


1.4 The single trade ship routing and scheduling problem

choice when transporting wheeled goods and vehicles around the world.

1.4 The single trade ship routing and schedul-
ing problem

The STSRSP is the problem of planning the routes sailed and which ves-
sels should be deployed for a set of interdependent voyages which are to
be performed on a given trade route, as well as where and when these ves-
sels should load and unload goods. A trade route, or trade, is a logistical
network identified as a set of pathways and stoppages for commercial trans-
port. An example of a trade route can be seen in Figure 1.2. A vessel that
is deployed on the trade performs a voyage, i.e visits a sequence of stop-
pages, usually ports, along the trade. In the STSRSP these activities are
constrained by a set of contracts, and the objective is to minimize the total
cost of all activities and keeping them within a specific planning horizon,
while satisfying contractual requirements (Hansen et al., 2018). One of the
largest contributors to the total costs of performing voyages is port visits, so
by using operations research to optimize route design, shipping companies
can hopefully reduce their operational costs.

1.5 Thesis outline

The contributions in this thesis is a new solution method that has the poten-
tial to solve STSRSP instances within very short time limits. The solution
method uses a matheuristic approach that divides the problem into several
parts, combining both mathematical models to determine routes and ves-
sel assignment, as well as a heuristic for placing the contracts on voyages.
Finally, a service level search is implemented to make sure the separation
requirement is satisfied.

Hansen et al. (2018) propose and compare two novel mixed integer pro-
gramming models for the STSRSP, one called the vessel model and the
other called voyage model. Both including new ways of modeling the con-
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Chapter 1. Introduction

Figure 1.2 Example of a trade route from Asia to Europe. Hansen et al.
(2018)

tracts’ separation requirements. First, they showed that the voyage model
performs significantly better than the vessel model. They then showed
through a computational study on a set of realistic test instances that sig-
nificant gains can be obtained compared to current planning practice. This
thesis is an extension of the work done by Hansen et al. (2018), using the
voyage model presented in their paper.

A detailed problem description is presented in Chapter 2. Chapter
3 introduces a literature review which describes relevant literature to the
STSRSP.In Chapter 4, the mathematical formulation of the STSRSP is pre-
sented. A heuristic solution method is proposed in Chapter 5, and a com-
putational study is presented in Chapter 6. Finally, concluding remarks and
proposed future research are given in Chapters 7 and 8, respectively.
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Chapter 2
Problem Description

In this chapter the single trade ship routing and scheduling problem (STSRSP)
in RoRo-shipping is presented. The general description of the problem is
given in Section 2.1. In Section 2.2, a small, illustrative example of the
STSRSP is given.

2.1 General description

The STSRSP is the problem of planning the routes sailed and which vessels
should be deployed for a set of interdependent voyages, as well as where
and when these vessels should load and unload goods. These activities are
constrained by a set of contracts, and the objective is to minimize the total
cost of all activities and keeping them within a specific planning horizon,
while satisfying contractual requirements. The planning horizon defines
the overall time window for the problem. A typical length of the planning
horizon is one or two months.

A trade route, or trade, is a logistical network identified as a set of path-
ways and stoppages for commercial transport. A vessel that is deployed
on the trade performs a voyage, i.e visits a sequence of stoppages, usually
ports, along the trade. A vessel sailing a voyage on a specific trade, does not
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Chapter 2. Problem Description

necessarily visit every port along that trade. Vessels have different proper-
ties, as for example stowage capacities, cargo handling equipment, sailing
speeds and operating costs. These properties put restrictions on which ships
can be deployed to specific voyages, as they limit what contracts the vessel
can service. Not all vessels can perform loading and unloading operations
at every port along the trade because of size restrictions at ports. Vessels
can also vary the speed at which they sail, depending on what is required on
a specific voyage. Vessels have different maximum sailing speeds and dif-
ferent fuel consumption, which is a function of sailing speed, all of which
affects costs and which vessels can be used for which voyages.

In addition, a vessel has several decks for stowage, and capacities and
cargo requirements for these decks are usually not the same. Their stowage
capacities might vary in both area and volume, and the different decks
might have different weight restriction limiting what can be stored there.
The reason for these differences in deck properties, is that the goods that
are being transported can be divided into different product types with dif-
ferent requirements. A product type is a class of products that are similar
in some important attributes, such as size, weight, and functionality. There-
fore, a deck might only be limited to store certain product types, while other
decks can store all product types. For example, cars can be stored on decks
which is meant for heavy construction equipment, but heavy construction
equipment can usually not be stored on decks meant for cars.

