
Realtime auto tracking CCTV cameras for
increased safety and productivity

Joakim Skjefstad

Master of Science in Cybernetics and Robotics

Supervisor: Tor Engebret Onshus, ITK
Co-supervisor: Mads Hvilshøj, MHWirth AS

Thor Eivind Brantzeg, MHWirth AS
Johan Hansen, MHWirth AS

Department of Engineering Cybernetics

Submission date: December 2015

Norwegian University of Science and Technology

Realtime auto tracking CCTV cameras for
increased safety and productivity

Joakim Skjefstad

17-12-2015

MASTER THESIS
Department of Engineering Cybernetics

Faculty of Information Technology, Mathematics and Electrical
Engineering

Norwegian University of Science and Technology

Supervisor 1: Professor Tor Onshus
Supervisor 2: Doctor Mads Hvilshøj, MHWirth AS
Supervisor 3: Thor Brantzeg, MHWirth AS

Abstract

This paper describes the development of machine vision implementations to be
used on an offshore oil rig in order to track heavy machinery in motion with the
CCTV camera system and verify tubulars stored in a fingerboard. A version of
the machine tracking software has been implemented in C++11 which attempts
to utilize OpenCL to increase its speed. A proof of concept implementation
for detecting tubulars have been implemented in Python. Both cases utilize the
OpenCV machine vision library. Based on the findings of the study, the possibility
of both heavy machine tracking and tubular detection in fingerboard is verified,
but the study is inconclusive on the effect of OpenCL for speedup of machine
vision algorithms and further research has to be done. Improvement of the tubular
detection implementation is also required.

i

Abstract in Norwegian

Denne oppgaven beskriver utviklingen av en maskinsyn-implementasjon som kan
bli brukt p̊a offshore oljeplatformer for å følge tungt maskineri med CCTV kamera
systemet og bekrefte rør som er lagret i ett fingerbord. En versjon av systemet for
å følge tungt maskineri har blitt utviklet i C++11, som forsøker å benytte OpenCL
for å øke programhastigheten. Et forsøk p̊a å implementere rør har blitt laget i
Python. Begge programmene benytter OpenCV maskinsyn-biblioteket. Basert p̊a
funn i oppgaven, kan man konkludere med at det er mulig å b̊ade følge maskineri og
finne rør i fingerbord, men oppgaven kan ikke konkludere med effekten av OpenCL
for å øke hastigheten p̊a maskinsyn-algoritmer, og mer forskning må gjøres p̊a det
omr̊adet. Forbedringer p̊a rør-deteksjons-implementasjonen gjenst̊ar ogs̊a.

ii

Preface

This master thesis is submitted in partial fulfilment of the requirements for the
degree MSc. in Engineering Cybernetics at the Norwegian University of Science and
Technology.

The motivation has been to study the feasibility of using computer vision
offshore, and follow this up with an implementation of a potential application,
hopefully aiding in increased safety and reduced cost of operations.

The motivation for this work has been to implement an automated CCTV system
for tracking machines that are in motion, improving upon work previously done in
the field. By visually following machines, I hope this work will lead to improved
safety and productivity in the industry. Part of this thesis will also look into
increasing reliability of control systems that are managing drill pipes on an oil rig.

I would like to thank my supervisor Professor Tor Onshus from NTNU and co-
supervisors Doctor Mads Hvilshøj and Thor Eivind C. Brantzeg from MHWirth AS
for their guidance, domain knowledge and support throughout the project.

Keywords: computer vision, offshore, extreme environment, decision support, motion tracking,
cctv, drilling vessel, oil & gas, drilling applications, machine vision, opencv

iii

Summary

This thesis concerns the use of machine vision in order to increase safety and
performance around the drillfloor on an oil rig. Two cases have been explored.
The first case is an auto tracking CCTV system that allows the human supervisors
to always see machines as they move around on the drillfloor. The second case is a
proof of concept implementation of a system that can detect tubulars standing in
fingerboards, in order to provide data verification for a control system.

In order to explore these two cases, software was developed in both C++11
and Python, and a dataset gathered from a test tower was used, together with a
tabletop setup which involves a linear actuator that can translate glyph symbols.
OpenCL was explored as a way to speed up machine vision for tracking the glyph.
A high-performance CCTV dome camera was used to follow the glyph, connected
to a machine running Linux and the software developed.

The conclusion of this research is that auto tracking CCTV cameras are
preferably done in C++11 when compared to Python, but further research is
needed to fully understand and utilize the OpenCV T-API interface for speeding up
machine vision algorithms. Detection of tubulars in fingerboards is also working at
a rudimentary level with the implementation, and further work has to be done on
analysis of the features extracted by the implementation. Multiple camera sources
have been tested for the tracking CCTV camera, but not for the tubular detection
implementation.

iv

Contents

Abstract . i

Abstract in Norwegian . ii

Preface . iii

Summary . iv

1 Introduction 1

1.1 Background . 1

1.1.1 Problem formulation . 2

1.1.2 Literature survey . 2

1.1.3 What remains to be done? . 4

1.2 Objectives . 5

1.3 Limitations . 5

1.4 Approach . 6

1.4.1 CCTV tracking system . 6

1.4.2 Pipe detection system . 6

1.5 Structure of the report . 7

1.6 Structure of the DVD . 7

2 Theory 9

2.0.1 Camera . 9

2.0.2 Data transmission . 12

2.0.3 Video compression . 14

2.0.4 Glyph visibility . 14

2.0.5 Computing platform . 15

2.0.6 Threading . 15

2.0.7 Heterogenous computing . 16

2.0.8 Machine vision . 19

2.0.9 Computer vision . 19

2.0.10 Linux . 20

v

3 Case study 21
3.1 Glyph tracking . 21

3.1.1 Background . 21
3.1.2 Goal of case study . 22
3.1.3 Design of the machine vision algorithm 24
3.1.4 Design of the software . 26
3.1.5 Analysis of dataset for robustness in weather conditions 31
3.1.6 Tabletop setup for testing . 32
3.1.7 Camera settings . 32

3.2 Tubular detection in fingerboard . 35
3.2.1 Background . 35
3.2.2 Goal of case study . 36
3.2.3 Design of the machine vision algorithm 36

4 Discussion and results 51
4.1 Results . 51

4.1.1 Auto CCTV tracking . 51
4.1.2 Tubular detection . 54

4.2 Discussion . 56
4.2.1 Auto CCTV tracking . 56
4.2.2 Tubular detection . 56

4.3 Recommendations for future work . 57
4.3.1 Multithreading . 57
4.3.2 Augmented Reality . 58

A Acronyms 61

B Data 63
B.1 Cycle times . 63

C Building a Linear Actuator 79

D Compiling OpenCV 3.0 for OS X 85

vi

List of Figures

1.1 Timelapse through a day of a CCTV camera in Kristiansand, 4th of
March 2015. Source: Own work . 3

2.1 Aperture versus depth of field. Source: Online Tutsplus.com (2015) . 11
2.2 The OSI model and communication from host A to B. Source: Online

(2015) . 13
2.3 Glossiness and its change on reflection as shown in raytracing

software. Source: Online VRay (2015) 15
2.4 Singlethread versus multithread execution. Source: Online Codebase

(2015) . 16
2.5 Conceptual overview of a heterogeneous system with CPU and GPU

cores. Source: Online Technology (2013) 17
2.6 CUDA processing flow. Source: Online Wikipedia (2015a) 18
2.7 Performance speedups when using CUDA and a GPU. Source: Online

OpenCV.org (2015) . 19
2.8 Relation between computer vision and various other fields, including

machine vision. Source: Online Wikipedia (2015b) 20

3.1 Modern driller cabin. Credit: Vegard Haugland, MHWirth AS,
Haugland (2015) . 22

3.2 System overview using a single camera. Source:Own work, based on
Skjefstad (2014) . 23

3.3 System overview when used on an oil rig. Source: Own work 24
3.4 The vision algorithm as implemented. Source:Skjefstad (2014) 25
3.5 Software flowchart as implemented. Source: Own work 27
3.6 Part C of flowchart. Source: Own work 29
3.7 Part D of flowchart. Source: Own work 30
3.8 Part E of flowchart. Source: Own work 31
3.9 Part F of flowchart. Source: Own work 31
3.10 The tabletop setup. Source: Own work 33
3.11 The timer software in use, showing 241 ms delay. Source: Own work . 34
3.12 Diagram of a fingerboard with tubulars. Source:Braxton (2013a) . . . 35

vii

3.13 Fingerboard without tubulars. Source:TSC (2015) 36
3.14 Fingerboard with tubulars. Source: Own work (MHWirth AS) 37
3.15 A generic machine vision implementation before detailed description.

Source: Own work . 38
3.16 Matrix of CCTV images to show differences in lightning. All times

in UTC+1, captured 25th of January 2015. Source: Own work 40
3.17 Well center, at the base of the drill floor. Credit: Vegard Haugland,

MHWirth AS, Haugland (2015) . 41
3.18 Looking down on the drill floor from outside. Credit: Vegard

Haugland, MHWirth AS, Haugland (2015) 42
3.19 Fingerboard tubular detection sample image, taken 18th of January

15:00 UTC+1. Source: Own work . 43
3.20 Linear light blending of color image using Adobe Photoshop. Source:

Own work . 44
3.21 Linear light blending of grayscale image using Adobe Photoshop.

