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Abstract 

 

The global demand for hydrocarbons is high and is also believed to be high in the future. 

Much of today’s oil and gas exploration is carried out offshore and consequently, there is a 

risk if oil and gas blowouts at the seabed. Major concerns from a subsea oil and gas release 

are fire and toxic hazard to people working on offshore installations and loss of buoyancy of 

ships and floating installations. In addition, oil spills will result in both immediate and long-

term environmental damage. Risk assessments are a very useful tool to pinpoint the risks of 

offshore oil and gas exploration and production. In terms of blowouts, these assessments 

require knowledge of the qualitative behavior and reliable quantitative estimates for where 

and when the oil and gas will surface. Since execution of underwater test releases of 

hydrocarbons is extremely costly, computer models are interesting research subjects. 

In this thesis, a simulation concept for forecasting oil and gas blowouts is presented. ANSYS 

FLUENT 15.0.0, a commercial Computational Fluid Dynamics (CFD) package, is used to obtain 

both the qualitative behavior and the quantitative estimates. The model accounts for 

variation in bubble size and bubble density. In addition the model allows for the presence of 

ocean currents and gas dissolution. The released oil droplets and the natural gas bubbles are 

tracked while they rise towards the ocean surface in order to estimate the effect of ambient 

ocean currents. The general model set-up is first validated against experimental data, for 

which air-bubbles are released in a 7 m deep basin. 

The primary simulations are based upon a field experiment conducted in Norwegian waters 

during June 2000, known as DeepSpill. Four discharges of oil and gas from a water depth of 

844 m was carried out under controlled circumstances. Extensive observations and 

documentation were acquired during the experiments, in addition chemical and biological 

samples were collected along the water column. In the present work, simulation results are 

presented, discussed and compared with chosen field data obtained from the DeepSpill 

experiment. 

The overall simulation results are found to correspond quite good with the results from the 

DeepSpill experiment. The mean path of oil corresponds favorably with the overall shape of 

the echo-sound images taken during the experiments. The point of complete gas dissolution 

is found to match the field data, as long as a mass transfer reduction factor is employed. 

However, the rise time of oil droplets are somewhat over-predicted, which may indicate a 

need for denser grid in the release zone and/or a reconsideration of the oil droplet size 

distribution.  
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Sammendrag 

 

Etterspørselen etter hydrokarboner er høy, og den er også antatt å forbli høy i framtiden. 

Mye av dagens letevirksomhet etter nye utvinnbare forekomster forgår på havbunnen. 

Utblåsninger (enten fra havbunnen eller utstyr) vil derfor representere en risiko i lete-, 

produksjon- og nedstengningsfasen. Utblåsninger av olje og gass vil kunne få store 

konsekvenser for personsikkerhet og miljøet. De vil også gi betydelig økonomiske tap for 

involverte parter. 

Som verktøy for å håndtere risikoen ved undervanns olje- og gassvirksomhet benyttes det 

risikovurderinger. Disse krever kunnskap om konsekvensene og sannsynligheten for at en 

hendelse vil skje. Denne avhandlingen tar for seg noe av konsekvensdelen ved en undervanns 

flerfase utblåsning. Ettersom realistiske testutslipp er ekstremt kostbart vil datamodeller 

være hensiktsmessige forskningsverktøy.  

Avhandlingen presentere et konsept for å simulere oppførselen og hva som vil skje med en 

blanding av olje og gass som slippes ut på havbunnen på vei mot overflaten.  

Programpakken ANSYS FLUENT 15.0.0, en kommersiell Computational Fluid Dynamics (CFD) 

pakke, blir brukt til å simulere den kvalitative oppførselen og de kvantitative beregningene. 

Modellen tar for seg variasjon i boblestørrelse og bobletetthet. I tillegg tar modellen høyde 

for tilstedeværelsen av havstrømmer og gassoppløsning. Oljedråpene og naturgassboblene 

spores mens de stiger mot overflaten for å se effekten av havstrømmene. Det generelle 

modelloppsettet er først validert mot eksperimentelle data, hvor luft blir sluppet ut på 

bunnen av et 7 meters dypt basseng. 

Hovedmodellen er basert på et feltforsøk gjennomført i norske farvann i juni 2000, kjent som 

DeepSpill. Fire utslipp av olje og gass fra 844 meters dybde ble gjort under kontrollerte 

forhold. Omfattende observasjoner og målinger ble gjort, også av kjemiske og biologiske 

forhold. 

I det foreliggende arbeidet blir simuleringsresultatene presentert, diskutert og sammenlignet 

med aktuelle feltdata innhentet fra DeepSpill eksperimentet. Simuleringsresultatene sett 

under ett stemmer godt overens med resultatene fra DeepSpill eksperimentet. «Stigebanen» 

til oljedråpene har god overensstemmelse med ekko-lyd signalene målt under eksperimentet. 

Punktet hvor gassplumen er fullstendig oppløst i sjøvannet passer godt med feltdataene, så 

lenge en reduksjonsfaktor er anvendt. Stigetiden til oljen er noe overestimert, noe som 

indikerer et behov for finere mesh rundt utslippssonen og/eller grundigere evaluering av 

oljedråpe størrelsen.  
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Preface 

 

Background for Thesis and Organization 

 

This thesis is submitted in partial fulfillment of the requirements set for obtain a Master of 

Science and Technology, with a specialization within fluid mechanics at the Norwegian 

University of Science and Technology (NTNU).  It contains work carried out from January 

2014 to June 2014, and is awarded 30 credits. The time is spent at literature reviews, 

developing skills related CFD simulations and C Programming, and formulation of this thesis. 

The work is performed in collaboration with SINTEF, Trondheim and Acona Flow Technology 

in Skien. 

  

Organization 

 

The thesis is organized into nine chapters and two appendixes. 

CHAPTER ONE: INTRODUCTION deals with motivation and background for the studying of 

underwater hydrocarbon releases. In this chapter the overall objective and scope of this 

thesis is presented. 

CHAPTER TWO: BASICS OF UNDERWATER BLOWOUTS describes the main physics of deep water oil 

and gas blowouts. A short overview of the history of plume modeling is presented, together 

with a brief introduction of integral models. 

CHAPTER THREE: BASIC CDF AND GOVERNING MODELS describes the principle behind Computational 

Fluid Dynamics (CFD). The chapter includes a detailed derivation of the turbulence and 

multiphase models used in the thesis. 

CHAPTER FOUR: USER-DEFINED MODELING deals with the theory behind the user-defined functions 

(UDFs) implemented to complement the standard CFD code. These functions are required to 

achieve a desired plume behavior. 

CHAPTER FIVE: NUMERICAL ACCURACY AND COMPUTATIONAL TIME deals with the balance between 

computational time and numerical accuracy. Different methods of mesh generation is 

presented and discussed, in addition to solver settings.  
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CHAPTER SIX: DISCUSSION OF ASSUMPTIONS presents assumptions of the user-defined functions 

and the physical models used. 

CHAPTER SEVEN: VALIDATION MODEL: ROTVOLL EXPERIMENT compares the simulation results with 

the observations and measurements from the Rotvoll experiment. 

CHAPTER EIGHT: PRIMARY MODEL: DEEPSPILL EXPERIMENT compares the simulation results with the 

observations and measurements from the DeepSpill experiment, as well as modeling results 

provided by the DeepBlow model. 

CHAPTER NINE: CONCLUSION REMARKS summarizes the findings in the thesis. 

APPENDIX A: Presents the UDFs used in simulation of the validation model. 

APPENDIX B: Presents the UDFs used in simulation of the primary model. 
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   Eotvos number               Individual gas constant 

  Force (N)                Radius (m) 

  Generation term              Reynolds number  



  XII 
 

  Source term                Velocity fluctuation x-direction (m/s) 

  Integral time (s)          ̅    Mean velocity (m/s) 

  Temperature (K)              Volume (m3) 

  Time (s)                Velocity y-direction (m/s) 

  Velocity x-direction (m/s)             Velocity z-direction (m/s) 

 

Acronyms 

 

CFD Computational fluid dynamics        RKE      Realizable  -  

DNS Direct numerical simulation        RSM      Reynolds stress model 

DPM Discrete phase model         RWM     Random walk model 

DRW Discrete random walk          SKE        Standard  -  

LES Large eddy simulation          UDF        User-defined function 

RANS    Reynolds-Averaged Navier-Stokes        VOF        Volume of fluid 
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Chapter 1 

Introduction  

 

1.1 Motivation 

 

With increasing subsea activities plumes have acquired additional relevance from a risk 

assessment point of view. The global demand for hydrocarbons is still significant, which has 

led to exploration into deeper water and more hazardous projects. Underwater releases of oil 

and natural gas, resulting from accidents in offshore drilling (blowouts), subsea installations 

or broken gas pipelines, represents a potential danger for ships, offshore structures, and may 

have major environmental and safety impacts. For this purpose, it is important to know as 

much as possible about the dynamics of underwater releases of oil and natural gas.  

 As the number of offshore installations is growing, the probability of potential faults is 

increasing. Therefore, risk assessments are necessary to ensure safe offshore operations. 

These assessments require knowledge of the probability and the consequence for a certain 

incident. In terms of blowouts, this will include knowledge of the qualitative behavior and 

reliable quantitative estimates for when, where and how much oil and gas that potentially 

can surface. Since execution of realistic blowout experiments are extremely costly, computer 

simulations are interesting research subjects.  

Many regions around the world have active offshore production or will develop.  Examples 

are Brazil, North Seas, West Africa, and the USA including the Gulf of Mexico. The offshore 

production in USA accounts for about 30 percent of the total domestic production. In 

addition, China and Japan are working on their own deep water exploration programs that 

have found promising deposits (35). As part of deep water exploration programs there should 

always be an assessment of the risk and consequences of a blowout. Computer simulations 

can provide information about impact assessment and form the basis for emergency 

response. 

In June 2000, four discharges of oil and gas from a water depth of 844 m was carried out 

under controlled circumstances in Norwegian waters. The experiment was named 

“DeepSpill”, and the main objective was to obtain data for verification and testing of 

numerical models for simulating/modeling accidental releases in deep water (34). Few years 

before the DeepSpill experiment was conducted, an integral model, named “DeepBlow”, was 

developed with the purpose of recreating experimental data obtained from blowout 

scenarios (15). The model did a reasonable job of predicting the time to surface and the 



CHAPTER 1: INTRODUCTION  2 
 

 

location of the slick through some tuning of different parameters (37).  Historically, classical 

integral models offer an efficient and good representation of a rising plume. However, these 

models provide limited information on the surface effects and rely heavily on appropriate 

empirical data. Computational Fluid Dynamics (CFD) is more flexible and fundamental, and 

makes it possible to provide information on both the multi-phase plume and the surface 

interactions.  

No literature has been found on development of CFD model simulation of underwater 

releases including both oil and gas. However, in recent time there has been quite high activity 

in CFD simulations of underwater gas releases, such as Cloete (5), Cloete et al. (11), Skjetne & 

Olsen (2), and Pan (47). 

 

1.2 Thesis Objective 

 

The main objective of this thesis is to provide a general framework for CFD simulation of a 

deep water oil and gas release. The fundamental theoretical framework and model set-up is 

based on work developed by Cloete (5) ,Cloete et al. (11),  Skjetne & Olsen (2),  and 

generalized to allow for presence of oil droplets and plume tracking, underwater currents 

and gas dissolution. A detailed presentation of the general model set-up and theoretical 

framework is presented and discussed, in addition to some alternative models/methods. The 

general model set-up is first validated against experimental data of Engebretsen et al. (54), 

before simulation results are presented, discussed, and compared with chosen experimental 

data obtained from the report of Johansen et al. (34) and relevant modeling results provided 

by the DeepBlow model. 

  

1.3 Scope 

 

In deep water blowouts the volume of natural gas may be depleted through dissolution into 

the sea water and the driving buoyancy of a rising gas bubble plume may be completely lost. 

In case of complete gas dissolution, the oil droplets will eventually rise slowly alone due to 

buoyancy, without any assistance of a more buoyant gas (as was the case in the DeepSpill 

experiment). However, the mean cloud path of oil droplets is strongly affected by ocean 

currents during their rise. This may result in separation of oil droplets from the more buoyant 

gas bubbles, before the gas is completely dissolved (1). In this context, the following bullet 

points are to be considered: 
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 Mean cloud path of oil. 

 Point of complete gas dissolution. 

 Rise time of oil. 

These three points will provide valuable information in any blowout scenarios. Even though 

the probability of such accident is low thanks to today’s technology, the oil and gas industry 

has to be prepared.  

 Mean cloud path of oil: In order to start the clean-up work as early as possible, the oil 

and gas industry needs to know where the oil is expected to surface. 

 Point of complete gas dissolution: In deep water, gas bubbles may be “trapped” 

below the ocean surface due to effects of dissolution. This is valuable information for 

oil and gas operators as it concern surface restrictions governing surface vessel 

activity and possible evacuation of offshore structures.  

 Rise time of oil: Rise time is the time taken for the first oil droplets to surface. The 

computed rise time is an indication of the model validity, when compared with 

empirical data.   

ANSYS FLUENT 15.0.0, a commercial CFD package, is used to provide both the qualitative 

behavior and the quantitative estimates. The Discrete Phase Model (DPM) is applied for 

simulation of the gas bubbles and the oil droplets, which is a parcel based Lagrangian 

method. One parcel consists of multiple bubbles with same velocity and density. The 

interaction between the sea water and atmospheric air is captured by a sharp interface 

tracking scheme implemented in the Volume of Fluid (VOF) model, which is based on the 

Eulerian formulation.  
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Chapter 2  

Deep Water Blowouts  

 

Subsea blowouts generally involve oil and/or natural gas. The volume ratio of these two 

fluids is dependent of the characteristics of the fluids and the producing reservoir. The 

natural gas is strongly affected by buoyancy, which usually provides the driving force for an 

uncontrolled blowout. This buoyancy force may increase with gas flow rate and reservoir 

pressure, while decrease with depth due to compression. Subsea release of hydrocarbons is 

often referred to as either shallow or deep water blowouts (1). In deep water, the effect of 

gas dissolution and ocean currents is more dominant due to longer residence time (i.e. the 

time a bubble/droplet has spent in the surrounding water). Throughout this thesis, oil 

droplets and gas bubbles are often referred to as a dispersed phase, while water and 

atmospheric air is referred as a continuous phase.  

 

2.1 Deep Water Blowouts – Hydrate Formation 

 

Deep water blowouts differ mainly from shallow water blowouts by oil and natural gas 

exiting from the seabed release point into high water pressure and low temperature. 

Multiple literature sources assert that the natural gas quickly combines with cold water and 

form solid ice-like substance known as hydrates. This usually occurs at depths below 300-700 

meters (1; 36; 38; 39), depending on the ocean properties. These assumptions of hydrate 

formation are based upon hydrate phase diagrams and simulated deep sea environment. 

However, in the DeepSpill experiment, no gas hydrates were observed even though 

thermodynamic equilibrium suggested they should. Moreover, the DeepBlow model 

predicted nearly identical plume trap height, with and without equations related hydrate 

formation (37). This lack of hydrate formation is briefly explained by Johansen (56): “This lack 

of hydrate formation is most easily explained by the absence of the dissolved gas saturation 

condition necessary for sustained hydrate formation.” Based on these observations and 

modeling results, hydrate formation are neglected in the current application.  
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2.2 Basics of Underwater Blowouts 

 

Without the presence of hydrate formation, ocean currents, and gas dissolution, deep water 

blowouts has mainly the same dynamics as shallow water blowouts, which is explained 

below.  

Underwater oil and gas blowouts will pass through three zones of interest as oil and gas 

move towards the sea surface (ref. figure 1). The high velocity at the well head exit generates 

a jet zone, known as the zone of flow establishment. This zone is dominated by initial 

momentum of oil and gas, gas expansion, and breakup into gas bubbles (22). In addition, the 

high degree of turbulence in this region is responsible for the fragmentation of oil into 

droplets (41). A drag force is exerted from the ambient fluid and a net momentum transfer 

from the dispersed phase to the ambient water occurs. This effect creates a motion of water 

alongside the bubbles/droplets, a motion denoted as entrainment of liquid fragments (23). 

The effect of entrained water causes a rapid loss of momentum a few meters from the 

discharge location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the zone of pure plume, momentum is no longer significant relative to buoyancy. Buoyancy 

becomes the dominant driving force for the remainder of the plume rise towards the surface. 

Figure 1: Definition sketch of a time-averaged bubble plume inspired by Fanneløp & 

Freidel (22). 
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In this region, bubble size is governed by material properties and turbulence parameters (ref. 

section 4.2.4). As the gas continuous to rise, oil droplets and sea water are entrained into the 

flow and carried to the surface (41). When the gas approaches the ocean surface, entrained 

water and oil droplets cannot follow the gas into the atmosphere (2). Water is diverted 

radially outwards the horizontal surface, dragging the oil droplets and some of the gas 

bubbles away from the plume axis. This surface influence spreads the oil over the surface up 

to the point where the flow no longer influences the surface water motion (41). This turning 

process, which occurs in the interaction zone, causes an elevation of the water surface due to 

entrained water momentum. The elevation of the water surface is referred to as a fountain 

(22). Most of the gas particles will continue their rise into atmosphere, creating a surface 

disturbance or “boil zone”.   

Fountain effects are only evaluated in the validation model, chapter 7. The oil slick 

developing at the sea surface is not evaluated in the present work. 

Figure 1 shows a sketch of the ocean flow resulting from an underwater release of 

hydrocarbons. The oil and gas originate from a point source at water depth   . The three 

zones of interest are marked by name. Figure 1 is inspired by similar sketch presented in 

Friedl & Fanneløp (22). Other features of figure 1 are further explained in section 2.4. 

 

 

2.2.1 Starting Plume Dynamics 

 

In case of a underwater plume from an instantaneously started source, the gas feeds into a 

cap which builds up buoyancy before it rises to the surface (2). Due to drag forces exerted on 

the initial cap, the surrounding water is set in motion upwards making the subsequent 

bubbles and oil droplets to rise faster and more individually. The shape of a starting plume 

may appear as an ice-cream cone, with a spherical cap on top (ref. figure 2).   

Fanneløp & Bettelini (29) explain that the top of the cap mainly consists of large bubbles. The 

large bubbles rise much faster than the mean flow inside the cap. The highly turbulent plume 

region consists mainly of small bubbles, while the larger bubbles exists in the extremes of the 

plume, where coalescence dominates due to lower turbulence level (47) (ref. section 4.2.4). 

Moreover, the amount of surfacing bubbles and droplets may be influenced by the cap. This 

variation is mainly explained by the different dynamics of the initial cap and the subsequent 

bubbles (29). 
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2.3 Effect of Stratification, Ocean Currents and Gas Dissolution 

 

Without the presence of ocean currents and gas dissolution, oil droplets may be transported 

quickly to the water surface by the more buoyant gas phase, as explained in section 2.2. 

However, in deep water releases, external factors are more dominant and may strongly 

affect the dispersed phase.  

 

2.3.1 Stratification 

 

Multi-phase plumes differs from single-phase plumes (e.g. wastewater plumes) by the fact 

that gas bubbles and oil droplets, that are source of buoyancy, may separate from the 

entrained sea water plume as it becomes trapped by water stratification (ref. figure 3)  or 

deflected by ocean currents (40).  By stratification the author refers to water masses with 

different properties (e.g. salinity, oxygenation, density, and temperature). This stratification 

effect may form layers that act as barriers to water mixing. These layers are normally 

arranged according to density, with the least dense water sitting above the more dense 

water.  

Figure 2: Sketch of a starting bubble plume inspired by Fanneløp & Bettelini (29). 
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As seen from figure 3, the plume reaches a peel height,   , where the buoyancy of the 

dispersed phase no longer manages to lift the entrained sea water. At this point, an outer 

downdraught plume of dissolved and finely dispersed hydrocarbons and sea water is created, 

forming a horizontal intrusion at a level of neutral buoyancy,    (50). In the current 

application, this stratification effect is neglected. The properties of sea water are assumed 

constant along the depth (i.e. density, temperature, and salinity), and only the hydrostatic 

pressure is changing. Figure 3 illustrates the effect of pure stratification for multi-phase 

plumes. 

 

 

2.3.2 Effect of Ocean Currents and Gas Dissolution 

 

When strong horizontal ocean currents dominate multi-phase plumes, a complete separation 

occurs between the gas bubbles and the wake of entrained water plume, due to their 

individual buoyancy (ref. figure 4). The entrained water wake is then left with finely dispersed 

and dissolved hydrocarbons (50). Due to small difference in density, the degree of ocean 

currents determines whether the oil droplets may separate from the plume of entrained 

ambient water (ref. figure 5) (40).  Moreover, a separation of oil droplets may occur based on 

the drop size. Larger oil droplets will surface first, while the smaller drops may be carried 

further down-current prior to reaching the surface (41).  

 

Figure 3: Sketch of pure water stratification (40). 
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In case of deep water blowouts, the driving buoyancy force of gas bubbles can be completely 

lost due to dissolution, which is strongly dependent of sufficient residence time in the 

ambient sea water. Situations where the ocean currents are too weak to completely separate 

the two dispersed phases, oil droplets will start to rise slowly due to buoyancy forces alone 

and without any assistance from the more buoyant gas bubbles (41). Since this separation is 

a self-reinforcing process, the oil droplets tend to be even more affected by the ambient 

ocean currents after the gas volume is depleted (56).  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Sketch of the effect of pure ocean current on gas bubbles (40). 

Figure 5: Deep water blowouts of oil and gas inspired by Yapa (61). 
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Figure 5 illustrates a possible blowout scenario, including the entrained water wake, gas 

bubbles, and oil droplets. As seen from figure 5, ambient ocean currents are increasing as the 

ocean depth decreases. The highly buoyant gas bubbles may separate from the plume of 

entrained ocean water, leaving the less buoyant oil droplets behind. As ocean currents 

continues to increase, the oil droplets starts to separate from the entrained ocean water. 

When the mass transfer rate of gas into the ambient ocean is depleted, the gas plume is 

trapped below the ocean surface. The oil drops will eventually surface, and develop an oil 

slick on the sea surface. However, oil slicks will not be evaluated in the present work.  

Properties of gas bubbles and oil droplets are further discussed in chapter 4 and 6. Theory 

and implementation of gas dissolution and ocean currents are explained in Chapter 4. 

 

2.4 History of Plume Modeling 

 

Over the last 40 years, the research on buoyant bubble plumes has been quite active. 

Fanneløp & Sjøen (61) performed both theoretical and experiments studies of gas plumes on 

which a lot of later research is based. McDougall (63), Milgram (24), and Fanneløp et al. (65) 

developed all numerical models which considered gas expansion within the jet/plume zone 

(ref. figure 1). These models were limited to vertical buoyant plumes, and the ambient ocean 

currents where not taken into account. A common goal of these models was to determine 

and explain the relationship between local plume properties and the entrainment 

coefficients. In addition, Milgram (24) introduced a momentum amplification factor to 

account for the momentum transfer caused by turbulent fluctuations. The integral models 

mentioned above are based upon Eulerian integral formulations (66), where the control 

volumes are fixed in space. 

In addition, multiple oil spills models have been developed through the years, such as 

Spaulding (64) and ASCE (62). The point of interest for most of these models are surface or 

near surface spills such as from a tanker. However, some exception exists. Yapa & Zheng (66) 

developed a highly complex integral model which takes into account oil, gas and entrained 

sea water from sub-sea blowouts, in addition to the effects of ocean currents and density 

stratification. Johansen (15) extended this model to be valid for deep water blowouts by 

including among other effects of non-ideal gas behavior, gas dissolution and the possibility of 

hydrate formation. The model was named “DeepBlow” and a brief introduction of this model 

is provided in section 2.4.2.    
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2.4.1 Governing Equations 

 

Various integral models may be solved by different governing equations; however, the 

fundamental concept is often the same. A brief introduction to the basics behind the integral 

model developed by Fanneløp & Bettelini (59) is presented in this section.   

For most integral plume models, some coefficients are dependent on the profile assumptions 

used. Radial distribution of density and velocity profiles is often assumed Gaussian 

distributed, as can be seen in figure 1, and may be expressed as follows (59): 

   ̅̅ ̅(   )   ( )  (     )⁄                        EQUATION 1  

where   refers to the water velocity.   and   is the horizontal distance from the plume axis 

and the vertical distance from the source, and   defines the width of the buoyancy profile 

(ref. figure 1). The overbar is used for all quantities dependent on both   and  . Equation 1 is, 

however, not valid for interactions in the water surface. Further, the Gaussian distributed gas 

density profile may take following form: 

    ̅(   )   [    ( )] ⌊   (  ) ⁄ ⌋
                             EQUATION 2

   

where 𝜆 denotes the ratio between the widths of the buoyancy and momentum profiles (ref. 

figure 1). For steady state bubble plumes the mass balance equation and the momentum 

balance equation are given by (59): 

 

  
(     )                    EQUATION 3 

and 

 

  
(   

   )     
    

  
             EQUATION 4 

,where    is dependent on the assumed shape of the velocity and buoyancy profiles in the 

plume, and   is the entrainment coefficient. Modeling results by Fanneløp & Bettelini (59) 

revealed that the plume development is sensitive to variations in the entrainment coefficient, 

while variations of the remaining parameters in their expected uncertainty ranges have only 

a minor influence on the results. More information about the governing equations and 

general model set-up is found in Fanneløp & Bettelini (59). 
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If the coefficients are tuned properly integral models provide a good representation of a 

rising bubble plume, but may offer limited information on the surface interactions (2). These 

models represent a cheap and efficient analysis tool, but obviously rely heavily on 

appropriate empirical data available (e.g. entrainment coefficient).  

 

2.4.2 The DeepBlow Model  

  

As noted in section 2.4, the DeepBlow model accounts for the effects of deep water. The 

model is an integral model based on a Lagrangian concept, in contrast to the bubble plume 

models mentioned in section 2.4, which is based on Eulerian formulation. In a Lagrangian 

formulation the control volumes are moving with the plume, where the plume is represented 

by a series of non-interfering elements. Johansen (15) describes the concept as follows: “Each 

element, which can be thought of as a cylinder or section of a bent cone, is characterized by 

its mass, location, width (radius), length (thickness), average velocity, pollutant 

concentration, temperature and salinity. These parameters will change as the elements 

moves along the trajectory, i.e., the element may increase in mass due to shear-induced and 

forced entrainment, while rising by buoyancy and sheared over the cross-flow.” For a 

detailed review of the model concept, see Johansen (15) and Yapa & Zheng (66). 

A number of case studies were simulated by the DeepBlow model (15). The modeling results 

were found to compare favorably with field observations when dissolution of gas into sea 

water was accounted for. In chapter 9, modeling results provided by the DeepBlow model is 

discussed and compared with relevant CFD simulation results. 

In recent years, CFD techniques have been employed to calculate the density and velocity 

distributions for the underlying conservation equations, together with suitable models 

representing the phase interactions (5; 11; 2; 47). Acting equations and models are discussed 

in detail in the following chapters, together with relevant literature.  
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Chapter 3 

Basic CFD and 

 Governing Models 

 

Computational Fluid Dynamics (CFD) is a computer based mathematical simulation tool 

providing a cost-effective mean of simulating fluid related problems (3). Mass and heat 

transfer, fluid flow and chemical reactions are solved by numerical solution of the governing 

equations of fluid dynamics, i.e. the conservation of mass, momentum and energy. These 

equations combine to form the Navier-Stokes equations, which are a set of partial differential 

equations that cannot be solved analytically except in a limited number of cases (46). 

However, an approximate solution can be obtained using a discretization method that 

approximates the partial differential equations by a set of algebraic equations. In ANSYS 

FLUENT, this discretization method is the Finite Volume Method (FVM) (ref. section 3.2.1).  