Which ports to visit and which goods should be transported during a
voyage are determined by a set of contracts between the shipping com-
pany and customers. These contracts define which port the goods should
be loaded in and where it should be unloaded. For example, goods could
be loaded in America and unload in Europe after sailing the Atlantic ocean.
In addition, contracts state the demand for products, that is, which products
to be transported at which quantities. Inventory capacities and production
rates impose limits on the quantity of products that is available for trans-
port at given times. A contract might therefore require pickups to be fairly
evenly spread in time across the planning horizon. That is, the customer
will expect that goods can be shipped out at regular intervals. One way of
ensuring that the voyages are fairly evenly spread, is to use time windows.
The time window defines the earliest and latest start up time for a voyage on
a trade. For example, consider a contract that has to be serviced two times
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2.1 General description

over a planning period of 30 days. It is possible to say that the contract
should be serviced once between day 1 and day 14, and once between day
15 and day 30. However, using this approach, one possible solution is for
the the contract to be picked up at day 13 and day 16, which is not fairly
evenly spread in time. A way to avoid this is to make the time windows
smaller. For example, one can say that the contract should be serviced once
between day 1 and day 5, and once between day 15 and day 20. However,
tighter time windows reduce flexibility and might lead to poor fleet utiliza-
tion. Another way of enforcing fairly evenly spread, is to use trade specific
time separation limits. For example, a limit defining the maximum accept-
able deviation in days from the desired spread, when servicing a contract
with evenly spread requirement.

Some contracts have pickup frequency restrictions, that is, it may re-
quire that the total quantities to be transported be divided over several or
all voyages during the planning horizon. These contracts specify a mini-
mum, and maximum, number of pickups for that contract. A contract also
define an upper and lower bound on quantities which have to be transported
during the voyage if the contract is handled. These limits ensure that im-
practical pickups are omitted. For example, consider a contract that has a
total demand of 1000 cars. Loading 10 cars on one voyage, and 990 cars on
another voyage, fulfills the total demand. However, it is not very practical.
A contract also defines any restrictions on transit time. The transit time
restrictions dictate within what time interval a contract has to be fulfilled.

In summary, the objective of the STSRSP is to minimize the total costs
of all transport activities while keeping the activities within a specific plan-
ning horizon and satisfying all contractual requirements. Important deci-
sions to be made are which vessels to deploy for which voyages, and which
routes these vessels should follow, which schedule and sailing speeds the
vessels should keep, how to divide contracts among the different vessels,
and how to divide contract demand over the different voyages.
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Chapter 2. Problem Description

2.2 Example of the STSRSP

In this section, a small, illustrative example of the STSRSP is presented,
based on the example from Hansen et al. (2018). We consider a trade from
US to Japan, with five ports and only three contracts, shown in Figure 2.1.
The planning period of this example is set to one month, i.e. 30 days.

Figure 2.1 An example of the STSRSP for a trade from US to Japan with
only three contracts

As in Hansen et al. (2018), contract 1 has a total demand of 1000 units
of product type A, to be split into two to four partial cargoes. The cargoes
must be loaded in Baltimore and unloaded in Yokohama. Contract 2 has a
total demand of 1500 units of product type B, to be split into three or four
partial cargoes. The cargoes must be loaded in Tacoma and unloaded in
Yokohama. Contract 3 is an intra-regional contract, to be loaded in Bal-
timore and unloaded in Port Hueneme. The total demand of contract 3 is
300 units of product type A, to be split into one or two partial cargoes. In
addition, contract 1 has a transit time requirement of 30 days. The other
two contracts have no transit time requirements. An overview of the con-
tracts can be found in Table 2.1. The maximum allowed deviation from the
desired spread is 4 days.

Table 2.1: Overview of the contracts to be serviced during the planning period

Total demand Product type Pickups Ports Transit time req.

Min Max Load Unload

Contract 1 1000 A 2 4 Baltimore Yokohama 30 days
Contract 2 1500 B 3 4 Tacoma Yokohama None
Contract 3 300 A 1 2 Baltimore Port Hueneme None

There are three vessels available to service the trade route. Vessel 1 has
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capacity to carry 700 units of product type A, and 350 units of product type
B. Vessel 1 is available on day 2 in Baltimore. Vessel 2 has capacity to carry
500 and 600 units, of product type A and B, respectively, and is available on
day 7 in Tacoma. Lastly, vessel 3 has capacity to carry 400 units of product
type A, and 650 units of product type B. Vessel 3 is available in Baltimore
in day 15 of the planning period. An overview of the vessels can be found
in Table 2.2.