Source: Own work . 45
3.22 Scaled closeup of pipes from sample image. Source: Own work 47
3.23 The proof of concept implementation for finding tubulars. Source:

Own work . 49

4.1 Cycle timing for pure C++ version. Source: Own work, data in B.1 . 52
4.2 Cycle timing for C++ and OpenCL version. Source: Own work, data

in B.1 . 53
4.3 Cycle timing for Python version. Source: Own work, data in B.1 . . . 54
4.4 The output from the implementation. Source: Own work 55
4.5 Multithreading concept runs camera capture independent of camera

PTZ control. Source: Own work . 57
4.6 Data fusion using PLC and vision data. Source: Own work 58
4.7 Fingerboard augmented reality mockup. Source: Own work 59
4.8 Topdrive augmented reality mockup. Source: Drillingcontractor

(2015) modified by author . 60

C.1 Bottom assembly. Source: Own work 81
C.2 Top assembly and main slider. Source: Own work 82
C.3 Diagram over communication channel and system. Source: Own work 83

viii

Chapter 1

Introduction

1.1 Background

The Norwegian economy is cooling under a pessimistic oil price of close to 37 USD
per barrel as of December 2015. Under heavy pressure to perform, companies
involved in the exploitation of hydrocarbons are cutting costs while trying to increase
productivity.

As a means of improving profitability, real-time decision support systems have
been developed. One example of these was a product of work done at NTNU, by
Verdande Technology, established 2004. The company is now closed down after
becoming bankrupt in December 2014 as potential customers were cutting costs.

Automation of pipe handling have been pursued by several companies in the oil
rig equipment production market with moderate success. The industry have realized
that more may be gained from supporting humans in the center of the operation,
than to completely eliminate humans. As such, systems to support the human driller
need to be developed.

Support systems that may improve safety and productivity includes improve-
ments to the graphical user interface, presentation of relevant and aggrevated data,
as well as integrated camera systems.

The main objective of this MSc thesis is to implement a system that provides a
better situation overview through automated CCTV tracking of machines.

This MSc thesis should address the following:

• Implementation of an auto tracking CCTV system using glyphs as visual
descriptor.

• Analysis of dataset with real-world weather over a long period.

• Prototyping of an implementation to detect casings and pipes in a fingerboard.

1

1.1.1 Problem formulation

How can computer vision assisted camera tracking be exploited to increase safety
and situational awareness in any process involving heavy machinery and remote
operation?

How will GPU-acceleration of the computer vision algorithm affect the system?
How can we reduce the latency of the live camera feed to make feedback control

of the camera better?
How can we track an object across multiple cameras?
How can we identify tubulars in a fingerboard using machine vision, so that the

control system can verify its data?
The end goal is to reduce the possibility of an undesired event, be it either

damage to humans or expensive equipment, and increase speed of operations.

1.1.2 Literature survey

As discussed by Sklet (2005), the concept of a safety barrier is not clearly defined
and its meaning is ambiguous. With this in mind, we are looking to implement what
Rausand (2014) describes as a proactive safety barrier, also known as a frequency-
reducing barrier, in other words a system to reduce the frequency of undesired
events.

Semi-automated CCTV surveillance have been considered by Dadashi et al.
(2012) as a method of increasing the capacity of a human operator in a traditional
human surveillance situation. The reliability for fully automated systems were not
considered good enough for an operator to trust. The findings recommend providing
feedback about system confidence and accuracy to the operator, which makes the
automated component of such a system more ’visible’ to its user. For the case of this
thesis, the act of displaying visual cues overlaid on the CCTV images are considered.
This would hopefully increase trust, and expose the automated component of our
fully automated tracking system.

The machine vision algorithm that was implemented in the authors earlier work,
as mentioned in work done by Boyers (2013) and Kirillov (2010), will be used to
recognize the distinct symbol, hereafter called a glyph.

The challenges of outdoor machine vision in uncontrollable weather and lightning
conditions have been raised by the author in the same unpublished project thesis.
Figure 1.1 shows a series of images captured by the author, which shows the
differences in color, clarity and reflections.

2

Figure 1.1: Timelapse through a day of a CCTV camera in Kristiansand, 4th of
March 2015. Source: Own work

Our camera of choice, an AXIS Q6045 was selected both by its widespread use
in the oil- and gas industry, and because this is what the author had at hand. It
is a modern high-definition PTZ-camera produced by Axis Communications. Axis
Communications have provided a white paper which provides a good overview of
the various elements that increase latency in a live video stream. This document is
available online. (Communications, 2015)

The inherit differences between analog and digital IP1 transmission of video have
been examined by Hill et al. (2009), and the conclusion was that latency present in
digital IP transmission is within acceptable values for normal usage. Still, the article
presents findings that show latency of a digital transmission being more than 5x of
the analog transmission latency. The latency was measured to be between 120 ms
up to 1600 ms depending on the resolution of the image and its compression. The
upsides of digital transmission include increased quality of image, flexibility of digital
encoding and ability to use analytic software. The paper does not describe other
forms of digital video transmissions that exist, including raw digital transmission
using SDI2, and it is also outdated in terms of the current state of the art cameras

1IP, the short form of Internet Protocol, a principal communications protocol for relaying
datagrams across network boundaries. IPv4 was deployed in the ARPANET in 1983.

2Serial Digital Interface, high-speed digital video transmission defined by Society of Motion
Picture & Television Engineers.

3

available, but it provides a reference.

Work done by Svensson and Söderlund (2013) involved methods to reduce the
delays that are inherently found in digital IP transmission systems and the control
of these. Their research was done on AXIS Q6035 and AXIS Q6032 cameras. The
author assumes these to be closely related to the AXIS Q6045, and their findings
therefore useful for work done in this thesis. Findings include camera operating
system being among the key factors for video delay, as the stock cameras have
implemented an inefficient communication scheme, and there are other suggestions
to reduce delay presented. For the scope of this thesis, we will have these delays in
mind and build around them, as any operating system upgrades have to come from
Axis themselves if any company would consider using them.

Tracking of objects across multiple cameras have been explored with most focus
on overlapping camera views. Some work has also been done on non-overlapping
camera views by jav (2003), where camera topology and path probabilities are learnt
without any inter-camera calibration. When images from several sources are used,
the time-synchronization of the images becomes crucial as a point of reference.
Through the use of Parzen windows, the inter-camera space-time probabilities can
be mapped. The method mentioned does require a learning phase.

1.1.3 What remains to be done?

As a summary of the literature survey, we see that much work has been done in
the different fields, but not much have been found on combining the results of these
into a solution that can provide modern, automated CCTV tracking of industrial
processes involving heavy machinery in a way that retains the human operator in
the center of the process.

The implementation and comparison of a robust and responsive automated
CCTV tracking system remains to be done, as an earlier proof of concept
implementation was done by the author in 2014.

Not much literature on fingerboard tubular detection have been found. It is
believed that the reason for this is that the word fingerboard is a technical jargon
used in the drilling industry, and that any research done is done in-house with no
intention of publishing results.

The implementation of a simple fingerboard tubular detection program remains
to be done, and the analysis of its performance.

We aim to combine as much as possible from the various fields, given constraints
of time, into a proof of concept which can be the stepping stone to a commercial
product in the case of CCTV tracking, and a prototype implementation for the
fingerboard tubular detection.

4

1.2 Objectives

The objectives of the work done through this thesis consists of:

1. Implementation of a multi-source GPU-accelerated machine vision program
that can control a CCTV camera and follow a glyph symbol, and comparison
of its performance

2. Implementation of a proof of concept tubular-detection program for finger-
boards

1.3 Limitations

The limitations that relates to this study includes both technical challenges,
environmental and operational conditions, but focus is on the technical challenges
for the sake of brevity.

As CCTV cameras have evolved, the video transfer method has gone through
some changes to cater for higher resolutions and more true representation of
the world as observed. By this, analog signals have been replaced by digital
signals. Analog transmission is known for being both robust, simple and near-
instant, however they are prone to signal deterioration which may affect machine
vision algorithms, and their flexibility of location is not as good as modern digital
transmission. With digital transmission, commonly using IP, the cost of these
systems have gone down, flexibility have gone up and resolution as well as control has
improved, yet this have introduced new challenges. Packet loss is a real possibility in
IP networks, increased latency through encoding and decoding of the video stream
and a shared network highway puts more demand on the implementation. One
serious limitation to the implementation of the system as presented, is therefore
as a feedback system, the upper latency limit for which when the system becomes
unstable. The use of raw digital transmission such as SDI would minimize latency
and give room for even higher resolution images with little to no chance of data loss,
but this has not been explored as it requires specialized cameras, coaxial cables and
frame grabbers.

Technology is highly guarded, and real offshore operations are not easy to get
access to. Cooperation is not common in the industry, and transparency of systems
and solutions may be less than ideal. This limits the available data set for the
purpose of research and making robust systems.

The software world progress quickly, and new solutions can suddenly become
obsolete. The technological debt increases quickly. This would make an externally
maintained solution seem like a better idea, but sharing information to make the
development work is not an easy task as each company protects its own interests.

5

Heterogeneous computing platforms are still considered to be in its infancy,
and both CUDA as well as OpenCL is under active developement. Choosing
one technology will lead to an exclusion of either benefits or available computing
platforms. A limitation here is that the resulting speed and benefits of heterogeneous
computing are not set in stone, and that there will always be improvements
that can be done to make an otherwise unworkable system become a successful
implementation.

Algorithms implemented will not be robust enough to handle all possible
lightning conditions, and some of these may assume that a certain color can be
identified. This means that artificial lightning is paramount for reliable machine
vision outdoors, if we are to only rely on optical sensors. Alternatives exist, but
these will not be explored further in this thesis. The author have made a summary
of these that can be read in the unpublished project thesis Skjefstad (2014).

It is considered a hard challenge to make a truly reliable system that works in the
real world. Making a tabletop solution is not nearly enough to allow a big company
to test this offshore at a customers platform, and much work remains before a fully
commercial solution is ready for sale.

Seeing past these limitations, however, is a world of possibilities, which this study
intends to explore.

1.4 Approach

1.4.1 CCTV tracking system

The implementation of the CCTV tracking system will be based on the authors
previous work and be written in C++ with heterogeneous support from a GPU to
increase performance.

After this system has been built, it will be tested with and without GPU
acceleration, to determine if the full solution becomes more stable and reliable.