CFD simulation allow for testing of conditions which is difficult and costly to measure 

experimentally. However, it is important to point out that CFD may provide misleading 

results due to lack of sufficient understanding of the large number of simplifications and 

approximations being made. The results may look plausible and pretty, while in fact being far 

from correct. When presenting CFD data it is therefore exceedingly important to be 

thorough, precise and specific.  

On todays marked there are a large number of different commercial CFD packages. In the 

present work the use of ANSYS FLUENT 15.0.0 is employed, which offers a multitude of 

numerical models, applicable to different flow situations. 

 

3.1 Typical Stages in CFD Simulations 

 

Solving a typical CFD problem consists of several stages (46): 

1. GEOMETRY AND PHYSICAL BOUNDS 

The geometrical model is a representation of the shape and extent for where the 

computational flow domain is estimated. The geometry is approximated in the 

preprocessor (e.g. ANSYS Workbench). 
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2. NUMERICAL GRID 

In order to solve the flow variables, the volume occupied by the fluid requires to be 

divided into numerical grid cells (discretization), also known as mesh. This is done in 

the preprocessor. Moreover, additional refinements can be created by adaptive mesh 

generation in ANSYS FLUENT (ref. chapter 5).  

3. MODELS AND MODELING PARAMETERS 

The geometry, which is divided into a number of non-overlapping grid cells, is loaded 

into the solver (e.g. ANSYS FLUENT), where the required models are selected and 

tuned to fit the current flow problem. 

4. CALCULATION OF FLOW VARIABLES 

Discretization is the process where the governing partial differential equations are 

converted into algebraic equations (one set for each numerical grid cell). Setting up 

the discrete system and solving it is a matrix inversion problem, and involves a large 

amount of repetitive calculations (67). Error or residual values are computed from 

these discretized equations using an iterative method.  

5. CONVERGED SOLUTION 

Convergence is detected when the numerical solution approaching a single answer. 

When the residual values in the system becomes sufficiently small, the solution is 

considered converged. For steady state simulations, the calculations are stopped 

when convergence is reached.  

6. POST PROCESSING 

The results may be presented as e.g. vector plots or contour plots. When the discrete 

phase model is applied, particle plots can be colored by various particle properties.  

7. VERIFICATION AND VALIDATION 

The results should be verified and validated, which is the process of determining if the 

simulation meets the specification and how accurately a simulation represents a real 

flow situation. In situations where validation is not possible, re-simulations with 

denser grid and/or improvements of models and initial values may be required.   
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3.2 Basic Concept of CFD 

 

As indicated above, the main strategy of CFD is to replace the continuous problem domain 

with a discrete domain using numerical grid cells. In real flow situations (i.e. a continuous 

domain) each flow variable is defined at every point in the domain. This is illustrated in figure 

6, where the pressure   for the continuous domain is given by (67): 

   ( ) , 0 < x < 1                 EQUATION 5 

In the discrete domain, each flow variable is defined at the grid points or in the cell centers, 

depending on the discretization method. Equation 6 and right hand side of figure 6 indicates 

that the pressure   is only defined at   grid points in the discrete domain.  

    (  ) ,                        EQUATION 6 

 

 

 

 

 

The approach above shows the finite-difference method which illustrates the underlying 

concept of discretization. The relevant flow variables are solved only at the grid point. The 

values at intermediate locations are determined by interpolating (67). 

In ANSYS FLUENT, discretization is carried out by the Finite Volume Method (FVM), which is 

briefly explained in the following section. 

 

3.2.1 The Finite Volume Method (FVM) 

 

In the FVM, the variables of interest are located at the centroid of the control volume (i.e. 

grid cells). The integral form of the governing equations (i.e. conservation of mass, 

momentum, and energy) is applied to the control volume to establish the discrete equations 

for the cell. Interpolation profiles are assumed in order to describe the variation of the 

relevant variables between the cell centers. As an example, the integral form of the 

continuity equation for steady (i.e. no variation in time) and incompressible (i.e. no variation 

in time) flow is (67): 

Figure 6: Continuous domain (l.s.) and discrete domain (r.s.) (67). 
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∫      ̂     
 

 
                                             EQUATION 7

      

The surface S represents the control volume and  ̂ is the normalized vector perpendicular at 

the surface. Physically, this equation claims that the net volume flow into the control volume 

is zero. Figure 7 shows a typical grid cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In relation to figure 7, the discrete velocity may be written as              . Applying the 

integral form of the mass conservation equation (ref. Equation 7) to the control volume 

defined by the cell may provide the following expression: 

                                   EQUATION 8 

Equation 8 illustrates the discrete form of the mass conservation equation for the control 

volume, showed in figure 7. The equation implies mass conservation for the grid cell. The face 

values       are estimated by interpolating the cell center values at neighboring cells (67). 

This concept can be extended to any conservation equation and flow domain. 

 

 

 

Figure 7: Typical numerical grid cell (67). 
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3.3 Governing Equations 

 

In most CFD applications, the systems are based on the fundamental governing equations of 

fluids dynamics - the conservations of mass, momentum and energy equation (4). These 

conservations laws states that measurable properties of a closed system does not change as 

the system evolves. They are mathematical statements of three fundamental physical 

principles upon which all of fluid dynamics is based:  

 Mass is conserved 

 Newton`s second law,              EQUATION 9 

 Energy is conserved 

In ANSYS FLUENT, all flows solve the conservation equations for mass and momentum. The 

energy equation is solved when the model requires heat transfer or compressibility. In the 

presences of species mixing or reactions, a species conservation equation is solved. In the 

current application, only the conservation equations for mass and momentum is solved. 

 

3.3.1 Conservation of Mass 

 

The equation for conservation of mass, or continuity equation, can be written as follows (14): 

  

  
     (  )               EQUATION 10 

          

The first term on the left side is the transient term, which indicates Equation 10 is valid for 

both incompressible and compressible flows. For three dimensional geometries, the operator 

( ) will be on the form      
 

  
  

 

  
  

 

  
 .   is the fluid density and the velocity vector is 

defined as            .   
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3.3.2 Conservation of Momentum 

 

The conservation of momentum is implemented in ANSYS FLUENT as: 

 

  
 (  )      (   )           ( ̿)            EQUATION 11 

where   is the static pressure, and   and   are the gravitational body force and external 

body forces, such as interactions with the dispersed phase. The stress tensor,  ̿, describes a 

Newtonian fluid and is given by (28): 

 ̿     [(       )  
 

 
      ]      EQUATION 12 

where   is the molecular viscosity,   is the unit tensor, and the second term on the right hand 

side is the effect of volume dilation. 

For incompressible flows the momentum equations may be written on the following form, for 

all three Cartesian directions (55): 

 

 (
  

  
     (  ))    

  

  
     (   )         EQUATION 13 

 

 (
  

  
     (  ))    

  

  
     (   )         EQUATION 14 

 

 (
  

  
     (  ))    

  

  
     (   )                          EQUATION 15

                                 

As seen from Equation 15, gravitation works in z-direction in the current application. From 

left to right, the terms in the above equations may be identified as the transient term, the 

convection term, the pressure source term, the diffusion term and the source term.  The 

source    can be any user-defined sources, e.g. a user-defined drag force (ref. chapter 4). 

                           

The set of equations above is together with the mass conservation equation (ref. Equation 

10) collectively known as the Navier-Stokes equations. 
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3.4 Solution Algorithm 

 

In the current application, a numerical method known as the Pressure-based solver is 

applied. This solution method contains multiphase models and discretization schemes in 

which fits the present flow situation (11). This is further discussed throughout this thesis. 

 

3.4.1 Algorithms 

 

The Pressure-based solver includes four segregated types of algorithms: SIMPLE, SIMPLEC, 

PISO, and Fractional Step (FSM). Steady-state calculations will generally use SIMPLE or 

SIMPLEC, while PISO is recommended for transient calculations (28). The FSM is typically 

used for time-dependent flows, but requires a considerable amount of computational effort 

due to a large number of outer iterations performed at each time-step. Thus, transient 

calculations through the PISO algorithm are employed in the current application (11). 

The PISO algorithm is briefly explained in chapter 5. 

In ANSYS FLUENT there are multiple models fitting different type of flow problems. The user’s 

task is to select the appropriate models and tune them according to the current situation. 

Simulation of underwater oil and gas blowouts in ANSYS FLUENT requires at least two 

additional physical models: a turbulence model to account for the basic turbulent nature of 

the process and a multiphase model to separate the different phases. 

 

3.5 Turbulence 

 

Turbulence is a three-dimensional, time-dependent, nonlinear phenomenon. In the 1880`s, 

Osborne Reynolds carried out an historic visualization of flow in pipe studies. He observed 

that well-ordered laminar flow degenerated into a chaotic motion when the velocity in the 

pipe reached a certain value. This certain value is today known as the Reynolds number, 

which represent the ratio between inertia forces and viscous forces. If the Reynolds number is 

low, the flow is orderly with parallel streamlines. For high numbers, the flow will at some 

point give rise to a flow structure characterized by large-scale eddies (3). 

In figure 8, the straight, parallel black lines are streamlines, which are everywhere parallel to 

the mean flow. In laminar flow the fluid particles follow the streamlines exactly. In turbulent 

flow eddies of many sizes are superimposed onto the mean flow and velocity fluctuations are 
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developed in all directions (6). In such flows, the number of scales (degree of freedom), which 

is defined as the number of parameters of the system that may vary independently, will be 

infinite. 

 

 

 

 

 

 

 

 

 

3.5.1 Modeling Turbulence 

 

For clearness, this thesis is not a study of the most suited turbulence model in simulations of 

underwater oil and gas plumes. The choice of turbulence model is based upon the studies of 

Cloete (5) and Cloete et al. (11). However, a detailed explanation of why the chosen 

turbulence model may fit the current application is given in the following sections, together 

with some short discussions of alternative models. 

In principle, turbulence is described by the Navier-Stokes equations. In most flow situations it 

is not achievable to resolve the wide range of scales in time and space by Direct Numerical 

Simulation (DNS). As the name indicates, DNS is solving the full Navier-Stokes equations and 

therefore resolves the whole spectrum of scales. As the CPU requirements would exceed the 

available computing power, DNS is not available in ANSYS FLUENT (28). For this reason, 

averaging procedures have to be applied to the Navier-Stokes equations to filter out at least 

parts of the turbulent spectrum.                                                                                                                                                                                        

The most widely used approach for calculating industrial flows is Reynolds-averaging of the 

equations, resulting in the Reynolds-Averaged Navier-Stokes (RANS) equations. The three 

most common perceptions of this term is time averaging, space averaging or ensemble 

averaging (31). By solving the RANS-equations, all of the unsteadiness in the flow is averaged 

out and regarded as part of the turbulence. By this method a smooth variation of the 

averaged velocities and pressure fields may be accomplished. However, the averaging 

process introduces additional unknown terms into the transport equations which need to be 

solved by suitable turbulence models. 

Figure 8: Dye tracer of both laminar and turbulent flow (6). 
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Both computational efficiency and quality of the simulation can be affected by the choice of 

turbulence model. An alternative to RANS are Large Eddy Simulation (LES), which tracks the 

behavior of the larger eddies. However, Cloete (5) claims that LES offers very little 

improvement when determining bulk flow, compared with the RANS approach. 

There is not a single, practical turbulence model that can reliably predict all turbulent flows 

with sufficient accuracy. Figure 9 illustrates the computational resources required for 

simulation of boundary layers (8).   

 

 

 

 

 

 

 

 

 

 

 

It can be seen from figure 9, even at modest Reynolds numbers, that the number of grid 

points for DNS and LES are significant larger compared with RANS approaches. As LES is 

reported to offer very little improvement in calculation of the turbulent nature of plumes (5) 

and, moreover, requires substantial more computer resources, the RANS approach are 

chosen over the LES approach. The RANS approach is also applied in the work of Cloete. et al. 

(11), Skjetne & Olsen (2), and Pan (47).  

 

 

 

 

 

Figure 9: Approximation of computational node requirements for RANS, LES, 

and DNS and RANS-LES approaches (8). 
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3.5.2 Reynolds Averaging 

 

As mentioned above, Reynolds averaging will decompose the exact Navier-Stokes equations 

into mean and fluctuating components. The fluctuating velocity components can be seen 

from figure 8. Any vector or scalar may be written as the sum of an average and a 

fluctuation, as seen in Equation 16.  The following equation describes any flow variable ( ) 

such as pressure of a Reynolds averaging solution, for statistically steady process (28): 

 

 (       )    ̅(     )     (       )         EQUATION 16      

where  

 ̅          
 

 
 ∫  (       )

 

 
            EQUATION 17

      

where  ̅ and    are the mean and fluctuating velocity components.   is the averaging interval 

and must be large compared to the typical time scale of the fluctuations. 

The same principle yields for the standard (instantaneous) velocities. In x-direction: 

    ̅                             EQUATION 18

                                  

The new equations will provide a solution of an average flow field, and not a solution for the 

exact turbulent flow field (3). In the application covered by this thesis the flow is unsteady 

(variable statistics vary over time), which implies time averaging cannot be used and it has to 

be replaced with ensemble averaging. The concept of this is to imagine a set of flows in 

which all of the flow variables that can be controlled are identical, but the initial conditions 

are generated randomly. This may give flows that differ considerably from each other. An 

average over a large set of such flows is an ensemble average (32): 

 

 ̅(       )          
 

 
 ∫  (       )  

 

 
         EQUATION 19   

           

Here   represents the number of members of the ensemble (a set of flows in which all 

controllable variables are identical).   must be sufficiently large to eliminate the effects of 

the fluctuations (5). 
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As seen from Equation 18, the standard velocities are also written as the sum of an average 

and a fluctuation component of Reynolds-averaging solution. The ensemble-avereraged 

Navier-Stokes equations yield the following (55):   
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The effects of turbulence appear from the additional terms such as       ̅̅ ̅̅ ̅̅   and        ̅̅ ̅̅ ̅̅  , 

which represents the Reynolds stresses that must be estimated in order to close Equation 21-

23. Thus, there are more unknowns than there are equations. In order to solve these 

equations, additional turbulence models are required to describe the Reynolds stress terms. 
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3.5.3 Handling Reynolds Stresses – Boussinesq Approach vs. RSM 

 

A. Boussinesq Approach  

A turbulent viscosity hypothesis was introduced by Boussinesq in 1877. With this common 

method the Reynolds stresses, which occurs from the Reynolds-averaged approach, are in 

many flow situations appropriately computed. This method is often referred to as the Eddy 

Viscosity Model. The Boussinesq hypothesis relates the Reynolds stresses to the mean 

velocity gradients (5): 
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)              EQUATION 24   

where    
 

 
(   ̅̅ ̅̅     ̅̅ ̅̅      ̅̅ ̅̅ ̅) is the turbulent kinetic energy per unit mass. The first term 

on the right hand side is the turbulent or eddy viscosity,    (dimensions Pa s). The last term 

on the right side of Equation 24 is the Kronecker delta (                             

 ). This contribution ensures that the formula gives the correct result for the normal Reynolds 

stresses (those with    ) (55).  

Examples of RANS-models using the Boussineq hypothesis are the Spalart-Allmaras model, 

the k-  models, and the k-  models. The advantage of this approach is the relatively low 

computational cost associated with the computation of the turbulent viscosity,  t (8). The 

reason for this low computational cost is that the Boussineq hypothesis assumes  t to be an 

isotropic scalar quantity (same in all directions), in combination with the Random Walk 

Model (ref. section 3.6.2:II). However, this assumption is not completely true for real bubble 

plumes. One of the primary findings of Sheng and Irons (49) is that turbulence is not isotropic 

for gas-liquid plumes. Experiments showed that the turbulence is greater in the vertical 

direction. Moreover, Johansen et al. (68) found in all their experiments a higher radial 

turbulence relative to axial turbulence near the free surface. These findings may favor an 

anisotropic turbulence model, e.g., the RSM model which accounts for directional effect of 

the Reynolds stress fields, briefly explained below.  

 

B. Reynolds Stress Model (RSM)  

An alternative approach in solving the Reynolds stresses is embodied in the Reynolds Stress 

Model (RSM), which is part of the RANS-family. In this approach the assumption of isotropic 

turbulent viscosity hypothesis is discarded and the Reynolds stresses are directly computed 

through additional transport equations, which account for the directional effect of the 
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Reynolds stress fields (28). As the assumption of isotropy for underwater plumes is not 

entirely true, the RSM may be  a good alternative in future underwater simulations. 

However, Cloete (5) found completely unrealistic results when simulating gas stirred ladles 

using the RSM. The flow pattern predicted by the RSM was found distinctly different from the 

literature presented in chapter 2. The buoyant plume region was predicted much narrower 

and more concentrated than recommended by Freidel & Fanneløp (22). See Cloete (5) for a 

more comprehensive discussion of these findings.  

For further information about the RSM model see the Versteeg (55) and Crowe (8).   

 

3.5.4 RANS-models using the Boussinesq Approach 

 

Most of the literature sources found on CFD computations of gas-liquid plumes incorporate 

the assumption of turbulent isotropy, which imply the use of the Boussinesq approach. As 

noted above, the RANS-models using the Boussinesq hypothesis is the Spaltar-Allmaras 

model, the  -  models, and the  -  models.  

 The Spaltar-Allmaras model is a one-equation model that solves the modeled 

transport for the turbulent viscosity. It has been shown to provide good results for 

boundary subjected to adverse pressure gradients. The model was in principal 

developed for aerodynamic flows, and it is not calibrated for general industrial flows. 

In ANSYS FLUENT Theory Guide (28) it is reported that the model produces relatively 

large errors for plane and round jet flows. Moreover, turbulent dispersion of particles 

cannot be included when the Spalart-Allmaras turbulence model is activated (ref. 

section 3.6.2:II). 

 The  -  models incorporates modifications for low-Reynolds number effects, 

compressibility, and shear flow spreading. Their main influence lies in mimicking 

laminar-turbulent processes, and is well applicable to wall bounded flows and free 

shear flows (8).  

As neither the Spaltar-Allmaras model or the  -  models are suited for the current 

application, the best choice is most likely the  -  models for estimating the continuous phase 

turbulence. ANSYS FLUENT provides three  -  models; the Standard, RNG and Realizable. As 

this thesis mainly is an extension of the work done by Cloete (5), Cloete et al. (11), and 

Skjetne & Olsen (2), the choice of turbulence model is based upon their findings. Cloete (5) 

did a detailed study of these three models for simulation of gas stirred ladles, and the most 

suited model was found to be the Standard  -  model (SKE): “In the absence of the RSM,  -  

model is the only alternative. A detailed study of these models has shown that the SKE is the 
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only viable option when no turbulence modulation by bubbles is included in the model”. The 

turbulence modulation by bubbles is briefly explained in chapter 6. Moreover, the SKE is 

applied in the models of Cloete et al. (11), Skjetne & Olsen (2) and Pan (47), as well.     

 

A. Standard k-  model (SKE) 

 

The Standard  -  model (SKE) is one of the most common turbulence models, and was 

proposed by Launder and Spalding (69). The model is known to be robust, economic, and to 

provide reasonable accuracy for a wide range of turbulent flows in industrial and heat 

transfer simulations. 

The SKE is a two equation model, which means it includes two extra transport equations to 

represent the turbulent properties of the flow. The first transported variable is the turbulent 

kinetic energy,  (30). The second transported variable is the turbulent dissipation,  , which 

can be viewed as the rate of loss of the kinetic energy of the turbulent motion through 

viscosity into thermal energy. It is these variables that determine the degree of turbulence in 

the continuous phase.  

The  -  model includes assumption of the flow to be fully turbulent, and therefore the effects 

of molecular viscosity (i.e. friction within a fluid where the velocities is laminar) are 

negligible. Thus, SKE is only valid for fully turbulent flows.  

The turbulence kinetic energy (TKE)  , and its rate of dissipation  , are obtained from the two 

transport equations below, where    (i = 1,2,3) are the Cartesian components of the 

velocities and    are the Cartesian coordinates  (28): 
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In the equations above,   represents the generation of turbulence kinetic energy due to 

buoyancy. This term is only included when gravity and temperature gradients are present 

simultaneously. However, in the current application the temperature is assumed constant.    

is the contribution of the fluctuating dilatation in compressible turbulence to the overall 

dissipation rate. This term is only included in case of high Mach-number flows. Further,    

and    are turbulent Prandtl numbers for   and  , respectively.    
,    

, and    
 are model 

constants.    represent the production of the kinetic turbulent energy due to  mean velocity 

gradients, and may be defined as: 
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            EQUATION 27     

By use of the Boussinesq hypothesis (ref. Equation 24), the Reynolds stresses in Equation 27 is 

estimated. However, first the turbulent viscosity needs to be computed by combining   and   

(28): 

       
  

 
              EQUATION 28 

The model constants given in Equation 25, 26, and 28 have the following default values: 

                                                                                             

                                                

These model constants are determined from experiments for fundamental turbulent flows, 

for among other jets. 

Various literature sources claims that the  -   model assumes an isotropic turbulent viscosity. 

However, this is only true when the Random Walk Model (RWM) is activated. The RWM 

assumes, in combination with the  -   model, that the root mean square (RMS) values are 

equal for all three velocity fluctuations. This is further discussed in section 3.6.2:II.     

 

3.6 Multiphase Flow 

 

Multiphase flow is the kind of flow that occurs most frequently in nature. A phase refers to 

the solid, liquid, or gas like state of matter. A multiphase flow is the flow of mixture of phases 

(7). 

In simulation of multiphase flows the different phases are referred to as dispersed phase and 

continuous phase (ref. chapter 2). The dispersed phase can be computed as spherical 

particles or parcels, which typically represents bubbles or droplets. In ANSYS FLUENT, parcels 
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represent groups of particles which have similar properties (e.g. diameter, velocity, density 

etc.). The continuous phase will normally be either gas or liquid surrounding the dispersed 

phase. By this approach the dispersed phase can exchange momentum, mass, and energy 

with fluid phase, if desired. 

The motion of particles can be caused by the continuous phase alone, wakes created by other 

particles, and collisions between particles. When modeling multiphase flows, this interaction 

is referred to as the coupling between the particle motion and its surroundings (8). For highly 

dispersed flows only the continuous fluid affects the particle motion (e.g. drag force), and the 

flow denotes a one-way coupling. For denser flows the particle motion will normally affect 

the continuous fluid motion and a two-way coupling has to be employed (ref. figure 10).    

A three-way coupling is when particle wakes and other continuous-phase disturbances affect 

the motion of nearby particles. If it is likely to believe that particle collision (particle-particle 

interactions) influences the overall motion of particles, a four-way coupling should be 

considered. However, this particle/parcel approach of modeling the dispersed phase is made 

considerably simpler when particle-particle interactions can be neglected (ref. chapter 6) 

(28). In the current application a two-way coupling is employed, which is further discussed in 

section 3.6.2.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Dilute, dispersed, and dense flow conditions based on various 

interphase and intraphase coupling (8). 
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In order to simulate a multiphase underwater oil and gas blowout, different numerical 

formulations is necessary. In ANSYS FLUENT there are currently two approaches for the 

numerical calculations of multiphase flows: the Eulerian-Lagrangian approach and the 

Eulerian-Eulerian approach (28). Eulerian-Lagrangian (known as Lagrangian) models track 

the motion of each particle and the fluid phase is treated as a continuum by solving the 

Navier-Stokes equations (9). Thus, the dispersed phase can exchange momentum, mass, and 

energy with the continuous phase. The Eulerian-Eulerian models (called Eulerian), treat the 

different phases as interpenetrating continua and studying their dynamics by means of 

averaged equations of motion. In the Eulerian reference frame, the dispersed phase is 

treated as a cloud with continuum-like equations.    

These two approaches are described and discussed in the following sections. For clearness, 

the choice of approaches is based upon the work of Smith (26), Domgin et al. (42), Cloete (5), 

Cloete et al. (11), and Skjetne & Olsen (2). 

 

3.6.1 CFD Simulation of Multiphase Plumes 

 

Historically, CFD simulations of multiphase plumes were typically two-dimensional 

axisymmetric, using either the Lagrangian or the Eulerian approach to compute the dispersed 

bubble phase (26; 42). However, these models did not account for the interaction between 

the water surface and the atmospheric air. Later research on gas stirred ladles shows a 

combination of the Lagrangian and the Eulerian method, which provide information on both 

the rising plume and the surface interactions (5). Cloete et al. (11) extended this to account 

for bubble plumes originating from a subsea gas release. In this thesis, the general model set-

up in ANSYS FLUENT is inspired by this work.  

As discussed in section 2.4, integral model provides a good representation of a buoyant 

plume. However, the method provides limited information on the behavior of the water 

surface. CFD simulations, on the other hand, are more fundamental and can generate 

information of both the bubble plume and the surface interactions. In simulations of oil and 

gas plumes it is essential to find the balance between accuracy and computational efficiency, 

since the geometry and the number of numerical grid cells can be enormous. The next 

sections explain the fundamental theory behind the models used.  

 

 

 

 



CHAPTER 3: BASIC CFD AND GOVERNING MODELS  30 
 

 

I. Lagrangian Method 

 

In the Lagrangian reference frame, the dispersed phase is treated as a set of discrete 

particles (ref. figure 11). The ambient fluid is treated as a continuum by solving the Navier-

Stokes equations, while the dispersed phase is solved by tracking the particles (e.g. bubbles 

and droplets) and monitors the change in their properties (e.g. density, mass, size, etc.), 

through the calculated field (28). These discrete particles may move freely in the continuous 

phase, exchanging mass, momentum and energy with the continuum and other particles, if 

activated. Both drag- and buoyancy forces may affect each particle, as long as the two-way 

coupling is employed.    

 

 

 

 

 

 

 

 

 

 

 

Figure 11 illustrates buoyant gas bubbles surrounded by water. In the presence of oil 

droplets, the concept is the same as the oil droplets can be modelled as particles/parcels as 

well. Moreover, multiple parameters require appropriate tuning and user-defined functions 

to provide realistic results (ref. chapter 4). Bubble/droplet size distribution, bubble density, 

correct drag law and activation of turbulent dispersion are some of the models and user-

defined parameters required. As figure 11 indicates, the surface is assumed flat and 

frictionless as no multiphase interface model is employed, yet. 

 

 

 

Figure 11: Sketch of the Lagrangian calculation procedure (5). 
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II. Eulerian Method 

 

The Eulerain description of fluid flow does not include individual fluid particles. Instead, a 

control volume is defined to calculate the flow properties (e.g. pressure, velocity) (8). For 

multiphase modeling, the different phases are treated as interpenetrating continua, meaning 

their volume fractions are assumed to be continuous functions of space and time and their 

sum is equal to one (28). Conservation equations are derived for each dispersed phase on a 

control volume basis, which have similar form as that for the surrounding fluid. According to 

Cloete (5), pure Eulerian approaches are computationally expensive, due to high 

requirements of grid resolution.  

 

 

 

 

 

 

 

 

 

 

Fortunately, volume-averaged Eulerian multiphase models are specifically designed for sharp 

interfaces between various phases (ref. figure 12). However, the sharp interphase tracking 

makes it impractical to model a deep water multiphase plume, as the number of bubbles and 

droplets are enormous.     

 

III. Coupled Model – Lagrangian and Eulerian 

 

Cloete (5) suggests a combination of the two methods; Eulerian-Eulerian-Lagrangian. The 

Lagrangian method represents and tracks the dispersed phase, while a specialized interface 

technique of the Eulerian model can capture the free surface, between water and 

atmospheric air (ref. figure 13). In ANSYS FLUENT, three different Eulerian multiphase 

Figure 12: Sketch of the Eulerian calculation procedure (5). 
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approaches are available: the volume of fluid (VOF) model, the mixture model, and the 

Eulerian model (ref. section 3.6.3).  

As pointed out by Cloete (5), the Volume of Fluid (VOF) model is the most suitable approach 

for underwater hydrocarbons releases. The VOF model contains a surface-tracking scheme, 

named Geo-Reconstruction (section 3.6.3:A), which include transient tracking of any liquid-

gas interface. As the interface of water and atmospheric air is the point of interest for this 

surface-tracking technique in the current application, the computational expenses should be 

affordable.  