Table 2.2: Overview of the vessels available to service the trade

Capacity Available (day) Origin port

A B

Vessel 1 700 350 2 Baltimore
Vessel 2 600 500 7 Tacoma
Vessel 3 400 650 15 Baltimore

Figure 2.2 and Table 2.3, shows a solution to the example problem. As
in Hansen et al. (2018), voyage 1, assigned to vessel 3, visits only two
ports, starting in Tacoma on day 7 and ending in Yokohama on day 19.
Voyage 2, assigned to vessel 1, starts in Baltimore on day 2, then visiting
Port Hueneme, Tacoma and Yokohama on days 14, 17 and 29, respectively,
while voyage 3, assigned to vessel 3, starts in Baltimore on day 15 and
visits Tacoma on day 28, before ending up in Yokohama on day 39. In this
solution, contract 1 is serviced twice, i.e. on days 2 and 15, contract 2 is
serviced three times, i.e. on days 7, 17 and 28, while contract 3 is serviced
once on day 2.

Figure 2.2 A solution to the example problem
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From Table 2.3, we can see that the quantities picked up from each
contract is within the given ranges.

Table 2.3: A solution to the example problem with quantities picked up

Voyage 1 Voyage 2 Voyage 3

A B A B A B

Contract 1 400 600
Contract 2 650 350 500
Contract 3 300

Total: 650 700 350 600 500

The desired spread for the partial cargoes of the contracts is given by
T PH /bc, where T PH denotes the length of the planning period (30 days),
and bc is the number of pickups for the contract, i.e. number of partial
cargoes. That is, for contract 1, which is serviced twice, the desired spread
is 15 days between the pickups. As noted above, contract 1 is picked up
on days 2 and 15, which corresponds to a spread of 13 days between the
pickups. This gives a deviation, from the desired spread, of two days. For
contract 2, which is serviced three times, the desired spread is 10 days. The
contract is picked up on days 7, 17, and 28, which corresponds to a spread
of 10 days between the first and second pickup, and 11 days between the
second and third. This gives a deviation, from the desired spread, of 1 day.
Finally, since contract 3 is only picked up once, the pickup is evenly spread.
This means that the total deviation from the desired spread for the planning
period is 3 days. We can see that the services of each of the contracts are
fairly evenly spread, and satisfy the separation requirement.
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Chapter 3
Literature Review

In this chapter a literature review is presented. Section 3.1 presents a selec-
tion of relevant literature on RoRo-shipping. Section 3.2 and 3.3 presents
relevant literature on voyage separation requirement and transit time re-
quirement, respectively.

3.1 RoRo-shipping

Roll-on Roll-off (RoRo) shipping is a minor section of liner shipping, and
is therefore not as well discussed in the literature as in other segments. In
this section, a selection of Operations Research done in RoRo shipping the
last decade is presented.

Sigurd et al. (2005a) present a network design problem for a set of
routes between several ports, using fast RoRo vessels. Fagerholt et al.
(2009) look into the fleet deployment problem in RoRo shipping, modeling
voyages on a liner route with starting time windows. It is common to use a
sequential approach when it comes to modeling speed in planning shipping
routes. That is, the speed is first given, and then later optimized. Anders-
son et al. (2015) propose a new model for planning shipping routes. In their
model the optimization of ship speed along the routes was integrated into
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the model. This deployment and routing problem is studied using RoRo
shipping.

Kang et al. (2012) and Jung et al. (2011) present a decision support
system for a car carrier where the objective is to determine the number of
cars each vessel should pick up on each route, at the same time minimizing
cost. There is an extra cost added to the objective function for cars not
serviced in one planning horizon. Lindstad et al. (2011) analyze carbon
dioxide (CO2) emissions based on the RoRo segment in the world fleet,
among others. Patricksson et al. (2015) propose a model of the maritime
fleet renewal problem, with RoRo-shipping as their case study. This model
also include emission regulations as a limitation.

Fischer et al. (2016) present different strategies to include robustness,
as well as different strategies for handling disruption when assigning a fleet
of vessels to predefined voyages while trying to minimize cost in RoRo-
shipping.

