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Highlights 
• Deterministic sea wave predictions through phase-resolved linear wave models are 

considered 
• A semi-analytical Linear Estimator of Prediction Error (LEPrE) is presented 
• The approach allows accounting for different fitting and propagation strategies 
• The exact spectral shape for mono/multi-directional waves is taken into account, as well as 

possible measurement error 
• Example applications and comparisons with Monte Carlo simulations are reported 

 

Abstract 
This paper presents a semi-analytical methodology for the determination of prediction error 
statistics in deterministic sea wave predictions (DSWP), based on linear wave models. The 
underlying wave elevation is modelled as a Gaussian stochastic process and the coefficients of the 
wave propagation model are assumed to be determined by linear fitting on available measurements 
in time and/or space. The possible data contamination due to measurement error is also explicitly 
considered. The resulting approach eventually provides a Linear Estimator of Prediction Error 
(LEPrE) in time and space, in terms of prediction error standard deviation, given the fitting 
procedure and the sea spectrum. The presented approach allows supplementing deterministic 
predictions based on phase-resolved linear wave models with a sound prediction error measure, and 
allows defining the concept of “Predictability Region” in a consistent probabilistic framework. 
Example applications are reported, both for long-crested and short-crested waves, with verification 
through Monte Carlo simulations. Single point wave gauge/wave buoy measurements as well as 
spatial extent wave radar measurements have been considered as simulated examples. The 
developed methodology is also compared with existing approaches highlighting and discussing both 
the differences and the interesting qualitative commonalities.  
 
Keywords: deterministic sea wave prediction (DSWP); predictability region; phase-resolved wave 
models; prediction error; wave radar. 
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1 Introduction 
 
The nowadays interest about deterministic wave propagation models based on the marine wave 
radar technology is encouraged by the outlook of possible applications to real time waves and ship 
motion forecasting. The development of early warnings, guidance and decision-support systems 
based on deterministic prediction procedures could possibly have a positive impact for the safety 
and operability at sea. A main asset in this kind of emerging short-term forecasting technology 
(with temporal horizon of the order of minutes, and spatial horizon of the order of hundreds meters) 
is the marine wave radar. In fact, the marine wave radar has been shown to be potentially capable of 
scanning the sea surface and retrieving the instantaneous images of the nearby wave field in a wide 
spatial range (Dankert and Rosenthal 2004; Nieto Borge et al., 2004; Serafino et al. 2011; Naaijen 
and Wijaya 2014). It is however to be noted that challenges in modelling of the associated basic 
electromagnetic backscattering mechanism still require evolutions of this technology to obtain very 
accurate measurements, at least when used to feed DSWP model. The LIDAR technology has also 
been explored for the measurement of wave elevation (Belmont et al. 2007; Grilli et al., 2011; 
Nouguier et al. 2014). In principle LIDAR could be considered as an alternative to wave radar. 
However, presently available research on corresponding local wave elevation measurements 
(Belmont et al. 2007; Grilli et al., 2011; Nouguier et al. 2014) indicate a yet too limited spatial 
extent of the measurement region. As a result, the application of such technology in case of 
deterministic predictions in realistic sea states characterised by long waves in open sea becomes 
difficult. Nevertheless, an extension of the LIDAR wave measurement range could allow this 
technology to become a possible alternative to wave radar.   
 
Once wave elevation data are (assumed to be) available from a suitable wave measurements system, 
a phase-resolved propagation procedure can then be applied to perform a deterministic forecasting. 
The procedure is required to be fast if the use is intended for real-time applications. Furthermore it 
is required to have a prediction time horizon compatible with the operational needs. Particularly due 
to computational speed requirements, linear deterministic wave propagation models are often 
preferred (Hilmer and Thornhill, 2015), particularly for intended uses in real-time applications, and 
different aspects of their implementation have been investigated in the past (Belmont et al., 2006, 
2014; Blondel-Couprie and Naaijen, 2012; Connell et al., 2015; Naaijen and Blondel-Couprie, 
2012; Naaijen et al., 2014; Naaijen and Huijsmans, 2008). Linear Deterministic Sea Wave 
Prediction (DSWP) procedures usually consist of two main steps. First, in the fitting step (FS), the 
wave elevation data are analysed in the measurement domain by means of Fourier decomposition 
techniques, either based on the DFT (Morris et al. 1998; Naaijen and Blondel-Couprie, 2012; 
Vettor, 2010) or on a least-squares approach (Connell et al., 2015; Naaijen et al., 2009; Vettor, 
2010). Afterwards a linear propagation model is defined in the propagation step (PS). The extensive 
use of the FFT, both in the FS and in the PS steps, is deeply discussed for short-crested sea 
applications by Blondel-Couprie and Naaijen (2012) and Naaijen and Blondel-Couprie (2012). 
Different implementations of linear fitting and propagation procedures, still based on a Fourier 
analysis, are presented by Abusedra and Belmont (2011) and Belmont et al. (2006). 
 
Nonlinear phase-resolved wave propagation models have been proposed by several authors (e.g. 
Blondel et al., 2010; Blondel-Couprie et al., 2013; Nouguier et al. 2014; Wu, 2004; Zhang et al., 
1999a,b; Yoon et al., 2016). The main issue of these techniques is represented by the costly 
fitting/initialization step. In fact, in general, the measured wave elevation data has to be pre-
processed before being actually available for the propagation model. The pre-processing step, and 
its consequent complexity, depend mainly on the nature of the available measurement and on the 
nonlinear model considered. The reconstruction of the initial conditions of the nonlinear wave 
model can require iterative procedures on the measured data (Zhang et al., 1999a,b) or data 
assimilation procedures as in Wu (2004), Blondel et al. (2010), Blondel-Couprie et al. (2013) or 
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Yoon et al. (2016). In particular, the variational data assimilation procedure proposed by Wu (2004) 
and Blondel et al. (2010) can be considered as an optimization problem for the initial conditions of 
the model, with cost function defined as a suitable measure of the distance between the wave 
elevation given by the nonlinear model and the measured wave elevation data. Also Nouguier et al. 
(2014) used the minimization of a cost function, representing the average squared difference 
between measured wave elevation and wave model to be propagated, for the identification of the 
free parameters of the wave propagation model. Actually, such approach, in addition of being used 
for forecasting purposes, served also the purpose of wave elevation reconstruction procedure for 
LIDAR measurements (Grilli et al., 2011; Nouguier et al., 2014).  
 
A common issue to all DSWP methods is related to the need of providing an estimation of the 
region where the deterministic prediction can be considered to be sufficiently reliable for the 
intended purposes. In fact, any DSWP procedure is inevitably affected by prediction errors with 
respect to the true wave elevation, which indirectly define the limits of application of this kind of 
procedures. One source of prediction error is the inherent limitation of the assumed propagation 
model which does not exactly represent the underlying wave elevation field. As a result, even when 
a propagation model perfectly fits the true wave elevation at some discrete sampling points in time 
and/or space, the predicted (or reconstructed) wave elevation at different locations in time and/or 
space will differ from the true one. In addition, in real applications, the wave measurements 
themselves are affected by measurement errors, which bring into the problem an additional source 
of uncertainty, an aspect which is often overlooked. This means that a key aspect of DSWP should 
be the capability of providing not only an estimation of the predicted wave elevation, but also some 
information regarding the prediction error. However, although the assessment of the prediction error 
is crucial for a consistent deterministic wave prediction, the problem is rarely addressed 
specifically. In this context, the idea of using brute force tools such as massive Monte Carlo 
simulations to estimate the expected prediction errors statistics is, in general, practically unfeasible 
due to the time consuming computations that eventually will go to detriment of a direct use in-real 
time applications. Therefore concepts of faster and more direct application are required.   
 
The most widespread concept related to the prediction performances of DSWP approaches is the so-
called “Predictability Region”. The Predictability Region is considered to be the region of space and 
time where it is considered “possible” to predict the wave elevation, ideally without errors. It is 
therefore, originally, a binary concept, which split the time/space domain in a region where the 
prediction “is possible”, and a region where the prediction “is not possible”. In the past, a matter of 
discussion has been whether to use the group velocity or the phase velocity of the waves for the 
identification of the Predictability Region (e.g. Abusedra & Belmont 2011; Edgar et al., 2000; 
Morris et al., 1998; Naaijen et al., 2014; Wu, 2004). For example, based on wave propagation 
considerations, Morris et al. (1998) selected the wave phase velocity for the determination of the 
region where the propagation of information, and the corresponding deterministic prediction, can be 
considered possible (see also Edgar et al., 2000), in case of long-crested seas. Instead, Wu (2004) 
used the wave group speed for the determination of the Predictability Region and further extended 
the concept to the case of short-crested seas. According to Wu (2004) (see also Naaijen et al. 
(2014)), the Predictability Region is defined using the group velocity of the fastest and slowest 
wave components of the considered sea spectrum. However, Abusedra and Belmont (2011) have 
shown that the use of wave group velocity cannot be completely justified, and they also challenged 
those previous justifications for such use which were based on asymptotic stationary phase 
approximation. The concept of Predictability Region has been further developed by Wu (2004) and 
Naaijen et al. (2014) with the introduction of the “Predictability Indicator”: a measure of the 
prediction capability at a generic point in time and space, given the sea spectrum. The Predictability 
Indicator takes into account the actual shape of the wave spectrum, and this represents an advance 
with respect to the standard Predictability Region, which, instead, accounts only for the (assumed) 
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lowest and highest frequency limits of the spectrum. Naaijen et al. (2014) verified the Predictability 
Indicator method to be qualitatively consistent with Monte Carlo simulations for which every 
realization of the sea states is ideally measured and then propagated to create a reference statistics 
for ensemble analysis. The encouraging results showed by Naaijen et al. (2014) and the simple 
formulation of the method makes the Predictability Indicator an interesting tool for a more 
advanced, and potentially more precise, definition of Predictability Region compared to the original 
concept. However, the Predictability Indicator still lacks a consistent statistical background theory 
able to provide a clear probabilistic interpretation of the obtained quantitative values.  
 