In ANSYS FLUENT, the Lagrangian method of tracking particles is represented by the Discrete 

Phase Model (DPM). The DPM performs Langrangian trajectory calculations for the dispersed 

phase, including coupling with the continuous phase, as discussed in the previous sections. 

This approach is computational efficient, as the bubbles and droplets is modeled as parcels.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 illustrate a combination of the Lagrangian and the Eulerian method. In the 

presence of two-way coupling, the discrete particles interact with the ambient water. A 

clearly visible fountain is developed right after the first parcels reach the water surface, as 

explained in chapter 2. In addition, the VOF model takes care of the multiphase interaction 

between the two continuous phases. A combination of the Lagrangian and the Eulerian 

reference frame was in 2001 tested out by Han et al. (70) in simulation of an oil-water model 

of a gas stirred ladle. However, the VOF model was only applied to track the interface 

between metal slag leaving the top gas surface horizontal and fixed. 

 

Figure 13: Sketch of the combined Eulerian-Eulerian-Lagrangian approach (5). 
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3.6.2 Lagrangian Approaches: Point-Force vs. Resolved-Surface Treatment  

 

As discussed in the previous sections, the DPM follows the Eulerian-Lagrange approach. This 

approach employs the Lagrangian frame of reference for the discrete particle phase, and the 

continuous phase is solved on an Eulerian grid. Each parcel is tracked in the flow domain by 

solving the force balance equation expressed in the Lagrangian formulation (28): 

 

  
   

  
                                      EQUATION 29 

 

Equation 29 represents Newton’s second law, where the left hand side is the particle mass 

multiplied by acceleration of the particle. The right hand side contains the body forces (e.g. 

gravity, buoyancy) acting on each particle, the surface forces (e.g. drag, lift), and the particle-

particle or particle-wall collision forces. The last term on the right hand side is neglected in 

the current application. 

Lagrangian approaches are divided into two different treatments of the particle phase; point-

force and resolved-surface treatment (8). The main difference between the two methods is 

how the surface forces are calculated. The point-force represents a treatment of the particle 

surface to obtain the forces. Each particle is commonly described at a single point that moves 

with independent velocity, and individual particle trajectories are computed. Surface forces 

like lift, drag and stress are found from theoretical and empirical treatment of the relative 

velocity between the particle and continuous phase. The most essential assumption of the 

point-force treatment is that the method considers the surrounding phase as a hypothetical 

continuous flow having properties defined at the particles center of gravity (43). However, 

the method may fail in case of highly dense particle flows. Figure 14a illustrates the point-

force treatment for Eulerian-Lagrangian methods.    

 

 

 

 

 

 

 

Figure 14: a) Point-force representation and b) resolved-surface representation (43). 
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In the method of resolved-surface (ref. figure 14b), the continuous flow surrounding each 

particle must be solved to a high resolution (8). In order to obtain the surface forces and the 

net momentum interactions, the flow solution is numerically integrated over the particle 

surface, with respect to continuous phase pressure and shear stresses. This usually results in 

more realistic particle surface forces, however, at the price of high numerical grid resolution 

over the particles.  

The Discrete Phase Model (DPM) utilizes the point-force treatment. In simulation of deep 

water oil and gas releases, the resolved-surface treatment would require major amount of 

available computational resources due to the high number of parcels and the required fine 

grid resolution.  

 

A. The Discrete Phase Model (DPM) 

 

As discussed in the previous sections, the Eulerian methods for simulation of the dispersed 

phase are too computationally expensive, due to the high number of bubbles and droplets. 

The only choice of model left, in ANSYS FLUENT, is the Eulerian-Lagrangian Discrete Phase 

Model (DPM).This model seems like a reasonable choice, based on the previous sections and 

a short excerpt from the ANSYS FLUENT Theory Guide (28): 

“In addition to solving the transport equations for the continuous phase, the DPM model 

allows the users to simulate a discrete phase in a Lagrangian frame of reference. This second 

phase consists of spherical particles (which may be taken to represent droplets or bubbles) 

dispersed in the continuous phase. ANSYS FLUENT computes the trajectories of these discrete 

phase entities, as well as heat and mass transfer to/from them. The coupling between the 

phases its impact on both the discrete phase trajectories and the continuous phase flow can 

be included.” 

In addition, through user-defined functions (UDFs) (ref. chapter 4), the drag force may be 

defined to fit the correct type of particle (e.g. bubble and drops). UDFs may also control 

parameters as particle density, particle size, and mass transfer through various macros, 

which can be connected to each particle and the continuous phase. 

However, the DPM model contains one important assumption (28): 

 As the discrete phase particles does not occupy any volume, the dispersed phase 

should be sufficient dilute so that particle-particle interactions and the effects of the 

particle volume on the continuous phase are negligible. In practice, these issues imply 

that the discrete phase must be present at a fairly low volume fraction, usually less 
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than 10-12%, based on the actual grid cell. This limit in terms of the dispersed phase 

is to provide reliable simulation results (5). 

This assumption may cause problems when simulating the significantly smaller validation 

model (ref. chapter 7), due to fairly high flow rate of air and a quite dense grid resolution. 

However, when simulating the DeepSpill experiment, a significant coarser grid distribution is 

required to achieve appropriate computational time (ref. chapter 8).    

 

I. Particle Force Balance 

 

After selecting required initial values, streams of parcels are injected into the continuous 

phase. While the parcels are moving through the ambient fluid, trajectories of the discrete 

phase are computed. This is done by integrating the force balance over the particles, as 

noted in section 3.6.2. The force balance equates the particle inertia with the forces acting on 

the particle, and may be written as (28): 

 

   

  
    (    )   

 (     )

  
                EQUATION 30 

 

As seen from Equation 30, the acceleration of a particle is influenced by drag effects and 

gravity, in addition to the term  . Here   represent an additional acceleration (force/unit 

particle mass). According to Skjetne & Olsen (2), the bubble/droplet acceleration is influenced 

by buoyancy, drag, virtual (or added) mass, lift and turbulent dispersion. Thus, Equation 30 

may be extended to account for buoyant bubbles/droplets: 

   

  
    (    )   

 (     )

  
                               EQUATION 31

  

where     is the virtual mass force and     is the turbulent dispersion force. These forces 

are further discussed in the following sections.    is the lift force, which is neglected in the 

present work. According to Olsen & Cloete (52), comparisons without a lift force did provide 

good agreement with experiments. The term    (    )  represents the drag term (drag 

force per unit particle mass). In Equation 31, the drag coefficient,   , is a function of the 

particle shape and have to fit the correct type of simulated particle (e.g. bubble and droplet). 

A user-defined drag function may be hooked to the DPM in ANSYS FLUENT. See section 4.1 

for information about the drag coefficients used in the current application. 
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                       EQUATION 32

               

Equation 32 shows the expression of the drag force calculated for each particle in ANSYS 

FLUENT. Here    is the relative Reynolds number, which is defined as (28): 

 

   
    |     |

  
               EQUATION 33 

         

where    is the molecular viscosity of the fluid,    is the fluid density, and    is the 

bubble/droplet diameter. 

 

Virtual Mass Force  

As mentioned above, the particle force equation (ref. Equation 30) incorporates additional 

forces that may be important under special circumstances. The virtual mass force is required 

to accelerate the fluid surrounding a particle in the Lagrangian frame of reference. This effect 

is more clearly described by Johansen et al. (51). When a particle rises through surrounding 

fluid with terminal velocity     , a steady drag force is exerted on the particle. However, if the 

particle is accelerated to a higher velocity     , the drag force exercised on the particle is 

slightly higher, and this additional force is defined as the virtual mass force. As acceleration 

of particles usually is caused by increased kinetic energy in the flow field, this is supplied by 

work on the particle during the acceleration. In ANSYS FLUENT the virtual mass force is 

implemented as: 

    
 

 

 

  

 

  
(     )                       EQUATION 34                

,where the constant 
 

 
 indicates potential flow.    and    refers to the fluid velocity and the 

particle velocity, receptively. The virtual mass force is important when      , which e.g. 

refers to buoyant bubbles or droplets. The virtual mass force is implemented as an additional 

drag force in ANSYS FLUENT (ref. section 3.6.3:A).  
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II. Turbulent Dispersion of Particles 

 

The jet zone developed by high velocity bubbles and droplets, explained in chapter 2, will 

form a turbulent velocity field with large concentrations of gas and oil. In this turbulent 

velocity field, the motions of particles are highly unpredictable. In regions where the void 

fraction is significant, an interfacial force associated with particle dispersion is of importance 

in subsea blowouts (44). This particle dispersion force is explained by the instantaneous drag 

on a fluid eddy is greatest, and hence the amplitude of the oscillation is least, when the eddy 

is moving in the direction of increased particle concentration. The amplitude will quickly start 

to oscillate more and result in a “saw blade” motion of entrained particles away from the 

region of high particle concentration (44). Therefore, the degree of particle dispersion are 

dependent on the particle concentration gradients in the ambient water, the frequency and 

amplitude of oscillation, and the instantaneous drag force, which in turn depends on the 

particle and fluid properties. The theory of particles moving away from regions of high 

concentration gradients  are consistent with the assumption of Schmidtke & Lucas (45), 

which claims that  turbulent dispersion forces causes an increase of the horizontal extension 

of underwater bubble plumes. Thus, the turbulent dispersion is an additional drag force 

originating from velocity fluctuations in a turbulent velocity field (11). 

In ANSYS FLUENT the user can choose between two different turbulent dispersion models; the 

stochastic tracking model or the particle cloud model. Only the stochastic tracking is 

evaluated in this thesis. 

 

Stochastic Tracking (Random Walk) Model  

A random walk model consists of a large number of statistically independent steps, which is 

suitable to represent the chaotic nature of turbulent diffusion. The stochastic tracking 

(random walk) model includes this effect of instantaneous turbulent velocity fluctuations (i.e. 

  ,   , and   ) on the particle trajectories. This is done by insert the instantaneous velocities 

of the turbulent flow,     ̅      , into the particle force equation (ref. Equation 31) (28). 

The instantaneous fluid velocities were described in section 3.5.2 (ref. Equation 18).  

         

For each individual particle the turbulent dispersion trajectory is calculated by integrating 

Equation 31, using the instantaneous fluid velocity along the particle path. By computing the 

trajectory in this manner, for a sufficient number of particles, the random effects of 

turbulence on the particle dispersion can be included. In ANSYS FLUENT, this is done by using 

the Discrete Random Walk (DRW) model. Here, the fluctuating components are discrete 
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piecewise constant functions of time, and their random is kept constant over an interval of 

time given by the characteristic lifetime of an eddy (28). Each eddy is characterized by: 

 

 The fluctuating fluid velocity components are randomly distributed Gaussian 

variables. 

 

 A particle is assumed to interact with the fluid phase eddy over the smaller of the 

“eddy lifetime”, defined as a time scale,  e. 

Since the velocity fluctuations are assumed to follow a Gaussian probability distribution: 

    𝜁√   ̅̅ ̅̅               EQUATION 35

                           

, where 𝜁  is a normally distributed random number. The number of injected parcels should 

therefore be sufficiently large, so the dispersion accounts for all direction (personal 

communication with Senior Scientist Jan Erik Olsen, SINTEF Materials & Chemistry, 17/04-

2014). By assumption of isotropy, the root mean square (RMS) values are equal for all three 

velocity fluctuations, and may be deduced from the turbulent kinetic energy, , when  the  -  

model or  the  -  model is activated: 

√   ̅̅ ̅̅   √   ̅̅ ̅̅   √   ̅̅ ̅̅ ̅  √
  

 
                      EQUATION 36

             

If RSM is activated the velocity fluctuations are calculated individually, as RSM does not 

employ the assumption of isotropy (ref. section 3.5.3): 

    𝜁√   ̅̅ ̅̅  

    𝜁√   ̅̅ ̅̅                EQUATION 37 

    𝜁√   ̅̅ ̅̅ ̅    

      

After the instantaneous velocity fluctuations are calculated, the maximum time for which a 

particle can be influenced by a specific turbulent eddy is required. ANSYS FLUENT uses the 

concept of integral time, T, in prediction of this “eddy lifetime”. For small tracer particles that 

move with the fluid, the integral time becomes the fluid Lagrangian integral time,  L. If the  -

  model is activated, 
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              EQUATION 38

               

, and for simulations where RSM is desired:  

        
 

 
              EQUATION 39 

After the Lagrangian integral time is measured, ANSYS FLUENT can predict the characteristic 

lifetime of the eddy, either as a constant: 

                                    EQUATION 40 

, or as a random variation about TL: 

          ( )                    EQUATION 41 

 , where   is a uniform random number between 0 and 1.  

In the current ANSYS FLUENT application “Random Eddie Lifetime” is activated (ref. Equation 

41), which means that the characteristic lifetime of an eddy is to be random. This choice is 

based on the fact that ANSYS FLUENT Theory Guide (28) refers to the scale constant, CL, as a 

“not well known” constant. In addition, the option of random calculation of  e yields a more 

realistic description of a jet.  

However, the particle may cross the turbulent eddy in a shorter time than the eddy lifetime 

(51). The crossing time is implemented in ANSYS FLUENT as:  

 

             [  (
  

       
)]             EQUATION 42 

, where   is the particle relaxation time,  e is the eddy length scale, and         is the 

magnitude of the relative velocity.  

A particle is now assumed to interact with a turbulent fluid eddy for the smaller of the eddy 

lifetime and the particle eddy crossing time. A new value of the instantaneous velocity 

fluctuations is obtained by a random new value of 𝜁 ,in Equation 35, when this time is 

reached. 

 

 

 



CHAPTER 3: BASIC CFD AND GOVERNING MODELS  40 
 

 

III. Steady or Unsteady Particle Tracking 

 

When the DPM particle tracking is employed, a decision between steady or unsteady particle 

tracking has to be made. This option can be chosen independent of the settings for the 

solver. Thus, steady state trajectory simulations can be performed even when selecting a 

transient solver for numerical reasons. The user may also specify unsteady particle tracking 

when solving the steady continuous phase equations.  

 

Steady Particle Tracking  

The steady state formulation tracks particle streams spatially only, independent of time. 

These particle streams are tracked from the DPM inlet to a certain termination condition, for 

each DPM-iteration. This condition can e.g. be a given boundary condition where the 

particles are allowed to escape. The strength of each particle stream is defined as the 

number of particles flowing along it per second (5), and is calculated according to the 

specified mass flow rate, particle density, diameter, and the number of streams.  

 

Unsteady Particle Tracking  

In case of unsteady particle tracking, the particles is to be treated as separate entities in 

order to give the particles a certain distance at every particle time step or fluid flow time 

step. Thus, the particles are tracked through space and time. In ANSYS FLUENT, this is 

achieved by updating the parcels position in the domain every time step (5). The number of 

parcels is determined by the flow rate and time between each injection, which is controlled 

by the user. As mentioned in previous sections, a parcel contains a number of particles having 

the same properties (e.g. velocity, density, diameter).  

 

3.6.3 Eulerian Approaches:  Mixed-Fluid vs. Separated-Fluid 

 

This section is focusing on the interaction between the primary phase (i.e. atmospheric air) 

and the secondary phase (i.e. water), as the dispersed phase is calculated in the Lagrangian 

reference frame.  Eulerian techniques can be divided into mixed-fluid (“one-fluid”) and 

separated-fluid (“two-fluid”) approaches. An important assumption for these models is that 

the secondary phase is treated as a continuum (8), which clearly fits the continuous water 

phase in the current application.  
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Mixed-Fluid Approach  

The mixed-fluid approach assumes that the secondary phase (which may take form as a 

continuous or dispersed phase) and the primary phase are in local kinetic and thermal 

equilibrium. This implies that the relative velocities and temperatures of the phases are 

assumed to be much smaller compared to variations in the overall flow field. As a result, the 

two phases are treated as a homogenous mixture within each numerical cell (43). Depending 

on the phase concentration, the fluid properties may change from cell to cell, and a single set 

of momentum conservation equation is solved for the flow mixture (8). This approach is the 

one used in the current simulations, and are further discussed in section 3.6.3:A. 

 

Separated-Fluid Approach  

The separated-fluid approach describes the secondary phase with the point-force 

assumption, which assumes that both the primary fluid and the secondary phase constitute 

two separate, but intermixed, continua (8). As the phases are interpenetrating, the 

separated-fluid approach requires two sets of momentum equations for a two-phase flow; 

one for the primary phase and the other for the secondary phase. In addition, the relative 

phase velocities and temperatures are required as they are used to determine the coupling 

between each phase, in contrast to the mixed-fluid approach (43). 

In ANSYS FLUENT, three different Eulerian multiphase approaches are available: the Volume 

of Fluid (VOF) model, the mixture model, and the Eulerian model. The VOF model is applied in 

the work of Cloete et al. (11), Skjetne & Olsen (2), and seems to be the best suited multiphase 

model to solve the current problem. The concept and fundamental theory of the VOF model is 

discussed in the following section. 

 

A. The Volume of Fluid (VOF) Model 

 

The VOF model uses the mixed-fluid (“one-fluid”) approach. This implies that the VOF model 

may simulate two or more immiscible fluids by solving a single set of momentum equations, 

and relies on the fact that the different phases are not interpenetrating. The position of the 

interface between the fluids is of interest, and the volume fraction of each phase is tracked 

throughout the domain (28). In every computational cell the volume fraction of all phases 

sums unity. Thus the variables and properties of each phase in a given computational cell are 

either purely representative of one of the phases, or representative of a mixture of the 
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phases, depending upon the volume fraction values. In other words, there are three possible 

conditions for each control volume: 

   = 0: The cell is empty (of the     fluid). 

   = 1: The cell is full (of the     fluid). 

 0 <    < 1: The cell contatins the interface between the     fluid and one or more 

other fluids. 

Here    denotes the volume fraction in one cell, and     the type of fluid. 

After the volume fractions of phases in each cell are determined, the tracking of the interface 

between fluids are accomplished by solving a continuity equation, referred to as the “volume 

fraction equation”:  

 

  
[
 

  
(    )    (      )     

 ∑ ( ̇    ̇  )
 
   ]    EQUATION 43 

where  ̇   is the mass transfer from phase   to phase  , and  ̇   is the mass transfer from 

  to phase  . As there is negligible mass transfer between atmospheric air and ocean water, 

 ̇qp =   ̇pq = 0 in the current application. The source term,    
, on the right hand side, is zero 

by default. However, the user can specify this source term as a constant or a user-defined 

mass source term for each phase. In the presence work, this source term is by default as 

there is negligible mass added and removed from both the primary and the secondary phase. 

Equation 36 may be rewritten as follow (by assuming constant density in the surface region): 

 

  
       (     ̅̅̅̅ )                         EQUATION 44

       

The continuity equation above (ref. Equation 44), is the same as the RANS continuity 

equation presented in section 3.5.2, only the volume fraction is added and the assumption of 

incompressibility is applied. This volume fraction equation is only solved for the secondary 

phase. The volume fraction of the primary phase (i.e. atmospheric air) is computed by: 

∑      
              EQUATION 45

  

Moreover, a “coupling-force” between the discrete phase, computed in the Lagrangian frame 

of reference, and the continuous phase is required to account for the two-way coupling, 

discussed in section 3.6. This force,   
 , is now implemented in the Reynold-averaged 

momentum equations (ref. Equation 21-23), which may be written as (47): 
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              EQUATION 46 

where density and viscosity are mixture properties    ∑     and    ∑    , where 

     .  

The coupling-force is given by the sum of drag forces working on the rising bubbles and 

droplets, which may take form as force per unit volume:  

     
∑ (                    ) 

     
       EQUATION 47

             

Equation 47 expresses the momentum transfer from the continuous phase to the discrete 

phase, where ANSYS FLUENT examining the change in momentum of a particle as it passes 

through each control volume in the domain. This is further discussed in chapter 8. 

 

Solution Scheme  

Both implicit and explicit discretization may be used in solving the volume fraction equation 

(ref. Equation 43). In ANSYS FLUENT, the explicit schemes uses the volume fractions that 

were calculated at the previous time step to obtain the face fluxes for all cells, while the 

implicit schemes requires the volume fraction values at the current time step. Fortunately, 

one scheme fits the current simulation problem better than others. The Geometric 

Reconstruction Scheme, which uses explicit discretization, represents the interface between 

fluids using a piecewise-linear approach (28). The interface between two fluids is assumed to 

have a linear slope within each cell, and uses this linear shape for calculation of the advection 

of fluid through the cell faces (ref. figure 15). This scheme provides a shaper interface 

compared to other discretization schemes, at the price of some additional computational 

time. 

 

 

 

Figure 15: Interface calculations (l.s.) actual interface shape and (r.s.) interface shape 

represented by the geometric reconstruction scheme (28). 
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Chapter 4 

User-defined Modeling 

 

A user-defined function (UDF) is provided by C functions that dynamically are loaded with the 

ANSYS FLUENT solver. In order to make any application as realistic as possible, UDFs can be 

compiled or interpreted.  

UDF uses “DEFINE” macros to achieve access to various models in the ANSYS FLUENT solver. 

The user may among other implement UDFs to allocate memory for post-process purposes, 

set particle properties or define various source terms. In the current application, UDFs plays 

an important role to achieve realistic simulation results. Bubble size and density distribution, 

gas dissolution, and ocean currents are only some of the subjects covered by UDFs.    

 

4.1 Drag Force Gas Bubbles and Oil Droplets 

 

For more than a century ago, equations of motion for rigid bodies moving through fluid at 

rest were established by Kirchhoff (12). Forces like drag and lift, gravity and buoyancy were 

found to be the most essential. This is consistent with the particle forces listed by Skjetne & 

Olsen (2). The lift represents those forces acting perpendicular to the bubble/droplet 

trajectory. However, the lift force was found to make only minor contributions to the overall 

force balance (ref. section 3.6.2:I). In ANSYS FLUENT, forces of gravity and buoyancy are 

automatically accounted for, while calculation of correct drag force requires an additional 

model. 

 

4.1.1 Drag Force Gas Bubbles 

 

As noted in section 3.6.2:I, the drag coefficient,   , defines the shape of the discrete 

particles. Xia et al. (10) presents a drag coefficient which is applied to account for larger 

bubbles that are deformed from the standard spherical shape. Olsen & Cloete (52) claims 

that: “The drag coefficient for bubbles in a plume is not necessarily the same as the 

coefficient for a single bubble. We use the expression of Xia et al. which represents the 

behavior of a bubble plume.” Thus, the drag coefficient of bubbles may be defined as: 



CHAPTER 4: USER-DEFINED MODELING  45 
 

 

    
 

 
√

  

 
              EQUATION 48 

where    represents the Eotvos number, which is a dimensionless number describing the 

characteristic shape of the bubble (11):       

                              

    
 (     )  

 

 
             EQUATION 49 

As seen from Equation 49, the Eotvos number is a function of the gas and liquid densities, the 

bubble diameter and the liquid viscosity. To account for bubble shape, the drag coefficient 

(ref. Equation 48) is inserted into the expression of the drag force (ref.  Equation 32).  

 

4.1.2 Drag Force Oil Droplets 

 

Feng & Michaelides (71) presents a drag correlation that accounts for interaction between 

viscous oil and less viscous carrier fluid. However, the use of the standard sphere drag 

correlation rather than Feng and Michaelides drag correlation is found by Snyder (53) to not 

significantly alter simulation results. Moreover, no literature concerning experimental 

correlation for drag of slightly buoyant oil droplets in water is found. Thus, a spherical drag 

law is applied to account for drag forces exercised on the discrete buoyant oil droplets. The 

spherical drag law is implemented in ANSYS FLUENT as: 

      
  

  
 

  

   
        EQUATION 50 

where the constants   ,   and   are applied over several ranges of   , which is given by 

Equation 33.    

           

4.2 Density and Size Distribution 

 

4.2.1 Density Distribution of Gas Bubbles 

 

A compressible flow describes the behavior of fluids experiencing significant variations in 

density (14). For shallow underwater gas blowouts, the density change occurs mainly due to 

variation in temperature and loss of hydrostatic pressure, as seen from the ideal gas law 

below: 
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           EQUATION 51 

In the equation above,   is the gas density and   is the hydrostatic pressure of the 

surrounding water.    represents the individual gas constant and    is the temperature of 

the amient fluid. The hydrostatic pressure working on each bubble/droplet is given by: 

           (     )       EQUATION 52 

where    is the water depth and    is the depth of each buoyant bubble or droplet. 

However, in case of deep water gas releases the compressibility equation of state (15) should 

be employed: 

    
  

     
         EQUATION 53 

where the Z-factor is the compressibility of the gas, and represents the deviation of the gas 

density from the one computed by the ideal gas law (Z = 1), in Equation 51. Z is dependent of 

the gas composition, pressure, and temperature in the surrounding environment. At shallow 

depths (200 –300 m) and normal temperature conditions, Z tends to be close to Z = 1 for 

most gases (15). However, at higher pressures, Z tends to be reduced (Z < 1). The effect of the 

compressibility factor relative to ocean depth is illustrated in figure 16. 

 

 

 

 

  

 

 

 

 

 

 

Figure 16 shows the methane gas density as a function of depth. At great depths, the non-

ideal gas behavior deviates significantly form the ideal gas law. It should be noted that the 

Figure 16: Methane gas density as a function of depth - Ideal gas law vs. Non-ideal gas 

behavior (72). 
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non-ideal gas behavior is taken from the generalized compressibility chart of Moran & 

Shapiro, which is valid for light hydrocarbon gases. 

The effect of the compressibility factor is, nevertheless, neglected in this thesis. As can be 

seen from figure 16, this effect should be accounted for in future work. Skjetne & Olsen (2) 

applied, however, the Peng-Robinson equation of state to account for non-ideal gas 

behavior. The physical impact of assuming ideal gas behavior for deep water gas releases is 

further discussed in chapter 6.   

 

4.2.2 Density Distribution of Oil Droplets 

 

In the primary model (ref. chapter 8), the oil droplets are assumed to be incompressible, 

which involves a constant density distribution. Although there is no such thing as an 

incompressible fluid, the term may be used when the change in density with pressure is so 

small that it can be neglected (14).  

 

4.2.3 Oil Droplet Size Distribution 

 

During the DeepSpill experiment, 4 elevations were selected for measuring the oil (i.e. marine 

diesel) droplet size distributions. The distribution of the droplet size was observed at various 

distances from the release point, and a theoretical size distribution was found to be 

approximated by a Rosin-Rammler distribution (34). Moreover, these findings of a Rosin-

Rammler distributed oil size are consistent with the experimental data provided by Karabelas 

(73).     

In a Rosin-Rammler distribution, the complete range of droplet sizes are divided into an 

adequate number of discrete intervals, each represented by a mean diameter for which 

trajectory calculations are performed. The fraction of particles greater than a given diameter, 

 , is given by Equation 54, which is  based on the assumption that an exponential 

relationship exists between the droplet diameter,  , and the mass fraction of droplets with 

diameter greater than   (28): 

      (  ̅⁄ )             EQUATION 54 

where  ̅ is the mean diameter and   is the spread parameter. The input values (i.e. min, max, 

mean and spread diameter) are obtained from Johansen et al. (34), and presented in chapter 

8. 
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4.2.4 Bubble Size Distribution 

 

As seen from Equation 49, the bubble shape, which is characterized by the Eotvos number, is 

a function of the bubble size and thus the bubble diameter will influence the drag force of a 

rising bubble. In addition, the amount of mass transferred from a rising bubble to the 

surrounding water, is dependent on the bubble surface area (ref. Equation 70). A correct 

bubble size distribution is necessary to achieve sufficient simulation results for underwater 

gas plumes.  