A data-set will be analyzed to test the robustness of the machine vision
implementation and comment how snow, sun and other real-world factors affect
the output.

It will also be tried to use multiple video sources, however due to the lack
of several CCTV cameras, this will only partially be explored using a common
webcamera, as a means of doing camera handover.

1.4.2 Pipe detection system

The construction of a proof of concept pipe detection system for fingerboards will
be done in a rapid prototyping environment, to show that it is possible to increase

6

control system awareness in existing infrastructure on the oil rig.

1.5 Structure of the report

All the software developed as a part of this project can be found at the authors
personal repository at Github, Skjefstad (2015), feel free to use this for future non-
commercial work. The Latex source is also available. Some information may have
been omitted to hide confidential company information.

1.6 Structure of the DVD

The DVD contains a snapshot of the latest Github code repository as of the date of
this report.

7

8

Chapter 2

Theory

Following is a brief introduction to some of the aspects that affects the solution, and
should be among the things considered when developing a commercial application.

2.0.1 Camera

The camera specifications and performance directly affects the results. It is the
source of input data for the machine vision software, and it may also be the output,
which will be the case when the PTZ1 is controlled by the software.

Some cameras support extra applications that run in their operating system,
which can for example track moving objects and ”fence” an area so that any objects
who enter a region of interest, will raise an alarm. Embedded systems which can be
found in commercial CCTV cameras are commonly resource-constrained in terms of
CPU and RAM, and this suggests that some complex software applications should
be executed on a stand-alone computer.

Resolution and Field of view

Resolution and field of view are related such that an increased field of view leads to a
lower amount of pixels available to distinguish objects. Modern image sensors come
with capabilities of capturing 1920x1080 pixel images, whilst older image sensors
may capture 320x240 pixel images. The field of view is a function of the optical
objective as well as the size of the image sensor, and their distances in relation to
each other.

1PTZ, pan- tilt and zoom functionality to translate the image captured by a camera. Common
in dome-type CCTV cameras.

9

Pan, Tilt and Zoom

Many modern CCTV cameras come with motors that can pan and tilt the camera,
as well as optical and digital zoom functionality. Their ability to pan, tilt and zoom
have uses for scanning a large area, as well as investigating small areas in detail.
The speed and accuracy of which the pan, tilt and zoom can be manipulated may
be of importance in some applications.

Focus

If light from an object converges as much as possible, it is considered in focus. Would
the light rather diverge, it is considered out of focus. This leads to blurring of the
object or scene in question. Many cameras come with automatic focus that will
try to adjust the focus so that a target object becomes in focus. The focus is then
controlled by either an ultrasonic motor or a stepper motor.

Aperture

The aperture is the opening in a camera objective which determines how much light
enters the camera, and it is also a factor that can determine the focus range of a
camera. An open aperture leads to larger amounts of light and thus works better in
low-light conditions, but the depth of field gets smaller. See figure ?? for how depth
of field relates to the aperture size. The amount of light that enters and hits the
image sensor also determines how long the aperture should be kept open before a
picture is fully captured, and less light means that it will need to stay open longer,
which in turn leads to motion blur if an object is in motion. Many cameras come with
automatic aperture control, that will try to adjust the aperture opening and shutter
speed so that the picture does not get too bright or too dark. Axis Communications
have introduced a more precise aperture control to some cameras, which they call
”P-iris”, claimed to provide improvements to contrast, clarity, resolution and depth
of field beyond other methods of aperture control.

10

Figure 2.1: Aperture versus depth of field. Source: Online Tutsplus.com (2015)

Frame Rate

The frequency of consecutive image frames is expressed in frames per second. Video
displays motion through the constant change of image frames, and the human visual
system perceives this as motion. Capturing at a given frame rate requires the
aperture, image sensor and the operating system of a digital camera to perform the
job of capturing, processing and transmitting at the rate required. A large amount
of frames per second requires a multiple of the image resolution of bandwidth to
transfer the images to a viewer, which means that the most direct way of reducing
data transmission requirements is by reducing frames per second. When it comes
to CCTV cameras for surveillance, frame rate of stored movies are reduced to allow
for longer storage of the video material. Higher frame rate gives perceived smoother
motion in the video, and it also allows us to slow down actions and investigate
them in detail. The frame rate of a normal CCTV camera may be 25 FPS, a high-
definition movie may be 60 FPS while high-speed cameras capture several thousands
of frames per second.

Image Quality

The quality of an image is related to the quality of the optics, quality of the image
sensor and amount of light available at a scene, as well as any video codec used to
compress the image, in addition to other factors. Modern image sensors can also
adjust the sensitivity of the sensor so that previously dark scenes look brighter, at
the cost of increased pixel noise. A full overview over the factors that affect image
quality can be found at (Imatest, 2015).

11

Camera Interface

Which interface that is supported for transferring images is an important factor
to consider, and the focus can be to reduce cost or increase performance. The
optimal interface depends on the application. Some of the most used interfaces
today includes USB, SDI and Ethernet. It is also possible to find CCTV cameras
that rely on Wi-Fi, but these are prone to intermittent frame drops if environmental
conditions blocks the signal.

2.0.2 Data transmission

A function of the camera hardware and operating system, the camera interface and
path of transmission as well as any processing on the way, several aspects will affect
data transmission from the image sensor to the screen. An unfortunate side-effect of
data transmission is that an image lags after the actual event got captured, and we
commonly call this for latency. The way a video signal propagates from one place to
another makes this an important parameter in the selection of a camera system. At
each end of the transmission line, compression and decompression may take place.

Analog Analog video transmission relies on a continuous voltage range. A weak
signal is susceptible to electronic interference. The analog signal is modulated on top
of a carrier frequency using RF modulation, which is then transferred over a physical
medium. The medium have major implications on the amount of interference the
signal picks up. Coaxial cables are just one of the many mediums that can be used,
including broadcasting over a VHF2 or UHF3 carrier.

Digital - SDI family A family of serial digital interface standards defined by the
SMPTE in 1989 (Poynton, 2003) is another method to transfer video. This family of
standard is not widely used in consumer electronics, as licensing agreements restricts
its use. Usually used to transfer uncompressed and unencrypted digital video signals,
they can also be used for packetized data. The physical medium can be of copper
coaxial cables with BNC connectors and 75 ohms impedance for a max run length of
typically 100 meters when used with HD video, or it can be fiber optics only limited
by the maximum fiber length and repeaters. The quality of cabling and termination
is important to ensure max range. Wikipedia (2015c)

SMPTE 292M is one of these standards, common name is HD-SDI and it was
introduced in 1998. Its theoretical bitrate is 1.485 Gigabit per second, and it can

2VHF, Very high frequency is a designation for electromagnetic waves in the range from 30
MHz to 300 MHz.

3UHF, Ultra high frequency is a designation for electromagnetic waves in the range from 300
MHz to 3 GHz.

12

transfer up to 1080i images through coaxial cables.
Since SDI uses a dedicated coaxial cable, there is no network congestion.

Digital - IP Another digital method uses the Internet Protocol to transfer video
as packets. This provides great flexibility and range of the video signal, at the cost of
reliability and risk of packet loss. Its task is to deliver packets from a source host to
a destination based on the IP addresses in its packet header. The physical medium is
commonly twisted-pair cable for cheap and reliable end-node communication, fiber
optical cable for long-range high-bandwidth connections, or wireless RF where the
data is modulated on a carrier wave of 2.4 GHz or 5 GHz.

The complexity of IP communication is reduced to layers that provide a specific
task, and a conceptual model known as the OSI model shows this. The OSI
model can be seen illustrated in figure 2.2. Since the packets are moved through
intermediate routers and switches, a packet can travel around the world almost
instantly, but all packet handling and propagation of the signal will incur delay.

For local networks, the complexity of IP communication, wrapping of packets
with destination address and other features of IP communication translates to delay
between two host applications.

Video compression using a video codec is used to allow image data to be reduced
in size to not congest the network, and the video codecs available for a given IP
camera varies.

IP communication hardware is cheap and abundant, flexible and dynamic.
Network congestion may lead to packet loss.

Figure 2.2: The OSI model and communication from host A to B. Source: Online
(2015)

13

2.0.3 Video compression

A video codec is used to compress image data for transmission, and decompress
it when it has arrived at its destination. It is also used for storing video on a
computer. Compression is typically lossy, which means that data is removed on
purpose to reduce the need for storage. We can divide video codecs into two groups,
one group relying on intraframe- and the other on interframe compression.

Intraframe Every image frame is compressed on its own, with no relations to
frames either before or after itself. This compression form is not as good in terms
of size reduction, but it uses less CPU than the interframe compression. MJPEG is
such a codec, that takes every single image frame and compresses it using the JPEG
image compression algorithm. The bandwidth used by an intraframe compressed
video stream is is more consistent than when interframe is used, but it is also on
average higher.

Interframe At intervals, a full frame is stored, and a series of frames after this
are reduced to only store the frame data that has changed from the full frame. This
gives greater compression as it takes advantage of temporal redundancy between
neighboring frames. This kind of compression is very CPU intensive, compared to
intraframe compression. H.264 is such a codec, that creates I-frames at intervals,
and fills in any changes in a frame by using B- and P-frames that are interpolated
Each I-frame updates the full image.

2.0.4 Glyph visibility

The glyph symbol, if it is going to be used outdoors or in difficult lightning situations,
may have reduced visibility when light hits the glyph from some angles. The angle
of light from a sun hitting a glyph can change with the time of the year, time of the
day and any man-made sources of light. The method of drawing and displaying the
symbol is important to consider. Using a thin translucent plastic sheet to laminate
a paper print of the glyph may give specular reflections that appear white. The
specular reflection is a function of the glossiness of a surface. Thus to increase
reliability of glyph detection, the surface should have a low glossiness.