It is then useful to make a step forward in the definition of the concept of Predictability Region, 
with a view to more soundly account for the prediction error from a probabilistic perspective. To 
this end, a theoretical approach for providing a consistent probabilistic measure of prediction error 
for deterministic phase-resolved linear wave prediction models, is herein presented. The approach is 
based on the description of the sea as a Gaussian stationary stochastic process. The features of the 
fitting procedure and of the prediction model are naturally embedded in the formulation. 
Furthermore, the formulation takes into account, in an analytic way, the actual shape of the 
spectrum for long-crested and short-crested waves. On top of this, the proposed framework also 
allows taking consistently into account the possible presence of additional measurement noise.  
  
The paper is structured as follows. First, the theoretical background is presented starting from the 
definition of the fitting model and then providing the definition of the prediction error as a 
stochastic process. The assessment of the ensemble variance of the error process leads to the natural 
definition of a Linear Estimator of Prediction Error (LEPrE), which accounts also for the possible 
contribution of measurement noise. A section then follows, containing three different simulated 
verification test cases, considering long-crested and short-crested sea states, to show how the LEPrE 
can be used in identifying the level of prediction error. Reported results from the application of 
LEPrE are verified along with corresponding sets of Monte Carlo simulations. Eventually, some 
comparison with the classical (binary) Predictability Region and the Predictability Indicator by Wu 
(2004) and Naaijen et al. (2014) are also provided, in order to show how the presented LEPrE 
compares with existing approaches. In order to provide consistent comparisons between simulations 
and LEPrE predictions for verification purposes, simulated wave fields in all synthetic applications 
are based on the hypothesis of linear waves. The first application is conceived to present an ideal, 
though realistic, laboratory experiment where the measurement device, used for the propagation 
step, is affected by measurement noise. The second application shows details of a comparison 
between LEPrE approach, Monte Carlo simulations, (binary) Predictability Region and Prediction 
Error Indicator for a simplified bimodal spectrum made of two separated band limited white noise 
regions. In the third and last application the LEPrE methodology is applied to a more realistic 
scenario where an offshore structure is considered and the wave elevation, used for the propagation 
model, is assumed to be measured by means of a wave radar device. Following the verifying 
applications section, a specific section is dedicated to a discussion regarding nonlinear effects, 
which are not addressed by the LEPrE approach, also in view of possible future studies on this 
topic. The paper eventually provides some concluding remarks.  
 

2 Theoretical background 
 
As anticipated, the scope of this work is to provide a methodology for addressing the so-called 
Predictability Region in phase-resolved wave propagation models from a consistent probabilistic 
perspective. The aim is to provide an approach representing a step forward with respect to the 
present common practice of identifying a conventionally defined Predictability Region by means of 
the loosely defined “slowest” and “fastest” components of the sea spectrum (see, e.g. Blondel-
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Couprie and Naaijen, 2012; Blondel et al., 2010; Naaijen and Huijsmans, 2008; Wu, 2004), and 
with respect to the more advanced, yet partially semi-empirical, Predictability Indicator (Wu, 2004; 
Naaijen et al., 2014) 
 
To this end, this section presents a methodology for the semi-analytical estimation of prediction 
error when a model for the propagation of the wave elevation field is fitted on a set of data 
corresponding to measured wave elevation in space and/or time. The framework presented herein is 
general and applicable to both long-crested and short-crested waves, with and without presence of 
measurement noise, and for generic linear fitting procedures. More specific applications are 
reported in the application section. Preliminary results for the long-crested (1D) case in absence of 
measurement noise and using a Fourier fitting have been reported by Fucile et al. (2016b). 
 

2.1 Linear estimator of prediction error (LEPrE) and definition of 
predictability region 

 
It is firstly assumed that the true wave elevation field ( ),x tη  is a stationary Gaussian process for 
which a single generic realization can be represented as follows: 
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In the expression for the wave elevation ( ),x tη , ( ),

T

i x yk k k=  is the wave number vector for the i-

th harmonic component, which is linked to the wave frequency iω  by a suitable dispersion relation. 

In the case of linear waves and infinite water depth ii g kω = . The space and time dependent 

vector ( ),p x t
η

 can be referred as the “propagator vector” for η  (see also Connell et al., 2015) 

since it propagates the wave elevation field in time and space if the coefficients vector α  is known. 
In (1) a finite, but sufficiently large, number of harmonic components, Nη , is considered, while the 
actual stochastic process is in principle recovered in the limit Nη →∞ . It is also assumed that 

( ),x tη  can be measured at certain points in space ( 2,1x∈ ) and/or time ( t∈ ), and that the 
measured wave elevation ( ),M x tη  is associated with a certain measurement error ηδ , i.e.: 
 

( ) ( ) ( ), , ,M x t x t x tηη η δ= +  (2) 
 
The case of measurements without error represents a special case of (2) where ( ), 0x tηδ =  for all 
positions and time instants. Herein the wording “measured” is used for sake of simplicity, although, 
in general, the wave elevation can be either measured (e.g. at a wave gauge or wave buoy) or 
estimated (e.g. from the inversion of wave radar images, Connell et al., 2015; Dankert and 
Rosenthal, 2004; Fucile et al., 2016a; Nieto Borge et al., 2004; Wijaya et al., 2015). It is now 
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assumed that the true wave elevation is fitted through a phase-resolved wave model ( ),x tζ  having 
the following expression, similar to that of ( ),x tη : 
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where, in general, the harmonic components of ( ),x tζ  differ from those of ( ),x tη  and, in 
addition, typically N Nζ η<< . The next assumption is that, given a set of MN  measurements 

( ),jM jx tη  1,..., Mj N=  at different points in space and/or time, the coefficients vector β  can be 
determined by a linear transformation of the available measurements through an appropriate matrix 

M
T , i.e.: 
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Such an assumption covers at least three important cases. The first case is the classical Fourier 
analysis on rectangular grids, in which case 

M
T  is the DFT matrix (Golub and Van Loan, 2013). 

The second one is associated with a direct least-squares fitting process (see Connell et al., 2015; 
Vettor, 2010). In such case the fitting is firstly setup as follows: 
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where ,M

P
ζ

 can be referred to as the propagator matrix (Connell et al., 2015) at the measurement 

points in time and space, and 
M

T  is the Moore-Penrose pseudoinverse of ,M
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The third case covered by the assumption (4) is the regularised least-square fitting using Tikhonov 
regularisation (Hansen, 1998; Vogel, 2002), where a solution β  is sought such to minimize the 
following objective function:   
 

2 2

,M M
P
ζ

β η β− + Λ  (7) 

 
In (7), Λ  is an 2 2N Nζ ζ×  regularisation matrix, which is often chosen as 

2 ,2N N
I

ζ ζ
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2 ,2N N
I

ζ ζ
 the 2 2N Nζ ζ×  identity matrix and λ  the regularisation parameter. In the general case of 

Tikhonov regularization, the matrix 
M

T  then becomes: 
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It is worth noticing that the classical least-squares case is a special case of the Tikhonov 
regularisation, while the classical Fourier case can also be seen as a special case of both the other 
two. 
 
Using the model (3) and the assumption (4), the fitted model can be evaluated at any point in space 
and time as follows: 
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The subscript “ ,F δ ” indicates that the model is using coefficients which have been determined 
through fitting taking into account the presence of measurement error ηδ . It is now possible to 
determine the error between the fitted model and the true wave elevation ( ),x tη  as follows: 
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Furthermore, using (1) and (2), the vector of measured wave elevation can be written as: 
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Combining (10) and (11), the error ( ),x tδε  can therefore be written as 
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From the first equation in (12), it can be seen that the error ( ),x tδε  is due to two sources. The first 
term, ( ),q x t α , represents the error due to the fact that the fitted model, in general, differs from the 
actual process. The second term, ( ) ,, Mn x t ηδ , represents the propagation of the measurement error 
through the fitted model. Both error sources also embed the effect of the fitting procedure.  
 
It is now worth noticing that the error ( ),x tδε  as obtained in (12) is a linear function of the 
amplitudes of the harmonic components of the true wave elevation ( ),x tη . Furthermore, taking 
into account the fact that ( ),x tη  is, actually, a stochastic process and the fact that ,Mηδ  is a random 
vector, the error ( ),x tδε  can be interpreted as a stochastic process. In all the following 
considerations, the set of MN  measurement points is assumed to be deterministically fixed in the 
ensemble domain, i.e., across multiple realisations. Furthermore, it is assumed that other possible 
fitting parameters (e.g. the regularization matrix Λ  in (8)) are also deterministically fixed. These 
two latter assumptions mean that the matrices 

M
T  and 

,MP
η

 are deterministic matrices. As a result, 

such assumptions allow to consider ( ),q x t  and ( ),n x t  in (12) as deterministic functions of space 
and time. 
 