The bubble size model is governed by turbulence parameters and loss of hydrostatic pressure, 

which affects the material properties of a buoyant bubble. A bubble size model is 

implemented (ref. appendix A.1 and B.1) to account for the effect of variation in bubble 

diameters. The fundamental theory is based on the work of Laux and Johansen (25), and 

additional modifications are provided by Cloete et al. (11) and Pan (47). 

A instantaneous local mean bubble diameter,   , is described by a transport equation (ref. 

Equation 55) which accounts for: 

 Loss of bubbles to downstream cells. 

 Gain of bubbles from upstream cells. 

 Breakup. 

 Coalescence. 

In the work of Laux & Johansen (25) the transport equation is developed for dispersed phase 

calculated in the Eulerian formulation. However, this transport equation is simplified by 

Cloete et al. (11) to account for bubbles tracked in the Lagrangian framework: 

     

  
    

  
  

   

    
               EQUATION 55

                  

Here    =     ̅̅ ̅ is the bubble bulk density. The relaxation time      is controlled by the speed 

of breakup or the coalescence process, and   
  is the mean equilibrium diameter. The 

equilibrium diameter is the diameter a bubble achieves if it resides sufficiently long at the 

same flow conditions. The term at the right hand side forces the local mean bubble diameter 

towards its equilibrium diameter during a time frame given by the relaxation time (11). The 

relaxation time is given by the turbulent kinetic energy ( ) and its turbulent dissipation rate 

( ). 
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The equilibrium diameter for bubbles dispersed in a turbulent flow field, is given by Laux & 

Johansen (25): 

 

  
  

      
   (  )⁄    

    
(   ⁄ )                EQUATION 56 

Here,   is the dissipation of turbulent kinetic energy,    is the viscosity of the bubble phase, 

and   is the surface tension between bubbles and the ambient fluid,    is the bubble void 

fraction.   is a dimensionless constant (      ), while    refers to the minimum bubble 

size (          ) (47).  

The relaxation time refers to the time needed to relax to the equilibrium mean diameter, 

given in Equation 55. This is controlled by the speed of the breakup or the coalescence 

process. If the instantaneous mean diameter is smaller than its equilibrium value, Laux & 

Johansen (25) assumes coalescence occurs more frequently than breakup and the relaxation 

timescale is modelled as a characteristic timescale for the coalescence process. However, if 

the mean diameter is larger than its equilibrium value, breakup is expected to occur more 

frequently and the relaxation time becomes a characteristic timescale for the breakup 

process: 

 

      {
                 

  

                 
             EQUATION 57 

 

Laux & Johansen (25) restricts the relaxation time by a turbulent micro scale that represents 

the smallest time scale in a turbulent flow:  

              max            EQUATION 58 

where the turbulent microscale is given by: 

    √
 

 
              EQUATION 59 

, and   is the kinematic viscosity of the fluid. 

The breakup of a bubble occurs if the turbulent shear forces exceeds the resistive surface 

tension forces, where bubbles are sheared by the turbulent eddies they are exposed to. 

Turbulent eddies that are large compared to the bubble size is expected to not contribute to 

breakup, but to move the bubble around. Moreover, smaller eddies are assumed to be too 
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small to shear bubbles. However, eddies of comparable size may cause breakup due to their 

rotational frequency. Pan (47) assumes eddies which contributes most to breakup is located 

in the intertial subrange, and the breakup time scale is modelled as: 

      

 
 ⁄  

  
 ⁄                              EQUATION 60 

The breakup time scale is here calculated by using an estimate for the dissipation (25): 

       
    , where   is an appropriate turbulent length scale and          ⁄  is the 

turbulent velocity scale of eddies of size  . As discussed above, eddies with length scale of the 

same order as a bubble contributes most to breakup; thus      . 

Laux & Johansen (25) assumes that coalescing bubbles are brought into contact by turbulent 

velocity fluctuations. However, the bubble size model presented in the current application is 

based on the work of Pan (47). Here a coalescence time scale is presented, but no literature 

source is found: 

    
  

      √   
             EQUATION 61 

       

4.3 Slip Velocity 

 

Plumes consisting of gas bubbles and oil droplets will have a relative velocity to the 

surrounding water. Various bubble plume models (63; 61; 24; 66) assume a constant slip 

velocity ranging from 0.23 to 0.35 m/s. The slip velocity is defined as the velocity difference 

between the buoyancy driven bubble/droplet and the surrounding liquid: 

        (      )               EQUATION 62 

The implementation of the slip velocity can be found in appendix A.1 and B.1. 
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4.4 Gas Dissolution 

 

In the primary model (i.e. simulation of the DeepSpill experiment), the residence time of gas 

in the ambient water are expected be sufficiently long to make the effect of gas dissolution 

significant. As the solubility of gas is increased due to high ambient pressures, dissolution of 

gas into the sea water may cause a significant reduction in the buoyancy flux (15). 

Additionally, the bubble surface area is assumed to have great impact on the mass transfer 

rate. The mass transfer rate is defined as the mass transferred from the rising dispersed 

bubble phase into the surrounding ocean, in kg/s. This section is essentially based on the 

work of Skjetne & Olsen (2).    

 

4.4.1 Governing Equations and Assumptions 

 

Natural gas is in principal a multi-component gas. From a simulation point of view, this is a 

much more complex problem than to consider the bubbles as pure methane. In reality, the 

natural gas is often dominated by a large ratio of methane (2). Thus, release of pure 

methane may in principle be valid for release of natural gas.  

The process of gas dissolution into the ambient water is governed by the concentration 

difference of the specific gas component at the bubble surface and in the surrounding liquid. 

The concentration at the bubble surface is given by the solubility of the gas species. Thus the 

mass flux  , through the bubble surface, may be expressed by the following expression (2): 

     (  
      

 )                      EQUATION 63

        

In Equation 63,   (   ) refers to the mass transfer coefficient of species  ,   
   (kg/m3) is the 

solubility of gas in seawater, and   
  (kg/m3) is the ambient ocean concentration of dissolved 

gas.  

Results presented by Skjetne and Olsen (2), reveals that deep water plumes lose most of their 

buoyancy through dissolution of gas into the surrounding ocean. This is mainly due to the 

fact that seawater is under saturated with gas, and thus has a large capacity to dissolve gas. 

However, in the present work, the transient concentration of methane transferred to the 

surrounding water is set to zero (  
   ). This assumption may provide a higher rate of gas 

dissolution compared to real gas plumes. There is, however, possible to add the fraction of 

the dissolved methane to the secondary phase (i.e. sea water) through the species model in 

ANSYS FLUENT and user-defined functions. Impacts of this assumption is further discussed in 

chapter 6. 
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As noted above, the natural gas is assumed to have the same properties as pure methane, 

and Equation 63 might be written as follows (2): 

      
        

       

    
            EQUATION 64 

Here   denotes solubility,   denotes molar weights, and the ambient ocean concentration of 

dissolved gas is neglected (  
         

   ). 

Lekvam & Bishnoi (16) did several solubility experiments in which concerned dissolution of 

methane in pure water. The ratio of solubility was measured at low temperatures and high 

pressures. However, the solubility of gas varies with pressure, temperature and salinity of the 

sea. To account for the salinity, adjustments in relation to Lekvam & Bishnoi are required. 

Millero (17) studied the activity coefficients of non-electrolytes in sea water by using the 

Setschenow equation: 

  (   ⁄ )                       EQUATION 65 

where    and   is the solubility in water and solution,    is the salting coefficient of the non-

electrolyte ( ),    is the activity coefficient, and    is the molality.  Millero (17) presents the 

value of the salting coefficient (        ). In the present work,   is the salting in 

coefficient (negative sign). Thus, Equation 65 may be rewritten to account for low 

temperature (  ), loss in hydrostatic pressure, and salinity (2): 

 

    

         

                 ⁄            EQUATION 66

        

In the above equation,   is the salinity of sea water which in the North Sea typical is 35 

moles/kg. The solubility,    
    , is given for different pressures and temperatures presented in  

Lekvam and Bishnoi (16). A rounding of these values is implemented in the user-defined 

function, “Primary_Model.c” (ref. appendix B.1). The solubility of lower hydrostatic pressures 

than presented by Lekvam & Bishnoi, is tuned after experimental results presented in 

Johansen et al. (34). 

 

4.4.2 Clean Bubbles vs. Bubbles Contaminated by Surfactants    

 

The mass transfer rate is expected to be highly dependent of the bubble surface area. 

However, the bubble surface might be affected by surfactants and thus decrease the mass 

transfer rate. The composition of the bubble surface is therefore of interest.   
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In the present work, surfactant refers to compounds that lower the surface tension between 

the dispersed phase and the ambient fluid (14). These substances interact with the bubble 

surface to change its properties (18). Surfactants might immobilize the surface and decrease 

the internal circulation inside the bubble. As the rate of mass transfer is dependent of 

sufficient internal circulation, contaminated bubbles tends to be less affected by gas 

dissolution relative to clean bubbles. This effect makes itself evident in the journal article of 

Skjetne & Olsen (2), figure 17.    

 

Figure 17: Mass transfer coefficient for methane bubbles for clean and contaminated surface (2). 

 

In the current application the bubbles are assumed to be influenced by surfactants. Clift, 

Grace, & Weber (18) describes the phenomena of surfactants as follows: “One must accept 

the presence of surface-active contaminants in most systems of particle importance. Even 

though the amount of impurity is so small that there is no measurable change in the bulk 

fluid properties, a contaminant can eliminate internal circulation.”    

Zhang & Xu (74) developed an expression of the mass transfer coefficient for bubbles with 

rigid surface contaminated by surfactants. The expression is based on the theory for 

convective crystal dissolution and parameterization of the Sherwood number under various 

conditions by Clift, Grace, & Weber (18). The mass transfer coefficient was found to be as 

follow: 

 

    
 [  (     )

   (  
          

       )]
    

  
        EQUATION 67 
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,where    is the bubble diameter and the Reynolds number (  ) is defined as: 

    
(   )       

 
             EQUATION 68 

In Equation 68,    is the radius of the dissolving bubble,       is the slip velocity (ref. section 

4.3),    is the ocean density and   the viscosity of seawater. The compositional Peclet 

number (   ) (ref. Equation 67), characterizing the relative importance of flow versus 

diffusion, and is defined as: 

            
⁄              EQUATION 69

          

The last property, on the right hand side of Equation 67, is the diffusivity of methane (    
). 

Diffusivity is defined as a measure of the ability of a substance to transmit a difference in 

temperature (14). The mechanism of diffusion of gases and liquids is extremely complicated 

and generalized theories are not available. Furthermore, only limited experimental results 

are available in the literature. However, since the temperature of sea water is constant in the 

present work, the diffusivity of methane is assumed to be a constant value,                         

    
             ⁄  (19).   

 

4.4.3 Mass Transfer Rate 

 

The final expression of gas dissolution is the product of the mass flux (ref. Equation 64) and 

the bubble surface area. The characteristic bubble shape is given by the Eotvos number (ref. 

section 4.1.1), but for simplicity the bubble shape is approximated as a sphere (20).  The mass 

transfer rate can thus be calculated by the following expression, in    ⁄ : 

 

 ̇      
     

        

       

    
          EQUATION 70   

The effect of gas dissolution is implemented in the UDF “Primary_Model.c” (ref. appendix 

B.1). 
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4.5 Ocean Current 

 

Sea water in motion is often referred to as currents. The primary generating factors of 

currents are wind and differences in water density, caused by variations in temperature and 

salinity. Ocean currents generated by these factors are affected by the extent and location of 

land, ocean depth, underwater topography, and by rotation of the Earth (80).  

 

4.5.1 Wind Driven Currents 

 

The stress of wind blowing across the sea causes a surface layer of water to move (80). 

Waves or ripples provide enough surface roughness necessary for the wind to interact with 

the sea surface. Without rotation of the Earth, frictional coupling between the moving air 

and the ocean surface would push only a thin line of water in the same direction as the wind 

(75). The surface layer of water would drag the layer beneath it, putting it into motion due to 

internal water friction. This interaction may decrease with ocean depth as each ocean layer 

moving at a slower speed than the layer above. As the Earth rotates the moving ocean layers 

are deflected. This effect is commonly known as the Coriolis effect. Each layer of water is put 

into motion by the layer above and slowly shifts direction due to rotation of the Earth.  

 

 

 

 

 

 

 

 

 

 

 

In figure 18, the Ekman spiral indicates that each moving layer is deflected to the right of the 

overlying layers movement; hence, the direction of water movement differs with increasing 

depth. 

Figure 18: The Ekman spiral describes how the horizontal wind sets surface water in motion (75). 



CHAPTER 4: USER-DEFINED MODELING  56 
 

 

4.5.2 Density Driven Currents 

 

The density of water varies with salinity, temperature, and pressure. At a given depth, the 

differences in density are essentially due to differences in temperature and salinity. In regions 

of high density, the water surface is lower than in regions of low density. Due to these density 

differences, water masses may flow from an area of higher water (low density) to one of 

lower water (high density). As the Earth is rotating, the flow is deflected by the Coriolis force 

and toward the right in the Northern Hemisphere, or toward the left in the Southern 

Hemisphere (30). This movement of water masses between subsurface density fields that are 

deflected by the Coriolis effect, is called geostrophic currents. The larger density gradients 

(rate of change with distance) the stronger the geostrophic currents are.   

 

4.5.3 Modelling Ocean Currents 

 

Oil droplets are expected to be strongly affected by ambient ocean currents due to their 

relative low buoyancy. One of the main objectives of this thesis is to create a reasonable 

method of simulating the effect ocean currents. Three different approaches are tested out, 

discussed and presented in the following sections. 

 

 

 

 

  

 

 

 

 

 

 

 

 Figure 19: Ocean current profile from the start of marine diesel (oil) discharge (34). 
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During the DeepSpill experiment, ocean current data were obtained from two instruments, 

one upward looking ADCP (Acoustic Doppler Current Profiler) mounted in a rig anchored on 

the seabed, and one downwards looking ADCP (34). The current profile from start of the 

marine diesel (oil) experiment is presented in figure 19, where red circles indicates east 

direction and blue triangles indicates north direction. 

For more information about how the ocean currents were measured, see Johansen et al. (34). 

 

Method 1 – Velocity Inlet as Boundary Condition 

 

The first attempt in recreating the ocean currents measured during the DeepSpill experiment 

(ref. figure 19), was to define the vertical water boundaries as velocity inlet. The various 

current velocities were given from two different UDFs, in which represents the velocities in x-

direction (east/west) and y-direction (north/south) (ref. appendix B.3). The exact current 

velocities are obtained from ScanIt, which is software for extracting data from scanned 

graphs.   

The geometry was in this method divided into four bodies, two water bodies and two air 

bodies (ref. figure 20). The idea behind this division was to achieve different boundary 

conditions (i.e. walls, interior, and velocity inlet) for the air and water bodies. The inner water 

body, in figure 20, defines the region for where the multiphase plume was expected to rise, 

where a denser grid was given. A large volume of air and water was placed around the inner 

body, in order to maintain the mass balance. The boundaries of the inner water body were 

defined as velocity inlets controlled by the UDFs. Below, the geometry created in ANSYS 

Workbench is presented. 

 
 

 

 

 

 

 

 

 

 

Figure 20: Geometry for Method 1 and 2. 
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The idea was to run the simulation, without any injection of oil and gas particles, until steady 

state ocean currents had developed.  However, this method was not working as first 

expected and were quickly discarded based on observations from the velocity contour plot, 

figure 21. Figure 21 indicates that the momentum of the simulated ocean currents is too 

small relative to the internal friction of ocean water. For this reason, the sea current 

velocities are quickly reduced and “dead-zones” containing no water movement occurs. 
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Method 2 – Patching in Velocity Regions 

 

ANSYS FLUENT allows the user to patch in different initial values of flow variables into 
various regions of the domain. The different ocean current velocities (ref. figure 19) were 
patched into the plume region (i.e. inner water body of figure 20). However, this method was 
not expected to provide sufficient results. As seen from figure 22, the different layers of 
ocean currents contribute with different velocities and directions. Movement of water 
masses through the ocean is slowed by internal friction in the water, by the surrounding fluid 
moving at different velocities. 

 

 

Figure 21: Method 1 – Velocity contour plot in x-direction. 
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A faster-moving fluid layer tends to drag along a slower-moving layer, and a slower-moving 
layer will tend to reduce the speed of a faster-moving layer. This momentum transfer is a 
product of turbulence that moves kinetic energy to smaller scales, and increases the 
turbulence in the surrounding water (30). Figure 23 illustrates this effect. The various ocean 
layer velocities are almost effaced due to this momentum transfer:  

 

 

 

 
 

 

   Free surface 

 
 
 
 
 
 
 
 
 

Figure 22: Method 2 - Initial patched ocean currents. 

Figure 23: Method 2 - Ocean currents after quasi steady state conditions. 
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Method 3 – Particle Acceleration  

 

In the presence of ambient ocean currents, the motion of bubbles and droplets are affected 

by additional body forces (ref. section 3.6.2:I). In this approach a user-defined drag force 

estimates the effect of ocean currents on each bubble/droplet. An acceleration term is 

returned to each particle, in which replaces the effect of a moving continuous phase. Thus, 

ocean currents are not simulated by movement in the continuous phase. However, the effect 

of cross-flow is estimated by a user-defined drag force, which in turn determines the degree 

of acceleration returned to each bubble/droplet. In order to implement this in ANSYS FLUENT, 

the macro “DEFINE_DPM_BODY_FORCE” may be used. This macro returns the acceleration 

term due to the drag force (in m/s2) to the ANSYS FLUENT solver (76).    

As discussed in section 3.6.2:I, ANSYS FLUENT predicts the trajectory of a discrete phase 

particle (e.g. droplet or bubble) by integrating the force balance on the particle, which is 

tracked in a Lagrangian reference frame. This force balance equates the particle inertia with 

the forces acting on the particle, and may be written in x-direction (ref. Equation 30): 

   

  
    (    )   

  (     )

  
     

In the current application, the drag force exercised on buoyant gas bubbles is dependent on 

the Eotvos number (ref. section 4.1.1). For simplicity, this drag force is assumed to be valid 

for both oil droplets and gas bubbles under the influence of ocean currents. This assumption 

is not expected to alter the simulation results to a large extent, as a test simulation for which 

the oil droplets applied the spherical drag law (ref. section 4.1.2), under the influence of sea 

currents, provided almost identical results. The drag force and the related drag coefficient 

are given in section 4.1.1.  

As the drag term is a function of the relative Reynolds number (ref. Equation 33), an 

expression of slip velocity is necessary. This slip velocity is the relative velocity between the 

bubble/droplet and the computed continuous phase velocity in addition to the specified 

ocean current velocity (ref. figure 19), at different elevations in the domain. The slip velocity 

is given by Equation 71, which indicates the ocean currents contributes to particle movement 

in x (east/west) and y (north/south) direction. 

                 √(         )  (          )  (      )          EQUATION 71 

, where    is the bubble/droplet velocity in x-direction,    is the surrounding water velocity 

in y-direction, and     defines the ocean current drift velocity in y-direction (north/south). 

Thus, for each bubble/droplet rising through the domain, acceleration terms on the following 

form are returned, in x- and y-direction: 
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                      and                            EQUATION 72

        

As explained  above, this method of simualting ocean currents are not based upon movement 

in the continuous phase, as the case are for real cross-flows. However, the effect of ocean 

currents on the discrete particles are estimated by a user-defined drag force. This is further 

discussed in section 6.3.4 and section 8.3.4.  

See appendix B.2 for implementation of the user-defined ocean current function. 
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Chapter 5 

Numerical Accuracy and 

Computational Efficiency 

 

The main goal of a CFD simulation should be the achievement of reliable and accurate 

results. However, this could result in a computational expensive model that requires 

additional simulation time. Therefore, a balance between computational time and numerical 

accuracy should be achieved. In this chapter, various factors with significant impacts on this 

subject are evaluated.   

   

5.1 Grid 

 

The gridding process is usually decisive for both the accuracy of the results and the 

computational time. Generation of numerical grid can be quite complicated and time 

consuming, dependent on the method available in the preferred CFD-package. In ANSYS 

FLUENT the user may choose between three mesh generation approaches. 

 

5.1.2 Methods of Mesh Generation 

 

I. Generating Mesh in ANSYS Workbench 

 

The first approach is to create the complete grid refinements in ANSYS Workbench. Here the 

user may play around with different element sizes, growth rates, and bias ratios to achieve a 

desired mesh. This process can be quite complicated due to the required preliminary 

knowledge about the expected solution, as regions of large gradients (e.g. pressure and 

velocity) should be covered by a denser grid. In the current application, this method was 

found very time consuming and not very efficient.  
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II. Isovalue Mesh Adaptation 

 

A second choice is to refine the mesh relative to specific flow variables selected in the solver 

ANSYS FLUENT. User-defined macros or TUI-commands are created to obtain transient mesh 

refinements in regions with large gradients (77). For instance, multi-phase plumes are 

identifiable by regions of relatively high particle concentration and high velocity fluids. As 

these regions contain large gradients of important flow quantities, isovalue mesh adaptation 

may be appropriate in simulation of a rising multi-phase plume affected by ambient ocean 

currents. 

Various methods of isovalue mesh refinement exist. The simplest strategy is to subdivide the 

cells, for which every “parent cell” is divided into “child cells” (ref. figure 24). For every parent 

cell four child cells are created, which implies the overall mesh topology remains the same 

(78). This method of refinement is referred to as h-refinement. In the present work, isovalue 

adaptation is tested out using the h-refinement strategy (ref. figure 25).       

 

 

 

 

 

 

 

 

This process might be computationally expensive dependent on the number of required 

refinements. However, in contrast to earlier versions of ANSYS FLUENT, mesh adaptation is 

now supposed to work in parallel simulations (i.e. simulation with multiple CPUs in ANSYS 

FLUENT 15.0.0). This approach of generating mesh was the first choice in the current 

application, as preliminary knowledge about the expected plume path is not required. Figure 

25 illustrates the isovalue mesh adaptation based on the void fraction in each control 

volume, for a rising bubble plume. 

 

 

 

Figure 24: The strategy of h-Refinement for 2-D mesh (78). 
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Figure 25 shows a test simulation of the Rotvoll experiment, in which showed similar results 

as simulations applying a fixed mesh (ref. chapter 7).  

However, the situation was different when simulating the DeepSpill experiment. Some 

minutes (in flow time) after the gas phase reached the water surface divergence through 

momentum was detected and the simulation was crashed. The problem may indicate the 

presence of numerical instabilities that creates artificial velocities in regions where the grid 

size differences of two neighboring cells are too large. This generation of velocities seems to 

be associated with the Geo-Reconstruction Scheme and its piecewise-linear approach, 

mentioned in section 3.6.3:A. Moreover, it is later reported that a uniform grid size 

distribution should be applied to interfaces captured by the VOF model (personal 

communication with Senior Scientist Jan Erik Olsen, SINTEF Materials & Chemistry, 30/04-

2014). The effect of these artificial velocities is illustrated in figure 26.  

Left hand side of figure 26 shows the water velocity in z-direction, right after the first gas 

bubbles has penetrated the water surface. A negative z-velocity is starting to develop, which 

seems to increase with time (right hand side of figure 26). As the simulations are calculated 

through external computers (ref. section 7.1.6), the user can only analyze the solution for 

specified time steps, which makes it difficult to point out the exact impact of this numerical 

instability. However, the water masses may start to push the discrete phase towards the 

seabed, making the numerical solution unstable. However, this issue did not affected the 

Rotvoll model due to significant shorter flow time.  

 

Figure 25: Isovalue mesh adaptation based upon the DPM concentrations in each control 

volume, for a rising bubble plume. 
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Fortunately, there might be a solution to this problem in combining isovalue mesh 

adaptation and uniform grid size distribution of the water surface. In ANSYS FLUENT, the user 

has the opportunity of selecting regions where isovalue mesh adaptation is preferred to be 

active. By dividing the water surface into one separate body and then manually refine it, the 

generation of artificial velocities should disappear. However, this solution was recently 

discovered and is not tested out for the current application.   

  

III. Region Refinement in ANSYS FLUENT 

 

The third method concerns manually refinements of desired domain. This is done in the 

solver, ANSYS FLUENT, before any calculations are started. A trial and error process are 

necessary due to required preliminary knowledge of the expected solution. In the current 

application, this process was found significantly easier and less time consuming than the 

gridding process in ANSYS Workbench (ref. section 5.1.2:I). Region refinement in ANSYS 

FLUENT is a type of h-refinement, discussed in the section above. The only difference is that 

the refinements are done manually for regions were the dispersed phase is expected to rise. 

However, this might increase the computational time compared to isovalue mesh 

adaptation, due to redundant grid cells. This method requires a uniform grid size distribution 

in the water surface region, as well (ref. section 5.1.2:II).  

Figure 26: Possible effect of non-uniform grid distribution in the interface region. 
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5.1.3 Grid Size and Mesh Independence 

 

The grid size is crucial in case of accurate and computational economic simulations. The 

primary procedure to ensure numerical accuracy is to check for mesh independence. This 

implies that the mesh should be sufficiently dense so additional refinements do not offer 

significant improvements in the solution (5). One way to test for mesh independence is to run 

cases of different grid size and compare the flow variables of interest for each case. However, 

the computational time may exceed the desired simulation time when additional refinements 

are desired/required. A mesh independence study is carried out by Pan (47), when simulating 

the Rotvoll experiment. This study is based upon an initial grid size of 5 cm, which is the same 

grid size used in the work of Cloete et al. (11). 

In the primary model (i.e. DeepSpill experiment), a finer grid size is given in the jet zone 

region, as this region contains flow variables of large gradients. In the buoyant plume region 

(ref. chapter 2), a significant larger grid size is sufficient, as the change in ambient flow 

variables is expected to be almost constant. A complete mesh independence study is not 

conducted for the primary model, due to the major amount of computational time required. 

However, an unpublished SINTEF-report and personal communication with Senior Scientist 

Jan Erik Olsen (SINTEF Materials & Chemistry, 03/04-2014) revealed that an amount of 80 

cells along the plume center line is enough for sufficient results, when simulating deep water 

gas releases applying the coupled DPM and VOF model approach. Grid size is further 

discussed in chapter 8.    

 

5.2 Solver Algorithm 

 

As noted in section 3.4, the PISO algorithm is applied in the current application. This 

algorithm is part of the SIMPLE family of algorithms. One limitation of the SIMPLE algorithm 

is that new velocities do not satisfy the momentum balance, and the calculations must be 

repeated until the balance is satisfied (28). However, in the PISO algorithm the repeated 

calculations are moved inside a solution stage where the pressure is corrected. After a few 

PISO loops, the corrected velocities satisfy the continuity and momentum equations more 

closely. This method is called “neighbor correction”, and may dramatically decrease the 

number of iterations required for convergence for transient problems. The PISO algorithm is 

based on higher degree of the approximated relations between the correction for pressure 

and velocity, which in most cases provides improved accuracy. However, higher order 

schemes can be less stable, and they may increase computational time (55). For more 

information about the PISO algorithm see Versteeg (55).
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Chapter 6  

Discussion of Assumptions 

 

In most practical engineering applications, a large number of simplifications and assumptions 

need to be made to enable the computational fluid dynamic solution of the differential 

equations to fit a realistic physical situation. Moreover, commercial CFD packages make it 

possible to develop models without fully understanding a large number of assumptions. 

These assumptions can lead to incomprehensible results which can be difficult to interpret 

properly.  

 

6.1 Assumptions Discrete Phase Model (DPM) 

 

The Discrete Phase Model (DPM) includes a number of assumptions. In the following sections 

the most important assumptions are discussed.  

 

6.1.1 No Volume Occupied by the Discrete Phase 

 

DPM particles does not take up any volume within the domain (ref. section 3.6.2:A). As a 

consequence, the mass of water within the plume itself is larger than it might be for real 

plumes, and this increased mass will have to be accelerated by the correct volume of gas/oil 

(11). Additionally, according to ANSYS FLUENT Theory Guide (28), the DPM method is only 

valid for void fractions smaller than 10-12%. In case of denser void fractions, the momentum 

transfer between the discrete phase and the surrounding fluid can be over-predicted (5).  