14

Figure 2.3: Glossiness and its change on reflection as shown in raytracing software.
Source: Online VRay (2015)

2.0.5 Computing platform

The processing of images may be done by humans, in which the image is sent
directly to a screen. In cases where we want to use machine vision algorithms, a
general purpose computer is typically doing this job.

The computing platform is connected to the camera, and it gathers images which
is then processed by a computer program.

Computer performance using a central processing unit is steadily increasing as
new technologies evolve, but a relatively new method uses a graphical processing
unit to accelerate application code. This allows for highly parallel execution of code,
that may for some algorithms, speed up their execution and in turn speed up the
program.

2.0.6 Threading

In order to allow several different threads to run simultaneously, the operating
system supports threads. It is also possible to delegate a thread to a specific
computing core in a central processing unit, if there are more. This have both
advantages and disadvantages.

Advantages include the ability for the computer to use idle processing time, and
also allow for blocking functions to run in seperate threads to allow the main thread
to continue running.

Disadvantages include possibilities of interfering with each other if they share

15

memory, and it is also notoriously challenging to write good multi threaded
applications, which in turn may lead to the program not functioning as expected.

In the case of video compression, some codecs are more suited for parallel
computing, while others are not. If one is intending to compress video, this should
be kept in mind so that a codec that supports parallel computing is selected. The
codec may also use the GPU for speedups.

Figure 2.4: Singlethread versus multithread execution. Source: Online Codebase
(2015)

Modern central processing units contains several computing cores, which can run
their own threads if the programmer wishes. The number of computing cores usually
range from one to eight in personal computers.

2.0.7 Heterogenous computing

Systems that utilize dissimilar processing cores are known as heterogenous
computing systems. Not only do they have the benefit of several processing cores,
they also bring the benefit of having dissimilar processing units that work differently
and are better at handling specific tasks.

Heterogenous System Architecture can be used to integrate central processing
units and graphical processing units, the alternative is to use a parallel computing

16

platform like OpenCL or CUDA that relieves the programmer from having to move
data between the processing units themselves.

Figure 2.5: Conceptual overview of a heterogeneous system with CPU and GPU
cores. Source: Online Technology (2013)

CUDA

The NVIDIA Corporation released the CUDA platform in June 2007, and is a
parallel computing platform that only works with NVIDIA graphic cards. Language
bindings exist for many programming languages, and it provides both low-level and
high-level APIs.

17

Figure 2.6: CUDA processing flow. Source: Online Wikipedia (2015a)

OpenCL

Apple Inc. authored a language and an API that executes across central processing
units, graphical processing units and other processors in August 2009. This is now
maintained by the Khronos Group, which is a non-profit consortium that develops
open standards for graphics, media and parallel computation. They also maintain
OpenGL, which sees great use in 3D applications.

OpenCL sees all computing devices, not only the graphical processing units, and
a key feature of it is to be portable and run on any system that conforms to the
standard.

A comprehensive study by (Fang et al., 2011) in 2011 compared CUDA to
OpenCL, and the findings suggests that CUDA performs 30 percent faster than
OpenCL when a program is directly translated between the two platforms. However,
the conclusion is that there are no reason for OpenCL to perform worse than CUDA
under a fair comparison, and OpenCL is considered a good alternative to CUDA.

18

2.0.8 Machine vision

Machine vision is a relatively new field that uses image capture and analysis for
automating tasks. It sees wide use in industrial manufacturing for quality control
and process automation, and also in more recent times, autonomous vehicles.

Implementing machine vision in software is often done by using vision libraries,
and one well-known is the Open Source Computer Vision Library. The short-form
is OpenCV, and it is currently on its third release, being maintained by a russian
company named Itseez and developed by contributors all around the world.

OpenCV 3.0 gold release was made available in 4th of June 2015. It supports
OpenCL using its transparent API, and support for CUDA was developed in 2010.
Both the OpenCL and CUDA support is still under active development.

Performance speedups of groups of algorithms by using GPU acceleration with
CUDA can be seen in figure 2.7, tests done by the OpenCV project.

Figure 2.7: Performance speedups when using CUDA and a GPU. Source: Online
OpenCV.org (2015)

2.0.9 Computer vision

Computer vision is a field with overlaps from machine vision. Computer vision
concerns automatic extraction, analysis and understanding of useful information.
Computer vision is also used for visual computer programs that displays data.

Author’s comments The usage of ”computer vision” and ”machine vision” is
often intermixed, and the exact definition of each is unknown. For the purpose of
this thesis, the assumption is that when someone mentions one of these terms, the
other may be the one they were meaning to use.

19

Figure 2.8: Relation between computer vision and various other fields, including
machine vision. Source: Online Wikipedia (2015b)

2.0.10 Linux

An alternative to Microsoft Windows, the operating system that can run on the
widest range of computer architectures is Linux. The operating system kernel was
first released in 1991 by Linus Torvalds, and it is a clone of UNIX. It is a free and
open-source collaboration, being developed by programmers all around the world.
The great power of Linux comes through its flexibility, and it or a flavor of it is
commonly found powering the servers that make up the world wide web. Every
flavor of Linux is known as a distribution, and most of the larger distributions come
with great package management tools. For Ubuntu, we can use the same tools as
are used in the Debian distribution, which includes apt-get, to install the latest
releases of open source software. It is possible to optimize software running on a
Linux system further than what is possible with a Microsoft Windows system, and
there is by default less overhead on Linux. Some downsides of using Linux include a
very fragmented software world, and many bleeding edge updates that can make the
system stop working if carelessly updated. The learning curve is also steeper, and a
lot of frustration is to be expected if one has not worked with Linux before. A great
resource to learn more about the Linux operating system is Wikipedia (Wikipedia,
2015d) and Linus Torvalds GitHub-repository for Linux (Torvalds, 2015).

20

Chapter 3

Case study

3.1 Glyph tracking

3.1.1 Background

The norm in the industry is that CCTV cameras are manually selected depending
on needs, usually through using touch screens that display a set of four pictures at
once. They are controllable through PTZ, but they are usually only moved to preset
locations, by navigating the user interface.

21

Figure 3.1: Modern driller cabin. Credit: Vegard Haugland, MHWirth AS,
Haugland (2015)

3.1.2 Goal of case study

This case study is intended to further improve upon the work done in the
unpublished project thesis covering work done by the author in the year 2014.
Skjefstad (2014) describes the original idea, but it is briefly repeated here for brevity.

Through the detection and tracking of simple symbols attached to heavy
machinery on an oil rig, it is possible to allow CCTV cameras to follow machines
without any extra user input. These simple symbols are called ”glyphs”, and their
design is chosen so to reduce processing requirements and increasing possibility of
detection by the algorithm.

The case study described in Skjefstad (2014) was implemented in an interpreted
programming language Python 2.7 using OpenCV 2.4, while this new implementa-
tion is being written in a compiled programming language C++11 using OpenCV
3.0, which was recently released.

22

Figure 3.2: System overview using a single camera. Source:Own work, based on
Skjefstad (2014)

The simple system as shown in figure 3.2 can be extended to use multiple sources.
We extend the system to fulfill its role on an imaginary oil rig, where it allows the
drillers to easily follow a moving top drive.

23

Figure 3.3: System overview when used on an oil rig. Source: Own work

With the software in place, controlling several CCTV cameras as shown in figure
3.3, we hope to allow the control loop to quickly and efficiently follow the machine
as it moves about.

At the end of this case study, we will see a side-by-side comparison of the old
and new implementation, and consider differences in performance.

3.1.3 Design of the machine vision algorithm

The machine vision algorithm remains the same as earlier developed, as to give
us equal grounds for comparison. There are steps that can improve detection rate
and reduce processing requirements which will be mentioned, but not necessarily
implemented. For details about the algorithm described in figure 3.4, please refer
to the unpublished project thesis by the author (Skjefstad, 2014).

24

Figure 3.4: The vision algorithm as implemented. Source:Skjefstad (2014)

25

3.1.4 Design of the software

Using C++11, the software is expected to run faster than the similar Python
2.7-version implemented in Skjefstad (2014). When we have OpenCL-support in
hardware, a greater speedup is expected to be seen for parts of the machine vision
algorithm.

The software is designed to run in a single thread, despite of potential benefits
from using multiple threads as described in Chapter 2, because of difficulties with
making a multithreaded application behave as expected. This also means that the
comparison between the Python 2.7-version and the C++11-version stands on equal
ground. A flowchart of the software as a single thread can be seen in figure 3.5, where
the machine vision algorithm is implemented inside Camera.FindGlyph().

26

Figure 3.5: Software flowchart as implemented. Source: Own work

27

Step A

OpenCV 3.0 comes with a new transparent API, but we still have to enable the usage
of OpenCL and verify that it is indeed working. This also gives us the opportunity
to disable OpenCL to see how this affects the speed of our algorithm.

Enable In order to enable OpenCL, we have to set an environment variable. At the
same time, we can explicitly tell OpenCV which device should be used. ”:GPU:0”
means that we will use the first GPU for acceleration.

export OPENCV OPENCL DEVICE=”:GPU:0”

In addition, we will have to run a function to enable OpenCL in the C++ code.

cv::ocl::setUseOpenCL(true);

We also have to create the context, and select device, which is done as follows:

cv::ocl::Context context;
context.create(cv::ocl::Device::TYPE GPU);
cv::ocl::Device(context.device(0));

Disable If we rather want to disable OpenCL, we have to set the environment
variable using ”qqq” as value.

export OPENCV OPENCL DEVICE=”qqq”

In addition, we will run the same function as when we enabled, but with another
argument in the C++ code.

cv::ocl::setUseOpenCL(false);

Step B

Each camera uses HTTP with Digest access authentication to prevent unauthorized
access, which is an application of MD5 cryptographic hashing with nonce values to
prevent replay attacks. The process of connecting to a camera and authenticating
takes some time, so we do it once and increase the TCP parameters of the connection
so that it is kept open. If we leave the TCP connection open, this should reduce the
time needed for retrieving information in subsequent data transmissions. In order
to create this connection, we query the camera for information while providing
HTTP Digest information. The library we use is known as libcurl and more
information about this open source project can be found at their webpage CURL
(2015). Wireshark was used to find the authentication scheme.

