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Problem description

The price of Atlantic salmon is characterized by high volatility both in terms
of frequency and magnitude, which imposes uncertainty and costs on the entire
value chain of salmon farming. The salmon industry has experienced a rapid
growth over the past decades, and the production, processing and marketing
of salmon has become a multibillion dollar industry. In addition, the industry
has an increased presence in capital markets. As the market of salmon farming
is becoming more globalized and competitive, the companies’ ability to limit
unnecessary costs is an important requirement to maintain market positions. It
is useful for the participants of the salmon market to have reliable estimates
of future salmon prices. A satisfying price model is an important tool in order
to establish operational efficiency, and can benefit the entire supply chain for
salmon farming. Financially, a price model can help improve investment deci-
sions, valuation of bonds and stocks, and risk management.

In this study, I propose a new forecast model for the prediction of the Atlantic
salmon spot price, represented by the NQSALMON index. The methodology
builds on a multivariate ordinary least square regression model presented by
Sandaker et al. (2016). The approach presented in this paper is twofold:

1. Methodologically, I build a regression framework based on a combination
of the autoregressive distributed lag model and the partial least square re-
gression, in order to predict the 3-, 6- and 9-months ahead log transformed
salmon spot price. I use a genetic algorithm for variable selection, which
selects sets of covariates that have a unique cointegrated relationship with
the salmon spot price, which enables the use of non stationary data in the
regression framework.

2. Qualitatively, I assess if the avoidance of stationary transformation of data,
and the removal of regression problems related to intercorrelated predic-
tors, can help improve the forecast accuracy of salmon prediction models.
This is done by comparing the results of the proposed methodology with
the results of a multivariate ordinary least square regression model imple-
mented on stationary transformed data. In addition, I assess the value of
using exogenous variables in salmon prediction, relative to using only past
salmon prices.
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Abstract

Salmon farming is the largest growing food supply sector in the world. Along-
side the growth, the industry is becoming more competitive and is strengthening
its position in the capital markets. However, the salmon price is characterized
by high volatility, which imposes uncertainty and additional costs on the value
chain of salmon production. The participants of the salmon market can ben-
efit from a reliable price model, as it can be used to improve decision making
regarding the operational and financial aspects of the industry that are subject
to the price uncertainty. This includes the timing of salmon harvest, required
machine capacity, investment decisions and stock valuation.

This study aims to provide a framework for predicting the spot price of the At-
lantic salmon, represented by the NQSALMON index. I present a new model,
called the ARDL-PLS model, which is used to predict the 3-,6- and 9-month
ahead spot price. The ARDL-PLS model is a combination of the autoregres-
sive distributed lag model and the partial least square regression. Each of the
three months to be predicted are appointed a designated submodel, which are
independent on the other submodels. The covariates used in each submodel are
selected from a database of 61 candidate predictors, using a genetic algorithm
(GA) for feature selection. The GA-search is constrained to only select sub-
sets of predictors that have a unique cointegrated relationship with the salmon
price, which enables the use of non-stationary data in the ARDL-PLS model.
The out-of-sample results of the ARDL-PLS model is compared to the results
of an ordinary least square regression (OLR) model, which is implemented on
stationary transformed data

There are several encouraging results of this study. The genetic algorithm func-
tions well as a feature selection tool, as it is relatively quickly able to select
subsets of predictors that cointegrate with the salmon price, and that results in
a favourable goodness-of-fit. Generally the ARDL-PLS model is able to explain
a large degree of the variance in the salmon price, and the predictive accuracy
of the ARDL-PLS model is better than the OLR model on all forecast horizons.
The two models perform relatively similar in the 3 month-ahead prediction, but
the ARDL-PLS model excel in the longer horizons. I attribute the performance
difference between the OLR model and the ARDL-PLS model with two factor:
(1) In contrast to the ARDL-PLS model, the OLR model requires the data to be
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stationary transformed, which removes the long term information in the data.
(2) Unlike the OLR model, the use of intercorrelated predictors in the ARDL-
PLS model does not affect the stability of the estimated regression coefficients,
as the ARDL-PLS model transforms the covariates into orthogonal uncorre-
lated factors. Finally, the results indicate that the use of exogenous variables
in regression based salmon price models, significantly increases the prediction
accuracy.



Sammendrag

Lakseindustrien er i dag den raskest voksende matforsyningssektoren i verden.
I tillegg til den høye veksten, har lakseindustrien blitt mer kompetitiv og fått
økt tilstedeværelse i kapitalmarkedene. Samtidig er lakseprisen svært volatil,
noe som resulterer i økt usikkerhet og økte kostnader i hele verdikjeden for lak-
seproduksjon. Markedsdeltagere vil kunne dra nytte av en pålitelig modell for
prediksjon av lakseprisen, da den kan brukes til å forbedre beslutningsgrunnlaget
knyttet til operasjonelle og finansielle aspekter ved industrien som er påvirket
av prisusikkerheten. Eksempler på slike aspekter er slaktetidspunkt, påkrevd
maskinkapasitet, investeringsbeslutninger og verdivurdering av aksjer.

Målet ved dette studiet er å utvikle et rammeverk for prediksjon av laksespot-
prisen, som er representert ved NASDAQ Salmon Index (NQSALMON). Jeg
presenterer en ny modell, kalt ARDL-PLS, som blir brukt til å predikere prisen
3, 6 og 9 måneder frem i tid. ARDL-PLS modellen er en kombinasjon av en au-
toregressive distributed lag (ARDL) modell og en partial least square (PLS) re-
gresjonsmodell. Hver av de tre månedene som predikeres, tilegnes en uavhengig
delmodell. Kovariatene som blir brukt i hver delmodell er utvalgt fra et datasett
bestående av 61 potensielle forklaringsvariabler, ved hjelp av en genetisk algo-
ritme. Den genetiske algoritmen er begrenset til å kun velge variabelsett som
har et unikt kointegrert forhold med lakseprisen, noe som muliggjør bruken av
ikke-stasjonære tidsserier i ARDL-PLS modellen. Out-of-sample resultatene til
ARDL-PLS modellen sammenliknes opp mot resultatene til en ordinary least
square regression (OLR) modell, hvor den sistnevnte modellen er implementert
på stasjonær transformert data.

Det er flere lovende resultater fra dette studiet. Den genetiske algoritmen fun-
gerer godt som et verktøy for variabelseleksjon, da den relativt raskt finner
kointegrerte sett av variabler med tilfredsstillende forklaringsevne. Generelt
klarer ARDL-PLS modellen å beskrive en stor andel av variansen i lakseprisen,
og leverer mer nøyaktige prediksjoner enn OLR modellen på alle de predikerte
månedene. Jeg forklarer ytelsesforskjellen mellom OLR-modellen og ARDL-
PLS-modellen med følgende to faktorer: (1) til forskjell fra ARD-PLS mod-
ellen, så krever OLR modellen at dataen blir stasjonærtransformert, noe som
fjerner den langsiktige forklaringskraften i tidsseriene. (2) Til forskjell fra OLR
modellen, så blir ikke regresjonskoeffisientene i ARDL-PLS modellen svekket av
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at forklaringsvariablene er korrelerte, da den transformerer forklaringsvariab-
lene til ortogonale ukorrelerte komponenter som blir brukt i regresjonen. Avs-
lutningsvis så indikerer resultatene at prediksjonsmodeller for laksepriser blir
drastisk forbedret ved bruk av eksogene variabler.
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1 | Introduction

The spot price of Atlantic salmon is characterized by high volatility, which im-
poses uncertainty and additional costs on the value chain of salmon farming.
The participants of the salmon market can benefit from a reliable price model,
as it can be used to improve decision making regarding the operational and
financial aspects of the industry that are subject to the price uncertainty. Con-
sequently, this study aims to provide a framework for predicting the spot price
of the Atlantic salmon, represented by the NQSALMON index. I present a new
model, called the ARDL-PLS model, which is used to predict the 3-, 6- and
9-month ahead salmon spot price.

In 2014, a significant milestone was reached. For the first time in World history,
aquaculture’s contribution to global fish supply for human consumption over-
took that of wild-caught fish (Seafish 2017). In 2014 total world aquaculture
production increased to 101 million tonnes, with a value of 165.8 billion USD.
Aquaculture is the fastest growing food supply sector in the world, and for global
fish availability to meet projected demand, it has been estimated that aquacul-
ture production will need to more than double by mid-century. In Norway, the
aquaculture industry is responsible for 22,700 jobs, delivers fish to 100 vastly
different countries, and has developed into a second industrial fairy-tale in the
shadow of the petroleum industry. The industry has a long history at local level,
and form the cornerstone of many Norwegian coastal communities. In addition,
aquaculture can be considered as one of Norway’s most important responses to
one important challenge facing the World today. Namely, to produce sufficient
healthy food for a rapidly growing population (Sjømat Norge 2011).

Today, the salmon farming industry is characterized by high price volatility and
seasonal patterns (Oglend & Sikveland 2008). The seasonal effects can among
others be explained by seasonally changing sea water temperatures (Oglend
2013)) and a higher demand around Christmas (Misund & Asche 2016). Fur-
thermore, several variables such as the price of other commodities and exchange
rates, has impact on the salmon price (Misund & Asche 2016). The price volatil-
ity imposes uncertainty on the value chain of salmon production resulting in ad-
ditional costs. As the market of salmon farming is becoming more globalized and
competitive, companies’ ability to limit these unnecessary costs is an important
factor for maintaining market positions. A satisfying price forecast model is an
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2 CHAPTER 1. INTRODUCTION

important tool in order to establish functional risk management and operational
efficiency, and can benefit the entire supply chain for salmon. For instance, re-
liable estimates of future salmon prices would serve as vital decision support
in determining the optimal timing of salmon harvest, which terms producers
should engage in forward contracts, or what should be the available machine
capacity. In addition, reasonable estimates of future salmon prices are useful
from a financial standpoint, as the salmon industry is increasing its presence in
the capital markets. Many companies in the salmon industry are listed on stock
exchanges and there have been vast amounts of corporate bond offerings. In ad-
dition, Fish Pool have been established, as a response to the increasing demand
for financial hedging instruments. Consequently, the salmon farming industry
receives increased attention from analysts and investors. Thus, a reliable price
model can benefit to the financial aspect of the industry, as it can be used to
improve risk management and investments decisions, and contribute to better
valuation of bonds and stocks.

Although there exists a clear motive for the development of a reliable price
model, there are only a few articles on the explicit modelling and prediction of
the salmon spot price. To the authors knowledge, the last published study on
modeling point forecasts of the salmon spot price is carried out by Sandaker
et al. (2016), who uses exogenous variables in an ordinary least square regres-
sion (OLR) model. This is the only attempt of using exogenous variables as
predictors in salmon price models, although there exists a number of successful
applications of exogenous variables in the prediction of other commodities (Cole-
man 2012). Although the model developed by Sandaker et al. (2016) results in
satisfying short term predictions, literature on econometric and forecasting in-
dicate that there might exists several inefficient aspects of the methodology,
including the removal of long term information in the variables (Bentzen & En-
gsted 2001) and unstable regression coefficients due to intercorrelated predictors
(Wold et al. 1984). The results of Sandaker et al. (2016) motivates for the in-
vestigation of methods that can build upon the current framework, while coping
with the problem regarding intercorrelated explanatory variables, and that en-
ables the retainment of the long term information in the data. Research indicate
that a partial least square (PLS) regression gives a solution to the multiple re-
gression problem which is stabilized in comparison with a ordinary least square
(OLR) solution (Wold et al. 1984). In addition, an Auto regressive distributed
lag (ARDL) framework enables consistently estimation of both the short-run
and long-run relationships, and can easily be solved by PLS regression (Bentzen
& Engsted 2001).
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There are two key purposes of this study: Firstly to present a tool that market
participants can use to predict the salmon price. Secondly, to investigate if the
methodology presented by Sandaker et al. (2016) is enhanced when substituting
the OLR model with a combined model consisting of an ARDL framework and
a PLS regression. The combined model is referred to as the ARDL-PLS model.
The NASDAQ Salmon Index (NQSALMON), in USD, is used to represent the
spot price of salmon. The explanatory variables used in the model are selected
from a database of 17 time series. The time series included in the database
and the corresponding lag structure, are based on discussions with industry ex-
perts (Sandaker et al. 2017). In addition, seasonal dummy variables and a trend
variable are included in the dataset. In order to decide which combination of
variables, at what lags, from the dataset to use in the model, I deploy a genetic
algorithm (GA) for variable selection, which have been shown to be an effec-
tive feature selection tool in the field of finance (Kuhn & Johnson 2013). In
contrast to Sandaker et al. (2016) who uses log return transformed time series,
I use log transformed time series, as this is shown to maintain the long term
information in the data. Consequently. some of the time series included in the
database are non-stationary, and in order to avoid spurious regression, the set
of covariates used in the model has to satisfy certain cointegration requirements
(Bentzen & Engsted 2001). These requirements are formulated as optimization
constraints in the GA-search. Thus all the sets of predictors selected by the
GA-search are cointegrated with the salmon price. I use the variables selected
by the GA-search as covariates in the ARDL-PLS model to predict the 3-, 6- and
9-month ahead value of the NQSALMON. To obtain each forecast, I develop a
submodel. Each submodel use a set of maximum 6 covariates selected by the
GA. Furthermore, in order to verify the performance of the ARDL-PLS model,
I implement an OLR model in accordance with the methodology presented by
Sandaker et al. (2016), as reference. The covariates used in the OLR model are
selected by a GA from a database consisting of the same 17 time series, and
corresponding lag structures, as used by the ARDL-PLS model. However, in
the case of the OLR model, the time series are log return transformed, which
removes the need for cointegration constraints in the GA-search used by the
OLR model. Lastly, I implement an ARIMA model and a Naive model which
are used for benchmarking purposes.

As aforementioned, the existing literature on point prediction of the salmon
spot price is scarce, and to my knowledge this is the second attempt at using
exogenous variables in salmon price modelling. Also, this is the first attempt at
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combining an ARDL framework for predicting non-stationary time series, with
a PLS regression. Lastly, this paper is the first to formulate the cointegration
requirements of the ARDL model as optimization constraints in a feature selec-
tion algorithm, in order to enable the use of large databases of non-stationary
time series in regressions models. Hence, this paper represents a significant
contribution to research, and should provide industry participants with an im-
portant tool to improve risk management and investments decisions, in addition
to help increase operational efficiency.