Cloete (5) calculated the total volume violating the DPM criterion, in which was found small 

enough to be negligible. This assumption is further discussed in section 7.3, where the void 

fractions along the plume center line for different flow rates are presented.      
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6.1.2 No Turbulent Wake Effects and Particle-Particle Interaction 

 

In real blowouts, the rising bubbles and droplets interact through collisions and various wake 

effects (29). As the dispersed phase and the continuous phase employs a two-way coupling, 

the discrete particles leave no turbulent vortex structures in their wakes, and can only 

transfer momentum as a source term to the continuous phase (ref. section 3.6). As 

mentioned above, the DPM particles do not occupy any volume, which implies that two 

particles would simply pass straight through each other if they were to cross (5). The effect of 

no particle-particle interaction may provide a more dispersed plume, due to less coalescence 

of bubbles/droplets. 

 

Pan (47) included a user-defined bubble-wake model, which resulted in a more dispersed and 

lower velocity plume that showed quite consistent results compared with experiments. This 

bubble-wake model is not included in the present work, thus the simulation results are 

expected to provide a slightly higher plume center velocity due to lower degree of horizontal 

extension.  

 

6.1.3 Bubble Size Model 

 

The bubble size model, accounting for breakup and coalescence mechanisms, is the same as 

the one applied by Cloete et al. (11) and Pan (47). The model was developed by Laux and 

Johansen (25), where the bubble size is governed by material properties and turbulence 

parameters (ref. section 4.2.4).  

It is reported that the first bubble observed reaching the surface, during the Rotvoll 

experiment (ref. chapter 7), was one single large bubble (personal communication with 

Senior Research Scientist Paal Skjetne, SINTEF Materials & Chemistry, 20/03-2014). However, 

in the current bubble size model this effect is not possible to account for. In cases where the 

instantaneous mean diameter is smaller than the equilibrium diameter, coalescence occurs. 

Moreover, if the instantaneous local diameter is larger than the equilibrium diameter, the 

bubble size model accounts for breakup. This may affect the rise time of the dispersed 

bubbles as large diameter bubbles may raise faster, due to larger buoyancy force. This is 

further discussed in chapter 7.3. 
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6.2 Turbulence 

 

In the current application, the Standard   –   model is used for modeling the effect of 

turbulence in the atmospheric air and ambient water. This is possible not an ideal turbulence 

model, especially due to the assumption of isotropic turbulent viscosity (ref. section 3.5.4:A).  

Cloete (5) claims that results obtained with the RSM were completely unrealistic, and that 

the Standard  -  model is the most suited turbulence model when simulating underwater 

bubble plumes.  

 

6.2.1 Assumptions of the Standard  -  Model (SKE) 

 

A. Isotropic Turbulence  

 

The main assumption of the SKE model, in combination with the Random Walk Model, is the 

modeling of isotropic turbulence discussed in chapter 3. Different literature sources (ref. 

section 3.5.3) claims that the assumption of isotropic turbulence is incorrect for underwater 

bubble plumes. However, isotropic turbulence is incorporated in the majority of the available 

literature. The exact impact of this assumption is hard to determine, but it may increase the 

horizontal extension of a bubble/droplet plume and thus decrease the plume rise time, due to 

the effect of isentropic turbulent viscosity. This is further discussed in section 7.3.  

 

B. No Surface Damping  

 

It is reported by Soga & Rehmann (79) that there is an increase in turbulent dissipation at the 

free water surface for surfacing bubble plumes. Moreover, Cloete et al. (11) points out that: 

“When turbulent eddies approach and locally lift a free surface, there is an increase in the 

rate of the turbulent energy cascade, which ultimately leads to increase TKE dissipation 

rate”. However, the Standard  -  model does not account for turbulence damping in the 

vicinity of a free surface. On the left hand side of figure 27, turbulent eddies are illustrated 

without the effect of surface damping. The turbulent eddies are modelled straight through 

the water surface, without any increase of the turbulent dissipation ( ) and decrease in the 

turbulent kinetic energy ( ). On the right hand side, the effect of surface damping is 

presented. 
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Being aware that the epsilon transport equation (ref. Equation 26) is actually the eddy length 

scale equation, a model may be implemented to assure the length scale is zero at the free 

surface. Pan (47) presents a proportional relationship between the length scale and the 

physical distance to the free surface. Thus, a new value of   may be presented to override the 

  in a computational cell near the free surface. 

Including the effect of surface damping may affect the surface flow velocity, due to the effect 

of lower viscosity fluid. As the turbulent kinetic energy is “killed” and the turbulent 

dissipation is increased by calculation of a new value of  , the turbulent viscosity is decreased 

(ref. Equation 28).  

The effect of surface damping is presented in section 7.3, provided by Pan (47).  Surface 

damping effects is, however, not implemented in the current application. As the gas phase 

are expected to be completely dissolved in the surrounding ocean and the turbulence of oil 

droplets is much less pronounced near the free surface, this effect is assumed to be not as 

serious. However, in case of shallow water and/or higher gas flow rates the effect of surface 

damping should be applied. 

 

Figure 27: Effect of surface damping vs. no surface damping. 
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C. No Bubble Induced Turbulence  

 

The Standard  -  model is developed for constant density flows only. As bubbles and/or 

droplets are driven by buoyancy forces due to different densities, large gradients in volume 

fraction of the discrete parcels may occur. This effect is not accounted for in the SKE. Pan 

(47), however, explored the contributions of buoyancy force to the production and 

destruction of turbulence. By adding turbulence intensity in unstable stratified flow regions 

and suppress turbulence in stable stratified flows, the effects of buoyancy may be accounted 

for. Pan (47) included the effect of bubble induced turbulence to simulations of gas-stirred 

ladle. The results provided a slightly higher and more accurate prediction of the radial and 

axial water velocity. 

Due to the small differences in velocities when the buoyancy-modified turbulence model was 

included, this model is neglected in the current simulations. Moreover, the large numerical 

cells necessary to simulate the DeepSpill experiment may contribute to even less effects of 

the bubble induced turbulence. Grid size and turbulence is further discussed in chapter 8.  

 

6.3 Additional DeepSpill Assumptions 

 

6.3.1 Ideal Gas Behavior  

 

As discussed in section 4.2.1, the effects of non-ideal gas behavior are neglected in this 

thesis. As seen from Figure 16, the methane gas behavior deviate significantly from the ideal 

gas law at large depths.  

When a blowout takes place in deep water, the pressure and temperature dependent 

compressibility factor, Z, should be introduced. The Z-factor contributes to higher bubble 

density, which may lead to lower specific volume of the discharged gas than predicted by the 

ideal gas law (34). Further, the lack of non-ideal gas behavior may decrease the mass of each 

bubble parcel and thus lowering the rate of gas dissolution (ref. appendix B.1). The effects of 

ideal gas behavior for deep water blowouts are further discussed in chapter 8.       
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6.3.2 No Species Transport 

 

As mentioned in section 4.4, the transient concentration of methane transferred to the 

surrounding ocean is set to zero in the current simulations (  
         

   ) (ref. Equation 

64). This means the sea water surrounding each bubble are not experiencing any saturation. 

In case of water saturation, the gas dissolution rate of a bubble is stopped and thus the 

overall mass transfer rate is lowered. However, it is expected that the effect of no ocean 

saturation is small. 

6.3.3 Underwater Oil Droplet Behavior 

 

The turbulent zone created at the release point (ref. chapter 2) may cause the oil to fragment 

into droplets, and the size distribution of the oil drops is found to be approximated by a 

Rosin-Rammler distribution (ref. section 4.2.3). However, no literature is found regarding the 

frequency of breakup and coalescences of oil droplets. As oil is a highly viscos fluid, the 

breakup of oil droplets due to turbulence is expected to be at a much lower frequency than 

gas bubbles. Therefore, the effect of breakup and coalescence of oil droplets are neglected 

due to the lack of good literature sources on the subject.  

In addition, the effect of density stratification is disregarded (ref. section 2.3.1). Even small 

stable density gradients in the ambient sea water may cause trapping of the plume. This 

effect is expected to increase the residence time of oil in the surrounding water. The oil may 

finally arrive at the sea surface due to the buoyancy of individual droplets (34). 

 

6.3.4 Including Ocean Currents 

 

The most appropriate way of modeling ocean currents was found by implementation of a 

user-defined function in which returns an acceleration term to each bubble/droplet, 

estimated by a drag force and the surrounding ocean current velocities (ref. section 

4.5.3:Method 3). One assumption of this modeling choice is that water surrounding the 

entrained water plume actually is stationary. This implies that the discrete phase determines 

the path of the entrained water plume all the way towards the ocean surface. In a real 

blowout situation (ref. figure 4 and figure 5), ambient ocean currents force the entrained 

water plume to bend, and as the ambient ocean currents increases gas bubbles and oil 

droplets start to separate from it. This assumption may affect the point of oil and gas 

separation, due to higher turbulent viscosity in moving water. However, it is difficult to 

determine the exact impact of this assumption at the present time.
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Chapter 7  

Validation Model: Rotvoll Experiment 

 

At Statoil’s Research center in Norway, an experiment of underwater gas releases was 

conducted in 1997. The experiment is named “Rotvoll” and presented in the report of 

Engebretsen et al. (54). The main objectives were to investigate the surface currents near the 

bubble plume and gas dispersion above the surface (54).  A series of experiments were 

conducted in a rectangular 7 m deep basin with a surface area of 6   9 m. The basin was 

filled with water and air was released at the bottom, at gas rates of 83, 170 and 750 Nl/s 

(11). In order to reduce the vertical momentum created by the bubble plume, an 

arrangement in front of the release point was installed. Due to this momentum breaker, the 

fluctuations in the gas flow and the length of the inlet jet was minimized. In 2009, Cloete et 

al. (11) used a coupled DPM and VOF model to recreate the experimental data obtained by 

Engebretsen et al. (54). In the report of Cloete et al. (11), these simulation results are 

compared with the empirical data obtained by Engebretsen et al. (54). 

In this chapter, the Rotvoll experiment is simulated in order to validate the general model 

set-up of the primary model (ref. chapter 8). Simulation results of this validation model are 

compared with experimental data from Engebretsen et al. (54), in addition to some 

references of the simulation results obtained by Cloete et al. (11). Even though the primary 

model includes release of both oil and gas into high pressure water, gas dissolution and the 

effect of ambient ocean currents, the basic model set-up is expected to be much of the same. 

Both models employs a coupled DPM and VOF model, the turbulence of water is calculated 

by the Standard  -  model, in addition to the same bubble size model and bubble drag force. 

Section 7.3 and 7.4 contains a comprehensive discussion including conclusion of why the 

validation model can verify the slightly different primary model set-up, described in chapter 

8.   

As this thesis mainly is an extension of the work done by Cloete et al. (11) the simulation 

results presented in this chapter are expected to be quite similar to theirs.   
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7.1 Model Description 

 

The Rotvoll model is carried out using transient, three dimensional flow computations. The 

Standard  -  model is activated to account for turbulence in the surrounding water. In order 

to capture the surface interactions, the VOF model with its surface tracking technique is 

employed (ref. section 3.6.3:A). The Discrete Phase Model (DPM) is used to track the rising 

bubbles through the surrounding water, in the Lagrangian reference frame. 

The residence time of one single bubble in the ambient water are expected to be quite short, 

thus the dissolution of air is neglected. The density distribution of the dispersed bubbles is 

following the ideal gas law (ref. section 4.2.1), and the bubble size distribution is given from 

section 4.2.4. The drag force exercised from the surrounding water onto the buoyant bubbles 

is given in section 4.1.1. 

 

7.1.1 Geometry 

 

The geometry created in ANSYS Workbench has identical dimensions as the experimental 

basin, with a height of 7 m and surface area of 6 * 9 m. An air layer is placed on top of the 

basin to account for fountain effects and backflow effects, created by the pressure-outlet 

boundary (ref. section 7.1.3). 

 

7.1.2 Grid  

 

The geometry is divided into a uniform grid size distribution of 40 cm, before it is exported 

into the ANSYS FLUENT solver. As the gradients of interest are found in the plume region, the 

grid size is refined three times using region refinement, explained in section 5.1.2:III. A gird 

size of 5 cm, in the plume region, is the same as Cloete et al. (11) applied. A mesh 

independency study (ref. section 5.1.3) was carried out by Pan (47), were additional finer grid 

did not offer improvements in the solution. The simulations are performed on a mesh with 

832345 hexahedral cells. Figure 28 shows the grid of the z-center plane and bottom plane.  
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7.1.3 Physical Properties and Boundary Conditions 

 

Continuous Phase  

The density and viscosity of the water phase is specified as 998.2 kg/m3 and 0.001003 kg/m-

s, respectively. A uniform temperature distribution of 15   is assumed for both the air and 

water phase. The atmospheric air is given by a density of 1.225 kg/m3 and a viscosity of 

1.7894e-05 kg/m-s. These values are default in ANSYS FLUENT. 

The boundaries surrounding the continuous phases, except the pressure-outlet at the top 

boundary, are specified as walls, were the DPM particles are reflected in case of any contact. 

Additionally, the shear conditions of the walls are assumed no slip.  A maximum of 20 

iterations per time step is applied to provide sufficient flow variables at the grid faces.    

   

Discrete Phase  

The density of the air-bubbles is specified to follow the ideal gas law (ref. Equation 44), with 

an individual gas constant (  ) of 286.9 J/Kg*K and a water temperature (  ) of 15  . The 

pressure (  ) is given by the hydrostatic pressure in the basin (ref. Equation 52). The bubbles 

are released at flow rates of 83, 170 and 750 Nl/s, from 100 equally spaced point sources 

Figure 28: Numerical grid size distribution Rotvoll model. 
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located in a radius of 0.17 m. The number of injected parcels must be sufficiently large to 

account for the turbulent dispersion of bubbles (ref. section 3.6.2:II). The bubbles are tracked 

every 0.01 second, which corresponds to the calculation time step size. The bubble size model 

(ref. section 4.2.4), accounts for breakup and coalescence of the air-bubbles. The bubble 

shape and drag coefficient (  ) is given by the expression of Xia et al. (10), in section 4.1.1.   

Density variation, bubble size distribution, and slip velocity is given by the user-defined 

function “Validation_Model.c” (ref. appendix A.1), which is executed at the end of each time 

step. The drag force is found in the user-defined function “Bubble_force.c” (ref. appendix 

A.2). This UDF is hooked to the DPM in ANSYS FLUENT. The position of the bubbles leaving 

the water phase is written to a file, before the discrete particles are deleted due to 

computational efficiency and the fact that the current objective only considering the 

interactions between the bubbles and the surrounding water. This is accomplished by 

accessing the particle stream index through a user-defined macro (ref. appendix A.1 and B.1).    

 

7.1.4 Initial Conditions 

 

The domain is initialized with zero-values for all flow variables, except for the turbulent 

kinetic energy,  , and its dissipation rate,  . Initial values of   and   represents pressure and 

temperature differences that may create water movements before any bubbles are injected. 

The initial values of   and   is not known from the work of Engebretsen et al. (54). However, 

according to Pan (47), the simulations was found to provide sufficient results with initial 

values of   = 0.007 m2/s2 and    = 0.001 m2/s3. The effect of the turbulent initial values is 

discussed in section 7.3.3:A. 

Due to installation of the momentum breaker, right above the release point, the initial 

velocity is set to zero. The effect of this momentum breaker is further discussed in section 

7.3.4. The atmospheric air is defined as primary phase and water is patched into the lower 

region of the geometry (ref. figure 28). 

 

7.1.5 Solution Method 

 

The continuity, momentum and turbulence are derived from the Second-Order Upwind 

Scheme, which is based on higher order schemes (ref. section 6.3). In upwind schemes the 

face values are calculated from quantities in the cell upstream (28). Further, the 

discretization of the pressure is captured by the PRESTO! scheme (5), and the water surface is 
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captured by the Geo-Reconstruct Scheme (ref. 3.6.3:A) As discussed in section 3.4 and 5.3, 

the PISO scheme is used for the pressure-velocity coupling.  

For more information about these schemes, see the ANSYS FLUENT Theory Guide (28). 

 

7.1.6 Hardware and Software 

 

The calculations are achieved by submitting the ANSYS FLUENT case and data file onto a high 

performance cluster, named Kongull. The Kongull cluster is a CentOS 5.3 Linux cluster running 

Rocks on HP servers with AMD processors. For more information see 

https://www.hpc.ntnu.no/display/hpc/Kongull.  

 

7.2 Results 

 

This section presents the current simulation results in comparison with experimental data 

presented in the work of Engebretsen et al. (54), in addition to some references to the 

simulation results presented in Cloete et al. (11). The calculations are stopped after 20 

seconds, when quasi steady state is assumed (11). Fountain height, rise time and various 

velocity profiles are measured, compared, and presented in the following sections.  

 

7.2.1 The Free Surface 

 

As noted in section 2.2, the rising water is deflected outwards in a radial surface flow, and an 

elevation of the water surface occurs, due to momentum of the entrained water plume. In 

context of the current CFD simulation, this elevation is a visible evidence of the two-way 

coupling employed (ref. section 3.6).  

 

 

 

 

    

 

Figure 29: Contour plot colored by the volume fractions at the free water surface. 
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The contoure plot of volume fractions, showed in figure 29, illustrates the elevation of the 

water surface. The blue color indicates the water phase and red color indicates the 

atmospheric air. The yellow line represents the interface between the two phases, which is 

captured by the Geo Reconstruction Scheme (ref. section 3.6.3:A). 

Figure 30 is a vector plot of water velocities in the interaction zone (ref. chapter 2), after 

quasi steady state conditions are reached. The water is radially deflected and the 

atmospheric air moves in the same direction, due to shear forces between water and 

atmospheric air. 

 

 

 

 

 

 

 

 

 

The founatin height was found by plotting the volume fractions against the position above 

the initial water surface (i.e. 7 m above the basin bottom), along the plume center line. A 

volume fraction of 1 indicates the water phase, while 0 indicates atmospheric air, in figure 

31. 

 

 

 

 

 

 

 

 

 

Figure 30: Velocity vector plot in the free surface region. 

Figure 31: Plot of the fountain heights for 170 Nl/s and 750 Nl/s. 
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As seen from table 1, the simulated fountain height yields quite good agreement with 

experimental data for the middle flow rate (i.e. 170 Nl/s), only slightly over-predicted. 

However, the highest flow rate shows a major discrepancy of 32.8 cm. Cloete et al. (11) 

presents, on the other hand, a slightly under predicted fountain height for the middle flow 

rate, while an even greater discrepancy, than showed in table 1, is observed for the highest 

flow rate. This is further discussed in section 7.3.   

 

7.2.2 Rise time 

 

The rise time is defined as the time to initial surface burst, i.e. the time it takes for the first 

bubbles to reach the water surface. As noted in section 7.1.3, bubbles are deleted when they 

reaches the interphase of water and atmospheric air. When a bubble is taken out of the 

system, the particle position is written to a file toghether with its residence time. For further 

details see appendix A.1. The residence time of the first bubble leaving the system defines the 

rise time of the discrete bubble plume.  

 

 
                          Flow rate: 

                               Rise time (s) 
83 Nl/s                    170 Nl/s              750Nl/s                                 

Experiment 6.0                           4.8                        3.1 
Simulation 6.14                         5.15                    3.47           

Table 2: Rise Time - Experiment vs. Simulation 

 

As seen from table 2, the rise time is over-predicted for all three flow rates. The higher flow 

rate the greater discrepancy is observed. Cloete et al. (11) presents a slightly lower simulated 

rise time compared with the current simulation results, presented in table 2. Possible factors 

of this over-predicted rise time is discussed in section 7.3. 

   

 

 
                                     Flow rate: 

    Fountain height (cm) 
170 Nl/s               750Nl/s  

Experiment 30                              45 
Simulation 32.4                          77.8 

Table 1: Fountain height - Experiment vs. Simulation 
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7.2.3 Various Plume Velocities   

 

As noted in chapter 2, the drag force exercised from the ambient water will quickly reduce 

the rise velocity of a bubble plume. A net momentum force is transferred from the bubbles to 

the ambient water, and a motion of water is developed alongside the bubbles. This 

entrainment effect makes the surrounding water to move in the same direction as the 

dispersed bubble plume, and a velocity profile of the entrained water is developing. For three 

different elevations the velocity profile generated by the bubble plume is experimental 

measured, for the middle flow rate (170 Nl/s) (11). 

Figure 32 shows the experimental data compared with the current simulation results. For the 

two lower heights (i.e. 1.75m and 3.80m) the simulation results matches the experimental 

data quite well. However, a slightly under prediction of the simulated velocities are observed 

right outside of the plume center. This effect becomes significantly clearer at 5.88 m height. 

It is, however, reported that the vertical and horizontal velocities was measured with 

Höntzsch turbine flow meters, during the experiments (47). These types of turbine flow 

meters are suited to measure mono-directional flow, but may overestimate the vertical 

velocity component when the flows start to bend, when approaching the surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 32: Velocity magnitude of water velocities at three different elevations at a gas flow 

rate of 170 Nl/s. 
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The center velocities (i.e. radial distance = 0) is observed to be slightly overestimated for the 

two lower heights, while the center velocity at 5.88 m height matches the experimental data 

very well. A comprehensive discussion of the results presented in figure 21 is presented in 

section 7.3.  Simulation results of Cloete et al. (11) shows, however, a slightly under-predicted 

center velocity, while the velocities right outside the plume center matches very well in the 

work of Cloete et al. (11).       

 

7.2.4 Velocity Magnitudes near the Top Surface 

 

As the plume of entrained water approaches the surface, water is deflected outwards in a 

radial surface flow (figure 1 and figure 30). When this turning process occurs, the water 

velocity at the horizontal surface will increase until it eventually obtain steady state 

conditions. Engebretsen et al. (54) presents experimental data showing the velocity 

magnitude of water near the top surface for gas flow rates of 83 and 170 Nl/s, 1.75 m from 

the plume center. Below, in figure 33, the experimental surface flow data is compared with 

the current simulation results, which indicates a major discrepancy for the middle flow rate 

(170 Nl/s). The experimental data is shown to be predominantly in radial direction compared 

with the simulation result, which is more directed vertically. However, the plots match quite 

well for heights below 6.6 m, which may indicate that the SKE model does not account for 

turbulence damping in the vicinity of a free surface (ref. 6.2.1:B). This is further discussed in 

section 7.3.3:B.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Comparison between experimental and simulated velocity magnitude of water 

near the top surface for the gas flow rates of 83 and 170 Nl/s, 1.75 m from the plume center. 
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7.3 Discussion 

 

This section contains a comprehensive discussion of the various factors that may affect the 

results presented in the previous section, which indicated quite good accordance with 

experimental data. In CFD, and especially a system of such complexity as the one studied 

herein, there are a large number of simplifications and approximations being made through 

turbulence modeling, choice of algorithms, and small differences in initial conditions, that 

can have large and unpredictable impact on the results. When presenting CFD data it is 

therefore exceedingly important to be critical, thorough and specific. 

 

7.3.1 Void Fraction 

 

As noted in section 3.6.2:A and section 6.1, the DPM model contains one important 

assumption. As the discrete phase particles does not occupy any volume, the dispersed phase 

should be sufficient dilute so that particle-particle interactions and the effects of the particle 

volume on the continuous phase are negligible. ANSYS FLUENT Theory Guide (28) claims that 

this in practice implies that the discrete phase must be present at a fairly low volume 

fraction, usually less than 10-12%, based on each control volume. Violation of this volume 

fraction limit may provide unrealistic simulation results. In figure 34, the void fraction of gas 

is plotted along the plume center line after quasi steady state conditions is reached. 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: Void fraction of gas plotted along the plume center line after quasi steady state 

conditions are reached (20 sec). 
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As seen from figure 34, the gas concentration limit of 10-12% is strongly violated. A gas 

concentration above 1 is physical impossible, and may have major influence on the 

simulation results. Plume regions dominated by dense DPM concentrations (i.e. void fraction) 

are reported to overestimate the momentum transfer from the dispersed bubbles (5). Thus, 

this effect may increase the center velocity of the entrained water plume, in addition to 

overestimate the fountain height. Table 1 and figure 32 support this effect of over-predicted 

momentum transfer. Table 1 shows a fountain height that increases its discrepancy to 

experimental data with flow rate, where higher flow rate indicates stronger violation of the 

discrete phase model (ref. figure 34). Moreover, the simulated center velocity is slightly 

higher at the two lower heights (ref. figure 32), which may imply overestimated momentum 

transfer. However, the rise time (ref. section 7.2.2) is not expected to be influenced by the 

violation of the discrete phase model, as the first bubbles will experience control volumes 

dominated by water. The discrepancy in rise time (ref. table 2) is discussed in the next 

sections.   

As noted in Chapter 3.6.2:II, the horizontal extension of bubble plumes is affected by the 

surrounding gas concentration. As the gas concentration exceeds the physical limit of 1, it is 

likely to believe that the dispersion of bubbles should be greater in order to decrease the gas 

concentration in the plume center region. Higher degree of bubble dispersion may decreased 

the center velocity plotted in figure 32 and increase the velocities in radial direction.  

Pan (47) implemented a bubble-wake induced turbulence model, discussed in section 6.1.2. 

The model was found to provide a slightly more dispersed bubble plume with lower plume 

center velocity. Thus, by implementation of the bubble-wake model the void fractions (ref. 

figure 34) might be reduced somewhat. 

  

7.3.2 Bubble Size Model 

 

The bubble size model (ref. section 4.2.4), accounting for breakup and coalescence 

mechanisms, is the same as the one applied by Cloete et al. (11) and Pan (47).  

As noted in section 6.1.3, it is reported that the first bubble observed reaching the surface, 

during the Rotvoll experiment, was one single large diameter bubble. One large diameter 

bubble rising towards the water surface will experience higher drag force from the ambient 

water, but even stronger buoyancy force. Since the bubble size model does not account for 

bubbles of large diameter, this may be a possible source of error when considering the 

simulated rise time (ref. table 2). 
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In figure 35, a parcel plot of the bubble size distribution is plotted after quasi steady state is 

reached, which is quite consistent with the theory from chapter 2 and the simulation results 

of Pan (2014). The larger bubbles exist in the outer boundary of the plume, where 

coalescence dominates due to low level of turbulence. As the bubble size model accounts for 

breakup in regions were the level of turbulence is high, the plume region is dominated by 

smaller bubbles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3.3 Turbulence 

 

In the current application, the  -  model is used to account for turbulence in the surrounding 

water. The  -  turbulence model in combination with the Random Walk Model assumes that 

the turbulent viscosity is isotropic, which means it is treated as a scalar quantity with similar 

effects in all directions. However, this is probably not the complete truth. One of the primary 

findings of Sheng and Irons (13) was that turbulence is not isotropic for gas-liquid plumes. 

Their experiments showed that the turbulence is greater in the vertical direction. Moreover, 

Johansen et al. (68) found in all their experiments a higher radial turbulence relative to axial 

turbulence near the free surface. These results may favor an anisotropic turbulence model, 

which possible contributes to less dispersion of the bubble plume and thus a lower rise time. 

Figure 35: Parcel plot of the bubble diameter after quasi steady state conditions are reached 

(20 sec). 
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A. Initial Values of    and     

 

The initial values of   and   seems to have major effects on the bubble plume properties. 

These values are tuned after experimental results in the work of Cloete et al. (11) and Pan 

(47), which indicates they are not experimental measured data. These values refer to the 

initial turbulence level in the surrounding water, and the ratio between them may influence 

simulation results. When the turbulent kinetic energy (k) is increased, relative to  , the 

horizontal extension of the bubble plume may increase, which might contribute to a longer 

rise time. In the table 3, the rise time for different initial values of   is showed. The initial 

dissipation rate is assumed constant (  = 0.001 m2/s3) for all three cases. 