By using the assumption that ( ),x tη  is a (discretised) linear Gaussian process, similarly to the one 
dimensional case (Tucker et al., 1984), the amplitudes ia  and ib  of the harmonic components are 
considered as zero mean independent Gaussian variables. They are linked to the (single side) 
directional wave energy spectrum ( )iS kη  as follows: 
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where ( )20, iN σ  indicates a normal distribution with zero mean and variance 2

iσ , ,x ik∆  and ,y ik∆  

are wave number intervals associated with the assumed discretization of the spectrum ( )iS kη  in 
Nη  wave components, and { }.,.COV  indicates the covariance operator. According to (13) the 
wave amplitudes vector α  is a zero mean Gaussian random vector with diagonal covariance matrix, 
that is: 
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where {}.E  is the expected value operator. In addition, it is assumed that the measurement error 

( ),x tηδ  is a zero mean Gaussian process and that it is independent of η . As a consequence, given 
the specific set of MN  measurement points in space and time, the vector ,Mηδ  is a zero mean 
Gaussian vector with a given covariance matrix depending on the assumed measurement error 
characteristics, i.e.: 
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By using (12), (14) and (15), the assumption that ( ),x tηδ  is independent of η , and recalling that, 
from the considered assumptions, ( ),q x t  and ( ),n x t  are deterministic vector functions, it is now 
possible to provide a full probabilistic characterisation of the prediction error ( ),x tδε . In fact, from 
(12), it follows that ( ),x tδε  is a Gaussian process, since it is a linear combination of random 
Gaussian vectors. Furthermore, the mean and the variance of ( ),x tδε  can be determined as follows: 
 

( ){ }
( ){ } ( ) ( ) ( ) ( ) ( )

, ,

2
, ,

, 0

, , , , , ,
M M

T T

E x t

Var x t x t q x t C q x t n x t C n x t
δ η η

δ

δ ε α α δ δ

ε

ε σ

 =


= = +
 (16) 

 
Where {}.E  is the expected value operator, {}.Var  is the variance operator, and ( )2 ,x t

δε
σ  is the 

variance of the prediction error at ( ),x t . From the considered assumptions, it follows that the 
prediction error has zero mean. In addition, similarly to what was noticed when commenting (12), it 
can be noticed that also in (16) the variance of the prediction error is composed of two terms: the 
first term is associated with the inherent difference between the fitted model and the true process, 
while the second term represents the effect of the measurement error.  
 
If it is assumed that the measurement errors ηδ  at two different points in time and space are 
independent (actually it is sufficient they are uncorrelated), then the covariance matrix 

, ,,M M
C

η ηδ δ
 

becomes diagonal: 
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 (17) 

 
The generic term ( )2 ,j jx t

ηδ
σ , with 1,..., Mj N= , represents the measurement error variance at point   

jx  in space and at time jt . If, in addition, it is assumed that the measurement error is a uniform 

noise with variance 2
ηδ

σ , then the covariance matrix 
, ,,M M

C
η ηδ δ

 simplifies to:  

 

, ,

2
,, M MM M N N

C I
ηη η
δδ δ

σ=  (18) 
 
Making use of the fact that the covariance matrix 

,
C

α α
 is diagonal, and if it is assumed that 

, ,,M M
C

η ηδ δ
 is also diagonal, and by using (13), the expression for the variance of the prediction error 

can be simplified to:  
 

( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

2 2 2 2 2 2
2 1 2

1 1

2 2 2 2
2 1 2 , ,

1 1
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x t q x t q x t n x t x t

q x t q x t S k k k n x t x t

η

δ η

η

η

ε δ

η δ

σ σ σ

σ

−
= =

−
= =

= + + =

= + ∆ ∆ +

∑ ∑

∑ ∑
 (19) 

 
Each term in the first summation in (19) represents the contribution to the prediction error variance 
at ( ),x t  coming from the spectral energy around the wave number vector ik . Each term in the 
second summation in (19) represents, instead, the contribution to the prediction error variance at 
( ),x t  coming from the measurement error at the measurement point ( ),j jx t . In the limit the 

number of harmonics assumed in the model of ( ),x tη  increases towards infinity ( Nη →∞ ), the 
first term in (19) tends to an integral involving the spectrum of η , and the variance of the prediction 
error can be rewritten as: 
 

( ) ( ) ( )( ) ( ) ( ) ( )2 2 2 2 2
1 2

1
, , , , , , ,

MN

jx y j j
j

x t f k x t f k x t S k dk dk n x t x t
δ ηε η δσ σ

=

= + +∑∫∫  (20) 

 
where ( )2

1 , ,f k x t  and ( )2
2 , ,f k x t  are functions depending on the fitting procedure. It is important, 

at this point, to underline that the single side energy spectrum ( )S kη  appearing in (19) and (20) is 
the spectrum of the true wave elevation η  and it must not be confused with the spectrum, assuming 
it could be consistently defined, of the measured wave elevation. In fact, the measured wave 
elevation is contaminated, in general, by the effect of the measurement error process. 
 
For a realistic measurement, the assumption of diagonal covariance matrix 

, ,,M M
C

η ηδ δ
 may be 

considered as a reasonable (or at least convenient) approximation when measurement points are 
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sufficiently far each other in space and time. However, in the general case, the matrix 
, ,,M M

C
η ηδ δ

 

cannot be assumed to be diagonal. In fact, it is expectable that there may be a correlation in time 
and space between measurement error at different points, particularly when such measurement 
points are close in space or time. In essence, the covariance matrix 

, ,,M M
C

η ηδ δ
 provides a 

probabilistic characterization of the measurement error for the assumed measurement system. 
Although the specification of such a matrix is expected to be a complex problem, in the general case 
when 

, ,,M M
C

η ηδ δ
 is not diagonal equations (19) and (20) keep their more general form, which is 

based only on the fact that 
,

C
α α

 is always diagonal, i.e. 

 

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )
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, ,

2 2 2
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1

2 2 2
1 2 ,
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ii i x i y i
i
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x y

x t q x t q x t S k k k n x t C n x t

x t f k x t f k x t S k dk dk n x t C n x t

η

δ η η

δ η η

ε η δ δ

ε η δ δ

σ

σ

−
=


= + ∆ ∆ +


 = + +


∑

∫∫
 (21) 

 
A closed analytical formulation for the functions ( )2

1 , ,f k x t and ( )2
2 , ,f k x t  is difficult to derive in 

the general case, for it depends on the fitting model as it has to embed the solution step in (4). 
However, some specific consideration can be given to the case where the fitting model is derived 
from a Discrete Fourier Transform (DFT) approach. In fact, choosing a suitable orthogonal basis in 
the sense of DFT, possibly accounting only for a subset of allowed Fourier frequencies, the 
calculation of the 

M
T  matrix and of the product 

,M M
T P

η
 can be carried out analytically, leading, 

eventually, to analytical expressions for the resulting functions ( )2
1 , ,f k x t  and ( )2

2 , ,f k x t . Further 

details about the calculation of the functions ( )2
1 , ,f k x t  and ( )2

2 , ,f k x t  in such special case are 
provided in the Appendix. 
 
Moreover, it is worth to mention, that, once specified, the fitting model completely defines the 
matrix 

M
T  that, consequently, will remain a constant quantity of the problem. The majority of the 

computational burden is then limited to the calculation of the matrix 
M

T  at the beginning of the 
procedure, while other quantities can then be easily calculated afterwards.  
 
The linear estimator of prediction error (LEPrE) in (19)/(21) (or its continuous version (20)/(21)) 
can now be used for providing a sound definition of Predictability Region. In fact, being ( ),x tδε  a 
zero mean Gaussian process (in space and time), it is completely characterised, for each single point 
( ),x t , by its variance. The Predictability Region can therefore be defined as that region Π , in time 
and space, where the variance of the prediction error is sufficiently small. Given a threshold ετ  for 
the standard deviation of the prediction error, the predictability region can then be defined as:  
 
( ) ( ) ( ){ }2 2, : ,x t x t

δε ε ετ σ τΠ = ≤  (22) 
 
It can be noticed that, in the probabilistic framework developed herein, there is no single 
Predictability Region, and the Predictability Region depends on which level of prediction error is 
considered to be acceptable through the specification of the threshold ετ . A similar definition of 
Predictability Region was also considered by Naaijen et al. (2014), although they based their 
definition on a threshold level for the Predictability Indicator. 
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2.2 Implementation and usage 
 
Expression (19)/(20) (or the more general forms (21)) can be used in deterministic phase-resolved 
wave predictions to supplement the prediction of wave elevation along with an estimation of the 
prediction error associated with the specific fitting and prediction procedure.  
 
To this end, in general, a fitting model (3) is firstly chosen, and this corresponds to the definition of 
a certain set of wave number vectors  hk  1,...,h Nζ= . Then, it is necessary to define the set of MN  
points, in time and/or space, which are used for the fitting of the propagation model according to the 
decided fitting procedure. To further proceed it is necessary to know, or at least to have an as good 
as possible estimation, of the sea elevation spectrum ( )S kη . In some applications, such as 

laboratory experiments or numerical simulations, the spectrum ( )S kη  is known with sufficient 

accuracy. However, in applications at sea the estimation of ( )S kη  can be a critical issue; depending 
on the specific application, methods based on wave radar processing (Nieto Borge et al., 2004), 
wave buoys, or ship-as-a-wave-buoys (e.g. Tannuri et al., 2012; Mas-Soler et al., 2018), can be 
exploited to estimate ( )S kη . It is however crucial that the estimator of the true wave elevation 

spectrum ( )S kη  is depurated, as much as possible, from the effects of measurement noise. In this 

respect, if the measurement noise is assumed to have a flat spectrum S
ηδ

 additive to ( )S kη , it 

follows that the spectrum of the measured wave elevation becomes ( )S S k
ηδ η+ . In such case, the 

analysis of very low and very high wave number regions could be used to estimate the 
contamination S

ηδ
 which should then be removed from the spectrum of the measured wave 

elevation, to get, eventually, the (depurated) estimation of ( )S kη . Another step for the application 
of the proposed methodology is the definition of a modelling for the covariance matrix of the error 
in the measurement of the wave elevation (see (15)). In case a flat spectral noise level S

ηδ
 is 

determined, the variance of the measurement error can be obtained from the integration of S
ηδ

 over 

the region of k  up to Nyquist limits from the Fourier analysis. Alternatively, the measurement error 
can be defined, for instance, from the knowledge of the measurement system, being it, e.g. a wave 
gauge, a wave buoy, or a wave radar, as appropriate. Other application-specific methods can, of 
course, also be used. 
 