28

Step C

Consider the loop in figure 3.6. Since we rely on receiving an image that is as up-to-
date as possible, as well as the current camera parameters, we loop over each camera
in our list. Camera.RefreshPosition() uses HTTP GET over the link previously
established, in order to retrieve the following parameters, which were found using
Wireshark:

• pan (float)

• tilt (float)

• zoom (integer)

• iris (integer)

• focus (integer)

• autofocus (on/off)

• autoiris (on/off)

Afterwards, we use OpenCV to grab the most recent frame from the MJPEG
stream, and store this together with the most current timestamp. By using
VideoCapture::grab(), we postpone decoding of the frame until a later stage. We do
this to minimize the time-difference between two captured images from two different
cameras.

Figure 3.6: Part C of flowchart. Source: Own work

29

Step D

Consider the loop in figure 3.7. We have in the last step gathered both images,
positions and timestamp from the cameras. Now, we let OpenCV decode the images
and then we run the glyph finding algorithm on each of these.

Figure 3.7: Part D of flowchart. Source: Own work

Step E

Consider the loop in figure 3.8. Using the center of the glyph distance from the target
pixel on the image, we calculate the difference and move the camera towards this
position. This step can be made more advanced by implementing various controllers,
but for this thesis, it remains a Proportional controller. The Camera.MoveTo()
method uses HTTP to engage the PTZ camera.

30

Figure 3.8: Part E of flowchart. Source: Own work

Step F

In 3.8, we are now at the end of a cycle. The time spent on this cycle as well as
other useful data is logged to a file. The same information can be presented on an
augmented reality screen. A new cycle begins.

Figure 3.9: Part F of flowchart. Source: Own work

3.1.5 Analysis of dataset for robustness in weather condi-
tions

Based on work done in the project thesis, a Python program using OpenCV 2 was
created. Its purpose was to analyse pictures captured over the span of a year, from
the MHWirth test tower located at Dvergsnes, Kristiansand.

The dataset was gathered using another Python program written and deployed
around christmas 2014, which at 15-minute intervals, captured images from a handful
of CCTV cameras in the tower and stored them on a local server.

31

Located at various locations in the fifty meters tall test tower, the idea was that
weather impacts would be strong.

As the CCTV cameras have built-in low-light mode, a period during the night
is considered too dark for the algorithm to detect the glyph.

The program that gathered the pictures was running without supervision.

3.1.6 Tabletop setup for testing

In order to rapidly develop and test the software in a controlled environment, a
tabletop setup was created. The main PTZ camera was connected to the internet,
while the USB webcamera was connected to the Linux server.

A custom built linear actuator was used to provide repeated linear motion. See
Appendix C page 79 for construction details.

A computer screen was used to roughly determine camera latency using a custom-
built timer software. See figure 3.10 for the full setup. The timer in use can be seen
on figure 3.11 where the camera looks at the screen which in turn displays the
captured image. The difference between captured picture and displayed picture
gives us a rough estimate of the latency we experience. In this case, we have close
to 241 milliseconds of delay, nearly four frames per second.

9.274741s− 9.033639s = 0.241102s (3.1)

In order to protect the privacy of other students in the room, the back of the
PTZ camera was covered.

3.1.7 Camera settings

The AXIS Q6045 camera settings are adjusted in order to approach more favorable
conditions in which the machine vision program operates.

• Resolution was set to 480x270 pixels as this seems sufficient for tracking a
glyph. It also reduces the amount of data that has to be processed.

• Maximum frame rate was limited to 10 fps per viewer, where default is
Unlimited. This also reduces the amount of images that pile up in the buffer
on the computer.

• MJPEG will be used for encoding the video stream. MJPEG is an intraframe
video compression format, and it is the option that requires the least amount
of work by the operating system in the CCTV camera, leading to least amount
of latency possible without using SDI or modifying the operating system.

32

Figure 3.10: The tabletop setup. Source: Own work

33

Figure 3.11: The timer software in use, showing 241 ms delay. Source: Own work

34

3.2 Tubular detection in fingerboard

3.2.1 Background

Drilling pipes and risers, commonly called tubulars, are used to drill deep into the
earth. These tubulars need to be stored in between their use in the drilling process.
The most common method for short-term to mid-term storage is in groups of a few
units in a machine called fingerboard, a part of the pipe handling equipment on a
drilling rig.

Figure 3.12: Diagram of a fingerboard with tubulars. Source:Braxton (2013a)

The first patent for a finger board was filed 1929 in the United States, and ever

35

since, new patents that increase their capabilities have been filed. The latest ones
use pneumatic cylinders to latch and secure tubulars in place, and a control system
managing and tracking the pipes that should be in the fingerboard.

For more information regarding the history of the fingerboard, the reference list
of a patent publicized February 2013 by Braxton (2013b) is suggested. The patent
in question discuss a method to report finger position data to the control system.
With this feature, the control system becomes aware of its fingers, but knowing if a
tubular exists in a given cell requires a fail-free logging of the actions done by other
machines.

Figure 3.13: Fingerboard without tubulars. Source:TSC (2015)

3.2.2 Goal of case study

The goal of this case study is to draft an algorithm that can detect tubulars and
associated parameters in a fingerboard. It is possible to develop the algorithm using
more user-friendly click-and-drop vision packages, but the author settled on using
OpenCV 3 because this does not require expensive and resource demanding software.

3.2.3 Design of the machine vision algorithm

The circularity of a circle can be described using the Heywood circularity factor.
This factor can be used to narrow feature detection.

One possible solution involves using the Hough transform method to find ellipses
in the picture, then analyze the region contained within to determine wheter the
detected ellipse may outline a tubular. The algorithm implemented in OpenCV is
based on a variant called the 2-1 Hough Transform by Yuen et al. (1990). Partial
occlusion of tubulars are a challenge.

36

Another more recent method of ellipse detection is presented by Wang et al.
(2014) based on sorted merging. This algorithm is not yet implemented in OpenCV,
but may be better at handling partial occlusion of the ellipses, and faster than the
Hough transform based methods.

Figure 3.14: Fingerboard with tubulars. Source: Own work (MHWirth AS)

37

Figure 3.15: A generic machine vision implementation before detailed description.
Source: Own work

38

We will now build up an algorithm as a hypothetical solution to the challenge,
and the design choices made will be explained.

Image capture

The image is captured and stored with colors from the camera. In our case, we use
the high-resolution AXIS Q6045 footage captured outdoors at MHWirth AS. For
an actual implementation, any camera at a certain angle and position above the
fingerboard will do. We are depending upon good lightning and decent weather,
and we assume that no water droplets are found on the camera housing.

For the sake of comparison, a matrix that shows some mid-winter lightning
conditions and how it affects the image, which in turn may break our algorithm.
See figure 3.16. The author’s comments on this figure follows.

06:45 Only artificial light can be seen. The tubulars and the fingerboard are black,
no features besides their orientation and if lucky, width of the pipe, can be extracted.

08:15 We can see the fingerboard and the tubulars, but the picture is filled with
artifacts that appear in low-light conditions. It should be possible to extract features
from this image, but it is sub-optimal.

10:00 The natural light from the sun is flat and thus, the image does not give us
too much contrasts. The picture in itself should suffice to detect the tubulars.

13:15 The sun has now risen close to its max elevation above the horizon for the
current date. A good amount of contrasts in the image makes this a good candidate
for implementing a proof-of-concept algorithm.

17:00 Colors captured have shifted to a cold blue, the sun is almost gone. If we use
colors to distinguish the tubular, this would provide a challenge, unless we adjust
the white-balance.

17:15 The camera went into low-light mode, which removes the IR-filter. Any
artificial light is also turned off at this time, leading to a dark muddy and noisy
picture that is not good for our use.

39

Figure 3.16: Matrix of CCTV images to show differences in lightning. All times in
UTC+1, captured 25th of January 2015. Source: Own work

40

A thing to note is that the drilling floor on an offshore platform is not necessarily
outdoors, but is partially sheltered from the environment, including natural light.
This depends on the configuration. Machines may therefore move sheltered from
natural light most of the time. Figure 3.17 shows a typical well center, partially in
a partially sheltered area on an offshore oil platform. Figure 3.18 shows drillfloor as
viewed from above, the fingerboards can be seen in the shade of the walls surrounding
the tower.

Figure 3.17: Well center, at the base of the drill floor. Credit: Vegard Haugland,
MHWirth AS, Haugland (2015)

41

Figure 3.18: Looking down on the drill floor from outside. Credit: Vegard Haugland,
MHWirth AS, Haugland (2015)

Since the drilling floor seems to be sheltered, we will avoid using a picture with
snow on it, as was seen in the matrix figure 3.16, and instead we use figure 3.19,
taken 18th of January 15:00 UTC+1 in the MHWirth test tower.

42

Figure 3.19: Fingerboard tubular detection sample image, taken 18th of January
15:00 UTC+1. Source: Own work

Preprocessing

After we have captured the image, we will need to preprocess it to maximize the
performance of subsequent algorithms. The way we process the image depends on
what we would like to do with it later on. One common step is to make a grayscale
image and blurring it, reducing colors that may not be needed and filtering noise.
In this case, we will also try to use what colors are found in the image, since the
fingerboard, tubulars and fingers appear to have distinct colors. By using Adobe
Photoshop or another image manipulation tool, we can quickly try out different
blending methods, which may give us an idea of ways to improve the image to make
it more suitable for known vision algorithms.

43

Figure 3.20: Linear light blending of color image using Adobe Photoshop. Source:
Own work

44

Figure 3.21: Linear light blending of grayscale image using Adobe Photoshop.
Source: Own work

45

Feature extraction

We would like to identify the fingerboard, use its position and orientation to evaluate
the position of the fingers, and use the extracted information to filter out any
tubulars that may be detected which does not make sense.

