output (Annex 

42, 2007). This will however, lead to either surplus electricity production or decrease the operation 

time of the generator as it is not allowed to operate at lower power output.  

 

Thermal surplus results in high temperatures in the tank since significantly more heat is delivered to 

the tank without being a demand that is withdrawn from the tank. Implementing thermal surplus 

restriction, these high tank temperatures are avoided and also less heat is vented from the tank. The 

temperatures versus the electricity produced for case 5 and 7 were similar as the thermal restrictions 

were applied to both cases. However, with load management implemented, the generator is expected 

to meet a higher proportion of the electricity demand of the building. In case 6, the tank temperatures 

were higher since no control restriction was implemented. The largest impact on the tank temperature 

is seen during the warm period when the outdoor temperature reaches its maximum. Since the 

electricity production remains fairly constant throughout the year, while the heat demand varies, there 

is remarkably overheating of the tank in warm periods. Some elevated temperatures were seen for the 

cold season as well, but only the warm season is presented since this is where the influence of thermal 

surplus restrictions had greatest impact.  

 

 
Figure 44: Room temperature, tank temperature versus 

electricity produced warm period, case 6 

 

As shown by Figure 43 and Figure 44, the tank temperatures in case 5 remains within an acceptable 

temperature limit in the most critical period of the year due to the temperature restriction implemented 

in the tank. This does however affect the electricity production. In case 6, it can be seen that there is 

produced substantially more electricity than in case 5. However, the temperatures in the tank increase 

significantly in periods where the electricity production is high. This is because substantially more 

heat is produced by the CHP and delivered to the tank than what is demanded. During the cold season, 

more heat is required from the tank, and the temperatures are therefore not as elevated. 

 

Since the thermal surplus restriction has an impact on the amount of electricity produced, the demand 

coverage in the period where the production is most restricted is of interest. As the thermal demand is 

lowest during the warm period, the electricity coverage by the CHP production of a typical warm day 

during summer is presented from the three cases in Figure 45-Figure 47.  

Figure 43: Room temperature, tank temperature versus 

electricity produced warm period, case 5 
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Figure 46: Electricity produced versus demand warm 

day, case 6 

 

 
Figure 47: Electricity produced versus demand warm day, case 7 

It can be seen that case 6, without thermal surplus restriction, covers the electricity demand in the best 

manner. However, it is desirable to avoid wasted thermal surplus. In case 7, it can be seen that the 

CHP is more capable in meeting the electrical demand than case 5 due to the implemented load 

management. Implementing load management reduces the demand, which makes the CHP more 

capable of meeting the electrical demand.  

  

Figure 45: Electricity produced versus demand warm day,  

case 5 
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8.4  Primary energy consumption 

 

The primary energy used in each of the configurations is found by multiplying the primary energy 

factor to the delivered energy to the building as defined in section 4.1. The results for each of the cases 

are represented under.   

 Primary energy factors fP 

 Non-renewable Total 

Natural gas 1.36 1.36 

Biogas 1.092 1.092 

Electricity mix UPCTE 3.14 3.31 
Table 6 Primary energy factors from (NS-EN 15603:2008, 2008), biogas from (Pout & BRE, 2011) 

 

All simulated cases are viewed and compared to the reference case in order to determine which 

proposed methods that achieve greatest primary energy savings.  

 
Figure 48: Primary energy savings 

 

 PE biogas (kWh/m
2
a) PE NG (kWh/m

2
a) PE El (kWh/m

2
a) PE total (kWh/m

2
a) 

Case 1 - 136.02 106.687 241.7 

Case 2 - 129.26 70.906 200.167 

Case 3 - 128.223 37.851 166.07 

Case 4 - 164.66 55.218 219.88 

Case 5 - 173.715 48.993 222.709 

Case 6 - 212.424 12.403 224.82 

Case 7 - 179.92 19.02 198.947 

Case 8 - 131.61 72.533 204.145 

Case 9 87.909 - 70.906 158.815 
Table 7: Specific primary energy consumption  

Figure 48 shows the primary energy savings for all the cases simulated in this thesis. In Table 7 the 

corresponding yearly primary energy consumption for each of the cases can be seen.  

For case 2 in follow thermal mode, the CHP achieves primary energy savings of 17.2% compared to 

the condensing gas boiler. For the values of primary energy for natural gas in the CHP cases, the 
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exported electricity is substituted from the total amount using the methodology presented in section 

4.1. The thermal storage supplies heat to the building at peak demands hours. The implementation of 

thermal storage shaves the peak and ensures a more stable operation of the CHP.  For CHP operating 

in follow thermal mode, no auxiliary boiler is required since the CHP coupled to the storage is able to 

cover the entire demand on its own and ensure acceptable temperature levels in the building and the 

tank. 

 

The primary energy savings increase when implementing load management as was done in case 3. 

Compared to the reference system the primary energy savings are 31.29 %. Managing the electricity 

loads helps the building to cover a larger part of its electricity demand, which reduces the dependency 

on electricity imports from the grid. The primary energy consumption from grid imports has been 

reduced from 70.9kWh/m
2
 to 37.8kWh/m

2
 by implementing load management, which represents a 

reduction of 47% compared to case 2 and 65 % reduction compared to the reference case 1. This 

implies that buildings with a larger heat to electricity ratio achieve higher primary energy savings than 

buildings with lower heat to electricity ratio.  

For case 4, on the other hand it is seen that the resulting primary energy savings are less than for case 

2. This is mainly because there are no exports in follow thermal limit electrical mode. Exports are seen 

beneficial in a PE context and therefore substituted from the amount of fuel delivered. For exports to 

be possible, an infrastructure on the grid needs to be established. This is not well developed in many 

areas, and therefore an operation that limits the electrical output of the CHP-device to what is 

demanded by the building might be necessary in some cases. This may result in insufficient heat 

produced at times when the heat demand is high and the electrical demand is low as was seen for the 

case study reviewed in this report. This is solved by the auxiliary gas boiler to cover the resulting heat 

demand which is not covered by the CHP. A stand-alone CHP system is not able to have this operation 

as it will not deliver sufficient heat to the building on its own.  

For case 5, 6 and 7 where electrical following mode were implemented, it is seen that case 7 who also 

have load management and thermal surplus restriction implemented, achieves the greatest primary 

energy savings. Case 6, without thermal surplus restriction, achieves the poorest primary energy 

savings. This is mainly because of the amount of wasted heat production due to overheating.  

Increasing the tank size as was done in case 8 did not lead to increased primary energy savings, and a 

reduction of 1.66% is seen compared to case 2.  

Using upgraded biogas as fuel instead of natural gas as was done in case 9, 34.3% primary energy 

savings are achieved compared to 17.2% in case 2. However, as the primary energy factor for biogas is 

used, the energy usage for the upgrading process is not taken into account. It is therefore believable 

that the savings would have been slightly lowered if this process was included. According to the 

literature study reviewed in 7.4, approximately 0.3kWh/m
3
 energy was required to upgrade biogas to 

natural gas substitute. The yearly amount of fuel delivered in case 9 (and 2) is 4.75 m
3
. This means 

that the energy required to upgrade the biogas is 1.425 kWh. Per m
2
, this will only represent 

0.00316kWh/m
2
, which represents a small part compared to the total consumed fuel energy.   

The use of upgraded biogas is used to demonstrate how the savings could be if a renewable fuel was 

used instead of natural gas. As the process of upgrading biogas to natural gas quality is not included, 

the benefits of using biogas represented in this report will be higher than what would be the case in 

reality as a larger amount of biogas at its original form would be required as its heating value is lower 

than for CHP. However, it is assumed to give a picture of its potential and the whole process should be 
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further analyzed in pilot-projects. The upgraded biogas case is applied to case 2, and therefore has the 

same operational characteristics.   

The highest primary energy savings are achieved in case 9, when upgraded biogas is used as a fuel. 

Closely followed is case 3 where the generator operates in follow thermal mode and load management 

is implemented. Here, a reduction in primary energy of 31.29% is achieved, closely to the 34.3% 

achieved by using upgraded biogas as fuel. It can be seen that the poorest primary energy savings are 

achieved in the cases where the generator is set to follow the electrical demand of the building, or 

restricted to not have electrical surplus generated. However, implementing load management 

combined with follow electric mode results in higher primary energy savings as is seen for case 7. If 

load management is not to be implemented, the follow thermal mode of the generation gives best 

operation based on achieved primary energy savings. 
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8.5  Energy efficiency 

 

The efficiencies are based on higher heating value to do the comparison to the reference system (case 

1), which represents a best practice case of a condensing gas boiler with high efficiency. The 

efficiencies are calculated based on the equations found in section 4.2. 

 1 2 3 4 5 6 7 8 9 

Thermal efficiency - 0.521 0.524 0.423 0.394 0.440 0.405 0.523 0.521 

Electrical efficiency - 0.226 0.228 0.238 0.238 0.243 0.241 0.220 0.226 

CHP efficiency - 0.747 0.751 0.662 0.633 0.684 0.646 0.744 0.747 

Gas boiler efficiency 0.902 - - 0.941 0.941 0.943 0.942 - - 

System efficiency (DE) 0.914 0.741 0.721 0.828 0.795 0.705 0.788 0.731 0.741 

System efficiency (PE) 0.499 0.561 0.637 0.519 0.509 0.501 0.547 0.549 0.707 

% increase from 1 - 6.076 13.80 2.00 1.00 0.20 4.80 5.00 20.80 
Table 8: Comparison efficiency all cases (HHV) 

As it can be seen from Table 8, both electric and thermal efficiency are lower than the stated nominal 

efficiency defined in the inputs for all cases. One of the reasons for this is that the nominal efficiency 

is based on the gross input, which represents the lower heating value of the fuel. As the higher heating 

value of the fuel is used in the calculations, the resulting efficiencies become lower. For comparison to 

studies and data from manufactures based on LHV, the corresponding CHP efficiencies based on LHV 

are also shown in Table 9. The relation for HHV:LHV for natural gas is 1.108 (Clarke Energy, 2013). 

 1 2 3 4 5 6 7 8 9 

Thermal efficiency - 0.577 0.580 0.469 0.436 0.487 0.449 0.579 0.577 

Electrical efficiency - 0.250 0.253 0.264 0.264 0.269 0.267 0.244 0.250 

CHP efficiency - 0.827 0.832 0.733 0.701 0.758 0.716 0.824 0.827 
Table 9: CHP efficiencies based on LHV 

The maximum possible efficiency based on LHV is from the design specifications 0.93, and it is 

therefore seen that neither of the cases achieves optimal efficiency of the CHP.  The nominal 

efficiencies are based on full output of the CHP, which due to variations in building demand is not 

possible for the analyzed cases. As the generator cannot operate continuously at full load operation 

because of varying buildings demand and times when the demand is remarkably lower than the full 

load output of the generator, the efficiency becomes lower. This leads to frequent part load operation 

and on-off cycling when there is low or no demand. To enable the generator to operate more frequent 

at full load operation, either a smaller device should be implemented in the building in cooperation 

with an auxiliary boiler to only let the generator cover the base-load, and let the boiler cover the rest. 

Since the CHP model in EnergyPlus is not normalized, the model could not be implemented with 

different capacities. For further studies this should be reviewed to see the effect of constant full load 

operation of the CHP. The CHP efficiency would have increased if the thermal demand of the building 

were higher and full load operation were possible more frequently. 

 

The system efficiency is the relation between the thermal and electrical demand of the building and the 

energy delivered to the building, either in terms of delivered energy or primary energy. This shows 

how well the heat output is utilized in the building. These efficiencies considers the power draw of the 

ancillary components that are required to couple the thermal output of the CHP-device with the 

building’s HVAC and DHW system, such as the storage tank. The system efficiency should be based 
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on primary energy instead of delivered energy as it then accounts for the losses and transformation of 

electricity in the public grid, and therefore give a better picture of the benefit of CHP. The system 

efficiency based on delivered energy is higher in the case of gas boiler due to the electricity delivered 

is assumed to be delivered and distributed in the building without losses. The system efficiency based 

on PE is better for all CHP cases compared to the gas boiler. For case 2, it has increased with 6.076 %.  

 

Implementing load management further improves the efficiency as seen in case 3. The main reason for 

this is that the amount of exported electricity has increased, which is beneficial, as well as the amount 

of imports is reduced as the generator is able to cover a larger part of the demand. The system 

efficiency has increased with 13.8% compared to case 1.  

For case 4, when the power output of the CHP is limited to the electrical demand when operated in 

follow thermal mode, the system efficiency based on primary energy will decrease as there will be no 

exports. The reason for this is that exports are considered beneficial and will substitute for some of the 

imported energy. However, for places with no grid connection and difficulties of enabling exports, 

such operation will be good as it never produces more electricity than what is demanded by the 

building. Implementing this restriction makes the device to better match the buildings electricity 

demand, but not the thermal demand of the building (see section 8.3.1). It is seen that the gas boiler 

efficiency has increased in this mode compared to the reference case. This is probably due to increased 

condensation. Because of this, the system efficiency based on delivered energy becomes better than 

for case 2. The efficiency based on primary energy, however, becomes poorer. Compared to the 

reference case, it has only improved with 2%. The CHP efficiency is also poorer when electrical 

surplus restriction is implemented. This is mainly because the generator has to operate more frequent 

at lower part load ratio, since the electricity demand limits the thermal production when the electricity 

demand is substantially lower than the thermal demand of the building (remarkably lower than the heat 

to power ratio of 2.444).  

Operating the generator in a follow electric mode gives poorer efficiency for the CHP than in follow 

thermal mode as is seen for case 5, 6 and 7. However, as the auxiliary boiler coupled to the loop 

achieves a high efficiency due to condensation, the system efficiency is not too much affected by the 

reduced CHP efficiency. As can be seen, case 6 achieves the poorest system efficiency both based on 

delivered energy and primary energy. This is due to the large amount of vented heat from the tank 

which is lost. This is not that present in case 5 and 7 as thermal surplus restriction is implemented. 

However, the CHP efficiency is poorer in both case 5 and 7 compared to case 6. This is probably 

because the generator has to operate at lower part load ratio due to the restriction. The system 

efficiency based on primary energy has improved with 1%, 0.2% and 4.8% for case 5, 6 and 7, 

respectively.  

For case 8, it can be seen that the thermal efficiency is slightly better than for case 2, but the electrical 

efficiency is lower which makes the CHP efficiency and the system efficiency lower. The increased 

thermal efficiency is due to that the generator can operate at higher partial loadings when it operates. 

However, since it operates fewer hours (see section 8.6); less electricity is produced, which makes it 

necessary to import more electricity from the grid. This reduces the system efficiency as imports from 

the grid are not considered beneficial. Also, the system efficiency become poorer as the tank losses has 

increased as will be seen in Table 10. However, as the losses are small, this increase will only reduce 

the system efficiency based on primary energy with 1.2% compared to case 2, resulting in an increase 

of 5% compared to the reference case.  
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In case 9, the amount of delivered energy of fuel will be the same as for case 2 since the upgraded 

biogas is assumed to have the same heating value as natural gas. The CHP efficiencies and system 

efficiency based on delivered energy will therefore be the same. However, as biogas has a lower 

primary energy factor than natural gas, this result in a significantly higher system efficiency based on 

primary energy. Using upgraded biogas as fuel is therefore beneficial for the CHP system also on an 

efficiency point of view. The upgrading process should, however, be taken into account for further 

investigation on this subject. Compared to the reference case, this case achieves the highest increase in 

system efficiency based on primary energy and has increased with 20.8%.  

Since the system efficiency considers the whole system, the system losses as well as the heat 

production for each of the cases is of interest. In Table 10 the heat balance for each of the system cases 

can be seen. Since the heat efficiency is not 1, some skin losses will come from the generator. These 

losses are included in the thermal efficiency of the generator. The amount of these skin losses depend 

on the cooling water temperature and resulting engine temperature of the generator.  

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 

CHP skin losses 

(kWh/m
2
a) 

- 11.44 11.68 10.99 14.40 17.91 14.24 11.46 11.44 

Produced heat 

CHP (kWh/m
2
a) 

- 80.40 85.82 27.1 28.34 50.99 30.36 81.59 80.40 

Produced heat 

GB (kWh/m
2
a) 

90.21 0 0 53.72 52.59 38.117 54.02 0 0 

Surplus heat 

vented from tank 

 (kWh/m
2
a) 

0 0 0 0 -0.57 -7.63 -0.40 0 0 

Tank losses 

(kWh/m
2
a) 

-1.76 -1.62 -1.61 1.540 -1.84 -2.07 -1.83 -2.36 -1.62 

Total heat 

transferred 

 (kWh/m
2
a) 

88.44 78.79 84.20 79.28 78.51 79.40 82.14 79.23 78.79 

Table 10: Comparison heat balance, balance of plant  

It is seen that the reference case (1) has higher amount of produced heat than the CHP cases. This is 

because the space heating demand of the building is slightly reduced in the case of implementing CHP 

as the CHP skin losses contribute to increased internal heat gains of the building when the generator is 

placed inside the heated area of the building. The heat losses from the tank are low, while the skin 

losses of the generator represent a larger part. The low tank losses are due to a good insulated tank and 

that the off-cycle flue gas coefficient of the tank is assumed to be 0. As the pipes are assumed 

adiabatic, the tank loss is the only loss that will affect the system efficiency based on delivered energy 

compared to the CHP efficiency. 

