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Abstract
This paper introduces FMI4j, a software package for
working with Functional Mock-up Units (FMUs) on the
Java Virtual Machine (JVM). FMI4j is written in Kotlin,
which is 100% interoperable with Java, and consists of
programming APIs for parsing the meta-data associated
with an FMU, as well as running them. FMI4j is compat-
ible with FMI version 2.0 for Model Exchange (ME) and
Co-Simulation (CS). Currently, FMI4j is the only software
library targeting the JVM supporting ME 2.0. In addition
to provide bare-bones access to such FMUs, it provides
the means for solving them using a range of bundled fixed-
and variable-step solvers. A command line tool named
FMU2Jar is also provided, which is capable of turning any
FMU into a Java library. The source code generated from
this tool provides type-safe access to all FMU variables
explicitly through the API (Application Programming In-
terface). Additionally, the API is documented with key
information retrieved from the FMU meta-data, allowing
essential information such as the description, causality and
start value of each variable to be seamlessly exposed to
the user through the Integrated Development Environment
(IDE).
Keywords: FMI, Co-Simulation, Model Exchange, JVM

1 Introduction
Recently, several research projects at NTNU Aale-
sund (Hatledal et al., 2015; Chu et al., 2017, 2018) and
others (Skjong et al., 2017; Sadjina et al., 2017) involve
co-simulation and virtual prototyping. Virtual prototyping
refers to a vision where models, or virtual prototypes, of
complex systems can be developed, tested, and amended
with a trial-and-error approach. As computer technology
develops it becomes possible to make an increasing part
of the necessary tests based on simulations. However, as
complex models often require components from several
different domains, perhaps developed in separate domain-
specific tools, a standard is required to fit them all together.

FMI (Blochwitz et al., 2011, 2012) is a tool independent
standard to support both Model Exchange (ME) and Co-
Simulation (CS) of dynamic models. The first version of
the standard, FMI 1.0, was released in 2010. In 2014,
version 2.0 was released, which merged the two standards

and incorporated some major enhancements compared to
the initial release. As such, version 2.0 is not backwards
compatible with version 1.x.

A model implementing the FMI standard is known as a
Functional Mock-up Unit (FMU), and is distributed as a
zip-file with the extension .fmu. It contains:

• An XML-file containing meta-data of the packaged
model, named modelDescription.xml.

• C-code implementing a set of functions defined by
the FMI standard.

• Other optional resources required by the implemen-
tation.

FMI4j, the software package introduced in this pa-
per, aims to simplify interaction with FMUs, and consists
of easy to use software APIs for parsing and simulating
FMUs on the JVM, as well as a tool for wrapping FMUs
into Java libraries, named FMU2Jar. Kotlin was chosen as
the implementation language as it is 100% interoperable
with Java, while offering several language improvements
such as null safety and less boilerplate code. From a us-
ability perspective, invoking FMI4j code from Java feels
no different than calling any other Java library.

The source code is published online under the permis-
sive open-source MIT license and can be accessed through
GitHub1. Here, pre-compiled FMU2Jar binaries are also
available. The APIs are available on maven central2. Only
version 2.0 and upwards are planned to be supported.

The rest of the paper is organized as follows. First some
related work is given, followed by a presentation of the
FMI4j software package. Finally, a conclusion and future
work are given.

2 Related work
Since the release of the FMI standard, several software li-
braries implementing the standard have been published.
An overview of such libraries for importing/invoking
FMUs is given in Table. 1.

1https://github.com/SFI-Mechatronics/fmi4j
2http://mvnrepository.com/artifact/no.

mechatronics.sfi.fmi4j
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Table 1. Software libraries providing FMI import

FMI support
Language CS ME

Name C C++ Java Python v1.0 v.2.0 v1.0 v2.0 Version License
FMI Library x x x x x 2.0.3 BSD
FMU SDK x x x x x 2.0.4 BSD
FMI++ x xa xa x x xb xb - BSD
PyFMI x x x xb xb 2.4 LGPLv3
FMPy x x x xb xb 0.2.5 BSD
JFMI x x x 1.0.2 MIT
JavaFMI x x x 2.24.5 LGPLv3
a Through SWIG
b Can solve ME FMUs

The FMI Library (FMIL) (JModelica, 2017) and FMU
SDK (QTronic, 2014), written in C and C++ respectively,
provide basic access to low-level FMI functions and is of-
ten used as base for creating more high-level libraries.

FMI++ (Widl et al., 2013) is a high level utility package
for FMI based on FMIL for ME and CS, written in C++,
that aims to bridge the gap between the basic FMI spec-
ification and the typical requirements of simulation tools.
Interfaces for Python and Java can be generated using
the Simplified Wrapper and Interface Generator (SWIG).
While the Python interface for Windows comes pre-built,
other packages must be built from source.