3.2 Voyage separation requirements

Voyage separation requirements can be modeled as either hard or soft con-
straints. Hard constraints set conditions for variables that are required to be
satisfied. Soft constraints have some variable values that are penalized in
the objective function for not being satisfied.

One way of that the voyage separation has been modeled is by using
time windows directly. Norstad et al. (2015) use data from the Norwegian
shipping company Saga Forrest Carriers to model the voyage separation
requirements both as hard constraints and as soft constraints. To enforce
the separation requirements, they use a parameter that determines the min-
imum accepted time between two consecutive voyages on a trade route.
Two different models are presented in the article; an a priori path generation
method and an arc flow method, of which the path flow model performs best
according to solution time. Both Bakkehaug et al. (2016) and Vilhelmsen
et al. (2017) use the same data as Norstad et al. (2015). However, in Bakke-
haug et al. (2016) the fleet has been expanded from 25 to 32 ships. In their
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article, they propose an adaptive large neighborhood search heuristic for a
ship routing and scheduling problem, where the voyage separation require-
ment is modeled as the minimum time elapsed between two consecutive
sailings on a trade. As this model is based on a heuristic it is not an exact
method. Vilhelmsen et al. (2017) base their method on a branch-and-price
procedure and use a dynamic programming algorithm to generate columns.
The voyage separation requirements are relaxed in the master problem. A
time window branching scheme is used to enforce the separation require-
ments. This method is an exact method. Vilhelmsen et al. (2017) state,
after comparing, that their model is significantly faster than Norstad et al.
(2015)’s method.

For the aforementioned papers, the voyages are identical, i.e. visiting
the same ports in the same order and sailing with the same speed. How-
ever, there is more planning flexibility in RoRo-shipping, and there can be
differences between the voyages both to when to start each voyage as well
as when and how often to visit each port along the trade. Hansen et al.
(2018) claim that the STSRSP is a problem that is new to the research liter-
ature. However, in addition to the literature discussed above, the STSRSP
has some similarities with other problems, where one needs to separate ser-
vices for each customer in time. Such problems include the periodic vehicle
routing problem (e.g. Campbell and Wilson (2014)) and the supply vessel
planning problem (e.g. Kisialiou et al. (2018) and Borthen et al. (2017)),
as well as the special liner shipping network design problem considered by
Sigurd et al. (2005b).

3.3 Transit time requirements

In the STSRSP, we also consider that some contracts may impose transit
time limits. To mimic real world problem in maritime transportation, it
is important to implement transit time restrictions. Gelareh et al. (2010)
present a hub and spoke network model where the demand between two
ports is dependent on both transit time, as well as the price of shipping.

Both Álvarez (2012) and Wang and Meng (2011) deal with level of
service by using transit time restrictions for transporting cargo. Álvarez
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(2012) claims that cost minimization does not properly address the level of
service. To account for this, he uses a linear function of the cargoes transit
time through the liner shipping network. Wang and Meng (2011) also tries
to explain the level of service by looking at the transit time of cargo that is
transported.
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Chapter 4
Mathematical models

4.1 Full voyage model

This mathematical method is based on the voyage model formulated in
Hansen et al. (2018). This model gives a full description of the optimization
problem. The model and notation can also be found in Appendix A.

4.1.1 Notation

Let V be the set of possible voyages during the planning horizon, and N P ,
indexed by i, be the set of ports in the network. CV

i gives the cost of calling
port i.Let K be the set of vessels indexed by k. Each vessel k has a starting
position o(k), an artificial ending position d(k), and a graph Gk = (Nk, Ak)
associated with it. All ports that can be visited by vessel k are included in
Nk, i.e. N P

k , including its starting position and artificial ending position,
Nk ⊆ N P ∪ {o(k), d(k)}. The set of arcs Ak ⊂ Nk × Nk define the
feasible movements for vessel k.

Let C be the set of contracts indexed by c. CE is the set of contracts with
evenly spread requirements, while the set of contracts with transit time re-
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quirements is given by CT . T T
c gives the corresponding transit time of a

contract c. Each contract has a given loading port l(c) and an unloading
port u(c). CLi and CUi are the sets of cargoes that may be loaded at port
i and unloaded at port i, respectively. Let P be the set of product types.
Further, let PS

p be the set of product types that can be stored in the same
space as product type p. Dcp defines the total demand, in square meters,
for product type p for contract c. Q

cp
and Qcp denotes the minimum and

maximum quantity that has to be picked up when contract c is serviced, i.e.
the quantity picked up by a vessel must be between [Q

cp
, Qcp]. Addition-

ally, for the evenly spread requirements, the total number of pickups must
be within the interval [P c, P c], i.e. the integer interval over the minimum
and the maximum number of pickups for contract c.