From the description above, almost all the major information would be available at this stage. 
However, in order to determine (an estimator of) ( )2 ,x t

δε
σ  it is necessary to make some additional 

assumption regarding the process ( ),x tη . If the fitting procedure is such that analytical expressions 

for the functions ( )2
1 , ,f k x t  and ( )2

2 , ,f k x t  can be determined, then expression (20) can be directly 
used, combined with a suitable numerical integration procedure. Alternatively the discrete 
formulation (19) can be directly used in the general case. However, when using (19), it is necessary 
to specify a certain number of harmonic components Nη  which are assumed to represent the 

underlying (unknown) stochastic process ( ),x tη . In order for ( ),x tη  to be a sufficiently good 
approximation of the true underlying sea elevation Gaussian process, Nη  should be sufficiently 
large. From application it has been noticed that, when the number of components Nη  is sufficiently 



R01 

p. 13/42 

large, and in particular sufficiently larger than the number of components Nζ  used for the fitted 

model, the behaviour of ( )2 ,x t
δε

σ  converges, sufficiently for practical purposes, to the value which 

would be obtained with Nη →∞ . This is expectable, since (part of) ( )2 ,x t
δε

σ  represents the 

prediction error for ( ),x tζ  which, loosely speaking, is associated with an insufficient frequency 

resolution in ( ),x tζ  to resolve “all” the components of ( ),x tη . The wording “all” is in quotation 

marks since, in reality, ( ),x tη , as a stochastic process, has infinite harmonic components of 
infinitesimal amplitude. This convergence can also be understood from a numerical perspective 
when (19) is considered as a discretised version of the integral in (20). The drawback of using the 
discrete formulation (19) is that an increase of Nη  tends to increase the dimensions of some of the 
matrices involved in the calculations, with a consequent increase of memory consumption and 
computational time. In order for the procedure to be practically viable with present resources, it is 
necessary to find a trade-off for Nη  such that it has a sufficiently large value to have a sufficiently 

good/converged estimation of ( )2 ,x t
δε

σ , but without exceeding the available computational time 
and resources. It is nevertheless to be noted that the problem of memory consumption can be 
practically solved by calculating the functions ( ) ( )( )2 2

2 1 2, , ,i iq x t q x t−  in (19)/(21), or 

( ) ( )( )2 2
1 2, , , , ,f k x t f k x t in (20)/(21), separately, for each generic wave number k , and then, 

respectively, performing the summation in (19)/(21), or applying usual numerical integration 
routines for calculating the integral in (20)/(21). 
 
With all data available, ( )2 ,x t

δε
σ  can therefore be estimated in a suitable range of space and/or 

time. This allows, first, to supplement the prediction ( ),x tζ  with an associated Gaussian 

confidence interval based on ( ),x t
δε

σ . Furthermore, given a limit threshold level ετ , the 

predictability region ( )ετΠ  can eventually be determined in accordance with (22). It is also to be 

noted that the possibility of estimating ( )2 ,x t
δε

σ  allows, in addition, to devise “optimum” 
prediction strategies and/or fitting and prediction setups in order to provide wave elevation 
predictions with minimum/smaller confidence bounds. 
 

3 Verification through simulated applications 
 
Three simulated applications exploiting the described LEPrE methodology are herein reported as 
examples. The first two applications are simplified long-crested sea cases, and they are used to 
show and discuss the main characteristics and capabilities of the LEPrE methodology. In the third 
application, a more realistic scenario, dealing with the prediction of water wave elevation in short-
crested sea, is investigated. 
 
The considered applications are meant to verify the developed LEPrE approach and, as a result, 
they are based on the same main assumptions on which the LEPrE approach is based. Such 
applications are, therefore, not to be considered as full validations of the method. In fact, a full 
validation exercise would require comparisons with experimental data or, as an alternative, a 
comparison with data based on nonlinear wave field simulations (see, e.g., Blondel-Couprie et al., 
2013). Such a validation process is considered to be part of future development activities.       
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The first application presents a simulated laboratory experiment where the wave elevation is 
assumed to be produced by a wave maker. The purpose of this application is to set up a controlled 
and yet realistic environment where to test the LEPrE methodology dealing also with the effects of 
measurement error (noise). The main results are then verified with respect to a set of Monte Carlo 
simulations and the effect of the measurement noise is discussed. 
 
The second application has been conceived to show how the LEPrE methodology compares with 
respect to the Predictability Region (Wu, 2004) and Predictability Indicator (Wu, 2004; Naaijen et 
al., 2014) techniques in the case of a simplified archetypal strongly bimodal spectrum. The 
considered simplified spectrum is used for comparison and description purposes, in order to 
emphasize the effects which might appear, less evidently, in a smoother realistic wind waves plus 
swell bimodal case. 
 
In the last simulated application the LEPrE methodology is applied to a more realistic scenario 
where an offshore structure is considered and the wave elevation, used for the propagation model, is 
assumed to be measured by means of a wave radar device. Although the wave radar inversion 
problem and related errors are out of the scope of this work (on this topic see, e.g. Fucile et al. 
(2016a) who compared the performance of radar inversion based on the Modulation Transfer 
Function (MTF) technique, with those of a least-squares technique using Tikhonov regularisation), 
the main quantities involved in the fitting and propagation process are chosen to be representative 
of a realistic scenario involving wave radar measurement. The LEPrE methodology is used to 
provide the standard deviation of prediction error for the propagated wave elevation process. 
Different spreading angles are considered, and the corresponding effect on the wave elevation 
prediction error is discussed. Results are then verified against a corresponding set of Monte Carlo 
simulations. 
 

3.1 Simulated laboratory experiments with wave gauge measurement 
 
Seakeeping experiments may require measuring the wave elevation at particular locations along the 
wave tank or at the tested model surroundings. In some cases, a direct instrumental measurement 
may be prevented by the presence of obstacles, like the tested model itself, or the setup of the wave 
probes can turn out to be particularly inconvenient. A possible solution is to measure the wave 
elevation at suitable distance upstream from the points of interest and then derive an indirect 
measure of the (undisturbed) wave elevation where this information is needed. This kind of 
reconstruction process will eventually be affected by errors, and therefore it must be supplemented 
with a sound error analysis. If the measurement error is assumed to be uncorrelated, which is the 
case assumed in this example, then the LEPrE methodology can be applied to this scenario in its 
definition (19) or (20), which allows dealing with deterministic predictions in presence of 
measurement noise. The complete forms (21) could in principle be applied if a general, possibly 
non-diagonal, covariance matrix 

, ,,M M
C

η ηδ δ
 for the measurement error is available. 

 
For this example application a wave probe is assumed to be placed in the middle of a wave tank 
with depth 3.8TD m= , see Figure 1. The indirectly reconstructed wave elevation is required at two 
downstream probing points at distance 1 3.0d m=  and 2 6.0d m=  from the measuring wave probe. 
According to (19)/(20), the LEPrE methodology requires the knowledge of the wave spectrum Sη . 
In general, the “true” wave spectrum is unknown and it has to be assessed from the wave 
measurement. However, for sake of simplicity, in this case the nominal spectrum is assumed to be 
known, since it is a typical input for the experimental wave generation. In particular, the spectrum 



R01 

p. 15/42 

considered in this example is a JONSWAP spectrum with peak period 9.30pT s=  (corresponding to 
peak spectral frequency 0.676 /p rad sω = ) and peak enhancement factor 3.3γ = . It is assumed 
that this spectrum is realized in the experimental laboratory at a model scale 50λ = . At this scale, 
which is the one at which results presented in this section are reported, the peak period of the 
spectrum is 1.32s. The wave probe measurements are considered to be affected by Gaussian random 
noise with a standard deviation proportional to the significant wave height sH . Two different levels 
of noise are considered, namely 0.02n sHσ =  and 0.10n sHσ = . Accounting for the linearity of the 
approach, all results reported hereinafter for this example are normalized by the significant wave 
height. They can therefore be considered to represent outcomes per unitary sH , within the limits of 
the linearity assumption. 
 
The characteristics of the fitting model are defined by the recording time window, assumed to have 
a length 10M pT T= ⋅ , and the wave probe sampling frequency, assumed to be 50Hz, corresponding 
to 0.02t s∆ = . With the considered time step, the measurement is then defined to start at 0t s=  and 
to finish at 13.14 10M pt T s T= = ≈ ⋅ . The fitting/propagation model is based on DFT analysis. The 
selected Fourier frequencies used for fitting model are /2 ( )j MN tjω π ∆=  with 1,..., / 2 1Mj N= −  
where 658MN = , thus, zero and Nyquist wave frequencies are not taken into account in the 

calculations. For the propagation model the finite depth dispersion relation tanh( )j j j Tgk k Dω = 



  

has been used, with TD  being the wave tank depth. 
 

 
Figure 1: Representative scheme of the wave tank and of the considered idealised laboratory experimental setup. 

 
Results from the LEPrE methodology are verified against a set of 500 Monte Carlo realizations and 
a 95% confidence interval is provided to account for sampling uncertainty of Monte Carlo 
simulations. Realizations of wave elevation have been generated following Tucker et al. (1984), 
using a total of 1026 harmonic components in the range of wave frequencies  0.3 3p pω ω ω⋅ ≤ ≤ ⋅ . 
The error standard deviation 

δε
σ  is presented in non-dimensional form, i.e. by normalization with 

respect to sH . 
 