PyFMI (Andersson et al., 2016) is a high-level python
library for interacting with FMUs, maintained by Mode-
lon AB. It contains co-simulation masters for simulation
of weakly coupled systems and provides a connection to
the simulation package Assimulo (Andersson et al., 2015),
a Python package for solving first or second order explicit
ordinary differential equations (ODEs) or implicit ordi-
nary differential equations (DAEs). PyFMI is available
as a stand-alone package or as part of the JModelica.org
distribution.

FMPy (Dassault Systems, 2017) is a free python library
from Catia Systems for simulating FMUs. FMPy sup-
ports both FMI 1.0 and 2.0 for ME and CS. Using solvers
from the Sundials package, FMPy can be used to solve
ME FMUs. It also features both a command line utility
and a GUI for running and presenting simulation results.
FMPy and PyFMI may seem very similar, however there
is a major difference in that FMPy is implemented in pure
Python, whereas PyFMI acts as a wrapper for FMIL, with
additional high-level features.

JFMI (Broman et al., 2013b) is a low-level wrapper for
FMI 1.0 for CS and ME. The latest version, 1.0.2, was
released in 2013. Although the library supports both FMI-
CS and FMI-ME, a flexible solving mechanism for FMI-
ME is not provided.

JavaFMI (Cortes Montenegro, 2014) is a set of com-
ponents for working with the FMI standard using Java,
developed by SIANI institute (Las Palmas University).
JavaFMI is still actively maintained and offers cross plat-

form support for FMI version 1.0 and 2.0 for CS. A neat
feature of JavaFMI is the ability to export Java code as CS
FMUs.

While several FMI implementations exist, also for the
JVM. Only JavaFMI is maintained, however it lacks FMI
for ME support. It could be argued that FMI++ is avail-
able on the JVM by means of SWIG bindings, however,
the library must be built from source which is not straight-
forward and requires a number of native dependencies.

As such, it can be argued that there is still room for an
alternative, easy to use FMI implementation for the JVM
that supports both CS and ME FMUs.

3 FMI4j
This section introduces FMI4j, a software package for
working with Functional Mock-up Units on the JVM, de-
veloped by researchers at NTNU Aalesund. It is imple-
mented from scratch in Kotlin and provides a high-level
API for interacting with FMUs on the JVM (Java, Scala,
Groovy, Kotlin etc.) that implements FMI 2.0 for CS
and/or ME. When provided with an solver, FMI4j is able
to solve ME FMUs. Such instances share a common in-
terface with ordinary CS FMUs, that expose the most im-
portant FMI functions related to stepping a FMU forward
in time.

Furthermore, FMI4j through the FMU2Jar tool is, to the
best of the authors knowledge, the only publicly available
software that utilizes the provided meta-data in an FMU
in order to generate a high-level API tailored towards it.
E.g provide type-safe and documented access to named
variables directly through the API.

The different components available in the package is:

1. fmi-modeldescription - A library for parsing the
meta-data found in the modelDescription.xml located
within an FMU.

2. fmi-import - A library for loading and running FMUs
on the JVM. Supports FMI 2.0 for CS and ME.

3. FMU2Jar - A command line tool for turning an FMU
into a Java library (.jar).
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FMU2Jar is dependent on fmi-import, which again de-
pend on fmi-modeldescription. Artifacts from both li-
braries are hosted on The Central Repository3 hosted by
Sonatype. A collection of the most notable FMI4j classes
are shown in Figure. 1, some of which are described in
more detail in the following sections.

3.1 fmi-modeldescription
fmi-modeldescription is a lightweight API for parsing the
meta-data found in the modelDescription.xml located in-
side an FMU. Useful when only static information about
the FMU is required. For instance if you only want to
display static information about the FMU in a web-app or
when generating source code tailored towards a particular
FMU, as in the case for FMU2Jar.

FMI4j can parse the model-description given both a file
and URL reference to the FMU location. It can also handle
raw XML input. Usage is demonstrated in Listing. 1. For
brevity, code snippets are provided in Kotlin.

As seen in Figure. 1 there are several different inter-
faces representing the model-description. The Common-
ModelDescription interface represents common meta-data
found in both CS and ME FMUs, while the SpecificMod-
elDescription interface contain additional common infor-
mation found in the <ModelExchange> and <CoSimula-
tion> XML elements for ME and CS FMUs respectively.
Furthermore, the ModelExchangeModelDescription and
CoSimulationModelDescription interfaces contains type-
specific information located within the same entries.

Listing 1. Parsing the model-description file from an FMU.