There are several encouraging results from this study. The use of a genetic
algorithm as a feature selection tool looks promising, as it is relatively quickly
able to find subset of variables that result in favourable goodness-of-fit, and that
satisfy the cointegration requirements. Generally the ARDL-PLS model is able
to explain a large degree of the variance of the salmon price. The respective
R2 values from the out-of-sample predictions for the 3-, 6- and 9-months ahead
forecasts are 58%, 41% and 44%, which is relatively high given the fact that
economic time series are considered as low signal-to-noise environments. The
9-month ahead predictions from the ARDL-PLS model are more accurate and
less volatile than the 6-months ahead predictions, which is somewhat surprising.
This is likely to result from the fact that the availability of candidate predic-
tors are larger for the shorter horizons, due to the aforementioned lag structure,
which makes the genetic algorithm more prone to overfit for the shorter hori-
zons. Nonetheless, the predictive accuracy of the ARDL-PLS model is better
than the OLR model for all horizons. The 3-month ahead prediction accuracy
of the two models are relatively similar, but the ARDL-PLS model excel in the
longer horizons. I attribute the performance difference between the OLR model
and the ARDL-PLS model with two factor: (1) By not return transforming the
data used by the ARDL-PLS models, the long term information is maintained,
which increases the models ability to forecast the longer horizons. (2) Intercor-
relations among the explanatory variables does not affect the stability of the
regression coefficients in the ARDL-PLS model, as it, in contrast to the OLR
model, transforms the predictors into uncorrelated orthogonal components. The
out-of-sample performance of the ARDL-PLS model is superior to that of the
Naive model, yielding a forecast error of 56% of the one produced by the Naive
model, for the 9-months ahead forecast. Lastly, the OLR model performs far
better than the ARIMA model. As the two models only differ from the fact
that the ORL model utilize exogenous variables, the result indicate that the use
of exogenous variables in salmon prediction greatly enhances performance. In
sum, I have been able to create a parsimonious forecast model that is easy to
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implement, and that seem to deliver forecasts with favourable precision com-
pared to the OLR model following the methodology of Sandaker et al. (2016).
However, there are some misbehaviour, including unexpected regression coeffi-
cient signs and residual autocorrelation, that can be explored in future research.

This paper consist of 7 chapters. Following this introduction, Chapter 2 gives
an overview of relevant literature on the topic of salmon price modelling. Chap-
ter 3 contains an overview of the dataset used in the ARDL-PLS model, in
addition to some necessary preprosessing and descriptive statistics. Chapter 4
gives an introduction to the ARDL-PLS model and the cointegration require-
ments, and the genetic algorithm for variable selection. Chapter 5 describes the
whole implementation process of the ARDL-PLS model and the OLR model,
in addition to presenting the most important validation techniques. Chapter 6
proceeds with the result, presenting the performance of the variable selection
procedure, the model tuning, the residual diagnostics and the out-of-sample
results. Finally, Chapter 7 presents the conclusion.



6 CHAPTER 1. INTRODUCTION



2 | Relevant literature

The aim of this chapter is to give the reader an overview of the most relevant
research related to the field of salmon price prediction. Firstly, I presents papers
that address the explicit modelling and forecasting of salmon prices. Next, I
present papers that consider other aspects of the salmon price, such as volatility.
Lastly, I give an overview of how this study is positioned in context of the
existing literature.

2.1 Literature on predicting salmon spot prices

There exists only a few articles that consider the explicit modelling and pre-
diction of the salmon spot price. To the authors knowledge, the last published
study modelling the point forecast of the salmon price is carried out by San-
daker et al. (2016). Prior to that, Guttormsen published a report in 1999. On
the other hand, studies conducting implicit modeling of the salmon price, such
as volatility and price elasticity, are more frequently represented in literature.

2.1.1 Explicit modeling and forecasting of the salmon price

Vukina & Anderson (1994) compare four state-space models for predicting non-
stationary time series, in order to conduct a short term forecast of five different
salmon products on the Tokyo wholesale market. The state-space models in-
troduced includes an error correction model, a cointegration model, an impulse
response model and a model that combines a structural model with an inno-
vation model. The results indicate that all time series used have pronounced
cyclic behaviour, and the out of sample prediction accuracy of the models are
satisfying which encourage further research.

Gu & Anderson (1995) build a model that combines seasonality removal with a
multivariate state space framework, in order to predict the US salmon market,
and concluded that models applying seasonal components in modelling have sub-
stantial predictive power. Out-of-sample predictions for 3-, 6- and 12-months
ahead are generated in order to test the forecast precision. The study show that
adjusting the time series for seasonality before modeling improves the forecast
performance, and thus indicates that salmon prices exhibit seasonal movement.
However, as mentioned by Guttormsen (1999), the methodology may be im-

7
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practical to use for market participants, as it is quite complicated and likely
requires the user to have moderate knowledge within the field of statistics and
econometric.

Guttormsen (1999) presents simpler and more intuitive methods for forecasting
weekly producer prices for the Norwegian salmon market. The study uses six
easily applicable procedures, including classical additive decomposition, Holt-
Winters exponential smoothing, autoregressive moving average, vector autore-
gression, and two different naive models. The models are applied to predict 4-,
6-, 8- and 12- week ahead prices. The out-of-sample results were promising, but
the author did not find evidence of a superior model.

Sandaker et al. (2016) develop a multivariate autoregressive model for predicting
the log return transformation of the Norwegian salmon spot price (represented
by the Fish Pool Index), using ordinary least square regression (OLR) and a
forward selection algorithm for feature selection. The forward selection algo-
rithm is used to determine the best in-sample subset of lags of 37 explanatory
variables, for 1-, 2-, 3- and 4-weeks ahead forecasts. These subsets are used as
predictors in the out-of-sample test. The out-of-sample error for the log return
spot price is half of the naive forecast, and the results indicate that variables with
a fundamental relationship with the spot price have strong predictive power. In
addition, the results show that deploying feature selection techniques to shrink
the predictor space, substantially decreases the degree of over-fit, and increases
the predictive power of the model. The methodology presented by Sandaker
et al. (2016) is interesting, as it is relatively simple to implement while giving
satisfying results. However, many of the predictors used in the model are in-
tercorrelated, and Sandaker et al. (2016) points out that this makes it nearly
impossible to distinguish the individual contributions of the predictors. In ad-
dition, Wold et al. (1984) notes that in multiple linear regression, collinearities
among the independent variables can cause the estimated coefficients to be very
unstable and thereby far from their target values, which affects the models abil-
ity to consistently deliver good predictions. Lastly, it can be argued that the
methodology is only suitable for short term forecasting given the loss of long
term information due to stationarity transformation of the data (Nkoro et al.
2016).

Sandaker et al. (2017) build a database of 25 explanatory variables, and use
this to develop a 1- to 12-month ahead quantile regression prediction model for
the salmon spot price distribution. Each of the twelve month to be predicted
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were appointed a designated submodel, using 8 explanatory variables picked by
a genetic algorithm from the database. In addition, the paper presents rec-
ommended lag structures of each of the explanatory variables in the database,
based on industry assumptions. The results indicate that the genetic algorithm
quickly finds submodels with satisfying goodness-of-fit. In addition, the study
show that exogenous variables such as standing biomass, feed consumption and
prices of alternative protein, have strong predictive power over the salmon spot
price. Since the study does not include an out-of-sample test, it can be argued
that the actual performance of the applied methodology is not fully evaluated.
However, the results and the database presented in the study creates a basis for
further modeling of the salmon price.

2.1.2 Modeling and forecasting the salmon price implicitly

Although this paper focuses on the explicit modelling of salmon spot prices,
it is worth mentioning relevant research regarding implicit modelling aspects.
Oglend (2013) and Oglend & Sikveland (2008) investigated methods for model-
ing the volatility of the salmon price. These studies indicate that the volatility is
correlated with the spot price, thus resulting in higher volatility when the spot
price is high. The studies of Oglend & Sikveland (2008) indicates that the 1-
and 5- week lags of the salmon spot price log returns have predictive power. In
addition, they argue that the assumptions regarding independent and identical
distributed error terms is not necessarily a valid assumption when modelling
the salmon price. Oglend & Sikveland (2008) states that the salmon price is
characterized by seasonal patterns. The seasonal effects can among others be
explained by seasonally changing sea water temperatures and a higher demand
around Christmas. In addition, Oglend (2013) found that the salmon price has
followed an upwards trend since the early part of the last decade, due to an
overall global growth in demand for protein sources, which is likely to remain
in the future.

Asche et al. (2016) analyses the Fish Pool salmon forward contract. The authors
examine whether the forward market provides a price discovery function, and
how well the market performs in terms of the forward price being an unbiased
estimator of the spot price. The authors find that the salmon forward market has
not reached a stage where forward prices are able to predict future spot prices,
indicating that it is still immature. For our report this is relevant because it
suggests that the forward price does not provide a good forecast of the future



10 CHAPTER 2. RELEVANT LITERATURE

spot price, and should therefor not be used as an explanatory variable. Bloznelis
(2016) employ an ARMA GARCH model and a dynamic conditional correlation
(DCC) model on weekly data in order to examine the behaviour of weight-
class-specific prices. The results indicate that there are two periods of different
volatility regimes in the development of the salmon price, as the volatility and
the correlation increased from 1996-2005 and 2007-2013.

2.2 This study in the context of exciting litera-
ture

This paper utilize an autoregressive distributed lag (ARDL) model solved by
a partial least square (PLS) regression, in order to forecast the 3-, 6- and 9-
month ahead log salmon spot price. The combination of the ARDL model and
the PLS regression is noted as the ARDL-PLS model. In addition, a genetic
algorithm (GA) for feature selection is used in order to select appropriate sub-
sets of predictors from a dataset containing 61 explanatory variables. Most of
the time series used in the model are nonstationary, and in order to avoid spu-
rious regression, the set of covariates used in the model has to satisfy certain
cointegration requirements. These requirements are formulated as optimization
constraints in the GA-search for the ARDL-PLS model. In addition, the data
used in the model is based on the database and recommended lag structure
presented by Sandaker et al. (2017).

The methodology used in this paper builds on Sandaker et al. (2016), as their
approach is promising. This is due to the following aspects:

• The methodology uses a parsimonious linear regression model. The user of
a salmon price prediction model is likely to benefit on easy interpretability,
and linear regression models conform this property. In addition, decades
of professional experience suggest that simple parsimonious models tends
to be best for out-of-sample forecasting in business, finance and economics.
(Diebold 2014)

• The regression model utilize exogenous variables. As the salmon price
is characterized by cyclical movements, the use of exogenous variables
with similar cyclical movement can improve the prediction accuracy. This
because the cyclicality of these variables possibly will correlate with the
cyclical movement of the salmon price.
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• The methodology utilize a feature selection algorithm. A model with less
predictors may be more interpretable. In addition, some models are nega-
tively affected by non-informative predictors. Regression models estimates
parameters for every term in the model, thus non-informative parameters
can add uncertainty to the prediction and reduce the overall effectiveness
of the model (Kuhn & Johnson 2013). Thus, the use of feature selection
algorithms is likely to improve salmon prediction model.

However, this paper aims to improve some of the issues related to the model
presented by Sandaker et al. (2016), which are:

1. The correlation between the predictors used in ordinary least square re-
gression can result in unstable regression coefficients and difficulties re-
garding the interpretation of the predictor contribution (Wold et al. 1984).

2. The stationary transformation can remove the long term predictive power
of the time series (Nkoro et al. 2016). Therefor it can be argued that the
model is likely to perform poorly when applied to long term forecasting.
Since some applications such as salmon production planning, may require
a prediction horizon of several months ahead, the application of the model
is limited.

In an attempt to handle issue (1), the model in this paper is solved by a PLS
regression, which transforms the original predictors into uncorrelated factors
which are used in the regression. The results from Wold et al. (1984) indicates
that a PLS method gives a solution to the multiple regression problem which is
stabilized in comparison with a OLR model presented by Sandaker et al. (2016).
Issue (2) is handled by utilizing non stationary data in an autoregressive dis-
tributed lag (ARDL) framework. The results from Bentzen & Engsted (2001)
show that the ARDL framework enables both the short term and the long term
predictive relationships to be estimated consistently, so that the model can be
used to perform both short term and long term forecasts.

Except for the methodology presented by Sandaker et al. (2016), the modelling
approaches applied in literature for forecasting the salmon price is of limited
value to this study, as:

• The econometric models applied in literature differ from the one applied
in this paper, as there are few, if any, regression based methods, and non
that are specifically using PLS regression.
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• Most approaches in literature which are considering the point wise mod-
elling of the salmon spot price, only consider short term forecasting.

• No approaches which model the salmon spot price, apply exogenous vari-
ables or variable selection algorithms. ´

Salmon market participants are in need of a prediction model that is relatively
simple, and that can be used for predicting the salmon spot price over both
short and long horizons. These two aspects are both covered by my study.
The methodology in this paper is the first attempt at using PLS regression to
forecast the salmon spot price. Also, this is the first attempt at combining a
ARDL framework for predicting non stationary time series, with a PLS regres-
sion. Lastly, this paper is the first to formulate the cointegration requirements
of the ARDL model as optimization constraints in a feature selection algorithm,
in order to enable the use of large databases of non stationary time series in
regressions models.

Although past research on the salmon market is generally of limited value to
this study (excluding Sandaker et al. (2016) and Sandaker et al. (2017)), there
are a few key results that should be accounted for in the model formulation:

1. Several studies, including Gu & Anderson (1995) and Oglend & Sikveland
(2008), state that the salmon price is characterized by seasonal behaviour
due to seasonal changing sea water temperature and seasonal changes i
demand.

2. Oglend (2013) found that the salmon price follows an upwards trend, due
to a strong growth in demand for protein sources.

In order to account for these characteristics in the salmon price, trend and sea-
sonality are explicitly modelled as part of the ARDL framework presented in
chapter 4. There are however, other useful findings in literature concerning ex-
planatory variables, which could be utilized when desiding on the composition
of the dataset used in the modelling. For instance, Oglend & Sikveland (2008)
states that the 1- and 5- week lags of the salmon spot log returns have predictive
power. However, Sandaker et al. (2017) have already performed a thorough in-
vestigation of which explanatory variables, and corresponding lag structures, to
be used in prediction models for the salmon spot price. In addition, the primary
aim of this report is to investigate the usefulness of an ARDL-PLS model applied
to salmon prediction, rather than increasing the knowledge of which drivers that
affect the price of salmon the most. Consequently, I have chosen to base the
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dataset of explanatory variables used in this paper on the dataset proposed by
Sandaker et al. (2017), rather than conducting an independent analysis.
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3 | Data analysis

This chapter contains a brief overview of the time series and corresponding lag
structures to be used in the prediction model, in addition to data preprosessing
and descriptive statistics.

3.1 The NASDAQ salmon index

In this paper I develop a regression model for the point forecast of the log salmon
spot price, represented by the NASDAQ Salmon index (NQSALMON) in USD
on a monthly resolution. The NQSALMON is reported in NOK, and reflects the
weekly market spot price for Fresh Atlantic Superior Salmon, Head on Gutted
(HOG). The index is widely accepted as the best assessment of the salmon spot
prices in the market, and the index value is a volume weighted average price
across the following weight classes: 1-2 kg, 2-3 kg, 3-4 kg, 4-5 kg, 5-6 kg, 6-7
kg, 7-8 kg and 9+ kg (The Nasdaq Group Inc. 2016a). The prices are con-
verted to USD using the average NOK/USD exchange rate for Monday through
Thursday weighted 60 %, plus the Friday prior weighted 40%. This weighting
is based on the method used by NASDAQ Clearing when converting Atlantic
Superior Salmon transaction in terms of foreign currencies (The Nasdaq Group
Inc. 2016b).