The CHP cases with implemented load management have higher rate of transferred heat because of the 

reduced internal gains from electricity consumption. This is because the electricity loads contribute to 

a certain amount of internal heat gains, which will be reduced when these loads are reduced. For case 

3, the space heating demand has increased with 5kWh/m
2
a which leads to higher amount of heat 

generated by the CHP.  

The heat balance of case 4 remains similar to case 2 and the only difference is the amount heat 

produced from the CHP. Due to the electrical surplus limitation, the output of the CHP is remarkably 

reduced, which makes the usage of the auxiliary gas boiler compulsory. It can be seen that the heat 
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output only represents 33.5% of the heat supply for case 4, while for case 2 it represented 100% of the 

heat supply.   

For case 5, 6 and 7 in follow electrical mode, it is seen that the CHP skin losses has increased as well 

as the tank losses due to elevated temperatures. For case 7, the amount of heat transferred are higher 

than for case 5 and 6, and is because of the implemented load management. It is seen that the vented 

heat losses due to overheating of tank are almost eliminated in case 5 and 7, while for case 6 they 

represent a significant part of the system losses. It is therefore concluded that the heat vented from the 

tank is remarkably avoided by implementing the thermal surplus restriction. As expected, the amount 

of heat vented from the tank was highest during the summer months when the thermal demand of the 

building is lower. It is also here the thermal surplus restriction has greatest impact as can be seen in 

Figure 49 and Figure 50 which represents the monthly heat distribution for case 5 and 6, respectively. 

Similar graphs for the other cases can be found in appendix O. 

 
Figure 50: Monthly heat distribution case 6 

 

In case 6, it is seen that the surplus heat produced each month represents the same amount of vented 

heat from the tank. All heat which is not demanded is therefore wasted to the environment.  The CHP 

device is allowed to operate more time and produce more heat than in case 5, which reduces the 

dependence on the auxiliary gas boiler. However, this results in higher losses as more heat is vented 

from the tank. This is especially seen during the summer months. The skin losses of the generator do 

also become higher as the engine temperature becomes higher when the cooling water temperature 

increases.   

For case 8, it was seen in Table 10 that the tank losses increased with 31.35% compared to case 2 due 

to the increased thank size. This leads to slightly higher production of the CHP to make up for the 

elevated losses. As case 9 has the same operating conditions as case 2, the heat balance will be the 

same.  For the building analyzed, it has been seen that the load is sufficiently high to occupy the 

micro-CHP almost continuously, when operated in thermal load following mode.  This makes the 

throughput of the buffer tank high, which result in lower tank losses as well. Also, since the 

throughput of the buffer tank is high, it is not strictly necessary with a storage tank in follow thermal 

mode, but it does, however, allow a degree of flexibility in the operation (SEAI, 2011).   

From this, it is seen that the cases which did achieve highest primary energy savings does also achieve 

best efficiencies based on PE as expected. Case 9 achieves best system efficiency based on PE, 

followed by case 3 and case 2. Also, as seen for the cases where an auxiliary high efficiency gas boiler 

is necessary, the gas boiler achieves higher efficiency in operation with the CHP than it did in single 

Figure 49: Monthly heat distribution case 5 
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operation (case 1). This is due to increased condensation when operating in cooperation with the CHP.  

To evaluate the CHP efficiency further, it is interesting to look at the variations between seasons. 

Figure 51 show the monthly overall efficiency for all the cases simulated.   

 
Figure 51: Comparison monthly CHP efficiency case 2-9 

 

For all cases, it is shown that the CHP efficiency is poorer during the warmer months when the 

thermal demand of the building is low. This affects the resulting yearly efficiency of the device, and 

makes it lower than it optimally could be if the device could operate at higher output the whole year. 

This is especially present for case 5 and 7, where the operation is strictly limited due to the thermal 

demand of the building. It is also seen that the cases in follow thermal mode achieves an allover better 

efficiency throughout the months than the cases in follow electric mode as it allows the CHP device to 

operate more time at higher output. The reason to the lower efficiency is the higher frequency of on off 

operation during the summer months as the thermal demand is not present during the whole day as is 

the case for the colder months, were space heating is required the whole time.  

 

According to Klobut, Ikäheimo and Ihonen, the percentage of fuel energy input used in producing 

mechanical work, which results in electrical generation, remains fairly constant until 75% of full load, 

and thereafter starts decreasing (Klobut, Ikäheimo, & Ihonen). This means that at lower partial 

loadings more fuel is required per kWh of electricity produced, which leads to decreased efficiency. 

As the generator produces less electricity during the summer months, the generator operates at a lower 

partial loading which results in lower efficiency as is seen in Figure 52 and Figure 53, which 

represents the thermal and electric efficiency, respectively.   

 

 
Figure 53: Monthly CHP electric efficiency case 2-9 Figure 52: Monthly CHP thermal efficiency 

case 2-9 
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The cases where the CHP is set to follow the electricity demand of the building achieve poorer thermal 

efficiency than the cases where the CHP is set to follow the thermal demand of the building. Also in 

the case where the CHP is set to follow the thermal demand of the building, but has a restriction in the 

electrical surplus is it noted an allover poorer thermal efficiency for the generator. The reason for this 

is as it was stated earlier in the thesis, that when the generator operates at higher partial loadings 

(electricity), the thermal heat recovered becomes poorer.  

The cases where the CHP is operated to follow the electrical demand of the building achieve higher 

efficiency than the cases where the CHP is set to follow the thermal demand of the building. This is 

because the generator can operate more time at higher partial loading than in the case for the follow 

thermal operation. It can also be seen that the cases in the follow electrical mode has less variations in 

electrical efficiency throughout the season than the cases in follow thermal mode. This is due to that 

the electrical demand remains relatively stable, and there are no large variations between the seasons.   

8.6  Operational characteristics 
 

To reduce the need for maintenance of the CHP device, it is desirable to have low on/off cycling, and 

that the generator operates as continuously as possible. Table 11 shows the operational characteristics 

for each of the cases simulated in the thesis.  

  Time in warm-

up mode 

Time in 

normal mode 

Time in 

standby mode 

Time in cool-

down mode 

Time in 

off mode 

Case 

2 

(h/year) 280.21 5244.36 2955.2 280.21 0 

(%) 3.19 59.86 33.73 3.19 0 

Case 

3 

(h/year) 268.166 5366.33 2857.33 268.177 0 

(%) 3.06 61.26 32.61 3.06 0 

Case 

4 

(h/year) 37.35 8526.06 159.25 37.35 0 

(%) 0.43 97.32 1.8 0.43 0 

Case 

5 

(h/year) 58.15 6936.867 1718.75 46.233 0 

(%) 0.667 79.679 19.74 0.531 0 

Case 

6 

(h/year) 0 8760 0 0 0 

(%) 0 100% 0 0 0 

Case 

7 

(h/year) 40.117 7443 1244.65 32.233 0 

(%) 0.46 85.492 14.296 37.0 0 

Case 

8 

(h/year) 298.583 4002.25 4160.6 298.583 0 

(%) 3.4 45.68 47.49 3.4 0 

Case 

9 

(h/year) 280.21 5244.36 2955.2 280.21 0 

(%) 3.19 59.86 33.73 3.19 0 

Table 11: Operational characteristics  

When the generator operates in normal follow thermal mode in case 2, the generator operates 59.86% 

of the year in normal operating mode, 33.73% of the time in standby mode and 3.19 % in warm-up 

and cool-down mode. Due to varying heat conditions and times with no heat demand, the time in 

warm-up and cool-down mode is higher for this case than for many of the other, which implies that the 

amount of on/off cycling is more frequent in this case. It is seen that implementing load management 

(case 3) will slightly increase the generator runtime, and therefore decrease the number of cycles per 

year. This is good as there will be less on/off operation of the generator. The generator will operate 

61.26% in normal operating mode. The increase in operating hours is mainly because of the slightly 

increased thermal demand of the building.  
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In case 4, when electrical surplus is not allowed, the operational hours has increased compared to case 

2 as the generator supplies less heat, which leads to that the generator can operate longer time before 

the tank is fully heated and the CHP has to turn off. This does also imply that the number of cycles has 

decreased, which is beneficial for the maintenance of micro-CHP appliances. However, even though 

the generator is operating more continuously throughout the year, the generator will operate more 

often at part load operation, as the electrical demand of the building limits the thermal production. The 

generator will almost never operate at full load, which decreases the efficiency of the CHP which was 

seen in section 8.5. The electrical efficiency was increased, but the thermal and overall efficiency did 

decrease. Therefore this operation mode is not beneficial from an efficiency point of view. This 

operating mode would have been more suited for buildings with more stable electricity usage 

throughout the days, and where the relation between electricity and heat demand was similar to the 

heat to power ratio of the CHP.  

For the cases where the generator is set to follow the electrical demand, it can be seen that the 

operating time has increased significantly and the warm-up and cool-down time has decreased. This 

implies that there is less on/off cycling of the CHP. For case 6, it can be seen that the CHP operates 

100% in normal on-mode. This is because some electrical appliances consume standby power even 

when not used, which results in some electricity demand present at all hours of the year. However, 

many existing CHP devices has a restriction in minimum allowed electricity produced for the 

generator to operate, which is not included in this thesis. This would have restricted the operation of 

the device, and thus maybe increased the efficiency as low power output operation would have been 

avoided. According to subtask 5’s report by Klobut, Ikäheimo and Ihonen, minimum operating set 

point for some IC-engines is 20% of rated power output (Klobut, Ikäheimo, & Ihonen). Implementing 

this would have limited the use to only operate when the electricity demand was higher than 1.1kW. 

For further studies the impact of this restriction should evaluated. In case 5 and 7, the operational 

hours is lower as the generator is forced off when the tank temperature exceeds its upper limit. Case 7 

has higher operational hours than case 5 due to that the high peaks are avoided when implementing 

load management, which allows the generator to operate more time before it is shut down.  

As seen for case 8, the plant achieves more on/off cycling by increasing the size. The operational time 

reduces, and the generator is more time in standby mode. This can be explained by that having a larger 

tank, more heat can be generated and stored in the tank at each time-step. This reduces the time the 

generator needs to be on. The generator can produce heat at higher load when it operates, as the 

storage is capable of storing more heat. However, this result in less electricity production than the case 

of higher operating hours, which results in poorer all over efficiency as was seen in section 8.5. 

Compared to literature study, this result was different than expected as it was stated that increasing the 

tank would lead to less on/off cycling and higher operating hours of the CHP. However, this would 

probably be the case if the CHP would be differently sized and would operate at constant output when 

it did operate. For such operation, the impact of having a larger tank size would have been more 

important, and should be further investigated for future research.  

 

How the operational hours affects the primary energy savings are of interest in the evaluation of the 

CHP performance, and can be seen in Figure 54. 
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Figure 54: Operational hours versus primary energy savings (PES) 

 

As can be seen, the cases with highest operational hours does not neccessarly achieve the highest 

primary energy savings. Case 9 achieves highest primary energy savings, but does not have highest 

operatioanl hours. The resulting primary energy savings depend more on the operating mode chosen 

rather than the operational hours of the generator. However, comparing cases in same operating mode 

such as case 2 and 8, it can be seen that higher operating hours results in higher primary energy 

savings. Similarly for case 4 and 5 (which are similarly operating mode, only one follows the thermal 

demand and limits the electric output while the other follows the electric demand and limits the 

thermal output) it can be seen that higher operating hours results in higher primary energy savings.  

 
Figure 55: Monthly operational hours all cases 

 

 2 3 4 5 6 7 8 9 

Max run hours 

(h/month) 

613.75 623.37 722.4 669.1 744 714.2 567.5 613.75 

Min run hours 

(h/month) 

313.87 317.65 652.31 515.53 720 550.92 175.6 313.87 

Average run 

hours (h/month) 

436.03 447.19 710.50 578.07 730 620.25 333.52 436.03 

Table 12: Max, min and average run hours 

As it can be seen by Figure 55, the cases with follow thermal mode have the largest seasonal variations 

in operating hours. Case 8 with increased thermal storage has the lowest operating hours, and from 

May to September, the operation is lower than 8 hours daily. The cases operated in electric demand 
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following mode has higher operating hours than the cases in thermal load following mode and are less 

affected by seasons. However, implementing thermal surplus restriction to this mode lowers the 

operating hours during the warm months. 

From Table 12, the maximum, minimum and average monthly operation time of each of the cases are 

seen. The minimum run hours are found in the month June, July and August. The maximum run hours 

are found in January and December. The lowest average monthly run hours are lowest for case 8 and 

highest for case 6. As space heating is required and on almost all day during the heating season, a 

more continuously operation is provided by the CHP device, which results in lower on/off operation. 

Outside the heating season, however, the CHP device has less continuously operation. This results in 

more on/off operation off the device as DHW is only demanded at certain points of the day. This 

reduces the operating hours of the CHP device, which also leads to lower efficiency as on/off 

operation is not desirable. It can be seen that the cases in follow thermal mode (2, 3, 8 and 9) has 

largest variations in operation time between summer and winter. This is because the thermal demand 

of the building varies throughout the seasons, while the electrical demand is more stable. In follow 

electrical mode, if nothing is specified, the generator will operate continuously throughout the year as 

there will be some electricity consumption at all hours of the day due to standby power consumption 

of different electrical equipment. This leads to poorer CHP efficiency, and overheating in the tank as 

was reviewed in section 8.3.2. With follow electric demand and restrictions in thermal surplus, it can 

be seen that case 7 has an overall higher amount of operating hours both during summer and winter 

than case 5. Case 4 with follow thermal operating mode with electric surplus restrictions achieves 

second highest amount of operating hours throughout the year.  

 
Figure 56: Relation between monthly run hours and efficiency 

 

As it can be seen from Figure 56, the CHP efficiency increases when the monthly run hours increases 

for most of the cases. Case 4 and 6 does not have the same notable increase depending on operating 

hours. In case 6 this is because the generator operates continuously the whole year, and the run hours 

will therefore only depend on the hours of the month. It is seen that the cases in normal follow thermal 

mode or the cases in follow electrical mode where thermal surplus is restricted has higher dependence 

on the operating hours of the device than the unrestricted case in follow electrical mode and the 

restricted case in follow thermal mode (case 6 and 4, respectively).  
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8.7  Reduced grid interaction 

Implementing CHP reduces the dependence on grid electricity as it produces electricity simultaneously 

as heat. Case 1 depends entirely on electricity imports from the public grid as there is no on-site 

electricity generation. As the electricity demand remains fairly constant throughout the year with small 

seasonal variations, the amount of electricity imports during the summer is the same as for the winter. 

Figure 57-Figure 62 shows the electricity imports and exports during a cold period for case 2-7. 

 

 
Figure 58: Imports and exports of electricity during a 

cold period where the temperature reaches its 

minimum, case 3 

 

 
Figure 60: Imports/ exports during a cold period where 

the temperature reaches its minimum, case 5 

 

 
Figure 62: Imports/ exports during a cold period where 

the temperature reaches its minimum, case 7 

Figure 57: Imports and exports of electricity during a cold 

period where the temperature reaches its minimum, case 2 

Figure 59: Import/exports during a cold period where the   

temperature reaches its minimum, case 4 

Figure 61: Imports/ exports during a cold period where the 

temperature reaches its minimum, case 6 
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As the profile for case 8 and 9 was similar to case 2, these graphs are not included. As can be seen in 

case 2, a large amount of exports are present, but also significant amount of imports are required as 

heat and electricity does not peak at the same time. For case 3, when the electricity peaks are shaved 

by the implemented load management, it is seen that the amount of imports are reduced remarkably.  

For case 4-7 exports are not present either because the electrical surplus restriction in follow thermal 

mode, or that the CHP is set to follow the electricity demand of the building.   

 

 
Figure 64: Imports and exports of electricity during a 

warm period where the temperature reaches its 

maximum, case 3 

 

 
Figure 66: Imports and exports of electricity during a 

warm period where the temperature reaches its 

maximum, case 5 

 
Figure 68: Imports and exports of electricity during a 

warm period where the temperature reaches its 

maximum, case 7 

Figure 63: Imports and exports of electricity during a warm 

period where the temperature reaches its maximum, case 2 

Figure 67: Imports and exports of electricity during a 

warm period where the temperature reaches its maximum, 

case 6 

Figure 65: Imports and exports of electricity during a 

warm period where the temperature reaches its maximum, 

case 4 
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Figure 63-Figure 68 show the corresponding import/exports graphs for case 2-7 during a warm period 

when the temperature reaches its minimum. For case 2 and 3 in follow thermal mode, the amount of 

exports are less present for this period than it was for the cold period. This is expected as heat and 

electricity is produced simultaneously and the electricity production follows the heat production. As 

the amount produced electricity is higher during the cold period, the amount of electricity imports is 

lower than for the warm period. This shows that the operation of the CHP device in follow thermal 

mode is more beneficial in periods where the heating demand is high.  The amount of imports needed 

for the two cases has also increased some as the generator produces less electricity due to less heat 

demand of the building. The cases which are restricted after electricity demand (4-7) has less seasonal 

variations as the electricity demand remains fairly constant over seasons.  