First, Figure 2 reports the reconstruction of the wave elevation, normalised by sH , for four different 
random realizations of the considered sea state at the probe location 1 3x d m= =  (with 0x =  at the 
measuring wave probe) and with the measurement noise level of 0.02n sHσ = . The true wave 
elevation is also reported. The LEPrE methodology is used to provide the reconstructed wave 
elevation with an error bound 2

δε
σ±  corresponding, approximately, to the 95% confidence interval 
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(the exact 95% confidence interval would correspond to 1.96
δε

σ± ). It is possible to note that there 
is a time interval where the reconstructed wave elevation matches particularly well the true wave 
elevation and this time window is independent from the realization. Assuming a conventional 
threshold level 0.05 sH

δε
σ < , a predictability time window can therefore be defined on the basis of 

the LEPrE prediction error standard deviation. In the context of this specific example, the prediction 
error is to be intended as a “reconstruction error”, and the “predictability time window” is to be 
intended as the region of time where the reconstruction error is sufficiently small at a particular 
location. Such time window is indicated in Figure 2. It can be noticed that, consistently for all the 
reported realizations, within the defined predictability time window, the reconstructed wave 
elevation well reproduces the true wave elevation, whereas, outside, it tends to deviate. It is 
important to underline that, as described before, it is herein assumed that measurement are taken at 
the wave probe for a time interval [ ]0 , 13.14meas Mt s T s= =  at model scale. It therefore means that 
for the probe location at 3x m=  in Figure 2, the best reconstruction is obtained for time instants 
before the end of the measurement instant. While this is not an acceptable situation in case of a 
forecasting application, in the case of the present example this is not posing any problem, because 
the scope, herein, is to provide an a-posteriori, not real-time, reconstruction of the wave elevation 
field.  
 
Figure 3 and Figure 4 show the time history of the prediction error standard deviation as calculated 
at the two probe locations for the two considered levels of noise. Furthermore, the “optimal time 
delay” opttδ  is also identified and highlighted. This is the time delay from the beginning of the 
measurement window at which the standard deviation of prediction error, 

δε
σ , shows its minimum 

for the considered probe location. This information could be useful in devising optimum 
reconstruction strategies, based on the minimization of the prediction error. LEPrE results in Figure 
3 and Figure 4 are almost indistinguishable from Monte Carlo simulations and clearly within the 
confidence interval, indicating that the LEPrE methodology has been properly implemented. 
Looking at Figure 3 and Figure 4 it can be seen how the distance from the measurement wave probe 
changes the behaviour of 

δε
σ , with the region of minimum error shifting forward in time and higher 

in value as the reconstruction point is farther from the measurement probe in the direction of wave 
propagation. A comparison between results of Figure 3 and Figure 4 indicates that, as the noise 
level increases, the prediction error standard deviation tends to show a flattening of the region of 
minimum error. However, at least for the two tested cases characterised by small and moderate 
noise levels, the optimal time opttδ  is independent of the noise level and it only depends on the 
probe location. It is worth underlining that, in case of the location at 3x m=  the optimum 
reconstruction time occurs before the end of the measurement time window, whereas the opposite 
occurs for the farther probe at 2 6x d m= = . 
 
Figure 5 and Figure 6 provide a wider picture, by showing the space/time error maps for both the 
noise levels using the LEPrE methodology. In the figures, the locations of the probe are highlighted 
with vertical red lines and the points of the minimum prediction error standard deviation are also 
indicated by a circular yellow symbol. The comparison of the two maps shows that the LEPrE 
methodology consistently accounts for the presence of higher measurement noise: the increase of 
the noise level causes an increase of the values of 

δε
σ  in the whole space/time domain.  
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Figure 2: Comparison between the normalized true wave elevation, 1( , ) / sd t Hη , and the normalized 

reconstructed wave elevation, 1( , ) / sd t Hζ , at the first probing point 1 3d m= . Time histories for four different 
realizations of the same sea state. Measurement noise level: 0.02n sHσ = . The error bound 2

δε
σ±  is reported as a 

red band. The two vertical dotted black lines indicate the limit of the time window where the prediction error 
standard deviation from LEPrE is smaller than the considered threshold value, i.e. 0.05 sH

δε εσ τ≤ = . 
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Figure 3: Normalized prediction error standard deviation as a function of time for two different probe locations. 

Measurement noise level: 0.02n sHσ = . 

 

 
Figure 4: Normalized prediction error standard deviation as a function of time for two different probe locations. 

Measurement noise level: 0.10n sHσ = . 
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Figure 5: Map of normalized prediction error standard deviation / sH

δε
σ . Measurement noise level: 

0.02n sHσ = . 

 

 
Figure 6: Map of normalized prediction error standard deviation / sH

δε
σ . Measurement noise level: 

0.10n sHσ = . 

 
In addition to the analysis of the wave reconstruction at locations different from the wave 
measurement probe, it is also interesting to provide some more information regarding the 
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measurement position itself. Data regarding the prediction error at the measurement location can be 
obtained directly from Figure 5 and Figure 6. However, it is worth providing some more specific 
detail showing the peculiar behaviour of the quantities of interest at the measurement point. To this 
end, Figure 7 shows the reconstruction of the wave elevation, normalised by sH , for four different 
random realizations of the considered sea state at the measuring wave probe for the case with the 
measurement noise level of 0.02n sHσ = . This figure is to be compared with Figure 2.  
 

 
Figure 7: Comparison between the normalized true wave elevation, ( 0, ) / sx t Hη = , and the normalized 

reconstructed wave elevation, ( 0, ) / sx t Hζ = , at the wave measurement probe. Time histories for four different 

realizations of the same sea state. Measurement noise level: 0.02n sHσ = . The error bound 2
δε

σ±  is reported as a 
red band.  

 
From Figure 7 it can be seen that, at the measurement location, the model ( )0,x tζ =  fits the wave 
elevation within the measurement time window [ ]0, MT , as expected by the described fitting and 
propagation procedure. As a result, in the measurement time window, the difference between the 
true wave elevation ( )0,x tη =  and the model ( )0,x tζ =  is basically due to the considered 
measurement noise. However, for time instants after the end of the measurement time window, the 
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model ( )0,x tζ =  loses its prediction capabilities, as it is expectable. This is clearly represented by 
the time dependence of the normalized prediction error standard deviation at the wave measurement 
location, as reported in Figure 8 (to be compared with Figure 3), which shows a characteristic jump 
at Mt T= . This sudden increase of the prediction error standard deviation corresponds to the sharp 
widening of confidence intervals in Figure 7. It can be noted that, also for this location, results from 
the application of LEPrE are verified by the Monte Carlo simulations.  
 

 
Figure 8: Normalized prediction error standard deviation as a function of time for the wave measurement 

location x=0m. Measurement noise level: 0.02n sHσ = . 

 
It is finally worth underlining that results obtained in this section are in line with those obtained by 
Naaijen et al. (2014), who carried out deterministic sea wave predictions, and corresponding 
prediction error analyses, through simulations and experiments in conditions that are qualitatively 
similar to those used in the simulated example reported herein. 
 

3.2 Simulated long-crested bimodal sea 
 
This example considers the application of LEPrE methodology in case of a simplified, idealised, 
bimodal spectrum. The main aim is to establish a simple archetypal scenario able to highlight the 
common behaviours and the main differences between the LEPrE methodology, the (binary) 
Predictability Region (Wu, 2004) and the Predictability Indicator (Wu, 2004; Naaijen et al., 2014) 
techniques. The details of these two techniques are not reported herein and major details can be 
found in Wu (2004) and Naaijen et al. (2014). More precisely, in this example case, results from the 
LEPrE methodology are compared with the quantity 1 P− , where P  is the Predictability 
Indicator from Wu (2004) and Naaijen et al. (2014). By borrowing the nomenclature from Naaijen 
et al. (2014), 1 P−  is referred to as “Prediction Error Indicator”, although, strictly speaking, this 
name was used by Naaijen et al. (2014) for the quantity 1 P− . For verification purposes, all results 
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are also compared against a set of 500 Monte Carlo realizations. Realizations of wave elevation 
have been generated following Tucker et al. (1984), using a total of 2000 harmonic components in 
the range of frequencies identified by the nonzero values of the bi-modal spectrum, i.e. 1000 
harmonic components within each of the two spectral bands. 
  
The two bimodal spectra used for this application are reported in Figure 9. Each spectrum is 
designed as the sum of two simple band limited flat spectra with a narrow bandwidth 00.1wb k=  and 
with symmetric peaks separated by 0[0.25,0.75]k k∆ = ⋅  from the central reference wave number 

0 02 / [1/ ]mk π λ= . The corresponding reference period is 0 0/2T π ω=  and the reference wave 

frequency in deep water is 0 0k gω = ⋅  with g  the gravity acceleration. These spectra represent an 
interesting benchmark for a comparison with the Predictability Region and Predictability Indicator. 
In fact, the Predictability Region approach takes only into account the fastest and lowest component 
of the spectrum, without accounting for the actual spectral shape, basing the identification of the 
predictability region on the assumption of using the group velocity as reference speed. On the other 
hand, the Predictability Indicator approach, although still using the group velocity as reference 
speed for the computations, is able to take into account the actual spectral shape. Finally, the LEPrE 
approach accounts, in an analytic way, for all the features of the fitting procedure and for the exact 
spectral shape of the underlying wave elevation process, without any addition semi-empirical 
assumption. 
 
The fitting is carried out in the space domain on a measurement region of length 013ML λ=  with 
sampling interval 0 /15x λ∆ = . The measurement interval is 00 / 13x λ≤ ≤ . The fitting/propagation 
model is defined on the basis of DFT analysis. The Fourier wave numbers selected for the fitting 
model are /2 ( )j Mk xj Nπ= ∆  with 1,..., / 2 1Mj N= − , with 196MN = , thus, zero and  Nyquist 
wave frequencies are not taken into account in the calculations. For the propagation model the 
infinite depth dispersion relation j jgkω =   has been used. 
 

 
Figure 9: Simple bimodal spectra. Band shift parameter: 0.20 5 kk∆ = ⋅  (green line) and 0.70 5 kk∆ = ⋅  (blue line).  

 



R01 

p. 23/42 

Results from the application of the different methodologies are reported in Figure 10, where 
surfaces of ( ) ( ), 2 2sx t Hεσ  are shown. Since in this case no measurement error is considered, 

the standard deviation of prediction error is indicated as εσ  instead of 
δε

σ . It can be noticed that 
there is an overall qualitative consistency among the different methodologies. The region where the 
LEPrE approach shows small values of prediction error standard deviation are in line with the 
identified Predictability Region according to Wu (2004), and are also in line with the regions where 
the Prediction Error Indicator, according to Naaijen et al. (2014), is small. Furthermore, the 
outcomes from the LEPrE methodology are fully verified by the comparison with Monte Carlo 
simulations, as the two methods show almost undistinguishable prediction error maps. It can be 
noticed that all methods agree in identifying a reduction of the minimum error region when the 
bimodal spectrum is characterised by a wider separation between the two bands, which corresponds 
to the presence of wave components with very different group speeds. The presence of traces in the 
time/space map associated with the different speeds of the components belonging to the two bands 
is quite evident, particularly in case of 00.75k k∆ = ⋅ .  
 