3.2 The dataset

The dataset of explanatory variables used in this paper is based on the analysis
of Sandaker et al. (2017), which presents an overview of 24 exogenous time se-
ries with recommended lag structures, resulting from discussions with industry
experts. As the dataset used in this paper is directly derived from existing lit-
erature, the reader is referred to Sandaker et al. (2017) for the reasoning behind
the composition of variables and the recommended lag structure.

Table 3.1 give an overview of the explanatory variables in the database used
in this paper, and the corresponding sources. Although the database used in
this paper is based on the recommendations of Sandaker et al. (2017), I have
chosen to exclude some of the time series due to many missing values. This

15
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include the time series for shrimp prices, consumption of Atlantic Salmon in
EU, US, Russia, Japan and emerging markets, and the global harvest volume
of Salmon. Based on the results of Sandaker et al. (2017) these time series are
not significantly important for the model. In addition, the maximum allowed
lag-length for the explanatory variables used in this paper, is set to 12 months,
as the size of the dataset is relatively small (only 132 samples). Therefor, the
time series for smolt release used in Sandaker et al. (2017) is excluded, as the
recommended lag structure for this variable is 15-17 months. The database
used in this paper consists of 17 time series, including the NQSALMON. An
overview of the applied lag structure and the expected impact of each time series
(illustrated by expected coefficient sign), is shown in table 3.2. The expected
impacts of the time series are retrieved from the analysis of Sandaker et al.
(2017).

3.3 Data preprocessing

The NQSALMON and all the exogenous variables are assessed on a monthly
time resolution. For time series with weekly and daily observations, the last ob-
servation of the month is selected, and the rest is discarded. Some of the time
series contain missing values (e.g N/As, zeroes and blanks). These are replaced
by an interpolation between the prior value and the next value.

The time series are log transformed, in order to stabilize the variance, which
grow over time. Figure 3.1 and figure 3.2 shows the spot price of salmon and the
log spot price of salmon, respectively. The variance of the log spot price is more
stable, and it’s therefor the series for which we’ll build the forecast model. The
log transformation is convenient when including trends in regression models as
economic trends often are exponential in levels, and thus linear in logs. This is
further explained in the section 4.1.

As an alternative to predicting the log spot price, econometric researchers often
turn to differencing in order to transform time series into a stationary process.
However, this method tend to remove the long term predictive relationship be-
tween the explanatory variables and the response variable (Nkoro et al. 2016).
As an alternative, I will turn to the use of an autoregressive distributed lag
(ARDL) model on non stationary data, in order to include both the short term
and the long term predictive information. An important requirement for using
this model is that all explanatory variables are at most integrated of an order
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1, i.e all time series are either I(0) or I(1) (Bentzen & Engsted 2001). This is
tested by performing a unit root test, using a Augmented Dickey–Fuller test,
on the first differences of the variables in the data set. The test rejects the null
hypothesis of a unit root on a 1% confidence for the first difference of all the
time series. Consequently, all time series satisfy either I(0) or I(1).

Figure 3.1: NQSALMON Figure 3.2: Log NQSALMON

3.4 Descriptive statistics

Table 3.3 display a selection of descriptive statistics for the monthly log of the
NQSALMON and the other 16 time series used in the modelling. In addition, it
includes two stationarity tests (ADF and KPSS), an autocorrelation test (Box-
Pierce) and a normality test (JB). It can be seen that all times series yield a
significant Box-Pierce statistics indicating the presence of significant autocorre-
lation. The Jarque-Bera (JB) test rejects the null-hypothesis of normality for
11 of the 17 time series (including NQSALMON) on a 10% significance level.
Moreover, the KPSS test rejects the hypothesis of stationarity for 14 of the 17
times series (including the NQSALMON), while the Augmented Dickey-Fuller
(ADF) test confirms the null hypothesis of non stationarity for 9 of the time
series, on a 10% significance. Thus we see that the results from the two sta-
tionarity tests differ for some of the time series. It should be noted that the
ADF test is sensitive to the number of lags included which can influence the
results. It can be seen that most of the time series are significantly correlated
with the NQSALMON. However, there are some exceptions, including the feed
consumption of salmon and the Poultry index. It should be noted that the low
correlation does not necessarily imply that these time series are useless in the
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model. As will be seen in chapter 6, these low-correlated time series have lags
that exhibit high correlation with the NQSALMON.

Table 3.4 shows the correlation matrix of the explanatory variables. As can
be seen, many pair of the candidate predictors exhibit significant correlation,
including the biomass of salmon and the harvest volume of salmon (0.91), the
poultry index and the biomass of salmon (0.81), the meat price and the poultry
index (0.92). The high correlation in the data indicates that the use of PLS can
be beneficial relative to OLR, as the PLS model bypasses regression problems
related to intercorrelated predictors by using orthogonal uncorrelated factors.
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Table 3.1: Explanatory time series
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Time series, Unit Lags(s)1 Impact1

NQSALMON, USD/kg 1-2 +
Standing biomass, #Individuals (Norway) 3,6,9 -
Standing biomass, Tonnes (Norway) 3,6,9 -
Feed consumption, Tonnes (Norway) 2-4 -
Harvest volume, Tonnes (Norway) 1 -
Standing biomass of trout, #Individuals (Norway) 6,9,12 -
Standing biomass of trout, Tonnes (Norway) 6,9,12 -
Harvest volume of trout, Tonnes (Norway) 3,6,9,12 -
Sea lice occurrence, #Lice/fish (Norway) 3,12 +
Sea lice treatments, % of fish being treated (Norway) 3,12 +
Sea temperature, Degrees Celsius (Norway) 3,6 -
Meat price index, Index 3,6,9,12 +
Poultry index, Index 3,6,9,12 +
Beef price, US cents/pound 3,6,9,12 +
Currency pair, USD/EUR 6,9,12 -
Trout price, NOK/kg (Norway) 3,6,9,12 +
Average harvest weight, kg (Norway) 1 -

Table 3.2: Lag structure and expected regression coefficient signs of the ex-
planatory variables

General information1 Descriptive statistics Tests, p-value

Time series N# Mean Std. dev Min Max NQSALMON corr. KPSS ADF Box-Pierce
p=6 JB

ln[NQSALMON, USD/kg] 132 1.69 0.23 1.22 2.21 1 0.01 0.36 0 0.08
ln[Standing biomass, #Individuals (Norway)] 132 12.72 0.17 12.24 12.96 0.31 0.01 0.07 0 0.00
ln[Standing biomass, Tonnes (Norway)] 132 13.28 0.19 12.85 13.54 0.32 0.01 0.61 0 0.01
ln[Feed consumption, Tonnes (Norway)] 132 11.53 0.42 10.73 12.19 -0.01 0.01 0.01 0 0.04
ln[Harvest volume, Tonnes (Norway)] 132 11.34 0.22 10.83 11.72 0.18 0.01 0.01 0 0.05
ln[Standing biomass of trout, #Individuals (Norway)] 132 10.09 0.14 9.83 10.48 -0.59 0.62 0.71 0 0.46
ln[Standing biomass of trout, Tonnes (Norway)] 132 10.59 0.17 10.17 10.96 -0.56 0.51 0.29 0 0.83
ln[Harvest volume of trout, Tonnes (Norway)] 132 8.68 0.29 7.75 9.45 -0.32 0.1 0.04 0 0.13
ln[Sea lice occurrence, #Lice/fish (Norway)] 132 -1.68 0.63 -3.48 -0.30 -0.28 0.1 0.01 0 0.41
ln[Sea lice treatments, % of fish being treated (Norway)] 132 -2.35 0.57 -3.71 -0.87 -0.25 0.01 0.23 0 0.68
ln[Sea temperature, Degrees Celsius (Norway)] 132 2.09 0.38 1.27 2.69 -0.19 0.1 0.01 0 0.03
ln[Meat price index, Index] 132 5.11 0.13 4.78 5.36 0.27 0.01 0.69 0 0.07
ln[Poultry index, Index] 132 5.19 0.13 4.87 5.41 0.11 0.01 0.69 0 0.05
ln[Beef price, US cents/pound] 132 5.09 0.23 4.64 5.61 0.38 0.01 0.62 0 0.09
ln[Currency pair, USD/EUR] 132 -0.27 0.09 -0.46 -0.05 0.22 0.01 0.06 0 0.05
ln[Trout price, NOK/kg (Norway)] 132 3.58 0.28 2.90 4.31 0.82 0.01 0.34 0 0.66
ln[Average harvest weight, kg (Norway)] 132 1.62 0.08 1.45 1.89 -0.39 0.01 0.01 0 0.00
1 Note the choice of the time period, namely Jan. 2006 to Des. 2016, corresponding to N = 132 observations present in the table. I, however, note that the modelling dataset is of 120 observations.

Table 3.3: Descriptive statistics of the log transformed time series, time period:
Jan. 2006 – Des. 2016
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Table 3.4: Correlation matrix for the explanatory time series
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4 | Methodology

As aforementioned, the aim of this paper is to develop a combined model con-
sisting of an autoregressive distributed lag (ARDL) model and a Partial Least
Square (PLS) regression, in order to predict the h-step ahead log transformation
of the NQSALMON. More precisely, for each time step t, the aim is to construct
a model that predicts the log spot price at t+ h, where

h ∈ {3, 6, 9} = H (4.1)

Consequently, we say that the model horizon is up to 9 months. The aim of
this paper is to make a model for predicting the h-step ahead log spot price

y
(h)
t |Ft, where y

(h)
t = ln(pt+h), ∀h ∈ H (4.2)

pt+h is the value of NQSALMON (in USD) at times t + h. Ft represents the
information available at time t, which is the data available in a subset of covari-
ates up to t, i.e Ft ⊂ {x1, x2..., xt}.

The combination of ARDL and PLS is noted "the model" or "the ARDL-PLS
model". Although it might seem complicated that the model combines both
ARDL and PLS, it is rather straight forward: the ARDL model is a framework
that defines which terms to include in the regression equation, and the PLS
model comprises the algorithm that carries out the regressing and computes
the forecasts. In addition, a genetic algorithm for feature selection is applied in
order to pick a suitable subset of predictors to use in the ARDL-PLS model.

This chapter starts with introducing the ARDL framework, followed by a de-
scription of the cointegration requirements, which are necessary in order to avoid
spurious regression when using non stationary data. Next, the PLS regression
is presented, followed by a discussion on why this model is found suitable for
the application in this paper, relative to other linear and nonlinear methods.
Lastly, the genetic algorithm (GA) is presented. As aforementioned, the cointe-
gration requirements of the ARDL-PLS model are formulated as optimization
constraint in the GA-search, which restricts the GA-search to only select subset
of variables that are cointegrated with the salmon price. This modification of
the GA-search is explained in the end of the chapter.

23
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4.1 The ARDL model

The auto regressive distributed lag (ARDL) model is widely used in time-series
contexts. In this model, the response variable is explained by trend, seasonality,
lags of the response variable and lags of the explanatory variables. The ARDL
model is linear and can be solved by regression.

4.1.1 The trend component of ARDL
As aforementioned, Oglend (2013) found that the salmon price follow an up-
wards trend, due to a strong growth in demand for protein sources. Trends can
be linear or nonlinear, depending on the data to be analyzed. In order to decide
the type of trend that is most appropriate for the model, we can fit various
trend models to the relevant time series, and analyze the resulting goodness-of-
fit (Diebold 2014). Figure 4.1 shows the fit of different trend models, and table
4.1 shows the corresponding root mean square error (RMSE), which quantifies
the accuracy of the fit. An intercept is included in each trend model.

y = βln(t) βt βt2

RMSE 0.200 0.196 0.199

Table 4.1: Quality of fit for various trend models

Table 4.1 shows that it is most appropriate to use the linear trend y = βt.
Although this model only consists of linear terms, it describes an exponential
correlation with the salmon price since the variables are log transformed. This
is illustrated below.

Tt = β0e
β1t (4.3)

ln(Tt) = ln(β0) + β1t (4.4)

Exponential trends are very common in business, finance and economics, since
economic variables often display roughly constant growth rates (Diebold 2014).
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Figure 4.1: Plot of various trend models

4.1.2 The seasonal component of ARDL

As mentioned in chapter 2, several studies state that the salmon price is charac-
terized by seasonal behaviour due to seasonal changing sea water temperature
and seasonal changes in demand. Seasonality can be modeled by advanced
techniques, but it is often sufficient to regress seasonal dummy variables. The
number of dummy variables should equal the number of observation per year of
the time series (Diebold 2014). Consequently, we use 12 dummy variables as we
are dealing with monthly resolutions. The dummy variables Ds have the value 1
if and only if we are in season s, 0 otherwise. Thus D1 = 1 indicates that we are
in the first season, D2 = 1 indicates that we are in the second season etc. Since
we can only be in one season at a time, only one dummy variable is non-zero at
any time t. By multiplying each dummy variable Dit with a seasonal factor γi,
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we can model the seasonal component of the time series as:

St =

12∑
i=1

γiDit (4.5)

4.1.3 The complete ARDL model and the cointegration
requirements

By combining the expressions for trend and seasonality with the lagged values
of the response variables and the exogenous variables, we can formulate the
ARDL model. yt is the log NQSALMON at time t, xi,t−p is the p-lag of the
explanatory variable i at time t, q is the maximum lag length, and εt is the error
term. The general ARDL model can be written as:

yt = β0 + β1t+

n∑
i=1

γiDit +

q∑
t=1

φpyt−p +

n∑
i=1

q∑
t=1

θi,pxi,t−p + εt (4.6)

Findings in economic literature concerning unit root and non-stationarity, has
led to an implicit dismissal of the use of ARDL models on non-stationary data.
Instead, researchers have turned to cointegration models and error correction
models, or utilized a stationarity transformation of the data (e.g differencing)
in order to avoid spurious regressions. However, as mentioned by Bentzen &
Engsted (2001), the use of the ARDL model on non-stationary data is valid
if there exist a unique cointegrated relationship between the variables. In that
case, both the short-run and long-run relationships can be consistently estimated
by regression. To be specific, the following requirements must hold in order to
use the ARDL model on non-stationary data:

1. There exists a unique cointegrated relationship between the salmon price
and the explanatory variables

2. The explanatory variables are not cointegrated among themselves

3. The explanatory variables are exogenous

4. All variables are at most integrated at order 1

It is important to confirm that these criteria hold because the contrary can re-
sult in spurious regressions and invalid standard statistical inference (e.g t- and
F-test of linear restrictions). Requirement (4) was confirmed satisfied by the
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ADF test in section 3.3 for all time series in the dataset. Requirement (1)-(3)
are formulated as optimization constraints in the genetic algorithm, so the GA-
search is forced to only select subset that satisfy the requirements. Now follows
an explanation of how the optimization constraints are formulated.