 

The impact of the electric surplus limitation to the thermal load following operation implemented in 

case 4 is greater during the heating season and specifically the coldest months when the thermal 

demand is highest. Without the restrictions, it was produced remarkably excess electricity which was 

exported to the electricity grid. During the summer months, when there is no demand for space 

heating, the only thermal demand of the building is for domestic hot water. This resulted in lower 

exports in case 2, and therefore the impact of the surplus restriction was not that present.  

 

For the electrical following cases (5-7), it is seen that allowing thermal surplus results in lower 

electricity imports as the generator can cover a larger part of the electricity demand. Also, the 

implementation of thermal surplus restriction in case 5 and 7 was most notable during the warm 

period. This is because the thermal demand is lower, which restrict the electricity production. 

Implementing load management (case 7) resulted in reduced amount of imports even with thermal 

restriction as the electricity demanded by the building is lower, and the high peaks are not that present. 

 

One of the main purposes with CHP is to enable on-site electricity generation as well as heat. This 

reduces the dependence on grid electricity. It is therefore interesting to look at how much of the 

electricity demand the CHP can cover for each seasons, and how much is exported. Table 13 show the 

average proportion of electricity demand met by CHP and the average daily electricity exports for the 

heating season, mid-season and the summer. Heating season is defined from January-March and 

November-December. Mid-season is defined as the months April, May and October, and the summer 

season is defined as June to September. The definition of the seasons is based on studies from Peacock 

and Newboroug (Peacock & Newborough, 22. June 2005).  

 

Table 13 shows the average proportion of electricity demand met by the CHP for each season and the 

average daily electricity exports for all cases simulated. In all cases, except case 6, the CHP device 

meets the highest proportion of the electricity demand during the heating season, and meets the lowest 

proportion of electricity demand during the summer. For the cases with present exports, it can also be 

seen that the average daily amount is highest during heating season and lowest during the summer. 

This is expected as production follows demand.  
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 Period of year Average proportion of daily 

electricity requirement met by 

micro-CHP generation (%) 

Average daily electrical 

energy exported (kWh) 

Case 2 Heating season (January-

March, November, 

December) 

61.99 52.31 

Mid-Season (April, May, 

October) 

35.67 20.82 

Summer (June-September) 23.52 9.349 

Case 3 Heating season (January-

March, November, 

December) 

66.72 59.73 

Mid-Season (April, May, 

October) 

39.45 25.61 

Summer (June-September) 26.02 12.099 

Case 4 Heating season (January-

March, November, 

December) 

80.96 0 

Mid-Season (April, May, 

October) 

73.17 0 

Summer (June-September) 67.65 0 

Case 5 Heating season (January-

March, November, 

December) 

82.58 0 

Mid-Season (April, May, 

October) 
72.136 0 

Summer (June-September) 68.83 0 

Case 6 Heating season (January-

March, November, 

December) 

97.855 0 

Mid-Season (April, May, 

October) 
97.97 0 

Summer (June-September) 97.86 0 

Case 7 Heating season (January-

March, November, 

December) 

92.018 0 

Mid-Season (April, May, 

October) 
80.98 0 

Summer (June-September) 77.423 0 

Case 8 Heating season (January-

March, November, 

December) 

60.34 51.809 

Mid-Season (April, May, 

October) 

30.82 21.02 

Summer (June-September) 18.42 9.583 

Case 9 Heating season (January-

March, November, 

December) 

61.99 52.31 

Mid-Season (April, May, 

October) 

35.67 20.82 

Summer (June-September) 23.52 9.349 

Table 13: Average proportion of electricity demand met by CHP and average daily electricity exports 
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The proportion of daily electricity requirement met by micro-CHP generation is increasing when 

implementing the load management in case 3 compared to case 2. This is mainly because the high 

electrical peaks are avoided, which make it possible for the generator to cover more of the buildings 

electricity demand when the unit is on. As the electricity demand is reduced, so is the amount of 

required imports. This leads to a larger amount of exports, as the building demands less electricity. 

However, the average amount of electricity covered by the CHP has not increased as much as the 

imports have been reduced. The main reason for this is that the load management shaves the electricity 

peaks, but the amount of electricity produced by the CHP remains the same. Therefore the main 

benefit is the avoided electricity imports rather than the increased amount of building demand covered 

by the CHP.  

 

Since the main benefit off using load management as an operational strategy is the reduced grid 

interaction as the electricity peaks are shaved, an comparison in daily production from the CHP versus 

imports and exports between case 2 and 3 is off interest. In Figure 69 and Figure 70 this is seen for a 

cold day. 

 

 
Figure 70: Own generation and exported-imported 

electricity balance cold day case 3 

 

The negative values represent the imports, while the positive values represent the exports for the 

import/export curve. The difference between the produced electricity and the import/exports curve 

represents the electricity demand of the building. The demand of the building is the interval between 

the produced electricity and the import/export graph. As seen, by implementing load management the 

amount of imports required during the cold winter day is eliminated. The micro-CHP is capable of 

covering the entire demand, and only exports which are considered beneficial are present.   

 
Figure 72: Own generation and exported-imported 

electricity balance warm day case 3 

Figure 69: Own generation and exported-imported 

electricity balance cold day case 2 

Figure 71: Own generation and exported-imported 

electricity balance warm day case 2 
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As can be seen from Figure 71 and Figure 72, the effect of load management pay a significant role in 

the amount of grid imports required also during the warm season. However, as the electricity produced 

most of the time is relatively small since the heat demand is low, the micro-CHP will not be able to 

cover as much of the demand as it was during the heating season, even with load management. To be 

able to cover the entire demand during these periods, the demand does either have to be further 

restricted after the domestic hot water usage or an electrical storage has to be implemented to store the 

surplus electricity for times with electricity deficit.  

 

For case 4, on the other hand, the impact of the seasonal variations does not pay too much of an impact 

as can be seen in Figure 73 and Figure 74. 

 

 
Figure 74: Own generation and exported-imported 

electricity balance warm day case 4 

 

As electricity exports are not allowed, the produced electricity is significantly lower than it was for 

case 2 and 3. The times where electricity imports are required represents the times where the thermal 

demand restricts the electricity output as it is set to follow the thermal demand. Comparing to case 2 as 

was seen in Figure 69 and Figure 71, for the cold and warm period respectively, it can be seen that the 

produced electricity has been reduces significantly by implementing the restriction, especially for the 

cold day.  

 

The seasonal and hourly variations in building demand and operating mode of CHP affect how the 

generator operates and its capability to cover the electricity demand. Figure 75 represents the yearly 

proportion of demand covered by CHP versus utility grid for the simulated cases. The corresponding 

values can be seen in Table 14. 

 
Figure 75: Proportion of demand covered by CHP versus utility grid, all cases 

Figure 73: Own generation and exported-imported 

electricity balance cold day case 4 
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 Case 

1 

Case 

2 

Case 

3 

Case 

4 

Case 

5 

Case 

6 

Case 

7 

Case 

8 

Case 

9 

El produced CHP 

[kWh/m
2
a] 

- 34.86 37.28 15.26 17.14 28.19 18.09 34.31 34.86 

Imports  

[kWh/m
2
a] 

31.93 21.42 11.44 16.68 14.80 3.75 5.75 21.91 21.42 

Exports [kWh/m
2
a] - 24.34 28.56 0 0 0 0 24.28 24.35 

Demand  

[kWh/m
2
a] 

31.93 31.94 20.15 31.94 31.96 31.94 23.84 31.94 31.94 

% of demand 

covered by imports 

100 67.07 43.26 47.77 46.31 11.73 24.11 68.61 67.07 

% of el produced 

exported 

- 69.83 76.61 0 0 0 0 70.77 69.83 

Table 14: Electricity distribution case 1-9 

By operating the CHP in follow electrical mode, less imports are required from the public grid as the 

generator is capable to cover a larger part of the electricity demand of the building. The greatest 

reduction in grid imports is seen in case 6, where the amount is reduced to 11.73%. The generator is 

here able to cover almost the entire electricity demand of the building.  However, as reviewed in 

section 8.3.2, system losses became greater as heat were vented from tank due to overheating at times 

when the thermal demand of the building was significantly lower than the heat supplied from the 

generator. The greatest amount of exported electricity is seen in case 3, when load management is 

implemented. The amount of exports does in this case represent 76.61% of the produced electricity. 

The reason to this high amount of exports is due to mismatch between demand and supply as the 

generator is set to follow the thermal demand of the building. As electricity and heat peaks at different 

hours of the day, substantially more electricity is produced at times when the thermal demand is high 

and the electrical demand is low. The amount of imports required to cover the demand is in case 3 is 

56.74% compared to 67.07% in case 2. To improve the systems capability to cover a larger amount of 

the electricity demand in follow thermal mode, electrical storage could be implemented to store the 

surplus electricity for times with electricity deficit. For better matching between supply and demand, 

the electricity and heat peaks in the building should happen at the same time. However, this is not 

realistic as electricity and heat often not peaks at the same time. But restrictions can be done in the 

electricity demand. A well-functioning load management can result in better operational conditions for 

the CHP generator and make it a better match for the building.  

Limiting the electrical surplus in follow thermal mode (case 4) enables the generator to cover a larger 

amount of the electricity demand. The amount of grid imports required has decreased from 67.07% to 

47.77 %. This means that the generator better matches the building’s electricity demand. Compared to 

the reference case with the condensing gas boiler and grid electricity, however, this reduction is still 

significant.   

 

Both case 5 and 7 meets a higher proportion of the electricity demand compared to the cases in follow 

thermal mode. By implementing load management, a higher proportion of the electricity demand is 

met as the electricity demand of the building is lowered and high peaks are avoided. For case 6, the 

thermal demand of the building has not an impact on the electricity produced and did therefore 

represent the greatest reduction in grid imports.  

Increasing the thermal storage, however does not lead to improved grid interaction compared to case 2, 

and the amount of imports has increased with ~1%. 
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8.8  CO2- emissions 
 

One of the promoting arguments in using CHP is the allover resulting CO2 savings compared to the 

conventional gas boiler. However, these savings depend on the emission factor for each of the energy 

sources used. Table 15 show the CO2 production coefficient used in the calculations.  

 CO2 production coefficients K (kg/MWh) 

 NS-EN 15603:2008 SAP 2012 Net-ZEB definition (yearly 

average 2014-2029) 
Natural gas 277 - - 

Biogas - 98 - 
Electricity 617 - 269.7 

Table 15: CO2- production coefficients (NS-EN 15603:2008, 2008) (Dokka, 2011) (Pout & BRE, 2011) 

As can be seen, the CO2 production coefficient for electricity using the net-ZEB definition is 

substantially lower than today’s UCPTE electricity mix. This will affect the environmental benefits of 

implementing CHP. In the results, the value of HHV is used for the delivered energy to calculate the 

CO2- emissions related to this energy.  

The emissions coefficient for the electricity using NET-ZEB definition is calculated based on equation 

29 taken from the “Proposal for CO2-factor for electricity and outline of a full ZEB-definition” 

(Dokka, 2011): 

       {
        [        ]                              

                                                                                 
    (29) 

Where, 

 

        is the CO2 factor for electricity for year t, in g/kWh; 

     is the actual year; 

 

 
Figure 76: CO2 emissions UCPTE electricity mix 

On an environmental perspective the cases in follow thermal mode achieves the highest amount of 

CO2-savings compared to the reference case (1) as can be seen in Figure 76. Case 2 represents 13.64% 

CO2-savings compared to the reference case. To achieve low CO2 emissions, it is preferable to have a 
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system with steady production and few operational cycles. As can be seen, using the emission factor 

for the current UCPTE electricity mix, CO2 savings are achieved. By implementing load management 

as was done in case 3, higher CO2 savings are achieved, and the amount has increased to 26.58 %. 

This indicates that buildings with more stable electricity demand is beneficial for the CHP operation, 

and where the relation between the thermal demand and electrical demand is higher. By limiting the 

electrical surplus as was done in case 4, on the other hand the CO2 savings were reduced to 7.537%. 

Likewise, it is seen that for the electrical following modes, the CO2 savings are in general lower except 

for case 7 where load management is implemented. However, the savings are still lower than for case 

3 with load management in follow thermal mode, and has savings of 15.2% compared to the reference 

case 1. Implementing increased thermal storage did not result in greater CO2 savings and the savings 

are 1.61% lower than for case 2.  

 

The greatest CO2 savings are achieved in case 9, when upgraded biogas is used as fuel. This is as 

expected, as biogas is considered a CO2 neutral fuel. Using the substitution principle for exported 

electricity as presented in section 4.4, the CO2 emissions from biogas fuel are completely limited. This 

result in 71.91% CO2 savings compared to the reference case. In reality these savings would be lower 

as it would require a higher amount of regular biogas to achieve the upgraded biogas. However, the 

results represent its potential. However, it has to be notified that the CO2 production factor for biogas 

is taken for SAP report for proposed carbon emission factors and primary energy factor, while the 

factor for natural gas is taken from NS-EN 15603:2008.  The CO2 production factor for natural gas in 

SAP’s report is 202 kg/MWh, while in NS-EN 15603:2008, an average value for gas is stated to be 

227 kg/MWh. Using the corresponding factor for natural gas from SAP’s report would have made the 

total CO2 savings for CHP with biogas slightly smaller. However, as the factor from NS-EN 

15603:2008 is used for the rest of the results, it will be kept the same for clarity sake.  Biogas does in 

either of the two cases achieve significantly CO2 savings compared to the conventional case with 

natural gas.   

 

As the CHP is operated during the whole year, the seasonal variations in emissions savings are of 

interest. Figure 77 show the daily CO2 savings for case 2, 3 and 4 compared to the reference case 1.  

 
Figure 77: Yearly distribution of CO2-savings for case 2, 3 and 4-UCPTE mix 

 

As can be seen, the CO2 savings are greatest during the heating season when the thermal demand of 

the building is higher. This is mainly because the generator produces more electricity and thus, the 
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amount of imports needed to cover the electricity demand is reduced during these months. It can be 

seen that the overall savings are highest in case 3. The difference is most notable during the summer, 

as the savings for both case 2 and 4 are small here. Case 4 achieves the lowest CO2 emissions of the 

three cases, and has smaller variations between summer and winter. This is mainly because the 

electricity demand restricts the thermal and electrical output of the CHP, which results in no electricity 

exports to be substituted from the amount produced. During the summer it can be seen that for case 2 

and 4, the CHP does barely result in CO2 savings as the efficiency of the CHP is poorer when the load 

is smaller.  

 
Figure 78: CO2 emissions NET-ZEB definition of electricity mix 

In a NET-ZEB perspective, however, it can be seen in Figure 78 that the resulting CO2-emissions for 

the CHP cases become poorer. Calculating based on NET-ZEB emission factor for the yearly average 

from now until 2029, an addition of 15.52% in CO2 emissions is seen in case 2. Case 3 represents a 

better environmental fit on a future perspective than case 2, but does however not achieve savings 

compared to the reference case. An increase in CO2 emissions of 12.29% is seen. Case 4 represents the 

best fit for the CHP regarding CO2 emissions on a future perspective when using natural gas as fuel 

source. Only a small increase of 5.07% is seen compared to the reference case. Case 6 is seen as the 

less beneficial CHP case on a future perspective, increasing the CO2 emissions with 21.9%. The only 

case who achieves savings on a future perspective is case 9, where renewable upgraded biogas is used 

as a fuel. As this fuel is carbon neutral, it will contribute to low emissions, and large CO2-savings are 

seen also in a NET-ZEB context.  

It is therefore to conclude that using NET-ZEB definition will not be beneficial for the CHP system in 

the system cases where natural gas is used as fuel. It is seen that the cases with unlimited thermal or 

electrical surplus has the highest emissions. For the cases in follow thermal operation mode with 

unlimited electricity surplus this is explained by the huge amount of exported electricity. When the 

emission factor for grid electricity is low, exports will no longer be as beneficial for the CHP. A 

remarkable addition in CO2 emissions is seen, which makes the CHP case not to be a sustainable 

option compared to the gas boiler on a future environmental perspective. The CO2 factor for electricity 

is expected to decrease over the upcoming years as electricity production is becoming greener (Dokka, 

2011). This questions the benefits on a future basis of implementing residential CHP on a CO2 

perspective. Therefore, the CHP system should represent a net benefit in CO2 emissions also on a 

future perspective in order to be a sustainable option. The use of renewable fuel should be further 
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investigated, and pilot project should be developed to enable an efficient operation in practice also on 

these fuels. If this is obtained, huge environmental benefits will result as was seen in case 9.  