CC
k gives the daily charter rate for vessel k. To model the fuel consump-

tion for each vessel, the piecewise linear approximation method proposed
by Andersson et al. (2015) is used. Let S be the set of discrete speed alter-
natives indexed by s, ordered from low to high. The cost of sailing from a
node i to a node j for vessel k using speed alternative s is denoted CS

ijks,
where as the sailing time is given by T S

ijks. T
A
k defines the time vessel k

becomes available at its origin. The handling time, i.e. the time used to
load or unload one square meter of product type p on vessel k, is given by
TH
kp. Finally, the length of the planning period is given by T PH .

Variables xijv define whether voyage v use the arc between nodes i and
j or not. The binary variable yvk defines whether vessel k sails voyage v
or not, wijvks represents the weight of the speed alternative s for vessel k
on the arc (i,j) on voyage v, and lijvp equals the load of product type p on
the arc (i,j) on voyage v. The binary variable δvc defines whether voyage v
serves contract c or not, and qvcp represents the quantity of product type p
picked up of contract c on voyage v. The time variable tiv define the start
of service at node i on voyage v.
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4.1 Full voyage model

4.1.2 The model

Objective function

min z =
∑
k∈K

∑
(i,j)∈Ak

∑
v∈V

∑
s∈S

CSC
ijkswijvks +

∑
(i,j)∈A

∑
v∈V

CV
i xijv +

∑
k∈K

CC
k t

HW
k (4.1)

The objective function (4.1) is to minimize the total cost, which con-
sists of the sailing and chartering costs associated with piloting and sailing,
the costs associated with visiting ports, and the time charter costs for the
handling and waiting time.

Network constraints

∑
k∈K

∑
j∈NP

k ∪d(k)

xo(k)jv = 1, v ∈ V (4.2)∑
i∈N

xijv −
∑
i∈N

xjiv = 0, v ∈ V , j ∈ N P
(4.3)∑

k∈K

∑
i∈NP

k ∪o(k)

xid(k)v = 1, v ∈ V (4.4)∑
j∈N

∑
v∈V

xo(k)jv = 1, k ∈ K (4.5)∑
i∈N

∑
v∈V

xid(k)v = 1, k ∈ K (4.6)

Constraints (4.2) - (4.4) describe the network flow on a route for each
voyage v. Constraints (4.5) and (4.6) state that each vessel must sail at
most one time out from its origin and to its destination. These constraints
are included to tighten the linear relaxation.
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Vessel constraints

xijv =
∑
k∈K

∑
s∈S

wijvks, (i, j) ∈ A, v ∈ V (4.7)∑
s∈S

wijvks ≤ yvk, k ∈ K, (i, j) ∈ Ak, v ∈ V (4.8)∑
v∈V

yvk = 1, k ∈ K (4.9)∑
k∈K

yvk = 1, v ∈ V (4.10)

Constraints (4.7) ensure that the weights of the speed alternatives add
up to 1 if vessel k sails arc (i, j), or not. Constraints (4.8) ensure that a
vessel k cannot sail the arc (i, j) on voyage v unless the vessel is assigned
to the given voyage. Constraints (4.9) and (4.10) ensure that each vessel is
assigned to a voyage and each voyage is sailed by one vessel, respectively.

Capacity constraints

0 ≤ lijvp ≤
∑
k∈K

KV
kpyvk −

∑
p′∈PS

p

lijvp′ , (i, j) ∈ A, v ∈ V , p ∈ P (4.11)

lijvp ≤MC
p xijv, (i, j) ∈ A, v ∈ V , p ∈ P (4.12)∑

j∈N

ljivp +
∑
c∈CL

i

qvcp −
∑
c∈CU

i

qvcp =
∑
j∈N

lijvp, i ∈ N , v ∈ V , p ∈ P

(4.13)∑
k∈K

∑
j∈N

lo(k)jvp = 0, v ∈ V , p ∈ P (4.14)