 

Type: Flow Rate 170 Nl/s Initial Turbulent Kinetic 
Energy (m2/s2): 

Rise time (s): 

Current Simulation 1 0.001 3.98 
Current Simulation 2 0.007 5.15 
Current Simulation 3 0.014 5.88 

Table 3: Rise time for various initial values of the turbulent kinetic energy (170 Nl/s). 

Table 3 indicates that higher initial values of   provides a longer rise time. Possible causes of 

this discrepancy in rise times are discussed below. 

 

I. Eddy Time Scale and Turbulent Dispersion   

The eddy time scale, or “eddy lifetime”, is a measure for the time spent by a parcel inside a 

turbulent eddy. Equation 38, presented below, is the fluid Lagrangian integral time (ref. 

section 3.6.2:II): 

       
 

 
 

As seen from the equation above, a higher value of the turbulent kinetic energy  , will 

increase the eddy time scale. This may increase the turbulent dispersion of the bubble plume, 

and decrease the plume rise velocity. One way to think of it is that a parcel are spending 

longer time in one specific turbulent eddy, moving the motion of bubbles away from the 

plume center. In case of smaller eddy time scales, the parcels may be affected by multiple 

eddies working in different directions. This mindset is illustrated in figure 36, where one 

single bubble is tracked for high and low eddy time scale. 
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II. Velocity Fluctuations   

By the assumption of isotropy, the root mean square (RMS) values are equal for all three 

velocity fluctuations, and may be deduced from the turbulent kinetic energy (k), as noted in 

section 3.6.2:II. 

√   ̅̅ ̅̅   √   ̅̅ ̅̅   √   ̅̅ ̅̅ ̅  √
  

 
  

An increase in   may increase the horizontal extension of the bubble plume, due to increased 

velocity fluctuations in all directions. Velocity fluctuations are presented in figure 8.  

 

III. Turbulent Viscosity  

The isotropic turbulent viscosity,   , is a function of both   and  , as discussed in section 

3.5.4: 

       
  

 
  

Viscosity in turbulent flows is defined as the internal fluid resistance. Turbulent eddies are 

transferring momentum, in which creates internal fluid friction. Increased turbulent viscosity 

may thus force turbulent eddies to drag more on the surrounding water, which may increase 

the dispersion of the entrained water plume and decrease the plume center velocity of the 

Figure 36: Motion of a particle for high eddy time scale vs. low eddy time scale. 
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water. Subsequently, this increased viscosity may decrease the rise velocity of a bubble 

plume. 

B. Free Surface Damping 

 

As discussed throughout this thesis, turbulence modeling is critical for accurate prediction of 

the mean and turbulent velocity field, bubble dispersion, bubble sizes, and bubble-fluid 

momentum transfer. In figure 37, the experimental surface flow data is plotted against the 

current simulation results, which indicates a major discrepancy near the surface. The main 

reason of this discrepancy is that the Standard k-  turbulence model does not account for 

turbulence damping in the vicinity of a free surface (ref. section 6.2.1:B). This effect is 

illustrated in Figure 37. Soga and Rehmann (79) reported that there is an increase in 

turbulent dissipation at the free surface in bubble plumes. However, this effect is not 

captured by the Standard k-  turbulence model. In figure 37, the effect of free surface 

damping is plotted against the experimental data from Engebretsen et al. (54) and the 

current simulation results from section 7.2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Seen from figure 37, including free surface damping provides a good match with 

experimental data near the free surface. The effect of turbulent surface damping is presented 

in the work of Pan (47). Here the Standard k-  turbulence model is extended to account for 

Figure 37: Comparison between experiment, simulation without and without surface 

damping effects for flow rate of 170 Nl/s. 
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the proximity of a free surface, by supplying the correct characteristic length to treat the near 

surface turbulence (ref. section 6.2.1:B). For more information about the free surface 

damping, see Pan (47).  

The effect of the free surface damping might get more clear by examine the expression of 

turbulent viscosity,   , once more (ref. Equation 28). As the turbulent kinetic energy,  , is 

reduced and rate of turbulent dissipation ( ) is increased, the turbulent viscosity is decreased. 

A less viscos fluid will flow more easily, due to lower internal friction.   

 

7.3.4 Momentum Breaker 

 

As noted in section 7.1.4, the inlet velocity of the discrete bubbles is assumed to be zero. This 

is to account for the arrangement installed in front of the release point. However, this 

assumption is likely to affect the simulation results. When a jet of gas bubbles strikes a 

horizontal plate, the bubbles are dispersed in the radial direction and may increase the 

horizontal extension of the bubble plume. Thus, bubbles may start their rise towards the 

water surface before they passes the momentum breaker on the outside. It is, however, hard 

to determine the exact impact of this assumption.      

 

7.4 Concluding Remarks 

 

Clearly, the most concerning assumption of the validation model is the violation of the 

Discrete Phase Model (DPM) (ref. section 7.3.1). The author finds it unlikely that such high 

and unphysical void fractions can be neglected, and that the possible error of this violation 

might be “covered” by appropriate tuned initial values of the turbulent kinetic energy,  , and 

its dissipation rate,  .  However, as the DPM concentration is calculated from the bubble 

concentration of each control volume, the DPM concentration is expected to be significant 

lower for the primary model, due to: 

 Significant larger control volumes (i.e. numerical grid cells). 

 Possible violation of the DPM concentration limit will most likely influence only small 

regions of the total plume volume, which implies it can be neglected. 

 As oil droplets and gas bubbles are affected by ocean currents and significantly 

longer residence time, the horizontal extension of the discrete phase is expected to 

decrease the gas concentration in the control volumes of interest. 
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Moreover, the VOF model seems to capture the interaction between the continuous phases 

and the discrete parcels very well (ref. section 7.2.1). However, no gas bubbles are expected 

to surface during the DeepSpill simulation, due the effect of gas dissolution. Thus, only a 

surface slick of oil droplets is captured by the Geo-Reconstruct Scheme. As the turbulence of 

oil droplets is expected to be much less pronounced near the free surface, the effect of free 

surface damping is neglected in the primary model.  

In section 7.2.3, the water velocities in the lower regions match the experimental data quite 

well. Thus, it is likely to believe that the Standard k-  model predicts the degree of water 

turbulence for underwater blowouts in a sufficient way, under the assumption of appropriate 

initial values of   and  . Moreover, the hydrostatic pressure is, in both models, accounted for 

by Equation 52.  

It seems like the general set-up of the validation model fits the primary model quite well. A 

significantly larger geometry, inclusion of oil droplets and the presence of gas dissolution and 

ocean currents is the most distinctive differences between the two models. 
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Chapter 8  

Primary Model: DeepSpill 

Experiment 

 

The DeepSpill experiment included four controlled discharges of oil and gas from a ocean 

depth of 844 m, conducted in the Norwegian Sea. The main objectives were to calibrate 

numerical models for modeling blowouts in deep waters. In addition, testing surveillance and 

monitoring equipment, together with evaluation of the safety aspects of accidental releases 

of gas and oil in deep waters was of high interest (34). Extensive observations and 

documentation were acquired during the experiments by use of wind and current meters, 

aircraft surveillance, sampling of oil from the surface slicks, mapping of subsurface plumes 

with remotely operated vehicles (ROV) and echo sounder, as well as by chemical and 

biological sampling in the water column. Figure 38 illustrates this massive operation. 

. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: Schematic overview of participating units at the DeepSpill experiment (34). 
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The four controlled discharges consisted of: 

 Nitrogen gas and dyed sea water. 

 Marine diesel (oil) and LNG. 

 Crude oil and LNG. 

 LNG. 

In the current application, two of the discharges is evaluated; marine diesel and LNG, and 

LNG. Throughout this chapter, marine diesel is often referred to as oil, while LNG is referred 

to as gas or methane (ref. section 4.4).  

As a part of the analysis of the experimental observations and measurements, the DeepBlow 

model (ref. section 2.4) developed by SINTEF was compared with field data. This model is a 

highly complex integral plume model based on a Lagrangian concept, and was designed with 

special emphasis on deep water conditions. In this chapter, simulation results are presented, 

discussed and compared with chosen experimental data obtained from the report of 

Johansen et al. (34) and relevant modeling results provided by the DeepBlow model. As noted 

in Chapter 1, the main objective is to measure and evaluate the following: 

 The mean cloud path of oil 

 Point of complete gas dissolution 

 Rise time of oil 

 

8.1 Model Description 

 

The primary model is carried out using transient, three dimensional flow computations, as 

the case was for the validation model. The Standard  -  model is activated to account for 

turbulence in the surrounding ocean. In order to capture the surface interactions between 

ocean surface, atmospheric air and discrete phase, the VOF model with its interface tracking 

technique is employed (ref. section 3.6.3:A). The Discrete Phase Model (DPM) is used to track 

the rising gas bubbles and oil droplets through the ambient ocean.  

The residence time of one single bubble is expected to be long enough to make gas 

dissolution effects dominant (ref. section 4.4). To account for ocean currents, an acceleration 

term is exerted on each bubble/droplet at the end of each time step, as discussed in section 

4.5.3:Method 3. The density distribution of the dispersed bubbles is assumed to following the 

ideal gas law (ref. section 4.2.1) and the bubble size distribution is given by section 4.2.4. The 

oil droplets are assumed incompressible (i.e. no change in density) and the droplet size is 

found to be approximated by a Rosin-Rammler distribution (ref. section 4.2.3). The bubble 

shape is given by the Eotvos number and the drag force exercised from the ambient ocean on 
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the rising bubbles is given in section 4.1.1. The oil droplets are assumed to be spherical, and 

their drag coefficient is given by Equation 50. 

8.1.1 Geometry  

 

The geometry is created in ANSYS Workbench, with a height of 1200 m and a surface area of 

1000 * 1000 m. As the depth of the ocean is 844 m, the atmospheric air layer on top 

measures 356 m in height.  

 

8.1.2 Grid 

 

The same gridding procedure is conducted for the primary model as the validation model in 

section 7.1.2. A uniform grid size of 83.33 m is first created in ANSYS Workbench, before a 

refinement is performed in the domain for where the discrete phase is expected to rise. This 

region is refined three additional times, making each control surface area approximately     

10 m * 10 m. This is consistent with the unpublished SINTEF report which claims a number of 

80 cells are sufficient along the vertical center line, for deep water blowouts using the 

coupled DPM and VOF approach (ref. section 5.1.3). As discussed in section 6.1.3, the water 

surface area should be covered by a uniform grid size distribution to avoid artificial velocity 

generations and numerical instabilities. The simulations are performed on a mesh with 

253169 hexahedral cells. The z-center plane of the grid (in x- and y-direction) is presented in 

section 8.2.1. As seen from Figure 40, the grid is refined for much larger regions than 

necessary for that specific simulation. This is done so the same geometry and mesh may 

account for greater plume dispersion (ref. section 8.3.1). A reasonable presentation of the 

grid is difficult; however, an attempt is presented below.   

 

 

 

 

 

 

 

 

Figure 39: Geometry and mesh distribution - Primary model. 
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8.1.3 Physical Properties and Boundary Conditions 

 

Continuous Phase  

The density and viscosity of the sea water is specified as 1027 kg/m3 and 0.001003 kg/m-s, 

respectively. A uniform temperature distribution of 5   is assumed for both the atmospheric 

air and sea water. The density of the air phase is 1.225 kg/m3, while the viscosity is specified 

as 1.7894e-05 kg/m-s. 

The boundaries surrounding the continuous phases are specified as walls, except the 

pressure-outlet at the top boundary. The DPM parcels are reflected in case of any contact 

with the surrounding walls. The shear conditions of the walls are assumed no slip, and a 

maximum of 20 iterations per time step is applied to provide sufficient flow variables at the 

grid faces. 

 

Discrete Phase  

The oil is assumed incompressible, as noted in section 4.2.2. The density of methane is 

specified to follow the ideal gas law (ref. section 4.2.1), with an individual gas constant (  ) 

of 518.3 J/Kg*K. The pressure (  ) is given by the hydrostatic pressure along the vertical 

center line in the ocean domain (ref. Equation 52). The methane bubbles and oil droplets are 

injected from 10 equally spaced point sources located in a diameter of 0.12 m. The number of 

injected parcels is further discussed in section 9.3.1. Table 4 shows additional input data for 

the DPM. 

 

 Oil and Gas Gas 

Outlet diamter   (m) 0.12 0.12 
Gas flow rate     (Sm3/s) 0.6 0.7 
Oil flow rate      (m3/hour) 60 - 
Density of gas   (kg/m3) 0.67 0.67 
Density of oil    (kg/m3) 854.8 - 

Table 4: Input data DPM – Primary model (34). 

The bubble shape and drag coefficient (  ) is given by the expression of Xia el al. (10) (ref. 

section 4.1.1), while the oil droplets are assumed spherical (ref. section 4.1.2), which is by 

default in ANSYS FLUENT. Density variation, bubble size distribution, and gas dissolution is 

given by the user-defined function “Primary_Model.c” (ref. appendix B.1), which is executed 

at end of each time step. The bubble drag force is found in the user-defined function 

“Bubble_drag.c” (ref. appendix A.2). This UDF is hooked to the DPM in ANSYS FLUENT.  The 
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oil size is approximated by a Rosin-Rammler distribution (ref. section 4.2.3).The input values 

are shown in table 5: 

Rosin-Rammler Parameters for oil: Values: 

Min. Diamter (m): 0.002 
Max Diameter (m): 0.007 
Mean Diameter (m): 0.005 
Spread Parameter (n): 2.5 

Table 5: Input values – Rosin-Rammler Distribution (34). 

 

The ocean currents are modelled as acceleration terms returned to each rising particle, 

where the implementation is found in the UDF named “Ocean_currents.c” (ref. appendix B.2).  

The position of the discrete particles is tracked as they rise through the continuous phase, 

which is implemented in the UDF “Primary_Model.c” (ref. appendix B.1). The gas bubbles are 

deleted when reaching the water surface, as explained in section 7.1.3.   

 

8.1.4 Initial Conditions 

 

The initial values of the turbulent kinetic energy (k) and its dissipation rate ( ) is highly 

uncertain for the current application. These values are not specified in Johansen et al. (34), 

and are therefore based on experimental data from other literature sources. So, in sea 

waters dominated by ocean currents, Dewey (58) found an initial turbulent intensity of about 

  = 5% of the mean turbulent kinetic energy. The initial turbulent intensity may be expressed 

as follows (14): 

   
  

 ̅
              EQUATION 73 

where   is the root-mean-square of the turbulent velocity fluctuations (ref. Equation 35 and 

36), and  ̅ represents the initial mean velocity magnitude, which may be computed from the 

three mean velocity components: 

 ̅  √ ̅ 
   ̅ 

   ̅ 
             EQUATION 74 

The initial mean velocity is assumed to be represented by the ocean current velocities (in x- 

and y-direction) nearest the release point, given in Figure 19 and the UDF “Ocean_currents.c” 

(ref. appendix A.1). By the assumption of isotropy (ref. section 3.5.4:A) and combining 

Equation 35 and 36, the turbulent kinetic energy may be expressed as: 
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                 EQUATION 75 

,where the initial turbulent kinetic energy is found to be              m2/s2. 

The rate of dissipation of turbulent kinetic energy,  ,is obtained from Thorpe (30). Here the 

range and observed variation of   is presented at three different straits; the Florida Straits, 

the Strait of Gibraltar, and the Equator. An approximation of these values provides an 

assumed dissipation rate of            m2/s3. The validity of these turbulent initial values 

is hard to determine and are highly unsafe. The ratio between them is more or less the same 

as the turbulent initial ratio used in the validation model (ref. section 7.1.4). However, the 

initial values of   and   is expected to have minor effects on the overall simulation results as 

the flow time of the discrete phase are significantly longer compared with the validation 

model. 

Further, the release velocities of the discrete phases are calculated from the flow rates and 

the outlet diameter, presented in table 4. The rest of the domain is initialized with zero-

values for all flow variables. 

 

8.1.5 Solution Method 

 

The continuity, momentum and turbulence are derived from the Second-Order Upwind 

Scheme, which is based on higher order schemes (ref. section 5.3). In upwind schemes the 

face values are calculated from quantities in the cell upstream (28). Further, the 

discretization of the pressure is captured by the PRESTO! scheme (5), and the volume 

fractions is captured by the Geo-Reconstruct Scheme (ref. 3.6.3:A) As discussed in section 3.4 

and 5.3, the PISO scheme is used for the pressure-velocity coupling.  

For more information about these schemes, see the ANSYS FLUENT Theory Guide (28). 

 

8.1.6 Hardware and Software 

 

The calculations are achieved by submitting the ANSYS FLUENT case and data file onto a high 

performance cluster, named Kongull. The Kongull cluster is a CentOS 5.3 Linux cluster running 

Rocks on HP servers with AMD processors. For more information see 

https://www.hpc.ntnu.no/display/hpc/Kongull.  
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8.2 Results 

 

This section presents the primary simulation results in comparison with chosen experimental 

data from the DeepSpill experiment (34). In addition, relevant modeling results obtained 

from the DeepBlow model are to be presented. The mean cloud path of oil, point of complete 

gas dissolution and the rise time of oil is measured, presented and compared in the following 

sections. 

 

8.2.1 The Mean Cloud Path of Oil 

 

The second discharge, during the DeepSpill experiment, was release of marine diesel (oil) and 

natural gas. The ocean current profile is obtained from figure 19. Figure 40 shows a parcel 

plot colored by the discrete phase density after 4000 seconds of flow time. The red color 

indicates oil and the methane gas has taken the blue color. The rise time of oil is presented in 

section 8.2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Left hand side of figure 40 shows the bubble/droplet movement in east/west direction, while 

the right hand side of figure 40 illustrates the discrete phase movement in north/south 

Figure 40: Oil and gas movement in east/west (l.s) and north/south (r.s). 



CHAPTER 8: PRIMARY MODEL: DEEPSPILL EXPERIMENT  97 
 

 

direction.  The horizontal extinction of the gas and oil plume is something smaller than 

expected. This is further discussed in section 8.3. As can be seen from figure 40, the gas 

phase is trapped below the ocean surface due to dissolution effects, as explained in chapter 

2.  From this point, the oil droplets will start to rise slowly under buoyancy forces alone 

without any assistance from the more buoyant gas bubbles. The gas phase is further 

discussed in the next section. As indicated by figure 40, oil droplets have started to surface.  

During the DeepSpill experiment, echo-sounder images showed a clear response on the 

underwater plumes generated. Higher degree of reflected sound waves indicates a more 

concentrated cloud. In the current simulation, the oil droplets are tracked while they rise 

towards the water surface. The position (x, y and z) of an oil droplet is written to a file for 

various elevations below the seabed (ref. appendix B.2). Figure 41 shows a comparison 

between the computed mean path of the oil droplet cloud and the data from the 

corresponding echo-sounder images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41 indicates that the computed mean path (blue line) corresponds fairly well with the 

overall shape of the cloud observed with the echo-sounder during the DeepSpill experiment. 

Moreover, the DeepBlow model did achieve quite similar results, as presented in figure 41.  

 

 

 

Figure 41: Mean path of oil (blue line) plotted together with echo-sound images taken during the 

DeepSpill experiment (34). 
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8.2.2 Point of Complete Gas Dissolution 

 

The fourth discharge during the DeepSpill experiment involved natural gas release, without 

any presence of oil droplets. The duration of this experiment was approximately 2 hours. The 

ocean current profile in east/west and north/south direction is presented in the report 

Johansen et al. (34). Figure 43 shows a parcel plot of methane after 2 hours (7200 sec). The 

parcels are colored by the parcel mass, in kg. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: Mean cloud path of oil (DeepBlow model) plotted together with echo-

sound images taken during the DeepSpill experiment (37). 

Figure 43: Bubble movement in east/west, north/south, and point of complete gas dissolution. 
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Left hand side of figure 43 shows bubble movements in east/west direction, and the right 

hand side of figure 43 illustrates the methane gas movements in north/south direction. Also 

here the dispersion of the bubble plume is something smaller than expected. Plume 

dispersion is, however, further discussed in section 8.3. Figure 40 indicates not only that the 

bubbles do not reach the surface, but also that the mass of each bubble tends to be reduced 

with distance from the release point. Such loss of gas is very likely to be due to dissolution of 

gas into the ambient sea water (34). 

In the current simulation, the gas bubbles are tracked while they rise through the domain, as 

explained in the section above. Figure 44 shows a comparison of the corresponding echo-

sounder data and the computed mean path of the bubble cloud, which is found to be 

centered well within the echo-sounder signal. Moreover, the gas is seen to disappearing at 

about 120 m depth, while echo-sounder images show a trapping depth of approximately 150 

m. This indicates a very good match between the experimental data and the current 

simulation.  As discussed in section 4.4, the solubility of methane gas in seawater is in 

principle based on the solubility coefficients provided by Lekvam & Bishnoi (16) and the mass 

transfer coefficient given by Zhang & Xu (74) (ref. section 4.4). However, by inserting these 

values into the mass transfer equation (ref. Equation 70), significantly higher rate of mass is 

transferred to the surrounding sea water. In order to match the echo-sound data showed in 

figure 44, a reduction factor of 0.38 (tuned by author) had to be introduced in the mass 

transfer equation. Simulation results without this reduction factor is presented and discussed 

in section 8.3. 

The DeepBlow model observed the same problem of rapid gas dissolution, for which a 

reduction factor of 0.25 had to be employed to match the DeepSpill experiment.  

 

 

 

 

 

 

 

 

 

 

 

Figure 44: Mean cloud path of LNG and point of complete gas dissolution compared with 

echo-sound images taken during the DeepSpill experiment (34). 
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8.2.3 Rise Time of Oil 

 

As explained in section 7.2.2, the rise time is the time it takes for the first droplets to reach 

the water surface. The rise time of oil droplets are expected to be influenced by the more 

buoyant gas bubbles and the surrounding ocean currents (ref. chapter 2). In case of 

significant ocean currents, the gas bubbles may separate quickly from the oil droplets, 

making the drops rise slowly alone under buoyancy forces. However, when ambient currents 

is too weak to completely separate the two dispersed phases, the oil droplets are entrained 

into the bubble flow and transported more quickly towards the water surface, until the gas 

bubbles eventually have lost all their buoyancy due to dissolution into the surrounding water.     

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

As can be seen from figure 45, the oil cloud and gas bubbles are completely separated  for 

only small regions, which may indicate the gas bubbles contributes to a higher rise velocity 

for the oil nearby droplets. The simulated rise time is in table 6 compared with the empirical 

rise time and the modelled rise time provided by the DeepBlow model.  

 

Figure 45: Parcel plot of oil droplets and gas bubbles colored by density. 
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Type: Rise Time (s): 

Experiment 3600 (1 hour) 

DeepBlow 5400 (1 hour 30 min) 

Current simulation 4758 (1 hour 19 min 12 sec) 
Table 6: Rise time of oil - experiment, DeepBlow model, and current simulation. 

 

As seen from table 6, both computational models over-predict the rise time of the oil release, 

but the current simulation provides something shorter and more accurate rise time compared 

with the DeepBlow model. This is further discussed in section 8.3. 

 

8.3 Discussion 

 

This section contains a comprehensive discussion of the various factors that may affect the 

results presented in the previous section, which in general indicated quite good agreement 

with the experimental data. CFD, and especially system of such complexity as the one studied 

herein, there are a large number of simplifications and approximations being made through 

numerical grid size, turbulence modeling, and user-defined functions that can have large and 

unpredictable consequences. As ocean currents dominate the path of the discrete phases, 

examination of the DPM concentration along the plume center line is difficult. The DPM 

concentration is, however, expected to be significantly lower than observed for the validation 

model, as discussed in section 7.4. 

 

8.3.1 Numerical Grid Size 

 

As explained in chapter 3, the grid determines the control volumes on which all governing 

equations are resolved, and thus the numbers of cells directly affects the solution accuracy 

and the required CPU time. A CFD model should capture any small velocity fluctuations and 

other features of the domain of interest by an efficient mesh scheme. However, a complete 

mesh independence study (ref. section 5.1.3) is not possible at the present time due to the 

major amount computational time required. Anyway, the largest flow gradients are localized 

in the jet zone (ref. chapter 2). Therefore, a refinement of the first 30 m above the release 

point is applied in order to analyze the effect of denser control volumes. In Figure 46, the 

simulation is performed on a grid with 430738 hexahedral cells, where the cells are refined to 

approximately 0.65 m in the region around the release point.  
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Left hand side of figure 46 shows the bubble/droplet movement in east/west direction, while 

the right hand side of figure 46 illustrates the discrete phase movement in north/south 

direction. As seen from figure 46, both plumes are significantly more dispersed compared 

with figure 40. A greater horizontal extension of the plumes seem realistic (ref. chapter 2), 

while the effect of the refinement is further discussed below. In figure 47, the mean path of 

the oil cloud is plotted against the experimental echo-sound data and the first simulation 

result (ref. section 8.2.1). 

In figure 47 the green line indicates the mean path of oil, where the first 30 m of the plume 

path is refined. As seen from figure 46, the horizontal extensions of the oil cloud are 

significantly greater, meaning the total plume volume is covering much larger regions of the 

echo-sound plot. The results presented in this section may indicate a denser grid distribution 

should be applied to even larger regions of the plume path. Moreover, this is supported by 

the calculated rise time, presented in table 7. However, an attempt of additional refinements 

(the first 60 m of the plume path) did provide an estimated computational time of 

approximately 2 weeks.  

 

 

Figure 46: Parcel plot of oil and gas colored by density with a refined release zone. 
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Table 7 shows almost a 5 min faster rise time after the release zone is refined. Possible 

sources of the differences in simulation results presented in this section are further discussed 

below. 

 

Marine Diesel Release: Rise Time (s): 

Experiment 3600 (1 hour) 

DeepBlow 5400 (1 hour 30 min) 

Simulation (uniform grid) 4758 (1 hour 19 min 12 sec) 

Simulation (refined release zone) 4474 (1 hour 14 min 24 sec) 

Table 7: Rise time – experiment, DeepBlow model, and current simulations. 

 

I. Two-Way Coupling and Control Volume  

As discussed in section 3.6.3:A, there is a two-way coupling between the continuous phase 

and the discrete particles. As the trajectory of a particle is computed, ANSYS FLUENT keeps 

track of the momentum gained or lost by the particle stream that follows that trajectory, 

where these momentum transfers are incorporated in the subsequent continuous phase 

calculations. Thus, as the continuous phase always impacts the discrete phase, the effects of 

the discrete phase trajectories on the continuum are incorporated, when a two-way coupling 

is activated. The change of momentum for the continuous phase is in ANSYS FLUENT found 

Figure 47: The mean path of oil with refined release zone (green line) plotted against experimental 

echo-sound data and the first simulation result from section 8.2.1. 
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by examining the drag forces exerted on a particle as it passes through each control volume 

of interest in the domain (ref. Equation 47). For clearness, the momentum change equation is 

given below: 

 

     
∑ (                    ) 

     
 

 

As can be seen from the equation above, the continuous phase may experience less change in 

momentum when surrounded by large control volumes relative to smaller volumes, by 

assuming the number of particles is the same. In large grid cells the forces are distributed 

over a greater volume, making the velocity gradients for the continuous phase smaller. In 

figure 48, three examples of control volumes are given. 

 

 

 

 

 

 

 

 

 

For number 1 and 2, the total change in momentum for the continuous phase will be 

approximately the same, as the total number of particles and the total volume surrounding 

the particles are equal. However, the continuous phase in number 3 may experience minor 

change in momentum as the control volume is sufficiently large and the number of particles 

is the same as in number 1 and 2. Moreover, little change in momentum implies smaller 

velocity gradients. This effect is supported by figure 46 and figure 47. The motion of the oil is 

more in the west and north direction (ref. figure 47), suggesting a greater ocean velocity 

dragging more on the overall oil cloud. A faster moving continuous phase may also 

contribute to a lower rise time, as indicated by table 7. 