These results indicates that in areas where electricity is derived from high carbon fossil fuels, such as 

coal or peat, the uptake of micro-CHP on site can give significant CO2 reductions. However, in areas 

where electricity is derived from more renewable sources, such as in Norway, where 99% of the 

electricity generation comes from hydropower, CHP fueled on natural gas will not be beneficial in an 

environmental perspective. This corresponds well to what former studies from SEAI have concluded 

as well (SEAI, 2011). Fueled on renewable fuels, however, the CHP represent a reduction also on a 

future perspective and is a more viable option. Aspects like security of supply, economic cost and 

efficient upgrading processes of biogas have an impact on the sustainability and degree of 

implementation on a future perspective.  
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9. Discussion and comparison to former studies 
 

From the results, it has been seen that a heat-driven operation of the CHP is optimal for dwellings with 

low heat to electricity ratio, as surplus heat is avoided. As well, electricity exports are seen as 

beneficial in a net-ZEB context as they contribute to avoided electricity production from larger power 

plants with higher primary energy consumption and CO2-emissions. For such operation, the most 

common operation is grid-parallel operation as a connection to the public grid is essential to avoid 

electricity loss. For the heat-lead operation, a connection to the public grid is needed if battery storage 

is not implemented. This leads to a need for a well-functioning integration and that the electricity fed 

into the grid is able to be used and will result beneficial for the consumers both on an environmental 

and economic perspective. According to a study funded by the UK government and conducted in co-

operation with electricity distribution companies, existing distribution networks could accommodate 

up to a 50% penetration of all households with micro-CHP before there would be any notable impact 

on the electricity network (Energy saving trust, 2005). However, to make it possible for the ICE-

generator to work nearly as a micro power station providing the grid with electricity, it is necessary 

with monetary compensation for the electricity fed into the grid. This can be done by feed-in tariffs, 

net-metering or time-of use metering (Alanne, Micro-Cogeneration-I : Introduction).  

 

When implementing follow electrical operation scheme for the CHP, elevated tank temperatures was 

seen, especially during the summer months, if thermal surplus restriction was not implemented. This 

can be explained by the CHP device simultaneously production of heat and electricity. As the 

electricity demand will remain more-over constant throughout the year, while the thermal demand is 

significantly lower during the summer, excess heat production will result. This heat is stored in the 

tank until the temperature exceeds its upper limit and venting is needed. This amount of heat will get 

lost if seasonal storage is not implemented, which is not desirable for the system. As seasonal thermal 

storage was not an option in this thesis, implementation of a control sensor on the supply temperature 

from the tank, and thus restricting the thermal surplus was done. This restricted the operation of the 

CHP to only operate until the tank was heated to its upper limit that was set to be 75°C. Temperatures 

were decreased to remain within a stable limit, and vented heat lost to the environment was avoided. 

This operation of the device is so-far not well tested and most of the in-market CHP products are 

constructed to follow the thermal demand of the building. Further research should be done to achieve a 

better operation in follow electric mode where the usage of seasonal storage for instance may be an 

important solution for improving the operation.    

 

As elevated temperatures was seen for the CHP cases in follow electrical mode,  it is desired that an 

emergency cooling unit should be installed in the return flow of the micro-CHP. This should be done 

in order to limit the return flow temperature at times when the thermal demand is low. This can be 

done by for instance installing heating plates to lead off the heat. These should be used as good as 

possible to not waste the heat, for instance in a drying room (Simader, Krawinkler, & Trnka, March 

2006). Houses with swimming pool can use them as both emergency cooling unit and storage of 

excess heat by the use of heat exchangers.  

 

When thermal surplus restriction was implemented on the follow electric mode it was seen that the 

yearly operation time decreased. Comparing to former studies done by A.D. Peacock and M. 

Newborough, this effect is common (Peacock & Newborough, 22. June 2005). In the study by Peacock 

and Newborough, the yearly operation time decreased with 12 %, while in this thesis, the thermal 
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restriction reduced the operation time with 20.32%. The thermal surplus was also mostly seen during 

the warm season, which is also the case for the simulated cases in this report.   

 

From an efficiency point of view, the highest CHP efficiency achieved was 75.15% in case 3. This 

was the case where the demand of the building did have higher heat to electricity ratio due to the 

implemented load management. This shows that for the ICE-device, buildings with higher heat to 

electricity ratios are desirable.  According to Arsalis, Nielsen and Kær (Arsalis, Nielsen, & Kær, 2011) 

combustion-based systems, such as the internal combustion engine technology, are not suitable for 

micro-CHP applications mainly due to their high thermal-to-electric ratio, and also due to their low 

efficiencies at part-load operation. Fuel cell-based stationary power generation technology is capable 

of achieving high efficiencies, with lower emissions as compared to combustion-based systems. 

Compared to studies by Amir A. Aliabadi, Murray J. Thomson and James S. Wallace, a CHP 

efficiency based on HHV of 75.15% looks normal in the case of internal combustion engines (Amir, 

Murray, & James, 22/01- 2010). 

To achieve higher efficiencies for CHP, it is possible to use condensing CHP devices. Senertec Dahs 

has devices with a condenser coupled to it. These devices can, according to Dach-Senertec webpages, 

achieve efficiencies up to 92% (based on HHV) and 102% (based on LHV) if driven at full load 

operation. Without the condenser, the efficiency is 79% (based on HHV) and 88% (based on LHV). 

The condenser makes it possible to provide an additional 2.5 kW of heat by utilizing the latent heat 

(SenerTec UK, 2014).  

The choice of operating mode and strategy to be applied to the CHP system depends on the building, 

the region where it is implemented, the electricity prices, the availability of storage and the 

characteristics of the CHP device used. For buildings with high thermal demand compared to electrical 

demand, combustion based micro-CHP systems achieves good operational characteristics. As it was 

seen in this thesis, all cases achieved higher efficiency during the heating season, when more heat was 

demanded by the building. However, as the thermal demand of the building is expected to decrease 

over the upcoming years due to better insulated building envelope, the combustion based CHP devices 

should be able to achieve higher power to heat ratio. This is especially important in electrical 

following operation to avoid excess heat production, and thus waste the heat. 

Another challenge for power control is that for the usual present micro-CHP technologies it is only 

available on/off operation and it may be required to have long start-up and shutdown periods. Also, at 

start-up phase, a substantial fuel demand is needed and the existing micro-CHP devices have low part-

load efficiency. Therefore, it has also been seen from previous studies that houses with a steady 

demand close to specific power output is preferable for micro-CHP appliances (Alanne, Micro-

Cogeneration-I: Introduction). This corresponds well to the findings of this master. As was seen from 

the results, the implementation of load management resulted beneficial for the operation of the CHP. 

The electricity demand was shaved, which made the operation of the CHP in both heat-led and 

electricity-led mode better. For further increased performance, an operation where the generator could 

operate near its full load power output would have been beneficial, as it was seen that when the 

generator operated at higher loadings, the performance of the system improved.  

In order to achieve an optimal operation of the CHP, a grid-connected system should be established. 

An infrastructure where electricity feed-in to the public grid is important for an optimal operation of 

the CHP in dwellings with low electrical demand and high thermal demand. To avoid restriction in 

thermal output of the generator due to low electricity demand, either exports or battery storage should 

be available to ensure a stable operation of the CHP. On-site electricity production fed in to the public 
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grid results in avoided electricity production from larger power, which results beneficial in a net-ZEB 

context.   
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10. Conclusions 
 

In this thesis, the performance of different operational strategies applied to a micro-CHP system 

supplying a multi-family building built after the Norwegian building norm, TEK10, has been 

investigated. To evaluate the performance of a micro-CHP device, a detailed model of the system was 

needed in order to predict the electrical and thermal performance with sufficient temporal resolution 

and accuracy. All strategies have been compared to a high-efficient condensing gas boiler, which 

represents the best system available in the market. A high-efficient condensing gas boiler was chosen 

in order to evaluate the possibilities for increased market penetration for CHP technology. 

 

Two operating mode have been reviewed. First, the CHP-device was set to meet the entire thermal 

demand and part of the electricity demand. Then the CHP was restricted to follow the thermal demand 

but only until the electrical demand limit was reached. The result of this was that the CHP-device only 

covered parts of the thermal and electrical demand. Afterwards, the CHP-device was set to cover the 

entire electrical demand of the building, and the corresponding part of the thermal demand possible 

under this operation which was implemented both with and without thermal surplus restrictions. In the 

case were thermal surplus was allowed, the CHP-device was able to cover almost the entire electrical 

demand of the building. However, this impacted the system efficiency as system losses increased due 

to wasted vented heat from the tank. With thermal surplus restriction, wasted heat was avoided, but 

resulted in lower operation time of the CHP-device and less of the electricity demand covered by the 

CHP.  To enable the generator to cover a larger part of the electricity demand, even in the restricted 

mode, load management was implemented. This lead to higher system efficiency, primary energy 

savings, more reduced grid interaction and higher CO2-savings than the restricted case without load 

management. The cases in follow thermal mode had significant amount of electricity exports, 

especially in the heating season due to high thermal demand of the building. Implementing restriction 

in electricity surplus impacted the efficiency of the CHP as the generator had to operate more time at 

part load ratio.  This implies that grid connection is essential for achieving good operation of CHP in 

thermal following mode. 

 

For primary energy, it was found that case 9 with upgraded biogas as fuel in follow thermal operation 

mode gave highest primary energy savings. The savings obtained was 34.3%. A part from the usage of 

renewable fuel it was seen that implementation of load management had positive effect on the 

operation as it shaved the electricity peaks. This resulted in higher primary energy savings compared 

to the other cases due to less electricity imports and increased exports which is seen beneficial in a net-

ZEB context. Implementation in thermal following mode resulted in primary energy savings of 

31.29% compared to the reference case. Implementation in electrical following mode, however, 

resulted in lower savings and represented only 17.69% compared to the reference case. In general, it 

was seen that the cases which followed the electrical demand of the building achieved less primary 

energy savings than the cases which followed the thermal demand of the building. The lowest primary 

energy savings was achieved in case 6, with savings of only 6.98% compared to the reference case. 

 

Regarding energy efficiency, it was seen that case 9 achieved the best system efficiency based on 

primary energy with a value of 70.7% based on HHV. This case represented a 20.8% increase in 

system efficiency compared to the reference case. In general, it was seen that the cases in follow 

thermal mode achieved better system efficiencies than the cases in follow electrical mode. The 

implementation of load management also had a positive effect on the system efficiency, and case 3 

represented the second best efficiency, with an increase of 13.8% compared to the reference case. This 
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case also had the best CHP efficiency, with a value of 75.1% on a HHV basis. The poorest CHP 

efficiency was seen in case 5, with a value of 63.3% on a HHV basis. The electrical efficiencies were 

best for the cases in follow electrical mode, while the thermal efficiencies were best for the cases in 

follow thermal mode. However, the reduction in efficiency was most pronounced for the thermal 

efficiency, and therefore had most impact on the resulting fuel efficiency.    

 

Regarding reduced grid interaction, it was seen that case 6 resulted in the highest reduction in imports 

from the public electricity grid. Imports were reduced to 11.73%, making the CHP able to cover 

88.27% of the building’s electricity demand. However, this impacted the system efficiency as 

significant amount of heat was wasted during the summer months due to overproduction of heat.  

Implementing restriction in thermal surplus lead to higher dependency on grid electricity as was seen 

in case 5. 45.31% of the annual electricity demand was in this case imported from the grid. 

Implementing load management to this mode resulted in the highest reduction in grid dependency 

without affecting the temperature and thus avoiding wasted heat. Grid imports represented in this case 

24.11% of the yearly demand, which is a significant reduction compared to the reference case. As 

expected, the highest amount of exports was seen in the follow thermal mode, where case 3 

represented the largest part due to the implemented load management. The exports represented 76.61% 

of the produced CHP electricity.  

 

Regarding the operational characteristics, it was seen that follow electrical mode did achieve more 

continuously operation compared to the follow thermal operation. This was mainly due to that the 

electricity demand was more constant throughout the year. The CHP operation was therefore less 

affected by temporal variations and transient heat loads. However, for the cases with thermal surplus 

restriction in follow electrical mode, the operational hours was reduced as this restricted the operation. 

The operational hours was in this case, as well as for the follow thermal mode cases, lower during the 

summer than the winter due to the reduction in building heat demand.  

 

Regarding CO2-emissions, it was seen that the use of upgraded biogas resulted in the highest CO2-

savings when using both CO2-factor for the UCPTE electricity mix and the Net-ZEB definition. By 

using the UCPTE electricity mix, 70.9% CO2-savings was achieved for case 9 compared to the 

reference case, while using the NET-ZEB definition, 60.53% CO2 savings was achieved. This 

indicates that the usage of renewable fuel with same characteristics as natural gas in CHP represents 

significant environmental benefits. However, the use of natural gas resulted in less savings. When 

using the UCPTE electricity mix, savings were achieved in all cases, while when using the NET-ZEB 

definition, neither of the cases gave reduced CO2 emissions compared to the reference case. For the 

UCPTE electricity mix, highest CO2 savings was achieved in case 3, representing a 26.58% reduction 

in emissions compared to the reference case. The lowest CO2-savings was seen in case 6, representing 

only a 3.85% reduction. The net-ZEB definition represents a cleaner electricity production, while the 

UCPTE electricity mix represents a mix highly dependent on fossil resources. It can therefore be 

concluded that micro-CHP gives significant CO2-reductions in areas where electricity is derived from 

high carbon fossil fuels. However, in areas where electricity is derived from more renewable sources, 

such as in Norway, where 99% of the electricity generation comes from hydropower, CHP fueled on 

natural gas will not be beneficial in an environmental perspective. The usage of renewable fuels is 

therefore essential in such areas to make micro-CHP be a competitor to the conventional gas boiler.  
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11. Recommendations for further work 
 

Simulations in this thesis were performed on a well-insulated multifamily building constructed after 

TEK10 (Kommunal- og regionaldepartamentet, 2010). For further studies, the use of micro-CHP to 

supply a building construction after passive house requirements should also be evaluated. It has been 

shown in previous studies that poorly insulated dwellings with high thermal heating demand achieves 

higher efficiency in the CHP system than well insulated envelopes with lower thermal heating demand 

(Kelly N. , Clarke, Ferguson, & Burt, 2008). 

 

It would also be interesting to evaluate the effect of using a smaller generator, which is set to meet part 

of the thermal demand and part of the electrical demand at its full load operation. In this way, the CHP 

should be sized to only cover the base load of the building, and thus the generator would be less 

affected by temporal variations in demand and thus enable a more continuous operation at higher 

efficiency. According to Annex 42 final report, the CHP achieves optimal operation of the CHP device 

when it is implemented to cover 80-90% of the thermal energy demand of the building (Beausoleil-

Morison, April 2008). With this operation, the CHP covers the base load, while the auxiliary boiler 

covers the peaks.  

 

In the future the goal is to achieve zero energy / plus energy house / autonomous houses which are 

meeting the electrical demand by local generation. Micro-CHP is here a relevant option if the optimal 

operation is implemented. However, the challenges are that the thermal demand of residential 

buildings is decreasing significantly due to forthcoming low energy and passive construction 

standards. The electrical demand on the other hand may decrease, remain the same or even increase in 

the future. As the current micro-CHP technologies have relatively low electricity/heat ratio, a high 

electrical demand and a low thermal demand of a building may make it challenging for the CHP 

integration. This was seen from the simulation result in this thesis. When load management was 

implemented, the electricity demand was reduced, which made the heat to electricity demand relation 

greater, and the operation of the CHP was improved. An optimal operation of the CHP devices is 

therefore necessary in order to increase the efficiency and the viability of micro-CHP for market 

penetration. 

Due to this development it is interesting to view different developments of integration of the CHP 

system. Devices with a higher electricity/heat ratio would make micro-CHP more competitive in the 

future as they could better match the demand of the building. More research should be done in this 

area, and pilot projects should be developed to better understand the operation of the CHP. This is 

because the existing simulation models only represent an approximation to the real life operation, but 

cannot predict exact answers. However, it gives an important view on which operational strategies that 

have the potential to improve the operation, and which strategies which will not. This eases the 

amount of necessary real life developments of demo-projects.  

For further studies and research, focus on cooling applications based on micro CHP and absorption 

systems would also be interesting to investigate as this subject so far is not well understood. Further 

interesting aspects of development to review closer in upcoming studies are polygeneration and hybrid 

systems. Polygeneration is the simultaneously production of electricity, heat and cooling energy at 

various enthalpy levels, and fuel synthesis (e.g. hydrogen). In polygeneration, the fuel synthesis is the 

main product, and the electricity, heat and cooling are considered as by-products. In this way, fuel 

production is done as well as the by-products is well used to achieve high efficiency and avoid energy 
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waste. However, this option is more common for large-scale plants rather than small-and micro-scale 

plants (ICPS, 2014).  