Variables are cointegrated if a linear combination of the variables is integrated of
order 0, i.e is stationary. The Johansen analysis (Johansen 1991) can be used to
test for the number of cointegrated relationships among a set of non-stationary
variables. Let r(y,X) be the number of cointegrated relationships among the
joint set of the salmon price y, and a subset of explanatory variables X. Let r(x)
be the number of cointegrated relationships among only the subset X. Than
the corresponding cointegration constraints for requirement (1) and (2) can be
formulated as:

r(y,X) = 1 (4.7)

r(X) = 0 (4.8)
Now equation 4.7 ensures that there are exactly one cointegrated relationship
between the salmon price and the subset of explanatory variables, and equation
4.8 ensures that the subset of explanatory variables are not cointegrated among
themselves. In order to satisfy requirement (3), we must ensure that the subset
of explanatory variables are exogenous. The variables used in this paper are
assumed exogenous by Sandaker et al. (2017). However, as an extra precaution,
we utilize the Johansen α-test (Johansen 1991). In short the null hypothesis of
the test is that the variables are exogenous, and we reject this if the p-value is
below a threshold K. Let p(X) be the p-value from the α-test when conducted
on subset X of explanatory variables. Thus, to fully satisfy requirement (3) we
add the following constraint to the feature selection algorithm:

p(X) > K (4.9)

Consequently, by implementing the constraints in equation 4.7, 4.8 and 4.9, we
ensure that the cointegration requirements are satisfies for all subsets selected
by the GA-search. The Johansen analysis and the α-test are implemented in R
using the "urca" package.

4.2 The partial least square regression

The ARDL model illustrated by equation 4.6 can be solved by any linear re-
gression model, and in this thesis I apply partial least square (PLS) regression.
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Consequently, the model is noted as a combination of ARDL and PLS. This
section contains an introduction to PLS regression, as it is a novel approach
within the field of salmon prediction, and a discussion on why this model seem
to be more suitable for the application of this paper, relative to other linear and
nonlinear models.

4.2.1 Introduction to PLS
Partial least square regression (PLS) originated with Herman Wold, who pre-
sented a nonlinear iterative partial least squares (NIPALS) algorithm in 1966,
that linearized models that were nonlinear in the parameters (Wold 1966). Later
he adapted NIPALS to a regression setting that involved correlated predictors,
and named the method "PLS". The NIPALS algorithm aims to identify un-
derlying relationships among the predictors, in the form of factors, which are
highly correlated with the response variable (Kuhn & Johnson 2013).

PLS regression seek to minimize the sum of squared errors (SSE), which is
showed in equation 4.10. Each iteration of the algorithm investigates the re-
lationship between the predictors X and the response Y, and summarizes the
relationship in a vector of weights W. The predictor data is orthogonally pro-
jected onto the vector of weights, which creates scores t. The scores are used to
generate loadings p, which measure the correlation of the score vector and the
original predictors. To simplify, one can imagine the loadings as vectors that
describe how the latent variable space is connected to the original predictor
space, while the scores describe the position of each sample in the latent vari-
able space. These quantities, in addition to the weights, are stored sequentially
in matrices W, T and P, and are needed for predicting new samples. In the end
of each iteration, the predictors and the response are "deflated" by subtract-
ing the information explained by the current estimated structure, thus the next
generated loadings and scores only seek to model the remaining unexplained
variance between the predictor and the response. The PLS regression has one
tuning parameter, which is the number of components to use. In order to tune
the model we use cross validation, which is explained in the chapter 5, as this is
the most common tuning technique for PLS-models (Kuhn and Johnson, 2016).
Now follows a discussion on why I consider PLS to be the most suitable model
for salmon price prediction.

SSE =

n∑
i=1

(yi − ŷi)2 (4.10)
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4.2.2 Alternatives to using PLS regression
The "family" of linear regression models include ordinary linear regression (OLR)
and factor models like partial least square regression (PLS) and principal com-
ponent regression (PCR). The most common linear model, and the one used by
Sandaker et al. (2016), is OLR. Like PLS, the objective of the OLR is to find a
plane that minimizes the sum of squared errors between the observed and the
predicted response. Let X be the matrix of predictors. It can be shown that
the optimal regression coefficients are:

β = (XTX)−1XT y (4.11)

It is common in time series analysis that predictors are correlated and contain
similar predictive information. If the correlations are high, the OLR solution for
multiple linear regression will have high variance and become unstable. Com-
mon solutions to this problem include pre-processing the predictors by either
(1) removing highly correlated predictors or (2) conducting principal component
analysis (PCA) on the predictors. The removal of highly correlated predictors
ensures that the pairwise correlations among all predictors are below a pre-
specified threshold, but does not ensure that a linear combination of predictors
are uncorrelated with other predictors. If this is the case, the OLR-solution will
still be unstable. In addition, we lose our ability to meaningfully interpret the
coefficients, since the coefficients used in the prediction are not unique (they
depend on which predictors that are removed). PCA transforms the predic-
tors into orthogonal predictors (factors) which are uncorrelated. The method of
pre-processing predictors via PCA prior to performing regression, is known as
principal component regression (PCR). The PCA creates factors on the aim of
maximizing the explained variance among the predictors. However, if the vari-
ability in the predictor space is not related to the response variable, the PCR
can have problems with identifying a predictive relationship (Kuhn & Johnson
2013). Like PCR, PLS creates linear combinations of the predictors. However,
while PCR creates components only on the basis of maximizes the explained
variance of the predictors, PLS also requires that the components have maxi-
mum correlation with the response which makes the components from PLS more
relevant for predicting the response variable. Since PLS handles the issue of col-
inearity among predictors found in OLR, in addition to creating more promising
factors than PCR, it is the method applied in this paper.

Although the PLS model seem to be the most promising linear model, one could
be tempted to apply one of the more complex nonlinear models instead. Kuhn
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& Johnson (2013) presents several nonlinear regression models, including neural
networks, k-nearest neighbours and random forest. When including nonlinear-
ity in a linear model, additional predictors that are functions of the original
predictors must be added directly in an attempt to capture curvilinear relation-
ships, while in nonlinear models the exact form of the nonlinearity does not
need to be known explicitly or specified prior to model training. However, al-
though nonlinear models are theoretically able to capture a much wider span of
relationships between the predictors and the response compared to linear mod-
els, decades of professional experience suggest that simple parsimonious models
tends to be best for out-of-sample forecasting in business, finance and economics
(Diebold 2014). A distinct advantage of linear models is that they are highly
interpretable. This makes it simple to analyze each predictors contribution to
the response variable, as it can be done by evaluating the regression coefficients.
Another consequent of the parsimony, is that it is easy to get a precise estimate
of each parameter in the model. Lastly, enforcing simplicity reduces the scope
of "data mining", i.e enforcing the model to maximize the fit to historic data.
Data mining tends to tailor models in part to the idiosyncrasies of historical
data, which have no structural relationship to unrealized future data, which in
turn results in miserable out-of-sample forecasts (Diebold 2014). Due to the
above-mentioned arguments, I have chosen to use a parsimonious PLS regres-
sion instead of a complex nonlinear model.

4.3 Feature selection

A model with less predictors may be more interpretable. In addition, some
models are negatively affected by non-informative predictors. Regression mod-
els estimates parameters for every term in the model, thus non-informative
parameters can add uncertainty to the prediction and reduce the overall effec-
tiveness of the model. Kuhn & Johnson (2013) conducted an empirical study on
the consequences of using non informative predictors in several different mod-
els, and the results indicated that PLS models are highly sensitive to over-fit
when the predictor space becomes large, which makes it beneficial to use feature
selection prior to model building. Another important benefit of using feature
selection for the application in this paper, is that we can instruct the algorithm
to only select subsets of explanatory variables that satisfy the cointegration re-
quirements. This enables the use of large datasets containing non stationary
time series in regression modelling, without the need to manually discover and
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remove subsets that violates the cointegration requirements.

As aforementioned, a genetic algorithm (GA) is applied as feature selection tool
for the application of this paper. The GA-search selects a subset of explana-
tory variables to be used as covariates in each ARDL-PLS submodel, and the
selected subsets are constrained to satisfy the cointegration requirements pre-
sented in section 4.1.3. This section contains a general presentation of the GA,
and a description of how it is modified in terms of parameter tuning and the
implementation of the cointegration constraints. Lastly, I include a discussion
on why I consider the GA-search to be superior for the application of this paper,
relative to other variable selection methods.

4.3.1 The genetic algorithm

Feature selection can be viewed as a complex optimization problem, where we
seek the combination of features that provides optimal prediction of the re-
sponse variable. Genetic algorithms (GA) are heuristics, which imitate the
evolutionary process by allowing a population (a set of solutions) to reproduce,
in order to create children (new solutions) that compete to survive. The most
fit children are allowed to reproduce, which creates the next generation. Each
solution is represented as a chromosome, which is a string of genes. To create
the next generation of children, two chromosomes reproduce through crossover
and mutations. When applied to a feature selection setting, each chromosomes
is a binary vector, where each gene represents the presents or absence of a par-
ticular predictor. The fitness of each chromosome is determined by the model
using the predictors indicated by the binary vector. The most fit chromosome
is the subset of predictors that result in the most accurate predictions (Kuhn &
Johnson 2013).

GAs are initiated with a random population of chromosomes. The fitness of
each chromosome is evaluated, which determines the chromosome’s probability
of participating in reproduction. Pairs of chromosomes from the population are
picked to reproduce. The cross over face consists of splitting the parents chro-
mosomes at a random position, before combing the head of one parent with the
tail of the other parent and vica versa. This results in two children per couple
of parents. After crossover, the individual entries of the new chromosomes can
be randomly selected for mutation in which the current binary value is changed
to the other value. The crossover phases drives the subsequent generations to-
wards the subspace defined by the most fit chromosomes, which can make the
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algorithm getting trapped in a local optimum. In order to prevent this from
happening, the mutation phase is included which randomly perturbs the genes
(Kuhn & Johnson 2013). A pseudo-code for the feature selection GA used in
this paper is shown below. The code is based on the algorithm used the R-
package "gaselect".

Genetic algorithm

1. Define the number of generations (numGenerations), size of each popula-
tion (populationSize), and probability of mutation (mutationProbability)

2. Generate an initial random set of populationsSize binary chromosomes,
each of length p

3. for i = 1...numGenerations do

(a) for each chromosome do

i. Compute each chromosome’s fitness

(b) end

(c) for k = 1...populationsSize/2 do

i. Select two chromosomes based on the fitness criterion
ii. Crossover: Randomly select a loci and exchange each chromo-

zome’s genes beyond the loci
iii. Mutation: Randomly change binary values of each gene in each

new child with probability mutationProbability

(d) end

4. end

GA input parameters

The parameters settings used in the GA are shown in table 4.2, and are based
on a combination of initial testing and recommendations from Obitko (2014).
The number of iterations and the population size are set sufficiently high in
order to increase the probability of finding the global optimum. Note that the
mutationProbability, which normally is set to ≤ 1, is set to 2. This is done
to increase the probability of the GA finding valid solutions, as the number of
valid solutions are drastically reduces by the cointegration constraints.
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Parameter Value Description

Population size populationSize= 400
The number of chromosomes in each population. A small population
creates a small search space, while a large population slows down the convergence
time

Generations/Iterations numGenerations =400 The number of new populations created, i.e the number of iterations of the algorithm.
Cross over crossover = "single" Defines the way parent chromosomes are combined in order to create new offsprings.

Elitism elitism = 9 Copies the best chromosomes to the next generation, in order to prevent loosing the best found solution.
It is found that elitism rapidly increases the performance of the GA.

Mutation probability mutationProbability=2 Randomly changes the genes of new offsprings in order to prevent the GA from falling into local
optimums.

Table 4.2: Parameter settings for the GA-search used by the ARDL-PLS model

Lastly, the GA requires a specification of the maximum number of variables
to be selected for each solution. Multiple studies have shown that regression
models are more likely to be reliable if the number of predictors p is less than
T/10 or T/20 (Harrell 2015). The intuition is that the more degrees of freedom
used by the predictors, the easier it is for the model to adjust these variables to
random patterns in the data, thus creating overfit. This is especially relevant
for the application in this paper, as financial time series are low signal-to-noise
environments. Taking the risk of overfit seriously, I choose to use p = T/20,
which results in a maximum of 6 predictors per submodel.

GA fitness evaluation

The tasks of the feature selection algorithm is to find a subset of predictors that
maximize the performance of each PLS-ARDL submodel. However, the time
series used in the subset must satisfy the cointegration requirements presented
in section 4.1.3, in order to avoid spuriosity. In order to ensure the fulfillment of
the cointegration requirements, the fitness function of the GA backtracks which
of the original 16 exogenous time series are used in the subset, and checks if
these time series together satisfy the requirements. If this is the case, the PLS
model is trained on the chosen subset of lagged variables, and the corresponding
training SIC value is calculated and used as the fitness value of the solution in
the GA-search. If the subset of variables found by the genetic variable does not
satisfy the cointegration requirements, the fitness value is set to 0. The SIC
criteria is a metric that punishes the in-sample RMSE to reflect the degrees of
freedom used. This is in order to compute a subset of predictors that results in
a satisfying in-sample performance while maintain the parsimony of the model.
SIC is the recommended model selection metric of Diebold (2014), and can be
expressed as:

SIC = T
K
T

∑T
t=1 e

2
t

T
(4.12)
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Where T is the sample size of the train set, K is the number of parameters
estimated by the model, and et are the residuals from the model training.

The cointegration requirements mentioned in section 4.1.3 are:

1. The number of cointegrated relationships among the joint set of the salmon
price y and the subset X of explanatory variable, r(y,X), must equal to
1.

2. The number of cointegrated relationships among the subset X of explana-
tory variable, r(X) must equal to 0

3. The explanatory variables must be exogenous.

Requirements (1) and (2) are checked by conducting a Johansen test, and re-
quirement (3) is checked by conducting an α-test. The testes are run within the
fitness function of the genetic algorithm and conducted on a 5% significance.
An overview of the fitness evaluation within the GA is shown below, where S
is a subset of explanatory variables, and OS is the corresponding backtracked
original exogenous time series. r(y,OS), r(OS) and p(OS) are the constraint
values of the ARDL restrictions.

Finess evaluation of subset S

1. Backtrack the set OS of original time series used in the subset S

2. if r(y,OS) = 1, & r(OS) = 0, & p(OS) ≥ K

Fitness = 1
SIC , computed on subset S

3. else

Fitness = 0

4. return Fitness

Note that the term 1
SIC is used because the genetic algorithm seek to maximize

the fitness function, while we want to minimize the SIC-value.
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4.3.2 Alternative methods for feature selection

There are in general two types of feature selection methods, filters and wrappers.
Wrappers are algorithms that add and remove predictors to the forecast model
in order to find the subset of predictors that result in the best model fit. Filter
methods evaluate each predictor on the basis of a criteria before the model is
solved, thus the actual affect on the predictive accuracy is not included in the
algorithm. A typical filter criteria is that the correlation between the predictor
and the response must be above a defined threshold in order for the predictor to
be included in the model (Kuhn & Johnson 2013). Filter methods are usually
more computational efficient than wrapper methods, but the selection criteria
is not directly connected to the model performance. As we aim to find a par-
simonious set of important covariates to include in the model, wrappers seems
most appropriate.