File fmuFile = File("path/to/fmu.fmu")

//includes common FMI entries only
val md = ModelDescriptionParser.parse(

fmuFile)

//includes also CS specific entries
val cs_md = md.

asCoSimulationModelDescription()

//includes also ME specific entries
val me_md = md.

asModelExchangeModelDescription()

3.2 fmi-import
fmi-import is responsible for loading and simulating
FMUs. It relies on fmi-modeldescription for parsing
and Java Native Access (JNA) for invoking the native
FMI functions written in C. For integration of differen-
tial equations, it relies on the Apache Commons Math li-
brary (Apache, 2017).

The API for reading and writing variables is given in
Listing. 2 and 3 respectively. For convenience, FMU vari-
ables can be accessed through the ScalarVariable instance
representing the variable entry from the XML. As seen,
variables can also be accessed in a more FMI idiomatic

3https://search.maven.org/

way using the variableAccessor handle found within an
FMU implementation.

Listing 2. Read API.

val instance: FmiSimulation = ...
val speed: Double

= instance.variableAccessor
.readReal("speed")

Listing 3. Write API.

val instance: FmiSimulation = ...
val speedVariable: RealVariable = ...
val status: FmiStatus

= speedVariable.write(1.0)

// or
val status: FmiStatus

= instance.variableAccessor
.writeReal("speed", 1.0)

A description of some of the most notable classes found
within the fmi-import module are given below.

• Fmu - Represents an FMU file on disk. Responsible
for extracting the FMU, and acts as a factory for new
FMU instances. This allows extracted FMU content
to be re-used across instances. On JVM shutdown, it
will handle any necessary clean-up related to previ-
ously instantiated FMU instances and will also delete
the extracted FMU contents.

• FmuInstance - Represents a generic FMU instance,
exposing some of the most common functions.

• FmiSimulation - Extends the FmuInstance interface
with time stepping. Common interface for CS FMUs
and self-integrating ME FMUs.

• AbstractFmuInstance - Base class for all imple-
mented FMU classes. Wraps the model description
and a handle to the underlying native code belonging
to the loaded FMU. Also contains common boiler-
plate code.

• CoSimulationFmuInstance - Represents a CS FMU
instance. Implements the FmiSimulation interface.
Example usage is given in Listing. 4. Implements
the FMI extension for predictable step sizes proposed
in (Broman et al., 2013a), enabling step-size negoti-
ation between FMUs. More specifically, the exten-
sion adds the capability flag canProvideMaxStepSize
and a CS specific C procedure, fmiGetMaxStepSize,
which is an upper bound on the step-size that the
FMU can accept.

• ModelExchangeFmuInstance - A bare-bones class
for interacting with instances of ME FMUs. The re-
sponsibility of solving the FMU is left to the user,
as the class simply provides access to the underlying
FMU functions. Instantiated as seen in Listing. 5.

• ModelExchangeFmuStepper - Wraps an instance of
a ModelExchangeFmuInstance, while implementing
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Figure 1. Simplified UML view of core FMI4j classes.

the FmiSimulation interface. Allows ME FMUs to
be treated similar to CS FMUs. As seen in List-
ing. 6, it is instantiated very similarly to the Mod-
elExchangeFmu, although a solver is required. For
this purpose, FMI4j comes bundled with the Apache
Commons Math package, which includes a range of
both fixed and adaptive step-size solvers. A complete
overview of the available solvers is given in Table. 2
and 3.

Listing 4. Loading and running an CS FMU

val fmuFile = File("path/to/fmu.fmu")
val slave = Fmu.from(fmuFile)

.asCoSimulationFmu()

.newInstance()

// assign start values here

slave.init() //throws on error

val dt = 1.0/100
val stop = 10.0
while (slave.currentTime < stop) {

slave.doStep(dt)
}
slave.terminate()

Listing 5. Instantiating an ME FMU.

val file = File("path/to/fmu.fmu")
val slave = Fmu.from(file)

.asModelExchangeFmu()

.newInstance()

Listing 6. Instantiating an self-integrating ME FMU.

...
val solver = EulerIntegrator(1E-3)
val slave = Fmu.from(file)

.asModelExchangeFmu(solver)

.newInstance()

Table 2. Fixed-step solvers available in the Apache Commons
Math package.

Name Integration Order
Euler 1
Midpoint 2
Classical Runge-Kutta 4
Gill 4
3/8 4
Luther 6

Table 3. Adaptive step-size solvers available in the Apache
Commons Math package.