Constraints (4.11) and constraints (4.12) ensure that the capacity limit
of each product type on voyage v sailed by vessel k is respected. Con-
straints (4.13) ensure that the load on voyage v in node j equal the load in
the previous node i adjusted for the quantity loaded and unloaded in node
i. Constraints (4.14) define the initial load on voyage v.
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4.1 Full voyage model

Pickup constraints

P c ≤
∑
v∈V

δvc ≤ P c, c ∈ C (4.15)

δvc ≤
∑
i∈N

xil(c)v, v ∈ V , c ∈ C (4.16)

δvc ≤
∑
i∈N

xiu(c)v, v ∈ V , c ∈ C (4.17)

Constraints (4.15) ensure that the number of pickups of an evenly spread
contract is within the required interval. Constraints (4.16) and (4.17) ensure
that a voyage v only service contract c if both the loading and unloading
port for that contract is visited.

Loading constraints

Q
cp
δvc ≤ qvcp ≤ Qcpδvc, v ∈ V , c ∈ C, p ∈ P (4.18)∑

v∈V

qvcp = Dcp, v ∈ V , p ∈ P (4.19)

Constraints (4.18) require that the quantity picked up from contract c
is within a given interval. Constraints (4.19) ensure that the contracted
demand is serviced.
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Time constraints

to(k)v = TA
k yvk, v ∈ V , k ∈ K (4.20)

tiv +
∑
k∈K

∑
s∈S

T S
ijkswijvks + T P

ivxijv +
∑

c∈CL
i ∪CU

i

∑
p∈P

TH
kpqvcp ≤ tjv, (i, j) ∈ A, v ∈ V

(4.21)

tl(c)v + T T
c +MT

c (1− δvc) ≥ tu(c)v, v ∈ V , c ∈ C (4.22)

tjv −MS
jk(1− xo(k)jv) ≤ T PH , j ∈ N P , v ∈ V , k ∈ K (4.23)

tHW
k ≥ td(k)v − to(k)v −

∑
(i,j)∈Ak

T P
ivxijv −

∑
(i,j)∈Ak

∑
s∈S

T S
ijkswijvks

−ML
k (1− yvk), v ∈ V , k ∈ K

(4.24)

∑
k∈K

tHW
k ≥

∑
v∈V

∑
i∈NP

∑
c∈CL

i ∪CU
i

∑
p∈P

TH
kpqvcp (4.25)∑

i∈NP

∑
k∈K

xo(k)i(v+1) ≤
∑
i∈NP

∑
k∈K

xo(k)iv, v ∈ V\{| V |}, c ∈ C (4.26)

Constraints (4.20) ensure that a a voyage v can start when the vessel k
assigned to that voyage is available. Constraints (4.21) ensure that the time
of starting service at a node j must be greater than or equal to the start of
service at the previous node i, plus the sailing time between the nodes, the
piloting time in node i, and the contract handling time. Constraints (4.22)
ensure that the transit time restrictions are respected. Constraints (4.23)
require that each voyage that is taken must visit the first port within the
planning horizon. Constraints (4.24) sets the time each vessel uses on han-
dling and waiting. Constraints (4.25) are used to tighten the formulation,
and define a lower bound on the minimum time used to handle the con-
tracts. Constraints (4.26) are symmetry breaking, and ensure that empty
voyages are placed last in voyage ordering.
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Variable constraints

xijv ∈ {0, 1}, (i, j) ∈ A, v ∈ V (4.27)

δvc ∈ {0, 1}, v ∈ V , c ∈ CE (4.28)

0 ≤ wijvks ≤ 1, k ∈ K, (i, j) ∈ Ak, v ∈ V , s ∈ S (4.29)

Constraints (4.27) and (4.28) put binary restrictions on the arc-flow and
pickup variables, respectively. Constraints (4.29) require the speed variable
wijvks to take values between 0 and 1.

Evenly spread constraints

In this section, additional notation for the evenly spread constraints are pre-
sented, as well as the evenly spread constraints.