Although there exists many wrappers, I have limited this discussion to forward
selection, backwards selection and genetic algorithms. Forward selection is con-
sidered to be one of the most common form of wrappers, and is applied by
Sandaker et al. (2016). A classical forward selection evaluates the predictors,
by using a statistical hypothesis test, in order to see if each newly added pre-
dictor is statistically significant. If at least one predictor has a p-value below
the threshold, the predictor associated with the smallest value is added to the
model and the process starts again. The reader is referred to Kuhn & Johnson
(2013), for an elaboration. This method has several issues, including (1) the
procedure is greedy meaning it does not reevaluate past solutions, (2) the use
of repeated hypothesis tests in this manner invalidates many of their statisti-
cally properties as the same data is being evaluated many times, and (3) the
optimization criteria is not directly linked to model performance. Backwards
selection is a common modification of the forward selection, in order to reduce
the problems regarding greediness. The algorithm starts with all predictors,
and then iteratively removes predictors in order to determine which are not
significantly contributing to the model. The algorithm starts with sorting the
predictors with respect to an importance measure. A threshold is applied in
order to eliminate the least important variables. Then the model is fitted to
the remaining predictors, and the performance is measured. The procedure is
repeated until maximum model performance is achieved. Although backwards
selection makes the search procedure less greedy than the forward selection, it
exacerbates the problem of repeated hypothesis testing (Kuhn & Johnson 2013).
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Repeated hypothesis testing is not an issue in genetic algorithms, as it uses
fitness scores to evaluate solutions, which is obtained directly by calculating the
corresponding goodness-of-fit. In addition, Ga’s search parallel from a popu-
lation of points. Therefore, it has the ability to avoid being trapped in local
optimal solution, in contrast to traditional methods which search from a sin-
gle point. Lastly, genetic algorithms have been shown to be effective feature
selection tools in the fields of chemometrics, image analysis and finance (Kuhn
& Johnson 2013). As the research on applying genetic algorithms for feature
selection looks promising, and less complex wrappers have already been applied
in the context of salmon spot price prediction, I use a genetic algorithm in this
paper.



5 | Model implementation
and validation techniques

This chapter describes the whole implementation process of the ARDL-PLS
model, covering everything from data transformation to performance evalua-
tion. As mentioned earlier, the ARDL-PLS model is compared to an OLR
model, where the latter model is based on the methodology by Sandaker et al.
(2016). Therefor this chapter also contains a description of the implementation
process of the OLR model. Lastly, the most important performance metrics and
validation techniques are presented.

5.1 Model implementation

The model implementation is computationally demanding, as the GA-search has
to be run for each submodel of both the OLR model and the ARDL-PLS model.
Consequently, only the h ∈ {3, 6, 9}-step ahead forecast are computed. It would
be optimal to compute the 1- to 12-step ahead forecasts, but due to time restric-
tions I had to limit the model testing. However, the horizons h ∈ {3, 4, 5} have
the same available candidate predictors resulting from the lag constraints. The
same yields for h ∈ {6, 7, 8} and h ∈ {9, 10, 11}. Thus, despite the fact that the
model testing only covers h ∈ {3, 6, 9}, it can be argued that the results give a
suitable indicator of the models general ability to forecast both short term and
long term.

As explained in chapter 4, the GA-search is not guaranteed to converge, which
can make the optimal subset selected by the GA-search to vary between runs.
Consequently, in an attempt to reduce randomness in the model performance
evaluation, the implementation process is performed 5 times for each submodel
in order to test the consistency of the models. This is done for both the ARDL-
PLS model and the OLR model.

5.1.1 Implementation of the ARDL-PLS model
In short, the modelling procedures involves the creation of candidate predictors,
followed by the selection of a subset of predictors for each horizon h, followed by
the training and tuning of the corresponding submodel for each horizon h, and

37



38CHAPTER 5. MODEL IMPLEMENTATIONAND VALIDATION TECHNIQUES

finally the out-of-sample testing. This procedure is run 5 times. The procedure
for each run r can be summarized in the following steps:

1. 17 time series (including the salmon price) are log transformed and lagged
according to table 3.2 in chapter 3. In addition 1 trend variable and 12
seasonal dummy variables are created. These variables comprise a set of
61 candidate predictors and make up the relevant information set Ft.

2. The total set of sample points is divided into SI and SO, representing the
respective in-sample set and out-of-sample set, for the prediction of the
h-step ahead log NQSALMON. SI consist of 80% of the total samples,
and SO consist of 20% of the total samples.

3. An ARDL-PLS model is applied to create a forecast of the h-step ahead
log NQSALMON. In order to determine the U most relevant predictors
for each horizon h, a variable selection algorithm is utilized on the training
set SI . That is, for each h ∈ H:

(a) A genetic algorithm for feature selection is used to determine which
subset of predictors that results in the lowest in-sample prediction
error. The size of the subset can vary between 4 and 6 variables,
thus U ∈ {4, 5, 6}. The performance of each subset is evaluated
by fitting a PLS model and computing the resulting SIC value, in
accordance with the GA’s fitness function illustrated in section 4.3.1.
The cointegration constraints in the fitness function ensures that the
selected subset satisfy the cointegration requirements of the ARDL
model.

(b) The results from the GA algorithm is a subset of predictors that will
be applied as covariates for the submodel for horizon h.

4. Now |H| = 3 ARDL-PLS submodels are trained and tuned, using the
training set SI and the selected covariates from the GA-search. The model
tuning consist of selecting the optimal number of PLS-components for each
submodel, based on cross-validation.

5. The 3 submodels are used to predict the test set SO, and the resulting
out-of-sample predictions are evaluated and compared to the OLR model.
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Figure 5.1: Overview of the h-step ahead log ARDL-PLS prediction model

5.1.2 Implementation of the OLR model
Now follows a description of the implementation process of the OLR model. As
mentioned in chapter 3, all the time series in the dataset are at most integrated
at order 1. Consequently, since the OLR model applies log return transformed
data, non stationarity and spurious regression is not an issue.

The OLR model consider the prediction of the h-step ahead log return trans-
formation of the NQSALMON. More precisely, for each time step t, the aim is
to construct a model that predicts the log return spot price at t+ h, where

h ∈ {3, 6, 9} = H (5.1)

The aim is to make a model for predicting the h-step ahead log return spot price

y
(h)
t |Ft,where y

(h)
t = ln(pt+h)− ln(pt), ∀h ∈ H (5.2)

pt is the value of NQSALMON (in USD) at time t. Ft represents the informa-
tion available at time t, which is the data available in a subset of covariates up
to t, i.e Ft ⊂ {x1, x2..., xt}.

The implementation of the OLR model is very similar to the ARDL-PLS model.
The main differences are that the applied time series are log return transformed,
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and that there is no model tuning required as the OLR model has no tuning
parameter. In addition, the fitness function of the genetic algorithm applied
for the OLR model does not contain cointegration constraints. An overview of
the fitness function for the genetic algorithm used in the OLR model can be
found in appendix A.2. In short, the modelling procedures involves the creation
of candidate predictors, followed by the selection of a subset of predictors for
each horizon h, followed by the training of the corresponding submodel for each
horizon h, and finally the out-of-sample testing. This procedure is run 5 times,
and each run can be summarized in the following steps:

1. 17 time series (including NQSALMON) are log return transformed and
lagged according to table 3.2 in chapter 3. These variables comprise a set
of 48 candidate predictors and make up the relevant information available
in Ft.

2. The total set of sample points are divided into SI and SO, representing
the respective in-sample set and out-of-sample set for the prediction of
the h-step ahead log return NQSALMON. SI consist of 80% of the total
samples, and SO consists of 20% of the total samples.

3. A multivariate ordinary linear regression (OLR) model is applied to cre-
ate a forecast of the h-step ahead log return NQSALMON. In order to
determine the U most relevant predictors for each horizon h, we utilize
a variable selection algorithm on the training set SI . That is, for each
h ∈ H:

(a) A genetic algorithm for feature selection is used to determine which
subset of predictors that results in the lowest prediction error. The
subsets are restricted to a maximum of 6 predictors. The performance
of each subset is evaluated by computing the corresponding in-sample
SIC value of the model.

(b) The result from the GA-search is a subset of predictors that will be
applied as covariates in the OLR model for horizon h.

4. Now |H| = 3 OLR submodels are trained, using the training set SI and
the selected predictors from the genetic algorithm.

5. The 3 submodels are used to predict the test set SO, and the results are
transformed back to log-values and compared to the results of the ARDL-
PLS model
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Figure 5.2: Overview of the h-step ahead log return OLR prediction model

5.2 Model evaluation

Now follows a presentation of the metrics and methods used to evaluate the
performance of the models.

5.2.1 Measures of forecast accuracy

In this thesis, the root mean square error (RMSE) and the coefficient of deter-
mination (R2) are the applied measures of forecast accuracy. In the context
of point forecast models, RMSE is the most common method for evaluating a
model’s predictive capabilities. The value can be interpreted as the average dis-
tance between the observed values and the models predictions (Kuhn & Johnson
2013). R2 describes the proportion of the variation in the dataset that is ex-
plained by the model. The simplest way of calculating the R2 is to square the
correlation between the observed and predicted values (Kuhn & Johnson 2013).
Let yt denote the tth observation of the target variable, and let ŷt denote a
forecast of yt.

RMSE =
1

T

T∑
t=1

[yt − ŷt] (5.3)

R2 = 1−
∑T
t=1[yt − ŷt]∑T

t=1[yt −mean(y)]
(5.4)
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The ARDL-PLS model will be compared to the performance of the naive model,
which is an estimating technique using the present actuals as the next periods
forecast. The naive h-step ahead forecast can be expressed as:

ŷt+h = yt (5.5)

In addition, an ARIMA(1,1,0) model will be used as benchmark. The tuning of
the ARIMA model is based on Hyndman-Khandakar algorithm for automatic
ARIMA modelling presented by Hyndman & Athanasopoulos (2014a). The
reader is referred to appendix A.3 for an elaboration on the ARIMA model.

5.2.2 Residual diagnostics

Hyndman & Athanasopoulos (2014a) mentions two essential characteristics of a
good forecast: the residuals need to be uncorrelated and have zero mean. If the
residuals have a non zero mean, the forecast is biased. If there are correlation
between the residuals, there is information left that can be used for improving
the forecast. Hyndman & Athanasopoulos (2014a) also mentions that constant
variance and normal distributed residuals are useful properties. However, these
properties are only required when computing prediction intervals, which is out-
side the scope of this report. The residual mean is assessed visually by analyzing
the residual plot. Autocorrelation is detected by analyzing the ACF plots, and
the residual plots. As mentioned in chapter 4, it is essential that the residuals of
the ARDL-PLS model are stationary in order to confirm that the explanatory
variables cointegrate with the response variable. Although a Johansen test is
included in the genetic algorithm in order to obtain cointegration among the
selected variables, unit root tests are performed on the residuals as a second
safety measure. The tests used are ADF and KPSS. The unit root tests are
only performed on the residuals from the cross validation of the training set, as
the size of the test set is very limited.

5.2.3 Validation techniques

A model’s predictive abilities can only be determined by considering how well
the model predicts data that was not used during the fitting-process. Two of
the most widely used procedures for evaluating regressions models are: K-fold
cross validation (CV) and out-of-sample (OOS) evaluation. As mentioned in
section 5.1.1, CV is used to tune the ARDL-PLS model, and OOS evaluation
is used to test the models predictive performance. Now follows a description of
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the two validation techniques.

OOS evaluation consists of using a portion of the available data for fitting the
model, and using the rest for testing the model. Consequently, the predictive
performance on the test data indicates the model’s ability to forecast new data.
It is important to consider the appropriate share of samples that should be
withheld for model testing. By enlarging the train set, the model fit can improve
but the empirical basis of the model testing decreases, and vice versa. Hyndman
& Athanasopoulos (2014a) generally recommends a test set size that amounts
to 20% of the total data. Consequently, I use 20% of the total samples for the
model testing in this paper. Cross validation can be vied as a more sophisticated
version of the OOS evaluation. In K-fold cross validation, the samples are
randomly partitioned in K equal sized subset. A model is fit using all samples
except the first subsets. The held-out samples are predicted by the model, and
the performance is evaluated. This procedure is repeated for all subsets, and
the K performance measures are averaged. The choice of K is usually 5 or 10,
but there is no formal rule. I have chosen to use 20 folds as results from initial
testing indicate that this gives stable performance throughout different runs of
the model. It should be noted that the results of the cross validation should
not be used as basis when evaluating the ARDL-PLS model’s ability to predict
new data. This is because the cross validation is performed on the same data
as used by the GA search, which can result in an overly optimistic result (Kuhn
& Johnson 2013). As some researchers are critical to the use of cross validation
on time series, I have included a discussion on this topic in appendix A.4.
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6 | Results and discussion

This chapter presents the results from the implementation of the ARDL-PLS
model, including the GA-search, the model tuning and the out-of-sample test-
ing. The results from the out-of-sample testing of the ARDL-PLS model are
compared to the results from the OLR model, the naive model and the ARIMA
model. The reader is referred to appendix A.2 for details about the OLR model
regarding selected variables from the genetic algorithm and the corresponding
regression coefficients. Lastly, an overview of the ARIMA model coefficients can
be found in appendix A.3.

It is important to specify that the results presented in this chapter are not made
on a complete empirical basis, as the implementation of the ARDL-PLS model
and the OLR model are computed for only 5 runs of the genetic algorithm. Thus,
it can not be denied that the prediction accuracy can vary when the algorithm
is rerun, as other subset of predictors can be selected which results in differ-
ent out-of-sample performances. Optimally we would run the GA-search many
times for each forecast horizon in order to get an overview of the consistency of
the results of each model. However, the genetic algorithm is computationally
demanding and it needs to be run for both the ARDL-PLS model and the OLR
model, which is time consuming. Due to computational difficulties and limited
available time, the scope of the model testing is restricted.

Lastly, we need to distinguish between submodels corresponding to different
runs and different horizons, as the GA-search is run 5 times for each forecast
horizon. Thus, we let the notation r = k, h = l refer to the submodel that
results from run k of the GA-search, and that conducts the l -step ahead fore-
cast. In addition, the term intra-horizon variance refers to the variance between
submodels that forecast the same horizon.
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6.1 Variable selection for the ARDL-PLS model

This section contains the results of the GA-search for the ARDL-PLS model.
The aim of the GA-search is to evaluate the set of p = 61 candidate predictors
and select subsets of U ≤ 6 variables to be used as covariates for the submodels
across the three horizons H = {3, 6, 9}. The GA-search, which is tuned accord-
ing to the settings displayed in section 4.3.1, is run 5 times for each horizon
h ∈ {3, 6, 9}. Figure 6.1, presents a visualization of the development of the
per-generation performance of the GA-search for the first run of each horizon.
More specifically, the figure shows the best fitness value (i.e smallest SIC-value)
for each of the 400 generation of the GA-search. As evident from the plot, the
improvement in fitness value (i.e reduction in the SIC value) is very small after
200 generations for r = 1, h = 3 and r = 1, h = 6, and after 100 generations for
r = 1, h = 9, indicating that the algorithm is close to convergence. The sub-
model r = 1, h = 9 requires the fewest number of generations before converging,
which is likely to result from the fact that this submodel has a smaller set of
candidate predictors to select from, due to the aforementioned lag constraints.
The fact that the algorithm is close to convergence, does not necessarily imply
that it is close to the global optimal solution, as it may very well be trapped in
a local optimum. However, by experimentally varying the parameter settings
and running the GA several times, I have found that the solutions are generally
close to the global optimum. Lastly, it can be seen that the earliest generations
of the GA-search have a fitness score of 0. This is because the best solutions
corresponding to these generations do not satisfy the aforementioned cointegra-
tion constraints.