Name Order Error Estimation
Order

Higham and Hall 5 4
Dormand-Prince 5 5 4
Dormand-Prince 8 8 5 and 3
Gragg-Bulirsch-Stoer variable variable
Adams-Bashforth variable variable
Adams-Moulton variable variable

3.3 FMU2Jar
FMU2Jar is a command line tool for packaging an FMU
into a Java library, allowing the FMU to be used as any
other Java library. The generated library also exposes all
variables from the FMU through a type-safe API. That is,
named functions for getting and setting typed variable val-
ues are generated for each accessible variable in the FMU.
These are documented with information retrieved from the
associated entry in the model-description. This makes it
easier to use the FMU, as all variables and associated doc-
umentation can be browsed from within an IDE, as seen in
Figure. 2. Also, variables are grouped by causality for eas-
ier look-up. Both CS and ME FMUs are supported, with
ME FMUs being wrapped as CS FMUs and subsequently
solved using the solver provided on initialization, as seen
in Listing. 7.
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Figure 2. FMU named ControlledTemperature wrapped as a Java library using FMU2jar, then imported into IntelliJ IDE. From
within the IDE, the user can browse and read documentation on all available variables.

Listing 7. Instantiating both a CS and a self-integrating
ME FMU generated by FMU2Jar.

// Given an FMU that supports
// both CS & ME:
// First instantiate a CS FMU
ControlledTemperature

.newInstance()

.use { fmu ->
...

}

// and then a self-integrating ME FMU
val solver = EulerIntegrator(1E-3)
ControlledTemperature

.newInstance(solver)

.use { fmu ->
...

}

The Command Line Interface (CLI) is shown in List-
ing. 8. When supplying -mavenLocal as an argument, a
maven artifact is published to the local maven repository
(.m2 folder). This allows the user to easily include the
library in a software project using a build system such as
Apache Maven or Gradle. The user may also save the gen-
erated .jar into a specified folder and reference it explicitly.

Listing 8. FMU2Jar CLI

-fmu <arg> Path to the FMU
-help Prints this message
-mavenLocal Should the library be

published to maven local?
-out <arg> Specify where to copy the

generated .jar

FMU2Jar is most useful when working with FMUs pro-
grammatically, as its advantages such as variable look-up,
type-safe variable access and in-IDE documentation has
little to no function in common GUI based simulation en-
vironments such as OpenModelica, SimulationX, etc.

3.4 Performance
Table. 4 shows how FMI4j compares to some of the other
FMI libraries in terms of performance. The table shows
the time required in order to step two different test FMUs

Table 4. Performance comparison

Execution time [ms]
Library bouncingBall.fmu TorsionBar.fmu
FMIL 4 2801

JavaFMI 54 5843
FMI4j 53 5979
FMPy 60 9662

forward in time. Both FMUs implements the CS standard
and was downloaded from the official SVN repository for
test FMUs. A step-size of 1E − 2 and target time equal
to 100 seconds is used for the bouncingBall.fmu exported
from FMUSDK, while a step-size of 1E − 5 and target
time equal to 12 seconds was used for the TorsionBar.fmu
exported from 20Sim. For each time-step, a read call on
a real-valued output variable is performed. The tests were
performed on a i7-4770 CPU running Windows 10. From
the results we see that the native FMIL library is faster
than FMI4j by a good margin. This is to no surprise as
there is some overhead related to calling native functions
from Java (Kurzyniec and Sunderam, 2001). Performance
wise, FMI4j and JavaFMI are practically identical as they
both relies on JNA to handle native code execution. FMPy,
which runs in an interpreted language, is slower in both
test cases.

4 Conclusion and Future Work
This paper presents a high-level software package for
working with FMUs on the JVM platform. It includes
both a library for parsing the model-description file and
also for running the FMUs, as well as a tool for wrap-
ping FMUs as Java libraries, named FMU2Jar. Both FMI
2.0 for Co-simulation and Model-Exchange is supported.
Currently, it is the only library implemented for the JVM
to support version 2.0 of the ME standard. Using one of
the bundled solvers from the Apache Commons Math li-
brary, such FMUs can be solved directly by the library.

The FMU2Jar tool makes it easier to work with a spe-
cific FMU by wrapping it as a Java library, and generate
maven artifacts for it, which facilitates easy integration
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with popular build tools such as Maven and Gradle. Fur-
thermore, variables are exposed through the API as type-
safe method calls with documentation retrieved from the
model-description.

Recently, the FMI steering committee released a feature
list for version 3.0 of the FMI standard (FMI steering com-
mittee, 2018). As a future work, we aim to support this
standard some time after it has been officially released.

In the future FMI4j may also include the option to ex-
port FMUs from Java byte-code.

A request to list FMI4j on the official FMI tools page
has been submitted, and is pending approval. If or when
new features are added to the software, the capabilities
shown in this entry will be updated accordingly.
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