In hybrid systems, the micro-CHP device is combined with other on-site production units such as 

solar, micro-wind and heat pump. For hybrid system to work properly a set of control configurations 

has to be implemented. Which device to cover what has to be reviewed in order to implement an 

optimal operation between the devices, and thus further increase the efficiency. Micro-CHP can thus 

be an option for use in isolated regions as it produces both heat and electricity. This would especially 

be relevant for buildings with no grid connection. The usage of an independent CHP system coupled 

with a battery system and a storage tank could ensure both heat and power supply to the dwelling. The 

usage of renewable fuel would further make this system more environmentally beneficial as was 

concluded from the results conducted in this thesis.  

For future studies, optimal sizing of the micro-CHP for maximum economy would also be interesting 

to review. Further system in cooperation with auxiliary components such as adsorption heat pump to 

increase system efficiency and the total thermal output of the CHP should be analyzed in more 

detailed. This requires a proper analysis of the economic efficiency and viability of CHP, which is a 

central concept when evaluating the possibility of increased CHP implementation. The economical 

efficiency can be evaluated through familiar methods used in investment mathematics. Some of these 

methods are the annuity method, the net present value method and the internal rate of return method. 

In the annuity method, the annual capital cost will be calculated from the investments determined on 

the basis of an interest rate fixed with the owner and the corresponding period of use using the 

subsequent annuity. In this method, the annual cost of heat is added up, and the generated electricity is 

subtracted to find the annual cost of heat production (Simader, Krawinkler, & Trnka, March 2006). 

The net present value method calculates the present value of the investment. Using the net present 

value over the years of useful life gives both the payback period and the profit at the end of the period. 

This shows if the implementation will give a net benefit or a net deficit over its useful lifetime 

(Simader, Krawinkler, & Trnka, March 2006). In the last method, internal rate of return method, the 

actual percentage rate of return on the capital investment is calculated.  

The possibilities for grid exports should also be analyzed in more detail in future studies. As this 

requires an appropriate infrastructure, and depends on different factors such as electricity prices, 

power capability of grid etc., the profitability of exports needs to be examined. If exports do not 

present a profit for the consumer, such operation will not be attractive as the consumers will always 

chose a technology over another based on economical savings as well as environmental savings. As 

long as other technologies are cheaper, and represent the same security of supply, it will be difficult 

for CHP to penetrate the market. When connecting a CHP device to the public grid, the economic cost 

is a major factor of interest which is not included in this thesis. According to Klobut, Ikäheimo and 

Ihonen, the connection cost may be up to 200-400€, and yearly counting cost is about 60€ (Klobut, 

Ikäheimo, & Ihonen). For a grid connection, a special meter has to be installed in order to measure the 

electricity injected to the grid by the micro-CHP device. Until now, this meter is the only available 

product in the market for an advanced grid connection and management (Klobut, Ikäheimo, & 

Ihonen).  
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Appendix A: Storage tank parameters 
 

Reference storage tank: 

Storage tank parameters     Value   Units 

Number of nodes      10   - 

Tank volume       0.5   m
3
 

Tank height        1.6625   m 

Tank shape       Vertical cylinder - 

Boiling point of tank fluid     98   °C 

Heater 1 priority control     MasterSlave 

Heater 1 setpoint temperature     60   °C 

Heater 1 deadband temperature difference   10   °C 

Heater 1 capacity      2000   W 

Heater 1 height       1.33   m 

Heater 2 setpoint temperature     50   °C 

Heater 2 deadband temperature difference   5   °C 

Heater thermal efficiency     0.8   - 

Fuel type       Natural gas  - 

Off Cycle parasitic fuel consumption rate   0   W 

Off Cycle parasitic heat fraction to tank    0.8   - 

Off cycle parasitic height     0.5   m 

Ambient temperature Indicator     22   °C 

Uniform skin loss coefficient to ambient    0.546   W/m
2
K 

Skin loss fraction to zone     1   - 

Off cycle flue loss coefficient to ambient temperature  0   W/K 

Use side effectiveness      1   - 

Use side inlet height      0.0   m 

Use side outlet height      1.6625   m 

Source side effectiveness     1   - 

Source side inlet height      1.6625   m 

Source side outlet height     0.0   m 

Inlet mode       Seeking   - 

Use side design flow rate     Autosize  m
3
/s 

Source side design flow rate     Autosize  m
3
/s 

Indirect water heater recovery time    0.75   hr 

Additional destratification conductivity    0.1   W/m
2
K  
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Appendix B: Specifications gas boiler 
 

Model parameter      Value   Units 

Fuel type       Natural gas  - 

Nominal capacity      25 000   W 

Efficiency curve temperature evaluation variable  Leaving boiler  - 

Nominal thermal efficiency     0.89   - 

Design boiler water outlet temperature (Tw)   70   °C 

Max design boiler water flow rate    0.0021   m3/s 

Minimum part load ratio (PLR)     0.10   - 

Maximum part load ratio (PLR)     1.00   - 

Optimum part load ratio (PLR)     1.00   - 

Temperature upper limit water outlet    80   °C 

Boiler flow mode      Not modulated  - 

Parasitic electric load      0   W  

 

Condensing boiler efficiency curve parameters: 

 

A0        1.124970374  - 

A1        1.014963852  - 

A2        -0.02599835  - 

A3        0.0   - 

A4        -1.4046E-6  - 

A5        -0.00153624  - 

Minimum value of PLR      0.1   - 

Maximum value of PLR     1.0   - 

Minimum value of Tw      30.0   - 

Maximum value of Tw      85.0   - 

 

*Note: The efficiency curve did not work as expected throughout the simulation, but was kept as the 

example file with a condensing gas boiler in energy plus used the stated efficiency curve. Results were 

also simulated without the efficiency curve implemented, and the results were almost similar.  
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Appendix C: Specifications micro ICE- generator 
 

Model parameter        Value  Units 

Operating bounds     Pmax   5500  W 

       Pmin   0  W 

Maximum cooling water temperature   Tcw,out,max  80  °C 

Maximum rate of change in fuel flow   (
  ̇    

  
)max  ∞  kg/s

2 

Maximum net electrical power rate of change  (
     

  
)max  ∞  W/s 

Thermal mode characteristics    [MC]eng   63605.6 W/K 

       [MC]HX   1000.7  W/K 

       UAHX   741  W/K 

       UAloss   13.7  W/K 

Standby mode power use    Pnet,standby  0  W 

Warm-up characteristics    twarm-up   60  s 

Cool-down characteristics    Pnet, cool-down  0  W 

       tcool-down   60  s 

Electrical efficiency coefficients   a0   0.27  - 

       a1-a26   0  - 

Thermal efficiency coefficients    b0   0.66  - 

       b1-b26   0  - 

         

 

[MC]eng  is the thermal capacitance of the engine control volume  

[MC]HX  is the thermal capacitance of the cooling water control volume 

UAHX is the overall thermal conductance between the thermal mass and the cooling water control 

volumes. 

UAloss is the effective thermal conductance between the engine control volume and the surroundings 
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Appendix D: Building parameters 
 

Building parameters:       Value  Units 

Total floor area        450  m
2
 

Area roof        150   m
2
 

Area glazed        60.3   m
2
 

Area door        2.00   m
2
 

Total air volume       1350   m
3
 

 

 

U-values 

Opaque         0.160   W/(m
2
K) 

Glazed         1.016  W/(m
2
K) 

Door         1.181  W/(m
2
K) 

Floor         0.145   W/(m
2
K) 

Roof         0.113   W/(m
2
K) 

Thermal bridges       0.06  W/(m
2
K) 

Infiltration rate        1.0  1/hr 

SFP factor ventilation       2.5 

Heat recovery effectiveness      - 

Specific air amount in ventilation     1.2   m
3
/h∙m

2 

Ventilation fan pressure rise      100  Pa 

Ventilation fan total efficiency      0.9  - 
 

 

*Note: The infiltration rate should be 1.2 
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Appendix E: Pumps  
 

Supply pump parameter (pump in loop between CHP or gas boiler and storage tank): 

 

Model parameter:     Value    Units 

Rated Flow Rate     Autosized by software  m
3
/s 

Rated pump head     2000    Pa 

Rated power consumption    Autosized by software  W 

Motor Efficiency     0.87    - 

Pump control type     Intermittent   - 

 

 

Circulation pump parameters (pump in loop between storage tank and building loads): 

 

Model parameter:     Value    Units 

Rated Flow Rate     Autosized by software  m
3
/s 

Rated pump head     1    Pa 

Rated power consumption    Autosized by software  W 

Motor Efficiency     1    - 

Pump control type     Intermittent   - 
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Appendix F: ICE model engineering description 
 

The micro CHP model used in EnergyPlus is an empirical model, but is dynamic in respect to the 

thermal heat recovery as the performance is a function of the engine temperature. The model is also 

dynamically in respect to possible warm up and cool down periods. The relevant model equations are 

the following and are taken from the EnergyPlus engineering references (US Department of Energy, 

2013): 
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Where, 

 

      is the steady-state, part load, electrical conversion efficiency of the engine [-] 

       is the steady state , part load, thermal conversion efficiency of the engine [-]  

 ̇     is the mass flow rate of the plant fluid through the heat recovery section [kg/s] 

         is the cooling water inlet temperature through the heat recovery section [°C] 

         is the cooling water outlet temperature through the heat recovery section [°C] 

           is the steady-state electrical output of the system [W] 

          is the gross heat input into the engine [W] 

           is the steady- state rate of heat generation within the engine [W] 

          is the lower heating value of the fuel used [J/kg or J/kmol] 

         is the molar fuel flow rate [kmol/s] 

 ̇       is the mass fuel flow rate [kg/s] 

 ̇       is the mass flow rate of air through the engine [kg/s] 
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[  ]       is the thermal capacitance of the engine control volume [W/K] 

[  ]    is the thermal capacitance of the encapsulated cooling water and heat 

exchanger shell in immediate thermal contact [J/K] 

         is the temperature of the surrounding environment [°C] 

        is the temperature of the engine control volume [°C] 

[ ̇  ]    is the thermal capacitance flow rate associated with the cooling water [W/K] 

      is the effective thermal conductance between the engine control volume and 

the cooling water control volume [W/K] 

        is the effective thermal conductance between the engine control volume and 

the surrounding environment[W/K] 

 

These equations are the basis of the model and EnergyPlus solves these equations dynamically. 

Further description of the dynamic model can be found in EnergyPlus Engineering reference (US 

Department of Energy, 2013) and Annex 42 (Beausoleil-Morrison, Ferguson, Griffith, Kelly, 

Maréchal, & Weber, 2007). The CHP model has a number of different operating modes. The operating 

mode for a given system time step is determined from the mode during the previous time step, user 

inputs, and high-level controls from elsewhere in EnergyPlus. The operating mode is reported after 

each time step. The different operation modes are given as follow: 

 

Operating mode Main Criteria     Notes 

Off   Availability schedule value=0  No consumption of power or fuel. 

 

Stand By  Availability schedule value ≠ 0  Consumes stand by power but no fuel 

 

Warm Up  Load (thermal or electric) ˃0.0  Two alternative sub –modes: 

   Availability schedule ≠0  Stirling engines use warm up by 

   Time Delay ˂ elapsed time since nominal engine temperature while 

   entering warm up mode.  internal combustion engines uses 

   Engine temp ˂ nominal engine  time delay.   

   temp     Fuel is consumed but no power is 

        produced. 

 

Normal Operation Load (thermal or electric) ˃0.0  Fuel is consumed and power is  

Availability schedule ≠0  produced. 

   Time Delay ˃ elapsed time since  

   entering warm up mode.   

   Engine temp ≥ nominal engine     

   Temp 

 

Cool Down  Load (thermal or electric) =0.0  The alternative sub- modes where  

   Availability schedule ≠0  the engine can be forced to go  

        through a complete cool down  

        cycle before allowed to go back 

        into warm up or normal mode. 

        No fuel is consumed and no  

        power is consumed. 
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Appendix G: Water heater model engineering description 
 

The stratified water heater object in EnergyPlus is based on the following equations taken from the 

engineering reference (US Department of Energy, 2013), and the nodes are coupled by vertical 

conduction effects, internode fluid flow ant temperature inversion mixing. The model uses the 

Forward-Euler numerical method to simultaneously solve the differential equations governing the 

energy balances on the nodes.  

Energy Balance 

The stratified model solves the following fundamental differential equation governing the energy 

balance on a mass of water. Since the model is stratified it must solve the energy balance on n number 

of nodes simultaneously. Node 1 is at the top of the water tank and node n is at the bottom of the water 

tank. 
 

    
   

  
         

Where 

   is mass of water for node n 

   is specific heat of water 

   is temperature of water for node n 

  is time 

       is net heat transfer for node n 

 

The net heat transfer rate      is the sum of gains and losses due to multiple heat transfer pathways. 

 

                                                                                      

                             

 

where 

           is heat added by heater 1 or heater 2 

              is heat added due to on-cycle parasitic loads (zero when off) 

               is heat added due to off-cycle parasitic loads (zero when on)  

              is heat transfer to/from the ambient environment (zero when off) 

               is heat transfer to/from the ambient environment (zero when on) 

          is heat transfer due to conduction between the node above and below 

         is heat transfer to/from use side plant connections 

           is heat transfer to/from the source side plant connections 

          is heat transfer due to fluid flow from the node above and below 

           is heat transfer due to inversion mixing from the node above and below 

 

             and               are defined as: 

 

                                 

                                   



ix 
 

Where 

            is on-cycle loss coefficient to ambient environment (zero when off) 

            is off-cycle loss coefficient to ambient environment (zero when on) 

       is temperature of ambient environment 

 

         is defined as: 

        
     

    
          

     

    
           

 

Where 

    is fluid thermal conductivity of water, 0.6 W/mK 

       is shared surface area between node n and n+1 

       is distance between center of mass of node n and n+1 

       is temperature of node n+1 

       is shared surface area between node n and n-1 

       is distance between center of mass of node n and n-1 

       is temperature of node n-1 

 

 

       and           are defined as: 

 

 

            ̇                

                  ̇                      

Where   

       is heat exchanger effectiveness for the use side plant connections  

 ̇      is mass flow rate for the use side plant connections 

       is inlet fluid temperature for the use side plant connections 

          is heat exchanger effectiveness for the source side plant connections 

 ̇        is mass flow rate for the source side plant connections 

          is inlet fluid temperature for the source side plant connections 

 

        is defined as: 

         ̇                ̇                

Where 

 ̇      is mass flow rate from node n+1 

 ̇      is mass flow rate from node n-1 

 

          is defined as: 

 



x 
 

           ̇                       ̇                       

 ̇            is mass flow rate from node n+1 due to temperature inversion mixing 

 ̇            is mass flow rate from node n-1 due to temperature inversion mixing 

 

 

Inversion mixing occurs when the node below is warmer than the node above. The difference in 

temperature drives a difference in density that causes the nodes to mix. Usually inversion mixing 

occurs very rapidly.  

The use and source fluid steam outlet temperatures calculation procedure depends on the values of the 

effectiveness. If the effectiveness is 1.0, then complete mixing of the fluid steam and the tank water is 

assumed. This is the case for the water heater used in this master. In this case the outlet temperatures 

for the use and the source streams will be simply the tank water temperatures at point of the outlet 

nodes.  

The system of simultaneous differential equations is solved using the Forward-Euler numerical 

method. The system time step is divided into one-second substep.  

In the system model, the design volume water flow rates are autosized as this is convenient when the 

thermal tank is connected to plant loops. When the water thermal tank is connected to the supply side 

of plant loop and flow rates are autosized, the flow rate is the sum of the flow requests of all the 

various components on the demand side of that plant loop. When the water thermal tank is connected 

on the demand side of a plant loop (e.g. as for indirect heating with a boiler) and flow rates are 

autosized, the design flow rates are calculated with the following equation: 

 ̇   (
 

               
)    ⟦

                        

(                   )
⟧  

Where  

    is volume of tank 

          is user parameter for the time it takes for the tank to recover from assumed 

starting temperature to an assumed setpoint temperature. For water heaters, the starting temperature is 

14.4° C and the final assumed setpoint temperature is 57.2°C. In the cases simulated the setpoint is 

60°C. 

      is      or          

              is the exit temperature specified in the Plant Sizing object.  

           is the final tank temperature of 57.2°C or 60°C as defined in our case. 

         is the initial tank temperature of 14.4° C. 