Let the binary variable zvwc define whether voyage w is the next voyage
after voyage v, servicing contract c or not. If both voyage v and voyage w
service contract c, i.e. zvwc = 1, we will refer to the pair of voyages (v, w)
as a spread pair. This means, that if a contract is picked up n times, there
will exist (n - 1) spread pairs for contract c. Further, let φnc be 1 if contract
c is picked up n times during the planning horizon, 0 otherwise. Variables
sc define the number of days contract c deviates from the evenly spread
requirement. Finally, let L be the total maximum allowed deviation in days
from the evenly spread requirement, i.e. the service level requirement.
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∑
v∈V

∑
w∈VS

v

zvwc ≥
∑
v∈V

δvc − 1, c ∈ CE (4.30)∑
w∈VS

v

zvwc ≤ δvc, v ∈ V , c ∈ CE (4.31)∑
w∈V\(VS

v ∪{v})

zvwc ≤ δvc, v ∈ V , c ∈ CE (4.32)

P c∑
n=P c

nθnc =
∑
v∈V

δvc, c ∈ CE (4.33)

P c∑
n=P c

θnc = 1, c ∈ CE (4.34)

P c∑
n=P c

T PHθnc
n

− sc −ME
c (1− zvwc) ≤ tl(c)w − tl(c)v, v ∈ V , w ∈ VS

v , c ∈ CE

(4.35)
P c∑

n=P c

T PHθnc
n

+ sc +ME
c (1− zvwc) ≤ tl(c)w − tl(c)v, v ∈ V , w ∈ VS

v , c ∈ CE

(4.36)∑
c∈CE

sc ≤ L (4.37)

Constraints (4.30) require that the sum of spread pairs for contract c is
greater than or equal to the number of pickups minus 1. Constraints (4.31)
and (4.32) require a voyage v to pick up contract c in order to be included in
a spread pair, while also ensuring that a voyage v is present in at most two
spread pairs for each contract. Constraints (4.33) and (4.34) ensure that θnc
is 1 if contract c is picked up n times. Constraints (4.35) and (4.36) require
that voyages v and w arrive at the loading port of contract c evenly spread
. To correct for deviation from the desired spread, the spread slack variable
sc may take a positive value. Constraints (4.37) limits the sum of deviation
for all evenly spread contracts.
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4.1 Full voyage model

Variable constraints

zvwc ∈ {0, 1}, v ∈ V , w ∈ VS
v , c ∈ CE (4.38)

θnc ∈ {0, 1}, c ∈ CE, n = P c..P c (4.39)

sc ≥ 0, c ∈ CE (4.40)

Constraints (4.38) and (4.39) put binary restrictions on the spread pair
and pickup-counter variables, respectively. Constraints (4.40) ensure that
the spread deviations are non-negative.
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Chapter 5
Matheuristic for the STSRSP

In this chapter the matheuristic proposed for solving the STSRSP is pre-
sented. Section 5.1 gives an overview of the matheuristic. Section 5.2
describes step 1 to 4 of the matheuristic, i.e. the process of determining
the yvk-variables from Chapter 4, while Section 5.3 describes step 5 of the
matheuristic, i.e. determining the δvc-variables. Section 5.4 describes step
6 of the matheuristic, i.e. the fixing of variables, and the reduces model.
Finally Section 5.5 presents step 7 of the matheuristic, i.e. the service level
search.

The model presented in Section 4.1, aims to determine to assign vessels
to voyages, determine which routes these vessels should sail at what speed,
and which contracts to service so that all contract requirements regarding
pick up frequency and quantities, transit times, and fairly evenly separation
in time are satisfied at minimum cost. The model in 4.1 is an improved for-
mulation of a previous model, which has shown that better formulations can
decrease run time (Hansen et al., 2018). However, even with these improve-
ments the run time is prohibitively large. With no evenly spread constraints,
only 25 of 30 problem instances were solved to optimality within a max-
imum run time of 3 hours. With service level (evenly spread constraints
active) the model solves 20 of 30 problem instances to optimality. In both
cases, the model found solutions for nearly all problem instances (30 of 30
without evenly spread, 29 of 30 with.) The substantial run time of this mo-
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tivates the development of a matheuristic, which could allow the finding of
approximate solutions that are good enough in practice, both with regards
to solution quality and run time.