The selected variables to be used as covariates in the submodels corresponding to
run r ∈ {1, 2, .., 5} and horizon h ∈ {3, 6, 9}, are presented in table 6.1. Empty
cells for a particular submodel (for some horizon h) imply that the use of the
variable is not allowed due to lag constraints. In total, 7 of the original 17 ex-
planatory times series have been utilized as covariates in at least one sub model.
In addition, the trend variable is used. We see that the intra-horizon variation in
selected predictors is relatively small. For instance, submodel r = 2, h = 9 and
r = 5, h = 9 use the same predictors. It can be seen from the overview of regres-
sions coefficients of the final tuned submodels in appendix A.1 that these models
are actually identical, i.e they have identical regression coefficients. This can
result from the fact that the cointegration constraints in the genetic algorithm
drastically reduces the number of valid subsets, which increases the possibility
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Time series, Unit
Lags1

h=3 h=6 h=9

r=1 r=2 r=3 r=4 r=5 r=1 r=2 r=3 r=4 r=5 r=1 r=2 r=3 r=4 r=5

Trend-variable2 - - - - - - - 1 1 - 1 1 1 1 1
Seasonal dummy variables - - - - - - - - - - - - - - -
NQSALMON, USD/kg
Standing biomass, #Individuals (Norway) 6 6 - - 6 6 6 - - 9 - - - - -
Standing biomass, Tonnes (Norway) - - - - - - - - - - - - - - -
Feed consumption, Tonnes (Norway) - - - - -
Harvest volume, Tonnes (Norway)
Standing biomass of trout, #Individuals (Norway) - - - - - - - - - - - - - - -
Standing biomass of trout, Tonnes (Norway) 6 6 6,9 6,9 - 12 6 9,12 12 12 9 9 9 9 9
Harvest volume of trout, Tonnes (Norway) - - - - - - - - - - - 9 12 9 9
Sea lice occurrence, #Lice/fish (Norway) - - - - - - - - - - - - - - -
Sea lice treatments, % of fish being treated (Norway) 12 3 3 12 12 12 12 12 12 12 12 12 12 12 12
Sea temperature, Degrees Celsius (Norway) - - - - - - - - - -
Meat price index, Index 6 6 6 6 6 6 6 6 6 6 9 9 9 12 9
Poultry index, Index 6 6 6 6 6 6 6 6 6 6 9 9 9 9 9
Beef price, US cents/pound - - - - - - - - - - - - - - -
Currency pair, USD/EUR - - - - - - - - - - - - - - -
Trout price, NOK/kg (Norway) 3 3 3 3 3 6 6 - 6 6 - - - - -
Average harvest weight, kg (Norway) - - - - - - - - - -

1 All lags are denoted relative to the horizon being forecasted.
To get the number of lags relative to the forecasters point of view, subtract by h months for any horizon h

2 1 indicates that the trend variable is included

Table 6.1: Overview of the ARDL-PLS covariates, with corresponding lags,
employed for each submodel

of the same predictors being selected in multiple runs. It can also be seen that
the GA tends to select the same predictors for different forecast horizons. For
instance, the trend variable is the only covariate that is utilized in the submod-
els for h=6, but is not used in the submodels for h=3. Generally, the GA’s
tendency to select the same variables for different runs and different horizons,
indicate that the algorithm is relatively stable and close to convergence.

It is somewhat surprising that the seasonal dummy variables are not used as
covariates in any of the submodels, as former research indicate that the inclusion
of seasonality increases the forecast accuracy of salmon price models. However,
some of the exogenous variables used in the model, such as the trout price,
are likely to have the same seasonal properties as the salmon price, which can
correlate with the salmon price is a manner that makes the seasonal dummy
variables excessive.
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Figure 6.1: Plot of GA fitness evaluation scores for the first run of the ARDL-
PLS submodels

6.2 Tuning the ARDL-PLS model

This section contains the results from the cross validation of the ARDL-PLS
model, and the corresponding model tuning. As aforementioned, the ARDL-
PLS submodels are trained and cross validated using the covariates selected by
the GA-search. The aim of the cross validation is to decide the tuning parame-
ter, i.e the number L ≤ 6 PLS-components to use in each submodel. The results
from the cross validation of the sub-models are shown in table 6.2. Empty cell
indicate that the relevant number of PLS-components is constrained by the
number of predictors selected by the genetic algorithm.

RMSE is used as the performance measure for choosing the number of PLS-
components to use in the submodels. More specifically, the submodels are tuned
according to the number of PLS-components that result in the lowest RMSE-
value. An alternative would be to use R2. However, the R2 is a measure of
correlation not accuracy. In addition the R2 has a tendency to not properly
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Submodels PLS-components Optimal11 comps 2 comps 3 comps 4 comps 5 comps 6 comps

h=3

r=1 0.1912 0.1733 0.1615 0.1518 0.1460 0.1419 6
r=2 0.2019 0.1757 0.1559 0.1531 0.1466 0.1417 6
r=3 0.2053 0.1825 0.1658 0.1633 0.1608 0.1514 6
r=4 0.1921 0.1753 0.1689 0.1620 0.1597 0.1528 6
r=5 0.1947 0.1759 0.1668 0.1629 0.1591 5

h=6

r=1 0.1975 0.1881 0.1782 0.1652 0.1536 0.1519 6
r=2 0.1974 0.1860 0.1718 0.1609 0.1509 0.1511 5
r=3 0.1963 0.1887 0.1846 0.1836 0.1723 0.1628 6
r=4 0.1970 0.1916 0.1920 0.1931 0.1824 0.1722 6
r=5 0.1980 0.1920 0.1916 0.1885 0.1859 0.1789 6

h=9

r=1 0.1966 0.1885 0.1857 0.1794 0.1725 5
r=2 0.1972 0.1922 0.1938 0.1877 0.1853 0.1786 6
r=3 0.1992 0.1919 0.1948 0.1905 0.1844 0.1767 6
r=4 0.1959 0.1894 0.1919 0.1876 0.1889 0.1881 4
r=5 0.1975 0.1899 0.1906 0.1872 0.1815 0.1742 6

1 Number of PLS-components used in the tuned ARDL-PLS submodels

Table 6.2: Overview of the cross validated RMSE-values computed for 1 to 6
PLS-components, and the optimal number of PLS-components, employed for
each submodel

punish models that overpredict low values and underpredict high values (Kuhn
& Johnson 2013). Consequently RMSE is utilized. As mentioned before, the
results of the cross validation is not a good indicator of the model’s ability to
predict new data, as it is based on the same data as used in the variable selec-
tion. Thus, only the out-of-sample results, which are presented in section 6.5,
should be used to evaluate the model performance.

It can be seen from table 6.2 that it is optimal in most cases to use all available
PLS-components. The fact that most of the submodels utilize all available PLS-
components, give a general indication that the covariates selected by the GA
contain strong predictive power. The exceptions are the cases for r = 2, h = 6
and r = 4, h = 9, where it is optimal to leave out 1 component and 2 components
respectively. For these cases, a share of information in the covariates are left
unused as the results from the cross validation indicates that the inclusion of
this information decreases the signal-to-noise ratio of the data. Generally, the
RMSE-values are relatively similar for submodels corresponding to the same
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horizon, which indicates that there is low intra-horizon variance in the optimal
fitness function of the GA-search. It can be seen that the identical submodels
r = 2, h = 9 and r = 5, h = 9 do not have the same RMSE-values. This
is because the cross validation algorithm randomly partitions the dataset into
folds. If the folds are not identical, the RMSE-values corresponding to these
models can differ although they have identical regression coefficients.

6.3 The regression coefficients of the ARDL-PLS
model

The regression coefficients of the tuned ARDL-PLS submodels can be found
in appendix A.1. Following is an analysis of the regression coefficients for the
submodels corresponding to the first run of the GA-search, i.e for r = 1, h ∈
{3, 6, 9}. Table 6.3 shows the regression coefficients of each predictor, the t-
ratio and the correlation between the predictor and the response variable (i.e
the log NQSALMON). The t-ratio is used as the measure for the predictor sig-
nificance. In this paper, a predictor is considered significant when having an
absolute t-ratio of greater or equal to 1.440, corresponding to a 10% significance.
Although the hypothesis of the relationship between the response and the ex-
planatory time series are summarized in chapter 3, these relationships might
differ for the lags of the respective time series. Therefor the coefficient signs are
compared to the correlation between the predictors and the response(i.e the log
NQSALMON).

The variation in the set of covariates used in the submodels are surprisingly
small. When disregarding the lag structure, the submodels r = 1, h = 3 and
r = 1, h = 6 deploy the same set of explanatory time series as predictors. In
addition, 4 out of 5 time series used in r = 1, h = 9 are used for r = 1, h = 3
and r = 1, h = 6. The applied lags for r = 1, h = 3 and r = 1, h = 6 are also
very similar, and 4 out of 6 predictors used by these submodels are identical.
They only differ for the selected lags of the trout price and the biomass of trout.
The fact that the GA-search tends to select the same covariates inter-horizon,
indicates that the selected covariates have strong predictive power.

All predictors selected by the GA-search are considered significant for at least
one forecast horizon. Most of the regression coefficients signs equal to the corre-
lation signs. For r = 1, h = 9, 5 out of 6 coefficient signs match the correlation
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signs. For r = 1, h = 3 and r = 1, h = 6, 4 out of 6 coefficient signs match
the correlation signs. Although the regression coefficient signs resulting from
the ARDL-PLS model generally equal to the correlation signs, there are some
exceptions. For instance, the meat price index has a negative regression coef-
ficient, but has a positive correlation with the salmon price. Kennedy (2005)
mentions that the omission of key explanatory variables, is a common reason
for unexpected regression coefficient signs. In the case of the meat price in-
dex, there could be an excluded variable that has a positive correlation with
the salmon price, and negative correlation with the meat price index. When
excluding this "hidden" variable, it is possible that the meat price index ends
up with a negative regression coefficient, although it has a standalone positive
correlation with the salmon price. The phenomenon is known as omitted vari-
able bias, and might introduce spuriosity to the model.

A more intuitive explanation for the "wrong" coefficient signs, is based on the
fact that there exists only an indirect connection between the regression co-
efficients and the response, as they are both directly linked to the underlying
latent structure of the PLS model. If there are several variables that describe
the same variation in the salmon price, one of these variables can make up
the majority of the PLS-component describing this variance. This leaves the
remaining variables to contributing to other PLS-components, which describes
other aspects of the salmon price. For instance, it can be shown that the cor-
relation between the poultry index and the meat price index is 0.95, indicating
that these variables are likely to describe similar aspects of the the salmon price
variance. If the latent structure of the PLS-model is comprised in a way that
leaves the majority of this common variance to be explained by the poultry
index variable, the meat price index will be used to explain other aspects of the
variation in the salmon price. Thus, if the share of the meat price index utilized
by the latent structure has a negative correlation with the salmon price, the
regression coefficient sign will be negative, although the meat price index has a
standalone positive correlation with the salmon price. In contrast to an OLR
model, these multicollinearity effects does not affect the predictive abilities of
the PLS model, as the model regresses uncorrelated PLS-components. One can
conduct a thorough analysis of the loading plots and score plots resulting from
the PLS-model, in order to get a full overview of how the latent structure is
comprised. However, the aim of this report is merely to propose a satisfying
prediction model, rather than conducting a thorough investigation of the vari-
able contribution. Consequently, this analysis is left for future researchers.
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Time series, Unit h=3 h=6 h=9

Lag t-ratio β Corr1 Lag t-ratio β Corr1 Lag t-ratio β Corr1

Trend-variable - 3.74 0.01 0.51
Standing biomass, #Individuals (Norway) 6 4.66 0.82 0.55 6 7.87 1.19 0.55
Standing biomass of trout, Tonnes (Norway) 6 2.26 0.27 -0.15 12 1.29 0.12 -0.24 9 -3.46 -0.26 -0.23
Harvest volume of trout, Tonnes (Norway)
Sea lice treatments, % of fish being treated (Norway) 12 -1.04 -0.04 -0.43 12 -3.59 -0.12 -0.43 12 -5.41 -0.15 -0.43
Meat price index, Index 6 -4.66 -1.81 0.28 6 -7.51 -2.28 0.28 9 -4.45 -2.05 0.35
Poultry index, Index 6 2.78 1.07 0.29 6 3.77 1.19 0.29 9 4.90 1.32 0.37
Trout price, NOK/kg (Norway) 3 5.82 0.58 0.65 6 5.36 0.35 0.42

1 Correlation between the respective covariate and the log NQSALMON

Table 6.3: Overview of regression coefficient, t-ratio and correlation, employed
for the ARDL-PLS submodels corresponding to the first run of the GA-search

6.4 Residual diagnostics of the tuned ARDL-PLS
model

Now follows an analysis of the residuals from the cross validation of the tuned
ARDL-PLS submodels, considering stationarity and autocorrelation.

Residual unit root test

As explained in chapter 4, stationary residuals implicate that the explanatory
variables cointegrate with the salmon price. In order to confirm this, an ADF
test and a KPSS test is performed on the residuals resulting from the cross
validation of the ARDL-PLS submodels. For illustrative purposes, the test-
results for the submodels r = 1, h = {3, 6, 9} are shown in table 6.4. Stationarity
was confirmed by both tests for all submodels, which implicate that the variables
cointegrate. Plots of the residuals are shown in figure 6.2-6.4.

Horizon KPSS ADF
test stat p-value test stat p-value

h=3 0.1136 >0.1 -3.8266 0.0207
h=6 0.0461 >0.1 -3.5213 0.0441
h=9 0.08325 >0.1 -4.4618 0.0100

Table 6.4: Stationarity tests on model residuals for the ARDL-PLS submodels
r = 1, h = {3, 6, 9}
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Residual autocorrelation

Figure 6.2-6.4 shows the residual plots and the ACF plot for the submodels
r = 1, h = {3, 6, 9}. Generally, all submodels exhibit residual autocorrela-
tion, which is not surprising as the residuals correspond to multi-step ahead
forecasts. The requirement of i.i.d error terms only applied to one-step ahead
forecast models (Hyndman & Athanasopoulos 2014a). The ACF plots shows
that the autocorrelation is generally only significant for lags that are prohibited
by the model, due to the lag constraints. E.g for submodel r = 1, h = 3, the
ACF values are high for the lags l ∈ {1, 2, 13, 14, 15}. Autocorrelation in the
lags l > 12 can be reduced by including these lags in the model, thus relaxing
the lag constraints. Consequently lag 13,14 and 15 of the explanatory variables
could be included as candidate predictors for all submodels in an attempt to
reduce the residual autocorrelation. However, this would increase the set of
candidate predictors used in the GA-search, which can increase the probability
of overfit.