However, a closer look to results shows how the LEPrE method provides much more information 
on the prediction error in terms of error pattern, thanks to its capability of implicitly embedding the 
exact characteristics of the fitting model as well as the exact spectral characteristics of the 
underlying wave elevation process. It is also worth recalling that, in the limit of the underlying 
assumptions, the LEPrE formulation stems directly from exact statistical considerations, and it 
therefore provides clear and unambiguous information about the expected prediction error. On the 
other hand, the Prediction Error Indicator and the Predictability Region, while qualitatively enabling 
the identification of regions with “small prediction errors”, they lack a direct relation with a 
statistical description of the error. However, from the reported comparison, the high level of 
qualitative agreement between the Prediction Error Indicator and the LEPrE methodology is 
evident. This suggests the possibility of identifying some underlying semi-empirical relation 
between the two approaches, and provides a sort of justification to the assumptions used in the 
determination of the Prediction Error Indicator, at least for the considered fitting procedure setup 
and for the selected spectral shape. 
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Figure 10: Prediction performance map according to different approaches for two bimodal spectra with band 
shift parameter 0.20 5 kk∆ = ⋅  (left) and 0.70 5 kk∆ = ⋅  (right). Predictability regions according to Wu (2004) are 
indicated by red dashed lines in all plots. Normalized prediction error standard deviation, with normalization 

coefficient / 2 2sH , according to LEPrE (top) and as estimated by means of 500 Monte Carlo realizations 

(centre). Bottom: Prediction Error Indicator 1 P−  according to Wu (2004) (see also Naaijen et al. (2014)). 
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3.3 Simulated short-crested sea with wave radar sensing 
 
In this case, the LEPrE methodology is applied to a realistic scenario where the wave elevation is 
predicted on the basis of the assumed availability of wave radar measurements. Figure 11 presents 
the overall scheme of the problem where a wave radar on an offshore structure scans the nearby sea 
surface. The wave elevation signal is considered to be measured in a annular domain defined by a 
maximum radar range 3000R m=  and limited by a proximity (blind) range 250r m= . The notional 
wave radar imaging bounds are considered to be representative of a usual wave radar measurement. 
For sake of simplicity, the wave radar is assumed to provide a reconstruction of the instantaneous 
wave field on the whole domain without errors. Accordingly, and similarly to the previous example 
application, the prediction error standard deviation is indicated as εσ   and not as 

δε
σ . The fitting 

procedure is carried on a squared sub-domain of the sensing region with dimensions 
1800x yL L m= = , as reported in Figure 11, and the wave elevation signal is sampled on an evenly 

spaced grid with spacing 10x y m∆ = ∆ = , which is a typical wave radar resolution. As observed by 
Blondel-Couprie and Naaijen (2012), the propagation model based on the DFT fitting of an 
instantaneous wave radar image is particularly sensitive to misinterpretation of the correct 
propagation direction of the wave components, because of the leakage effects. This leads to an 
incorrect propagation of waves and is, in general, detrimental to a correct prediction of the wave 
field. In this work the problem has been dealt with by defining the wave numbers used in the fitting 
and propagation model to belong to the same quadrant of the main propagation direction of the 
waves so to have , 0x yk k >   (Blondel-Couprie and Naaijen, 2012). This assumption basically 
corresponds to the implementation, in the fitting model, of specific information regarding the 
directional wave spectrum, and the LEPrE methodology can directly handle this sort of situation. 
 
A grid of x yN N  points, with 181x yNN == , is used for the chosen domain. The time instant of the 
measurement is conventionally set to 0t s= .The fitting/propagation model is defined on the basis 
of DFT analysis. The selected Fourier wave numbers for the fitting model are defined in vector 
form as ( ), , ,,

T

i j x i y ik k k=    with , /2 ( )x i xik xNπ ∆=  and , /2 ( )y j yjk yNπ ∆=  with ( )0,..., 1 / 2xi N= −  

and 0,..., ( 1) / 2yj N= − . The zero wave number, ( 0, 0)x yk k k= = =    is excluded from the 
calculations. For the propagation model the infinite depth dispersion relation has been used, so that 

the wave frequency is calculated as ,, i ji j g kω = 

  and 2 2
, , ,i j x i y jk kk +=   . 
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Figure 11: Schematic view of the offshore structure scenario. Radii R  (maximum sensing range) and r  

(proximity range) correspond to limits of the annular sensing region. 

 
A JONSWAP wave elevation spectrum with significant wave height 3sH m= , peak period 

12pT s=  (corresponding to peak spectral frequency 0.524 /p rad sω =  ) and peak enhancement 
factor 3.3γ = , is considered in this case. The directional wave spectrum ( , )S k θ  is defined by 
using a multiplicative cosine squared spreading function ( )D θ  as follows: 
 

2

( , ) ( ) ( )   
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,
2 2
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θ χθ π
θ θ

θ θ
θ χ χ




  −
     


   ∈ − + 

=
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 (23) 

 
where spreadθ  is the spreading angle and χ  is the main propagation direction. Different spreading 
angles are considered, namely [30,60,90]degspreadθ = , while the main propagation direction is kept 
constant to 45degχ = . An example of directional spectrum is presented in Figure 12. 
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Figure 12: Example of directional wave spectrum used in the calculation. JONSWAP spectrum with cosine 

squared spreading function: main direction 45degχ =  and spreading angle 60degspreadθ = , with corresponding 

range of directions [ ]15,75 deg . 

 
The LEPrE is used here to determine the prediction error standard deviation associated with the 
assumed fitting and propagation scheme. The determination of the prediction error standard 
deviation allows also to define, on the one hand, an optimum time delay for the prediction (as 
discussed before) and, on the other hand, a predictability region given a specified threshold value 
ετ (see (22)). In the following examples a conventional value 0.05 sHετ =  is used. Reported results 

are also verified against a set of 100 Monte Carlo realizations for the case with 30degspreadθ = , 
which have been analysed in ensemble domain providing estimated expected values and 95% 
confidence intervals for the prediction error standard deviation. Realizations of wave elevation have 
been generated by discretizing the spectrum and using random amplitude and phase of each 
component. The random amplitudes were generated using the local energy of the spectrum, i.e. the 
local integral of the spectrum associated to each wave component, in accordance with what Tucker 
et al. (1984) detailed for the long-crested sea case. A total of 53.4 10⋅  harmonic components were 
used in the range of wave frequencies 0.25 2.5p pω ω ω⋅ ≤ ≤ ⋅  and in the range of directions 

60deg30deg θ≤ ≤  (see the spreading function ( )D θ  in (23)).  
 
Figure 13 shows the comparison of normalized prediction error standard deviation between Monte 
Carlo simulation and LEPrE results at the offshore structure location. It is noted that the coordinates 
reported in Figure 13, and in the following ones, are referenced to the lower left corner of the 
sensing sub-domain shown in Figure 11, and therefore the structure is placed at coordinates 

2000x y m= = . The very good matching between LEPrE results and Monte Carlo simulations, 
taking into account the sampling uncertainty reflected by confidence intervals, verifies the 
implementation of LEPrE also for directional sea state application. Similarly to the previously 
reported examples, the time history of the normalized prediction error standard deviation shows a 
minimum, which allows to identify the optimal time delay for a deterministic prediction to be 
carried out in the considered situation (fitting region, fitting model and sea spectrum). Furthermore, 
given the considered situation, the behaviour of the prediction error allows also to define the 
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predictability region, here in the form of a predictability time window. This time window 
corresponds to the time interval during which the prediction error standard deviation is below the 
defined threshold 0.05 sHετ = , i.e. the time window in the future within which the prediction error 
is considered to be acceptable, according to the threshold limit, from a probabilistic perspective. 
 

 
Figure 13: Normalized prediction error standard deviation at the structure location for 30degspreadθ = : 

comparison between LEPrE and results from 100 Monte Carlo simulations. 

 
Figure 14 presents the LEPrE results, again at the offshore structure location, as obtained for 
different spreading angles [30,60,90]spread degθ = . Results indicate that an increase of prediction 
error standard deviation is expected as the spreading angle increases. In the specific case of 

90spread degθ =  the prediction error standard deviation of the propagation model fails to drop below 
the specified (although notional) acceptable threshold limit requirements. This indicates that in 
some cases a predictability region could not exist and this should be taken as an indication about the 
need of improving the fitting model and/or changing the measurement region. 
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Figure 14: Normalized prediction error standard deviation at the structure location for [30,60,90]degspreadθ = : 

LEPrE results. 

 
Finally, Figure 15 to Figure 19 provide maps of the normalized prediction error standard deviation 
in the space region surrounding the offshore structure, for different time instants, being 0t s=  the 
instant when the fitting of the propagation model takes place. Normalization in this case is carried 
out using the normalization factor / 2 2sH . Results from Monte Carlo simulations are also 
reported as verification of the LEPrE predictions, showing that, considering the natural sampling 
uncertainty from Monte Carlo simulations, the LEPrE implementation can be considered to be 
verified. Looking at Figure 15 to Figure 19 as time evolution of the surface of normalized ( ),x tεσ , 
it can be noticed that the region of minimum of the surface, i.e. the region of better prediction from 
a probabilistic perspective, while modifying its shape in time, propagates along the main wave 
propagation direction. A smoothing of the “edges” (regions of large gradients) of the surface can 
also be noted as the time increase, particularly when comparing Figure 15 and Figure 16.  
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Figure 15: Map of normalized prediction error standard deviation at time 10t s=  for a spreading angle of 

30degspreadθ = . Normalization coefficient: / 2 2sH . Left: LEPrE results. Right: Monte Carlo simulation 
results. 