 

 

Domestic hot water: 

Water use connections: 

If coupled to a plant loop, Thot is taken from the plant loop inlet node.  
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Appendix H: Schedules hot water, people and activity level 
 

Domestic hot water: 

 

Time of day:  Fraction (0-1): 

00:00-06:00  0.0 

06:00-08:00  0.5 

08:00-18:00  0.1 

18:00-21:00  0.6 

21:00-24:00  0.0 

 

People: 

 

For weekdays:     For Saturday: 

 

Time of day:  Fraction (0-1):  Time of day:  Fraction (0-1):  

00:00-07:00  1.0   00:00-11:00  1.0 

07:00-09:00  0.5   11:00-16:00  0.5 

09:00-14:00  0.0   16:00-19:00  1.0 

14:00-16:00  0.5   19:00-24:00  1.0 

16:00-18:00  0.75 

18:00-24:00  1.0 

  

For Sunday: 

 

Time of day:  Fraction (0-1): 

00:00-11:00  1.0 

11:00-06:00  0.5 

16:00-19:00  1.0 

19:00-24:00  1.0 

 

Activity level: 

 

Time of day:  Any number 

00:00-07:00  70 

07:00-17:00  70 

17:00-20:00  95 

20:00-24:00  70  
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The activity levels are estimated values for average activity level in normal family apartments where 

the values are based on values for each activity which can be seen in the following tables: 
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Appendix I: Activity schedule lighting  
 

Light activity (0-1) 

Time Winter (des- feb) Spring (mar-may) Summer (jun-aug) Autumn (sep-nov) 

          

00:00 0.001 0.007 0.000 0.014 

01:00 0.000 0.000 0.000 0.000 

02:00 0.000 0.000 0.000 0.000 

03:00 0.000 0.000 0.000 0.000 

04:00 0.000 0.000 0.000 0.000 

05:00 0.012 0.000 0.025 0.009 

06:00 0.435 0.094 0.215 0.172 

07:00 0.581 0.524 0.208 0.607 

08:00 0.684 0.431 0.388 0.526 

09:00 0.779 0.157 0.438 0.341 

10:00 0.102 0.072 0.150 0.131 

11:00 0.255 0.272 0.168 0.052 

12:00 0.502 0.393 0.328 0.370 

13:00 0.553 0.468 0.392 0.260 

14:00 0.737 0.331 0.418 0.576 

15:00 0.757 0.192 0.464 0.759 

16:00 0.797 0.268 0.584 0.891 

17:00 0.868 0.357 0.478 0.675 

18:00 0.936 0.335 0.739 0.742 

19:00 0.290 0.104 0.209 0.403 

20:00 0.220 0.118 0.063 0.167 

21:00 0.726 0.188 0.306 0.765 

22:00 0.786 0.202 0.589 0.696 

23:00 0.456 0.444 0.432 0.652 
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Appendix J: Activity schedule electrical appliances 
 

Activity level 

Time FREEZER FRIDGE PC TV1 HOB MICROWAVE DISH_WASHER WASHING_MACHINE 

 

(0-1) (0-1) (0-1) (0-1) (0-1) (0-1) (0-1) standby (0-1) 

00:00 0.00000 0.00000 0.03401 0.02344 0.00045 0.00160 0.00000 0.00049 

01:00 0.33772 0.30000 0.03401 0.02344 0.00045 0.00160 0.00000 0.00049 

02:00 0.00000 0.18333 0.03401 0.02344 0.00045 0.00160 0.00000 0.00049 

03:00 0.33772 0.11667 0.03401 0.02344 0.00045 0.00160 0.00000 0.00049 

04:00 0.10746 0.30000 0.03401 0.02344 0.00045 0.00160 0.00000 0.00049 

05:00 0.23026 0.30000 0.03401 0.02344 0.00045 0.00160 0.00000 0.00049 

06:00 0.33772 0.00000 0.03401 0.02344 0.00045 0.00160 0.00000 0.00049 

07:00 0.33772 0.30000 0.03401 0.02344 0.00045 0.00160 0.78333 0.00049 

08:00 0.00000 0.30000 0.03401 0.02344 0.00045 0.00160 0.21667 0.00049 

09:00 0.27632 0.30000 0.03401 0.02344 0.00045 0.00160 0.00000 0.00049 

10:00 0.06140 0.30000 0.03401 0.02344 0.00045 0.00160 0.00000 0.00049 

11:00 0.33772 0.00000 0.03401 0.02344 0.00045 0.00160 0.00000 0.00049 

12:00 0.33772 0.30000 0.03401 0.83724 0.26700 0.00160 0.00000 0.00049 

13:00 0.15351 0.30000 0.03401 0.23503 0.00045 0.00160 0.00000 0.00049 

14:00 0.18421 0.25000 0.03401 0.02344 0.00045 0.00160 0.83333 0.00049 

15:00 0.33772 0.05000 0.03401 0.02344 0.00045 0.00160 0.16667 0.00049 

16:00 0.33772 0.30000 0.03401 0.25130 0.00045 0.00160 0.00000 0.00049 

17:00 0.00000 0.30000 0.16281 1.00000 0.00045 0.00160 0.00000 0.00049 

18:00 0.33772 0.30000 1.00000 0.39779 0.26700 0.46440 0.98333 0.00049 

19:00 0.03070 0.00000 0.51701 0.43034 0.00045 0.00160 0.01667 0.00049 

20:00 0.30702 0.00000 0.51701 0.51172 0.00045 0.00160 0.00000 0.00049 

21:00 0.33772 0.26667 1.00000 1.00000 0.00045 0.00160 0.00000 0.00049 

22:00 0.33772 0.03333 1.00000 0.90234 0.00045 0.00160 0.00000 0.00049 

23:00 0.00000 0.30000 0.87120 0.60938 0.00045 0.00160 0.00000 0.00049 
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Activity level 

Time WASHER_DRYER used WASHING_MACHINE Used MICROWAVE unused WASHER_DRYER unused 

 
(0-1) (0-1) (0-1) (0-1) 

00:00 0.00040 0.00049 0.00160 0.00040 

01:00 0.00040 0.00049 0.00160 0.00040 

02:00 0.00040 0.00049 0.00160 0.00040 

03:00 0.00040 0.00049 0.00160 0.00040 

04:00 0.00040 0.00049 0.00160 0.00040 

05:00 0.00040 0.00049 0.00160 0.00040 

06:00 0.00040 0.00049 0.00160 0.00040 

07:00 0.00040 0.00049 0.00160 0.00040 

08:00 0.00040 0.00049 0.00160 0.00040 

09:00 0.00040 0.00049 0.00160 0.00040 

10:00 0.00040 0.00049 0.00160 0.00040 

11:00 0.26454 0.00049 0.00160 0.00040 

12:00 0.05564 0.37308 0.00160 0.00040 

13:00 0.20076 0.04411 0.00160 0.00040 

14:00 0.85006 0.03393 0.00160 0.00040 

15:00 0.00040 0.00049 0.00160 0.00040 

16:00 0.00040 0.00049 0.00160 0.00040 

17:00 0.00040 0.00049 0.00160 0.00040 

18:00 0.00040 0.00049 0.00160 0.00040 

19:00 0.00040 0.00049 0.00160 0.00040 

20:00 0.00040 0.00049 0.00160 0.00040 

21:00 0.00040 0.00049 0.00160 0.00040 

22:00 0.00040 0.00049 0.00160 0.00040 

23:00 0.00040 0.00049 0.00160 0.00040 

 

Weekly use schedules: 

Day TV Dish washer Microwave Washing machine Washer dryer Freezer Fridge PC Hob 

Mon TV1 DISH_WASHER MICROWAVE WASHING _MACHINE standby WASHER_DRYER unused FREEZER FRIDGE PC HOB 

Tue TV1 DISH_WASHER MICROWAVE unused WASHING_MACHINE used WASHER DRYER used FREEZER FRIDGE PC HOB 

Wed TV1 DISH_WASHER MICROWAVE WASHING _MACHINE standby WASHER_DRYER unused FREEZER FRIDGE PC HOB 

Thu TV1 DISH_WASHER MICROWAVE unused WASHING _MACHINE standby WASHER_DRYER unused FREEZER FRIDGE PC HOB 

Fri TV1 DISH_WASHER MICROWAVE WASHING_MACHINE used WASHER DRYER used FREEZER FRIDGE PC HOB 

Sat TV1 DISH_WASHER MICROWAVE unused WASHING _MACHINE standby WASHER_DRYER unused FREEZER FRIDGE PC HOB 

Sun TV1 DISH_WASHER MICROWAVE WASHING_MACHINE used WASHER DRYER used FREEZER FRIDGE PC HOB 
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Appendix K: Demand management 

 
Demand Manager Assignment List 

Model parameter    Value      Units 

Meter name     Electricity:Facility    - 

Demand limit     4000      W 

Demand limit safety fraction   0.8      - 

Demand window length    15      min 

Demand manager priority   Sequential     - 

Demand manager 1 object type   DemandManager:ElectricalEquipment  - 

Demand manager 1 Name   TV Demand Manager    - 

Demand manager 2 object type   DemandManager:ElectricalEquipment  - 

Demand manager 2 Name)   Dish washer Demand Manager   - 

Demand manager 3 object type   DemandManager:ElectricalEquipment  - 

Demand manager 3 Name   Microwave Demand Manager   - 

Demand manager 4 object type   DemandManager:ElectricalEquipment  - 

Demand manager 4 Name    Washing machine Demand Manager  - 

Demand manager 5 object type   DemandManager:ElectricalEquipment  - 

Demand manager 5 Name    PC Demand Manager    - 

Demand manager 6 object type   DemandManager:ElectricalEquipment  - 

Demand manager 6 Name   Washer dryer Demand Manager   - 

Demand manager 7 object type   DemandManager:Lights   - 

Demand manager 7 Name   Lights Demand Manager   -

  

 

Demand Manager:Electrical equipment 

TV Demand Manager 

Model parameter    Value      Units 

Availability schedule name   TV      - 

Limit control     Fixed      - 

Minimun Limit Duration   60      min 

Maximum Limit Fraction   0      - 

Selection control    All      - 

Electric equipment name   TV      - 

 

Dish washer Demand Manager 

Model parameter    Value      Units 

Availability schedule name   Dish washer     - 

Limit control     Fixed      - 

Minimun Limit Duration   60      min 

Maximum Limit Fraction   0      - 

Selection control    All      - 

Electric equipment name   Dish washer     - 
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Microwave Demand Manager 

Model parameter    Value      Units 

Availability schedule name   Microwave     - 

Limit control     Fixed      - 

Minimun Limit Duration   60      min 

Maximum Limit Fraction   0      - 

Selection control    All      - 

Electric equipment name   Microwave     - 

 

Washing machine Demand Manager 

Model parameter    Value      Units 

Availability schedule name   Washing machine    - 

Limit control     Fixed      - 

Minimun Limit Duration   60      min 

Maximum Limit Fraction   0      - 

Selection control    All      - 

Electric equipment name   Washing machine    - 

 
PC Demand Manager 

Model parameter    Value      Units 

Availability schedule name   PC      - 

Limit control     Fixed      - 

Minimun Limit Duration   60      min 

Maximum Limit Fraction   0      - 

Selection control    All      - 

Electric equipment name   PC      - 

 

Washer dryer Demand Manager 

Model parameter    Value      Units 

Availability schedule name   Washer dryer     - 

Limit control     Fixed      - 

Minimun Limit Duration   60      min 

Maximum Limit Fraction   0      - 

Selection control    All      - 

Electric equipment name   Washer dryer     - 
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Demand Manager:Lights 

Lights Demand Manager 

Model parameter    Value      Units 

Availability schedule name   Lighting     - 

Limit control     Fixed      - 

Minimun Limit Duration   60      min 

Maximum Limit Fraction   0.85      - 

Selection control    All      - 

Electric equipment name   Lighting     - 
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Appendix L: EnergyPlus model sketch of system with CHP only  
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Pump A:   CHP pump 

Pump B:    Circulation pump 

 

Node number:   Node name: 

Supply loop: 

Supply side: 

1    CHP Pump Inlet node 

2    CHP pump Outlet node 

3    CHP inlet node 

4    CHP outlet node 

5    CHP Supply Bypass Inlet node 

6    CHP Supply Bypass Outlet node 

7    CHP Outlet pipe inlet node 
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8    CHP Outlet pipe outlet node 

 

Demand side: 

9    CHP Demand Inlet pipe inlet node     

10    CHP Demand Inlet pipe outlet node 

11    SHW Source side inlet node 

12    SHW Source side outlet node 

13    CHP Demand Bypass pipe Inlet node 

14    CHP Demand Bypass pipe outlet node 

15    CHP Demand Outlet pipe inlet node 

16    CHP Demand Outlet pipe outlet node 

 

Demand loop: 

 

Supply side: 

 

17    CircPump Inlet node 

18    CircPump Outlet node 

19    SHW use side inlet node 

20    SHW use side outlet node 

21    Supply Bypass inlet node 

22    Supply Bypass outlet node 

23    SHW Outlet pipe inlet node 

24    SHW Outlet pipe outlet node 

 

Demand side: 

 

25    Water demand Inlet pipe inlet node 

26    Water demand Inlet pipe outlet node 

27    Water floor heating 1 inlet node 

28    Water floor heating 1 outlet node   

29    Water floor heating 2 inlet node 

30    Water floor heating 2 outlet node 

31    Water floor heating 3 inlet node 

32    Water floor heating 3 outlet node 

33    Tap water inlet node 

34    Tap water outlet node 

35    Demand bypass inlet node 

36    Demand bypass outlet node 

37    Water Demand Outlet pipe inlet node 

38    Water Demand Outlet pipe outlet node 

 

As it can be seen, the points of the splitter and mixers are pointed at in the figure.  
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Appendix M: EnergyPlus model sketch of system with CHP and gas boiler 
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Pump A:   CHP pump 

Pump B:    Circulation pump 

 

Node number:   Node name: 

Supply loop: 

Supply side: 

1    CHP Pump Inlet node 

2    CHP pump Outlet node 

3    CHP inlet node 

4    CHP outlet node 

3’    Gas boiler inlet node 

4’    Gas boiler outlet node 

5    CHP Supply Bypass Inlet node 

6    CHP Supply Bypass Outlet node 

7    CHP Outlet pipe inlet node 

8    CHP Outlet pipe outlet node 

 

Demand side: 

9    CHP Demand Inlet pipe inlet node     

10    CHP Demand Inlet pipe outlet node 

11    SHW Source side inlet node 
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12    SHW Source side outlet node 

13    CHP Demand Bypass pipe Inlet node 

14    CHP Demand Bypass pipe outlet node 

15    CHP Demand Outlet pipe inlet node 

16    CHP Demand Outlet pipe outlet node 

 

Demand loop: 

 

Supply side: 

 

17    CircPump Inlet node 

18    CircPump Outlet node 

19    SHW use side inlet node 

20    SHW use side outlet node 

21    Supply Bypass inlet node 

22    Supply Bypass outlet node 

23    SHW Outlet pipe inlet node 

24    SHW Outlet pipe outlet node 

 

Demand side: 

 

25    Water demand Inlet pipe inlet node 

26    Water demand Inlet pipe outlet node 

27    Water floor heating 1 inlet node 

28    Water floor heating 1 outlet node   

29    Water floor heating 2 inlet node 

30    Water floor heating 2 outlet node 

31    Water floor heating 3 inlet node 

32    Water floor heating 3 outlet node 

33    Tap water inlet node 

34    Tap water outlet node 

35    Demand bypass inlet node 

36    Demand bypass outlet node 

37    Water Demand Outlet pipe inlet node 

38    Water Demand Outlet pipe outlet node 

 

As it can be seen, the points of the splitter and mixers are pointed at in the figure.  

 

Node temperature sensors: 

T1    Supply water storage tank set temperature sensor (70 °C) 

T2    Supply water building loads set temperature sensor (55 °C) 

T3    Cooling water temperature sensor (max allowable 80 °C) 
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Appendix N: EnergyPlus plant loop description 
 

The plant temperature of the supply equipment entering the loop must equal the temperature entering 

the demand equipment. So the temperature entering the storage tank has to equal the temperature at the 

outlet of the gas boiler or the micro-CHP since no losses will appear through the pipes as they are 

made adiabatic. The plant outputs must match the system inputs and vice versa. The 

setpointManager:schedule controls the temperatures to be at the desired temperature (US Department 

of Energy, 2013). There are two types of loops within the HVAC simulation in EnergyPlus; an air 

loop and a plant loop. The air loop uses air as the transport medium while plant loops use a liquid fluid 

of the user’s choice, typically water. The system used in this master does only have plant loops, except 

for the design ventilation implemented. The two plant loops are named supply loop and demand loop 

and represent the loop between the supply device and the storage tank and the storage tank and the 

demand loads. The plant loops are for organizational clarity and simulation logistics divided into “half 

loops”. These half loops represent the supply and demand side of the main loop. The plant supply loop 

side contains the supply equipment such as gas boiler and micro-CHP, while the demand side contains 

the storage tank in the case of the loop named supply loop. In the case of the demand loop, the supply 

side will be the storage tank while the demand side will be the heating system of the building (floor 

heating and domestic tap water).  

 
Figure 1: Connections between the main HVAC Simulation Loops and Half Loops (US Department of 

Energy, 2013). 

 

The plant equipment on the half loop is described by a set of branches. Branches can be set in series 

and in parallel. The branches represent the pipes, supply equipment, heating equipment, storage tank 

and pumps. The system will be coupled together through the branch list, which defines which branches 

are on the demand and supply side of each plant loop. Through the concept of splitter and mixer, the 

heat is supplied to the acquired equipment. Each half loop may only have one splitter and one mixer. 