A way to split our problem into several smaller problems is found in using the
HSV color space, and masking out parts of the image depending on what HSV range
a pixel falls inside. This is done for fingers, fingerboard and tubulars.

For the tubulars, we also use Canny edge detection on a grayscale, blurred image
in order to find the dark circle in each tubular.

Matching

The SimpleBlobDetector as described in the OpenCV documentation ? does most
of the work. The algorithm does the following:

1 One source image is converted to several binary images using several
thresholds.

2 Connected components are extracted from every binary image using findCon-
tours, and centers are found.

3 Centers from several binary images are grouped by their coordinates.

4 The groups estimate final centers and their radiuses, and is returned as
locations and sizes of keypoints.

46

Figure 3.22: Scaled closeup of pipes from sample image. Source: Own work

It also is controlled by a set of parameters, experimentally found to work for
the specific image and light-conditions. This is a weakness that does not provide
robust detection throughout changing light conditions, but it provides a quick and
easy way of finding shapes of a certain circularity and convexity.

Feedback

The contours from the HSV masking are colored depending on their assumed
function, and the keypoints of all blobs found are marked with a circle.

47

Complete implementation

The program flow can be seen in 3.23. Its output can be seen in Chapter 4 Results.

48

Figure 3.23: The proof of concept implementation for finding tubulars. Source: Own
work

49

50

Chapter 4

Discussion and results

4.1 Results

4.1.1 Auto CCTV tracking

All versions were allowed to run for 100 cycles, and the time for each full cycle was
logged. One full cycle involves grabbing the image, processing it, finding any glyphs
and sending PTZ-commands to the camera. It was also logged how much time was
spent on grabbing the image. The mean full cycle time was plotted in the same plot.

C++ only The data can be found in appendix B.1 on 63.

• Mean: 43.6120 milliseconds

• Std Dev: 3.7799 milliseconds

• Minium: 38.0935 milliseconds

• Maximum: 176.378 milliseconds

51

Figure 4.1: Cycle timing for pure C++ version. Source: Own work, data in B.1

C++ and OpenCL The data can be found in appendix B.1 on 66.

• Mean: 44.3577 milliseconds

• Std Dev: 4.7298 milliseconds

• Minium: 37.0841 milliseconds

• Maximum: 147.944 milliseconds

52

Figure 4.2: Cycle timing for C++ and OpenCL version. Source: Own work, data
in B.1

Python The data can be found in appendix B.1 on 66.

• Mean: 8302.39 milliseconds

• Std Dev: 31.9534 milliseconds

• Minium: 8270.0 milliseconds

• Maximum: 8535.0 milliseconds

53

Figure 4.3: Cycle timing for Python version. Source: Own work, data in B.1

4.1.2 Tubular detection

The tubular detection proof of concept provided output with colored overlays. The
pink circles represents a tubular that has been detected.

54

Figure 4.4: The output from the implementation. Source: Own work

55

4.2 Discussion

4.2.1 Auto CCTV tracking

The C++11-program ran quicker than the Python-program, but it did not seem that
using OpenCL had much of an effect on the implementation. Contrary to what was
expected, it seems that the OpenCL-accelerated run of the implementation actually
increased cycle times and slowed down the program.

Some changes had to be made to the Python version to make it run using
OpenCV 3.0.0, in order to have a common ground for testing. It is unknown
whether these changes have made the Python implementation slower than when it
was used by the author for the work on the unpublished project thesis. Specifically,
the video capture was changed to use cv2.videoCapture, instead of a custom-made
video capture method. This relies on external libraries.

The reason for the C++11-program to run with a cycle time mean of 43.6120
milliseconds, a lot less than the old Python version that had a cycle time mean
of 8302.39 milliseconds, can also be contributed to a different implementation of
the FindGlyph-method. The author tried to make the Python and C++-version
equal, but in the end, the C++ version made assumptions about the glyph being
the largest square in the image whereas the Python version inspects all squares in
the image. However, by looking at the Python version grab cycle time, it appears
to be mostly the video capture that consumes resources.

Looking at the C++11-program when used with OpenCL, difficulties with
getting the T-API to work with all OpenCV-algorithms were encountered. This
ended with most of the FindGlyph-method to work with the traditional cv::Mat
instead of the new OpenCL-enabled cv::Umat. This explains why no real speedup
was found. The process of enabling OpenCL and transferring image data into the
GPU makes the program incur some overhead, which can be seen slightly in the
cycle time plot.

The C++11-program did however track the glyph well, and were able to follow
the glyph as it moved up the linear actuator.

4.2.2 Tubular detection

The program was implemented in Python and used OpenCV 3.0.0, and its output
shows that seven out of eleven tubulars were identified properly, which is not great.
The detection was a result of blob detection, a simple algorithm that does not use
the extra information that is present in the image, including the position of the
fingerboard, the tubular pipe walls and fingers found in the fingerboard.

The results show that it is possible to find tubular in a fingerboard using
machine vision, however the reliability depends on how well the machine vision

56

is implemented. By having images from several angles, it should be possible to
achieve better results. The authors dataset was only from one camera, and the site
was unsheltered, which means that snow and lightning effects make the valid dataset
even smaller.

4.3 Recommendations for future work

4.3.1 Multithreading

If a function blocks the execution of our single thread, the whole program runs
slower, which in turn leads to an increased delay in the control system and may
make the auto tracking CCTV system unstable.

By separating functionality into threads that run by themselves and commu-
nicate using ZeroMQ or similar software library, a temporary latency spike in the
communication between a camera and the software will not slow down the rest of
the system.

In order to implement this fully, great care needs to be taken to ensure that
either we wait for all data to be present before we act upon it, or we discard it if it
gets delayed too much to ensure a near-realtime behavior.

Figure 4.5: Multithreading concept runs camera capture independent of camera
PTZ control. Source: Own work

57

4.3.2 Augmented Reality

In order to provide the driller and assistant driller with valuable information, a
heads-up display could be used. This could use the video stream from the auto
tracking CCTV cameras to overlay useful information depending on where in a
sequence the machines are. By augmenting the image with data from both the
control system as well as data interpreted from the machine vision system, we may
also use data fusion to determine how accurate the displayed data is, and output
the best result possible.

Figure 4.6: Data fusion using PLC and vision data. Source: Own work

58

Figure 4.7: Fingerboard augmented reality mockup. Source: Own work

59

Figure 4.8: Topdrive augmented reality mockup. Source: Drillingcontractor (2015)
modified by author

60

Appendix A

Acronyms

API Application Programming Interface

AR Augmented Reality

CD Compact Disc

CV Computer Vision

MJPEG Motion JPEG

PTZ Pan Tilt Zoom

SSL Secure Socket Layer

61

62

Appendix B

Data

All data is presented here. Please refer to Results chapter for interpretation.