 
Figure 16: Map of normalized prediction error standard deviation at time 70t s=  for a spreading angle of 

30degspreadθ = . Normalization coefficient: / 2 2sH . Left: LEPrE results. Right: Monte Carlo simulation results. 
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Figure 17: Map of normalized prediction error standard deviation at time 150t s=  for a spreading angle of 

30degspreadθ = . Normalization coefficient: / 2 2sH . Left: LEPrE results. Right: Monte Carlo simulation 
results. 

 

 
Figure 18: Map of normalized prediction error standard deviation at time 240t s=  for a spreading angle of 

30degspreadθ = . Normalization coefficient: / 2 2sH . Left: LEPrE results. Right: Monte Carlo simulation 
results. 



R01 

p. 32/42 

  
Figure 19: Map of normalized prediction error standard deviation at time 300t s=  for a spreading angle of 

30degspreadθ = . Normalization coefficient: / 2 2sH . Left: LEPrE results. Right: Monte Carlo simulation 
results. 

 

4 Some considerations regarding nonlinear effects 
 
The scope of the LEPrE methodology presented herein is to provide a fast tool for supplementing 
deterministic sea wave predictions (DSWP) with a related estimation of the prediction error 
characteristics. In order to derive a formulation for prediction error statistics, the LEPrE 
methodology uses assumptions that are consistent with a linear DSWP framework. As reported in 
the introduction, the choice of linear DSWP models is usually justified in light of computational 
efficiency and robustness, although, in principle, it is pertinent only to those situations where wave 
field nonlinearities are negligible. Nonetheless, even when nonlinear DSWP models are considered, 
and nonlinear wave contributions are explicitly accounted for, linear tools are still used to provide 
relevant, though approximate, indications for the higher order models (e.g. Blondel et al., 2010; 
Blondel-Couprie et al., 2013; Grilli et al., 2011; Nouguier et al., 2014; Wu, 2004). In this respect, 
the LEPrE methodology, by redefining some key aspect of the linear DSWP framework, represents 
a step forward compared to existing linear approaches.   
 
Modelling the evolution of a water wave field, simulating its interaction with the environment and 
catching transient and highly nonlinear water wave phenomena is generally acknowledged as a 
difficult task. It is, therefore, not surprising that embedding such complexity within fast and 
efficient DSWP models still represents a prohibitive challenge. Hence, in the DSWP framework 
some of the most complex nonlinear aspects of the wave dynamics, such as wave breaking or 
interaction with arbitrary bottom topography, are seldom considered or only partially addressed 
(Wu, 2004). However, major efforts are done in modelling some of the peculiar nonlinear features 
of a propagating wave train, such as bound waves, nonlinear dispersion relation or even multiple 
resonant waves interaction, by using more or less refined nonlinear or weakly nonlinear models. 
Among them, the most relevant to DSWP are related to the role of the bound waves, for a correct 
modelling of the wave profile, and to the nonlinear effects on the dispersion relation, for the correct 
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wave propagation (Blondel et al., 2010; Blondel-Couprie et al., 2013). The former aspect is 
associated with second- (and higher-) order nonlinear effects, i.e. bound waves, leading, de facto, to 
a departure from the Gaussianity of the wave elevation field (e.g. Tayfun and Fedele, 2007; 
Nouguier et al., 2009; Fedele et al. 2017). The modification of the dispersion relation is due to 
effects arising at least at the third-order. 
 
The number of studies regarding deterministic sea wave predictions based on nonlinear wave 
models are, however, not numerous. Zhang et al. (1999a,b) developed and successfully applied a 
directional hybrid wave model based on second-order approach for deterministic sea wave 
predictions, but they did not compare the outcomes against linear ones. Wu (2004) studied 
deterministic sea wave forecasting considering a multi-level approach, based on a first-order 
(linear) model, a second-order model with possibility of accounting for nonlinear dispersion relation 
and a nonlinear HOS model (with possible arbitrary order of nonlinearly). The last one was also 
supplemented with a filtering technique aimed to overcome the problems related to the inception of 
wave breaking and spilling breakers. The analysis by Wu (2004) highlighted the importance of 
considering nonlinear effects in case of large significant wave steepnesses, whereas the linear model 
was shown to provide good results in case of milder sea states. In general, for severe sea states, the 
study by Wu (2004) highlighted the importance of considering the nonlinear wave dispersion 
relation, and showed that the use of nonlinear prediction models tend to improve the predictions at 
the cost, however, of an increased computational time. Wu (2004) also highlighted that wave-wave 
interaction effects become more relevant for wave evolutions on long time horizons. Referring to 
Wu (2004), Blondel et al. (2010) carried out a numerical study associated with deterministic sea 
wave predictions. For unidirectional irregular waves they compared the prediction capabilities of: 
first-order wave model, pure second-order wave model, second-order wave model enhanced with a 
third-order nonlinear dispersion relation, and a third-order wave model based on HOS. For small 
significant wave steepenesses, the first-order (linear) model provided results comparable with 
nonlinear models. At larger significant wave steepness, the relative prediction error by all models 
increased as well, indicating the effect of nonlinearities (in a fully linear framework the magnitude 
of the relative prediction error, for a given spectral shape, is independent of the significant wave 
height). The comparison between prediction capabilities from different models showed that 
nonlinear models performed better as the significant wave steepness increased. Interestingly, the 
first-order and the second-order model performed quite similarly, whereas an improvement of the 
prediction performances was much more noticeable when using the enhanced second-order model 
and, even further, when using the HOS third-order model. This indicates the importance of a 
modified, nonlinear, dispersion relation. In particular, the comparison between the predicted and the 
target wave elevation showed a reasonably good agreement of the wave profile for all models, but 
the first-order and the second-order model showed a systematic phase shift, indicating the effect of 
the nonlinear dispersion relation terms. Generally, wave peaks and troughs were better reproduced 
by the second-order model, this showing a beneficial effect of considering bound waves and wave-
wave interactions terms. However, first-order and second order model performed very similarly. A 
subsequent study by Blondel-Couprie et al. (2013) provided an experimental confirmation of the 
trends observed by Blondel et al. (2010), on the basis of long-crested irregular waves experiments. 
Nouguier et al. (2014), referring to synthetic LIDAR data, studied a reconstruction and forecasting 
approach (see also Grilli et al. (2011)) based on a linear wave model and on a nonlinear Lagrangian 
“choppy wave model” (Nouguier et al., 2009). Both linear and nonlinear model provided similar 
reconstruction performance, but the nonlinear model showed better forecasting capabilities.  
 
The highlighted nonlinear effects cannot be directly accounted for by the proposed LEPrE 
methodology. Indeed, the LEPrE approach is essentially linear and Gaussian; it is therefore 
representative for describing the free waves contribution. An important characteristic of the LEPrE 
approach is that, according to the linearity assumption, the harmonics of the single wave 
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components of the underlying wave field are assumed to be statistically independent random 
variables in ensemble domain. The introduction of bound waves and wave-wave interactions would 
break this assumption, because the amplitudes of nonlinearly generated wave components would 
deterministically depend on those of the free waves. To account for nonlinear effects in the wave 
elevation, it could be useful to revisit the proposed approach by separating the free waves from the 
bound waves contributions. At the same time, it is to be noted that the LEPrE approach is not 
strictly tied to the use of a basic linear dispersion relation. In fact, a general relation between wave 
number and wave frequency can be used without any restriction. This means that effects such as 
current could be directly accounted for, but it is also possible to consider the possibility of 
introducing a nonlinear/corrected dispersion relation. Although not being yet a fully consistent 
nonlinear extension of the LEPrE approach, such a modification could possibly provide some 
improvements with respect to the use of a linear approach. 
 
It is clear that a linear model, as the one underlying the proposed LEPrE methodology, has a series 
of limitations. However, it may be useful, at least in an approximate framework, to try keeping 
separate the concept of providing an accurate deterministic forecasting of wave elevation, from the 
concept of providing a corresponding measure of the associated uncertainty (which is the target 
herein). One of the aims of the LEPrE methodology is to provide a linearly-approximate, but fast 
and a-priori, estimation of the confidence interval for the forecasting. Notwithstanding the inherent 
limits, in the interpretation of the prediction during an actual application, the LEPrE estimation 
could be used either quantitatively (for mild/linear sea states) or, alternatively, as an approximate 
guide (for more severe, nonlinear, but not strongly nonlinear, sea states). In this latter case it is not 
unreasonable to imagine that a LEPrE estimation of the uncertainty level could be combined with a 
deterministic prediction based on nonlinear approaches, at least for not too severe sea states. In such 
a situation, the high computational effort due to the use of nonlinear wave models would be limited 
to the single deterministic prediction, while the fast semi-analytical approach from LEPrE would be 
used for the approximate estimation of uncertainty bounds. If a fully nonlinear approach would be 
used also for the determination of the confidence interval for the prediction, this would likely 
require the use of Monte Carlo simulations, which may be impractical for real-time approaches. 
Beside the scenario of a real time application, it shall also be underlined that an estimation of the 
prediction error statistics could also be useful as a guide for the preliminary setting up of the 
parameters of a prediction system. In fact, when a large space of design alternatives is to be 
explored, the use of nonlinear Monte Carlo approaches could become impractical or basically 
impossible (depending on the computational effort and the number of parameters to be tested). In 
such a situation, the use of LEPrE could be of help, at least for a preliminary screening. In all cases, 
as usual, the gain in computational time, compared to the use of Monte Carlo simulations based on 
nonlinear models, is paid in the LEPrE methodology by the introduction of a series of simplifying 
assumptions. On the basis of these considerations, it would therefore be useful to carry out future 
investigations regarding the qualitative and quantitative comparison between prediction error 
statistics as obtained from direct nonlinear Monte Carlo simulations and from the proposed LEPrE 
methodology. 
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5 Conclusions 
 
Deterministic predictions of wave elevation could contribute to the safety and operability of vessels 
and other types of units operating at sea, through implementation in early-warning, guidance and 
decision support systems. While one of the issues in this respect is on how to generate the 
deterministic predictions, another parallel issue is how to supplement deterministic predictions with 
a consistent prediction error measure / confidence band. 
 