The autocorrelation in the early lags (i.e lags l < h), can not be reduced in
this model, as the PLS model only can utilize information in lags by including
them explicitly in the model equation. This is due to the fact that there is no
mechanism in the PLS model that dynamically adjust the forecasts based on
former forecast errors, in contrast to e.g ARIMA models. An alternative model,
that is perhaps better at coping with residual autocorrelation, is the regression
model with ARIMA errors presented by Hyndman & Athanasopoulos (2014b).
When forecasting with ARIMA errors, we forecast the regression part of the
model and the ARIMA part of the model separately, before combing the results.
However, this procedure requires stationary transformed data, which can limit
the long term predictive ability of the model, in contrast to the ARDL-PLS
model.
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Figure 6.2: Residual plot and ACF plot for the ARDL-PLS
submodel r = 1, h = 3

Figure 6.3: Residual plot and ACF plot for the ARDL-PLS
submodel r = 1, h = 6

Figure 6.4: Residual plot and ACF plot for the ARDL-PLS
submodel r = 1, h = 9
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6.5 Out of sample results

Table 6.5 shows the out-of-sample performance (RMSE and R2) of the ARDL-
PLS model, the OLR model, the Naive model and the ARIMA(1,1,0) model.
The best average RMSE and R2 values for each horizon is marked in bold. Note
that the results of the Naive model and the ARIMA model is only shown for
one run, as these models don’t utilize the genetic algorithm.

Generally, the ARDL-PLS model is able to explain a large degree of the variance
in the salmon price. The average R2 values of the out-of-sample predictions are
0.58, 0.41 and 0.44 for the respective 3-, 6- and 9-months ahead forecasts. The
average performance of the ARDL-PLS model is superior to the OLR model in
all horizons. For h = 3, the ARDL-PLS model and the OLR model perform
relatively similarly, with respective average RMSE values of 0.1386 and 0.1428.
For h = 6 and h = 9 the ARDL-PLS model is significantly better performing
than the OLR model. In addition, the ARDL-PLS model greatly outperforms
the ARIMA model and the Naive model on all horizons. The average RMSE
values of the ARDL-PLS model is 17%, 26% and 43% less than those produced
by the the Naive forecast for the respective 3-, 6- and 9-months ahead forecasts.

As aforementioned, the prediction accuracy of the OLR model and the ARDL-
PLS model only differ substantially for the longer horizons (i.e h = 6 and
h = 9). A likely explanation for the difference in the models ability to perform
long term forecasts, is that the OLR model does not use orthogonal compo-
nents in the regression, which makes the model vulnerable to multicollinearity
affects and unstable regression coefficients. As the signal-to-noise ratio is likely
to be higher for the longer horizons, the quality of the regression coefficients
estimates are more crucial in long term forecasting. In addition, the use of "un-
differenced" data allows for the retainment of long term predictive information,
which is likely to increase the long term prediction performance of the ARDL-
PLS model, relative to the OLR model.

For h = 6, the ARDL-PLS model has a relatively large intra-horizon variance
in performance, compared to the other horizons, with RMSE values ranging
between 0.1175 and 0.2094. In addition, the ARDL-PLS model performs better
on h = 9 than on h = 6, which is somewhat surprising. This is likely to result
from the fact that the submodels for h = 6 has access to a larger set of can-
didate predictors due to the lag constraint. Thus, the variable selection has a



56 CHAPTER 6. RESULTS AND DISCUSSION

Submodels
OOS-performance1

ARDL-PLS OLR Naive ARIMA
RMSE R2 RMSE R2 RMSE R2 RMSE R2

h=3

r=1 0.1295 0.6395 0.1372 0.6073
r=2 0.1438 0.5552 0.1498 0.5314
r=3 0.1372 0.5952 0.1476 0.5354
r=4 0.1398 0.5797 0.1335 0.6281
r=5 0.1429 0.5610 0.1457 0.5573
Mean 0.1386 0.5861 0.1428 0.5719 0.1679 0.3935 0.1671 0.3999

h=6

r=1 0.1207 0.6866 0.2037 0.1343
r=2 0.1175 0.7034 0.2114 0.0675
r=3 0.1784 0.3156 0.2081 0.0964
r=4 0.1827 0.2826 0.1746 0.3636
r=5 0.2094 0.0577 0.1857 0.2804
Mean 0.1617 0.4092 0.1967 0.1884 0.2202 -0.0005 0.2148 0.0079

h=9

r=1 0.1514 0.5074 0.2142 0.0425
r=2 0.1480 0.5292 0.1431 0.5729
r=3 0.1461 0.5409 0.2082 0.0962
r=4 0.2041 0.1042 0.2359 -0.1615
r=5 0.1480 0.5292 0.2062 0.1119
Mean 0.1595 0.4421 0.2015 0.1324 0.2845 -0.6699 0.2789 -0.6725

1 Bold figures indicates the best average scores among the models, intra-horizon.

Table 6.5: Comparison of the out-of-sample performance of the ARDL-PLS
model, the OLR model, the Naive model and the ARIMA(1,1,0) model

larger search space and more combinations to assess. Due to the large amount
of noise in the data, the increase in candidate predictors is likely to increase the
probability of the GA-search finding patterns among the predictors that are not
reproduced in the future, thus resulting in an overfit. The intra-horizon per-
formance variance is larger for the ARDL-PLS model than for the OLR model,
indicating that the ARDL-PLS model is more sensitive to the choice of subset
selected by the GA-search. This is likely to be caused by the fact that the
ARDL-PLS predicts in logs, in contrast to log returns, which makes the choice
of covariates somewhat more crucial for the ARDL-PLS model, compared to the
OLR model. That being said, the worst run of the ARDL-PLS model is still
better than the worst run of the OLR model, for all horizons.

It is somewhat surprising that the OLR model greatly outperforms the ARIMA
model in all horizons. As both models are linear regressions (note that the MA
term in the ARIMA model is unused) and utilize log return transformed lagged
time series, they are mathematically very similar. The OLR model only differ
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in terms of applied input data, as the model utilize exogenous variables. In
addition, the ARIMA model is only slightly better performing than the Naive
model. In sum, this shows that past salmon price observation are of limited
use to salmon price prediction models, relative to exogenous variables. Thus, in
context of salmon price prediction, this study is a proof of concept of the usage
of exogenous variables as covariates.

Figure 6.6-6.8 shows the out-of-sample residuals and the corresponding predic-
tions for the ARDL-PLS submodels r = 1, h ∈ {3, 6, 9}. Generally, the sub-
models overpredict the first half of the test set, and underpredict the second
half of the test set. This is likely to be explained by examining the plot of the
log salmon price, shown in figure 6.5. At the beginning of the test set (t=96 ),
the salmon price has just dropped after a relatively long peak period. As the
ARDL-PLS model only utilize lagged time series as predictors, it can not fully
follow the sudden changes in the price, which results in an optimistic estimate of
the following periods. The same mechanism results in a pessimistic estimate of
the second half of the test set, as the salmon price experience a major increase
after t=110. Note that the submodel for r = 1, h = 3 actually manage to follow
the sudden increase in the price at around t=110, and slightly overpredicts the
following periods. This can result from the fact that the submodel conduct-
ing the 3-month ahead forecast is more "updated", relative to the submodels
conducting the 6- and 9-month ahead forecasts. However, it can not be denied
that the models have a general tendency to overpredict. Yet, given the fact
that the test set is relatively small and exhibits a relatively high volatility, we
can not draw any general conclusion upon whether the models is biased or not.
By examining the ACF plots in figure 6.9, it can be seen that there are more
autocorrelation in the residuals corresponding to the out-of-sample predictions,
compared to the residuals corresponding to the cross validation predictions,
where the latter is shown in figure 6.2-6.4. This is likely to result from the
fact that the cross validation use the same samples as the GA-search, which
can increase the goodness-of-fit in the cross validation predictions, relative to
the out-of-sample predictions. Lastly, it can be seen that the out-of-sample
residuals exhibit largest autocorrelation in the lags that are left out due to the
aforementioned lag constraints

Table 6.5 shows that the R2 values of the Naive model and the ARIMA model
are negative in several of the horizons. This can be explained by looking at the
formula for R2, which is presented in section 5.2. If the denominator in the
fraction is larger than the numerator, the R2 becomes negative. This happens if
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Figure 6.5: Plot of the log NQSALMON

the average forecast error is larger than the average deviation between the true
value and the mean of the true value. Note that the difference in performance
between the OLR model and the Naive model are much less than the values
presented by Sandaker et al. (2016), who’s models produce forecast errors of
approximately 50% of the forecasts produced by their naive model. One main
reason for why the results in this paper deviates strongly from the results of
Sandaker et al. (2016) is because the naive model used in this report is based
on naive forecasting in log values, while the naive model in Sandaker et al.
(2016) is based on naive forecasting in log return values. The naive forecast
performs much better in log values, which reduces the difference in performance
between the OLR and the Naive model. To illustrate this effect, I have used
the naive forecasting approach to predict the log return transformed salmon
price, transformed the resulting predictions back to log values and calculated
the corresponding RMSE-value. Then I used the naive forecast to predict the
log transformed salmon price and calculated the corresponding RMSE-value.
This is done for h ∈ {1, 2}. The result of both approaches are shown in table
6.6. Evidently, the naive forecast used in this paper is superior to the one used
by Sandaker et al. (2016), which makes it harder to outperform.
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Figure 6.6: Out-of-sample residual plot and prediction plot for the ARDL-PLS
submodel r = 1, h = 3

Figure 6.7: Out-of-sample residual plot and prediction plot for the ARDL-PLS
submodel r = 1, h = 6

Figure 6.8: Out-of-sample residual plot and prediction plot for the ARDL-PLS
submodel r = 1, h = 9
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Figure 6.9: Out-of-sample residual ACF plots for the ARDL-PLS model. From
left: h = 3, h = 6 and h = 9

Naive forecast

h=1 h=2
Log model 0.1311 0.1588
Log return model 0.2096 0.2370

Table 6.6: RMSE values of the Naive forecast

6.6 Improvements and expansion

This section provides possible improvements and expansions of the methodol-
ogy presented in this paper, which would be interesting to investigate in future
research.

As aforementioned, I have implemented cointegration constraint in the GA-
search, in order to prevent spurious regression. This enables the use of large
datasets without the need to manually asses that all possible subsets of candi-
date predictors satisfy the cointegration requirements. However, the restriction
concerning exogeneity is difficult to fulfill. In the exogeneity test implemented
in the GA-search, we consider the variables to be exogenous as long as it is not
significantly unlikely that this hypothesis is false. Consequently, it is likely that
some of the covariates used in the model are not actually exogenous. As the
consequences of including endogenous variables in the model is worse than the
consequence of failing to include variables that are in fact exogenous, it would
perhaps be better to use a test that have endogeneity as the null hypothesis.
However, it would probably be more useful to modify the model in such a way
that allows for the removal of the exogeneity requirement, as it is generally hard
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to find variables that are strictly exogenous. Bentzen & Engsted (2001) states
that if the explanatory variables are in fact endogenous, we can include an ad-
equate number of lagged changes in the regression in order to make the model
theoretically valid. Thus, a possible improvement of the methodology in this
paper is to remove the exogeneity restriction from the GA-search, and include
additional covariates, in the form of lagged changes of the existing covariates,
as predictors. The removal of the exogeneity requirement in the GA is likely to
reduce the computation time of the algorithm. However, the inclusion of the
lagged changes will increase the number of covariates in the model, making it
less parsimonious and more vulnerable to overfit.

The computational requirements of the GA-search, and the fact that it had to
be run for both the ARDL-PLS model and the OLR model, forced me to limit
the number of runs computed for each horizon. Thus, in order to increase the
empirical basis of the performance evaluation, one could conduct a more com-
prehensive model testing by running the model many times for each forecast
horizon. This would result in a better estimate of the average forecast precision
of the ARDL-PLS model, which would create a better basis for the comparison
of the ARDL-PLS model and the OLR model. In addition, one could conduct
the model testing for all horizons h ∈ {1, 2.., 12}.

Lastly, it is possible that one could discover non-linear dependencies between
the salmon price and the explanatory variables, as it is arguably unlikely that
the optimal dependency of all the explanatory variables are linear. Non-linear
dependencies can be identified by examining the scatter plots of the exogenous
variables and the salmon price. An alternative method would be to compare a
linear model with several polynomial models, for each explanatory variable in
the dataset. If one discovers non-linear dependencies, additional predictors that
are functions of the original predictors can be added directly in the regression,
in order to possibly improve the prediction accuracy of the model. The inclu-
sion of non-linearities in the model would be an interesting expansion of the
methodology presented in this paper. However, one should be sure to remove
the original linear variables from the regression when adding the corresponding
non-linear functions, in order to maintain the parsimonious characteristics of
the model.
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7 | Conclusion

As the market of salmon farming is becoming more globalized and competitive,
the ability to limit unnecessary costs is essential for maintaining market posi-
tions. A satisfying price forecast model is an important tool in order to establish
functional risk management and operational efficiency. Reliable estimates of fu-
ture salmon prices can provide vital decision support when determining the
optimal timing of salmon harvest, which terms producers should engage in for-
ward contracts, or the required machine capacity. In addition, reliable estimates
of future salmon prices are useful from a financial standpoint, as the salmon in-
dustry is increasing its presence in capital markets. Price models can be used
to improve investments decisions, trading and contribute to better valuation of
bonds and stocks

In this study, I develop a prediction model for the salmon spot price, repre-
sented by the NQSALMON index. In particular, I apply a general-to-specific
approach to compute the 3-, 6- and 9- months ahead forecast of the salmon
price. I use a dataset consisting of 17 time series, such as salmon biomass,
average sea temperature and prices of alternative protein. The time series are
log transformed, and lagged according to industry assumptions regarding when
they are assumed to impact the salmon price. The time series combined with
the applied lag structure, generate a large set of candidate predictors for the
multi-step spot price prediction. The prediction model, which is named ARDL-
PLS, combines an ARDL model and a PLS regression. The model enables
the use of non-stationary data, and avoids regression problems resulting from
the use of intercorrelated predictors. A genetic algorithm (GA) for variable
selection is applied in order to determine the best subset of candidate predic-
tors for each forecast horizon. As some of the time series in the dataset are
non-stationary, the set of covariates used in the model has to satisfy certain
cointegration requirements, which are formulated as optimization constraints
in the GA-search. Consequently, all the subsets of predictors selected by the
GA-search are cointegrated with the salmon price. The out-of-sample perfor-
mance of the ARDL-PLS model is compared to the performance of an ordinary
least square regression (OLR) model. The OLR model utilize a GA for variable
selection, but is applied to log return transformed time series. The resulting
predictions from the ARDL-PLS model and the OLR model are computed on 5
different runs of the GA, in order to get a more reliable estimates of the model

63
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performance. Lastly, I apply an ARIMA model and a naive model as reference.