And within any single branch, there may only be components in series and not in parallel. All 

equipment that is coupled in parallel has to be divided through the splitter and mixer. Since the plant 

supply and demand are divided into two separate half loops, chillers or boiler may be in parallel to 

each other in the supply side and coils may be in parallel to each other on the demand side. Also, there 

are some restrictions when placing pumps within a particular half-loop to avoid the need for overly 
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complex solver routines. In general, all pumps placed between A and B in figure 2 are defined as loop 

pumps, and all pumps placed between Ci and Di are defined as branch pumps.  The pump placed on 

the inlet to the storage tank seen in appendix L, is therefore defined as a loop pump as it is the first 

component on the first branch (inlet branch to the storage tank). This makes the pump placed on the 

inlet to the micro-CHP or gas boiler also defined as a loop pump.  

 

 

 

Figure 2: EnergyPlus Branch layout for individual plant half-loops (US Department of Energy, 2013). 

Each branch has one or more components linked together in series. In the model made in this master, 

each branch do only have one component, as the supply and demand equipment is coupled together 

through splitter and mixer and will be in parallel. The branch has system nodes that store properties at 

a location on the loop, like temperature, enthalpy, flow rate etc., at the beginning and the end of the 

branch. Components on the branch take the conditions of the node at their inlet and use that 

information as well as overall control information to simulate the component and write the outlet data 

to the node following the component. This information is then used either by next component on the 

branch or establishes the outlet conditions for the branch. Therefore data at the inlet and outlet of each 

branch are calculated and can be computed by the simulation. However, as mentioned earlier, due to 

the concept of the splitter and mixer, the temperatures on the branches placed between the splitter and 

mixer will be the same as EnergyPlus does not do a hydraulic calculation. Even though the plant 

model in EnergyPlus is flexible, the topology of the plant system will be different from the topology of 

the actual plant system in a building. This is because EnergyPlus focuses on modeling building energy 

performance over long periods of time and is not intended as a completely flexible system that directly 

models any actual plant system with its full complexity and exact layout. But the modeling models a 

sufficient similar approach to the real system and will therefore give a realistic picture of the expected 

energy use using the specified system plant (US Department of Energy, 2013).   
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Appendix O: Monthly heat output and losses versus demand building 
 

Case 2,3, 8 and 9: 

 

Case 4: 

 

Case 7:  
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Appendix P: Scientific paper 
 

The paper is added as an independent document on next page.  
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ABSTRACT 

This paper evaluates the performance of a Senertec 

internal combustion engine, which is one of today’s 

market leading micro-CHP devices, compared to a 

conventional high-efficient gas boiler. Due to its 

characteristic behavior, the best performance is 

achieved when operating in thermal following mode 

with grid connection to enable electricity exports. 

Operating in electric demand following mode lead to 

higher operation time, but due to poorer heat 

recovery at times with low electrical demand, the 

performance of the system became poorer. The use of 

renewable fuels in CHP has the potential in achieving 

remarkable savings in both primary energy and CO2-

emissions, but is today not well developed and needs 

further investigation to enable proper performance 

and security of supply.  

INTRODUCTION 

The final energy consumption in buildings in EU27, 

Switzerland and Norway has come mainly from oil, 

gas and electricity during the last two decades (BPIE, 

2011). This final energy consumption will likely 

continue, and therefore it is important to look at the 

potential of a more efficient use of these sources. 

Combined heat and power (CHP) is seen as an 

emerging technology in using these energy sources 

more efficiently as it produces electricity and heat 

from the same fuel source. It has the potential to 

reduce primary energy consumption and associated 

greenhouse gas emissions. CHP is considered as a 

potential energy supply solution within a net-ZEB 

concept due to these potential effects (Alanne & 

Saari, 2003). CHP can run on renewable fuels, but 

fossil fuels are most commonly used. However, even 

though the devices are usually fuelled with natural 

gas, it is considered a low-carbon technology due to 

that it contributes in a more efficient use of the 

limited fossil resources (Day, Ogumka, Jones, & 

Dunsdonm, 2009).   

CHP has the potential to cover both the thermal and 

electrical demand of a building, but problems around 

its dynamics hamper its market penetration. CHP 

systems have large thermal outputs, while the 

thermal demand of buildings decreases through better 

insulated building envelopes. The benefits of using a 

CHP device compared to the problems around its 

dynamics need to be analyzed in order to evaluate the 

potential of integration for use in buildings.  

In this paper, the CHP integration in a residential 

multi-family building (MFB) will be compared to a 

conventional gas boiler and different optimization 

strategies will be simulated and evaluated. The 

building complies with the Norwegian building 

norm, TEK10. The scope for this paper is to define 

an optimal control system for satisfying different 

energy demand variations in a multi-family dwelling. 

The energetic and CO2 benefits for the 

implementation of a micro-CHP system depend 

heavily on the “non-CHP” reference situation. As the 

reference case in this study is a condensing gas boiler 

which has high efficiency; the benefit of using CHP 

will depend on the system configuration of the CHP. 

It is important that the CHP device operates as 

efficient as possible, and that the power and heat 

output is produced in a rate that achieves high net 

benefit on a future basis regarding primary energy, 

energy efficiency, reduced grid interaction and CO2 

emission.  

The tool used for analyzing the CHP system 

performance is the building simulation tool 

EnergyPlus. EnergyPlus is chosen as it is a well-

developed simulation tool, and has an already 

existing CHP model integrated. The CHP model used 

is based on the international Energy Agency’s 

Energy Conservation in Buildings and Community 

Systems (IEA ECBCS) Annex 42 for a Senertech 

internal combustion engine production unit. 

MICRO-CHP TECHNOLOGY 

Internal combustion engines (ICE) are the most 

established micro-CHP appliance. The typical 

characteristics for an ICE-based micro-CHP are its 

low cost, high efficiency, wide power range and 

ability to run on different fuels (Klobut, Ikäheimo, & 

Ihonen). It is based on the automotive engine, and 

possible fuels are diesel, biodiesel, gasoline, natural 

gas, biogas and landfill gas. The possibility of using 

renewable fuels makes it an interesting choice for 

energy supply, even though natural gas and diesel oil 

are the most common fuels. 

The typical benefits of ICE devices are that they have 

high electrical efficiency, large power range and have 

the possibility of using a varying range of fuels. The 

drawbacks are that they need service regularly, are 



noisy, which is not desirable for building application, 

and their emissions strongly depend on the fuel used 

(Alanne & Saari, 2003). These units are best 

applicable for buildings with smooth electricity and 

heat consumption profiles. Micro-CHP appliances 

consume more fuel than condensing boilers, so the 

benefit of using CHP comes from the electricity 

generated. ICE units operate most effectively when 

they run for extended periods of time with very few 

start-up cycles. This is because most of the wear on 

the engine occurs during start-up (SEAI, 2011).  

 

Integration of micro- CHP systems into operating 

buildings may be challenging. This is because the 

loads are small and the load diversity is limited. The 

CHP device produces heat and electricity 

simultaneously, and in residential buildings there will 

be time where it requires one but not the other. 

Therefore it is difficult to define the best strategy for 

how it is best to use the micro-CHP for optimal 

efficiency and to cover the energy demand at the best 

rate possible. Factors like optimal sizing and control 

of the CHP system, how to meet peak loads (both 

electrical and thermal), need for and sizing of thermal 

storage, standardized technique for grid connection, 

ability to export electricity, emergency power 

operation (grid outage), safety, standards and code 

issues are important to look at when defining the 

system specifications and operating mode (Bell, et 

al., November 4, 2005). 

PERFORMANCE ASSESSMENT 

METHODOLGY 

The performance assessment will be analyzed in 

terms of primary energy, energy efficiency, grid 

interaction and CO2 emissions. 

Primary energy 

Primary energy represents the energy use associated 

with the embodied energy in natural resources such 

as crude oil, coal, natural gas, sunlight etc. It 

represents the delivered energy before any 

anthropogenic conversion or transformation. Primary 

energy rating makes possible to sum different types 

of energies (e.g. thermal and electrical) as they 

integrate the losses of the whole chain, which 

includes the losses outside the building system 

boundary (prEN 15203/15315, 2006). 

 

The primary energy consumption to generate 

electricity and heat will be considered for both 

micro-CHP and reference system. The primary 

energy demand is defined by equation 1: 

 

    ∑(               )  ∑                       (1)   

 

where 

 

PE is yearly primary energy demand, 

in kWh; 

DE  is yearly delivered energy for 

energy source i, in kWh; 

XEi  is the yearly exported energy for 

energy source i; 

fprim,del,i  is primary energy factor for energy 

source i, in kWh/kWh;  

fprim,del,i  is the primary energy factor for the   

exported energy source i; 

(NS-EN 15603:2008, 2008). 

 

For comparison between the micro-CHP system and 

the conventional reference system, the primary 

energy savings (PES) will be evaluated. This is given 

by equation 2: 
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Where 

 

PETOT,GB,  is primary energy of fuel and 

electricity consumed by the 

conventional system, in kWh ; 

PETOT,CHP  is the primary energy of fuel and 

electricity consumed by the CHP 

system, in kWh. 

Energy efficiency 

The overall energy efficiency depends on several 

factors; the prime mover, the size of the plant, the 

temperature at which the recovered heat can be 

utilized and conditioning and operating regime of the 

cogeneration unit. It is a measure of how efficient the 

energy is produced, distributed, stored, converted and 

used (Dorer & Weber, 2007).  

 

Both CHP and system performance are evaluated 

based on equations 3-8. Efficiencies regarding the 

specific efficiencies of the CHP unit and the 

reference case of a condensing gas boiler are based 

on equations from EN 15316-4-4:2007 (NS-EN 

15316-4-4:2007, July 2007), while system 

efficiencies are based on proceedings conceded by 

Annex 42  (Dorer & Weber, 2007). 

 

CHP efficiency:  
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CHP thermal efficiency:  
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CHP electrical efficiency:  
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Boiler efficiency:  
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System efficiency based on delivered energies: 
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System efficiency based on primary energies: 
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Where 

OEth,CHP  is the thermal output of the CHP 

device; 

OEEl,CHP is the electrical output of the CHP 

device; 

OEth,boiler  is the thermal output of the boiler; 

DEFuel  is the gross input to the generator; 

DEi  is the delivered energy of source i; 

PEi  is the primary energy of source i; 

  

Reduced grid interaction 

This assessment is based on an analysis of the 

building related to the reduced grid interaction. In 

this context, reduced grid interaction means reduced 

grid import as exported electricity is assumed 

beneficial for CHP. This is only an assumption, and 

in reality a grid structure has to be organized to make 

electricity export feasible economically as well as 

environmentally.  

 

The exported and delivered electricity from/to grid 

can be explained by equation 9 and 10, respectively: 

 

             

{
                                        

                                                          
    (9) 

 

And 

 

             

{
                                        

                                                           
    (10) 

 

Where,  

XEEl-NetGrid is the net amount of electricity 

exported to the grid; 

DEEl-NetGrid is the net amount of electricity 

delivered from the grid; 

 

CO2-emissions 

The CO2 emissions are calculated by the equation 11 

taken from (NS-EN 15316-4-4:2007, July 2007) : 

 

      ∑             ∑                         (11) 

 

where, 

 

mco2 is the yearly CO2 emissions, in 

kilograms; 

DEi  is the yearly delivered energy for 

the energy source i, in kWh; 

XEi  is the yearly exported energy for 

the energy source i, in kWh; 

Kdel,i is the CO2 factor for the delivered 

energy source i,  in kg/kWh. 

Kexp,i is the CO2 factor for the exported 

energy source i, in kg/kWh. 

 

In order to compare the CO2 equivalent emissions by 

the CHP system and the reference system, equation 

12 is used. 

 

      
    

       
   

    
                 (12) 

Where,  

 

       is the CO2-savings using the CHP 

system, in %; 

    
   is the CO2-emissions for the 

reference system, in kg/kWh; 

    
     is the CO2-emissions for the CHP 

system, in kg/kWh; 

 

SIMULATION MODEL 

The main objective with CHP modeling is to predict 

the thermal and electrical outputs of a cogeneration 

device as precise as possible. 

 

The internal combustion engine used in this study is a 

Senertech ICE, which is based on an Otto cycle 

(Thomas, 2008). This unit is chosen because there 

existed already calibrated data for this engine in the 

simulation tool used, EnergyPlus. As this engine is 

one of the market-leading micro-CHP appliances, an 

evaluation of its optimal performance is of interest. 

In the simulations, the ICE cogeneration model will 

consist of two sub-models.  

1. An engine/generator unit model that predicts 

the heat production and the electrical 

generation in response to changing building 

energy demand.  

2. A thermal storage model that predicts the 

energy and mass flows in all other portions 

of the ICE cogeneration systems.  

A thermal storage is includes as this ensures a more 

stable and secure operation of the CHP. The CHP 

model used is based on the generic ICE/Stirling 

engine model developed by Annex 42, and represents 

any combustion-based cogeneration device (Ian, 

Ferguson, Griffith, Kelly, & Weber, 2007). The 

model has a nominal electric efficiency of 0.27 and 

nominal thermal efficiency of 0.66. The heat to 

power ratio of the engine is 2.44. These efficiencies 

are based on lower heating value (LHV) of the fuel. 



The generator has an upper capacity of 5.5kW 

electric output.  
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Figure 1 Configuration CHP system 

The CHP system configuration is shown in figure 1. 

The auxiliary gas boiler is coupled in parallel to 

supply peak demands at times when the CHP device 

is not able to cover the entire demand. Heat is 

supplied to the tank with a supply temperature of 

70°C. Domestic hot water is set to have a supply 

temperature of 55°C to avoid legionella. Temperature 

sensors are placed inside the tank to ensure 

acceptable tank temperatures. At the top of the tank, 

the set temperature is set to be 60°C. To avoid 

overheating of the storage, a maximum temperature 

limit is set for the storage tank. This is the 

temperature where the tank water becomes 

dangerously hot and is vented through boiling or an 

automatic safety. Any extra heat added to the tank 

after this maximum temperature is immediately 

vented. This temperature is set to 98°C. To control 

the cooling water mass flow rate to the CHP unit, an 

internal control is chosen. This indicates that the flow 

of cooling water is controlled inside the CHP device, 

similarly to an automobile’s thermostat (EnergyPlus- 

US Department of Energy, 2013). The maximum 

cooling water temperature is set to be 80 °C. 

 

The CHP model is integrated in a multi-family 

building constructed after the Norwegian building 

norm, TEK 10, having a total floor area of 450 m
2
.  

The building model is made with low-radiant floor 

heating, a simple balanced constant air ventilation 

and domestic hot water profiles are made based on 

standard usage from NS 3031  (NS 

3031:2007+A1:2011, 2007/2011). Electricity demand 

profiles are made based on data from CREST 

domestic electricity demand model, which can be 

downloaded from Loughborough University’s 

homepage (Richardson & Thomson, 2010). The 

thermal and electrical energy demand for a typical 

cold and warm day can be seen in Figure 1 and 2.  

 
Figure 2 Power and heat demand cold day 

 

 
Figure 3 Power and heat demand warm day 

OPTIMIZATION STRATEGIES 

Load management 

Load management or demand management is a 

procedure to adjust the electrical demands rather than 

the output of the plant. This can be done by for 

example forced switch-off of large power consumers 

such as sauna stoves and ovens or by limited 

simultaneous use of electrical appliances (Alanne, 

Micro-Cogeneration-I: Introduction). Today, demand 

management usually concerns the demand for 

electricity, but in the future demand management for 

other utilities such as natural gas or water might be 

possible.  The main principle with the demand 

management controls is to shut off or reduce the 

power to non-essential loads. This, in order to reduce 

the overall building demand which will be beneficial 

for the CHP device as it can cover a larger part of the 

building’s demand, and thus reduce the amount of 

imports from the electricity grid. Typical controls 

are: 

 Shut off or dim electric lights, equipment, or 

HVAC systems 

 Reset the thermostatic set points on HVAC 

systems (if electrical) 

 Reduce the load of a set of similar 

components by rotating one or more 

components “off” for a short time interval 

 Turn on generators to meet some or all the 

building’s demand 

 (EnergyPlus- US Department of Energy, 

2013) 

The first approach in the load management will be to 

reduce the electricity demand below the standard 

values for yearly electricity in NS 

3031:2007+A1:2011 (NS 3031:2007+A1:2011, 

2007/2011).  This value is in total 28.9kWh/m
2
. The 

building has pretty low energy demand for lighting, 

while the energy demand for electrical appliances are 

relatively high. Therefore, the majority of the 

demand management should be done here.  