 

 

Figure 48: Three examples of control volumes containing water and bubbles. 



CHAPTER 8: PRIMARY MODEL: DEEPSPILL EXPERIMENT  105 
 

 

II. Production of Turbulence  

As discussed above, the grid size may affect the change in momentum and thus the degree of 

velocity gradients in the continuous phase. The production of the turbulent kinetic energy ( ) 

is dependent of the mean velocity gradients in the ocean (ref. Equation 27). For simplicity, 

this equation is given below: 

        
   

 ̅̅ ̅̅ ̅̅  
   ̅̅ ̅

   
 

Smaller control volumes may contribute to larger change in momentum for the continuous 

phase, making the velocity gradients more significant and therefore the production of 

turbulence greater. Higher production of turbulent kinetic energy will increase velocity 

fluctuations (ref. Equation 36), which subsequently provides a more dispersed plume. The 

simulation results seem to support this reasoning, as figure 46 shows a much more dispersed 

discrete phase compared with figure 40. Moreover, Karacz & Kacperski (57) studied the effect 

of grid quality on the results of numerical simulations by applying the  -  model. The 

conclusion was found to be: “Density of the computational grid significantly affects the 

distribution of the turbulence kinetic energy and its dissipation. More detailed features of the 

flow field can be captured using denser numerical grid.”   

In addition, the number of injected parcels should be sufficiently large so the dispersion 

accounts for all directions, as noted in section 3.6.2:II. A larger amount of injected parcels 

would most likely contribute to a greater horizontal extension of the discrete phase, however, 

at the expense of significantly longer computational time.     

 

8.3.2 Additional Factors 

 

Integral models are highly dependent of appropriate empirical data, mentioned in section 

2.4. A maximum rise velocity of the oil droplets of 0.13 m/s was implemented in the 

DeepBlow model (34). As seen from table 7, the computed rise time is significantly larger 

than observed during the DeepSpill experiment. Johansen et al. (34), suggests therefore 

reconsideration of the rise velocity of oil droplets and their drop size formation (ref. section 

4.2.4) through e.g. laboratory tests. Moreover, the DeepBlow model does not account for the 

presence of gas bubbles which probably will influence the rising velocity of nearby oil 

droplets. In ANSYS FLUENT, this effect is automatically accounted for when a two-way 

coupling is employed. As seen from figure 49, the oil droplets closest to the more buoyant 

bubble plume possesses higher rise velocity (z-velocity), than drops further away. This is a 
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possible cause of the discrepancy in computed rise time between the current simulations and 

the DeepBlow model, observed in table 7. 

In the current application, a spherical drag law is applied to the oil droplets (ref. section 

4.1.2). The DeepBlow model includes the Stoke law regime for Re < 1 and the constant drag 

regime for Re > 1000 (34). These differences in drag laws may be an additional factor for the 

observed discrepancy in rise time between the two computational models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

8.3.3 Reduction Factor Gas Dissolution 

 

As noted in section 8.2.2, the solubility of methane in seawater is in principle based upon the 

solubility coefficients provided by Lekvam & Bishnoi (16) and the mass transfer coefficient is 

given by Zhang & Xu (74), presented in section 4.4. However, by inserting these values into 

the mass transfer equation did provide a significantly higher dissolution rate from the 

discrete particles than suggested by the echo-plot signals during the DeepSpill experiment. A 

possible source of error is that the solubility coefficients provided by Lekvam & Bishnoi (16) is 

measured for somewhat different water temperatures (      ), and that these values 

are rounded in the current application.  

 

 

Figure 49: Parcel plot of oil droplets and gas bubbles colored by the z-velocity. 
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Moreover, saturation of the surrounding sea water is neglected in the present work, which 

may contribute to a slightly higher dissolution rate (ref. section 4.4 and 6.3.2). However, 

these assumptions are not expected to contribute to such high discrepancy as observed in 

figure 50. Left hand side of figure 50 shows the parcel mass without any reduction factor 

(tuned by author), while the right hand side of figure 50 is the same plot as presented in 

section 8.2.2.   

A significant source of error is the assumption of ideal gas behavior. Ideal gas behavior may 

affect the point of complete gas dissolution substantially (ref. chapter 5 and 7). As non-ideal 

gas behavior (ref. figure 16) suggests a significantly higher gas density at great depths, the 

mass of each bubble is expected to be greater when the compressibility factor (Z-factor) is 

employed. By assuming ideal gas behavior the gas may therefore be trapped below the 

water surface at greater depths, as indicated by figure 50.   

In fact, the DeepBlow model overestimated the dissolution rate as well. After a vertical rise of 

about 200 m, the gas bubbles were completely dissolved into the surrounding water. The 

calculations were based on known solubility of methane gas in sea water and mass transfer 

coefficients derived from laboratory experiments (34). In order to match the maximum 

vertical rise of about 720 m, the DeepBlow model had to include a reduction factor.  

 

 

Figure 50: Parcel plot of methane gas colored by the parcel mass, with and without the reduction factor. 
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8.3.4 Modeling of Ocean Currents 

 

As discussed in section 4.5.3:Method 3 and 6.3.4, the discrete phase determines the path of 

the entrained ocean plume in the current application. In a real blowouts (ref. section 2.3.2), 

the entrained water plume are affected by surrounding ocean current, making it bend over 

and possible separate from the discrete phase. However, as seen from figure 51, the water 

surrounding the entrained water plume is actually stationary and the discrete phases 

determines its path all the way towards the ocean surface. 

 

 

 

 

 

 

 

 

  

 

 

 

 

Thus, in real blowouts, the entrained water plume may drag more on the overall oil cloud, 

making the effect of ocean currents more significant before the oil droplets eventually starts 

to separate from it. However, it is hard to determine the exact impact of this assumption at 

this point. 

 

 

 

 

 

Figure 51: Water velocity in z-direction for the oil and gas experiment. 
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8.3.5 Alternative Method 

 

In the current application, no gas bubbles reached the ocean surface and the surface slick of 

oil developing is not considered. Therefore, the surface tracking technique (ref. section 

3.6.3:A) implemented in the VOF model is more or less superfluous for the primary model. As 

tracking of a liquid-gas interfaces requires relatively fine and uniform grid distribution (ref. 

section 5.1.2), the computational time is increased. An alternative method may be to define 

the water surface boundary as a wall, allowing the surfacing oil droplets to escape. If desired, 

the position of all surfacing oil droplets can be written to a file using the user-defined 

function “DeepSpill.c” (ref. appendix B.1). However, as the model is supposed to be valid for 

shallower depths and/or higher gas flow rates, for which gas bubbles may surface, interface 

tracking is employed in the primary model. 

 

8.4 Further Work 

 

This section contains suggestions for further work related CFD simulation of deep water oil 

and gas blowouts. 

1. In the present work the size distribution of oil droplets is approximated by a Rosin-

Rammler distribution, as discussed in section 4.2.3. However, Johansen et al. (34) 

recommends further evaluation of the droplet size formation. Laboratory tests is the 

cheapest and most efficient way of observe such formation. These suggestions are 

based upon the discrepancy in rise time modelled by the DeepBlow model, which is 

acquired both the modelled maximum rise velocity and the oil droplet size distribution 

(34). An evaluation of drop size may improve the rise time of oil simulated in the 

primary model.   

 

2. Non-ideal gas behavior should definitely be accounted for in the present work, as 

discussed in section 5.2.1 and 7.4.1. This is, however, done in the work of Skjetne & 

Olsen (2) by use of the Peng-Robinson equation of state. As seen from figure 16, the 

non-ideal gas behavior may be implemented for depths below 250 m.  

 

 

During the DeepSpill experiment no hydrate formation was observed, as discussed in 

section 2.1. However, multiple literature sources asserts that natural gas exiting from 

a subsea release point into high water pressure and low temperature quickly 

combines with the cold water and form the solid ice-like substance known as hydrate. 
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Moreover, Johansen (15) claims that: “For discharges in deep waters (700-1500 m 

depth), hydrate formation is found to be a dominating process in limiting plume rise.” 

The lack of hydrate formation in the DeepSpill experiment is explained by Johansen et 

al. (34) by the absence of the dissolved gas saturation necessary for sustained hydrate 

formation. Therefore, equations related hydrate formation may be necessary to 

implement in forecasting of blowout incidents at other locations and depths. 

 

3. As discussed in section 2.3.1 and 6.3.3, the effect of stratification in the ambient sea 

water is neglected in the current application. Density stratification may affect the 

plume dynamics considerably as entrained water cannot be detrained from the water 

plume (72) and thus the process of water mixing is obstructed.  

 

4. Oil and gas computer models should account for the presence of wind affecting oil 

slicks developing at the sea surface. In the present work, such slick formation is not 

evaluated and the effect of shear forces between wind and sea surface is neglected. 

Since the water surface is captured by the VOF model, the thickness of the developing 

oil slick could easily be measured and compared with experimental data presented in 

the work of Johansen et al. (34). However, as wind forces are neglected the results are 

expected to not compare very well with the measurements of oil slicks during the 

DeepSpill experiment. Wind forces may drag an oil slick in various directions, making 

the thickness of the oil slick thinner.  

 

 

5. As seen from section 8.2.1 and section 8.3.1, the plume dynamics is highly dependent 

on the numerical grid size, especially in the lower regions where the largest flow 

gradients are located. A mesh independence study should be applied to determine an 

appropriate grid size for deep water oil and gas releases. The best solution may be to 

activate transient mesh adaptation in the ocean region, while the sea surface is given 

a fixed mesh to avoid numerical instabilities, as discussed in section 5.1.2. However, 

this requires major amounts of computational time available.  
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Chapter 9  

Concluding Remarks 

 

The main objective of this thesis was to provide a general framework in CFD of deep water oil 

and gas releases. The fundamental theoretical framework and model set-up is based on work 

developed by Cloete (5) ,Cloete et al. (11),  Skjetne & Olsen (2),  and generalized to allow for 

presence of oil droplets and plume tracking, underwater currents and gas dissolution.  

Results and discussion of the validation model is presented in chapter 7, followed by some 

concluding remarks. 

In the present work, a user-defined drag force estimates the effect of ocean currents on each 

bubble/ droplet. An acceleration term is then returned to each particle, in which replaces the 

effect of a moving continuous phase. Simulation results of the mean cloud path of oil are 

found to correspond quite well with the overall shape of the echo-sound images taken during 

the DeepSpill experiment. Grid refinements of the release zone, where the highest gradients 

of flow variables are located, indicates an improved mean cloud path of oil in the lower 

ocean region and significantly greater plume dispersion is observed. Moreover, an improved 

rise time is computed when the first 30 m of the plume path consists of a denser grid 

distribution. This may indicate that a larger region of the plume path requires mesh 

refinement, which seems to contribute to greater change in momentum for the continuous 

phase and higher production of turbulent kinetic energy, as discussed in section 8.3. 

However, due to the major amount of computational time required, additional refinements 

are not possible at the present time.  

Gas dissolution is based on solubility coefficients provided by Lekvam & Bishnoi (16) and the 

mass transfer coefficient expressed by Zhang & Xu (74). Gas bubbles are assumed to be 

contaminated by surfactants and non-ideal gas behavior is neglected. The mean cloud path 

of methane gas is observed to be centered well within the echo-sounder signals. However, a 

mass transfer reduction factor is applied to match the point of complete gas dissolution 

observed from the echo-signals, which may to a certain be extent be caused by the 

assumption of ideal gas behavior.  

The DeepBlow model (15; 34; 37), which is an integral model highly dependent of 

appropriate empirical data (e.g. bubble and oil size distribution, entrainment coefficients, 

and maximum rise velocity), is shown to model quite similar mean cloud path of oil as the 

primary model. However, the DeepBlow model provided a longer rise time compared with 

both experimental data and simulation results, presented in chapter 9. This discrepancy may 
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be due the fact that the DeepBlow model does not include the effect of more buoyant gas 

bubbles which may increase the rise velocity of nearby oil droplets. This is, however, 

automatically accounted for in ANSYS FLUENT when a two-way coupling is employed. 

Moreover, the bubble size model, implemented in the present work, provides a more general 

distribution of bubble sizes as turbulence and ocean properties determines the frequency of 

bubble breakup and coalescence. Integral models are, however, dependent of appropriate 

empirical data.  

As indicated above, the overall simulation results are found to yield quite good agreement 

with the DeepSpill experiment: 

 The mean cloud path of oil corresponds quite well with the overall shape of the echo-

sound images taken during the oil and gas release.  

 The mean cloud path of methane gas is observed to be well centered within the echo-

sounder signals. Moreover, the point of complete gas dissolution matches the 

experimental data, when the mass transfer reduction factor is applied. 

 The rise time of oil is about 15 min longer than observed during the DeepSpill 

experiment, which is more accurate than the rise time provided by the DeepBlow 

model (30 min longer).  

However, further work on the model is necessary before it may be applied for risk 

assessments of subsea oil and gas blowouts, such as:  

 Implementation of non-ideal gas behavior. 

 Laboratory tests of oil droplet size distribution and measurements of drag forces 

related rising oil drops in sea water. 

 Implementation of ocean stratification. 

 For higher gas flow rates and/or shallower water depths surface damping effects 

should be employed.  

 A complete mesh independence study is necessary to provide reliable simulation 

results.     

A mesh independency study of blowouts at such great depths, as investigated in the current 

application, requires great amounts of computational time available. This is a major 

drawback for CFD simulations of oil and gas releases. Integral models are, on the other hand, 

much cheaper and more efficient. For that reason, integral models, such as the DeepBlow 

model, may be preferred in forecasting of blowout incidents when appropriate empirical data 

is available.
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Appendix A  

User-defined Functions: 

Validation Model 

 

The following sections contain user-defined functions (UDFs) used for the calculations done in 

chapter 7. 

 

A.1 “Validation_Model.c” 

 

The UDF “Validation_Model.c” accounts for size distribution (ref. section 4.2.4) and density 

changes (ref. section 4.2.1) of buoyant air-bubbles. The position (x- and y-position) of 

surfacing bubbles is first written to a file together with their residence time and parcel mass, 

before deleted due to computational efficiency (ref. 7.1.3). The UDF allows for parallel 

calculations, which implies the use of multiple CPUs. Senior Technical Consultant Love 

Håkansson at EDRMedeso provided very valuable help in order to achieve this. 

 

#include "udf.h" 
 
 
real depth = 7.0; 
real injection_height = 0.33; 
real Temp = 15.0; 
real Pressure_REF = 101325.0; 
real MolarWeight = 28.97; /* air */ 
 
/* Constants used in the bubble size model */ 
real SurfaceTension = 0.07199; 
real C1 = 4.0; 
real C2 = 100.0e-6; 
 
real write_x_position; 
real write_y_position; 
 
static int position_var = 1; 
static int position_var1 = 1; 
 
 
#if !RP_NODE 
FILE *ptr_file; 
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#endif /* !RP_NODE */ 
 
struct P_List_Item_ { 
 real p_radius; 
 real p_mass; 
 real write_x_position;  
 real write_y_position; 
 struct P_List_Item_ *next; 
}; 
 
typedef struct P_List_Item_ P_List_Item; 
 
DEFINE_ON_DEMAND(Init_file) 
{ 
#if !RP_NODE 
 ptr_file = fopen("surfaceflux.txt", "w");    
#endif /* !RP_NODE */ 
} 
 
DEFINE_ON_DEMAND(Term_file) 
{ 
#if !RP_NODE 
 fclose(ptr_file); 
#endif /* !RP_NODE */ 
} 
 
#if !RP_HOST 
int doRemove(Particle *p){ 
 
 if (P_POS(p)[2] > 0.05) return 1; 
 else return 0; 
} 
 
void remove_p(Particle *p){ 
 p->flags = 4; 
} 
 
P_List_Item *add_to_list(P_List_Item *head, P_List_Item *tail, Particle 
*p){ 
 if (head->next == NULL){ 
  head->next = tail; 
 } 
 else { 
  tail->next = (P_List_Item *)malloc(sizeof(P_List_Item)); 
  tail = tail->next; 
  tail->next = NULL; 
 } 
 /* distance from plume center line */ 
 tail->p_radius = sqrt(pow(P_POS(p)[0], 2) + pow(P_POS(p)[1], 2)); 
 /* parcel mass */  
       tail->p_mass = P_N(p)*P_MASS(p); 
 /* x-position */ 
 tail->write_x_position = P_POS(p)[0]; 
 /* y-position */ 
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 tail->write_y_position = P_POS(p)[1]; 
  
 return tail; 
} 
 
void clear_list(P_List_Item *head){ 
 P_List_Item *temp, *item; 
 item = head; 
 while (item != NULL){ 
  temp = item->next; 
  free(item); 
  item = temp; 
 } 
 head = NULL; 
 free(temp); 
 temp = NULL; 
 free(item); 
 item = NULL; 
} 
 
 
void send_list(P_List_Item *head, int n){ 
 real *p_prop1; 
 real *p_prop2; 
 real *p_prop3; 
 real *p_prop4; 
 
 int i = 0, j; 
 P_List_Item *item; 
 item = head->next; 
 
 if (n!=0) { 
  p_prop1 = (real *) malloc(sizeof(real)*n); 
  p_prop2 = (real *) malloc(sizeof(real)*n); 
  p_prop3 = (real *)malloc(sizeof(real)*n); 
  p_prop4 = (real *)malloc(sizeof(real)*n); 
 
  for (i=0;i<n;i++){ 
   *(p_prop1+i) = item->p_radius; 
   *(p_prop2+i) = item->p_mass; 
   *(p_prop3+i) = item->write_x_position;  
   *(p_prop4+i) = item->write_y_position;  
   item = item->next; 
  } 
 
  if (!I_AM_NODE_ZERO_P){ 
   PRF_CSEND_INT(node_zero, &n, 1, myid); 
   PRF_CSEND_REAL(node_zero, p_prop1, n, myid); 
   PRF_CSEND_REAL(node_zero, p_prop2, n, myid); 
   PRF_CSEND_REAL(node_zero, p_prop3, n, myid); 
   PRF_CSEND_REAL(node_zero, p_prop4, n, myid); 
  } 
  else { 
   PRF_CSEND_INT(node_host, &n, 1, myid); 
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   PRF_CSEND_REAL(node_host, p_prop1, n, myid); 
   PRF_CSEND_REAL(node_host, p_prop2, n, myid); 
   PRF_CSEND_REAL(node_host, p_prop3, n, myid); 
   PRF_CSEND_REAL(node_host, p_prop4, n, myid); 
 
  } 
  free(p_prop1); 
  free(p_prop2); 
  free(p_prop3); 
  free(p_prop4); 
 
 } 
 else { 
  if (!I_AM_NODE_ZERO_P){ 
   PRF_CSEND_INT(node_zero, &n, 1, myid); 
  } 
  else { 
   PRF_CSEND_INT(node_host, &n, 1, myid); 
  } 
 } 
  
 if (I_AM_NODE_ZERO_P){ 
  compute_node_loop_not_zero(j) 
  { 
  PRF_CRECV_INT(j, &n, 1, j); 
  if (n!=0){ 
   p_prop1 = (real *) malloc(sizeof(real)*n); 
   p_prop2 = (real *) malloc(sizeof(real)*n); 
   p_prop3 = (real *) malloc(sizeof(real)*n); 
   p_prop4 = (real *) malloc(sizeof(real)*n); 
     
   PRF_CRECV_REAL(j, p_prop1, n, j); 
   PRF_CRECV_REAL(j, p_prop2, n, j); 
   PRF_CRECV_REAL(j, p_prop3, n, j); 
   PRF_CRECV_REAL(j, p_prop4, n, j); 
   
   PRF_CSEND_INT(node_host, &n, 1, myid); 
   PRF_CSEND_REAL(node_host, p_prop1, n, myid); 
   PRF_CSEND_REAL(node_host, p_prop2, n, myid); 
   PRF_CSEND_REAL(node_host, p_prop3, n, myid); 
   PRF_CSEND_REAL(node_host, p_prop4, n, myid); 
     
   free(p_prop1); 
   free(p_prop2); 
   free(p_prop3); 
   free(p_prop4); 
     
   } 
   else { 
    PRF_CSEND_INT(node_host, &n, 1, myid); 
   } 
  } 
 } 
} 
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#endif /* !RP_HOST */ 
 
DEFINE_EXECUTE_AT_END(Remove_and_write_to_file) 
{/* executed at end of every time step */ 
#if !RP_HOST 
 Domain *d = Get_Domain(1); 
 Injection *i, *i_all; 
 Particle *p; 
 cell_t c; 
 Thread *t; 
 real  parcelmass_pre, parcelmass, P, gas_density, solubility; 
 real x[ND_ND]; 
 real dpm_frac, visc, visc_dpm, rho, d_eq, d_pre, tau, t_k, dt; 
 real eps, k; 
 
 P_List_Item *head, *tail, *item, *temp; 
 int np_removed=0; 
 
 i_all = Get_dpm_injections(); 
 head = (P_List_Item *)malloc(sizeof(P_List_Item)); 
 tail = (P_List_Item *)malloc(sizeof(P_List_Item)); 
 head->next = NULL; 
 tail->next = NULL; 
 
 thread_loop_c(t, d) 
 { 
 
  begin_c_loop(c, t) 
  { 
  /* calculate volume fraction of DPM-phase  */ 
  C_CENTROID(x, c, t); 
  P = Pressure_REF + 9.81*C_R(c, t)*(depth - x[2]);  
  P = MAX(Pressure_REF, P); 

gas_density = P * MolarWeight * 0.001 / (8.314 * (Temp + 
273.15)); 

  C_UDMI(c, t, 0) = C_DPMS_CONCENTRATION(c, t) / gas_density; 
  C_UDMI(c, t, 1) = MIN(C_UDMI(c, t, 0), 0.9); 
  } 
  end_c_loop(c, t) 
 
   

/* loop through particles */ 
  loop(i, i_all){ 
  loop(p, i->p){ 
 
  cell_t c0 = P_CELL(p); 
  Thread *t0 = P_CELL_THREAD(p); 
  Thread *t0_ocean = THREAD_SUB_THREAD(t0, 1); 
  Thread *t0_atmos = THREAD_SUB_THREAD(t0, 0); 
 
  parcelmass_pre = P_MASS(p)*P_N(p); 
  /* calcualtion of hydrostatic pressure for each bubble */ 
  P = Pressure_REF + 9.81*C_R(c0, t0)*(depth - P_POS(p)[2]);  
  P = MAX(Pressure_REF, P); 
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  /* bubble density */ 
  P_RHO(p) = P * MolarWeight * 0.001 / (8.314 * (Temp + 273.15));  
 
  /* bubble size model, Pan(47) */ 
  visc_dpm = 1.7849e-05; 
  visc = C_MU_L(c0, t0_ocean); 
  eps = MAX(C_D(c0, t0), 1.0e-6); 
  k = C_K(c0, t0); 
  rho = C_R(c0, t0); 
  dpm_frac = C_UDMI(c0, t0, 1); 
  dt = CURRENT_TIMESTEP; 
  /* equlibrium diameter */ 

d_eq = C1 * sqrt(dpm_frac) * (pow(SurfaceTension / rho, 0.6) /    
pow(eps, 0.4))*(pow(visc_dpm / visc, 0.25)) + C2; 

  d_pre = P_DIAM(p); 
  t_k = 6.0*sqrt(visc / (rho*eps)); 
  if (d_pre > d_eq) /* breakup */ 
      { 
   tau = pow(d_pre, 0.66667)*pow(eps, -0.33333333); 
   } 
   else /* coalescence */ 
   { 
   tau = d_pre / (0.2*6.0*MAX(1.0e-06, sqrt(dpm_frac*k))); 
   } 
 
   tau = MAX(tau, t_k); 
   P_DIAM(p) = (d_pre + d_eq*dt / tau) / (1.0 + dt / tau); 
   P_DIAM(p) = MAX(P_DIAM(p), 0.0001); /* bubble diameter */ 
   P_MASS(p) = P_RHO(p) * M_PI * pow(P_DIAM(p), 3.0) / 6.0; 
                    /* number of particles in a parcel */ 
   P_N(p) = parcelmass_pre / P_MASS(p);  
   /* delete surfacing bubbles */ 
   if (C_VOF(c0, t0_ocean) < 0.1){ 
    np_removed++; 
    tail = add_to_list(head, tail, p); 
    remove_p(p); 
    } 
   } 
  } 
 } 
 send_list(head, np_removed); 
 clear_list(head); 
 head = NULL; 
 tail = NULL; 
 
#endif /* !RP_HOST */ 
 
#if !RP_NODE 
 int j, *n, k; 
 real *temp1, *temp2, *temp3, *temp4; 
 n = (int *) malloc(sizeof(int)); 
 compute_node_loop(j) 
 { 
  PRF_CRECV_INT(node_zero, n, 1, node_zero); 
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  Message("Node %d: %d particles removed.\n", j, *n); 
  if (*n!=0){ 
   temp1 = (real *) malloc(sizeof(real)*(*n)); 
   temp2 = (real *) malloc(sizeof(real)*(*n)); 
   temp3 = (real *) malloc(sizeof(real)*(*n)); 
   temp4 = (real *) malloc(sizeof(real)*(*n)); 
    
   PRF_CRECV_REAL(node_zero, temp1, *n, node_zero); 
   PRF_CRECV_REAL(node_zero, temp2, *n, node_zero); 
   PRF_CRECV_REAL(node_zero, temp3, *n, node_zero); 
   PRF_CRECV_REAL(node_zero, temp4, *n, node_zero); 
    
 
   for (k=0;k<(*n);k++){ 
   /* print distance, mass, position, and residence time */ 

fprintf(ptr_file, "%g %g %g %g %g\n", *(temp1+k), 
*(temp2+k),              *(temp3+k), *(temp4+k), 
CURRENT_TIME); 

   } 
   /* free variables */ 
   free(temp1); 
   free(temp2); 
   free(temp3); 
   free(temp4); 
 
  } 
 } 
 free(n); 
  
#endif /* !RP_NODE */ 
} 
 

The UDF is compiled and executed at the end of every time step.  
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A.2 “Bubble_drag.c” 

 

The UDF “Bubble_drag.c” accounts for the drag force exercised on each rising air-bubble (ref. 

section 4.1.1). The same drag force is compiled for methane gas in the primary model, only 

the values of density and surface tension is replaced. 

#include "udf.h" 
 
DEFINE_DPM_DRAG(particle_drag_term, Re, p) 
{ 
    real drag_term; 
    real Eo; 
    real Cd; 
 real rho_water = 998.2; /* sea water: 1027.0 */ 
 real surf_tension = 0.07199; /* methane: 0.06180 */ 
 /* bubble shape - Xia et al. (10) */ 
 Eo = 9.81*(rho_Ocean - P_RHO(p))*pow(P_DIAM(p), 2) / surf_tension; 
 /* drag coefficient */ 
    Cd = 2.0/3.0*pow((Eo/3),0.5); 
 
 drag_term = 18.0*Re*Cd / 24.0; 
 
    return (drag_term); 
} 
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Appendix B  

User-defined Functions:  

Primary Model 

 

The following sections contain user-defined functions (UDFs) used for the calculations done in 

Chapter 8. In section B.3, the UDF described in section 4.5.3:Method 1 is presented.   

 

B.1 “Primary_Model.c” 

 

The UDF “Primary_Model.c” accounts for the size distribution (ref. section 4.2.4) and density 

changes (ref. section 4.2.1) of buoyant methane bubbles. Gas phase is allowed to be 

dissolved into the surrounding sea water, as explained in section 4.4. The position (x, y and z) 

of oil droplets or methane bubbles is printed out for various elevations in order to track the 

plume of interest. Moreover, the residence time of the surfacing oil droplets is first written to 

a file. The UDF allows for parallel calculations, which implies the use of multiple CPUs. Senior 

Technical Consultant Love Håkansson at EDRMedeso provided very valuable help in order to 

achieve this. 