B.1 Cycle times

C++ only full cycle

X i Y ms

1 176.378

2 46.7335

3 42.8079

4 56.2232

5 42.5046

6 46.4085

7 46.9647

8 51.2249

9 42.6807

10 43.074

11 45.7883

12 48.4487

13 43.4754

14 40.2384

15 44.5116

16 42.5299

17 46.8599

18 42.6178

19 42.0281

20 47.1095

21 41.5663

63

22 45.9818

23 39.272

24 45.6873

25 39.4183

26 44.0499

27 39.5539

28 40.6502

29 41.7309

30 44.9498

31 43.9632

32 39.127

33 44.1275

34 43.8152

35 41.2881

36 40.5132

37 42.7548

38 42.3039

39 38.295

40 39.2344

41 40.9386

42 43.2348

43 40.0477

44 39.2855

45 44.6541

46 38.3992

47 40.1653

48 50.7354

49 40.0467

50 41.0108

51 40.2891

52 43.6791

53 41.6941

54 45.0173

55 41.6503

56 39.5076

57 42.9829

58 45.7003

59 44.4445

60 40.3687

61 50.7763

64

62 42.9567

63 38.0935

64 45.7982

65 43.3269

66 41.7508

67 52.6519

68 41.081

69 41.9777

70 40.4794

71 42.9862

72 39.3377

73 46.1746

74 39.5005

75 40.7182

76 43.0511

77 52.9545

78 47.3266

79 38.8306

80 40.612

81 39.463

82 41.7259

83 42.3771

84 43.6022

85 45.2836

86 40.434

87 50.3894

88 53.1199

89 48.1457

90 42.7772

91 45.3578

92 44.0828

93 39.3102

94 47.0397

95 49.3594

96 50.4615

97 44.7283

98 46.2623

99 40.1131

100 48.8099

65

C++ and OCL full cycle

X i Y ms

1 147.944

2 41.7962

3 49.0975

4 74.1173

5 46.7381

6 38.9131

7 44.0426

8 51.3266

9 42.7418

10 45.5308

11 55.0263

12 44.4359

13 46.8387

14 40.4033

15 48.4533

16 39.1249

17 41.912

18 42.5968

19 51.0063

20 48.7218

21 44.0796

22 49.6526

23 42.0155

24 46.8542

25 41.5962

26 43.8959

27 46.2624

28 42.7899

29 42.8816

30 41.7049

31 39.7829

32 39.8501

33 40.6538

34 40.4389

35 43.5918

36 39.5095

37 43.1904

38 43.3349

66

39 43.9085

40 39.787

41 38.6203

42 41.4169

43 39.1201

44 38.9962

45 43.4387

46 47.202

47 45.9077

48 41.1482

49 39.1846

50 40.9689

51 39.2839

52 44.5515

53 42.2828

54 42.7026

55 44.2268

56 42.0034

57 43.3895

58 41.7159

59 44.2059

60 37.0841

61 41.7701

62 44.5976

63 41.2479

64 43.2646

65 49.1386

66 48.2914

67 48.987

68 43.996

69 47.3181

70 46.7929

71 43.99

72 47.9887

73 41.1715

74 41.4115

75 45.2948

76 44.7367

77 40.6896

78 40.7

67

79 42.9936

80 50.7188

81 54.2351

82 41.6682

83 41.4852

84 42.8574

85 38.7173

86 44.4089

87 42.8612

88 42.2858

89 48.5942

90 48.5784

91 49.2398

92 50.1071

93 48.3967

94 41.7731

95 51.3804

96 44.3058

97 46.0689

98 42.6652

99 44.4609

100 46.1737

C++ only grab cycle

X i Y ms

1 40.4479

2 40.171

3 34.1401

4 44.5604

5 35.0968

6 40.1398

7 40.8149

8 39.3088

9 36.5718

10 37.1214

11 40.1631

12 43.0393

13 34.1063

14 34.9761

68

15 38.7993

16 36.2434

17 41.0549

18 36.9862

19 36.4651

20 41.6133

21 36.1032

22 36.2356

23 33.9546

24 36.1023

25 34.1117

26 38.0405

27 34.09

28 35.2262

29 36.4719

30 38.2031

31 38.4599

32 33.8567

33 34.6792

34 38.3352

35 35.3878

36 35.3308

37 34.121

38 34.1908

39 33.3726

40 34.3166

41 33.6023

42 38.3679

43 35.2119

44 34.3403

45 39.6818

46 33.5562

47 34.1263

48 39.8495

49 34.678

50 35.5639

51 34.9845

52 34.2747

53 36.2712

54 36.9791

69

55 36.351

56 34.3481

57 37.8511

58 36.6444

59 33.8176

60 35.2038

61 38.2618

62 37.7549

63 33.0474

64 36.6988

65 38.1752

66 35.193

67 42.677

68 35.6331

69 36.6869

70 35.378

71 37.8307

72 34.1236

73 37.4406

74 34.3096

75 35.7669

76 38.075

77 44.1568

78 38.565

79 33.8788

80 34.0235

81 33.7066

82 36.0829

83 33.6856

84 34.9796

85 39.2255

86 35.5386

87 43.3328

88 43.6468

89 38.9814

90 37.4304

91 40.1763

92 34.8519

93 34.2843

94 41.2167

70

95 37.1548

96 41.2104

97 35.8812

98 41.3382

99 34.9546

100 40.4104

C++ and OCL grab cycle

X i Y ms

1 46.8777

2 33.9147

3 41.3123

4 34.6927

5 33.0837

6 34.0646

7 37.9428

8 38.5008

9 36.6312

10 34.8429

11 42.0151

12 38.0685

13 35.4915

14 34.6953

15 41.3995

16 33.4375

17 36.502

18 34.8345

19 37.8528

20 36.7164

21 38.0593

22 38.1241

23 35.9353

24 35.6687

25 35.5211

26 38.0137

27 35.3627

28 34.9916

29 33.2229

30 36.1855

71

31 34.207

32 34.3599

33 35.2636

34 34.7753

35 38.2164

36 34.1728

37 33.518

38 37.897

39 33.5148

40 34.3679

41 33.3197

42 33.0002

43 33.8256

44 33.6357

45 36.7895

46 37.7308

47 33.5817

48 35.7839

49 33.9321

50 35.2697

51 33.9255

52 35.6039

53 33.4517

54 33.9231

55 33.4059

56 33.1347

57 38.2364

58 36.717

59 34.6507

60 32.1222

61 35.0464

62 38.4109

63 35.3966

64 37.4838

65 34.1946

66 35.7341

67 36.6243

68 37.9721

69 41.5776

70 36.1288

72

71 37.5029

72 36.6084

73 35.2087

74 35.556

75 38.8714

76 34.3732

77 35.1184

78 35.185

79 37.4437

80 40.3325

81 46.7577

82 33.0452

83 33.1132

84 37.8172

85 33.6276

86 37.71

87 36.9494

88 36.45

89 42.9163

90 37.884

91 38.8178

92 39.6275

93 38.5493

94 36.1084

95 41.7693

96 34.9868

97 40.9042

98 34.0571

99 39.2282

100 36.8838

Python full cycle

X i Y ms

1 8535

2 8363

3 8272

4 8317

5 8281

6 8315

73

7 8280

8 8325

9 8280

10 8316

11 8284

12 8318

13 8283

14 8328

15 8270

16 8316

17 8287

18 8317

19 8279

20 8322

21 8278

22 8318

23 8284

24 8322

25 8276

26 8317

27 8287

28 8315

29 8286

30 8318

31 8279

32 8320

33 8282

34 8319

35 8278

36 8321

37 8274

38 8320

39 8280

40 8323

41 8280

42 8317

43 8288

44 8324

45 8272

46 8317

74

47 8281

48 8323

49 8286

50 8314

51 8281

52 8316

53 8282

54 8328

55 8272

56 8323

57 8277

58 8324

59 8276

60 8321

61 8276

62 8325

63 8283

64 8327

65 8270

66 8317

67 8281

68 8325

69 8277

70 8317

71 8280

72 8322

73 8282

74 8320

75 8279

76 8318

77 8279

78 8324

79 8280

80 8320

81 8276

82 8322

83 8283

84 8317

85 8281

86 8317

75

87 8282

88 8322

89 8281

90 8319

91 8274

92 8327

93 8272

94 8327

95 8275

96 8322

97 8280

98 8321

99 8276

100 8276

Python grab cycle

X i Y ms

1 8278

2 8342

3 8259

4 8306

5 8270

6 8307

7 8273

8 8314

9 8268

10 8306

11 8272

12 8307

13 8270

14 8316

15 8260

16 8308

17 8274

18 8307

19 8269

20 8311

21 8268

22 8310

76

23 8273

24 8310

25 8267

26 8309

27 8274

28 8306

29 8272

30 8306

31 8268

32 8309

33 8270

34 8306

35 8267

36 8310

37 8267

38 8313

39 8273

40 8314

41 8271

42 8310

43 8275

44 8314

45 8262

46 8310

47 8274

48 8313

49 8271

50 8303

51 8270

52 8309

53 8273

54 8316

55 8263

56 8311

57 8267

58 8312

59 8267

60 8311

61 8269

62 8314

77

63 8271

64 8314

65 8259

66 8308

67 8272

68 8312

69 8266

70 8309

71 8272

72 8311

73 8270

74 8309

75 8268

76 8307

77 8270

78 8311

79 8267

80 8308

81 8268

82 8312

83 8270

84 8307

85 8270

86 8308

87 8272

88 8311

89 8269

90 8309

91 8266

92 8314

93 8265

94 8316

95 8267

96 8312

97 8269

98 8309

99 8267

100 8267

78

Appendix C

Building a Linear Actuator

Introduction In order to test the glyph tracking system with repeatable motion,
a linear motion system was needed. After trying a very powerful electronic linear
actuator originally used for antenna movement, it was concluded to be too slow for
any practical use in testing the glyph tracking system. In the matter of an evening,
a simple, remotely operated and fully functional linear actuator was built, and its
build procedure follows.

Parts required A handful of items are required to build the linear actuator, most
of which can be found lying around a workshop or in your desk drawer.

• 1x Microcontroller (Arduino Uno)

• 1x H-bridge motor controller (SN754410)

• 1x DC motor with pulley

• 1x Free pulley on rod

• Some prototyping wires

• Some wood boards

• Some acrylic plates

• A piece of thread in a loop

• Hot glue gun

• Ducttape and screws

79

Build procedure

1. The wood board is cut to wished length and a base is built using screws.

2. Free pulley and DC motor with pulley are glued/drilled in place on the board.

3. Electronic circuit is put together with H-bridge getting power from a stand-
alone supply. We use an extra USB-port which can deliver up to 500 mA 5
volt.

4. The Arduino Uno is programmed to trigger the H-bridge depending on input
commands from the serial port.

5. The thread is tightened until friction makes it move with load.

6. A piece of thread is attached, that holds the payload. In our case, a laminated
glyph symbol.

7. Acrylic plates are bent to protect the pulley and thread path. Use a propane
burner or other gas burner to heat up the plastic in order to bend it.

8. Two thin pieces of wood can help in giving the glyph a smooth path to move
along, and these are screwed onto the main board if needed.

9. Ducttape and hot glue gun. The ducttape is used for construction
reinforcement as well as reduction of friction so that the glyph can be pulled by
the weak motor. The glue gun is used to fix some wires and further reinforce
joints.

The bottom assembly with electronics can be viewed in figure C.1. This includes
an acrylic bend to hold the glyph as it rests on the bottom. The electronics are
rapidly put together and glued in place where applicable. The DC motor is hiding
behind the duct tape. Two sets of cables are exiting the frame on the left side, one
is the USB UART cable that also powers the Arduino Uno, while the other one is a
pair of red-black wire that carries power from another USB port, which is used by
the DC motor.

The top assembly and slider can be viewed in figure C.2. The duct tape is used
to reduce friction on the wood, so that the laminated glyph can translate without
problems.

80

Figure C.1: Bottom assembly. Source: Own work

81

Figure C.2: Top assembly and main slider. Source: Own work

82

Operation Since we are using a micro-controller board with built-in support for
UART over USB, we can send commands to the linear actuator. By remotely
connecting to the Linux server using SSH, we are able to test the system from
anywhere in the world. See figure C.3 for full communication channel.

The DC motor is too powerful to be run from the Arduino Uno 5 volt rail, it is
advisable to use another power source, which feeds the H-bridge.

Figure C.3: Diagram over communication channel and system. Source: Own work

83

84

Appendix D

Compiling OpenCV 3.0 for OS X

OpenCV 3.0 gold release arrived in June 2015. Being this new, the resources to
properly compile OpenCV 3.0 for OS X are not easy to come by. A few blogs
have a partial solution for setting up the software, so this appendix will not contain
a complete solution itself, but mention the most important points when building
OpenCV 3.0 for OS X.