Power control 

In order to achieve an optimal match between 

demand and supply it is possible to implement 

several operation modes. The control of the micro-

CHP device defines the basis on which the prime 

mover is activated, deactivated or turned down. The 

device can be set to operate in a heat following mode, 

electrical follow mode, a time-led mode or a hybrid 

approach may be adopted (Peacock & Newborough, 

22. June 2005).  

For the heat following operation mode, start and stop 

control decisions will be based on temperature 

differences between the indoor and outdoor 

temperature. The micro-CHP device will operate to 

cover the whole thermal demand of the building, and 

electricity will be produced thereafter. This can, 

however result in more frequent on-off operation of 

the device, at least in periods when the thermal 

demand of the building is not stable. The benefit is 

that the whole thermal demand will be covered by the 

CHP device, and a supplementary boiler is not 

necessary as long as the thermal output of the 

generator is large enough to cover the peaks. The 

electrical excess produced by the CHP in the case of 

thermal load following mode is stored in batteries or 

fed into the grid. It is assumed that the exports from 

the CHP incur negligible distribution losses before it 

reaches its point of use. Electrical shortage is covered 

by grid electricity or by discharging the battery 

storage. Only grid electricity has been implemented 

as an option in this study.  

For electricity following mode, the cogeneration 

device is operated to cover the electrical demand of 

the building as far as possible. This will reduce the 

amount of imports significantly, but thermal surplus 

may be generated at times when it is not needed. 

Also, when the electricity demand is low, the CHP 

device will often not be able to cover the thermal 

demand of the building. This make it necessary to 

have a large enough storage tank to store the surplus 

heat, and a supplementary boiler to cover the thermal 

demand at times when the CHP-device is unable to 

cover the demand.  

On an electricity supply basis, the system is set to 

operate in parallel with other systems. Then the CHP 

system will supply the consumer until it reaches it 

maximum electrical output. The part not covered by 

this output is imported from the electricity grid. For 

parallel power applications, the micro-CHP and 

utility grid can operate simultaneously, and power 

can be supplied into the utility grid (Klobut, 

Ikäheimo, & Ihonen). The thermal output of the 

system will be used whenever possible, and rejected 

to the atmosphere otherwise. For the use of biomass 

as fuel, this rejected heat can also be used to dry the 

fuel (Klobut, Ikäheimo, & Ihonen). 

 

For the follow electrical mode two different control 

options will be investigated for the ICE: 

1. Unrestricted thermal surplus, ICE. The 

operation of the micro-CHP system depends 

on the electricity demand of the building, 

and heat is produced thereafter independent 

on the thermal demand of the building. In 

this option thermal surplus is allowed, and 

will get stored in the storage tank as far as 

possible and wasted when the tank exceeds 

its upper limit. 

2. Restricted thermal surplus, ICE. The CHP 

system is set to follow the electricity 

demand as in (1), but only if 

(NESH+NEDHW)>OEth,CHP, or if 

(NESH+NEDHW)< OEth,CHP and Tstore<Tmax. 

Applying this control ensures that the 

thermal output of the micro-CHP system 

will better match the thermal demand of the 

building, and thermal surplus is avoided. 

However, this may result in more start/stop 

events of the device (Peacock & 

Newborough, 22. June 2005). 

 

Tmax is the maximum temperature 

setting of the thermal storage, 

which is set to 75°C; 

NESH is the demand for space heating, in 

kWh; 

NEDHW is the demand for domestic hot 

water, in kWh; 

OEth,CHP is the thermal output of the CHP, in 

kWh; 

Thermal storage 

One common form for short-term storage is the usage 

of buffer tanks in the system configurations. A 

stratified storage tank is used in this study. 

Stratification in a storage tank depends mainly on the 

volume of the tank, the size, location and design of 

the inlets and outlets, and the flow rates of entering 

and leaving streams. Stratified tanks are useful for 

maximizing the thermal energy efficiency of non-

continuous and semi-continuous processes. Liquid at 

two or more dissimilar temperatures is stored within 

the same tank to provide a buffer for variations in 

heating and cooling loads. Control of the thermocline 

between the hot and cold fluid regions is needed to 

minimize thermocline growth and maximize 

operation of the storage tank (Walmsley, Atkins, & 

Riley). Two storage tank sizes is analyzed: 500 l and 

1000 l. Buffer storage integrated in a building’s 

heating system helps reducing the peak demand and 

energy consumption, especially when energy costs 

during peak periods are much higher than those in 

off-peaks periods (Nelson, Balakrishnan, & Murthy, 

24 September 1998). Thermal storage tank is used to 

provide greater operational flexibility during 

transient load demands.  

Use of renewable fuel 

To lower the CO2 emissions, the use of biogas as a 

fuel instead of natural gas has been viewed as an 



option. Biogas is considered as a more renewable 

fuel than natural gas, and since it comes from sources 

which naturally would have contributed to CO2 

emissions, the contribution of CO2 emissions will be 

remarkably smaller. Principally biogas can be 

produced from household waste and agrifood 

industry. During the processing of biogas, generally 

approximately 65% methane (CH4) and about 30% 

carbon dioxide (CO2) is produced (Malik & 

Mohapatra, 2012). Biogas can also be upgraded to be 

a substitute for natural gas. Upgraded biogas, also 

called biomethane, can be interchangeable with 

natural gas and is also superior to natural gas in 

several aspects. Biomethane is cleaner burning as it 

does not contain hydrocarbons heavier than CH4. 

Biomethane does also offer the opportunity for a 

carbon negative fuel, not just carbon neutral, as it is a 

renewable source of CH4 and the biogas source can 

be from waste (Mezei, 2010).  

The upgraded biogas can be supplied to the already 

developed natural gas grids and delivered to 

households and industry. The expected energy 

requirement for a single produced cubic meter of 

natural gas substitute (upgraded biogas) is equal to 

around 0.3 kWh (Makaruk, Milthner, & Harasek, 

2010). 

RESULTS AND DISCUSSION 

Difference cases with different operational strategies 

have been made to evaluate the effect of each 

operation and its impact on the CHP-device.  The 

cases are presented in table 1 

 

Table 1 

Cases simulated 

Case 

number 

Description 

1 Reference case: GB, storage tank with 

reference parameters 

2 CHP only with storage with reference 

parameters and follow thermal mode 

3 CHP only with storage, follow thermal 

mode and load management 

4 CHP and GB with storage and follow 

thermal, limit electrical surplus mode 

5 CHP and GB with storage tank size 0.5 

m
3
 and follow electrical mode with 

restricted thermal surplus 

6 CHP and GB with storage tank size 0.5 

m
3
 and follow electrical mode with 

unrestricted thermal surplus 

7 CHP and GB with storage tank size 0.5 

m
3
 , follow electrical mode as in 5 and 

with load management 

8 CHP only follow thermal mode tank size 

1.0 m
3
 

9 CHP only with storage, follow thermal 

mode and upgraded biogas as fuel 

Primary energy 

The primary energy factors for natural gas and 

electricity used in the calculations are from NS-EN 

15603:2008 as seen in table 1. The primary energy 

factor for biogas is taken from SAP’s report for 

proposed carbon emission factor and primary energy 

factor (Pout & BRE, 2011). 

 

Table 2 

Primary energy factors from (NS-EN 15603:2008, 

2008), biogas from (Pout & BRE, 2011)  

 

 Primary energy factors fP 

 Non-renewable Total 

Natural gas 1.36 1.36 

Biogas 1.092 1.092 

Electricity mix 

UPCTE 

3.14 3.31 

 

 
Figure 4 Primary energy savings 

 

As can be seen by figure 4, case 9 achieve the highest 

primary energy savings with a reduction of 34.3% 

compared to the reference case. Generally, the cases 

in follow thermal mode achieve greatest primary 

energy savings. Applying load management further 

increases the savings, and the primary energy 

consumption reduces with 31.29% in the case of 

thermal following operation mode and 17.69% in 

electrical following operation mode. Electrical 

following operation mode without implemented load 

management achieves low primary energy savings 

due to the frequent use of the auxiliary gas boiler and 

less efficient heat production.  

Energy efficiency 

The efficiencies are based on higher heating value, 

and are presented in table 3. Case 9 achieves the best 

system efficiency based on primary energy, 

representing an increase of 20.8% compared to the 

conventional gas boiler. This is mainly due to the low 

primary energy usage as upgraded biogas is used, 

which is considered a renewable fuel.  As can be 

seen, the cases in thermal following operation mode 

achieve better system efficiency than the cases in 

electric load following mode. Also regarding the 

specific CHP efficiency, these cases achieves best 

operation. The cases in electric load following mode 

achieves higher electric efficiency, but since the 



thermal recovery efficiency becomes remarkable 

poorer this reduces significantly the all-over 

performance of the system. In case 6 with 

unrestricted thermal surplus, the corresponding losses 

were significantly higher than the other cases. This is 

due to unmatch between thermal supply and demand, 

especially during summer season. For all the CHP 

cases analysed, the CHP efficiency was lower during 

the summer months. This indicates that CHP has 

better operation when the thermal demand of the 

building is high, and the relation between the thermal 

and electrical demand of the building becomes closer 

to the heat to power ratio of the CHP. 

Operational characteristics 

Figure 5 shows the monthly operational hours for 

each of the cases simulated. 

 
Figure 5 Monthly operational hours 

 

As can be seen, the cases in electric following 

operation mode achieve higher monthly operating 

hours than the cases in thermal load following 

operation mode. This is due to a continuous 

electricity demand during the seasons as some 

electrical devices consume standby power even when 

not in use. As the CHP is set to follow the electrical 

demand, the CHP can operate continuously, as some 

electricity demand is present at all hours of the year. 

With unrestricted thermal surplus, the CHP could 

therefore operate at full operation the whole year. 

Restricting the thermal surplus led to lower operation 

time as the device could not operate if the tank 

temperature exceeded 75°C. The cases in thermal 

load following operation mode was more affected by 

demand variations over seasons as the thermal 

demand of the building was significantly higher 

during the cold season than the warm season. This 

led to higher operating hours during the colder 

months. Increasing the thermal storage led to lower 

operating hours as the output of the generator was 

higher at each time step as more heat could be stored 

in the tank. As the thermal demand of the building 

remained the same, the generator had to operate less 

time as the tank then could supply heat to the 

building for longer intervals than with a smaller tank 

size.  

Reduced grid interaction 

One of the main promoting arguments for the 

application of micro-CHP in buildings is its reduced 

grid interaction. The amount of imports reduced is 

beneficial as this avoids electricity imports from 

larger power plants with higher emissions, as well as 

transmission losses are avoided as the electricity is 

produced on site. Figure 6 shows the proportion of 

demand covered by the CHP versus utility grid for all 

cases simulated.  

 

 
Figure 6 Proportion of demand covered by CHP 

versus utility grid, all cases 

 

As can be seen, the CHP covers the greatest part of 

the electricity demand in case 6. This is as expected 

as the generator is set to follow the electrical demand 

of the building without thermal surplus restriction. In 

this case, the CHP covers the demand until it reaches 

its upper capacity limit. Only the demand exceeding 

5.5 kW is imported from the utility grid. However, in 

this operation mode, significant thermal surplus was 

present during the summer season, which reduces the 

efficiency as this amount is wasted. Implementation 

of seasonal thermal storage would here be an option 

to increase efficiency as heat waste would be 

remarkably reduced. However, this option was not 

Table 3 

Comparison efficiency all cases (HHV) 

 1 2 3 4 5 6 7 8 9 

Thermal efficiency - 0.521 0.524 0.423 0.394 0.440 0.405 0.523 0.521 

Electrical efficiency - 0.226 0.228 0.238 0.238 0.243 0.241 0.220 0.226 

CHP efficiency - 0.747 0.751 0.662 0.633 0.684 0.646 0.744 0.747 

Gas boiler efficiency 0.902 - - 0.941 0.941 0.943 0.942 - - 

System efficiency (DE) 0.914 0.741 0.721 0.828 0.795 0.705 0.788 0.731 0.741 

System efficiency (PE) 0.499 0.561 0.637 0.519 0.509 0.501 0.547 0.549 0.707 

% increase from 1 - 6.076 13.80 2.00 1.00 0.20 4.80 5.00 20.80 

 



included in this study. By implementing thermal 

surplus restriction, the amount of electricity demand 

covered by the CHP significantly reduces. In this 

case, the generator was only able to cover 53.69% of 

the electricity demand. Implementing load 

management, however, makes the CHP device more 

capable to cover the demand, and the CHP covers 

75.89%. In thermal load following operating mode, 

the generator covers less of the electricity demand. 

However, the amount of exports is significant 

without implemented electrical surplus restriction. 

Case 3 in follow thermal operation mode with 

implemented load management represents the highest 

amount of exports, representing 76.61% of the 

produced CHP electricity.  

CO2-emissions 

Another promoting argument for using CHP is the 

allover resulting CO2 savings compared to the 

conventional gas boiler. However, these savings 

depend on the emission factor for each of the energy 

sources used. Table 4 show the CO2 production 

coefficient used in the calculations. 

 

Table 4 

CO2-production coefficients (NS-EN 15603:2008, 2008)  

(Dokka, 2011) (Pout & BRE, 2011) 

 CO2 production coefficients K 

(kg/MWh) 

 NS-EN 

15603 

SAP 

2012 

Net-ZEB (yearly 

average 2014-2029) 

Natural gas 277 - - 

Biogas - 98 - 

Electricity 617 - 269.7 

 

As can be seen, the CO2 production coefficient for 

electricity using the net-ZEB definition is 

substantially lower than today’s UCPTE electricity 

mix. This will affect the environmental benefits of 

implementing CHP. In the results, the value of HHV 

is used for the delivered energy to calculate the CO2- 

emissions related to this energy.  

The emissions coefficient for the electricity using 

net-ZEB definition is calculated based on the 

following formula taken from the “Proposal for CO2-

factor for electricity and outline of a full ZEB-

definition” (Dokka, 2011): 

 
       

{
        [        ]                          

                                                                                     

  

Where, 

 

       is the CO2 factor for electricity for 

year t, in g/kWh; 

     is the actual year; 

 

 
Figure 7 CO-emissions UCPTE electricity mix 

 

On an environmental perspective the cases in follow 

thermal mode achieves the highest amount of CO2-

savings compared to the reference case (1) as can be 

seen in figure 6. The use of upgraded biogas as fuel 

(case 9) results in the greatest CO2 savings. This is as 

expected, as biogas is considered a CO2 neutral fuel. 

As exported electricity is substituted from the total 

emissions from the CHP, the resulting CO2 emissions 

from biogas fuel are completely limited. Using 

natural gas as fuel, however, results in significant 

lower CO2-savings, where the highest savings are 

achieved in case 3. This indicates that buildings with 

more stable electricity demand is beneficial for the 

CHP operation, and where the relation between the 

thermal demand and electrical demand is higher.  

Using the Net-ZEB CO2 emission factor for 

electricity mix, CO2 savings were only seen in case 9 

when upgraded biogas was used as fuel. The other 

cases resulted in an increase in emissions compared 

to the reference case. This questions the benefits on a 

future basis of implementing residential CHP on a 

CO2 perspective as the CO2 factor for electricity is 

expected to decrease over the upcoming years as 

electricity production is becoming greener (Dokka, 

2011). Therefore, the CHP system should represent a 

net benefit in CO2 emissions also on a future 

perspective in order to be a sustainable option. The 

use of renewable fuel should be further investigated, 

and pilot project should be developed to enable an 

efficient operation in practice also on these fuels. If 

this is obtained, huge environmental benefits will 

result 

CONCLUSION 

The study investigated the performance of different 

operational strategies applied to a micro-CHP system 

supplying a multi-family building built after the 

Norwegian building norm TEK10. To evaluate the 

performance of a micro-CHP device, a detailed 

model of the system was needed in order to predict 

the electrical and thermal performance with sufficient 

temporal resolution and accuracy. All strategies have 

been compared to a high-efficient condensing gas 

boiler, which represents the best system available in 

the market. A high-efficient condensing gas boiler 



was chosen in order to evaluate the possibilities for 

increased market penetration for CHP technology. 

For primary energy and CO2 emissions, it was found 

that case 9 represented the highest savings, which 

shows that the usage of renewable fuels in CHP is 

beneficial on an environmental perspective compared 

to natural gas. However, this depends on the security 

of supply and the possibility to transfer upgraded 

biogas in the already existing natural gas networks. 

By using natural gas as fuel, the implementation of 

load management in thermal load following 

operation achieved highest primary energy savings as 

well as CO2-savings, and represented 31.29% and 

26.58%, respectively. It was in general seen that the 

thermal load following operation scheme resulted 

beneficial over the electric load following scheme in 

all the performance assessments reviewed except for 

reduced grid interaction. Case 6 resulted in the 

highest reduction in imports, where imports were 

reduced to 11.73% of the total electricity demand. 

However, this impacted the system efficiency as 

significant amount of heat was wasted during the 

summer months due to overproduction of heat. Such 

operation would strictly depend on seasonal storage 

to be beneficial. Case 3 represented the highest CHP 

efficiency with a value of 75.1% (HHV), and case 9 

represented the highest system efficiency with a 

value of 70.7% (HHV). From this it can be concluded 

that further investigations and development of pilot 

projects should be done to determine a proper 

operation of CHP in thermal load following mode 

using renewable fuels.   
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