 

#include "udf.h" 
#include "dpm.h" 
#include <math.h> 
#include "surf.h" 
#include "sg_vof.h" 
#include "mem.h" 
 
 
real depth = 844.0; 
real injection_height = 0.33; 
real Temp = 5.0; 
real Pressure_REF = 101325.0; 
real MolarWeight = 16.04; /* methane */ 
real SurfaceTension = 0.06180; 
real C1 = 4.0; 
real C2 = 100.0e-6; 
 
static int position_var = 1; 
static int position_var1 = 1; 
static int position_var2 = 1; 
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static int position_var3 = 1; 
static int position_var4 = 1; 
static int position_var5 = 1; 
static int position_var6 = 1; 
static int position_var7 = 1; 
static int position_var8 = 1; 
static int position_var9 = 1; 
static int position_var10 = 1; 
static int position_var11 = 1; 
 
#if !RP_NODE 
FILE *ptr_file; 
#endif /* !RP_NODE */ 
 
struct P_List_Item_ { 
 real p_radius; 
 real p_mass; 
 real write_x_position;  
 real write_y_position;  
 real write_z_position;  
 struct P_List_Item_ *next; 
}; 
 
typedef struct P_List_Item_ P_List_Item; 
 
DEFINE_ON_DEMAND(Init_file) 
{ 
#if !RP_NODE 
 ptr_file = fopen("surfaceflux.txt", "w");    
#endif /* !RP_NODE */ 
} 
 
DEFINE_ON_DEMAND(Term_file) 
{ 
#if !RP_NODE 
 fclose(ptr_file); 
#endif /* !RP_NODE */ 
} 
 
#if !RP_HOST 
int doRemove(Particle *p){ 
 if (P_POS(p)[2] > 0.05) return 1; 
 else return 0; 
} 
 
void remove_p(Particle *p){ 
 p->flags = 4; 
} 
 
P_List_Item *add_to_list(P_List_Item *head, P_List_Item *tail, Particle 
*p){ 
 if (head->next == NULL){ 
  head->next = tail; 
 } 
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 else { 
  tail->next = (P_List_Item *)malloc(sizeof(P_List_Item)); 
  tail = tail->next; 
  tail->next = NULL; 
 } 
 
 tail->p_radius = sqrt(pow(P_POS(p)[0],2)+pow(P_POS(p)[1],2)); 
 tail->p_mass = P_N(p)*P_MASS(p); 
 tail->write_x_position = P_POS(p)[0];/* x-position */ 
 tail->write_y_position = P_POS(p)[1];/* y-position */ 
 tail->write_z_position = P_POS(p)[2];/* z-position */ 
  
 return tail; 
} 
 
void clear_list(P_List_Item *head){ 
 P_List_Item *temp, *item; 
 item = head; 
 while (item != NULL){ 
  temp = item->next; 
  free(item); 
  item = temp; 
 } 
 head = NULL; 
 free(temp); 
 temp = NULL; 
 free(item); 
 item = NULL; 
} 
 
 
void send_list(P_List_Item *head, int n){ 
 real *p_prop1; 
 real *p_prop2; 
 real *p_prop3; 
 real *p_prop4; 
 real *p_prop5; 
 int i = 0, j; 
 P_List_Item *item; 
 item = head->next; 
 
 if (n!=0) { 
  p_prop1 = (real *) malloc(sizeof(real)*n); 
  p_prop2 = (real *) malloc(sizeof(real)*n); 
  p_prop3 = (real *) malloc(sizeof(real)*n); 
  p_prop4 = (real *) malloc(sizeof(real)*n); 
  p_prop5 = (real *) malloc(sizeof(real)*n); 
 
  for (i=0;i<n;i++){ 
   *(p_prop1+i) = item->p_radius; 
   *(p_prop2+i) = item->p_mass; 
   *(p_prop3+i) = item->write_x_position;  
   *(p_prop4+i) = item->write_y_position;  
   *(p_prop5+i) = item->write_z_position; 
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   item = item->next; 
  } 
 
  if (!I_AM_NODE_ZERO_P){ 
   PRF_CSEND_INT(node_zero, &n, 1, myid); 
   PRF_CSEND_REAL(node_zero, p_prop1, n, myid); 
   PRF_CSEND_REAL(node_zero, p_prop2, n, myid); 
   PRF_CSEND_REAL(node_zero, p_prop3, n, myid); 
   PRF_CSEND_REAL(node_zero, p_prop4, n, myid); 
   PRF_CSEND_REAL(node_zero, p_prop5, n, myid); 
 
  } 
  else { 
   PRF_CSEND_INT(node_host, &n, 1, myid); 
   PRF_CSEND_REAL(node_host, p_prop1, n, myid); 
   PRF_CSEND_REAL(node_host, p_prop2, n, myid); 
   PRF_CSEND_REAL(node_host, p_prop3, n, myid); 
   PRF_CSEND_REAL(node_host, p_prop4, n, myid); 
   PRF_CSEND_REAL(node_host, p_prop5, n, myid); 
  } 
  free(p_prop1); 
  free(p_prop2); 
  free(p_prop3); 
  free(p_prop4); 
  free(p_prop5); 
 } 
 else { 
  if (!I_AM_NODE_ZERO_P){ 
   PRF_CSEND_INT(node_zero, &n, 1, myid); 
  } 
  else { 
   PRF_CSEND_INT(node_host, &n, 1, myid); 
  } 
 } 
  
 if (I_AM_NODE_ZERO_P){ 
  compute_node_loop_not_zero(j) 
  { 
   PRF_CRECV_INT(j, &n, 1, j); 
   if (n!=0){ 
    p_prop1 = (real *) malloc(sizeof(real)*n); 
    p_prop2 = (real *) malloc(sizeof(real)*n); 
    p_prop3 = (real *) malloc(sizeof(real)*n); 
    p_prop4 = (real *) malloc(sizeof(real)*n); 
    p_prop5 = (real *) malloc(sizeof(real)*n); 
 
    PRF_CRECV_REAL(j, p_prop1, n, j); 
    PRF_CRECV_REAL(j, p_prop2, n, j); 
    PRF_CRECV_REAL(j, p_prop3, n, j); 
    PRF_CRECV_REAL(j, p_prop4, n, j); 
    PRF_CRECV_REAL(j, p_prop5, n, j); 
 
    PRF_CSEND_INT(node_host, &n, 1, myid); 
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    PRF_CSEND_REAL(node_host, p_prop1, n, myid); 
    PRF_CSEND_REAL(node_host, p_prop2, n, myid); 
    PRF_CSEND_REAL(node_host, p_prop3, n, myid); 
    PRF_CSEND_REAL(node_host, p_prop4, n, myid); 
    PRF_CSEND_REAL(node_host, p_prop5, n, myid); 
     
    free(p_prop1); 
    free(p_prop2); 
    free(p_prop3); 
    free(p_prop4); 
    free(p_prop5); 
   } 
   else { 
    PRF_CSEND_INT(node_host, &n, 1, myid); 
   } 
  } 
 } 
} 
#endif /* !RP_HOST */ 
 
DEFINE_EXECUTE_AT_END(Remove_and_write_to_file) /* executed at the end of 
a time step in a transient run */ 
{ 
#if !RP_HOST 
 Domain *d = Get_Domain(1); 
 Injection *i, *i_all; 
 Particle *p; 
 cell_t c; 
 Thread *t; 
 real P, gas_density, solubility, parcelmass_pre, MDOT, parcelmass; 
 real x[ND_ND]; 
 real dpm_frac, visc, visc_dpm, rho, d_eq, d_pre, tau, t_k, dt; 
 real eps, k; 
 real u_s, Re, Pe, k_CH4, n_CH4_sol, J, A, D_CH4; 
 real M_H2O = 18.01528; 
 real M_NaCl = 58.44277; 
 real s = 35.0; 
 real red_factor = 0.38; 
 real Y_CH4_w = 0; 
 
 P_List_Item *head, *tail, *item, *temp; 
 int np_removed=0; 
 
 i_all = Get_dpm_injections(); 
 head = (P_List_Item *)malloc(sizeof(P_List_Item)); 
 tail = (P_List_Item *)malloc(sizeof(P_List_Item)); 
 head->next = NULL; 
 tail->next = NULL; 
 
 thread_loop_c(t, d) 
 { 
 
 begin_c_loop(c, t) 
 { 
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  /* calculate volume fraction of DPM-phase  */ 
  C_CENTROID(x, c, t); 
  P = Pressure_REF + 9.81*C_R(c, t)*(depth - x[2]); 
  P = MAX(Pressure_REF, P); 
  gas_density = P * MolarWeight * 0.001 / (8.314 * (Temp + 
273.15)); 
  C_UDMI(c, t, 0) = C_DPMS_CONCENTRATION(c, t) / gas_density; 
  C_UDMI(c, t, 1) = MIN(C_UDMI(c, t, 0), 0.9); 
 } 
 end_c_loop(c, t) 
  /* loop through particles */ 
  loop(i, i_all){ 
   loop(p, i->p){ 
 
 
  cell_t c0 = P_CELL(p); 
  Thread *t0 = P_CELL_THREAD(p); 
  Thread *t0_ocean = THREAD_SUB_THREAD(t0, 1); 
  Thread *t0_atmos = THREAD_SUB_THREAD(t0, 0); 
 
  /* gas phase */ 
  if (P_RHO(p) < 200) { 
 
  parcelmass_pre = P_MASS(p)*P_N(p); 
  /* calculation of hydrostatic pressure for each bubble */ 
  P = Pressure_REF + 9.81*C_R(c0, t0)*(depth - P_POS(p)[2]); 
  P = MAX(Pressure_REF, P); 
  /* bubble density */ 
  P_RHO(p) = P * MolarWeight * 0.001 / (8.314 * (Temp + 273.15)); 
 
  /* bubble size model, Pan(47) */ 
  visc_dpm = 1.7849e-05; 
  visc = C_MU_L(c0, t0_ocean); 
  eps = MAX(C_D(c0, t0), 1.0e-6); 
  k = C_K(c0, t0); 
  rho = C_R(c0, t0); 
  dpm_frac = C_UDMI(c0, t0, 1); 
  dt = CURRENT_TIMESTEP; 
  /* equilibrium diameter */ 

d_eq = C1 * sqrt(dpm_frac) * (pow(SurfaceTension / rho, 0.6) / 
pow(eps, 0.4))*(pow(visc_dpm / visc, 0.25)) + C2; 

  d_pre = P_DIAM(p); 
  t_k = 6.0*sqrt(visc / (rho*eps)); 
  if (d_pre > d_eq) /* breakup */ 
   { 
    tau = pow(d_pre, 0.66667)*pow(eps, -0.33333333); 
   } 
 
   else /* coalscence */ 
   { 
    tau = d_pre / (0.2*6.0*MAX(1.0e-06, 
sqrt(dpm_frac*k))); 
   } 
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   tau = MAX(tau, t_k); 
   P_DIAM(p) = (d_pre + d_eq*dt / tau) / (1.0 + dt / tau); 
   P_DIAM(p) = MAX(P_DIAM(p), 0.0001); /* bubble diameter */ 
   P_MASS(p) = P_RHO(p) * M_PI * pow(P_DIAM(p), 3.0) / 6.0; 
 
   /*Gas Dissolution*/ 
   D_CH4 = 1.3*pow(10, (-9)); 
   u_s = fabs(P_VEL(p)[2] - C_W(c, t)); /* slip velocity */ 
   Re = (P_DIAM(p) * u_s * rho) / visc; 
   Pe = 2.0 * u_s * (P_DIAM(p) / 2.0) / D_CH4; 
 
   /* mass transfer coefficient Zhang & Xu */ 

  k_CH4 = (1 + pow((1 + Pe), (1.0 / 3.0)) * (1 + 
(0.096*(pow(Re, (1.0 / 3.0))) / (1.0 + 7.0 * pow(Re, (-2.0)))))) * 
(D_CH4 / P_DIAM(p)); 

       
if (3000000.0 < pressure && pressure < 15000000.0) 

 { 
 n_CH4_sol0 = 0.002; 
 } 
 else if (1600000.0 < pressure && pressure < 3000000.0) 
 { 
 n_CH4_sol0 = 0.0005; 
 } 
 else 
 { 
 n_CH4_sol0 = 0.00008; 
 } 
 
 n_CH4_sol = n_CH4_sol0*exp(-0.319*s / M_NaCl); 
 /* assume Y_CH4_w = 0 */ 
 J = k_CH4*rho*(n_CH4_sol*(MolarWeight / M_H2O) - Y_CH4_w);  
 A = M_PI*pow(P_DIAM(p), 2.0); 
 
 /* mass transfer with reduction factor */ 
 MDOT = red_factor*A*J*P_N(p); 
 
 if ((parcelmass_pre - (CURRENT_TIMESTEP * MDOT)) >= 0.0) 
 { 
 parcelmass = parcelmass_pre - (CURRENT_TIMESTEP * MDOT); 
 } 
 else 
 { 
 parcelmass = 0.0; 
 } 
 /* update number of particles in parcel */ 
 P_N(p) = parcelmass / P_MASS(p); 
 
 } 
 /* tracking oil droplets (or bubbles) */ 
 if (P_RHO(p) > 700) { 
 
 if (40.0 < P_POS(p)[2] && P_POS(p)[2] < 90.0 && position_var != 0) 
  { 
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  position_var = 0; 
  np_removed; 
  tail = add_to_list(head, tail, p); 
  } 
 if (100.0 < P_POS(p)[2] && P_POS(p)[2] < 150.0 && position_var1 != 0) 
  { 
  position_var1 = 0; 
  np_removed++; 
  tail = add_to_list(head, tail, p); 
  } 
 if (160.0 < P_POS(p)[2] && P_POS(p)[2] < 210.0 && position_var2 != 0) 
  { 
  position_var2 = 0; 
  np_removed++; 
  tail = add_to_list(head, tail, p); 
  } 
 if (220.0 < P_POS(p)[2] && P_POS(p)[2] < 270.0 && position_var3 != 0) 
  { 
  position_var3 = 0; 
  np_removed++; 
  tail = add_to_list(head, tail, p); 
  } 
 if (280.0 < P_POS(p)[2] && P_POS(p)[2] < 330.0 && position_var4 != 0) 
  { 
  position_var4 = 0; 
  np_removed++; 
  tail = add_to_list(head, tail, p); 
  } 
 if (340.0 < P_POS(p)[2] && P_POS(p)[2] < 400.0 && position_var5 != 0) 
  { 
  position_var5 = 0; 
  np_removed++; 
  tail = add_to_list(head, tail, p); 
  } 
 if (400.0 < P_POS(p)[2] && P_POS(p)[2] < 460.0 && position_var6 != 0) 
  { 
  position_var6 = 0; 
  np_removed++; 
  tail = add_to_list(head, tail, p); 
  } 
 if (470.0 < P_POS(p)[2] && P_POS(p)[2] < 530.0 && position_var7 != 0) 
  { 
  position_var7 = 0; 
  np_removed++; 
  tail = add_to_list(head, tail, p); 
  } 
 if (540.0 < P_POS(p)[2] && P_POS(p)[2] < 600.0 && position_var8 != 0) 
  { 
  position_var8 = 0; 
  np_removed++; 
  tail = add_to_list(head, tail, p); 
  } 
 if (610.0 < P_POS(p)[2] && P_POS(p)[2] < 670.0 && position_var9 != 0) 
  { 
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  position_var9 = 0; 
  np_removed++; 
  tail = add_to_list(head, tail, p); 
  } 
if (680.0 < P_POS(p)[2] && P_POS(p)[2] < 740.0 && position_var10 != 0) 
  { 
  position_var10 = 0; 
  np_removed++; 
  tail = add_to_list(head, tail, p); 
  } 
if (750.0 < P_POS(p)[2] && P_POS(p)[2] < 810.0 && position_var11 != 0) 
  { 
  position_var11 = 0; 
  np_removed++; 
  tail = add_to_list(head, tail, p); 
      } 
 
  } 
  /* delete surfacing bubbles */ 
  if (P_RHO(p) < 200) 
  { 
  if (C_VOF(c0, t0_ocean) < 0.1){ 
  np_removed++; 
  tail = add_to_list(head, tail, p); 
  remove_p(p); 
   } 
  } 
 } 
} 
send_list(head, np_removed); 
clear_list(head); 
head = NULL; 
tail = NULL; 
 
#endif /* !RP_HOST */ 
 
#if !RP_NODE 
 int j, *n, k; 
 real *temp1, *temp2, *temp3, *temp4, *temp5; 
 n = (int *) malloc(sizeof(int)); 
 compute_node_loop(j) 
 { 
  PRF_CRECV_INT(node_zero, n, 1, node_zero); 
  Message("Node %d: %d particles removed.\n", j, *n); 
  if (*n!=0){ 
   temp1 = (real *) malloc(sizeof(real)*(*n)); 
   temp2 = (real *) malloc(sizeof(real)*(*n)); 
   temp3 = (real *) malloc(sizeof(real)*(*n)); 
   temp4 = (real *) malloc(sizeof(real)*(*n)); 
   temp5 = (real *)malloc(sizeof(real)*(*n)); 
    
   PRF_CRECV_REAL(node_zero, temp1, *n, node_zero); 
   PRF_CRECV_REAL(node_zero, temp2, *n, node_zero); 
   PRF_CRECV_REAL(node_zero, temp3, *n, node_zero); 
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   PRF_CRECV_REAL(node_zero, temp4, *n, node_zero); 
   PRF_CRECV_REAL(node_zero, temp5, *n, node_zero); 
 
   for (k=0;k<(*n);k++){/* write to file */ 
    fprintf(ptr_file, "%g %g %g %g %g\n", *(temp1 + k), 
*(temp2 + k), *(temp3 + k), *(temp4 + k), CU*(temp5 + k), RRENT_TIME); 
   } 
   free(temp1); 
   free(temp2); 
   free(temp3); 
   free(temp4); 
   free(temp5); 
  } 
 } 
 free(n); 
  
#endif /* !RP_NODE */ 
} 
 

The UDF is compiled and executed at the end of every time step.  

 

B.2 “Ocean_currents.c” – Method 3 

 

This section contains the UDF used to simulate the effect of ambient ocean currents, 

described in section 4.5.3:Method 3. The exact current velocities are obtained from figure 19 

and ScanIt, which is software for extracting data from scanned graphs.    

 

#include "udf.h" 
#include "dpm.h" 
 
DEFINE_DPM_BODY_FORCE(crossflow_body_force, p, i) 
{ 
 real Fd, Eo, Cd, Re, Uslip; 
 real surf_tension = 0.07199; 
 real crossflow_X = -0.0983;/* east/north direction */ 
 real crossflow_Y = 0.0811; /* north/south direction */ 
 real accel = 0.0; 
 
 Thread *t = P_CELL_THREAD(p); 
 cell_t c = P_CELL(p); 
 
 Eo = 9.81*(C_R(c, t) - P_RHO(p))*pow(P_DIAM(p), 2.0) / surf_tension; 
 Cd = 2.0 / 3.0*pow((Eo / 3.0), 0.5); 
 
 if (0.0 < P_POS(p)[2] && P_POS(p)[2] < 73.5) 
 { 
  crossflow_X = -0.0983; 
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  crossflow_Y = 0.0811; 
 
Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0));   
Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
   
   
  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
 
  return accel; 
 } 
  
 else if (73.5 < P_POS(p)[2] && P_POS(p)[2] < 123.5) 
 { 
  crossflow_X = -0.0706; 
  crossflow_Y = 0.0874; 
 
Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0)); 
Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
   
  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
 
  return accel; 
 } 
 
 else if (123.5 < P_POS(p)[2] && P_POS(p)[2] < 173.5) 
 { 
  crossflow_X = -0.0813; 
  crossflow_Y = 0.1; 
 
Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0)); 
Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
 
  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
 
  return accel; 
 } 
 
 else if (173.5 < P_POS(p)[2] && P_POS(p)[2] < 223.5) 
 { 
  crossflow_X = -0.0643; 
  crossflow_Y = 0.0937; 
 



APPENDIX B  139 
 

 

Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0)); 
Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
 
  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
 
  return accel; 
 } 
 
 else if (223.5 < P_POS(p)[2] && P_POS(p)[2] < 273.5) 
 { 
  crossflow_X = -0.0516; 
  crossflow_Y = 0.126; 
 
Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0)); 
Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
 
  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
 
  return accel; 
 } 
 
 else if (273.5 < P_POS(p)[2] && P_POS(p)[2] < 323.5) 
 { 
  crossflow_X = -0.0239; 
  crossflow_Y = 0.119; 
 
Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0)); 
Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
 
  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
 
  return accel; 
 } 
 
 else if (323.5 < P_POS(p)[2] && P_POS(p)[2] < 373.5) 
 { 
  crossflow_X = 0.0337; 
  crossflow_Y = 0.0743; 
 
Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0)); 
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Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
 
  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
 
  return accel; 
 } 
 
 else if (373.5 < P_POS(p)[2] && P_POS(p)[2] < 423.5) 
 { 
  crossflow_X = 0.0742; 
  crossflow_Y = 0.0849; 
 
Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0)); 
Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
 
  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
 
  return accel; 
 } 
  
 else if (423.5 < P_POS(p)[2] && P_POS(p)[2] < 473.5) 
 { 
  crossflow_X = 0.0806; 
  crossflow_Y = 0.0528; 
 
Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0)); 
Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
 
  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
 
  return accel; 
 } 
 
 else if (473.5 < P_POS(p)[2] && P_POS(p)[2] < 523.5) 
 { 
  crossflow_X = 0.0528; 
  crossflow_Y = 0.0442; 
 
Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0)); 
Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
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  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
 
  return accel; 
 } 
 
 else if (523.5 < P_POS(p)[2] && P_POS(p)[2] < 573.5) 
 { 
  crossflow_X = 0.0826; 
  crossflow_Y = 0.0484; 
 
Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0)); 
Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
 
  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
 
  return accel; 
 } 
 
 else if (573.5 < P_POS(p)[2] && P_POS(p)[2] < 623.5) 
 { 
  crossflow_X = 0.0633; 
  crossflow_Y = 0.0889; 
 
Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0)); 
Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
 
  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
 
  return accel; 
 } 
 
 else if (623.5 < P_POS(p)[2] && P_POS(p)[2] < 673.5) 
 { 
  crossflow_X = 0.0611; 
  crossflow_Y = 0.0675; 
 
Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0)); 
Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
 
  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
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  return accel; 
 } 
 
 else if (673.5 < P_POS(p)[2] && P_POS(p)[2] < 723.5) 
 { 
  crossflow_X = 0.0632; 
  crossflow_Y = 0.0568; 
 
Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0)); 
Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
 
  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
 
  return accel; 
 } 
 
 else if (723.5 < P_POS(p)[2] && P_POS(p)[2] < 773.5) 
 { 
  crossflow_X = 0.0589; 
  crossflow_Y = 0.0674; 
 
Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0)); 
Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
 
  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
 
  return accel; 
 } 
 
 else if (773.5 < P_POS(p)[2] && P_POS(p)[2] < 823.5) 
 { 
  crossflow_X = 0.0374; 
  crossflow_Y = 0.078; 
 
Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0)); 
Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
 
  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
 
  return accel; 
 } 
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 else if (823.5 < P_POS(p)[2] && P_POS(p)[2] < 844.0) 
 { 
  crossflow_X = 0.0246; 
  crossflow_Y = 0.0801; 
 
Uslip = sqrt(pow(P_VEL(p)[0] - C_U(c, t) - crossflow_X, 2.0) + 
pow(P_VEL(p)[1] - C_U(c, t) - crossflow_Y, 2.0) + pow(P_VEL(p)[2] - C_W(c, 
t), 2.0)); 
Re = C_R(c, t)*P_DIAM(p)*Uslip / C_MU_L(c, t); 
Fd = (18.0 / 24.0)*Re*Cd*C_MU_L(c, t) / (P_RHO(p)*P_DIAM(p)*P_DIAM(p)); 
 
  if (i == 0) accel = Fd*crossflow_X; 
  if (i == 1) accel = Fd*crossflow_Y; 
 
  return accel; 
 } 
 
 return accel; 
} 
 

The UDF is hooked to the body force section in the DPM. 

 

 

B.3 “Velocity_inlet.c” – Method 1 

 

As described in section 4.5.3, the first attempt of recreating the ocean currents measured in 

start of each discharge during the DeepSpill experiment, was to define the vertical water 

boundaries as velocity inlets. The various ocean current velocities is given from two UDFs, in 

which represents the velocities in x-direction (east/west) and y-direction (north/south). As 

this method was tested out and quickly discarded, only a few of the measured current 

velocities are included. 

 

#include "udf.h" 
#include "mem.h" 
 
/* east/west direction */ 
DEFINE_PROFILE(inletEastLeft_x_velocity, thread, position) 
{ 
 real x[ND_ND]; 
 face_t f; 
 real z; 
 begin_f_loop(f, thread) 
 { 
  F_CENTROID(x, f, thread); 
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  z = x[2]; 
 
  if ( 0.0 < z && z < 98.0) 
  { 
   F_PROFILE(f, thread, position) = -0.08445; 
  } 
  if (98.0 < z && z < 197.0) 
  { 
   F_PROFILE(f, thread, position) = -0.0728; 
  } 
  if (197.0 < z && z < 297.0) 
  { 
   F_PROFILE(f, thread, position) = -0.03755; 
  } 
  if (297.0 < z && z < 395.0) 
  { 
   F_PROFILE(f, thread, position) = 0.05395; 
  } 
  if (395.0 < z && z < 496.0) 
  { 
   F_PROFILE(f, thread, position) = 0.0677; 
  } 
  if (496.0 < z && z < 594.0) 
  { 
   F_PROFILE(f, thread, position) = 0.07295; 
  } 
  if (594.0 < z && z < 691.0) 
  { 
   F_PROFILE(f, thread, position) = 0.06215; 
  } 
  if (691.0 < z && z < 785.0) 
  { 
   F_PROFILE(f, thread, position) = 0.06645; 
  } 
  if (785.0 < z && z < 844.0) 
  { 
   F_PROFILE(f, thread, position) = 0.0246; 
  } 
 } 
 end_f_loop(f,t) 
} 
 
 
#include "udf.h" 
#include "mem.h" 
 
/* north/south direction */ 
DEFINE_PROFILE(inletNorthBack_y_velocity, thread, position) 
{ 
 real x[ND_ND]; 
 face_t f; 
 real z; 
 
 begin_f_loop(f, thread) 
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 { 
   
  F_CENTROID(x, f, thread); 
  z = x[2]; 
 
   
  if (0.0 < z && z < 98.0) 
  { 
   F_PROFILE(f, thread, position) = -0.08425; 
  } 
  if (98.0 < z && z < 197.0) 
  { 
   F_PROFILE(f, thread, position) = -0.09685; 
  } 
  if (197.0 < z && z < 297.0) 
  { 
   F_PROFILE(f, thread, position) = -0.1225; 
  } 
  if (297.0 < z && z < 395.0) 
  { 
   F_PROFILE(f, thread, position) = -0.07496; 
  } 
  if (395.0 < z && z < 496.0) 
  { 
   F_PROFILE(f, thread, position) = -0.0485; 
  } 
  if (496.0 < z && z < 594.0) 
  { 
   F_PROFILE(f, thread, position) = -0.06865; 
  } 
  if (594.0 < z && z < 691.0) 
  { 
   F_PROFILE(f, thread, position) = -0.06215; 
  } 
  if (691.0 < z && z < 785.0) 
  { 
   F_PROFILE(f, thread, position) = -0.0727; 
  } 
  if (785.0 < z && z < 844.0) 
  { 
   F_PROFILE(f, thread, position) = -0.0801; 
  } 
 } 
 end_f_loop(f,t) 
 
} 
 
 
 
 

 