This paper has specifically addressed the latter problem by presenting a semi-analytical 
methodology for the determination of prediction error statistics in deterministic sea wave 
predictions, focusing on linear wave models. The approach is based on the assumption that the 
underlying wave elevation stochastic process is Gaussian, and that the coefficients of the fitting and 
propagation model can be obtained from a linear fit of the measured wave elevation in space and 
time. Furthermore, the presented methodology allows to take into account also the presence of 
measurement error. Eventually, the presented approach allows to obtain a Linear Estimator of 
Prediction Error (LEPrE) in space and time, where the prediction error is measured through its 
ensemble variance. This estimator takes into account the characteristics of the fitting model and of 
the fitting points in time and/or space, as well as the exact characteristics of the sea spectrum. The 
approach is applicable in both long-crested and short-crested sea states and allows to directly 
account for different types of fitting procedures for the coefficients of the propagation model.  
 
The presented LEPrE approach allows to provide a sound and statistically consistent measure of 
prediction error. As a result, it represents a conceptual step forward with respect to existing 
approaches (binary Predictability Region, and Prediction Error Indicator), which, while being easier 
to apply in some situations, are unfortunately characterised by a level of semi-empiricism which 
could lead to a difficult quantitative interpretation of their outcomes. Overall, the application of 
LEPrE methodology provides a full picture of the evolution of the standard deviation of prediction 
error in space and time. This, in turns, allows to properly determine a predictability region given a 
specified acceptable threshold for the prediction error standard deviation. The capability of 
determining the prediction error standard deviation also allows the definition of optimum prediction 
delays in space and/or time, given the fitting model and the underlying sea spectrum, as points of 
minimum of prediction error standard deviation.  
 
The presented approach has been applied to a series of representative simulated example cases, 
covering long-crested and short-crested seas, as well as unimodal and (archetypal) bimodal spectra. 
Corresponding Monte Carlo simulations have also been reported for verification purposes, showing 
the expected agreement with the LEPrE semi-analytical calculations. The considered example cases 
are relevant to laboratory applications, as well as applications where the wave elevation could be 
considered to be measured from a wave elevation sensing device such as a wave radar. The 
presented approach has also been compared with the existing binary Predictability Region approach 
and the Prediction Error Indicator, showing differences and highlighting interesting qualitative 
commonalities. 
 
It is envisioned that the LEPrE approach could be useful in the future for a deeper and more clear 
understanding of the characteristics of error in deterministic predictions and for the definition of 
optimal deterministic prediction strategies. Furthermore, the scheme of the presented approach has 
also been extended by the authors for application to deterministic ship motions predictions, and it is 
now being tested, with results expected to be reported in the near future. 
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Appendix: analytical formulation of LEPrE in case of DFT 
fitting applied to long-crested (1D) and short-crested (2D) 
waves 
 
This section presents the derivation of functions ( )2

1 , ,f k x t  and ( )2
2 , ,f k x t , in equation (20)/(21), 

in the special case when a DFT fitting approach is applied. Both long-crested (1D) and short-
crested (2D) waves are considered.  
 
The derivation starts from the case of long-crested (1D) sea states, where waves propagate in the 
same direction. In this case the generic wave number vector k  can be replaced by its corresponding 
scalar magnitude k  and the generic position vector x  can be replaced by a scalar coordinate x .  
 
The possible presence of measurement error does not affect the definition of ( )2

1 , ,f k x t  and 

( )2
2 , ,f k x t  in (20), since the contribution to the prediction error standard deviation due to the 

presence of measurement error represents an additive term.  Therefore, for the purpose of this 
appendix, the prediction error can be defined by combining equations (10) and (12) as follows, 
without considering measurement error: 
 
( ) ( ) ( ) ( ) ( ),

, , , , , ( , )F M M
x t x t x t p x t T P p x t q x t

ηζ η
ε ζ η α α = − = − =   (A.1) 
 
The measurement of the wave elevation is assumed to be carried out on an evenly spaced 1D grid of 
M  points, with sampling resolution x∆  so that the sampled position is 0m x mx x= + ∆  with 

{0,..., 1}m M= −  and 0x  is a given bias position. The corresponding Fourier wave numbers are 

defined as 2 /sk s M xπ= ∆ , with the index s  taking the values on a convenient subset of the set 
0,1,..{ ., }/ 2M . The fitting model is then assumed to be based on a set of Nζ  wave numbers, 

1,..., }{i Nk k k
ζ

∈   , chosen among the previously defined Fourier ones. For sake of simplicity, the 

analytical solution will not account for the zero wave number, 0k = , and for the possible Nyquist 
wave number / xk π= ∆ . Exploiting the properties of the DFT matrix, it is straightforward to prove 
that the matrix 

M
T  appearing in (4) can be actually written as: 
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,
2 T

M MT P
M ζ=  (A.2) 

 
The matrix product 

,M M
T P

η
 can now be rewritten in the following block matrix form: 

 

1,1 1,

, ,

,1 ,

...
( , ) ( , )

... ...   where   
( , ) ( , )

...

N
cc i cs i

M i j

j i

i j
i j

sc i j ss
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f f
f k k f k k

F f f
f k k f k k

f f
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ζ ζ η

 
 

  
= =   

   
 
 

 

 

 (A.3) 

 
The determination of the elements of 

,i j
f  can be carried out analytically, leading to the following 

results: 
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where 
( 1)M

M
α− Θ = + 

 
 with 0 / (2 )x xMα = ∆ . iµ  is a natural number defined as 

2
i

i M xkµ
π

∆ ∈=


  and jv  is in general a real number defined as 
2

j
j M x

k
v

π
∆= ∈ . The function 

( , )D p M  appearing in the previous expressions is defined as: 
 

( )
( )

sin
( , )   with p

sin /
p

D p M
M p M

π
π

= ∈  (A.8) 
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The wave numbers ik  and jk  are, respectively, the Fourier wave number of the fitting model and 
the assumed wave number of the underlying model. This latter, in general, can be arbitrary, and not 
necessarily linked to the sampling grid.  
 
The results reported so far are provided assuming that the measurement and fitting is carried out in 
the space domain. However, the obtained results can be recast in a form suitable for the dual 
situation where the measurement and fitting procedure is carried out in time domain. In such case, it 
is necessary to interchange space and time, as well as wave numbers and wave frequencies. In a 
time domain fitting it shall also be assumed that the fitting frequencies correspond to an orthogonal 
basis with respect to the measurement domain, and that the wave numbers corresponding to the 
fitting frequencies are determined from the dispersion relation.     
 
It is worth noticing at this point that, in phase-resolved propagation methods, it is good practice to 
define the sampling grid in such a way to avoid, as much as possible, aliasing problems. However, 
in general, the sampling grid is defined by the sampling resolution of the measuring device and 
some aliasing is unavoidable. In this case the whole fitting and propagation procedure will be 
affected by aliasing. The LEPrE methodology naturally embeds the fitting model characteristics in 
its definition and consequently it will provide a prediction error that consistently takes into account 
the presence of aliasing. 
 
The elements of the vector ( ),q x t  in (A.1) can now be rewritten as: 
 

( )

( ) ( ) ( )

( )

( ) ( ) ( )
1

2

2

1

1 , =

= ( , ) cos ( , )s( ) (in cos
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j j j
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j
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j
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j j
i
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ζ
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ω ω ω

=

=

−
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=
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∑

     

     

 (A.9) 

 
However, the terms ( )2 1 ,jq x t−  and ( )2 ,jq x t  are now in a closed form with respect to the generic 
(arbitrary) wave number jk . As a result, the subscript j  can be dropped and the final formulation 

of the functions ( )2
1 , ,f k x t  and ( )2

2 , ,f k x t  can be written as: 
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 (A.10) 

 
The formulation developed so far can be easily extended to the short-crested (2D) case within the 
hypothesis that the fitting procedure is carried out using an orthogonal Fourier basis. The 
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measurement of the wave elevation is assumed to be carried out on an evenly spaced 2D grid of 
MN  points, with sampling resolution x∆  along the x  direction and y∆  along the y  direction. The 

grid points ( ), , T
m n m nx x y=  are defined as 0m x mx x= + ∆  with {0,..., 1}m M= −  and 0n y ny y= + ∆  

with {0,..., 1}n N= − , with ( )0 0,x y  being the given bias position. The corresponding Fourier wave 

numbers, considered in their vector form ( ),x y

T
k k k=   , are defined as ( ), 2 /x rk r M xπ= ∆  with the 

index r  taking the values on a convenient subset of the set 0,1,..{ ., }/ 2M  and ( ), 2 /y sk s N yπ= ∆  
with the index s  taking the values on 0,1,..{ ., }/ 2N . The fitting model is then assumed to be based 

on a set of Nζ  wave numbers, ( ) 1, ,, ,...,{ }
T

Nx y ii ik k k k k
ζ

= ∈     , chosen among the previously defined 
Fourier ones, excluding the zero and the Nyquist wave numbers.  
 
In this case the functions ,  ,  ,  cc cs sc ssf f f f  presented in equations A.4 to A.7, can be exploited to 
calculate a set of corresponding functions associated with the 2D case as: 
 

1 1

, , , ,
0 0

, , , , , , , ,

, , , , , , , ,
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Similarly to A.10, the index j  associated to the frequency in the underlying assumed wave 
elevation model η  can now be dropped, so that the functions ( )2

1 , ,f k x t  and ( )2
2 , ,f k x t  for the 

general short-crested (2D) case can finally be written as: 
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