The GA-search is quickly able to find cointegrated subsets of variables that re-
sult in a favourable goodness-of-fit. Generally the ARDL-PLS model is able to
explain a large proportion of the variance in the salmon price. The respective
R2-values for the 3-, 6- and 9- months ahead out-of-sample forecasts are 58%,
41% and 44%, which is satisfying given the fact that economic time series are
considered low signal-to-noise environments. The 9-month ahead predictions
are more accurate and less volatile than the 6-months ahead predictions. This
is somewhat surprising, but likely to result from the fact that there are more
available candidate predictors for sub-models predicting the shorter horizons,
due to the aforementioned lag structure. Thus, the variable selection has a
larger search space and more combinations to assess, which makes it harder to
select appropriate predictors. The predictive accuracy of the ARDL-PLS model
is better than the OLR model on all horizons. The 3 month-ahead prediction
accuracy of the models are relatively similar, but the ARDL-PLS model excel
in the longer horizons. I attribute the performance difference between the OLR
model and the ARDL-PLS model with two factor: (1) The return transforma-
tion of the data used in the OLR model is known to remove long term predictive
information which decreases the model’s ability to forecast longer horizons. (2)
Intercorrelations among the explanatory variables can result in unstable regres-
sion coefficients in the OLR model, as it, in contrast to the ARDL-PLS model,
does not transform the predictors into uncorrelated orthogonal components.
The prediction accuracy of the ARDL-PLS model is more volatile than to the
prediction accuracy of the OLR model. This is likely to be caused by the fact
that the ARDL-PLS predicts in logs, instead of log returns, which makes the
choice of covariates somewhat more crucial for the ARDL-PLS model, relative
to the OLR model. The out-of-sample performance of the ARDL-PLS model is
superior to that of the Naive model and the ARIMA model, yielding a forecast
error of 56% of the one produced by the Naive model, for the 9-months ahead
forecast. It was also observed that the OLR model performed far better than
the ARIMA model. Since the two models only differ due to the fact that OLR
model use exogenous variables, this result is a proof of concept for the use of
exogenous variables in salmon prediction models.

It was observed that some of the regression coefficient signs in the ARDL-PLS
model deviate from expectation. A likely explanation is based on the fact that
the model transforms the predictors into orthogonal components. Consequently,
there exists only an implicit connection between the regression coefficients and
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the response variable. However, another explanation is that the model suffers
from omited variable bias, which can affect the predictive ability of the model.
It is uncertain, if any, which of the two is the case. However, the fact that
the prediction accuracy is satisfying for most model runs, indicate that there is
limited bias in the model. In addition, "Some econometricians would go as far
as to suggest that the statistical adequacy of a model (...), is largely irrelevant
if the model produces accurate forecasts" (Brooks 2008).

I propose some possible improvements and expansions of the methodology pre-
sented in this paper. The exogeneity constraint in the GA-search can be re-
moved if one includes an adequate number of lagged changes as covariates in
the model. This would likely increase the computational speed of the GA and
reduce the probability of the regression becoming spurious. Also, it would be
useful to perform a more comprehensive model testing, in order to get a better
estimate of the ARDL-PLS models predictive ability, and create a better basis
for the comparison of the ARDL-PLS model and the OLR model. This can be
done by greatly increasing the number of model runs for each forecast horizon,
and increasing the number of horizons tested. Lastly, one could investigate the
impact of including non-linearities in the model. This can be done by including
covariates in the model that are functions of the original predictors.



66 CHAPTER 7. CONCLUSION



A | Appendix

A.1 The ARDL-PLS model

Prediction plots for the ARDL-PLS model

Figure A.1-A.3 shows the cross validation predictions and the out-of-sample
predictions for the ARDL-PLS submodels r = 1, h ∈ {3, 6, 9}. The predictions
are separated by the black line.

Figure A.1: Plot of the CV and OOS predictions for the ARDL-PLS submodel
h = 3, r = 1

67
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Figure A.2: Plot of the CV and OOS predictions for the ARDL-PLS submodel
h = 6, r = 1

Figure A.3: Plot of the CV and OOS predictions for the ARDL-PLS submodel
h = 9, r = 1
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Regression coefficients for the ARDL-PLS model

Table A.1-A.3 shows the regression coefficients for all ARDL-PLS submodels.

Time series, Unit
Horizon 31

r=1 r=2 r=3 r=4 r=5

Lag β Lag β Lag β Lag β Lag β

Standing biomass, #Individuals (Norway) 6 0.8211 6 0.8219
Standing biomass of trout, Tonnes (Norway) 6 0.2780 6 0.3806 6 0.7677 6 0.6342 6 0.4319

9 0.4571 9 -0.3419
Sea lice treatments, % of fish being treated (Norway) 12 -0.0389 3 -0.012 3 -0.0498 12 -0.3224 12 -0.0261
Meat price index, Index 6 -1.8129 6 -1.7499 6 -1.6647 6 -1.5255 6 -1.2188
Poultry index, Index 6 1.0723 6 1.0147 6 1.5513 6 1.4766 6 1.2214
Trout price, NOK/kg (Norway) 3 0.5836 3 0.6350 3 0.8534 3 0.8105 3 0.8085

1 All lags are denoted relative to the horizon being forecasted.
To get the number of lags relative to the forecasters point of view, subtract by h months for any horizon h

Table A.1: Regression coefficients for the ARDL-PLS submodels conducting
3-month ahead predictions

Time series, Unit
Horizon 61

r=1 r=2 r=3 r=4 r=5
Lag β Lag β Lag β Lag β Lag β

Trend-variable2 1 0.0081 1 0.0077
Standing biomass, #Individuals (Norway) 6 1.1927 6 1.1234 9 0.4664
Standing biomass of trout, Tonnes (Norway) 12 0.1297 6 0.2008 9 -0.3460 12 -0.2340 12 -0.1013

12 -0.0499
Sea lice treatments, % of fish being treated (Norway) 12 -0.1189 12 -0.0951 12 0.1475 12 -0.1156 12 -0.1311
Meat price index, Index 6 -2.2759 6 -2.4288 6 -2.8222 6 -2.7205 6 -1.8073
Poultry index, Index 6 1.1992 6 1.4191 6 1.6800 6 1.6749 6 1.4471
Trout price, NOK/kg (Norway) 6 0.3472 6 0.4417 6 0.0919 6 0.2937
1 All lags are denoted relative to the horizon being forecasted.

To get the number of lags relative to the forecasters point of view, subtract by h months for any horizon h
2 1 indicates that the trend variable is included

Table A.2: Regression coefficients for the ARDL-PLS submodels conducting
6-month ahead predictions

Time series, Unit
Horizon 91

r=1 r=2 r=3 r=4 r=5
Lag β Lag β Lag β Lag β Lag β

Trend-variable2 1 0.0057 1 0.0055 1 0.0062 1 0.0038 1 0.0055
Standing biomass of trout, Tonnes (Norway) 9 -0.2639 9 -0.3806 9 -0.2203 9 -0.3862 9 -0.3806
Harvest volume of trout, Tonnes (Norway) 9 0.0996 12 -0.0634 9 0.1368 9 0.0996
Sea lice treatments, % of fish being treated (Norway) 12 -0.1512 12 -0.1503 12 -0.1439 12 -0.1141 12 -0.1503
Meat price index, Index 9 -2.0460 9 -1.9849 9 -2.1641 12 -0.1949 9 -1.9849
Poultry index, Index 9 1.3163 9 1.2779 9 1.3699 9 -0.0375 9 1.2779
1 All lags are denoted relative to the horizon being forecasted.

To get the number of lags relative to the forecasters point of view, subtract by h months for any horizon h
2 1 indicates that the trend variable is included

Table A.3: Regression coefficients for the ARDL-PLS submodels conducting
9-month ahead predictions
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A.2 The OLR model

The GA used by the OLR model

Table A.4 shows the parameter settings of the GA used by the OLR model, and
below is an illustration of the corresponding fitness function. Since the OLR
model is computed on stationary data, the cointegration constraints are left
out of the fitness function. By leaving out the cointegration requirements, the
search space becomes more relaxed and there are more valid solutions. Thus,
the mutation possibility is lowered relative to GA-search used by the ARDL-
PLS model, as it is much easier for the algorithm to obtain valid solutions.

Parameter Value Description

Population size populationSize= 400
The number of chromosomes in each population. A small population
creates a small search space, while a large population slows down the convergence
time

Generations/Iterations numGenerations =400 The number of new populations created, i.e the number of iterations of the algorithm.
Cross over crossover = "single" Defines the way parent chromosomes are combined in order to create new offsprings.

Elitism elitism = 9 Copies the best chromosomes to the next generation, in order to prevent loosing the best found solution.
It is found that elitism rapidly increases the performance of the GA.

Mutation probability mutationProbability=0.05 Randomly changes the genes of new offsprings in order to prevent the GA from falling into local
optimums.

Table A.4: Parameter settings for the GA-search used by the OLR model

Finess evaluation of subset S

1. Fitness = (1/SIC) computed on subset S

2. return Fitness

Regression coefficients for the OLR model

Table A.5-A.7 shows the regression coefficients corresponding to the OLR sub-
models.
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Time series, Unit
Horizon 31

r=1 r=2 r=3 r=4 r=5
Lag β Lag β Lag β Lag β Lag β

Standing biomass, Tonnes (Norway) 3 -1.5157 3 -1.4667 3 -1.3569 3 -1.7188 3 -1.5116
Feed consumption, Tonnes (Norway) 3 -0.1589 3 -0.2031 3 -0.2155 3 -0.1431 3 -0.1391
Standing biomass of trout, Tonnes (Norway) 9 -0.3797
Sea lice occurrence, #Lice/fish (Norway) 12 0.04565
Sea temperature, Degrees Celsius (Norway) 6 0.66526 6 0.5562 6 0.6311 6 0.6726 6 0.6127
Meat price index, Index 6 -3.0265 6 -2.9799 6 -29512 6 -2.9443 6 -2.8185
Poultry index, Index 6 1.8092 6 1.8203 6 1.8644 6 1.7213 6 1.6683
Beef price, US cents/pound 12 -0.3149
Trout price, NOK/kg (Norway) 6 0.2698
1 All lags are denoted relative to the horizon being forecasted.

To get the number of lags relative to the forecasters point of view, subtract by h months for any horizon h

Table A.5: Regression coefficients for the OLR submodels conducting 3-month
ahead predictions

Time series, Unit
Horizon 61

r=1 r=2 r=3 r=4 r=5
Lag β Lag β Lag β Lag β Lag β

Standing biomass, Tonnes (Norway) 6 0.6392 9 -0.7805 6 0.6563 6 0.6139 6 0.5755
9 -0.9587 9 -0.7674 9 -0.8021 9 -0.8207

Standing biomass of trout, #Individuals (Norway) 12 -0.6453 12 -0.8982 12 -0.4007 12 -0.4552 12 -0.5343
Sea lice occurrence, #Lice/fish (Norway) 12 -0.0761
Meat price index, Index 6 -3.2428 6 -3.3925 6 -2.8768 6 -3.0180 6 3.1802
Poultry index, Index 6 1.9185 6 2.0315 6 1.9398 6 1.8329 6 1.9364
Currency pair, USD/EUR 6 0.6358 12 -0.4973
Trout price, NOK/kg (Norway) 12 -0.3341 12 -0.3324
1 All lags are denoted relative to the horizon being forecasted.

To get the number of lags relative to the forecasters point of view, subtract by h months for any horizon h

Table A.6: Regression coefficients for the OLR submodels conducting 6-month
ahead predictions

Time series, Unit
Horizon 91

r=1 r=2 r=3 r=4 r=5
Lag β Lag β Lag β Lag β Lag β

Standing biomass of trout, #Individuals (Norway) 12 -0.9548 12 -0.5927 12 -0.7337 12 -0.8419 12 -0.7760
Standing biomass of trout, Tonnes (Norway) 12 -0.4084
Sea lice occurrence, #Lice/fish (Norway) 12 -0.8151 12 -0.0865 12 -0.0856 12 -0.0728
Meat price index, Index 9 -2.1029 9 -1.8146 9 -2.3517 9 -2.0395 9 -2.0047
Poultry index, Index 9 1.8492 9 2.1160 9 1.8857 9 1.7754 9 1.8046
Beef price, US cents/pound 12 -0.8156
Currency pair, USD/EUR 9 1.0529 9 1.7295 9 1.3379 9 0.9113 9 1.1590

12 -0.7743
Trout price, NOK/kg (Norway) 12 -0.3469 12 -0.4877 9 -0.1944
1 All lags are denoted relative to the horizon being forecasted.

To get the number of lags relative to the forecasters point of view, subtract by h months for any horizon h

Table A.7: Regression coefficients for the OLR submodels conducting 9-month
ahead predictions
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A.3 The ARIMA model

The following section describes the composition of the ARIMA model. In ad-
dition, the model tuning and resulting coefficients from the model fitting is
displayed.

The ARIMA model

A non-seasonal ARIMA model is presented in Equation A.2. The model com-
bines differencing with autoregression and a moving average model (Hyndman
& Athanasopoulos 2014b). The model in Equation A.2 is referred to as an
ARIMA(p,d,q) model, where p is the order of the autoregressive part, d num-
ber of first differences and q is the order of the moving average part.

y′t = yt − yt−1 (A.1)

y′t = c+ φ1y
′
t−1 + ...+ φpy

′
t−p + θ2ε2−1 + ...+ θ1εt−q + εt (A.2)

ARIMA tuning

In order to tune the ARIMA model, i.e set the the values for p, d and q, I use the
auto.arima() function presented in the R package "Forecast", which utilize the
Hyndman-Khandakar algorithm for automatic tuning of ARIMA models. The
forecast package and the algorithm is presented by Hyndman & Athanasopoulos
(2014a). The model resulting from the tuning algorithm is an ARIMA(1,1,0)
model, which can be written on the form:

y′t = c+ φ1y
′
t−1 + εt (A.3)

The autoregressive parameter φ1 for the forecast horizons h = {3, 6, 9} can be
found in table A.8

ARIMA coefficients
h=3 h=6 h=9

φ1 -0.1272 -0.1246 -0.1192

Table A.8: ARIMA coefficients
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A.4 Time series cross validation

This section discusses the validity of applying cross validation on time series
models.

Cross validation (CV) often produce performance estimates superior to a single
test set because they evaluate many alternate versions of the data (Kuhn &
Johnson 2013). Because of serial correlation and potential non stationarity of
time series data, validation of time series models are often done by an out-of-
sample (OOS) evaluation. However, Bergmeir et al. (2018)) shows that in the
case of purely autoregressive model, the use of standard K-fold CV is theoreti-
cally valid as long as the models considered have uncorrelated errors. In addition
Rob Hyndman argues that although Bergmeir et al. (2018) considers univariate
AR models, it extends naturally to multivariate AR models"(Hyndman 2018).
In addition, Bergmeir & Benítez (2012) conducts an extensive study on the use
of CV and OOS on time series, and found that the use of CV led to more robust
model selection although the procedure might not be theoretically valid. Based
on the abovementioned arguments, I find it reasonable to use cross validation
as a tool to tune the ARDL-PLS model.
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