Homebrew is utilized to settle most build-dependencies, with good success.

When building opencv, we also would be interested in building opencv contrib
modules.

cd ˜
git clone https://github.com/Itseez/opencv.git
git clone https://github.com/Itseez/opencv contrib.git

We use the command-line interface for cmake, but it should also be possible
to use the GUI version. Notice that we explicitly disable CUDA in this case, and
enable OpenCL. We also build with support for Python 2.7, as the author considers
this a good way to rapidly test functionality.

cmake −D CMAKE BUILD TYPE=RELEASE \
−D CMAKE INSTALL PREFIX=/usr/local \
−D PYTHON2 PACKAGES PATH=˜/.virtualenvs/cv/lib/python2.7/site−packages \
−D PYTHON2 LIBRARY=/usr/local/Cellar/python/2.7.10/Frameworks/Python.framework/Versions/2.7/bin \
−D PYTHON2 INCLUDE DIR=/usr/local/Frameworks/Python.framework/Headers \
−D INSTALL C EXAMPLES=ON \
−D INSTALL PYTHON EXAMPLES=ON \
−D BUILD EXAMPLES=ON \
−D WITH OPENCL=ON \
−D WITH CUDA=OFF \
−D WITH FFMPEG=ON \
−D BUILD DOCS=ON \

85

−D OPENCV EXTRA MODULES PATH=˜/opencv contrib/modules ..

We have not installed clBLAS nor clFFT, two libraries that are considered
advantageous when using OpenCL. These libraries will have to be compiled with
their own specific dependencies.

86

Bibliography

Tutsplus.com. (2015) Tutsplus.com. [Online]. Avail-
able: http://photography.tutsplus.com/articles/
understanding-the-factors-that-affect-depth-of-field--photo-6844

S. Online. (2015) Osi model overview. [Online]. Available: http:
//student-online.co.za/images/OSI%20Model%20Overview.png

VRay. (2015) Vray. [Online]. Available: https://www.vray.com/vray for sketchup/
manual/vray for sketchup manual/other parameters within the reflection layer/
reflection layer in vray for sketchup 4.png

Codebase. (2015) Creating multi-threaded c++ code. [Online]. Available:
http://codebase.eu/tutorial/posix-threads-c/

B. D. Technology. (2013) Opencl tutorial: N-body simulation. [Online].
Available: http://www.browndeertechnology.com/docs/BDT OpenCL Tutorial
NBody-rev3.html

Wikipedia. (2015) Wikipedia: Cuda. [Online]. Available: https:
//en.wikipedia.org/wiki/CUDA

OpenCV.org. (2015) Cuda platform. [Online]. Available: http://opencv.org/
platforms/cuda.html

Wikipedia. (2015) Cv and mv overview. [Online]. Available: https:
//en.wikipedia.org/wiki/File:CVoverview2.svg

V. Haugland. (2015) Haugland foto. [Online]. Available: http://foto.haugland.at/

J. Skjefstad, “Computer vision in drilling vessel applications,” 2014.

J. R. Braxton. (2013) Offshore drilling rig fingerboard latch position indication.
[Online]. Available: http://www.google.com/patents/US20130032405

87

http://photography.tutsplus.com/articles/understanding-the-factors-that-affect-depth-of-field--photo-6844
http://photography.tutsplus.com/articles/understanding-the-factors-that-affect-depth-of-field--photo-6844
http://student-online.co.za/images/OSI%20Model%20Overview.png
http://student-online.co.za/images/OSI%20Model%20Overview.png
https://www.vray.com/vray_for_sketchup/manual/vray_for_sketchup_manual/other_parameters_within_the_reflection_layer/reflection_layer_in_vray_for_sketchup_4.png
https://www.vray.com/vray_for_sketchup/manual/vray_for_sketchup_manual/other_parameters_within_the_reflection_layer/reflection_layer_in_vray_for_sketchup_4.png
https://www.vray.com/vray_for_sketchup/manual/vray_for_sketchup_manual/other_parameters_within_the_reflection_layer/reflection_layer_in_vray_for_sketchup_4.png
http://codebase.eu/tutorial/posix-threads-c/
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
http://www.browndeertechnology.com/docs/BDT_OpenCL_Tutorial_NBody-rev3.html
https://en.wikipedia.org/wiki/CUDA
https://en.wikipedia.org/wiki/CUDA
http://opencv.org/platforms/cuda.html
http://opencv.org/platforms/cuda.html
https://en.wikipedia.org/wiki/File:CVoverview2.svg
https://en.wikipedia.org/wiki/File:CVoverview2.svg
http://foto.haugland.at/
http://www.google.com/patents/US20130032405

TSC. (2015) Fingerboard without tubulars. [Online]. Available: http://www.t-s-c.
com/upload/mediawindow/2014-12/m p198p86l291a875cce2e6og7o55.JPG

Drillingcontractor. (2015) Drillingcontractor topdrive. [Online]. Available: http:
//www.drillingcontractor.org/wp-content/uploads/2012/01/webDSC03307.jpg

S. Sklet, “Safety barriers on oil and gas platforms,” Ph.D. dissertation, Norwegian
University of Science and Technology, 2005.

M. Rausand, Reliability of Safety-Critical Systems: Theory and Applications.
Hoboken, NJ: Wiley, 2014.

N. Dadashi, A. W. Stedmon, and T. P. Pridemore, “Semi-automated cctv
surveillance: The effects of system confidence, system accuracy and task
complexity on operator vigilance, reliance and workload,” 2012.

O. H. Boyers, “An evaluation of detection and recognition algorithms to implement
autonomous target tracking with a quadrotor,” 2013.

A. Kirillov. (2010) Glyphs recognition. [Online]. Available: http:
//www.aforgenet.com/articles/glyph recognition/

A. Communications. (2015) Latency in live network video surveillance. [Online].
Available: http://www.axis.com/files/whitepaper/wp latency live netvid 63380
external en 1504 lo.pdf

R. Hill, C. Madden, A. van den Hengel, H. Detmold, and A. Dick, “Measuring
latency for video surveillance systems,” 2009.

L. Svensson and P. Söderlund, “Delays in axis ip surveillance cameras,” 2013.

Tracking Across Multiple Cameras With Disjoint Views, 2003.

J. Skjefstad. (2015) Github. [Online]. Available: www.google.com

Imatest. (2015) Imatest image quality. [Online]. Available: http:
//www.imatest.com/support/image-quality/

C. A. Poynton, Digital Video and HDTV: Algorithms and Interfaces. Morgan
Kaufmann Publishers, 2003.

Wikipedia. (2015) Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/
Serial digital interface

J. Fang, A. L. Varbanescu, and H. Sips, “A comprehensive performance comparison
of cuda and opencl,” 2011.

88

http://www.t-s-c.com/upload/mediawindow/2014-12/m_p198p86l291a875cce2e6og7o55.JPG
http://www.t-s-c.com/upload/mediawindow/2014-12/m_p198p86l291a875cce2e6og7o55.JPG
http://www.drillingcontractor.org/wp-content/uploads/2012/01/webDSC03307.jpg
http://www.drillingcontractor.org/wp-content/uploads/2012/01/webDSC03307.jpg
http://www.aforgenet.com/articles/glyph_recognition/
http://www.aforgenet.com/articles/glyph_recognition/
http://www.axis.com/files/whitepaper/wp_latency_live_netvid_63380_external_en_1504_lo.pdf
http://www.axis.com/files/whitepaper/wp_latency_live_netvid_63380_external_en_1504_lo.pdf
www.google.com
http://www.imatest.com/support/image-quality/
http://www.imatest.com/support/image-quality/
https://en.wikipedia.org/wiki/Serial_digital_interface
https://en.wikipedia.org/wiki/Serial_digital_interface

Wikipedia. (2015) Wikipedia: Linux. [Online]. Available: https:
//en.wikipedia.org/wiki/Linux

L. Torvalds. (2015) Github: Linux kernel. [Online]. Available: https:
//github.com/torvalds/linux

CURL. (2015) Curl. [Online]. Available: http://curl.haxx.se

J. R. Braxton. (2013) Offshore drilling rig fingerboard latch position indication.
[Online]. Available: http://www.google.com/patents/US20130032405

H. K. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of hough
transform methods for circle finding,” 1990.

G. Wang, G. Ren, Z. Wu, Y. Zhao, and L. Jiang, “A fast and robust ellipse-detection
method based on sorted merging,” 2014.

OpenCV. (2015) Opencv 3.0.0 docs. [Online]. Available: http://docs.opencv.org/3.
0.0/

89

https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Linux
https://github.com/torvalds/linux
https://github.com/torvalds/linux
http://curl.haxx.se
http://www.google.com/patents/US20130032405
http://docs.opencv.org/3.0.0/
http://docs.opencv.org/3.0.0/

	Abstract
	Abstract in Norwegian
	Preface
	Summary
	Introduction
	Background
	Problem formulation
	Literature survey
	What remains to be done?

	Objectives
	Limitations
	Approach
	CCTV tracking system
	Pipe detection system

	Structure of the report
	Structure of the DVD

	Theory
	Camera
	Data transmission
	Video compression
	Glyph visibility
	Computing platform
	Threading
	Heterogenous computing
	Machine vision
	Computer vision
	Linux

	Case study
	Glyph tracking
	Background
	Goal of case study
	Design of the machine vision algorithm
	Design of the software
	Analysis of dataset for robustness in weather conditions
	Tabletop setup for testing
	Camera settings

	Tubular detection in fingerboard
	Background
	Goal of case study
	Design of the machine vision algorithm

	Discussion and results
	Results
	Auto CCTV tracking
	Tubular detection

	Discussion
	Auto CCTV tracking
	Tubular detection

	Recommendations for future work
	Multithreading
	Augmented Reality

	Acronyms
	Data
	Cycle times

	Building a Linear Actuator
	Compiling OpenCV 3.0 for OS X