5.1 Matheuristic overview

The idea behind the matheuristic is to divide different parts of the model
into separate steps in a sequential process. This way the matheuristic makes
approximately good choices for each step and reduces the search space con-
siderably on its way. Let us think of the search space as a tree, where each
branch represents a solution. One way to think of the matheuristic is that
it chooses the branch it considers the best solution, and evaluates only that
branch. The matheuristic continues by iteratively evaluating the branches
it considers are best, until it finds a solution that is good enough, hopefully
without having to evaluate the entire solution tree. The matheuristic does
this by at first generating all routes which can be a part of a feasible solu-
tion in step 1, and then combining them in plausibly good routing solutions
by using a smaller optimization model in step 2. This routing solution is a
set of routes, where the number of routes equal to the number of voyages.
As there are high costs associated with calling ports, as well as extra sail-
ing distance and time, determining which ports to call for each voyage is
an essential decision for the RoRo-shipping companies. The model selects
this set to minimize cost, and to ensure that contract pickup requirements
can be fulfilled. In step 3 the matheuristic uses another smaller optimiza-
tion model to find feasible vessel-voyage combinations for each voyage. In
step 4 the matheuristic determines the sequence that the voyages will be
performed in, to ensure that the vessels start in the optimal order in relation
to the time they are available. In step 5 a greedy algorithm is used to de-
cide which contracts should be picked up on which voyage, while ensuring
quantity, capacity and transit time constraints. In step 6, the reduced model
is run using the variables acquired in the earlier steps. If it cannot place
contracts, or the model does not return a feasible solution, it returns to step
3. If step 3 does not yield a possible vessel combination. It returns to step 2.
If it can place the contracts successfully, it fixes the variables in the original
optimization problem corresponding to all choices above, and runs it. If it
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5.1 Matheuristic overview

returns a feasible solution, the objective value is compared with the current
best objective value, and if it is an improvement, it replaces the current best
solution. In step 7 the model checks the solution in relation to the evenly
spread constraints, and if it is poorly spread the matheuristic iteratively tries
to improve the solution by re-organizing or adding extra pickups for con-
tracts with an evenly spread requirement. A flow chart for the matheuristic
is presented in Figure 5.1.
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Figure 5.1 Flow chart of the matheuristic
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5.2 Step 1 - 4: Obtaining routes and assigning vessels

5.2 Step 1 - 4: Obtaining routes and assigning
vessels

In this section, the process of obtaining, and assigning vessels, to voyages,
i.e. steps 1 to 4, is described in detail. Section 5.2.1 describes step 1,
the process of generating routes. The route model, from step 2, is given
in Section 5.2.2. In Section 5.2.3, the assigning-vessels-to-voyages model,
from step 3, is presented. Finally, Section 5.2.4 describes how the sequence
of the routes are determined, i.e. step 4.

5.2.1 Step 1: Generating candidate routes

In step 1, all possible routes for the instance is generated. Routes which
only has one port visit, only visits loading ports, or only visits unloading
ports are removed from the set. The reason for this is that in any feasible
problem solution, the model must unload what is loaded during a voyage.
Therefore these routes cannot be part of a feasible solution, and can be
removed to reduce run time. The route with no port visits are kept, as a
feasible solution does not have to use all voyages

5.2.2 Step 2: Route model

The model presented in this section, constitutes step 2 in the matheuristic.
The model takes the set of routes obtained in Section 5.2.1, and returns a
combination of routes equal to the number of voyages that should be per-
formed. Let us consider a combination of routes. For these routes to be
feasible, all contractual requirements have to be fulfilled. For a given set
of contractual requirements, there are usually many combinations of routes
which can fulfill them. These solution will however not be equal in effi-
ciency. If the contractual requirements for a problem can be fulfilled with
fewer than the allowed voyages, and optimized routes on the voyages that
are sailed, costs will in general be much lower. That is, efficient routing is
one of the most important drivers of cost for this problem, which is a reason
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that route generation and selection is the first step of this matheuristic. It
also makes sense for this to be the first step considering the idea behind the
matheuristic. If the first step was assigning contracts to voyages (for exam-
ple), this step would also implicitly have to create routes, consider capacity,
load quantity, evenly spread, and transit time restriction as well as vessel
assignment. This would require a much more sophisticated algorithm and
would be a sub problem closer in complexity to the original problem . By
fixing the routes, the matheuristic can use fast and relatively simple algo-
rithms to assign vessels, to optimize the contract assignment for that route,
and to improve evenly spreading in separate steps. This allows for a faster
search of the solution space for feasible, and possibly good enough solu-
tions.

The objective of the route model is to minimize the distance sailed,
while ensuring that every loading and unloading port specified in the con-
tracts are visited at least as many times as the minimum pickup frequency.

Notation

Let R be the set of possible routes, from Section 5.2.1, that can be sailed
on a given trade route, indexed by r. Cr defines the total distance of sailing
route r. Let Acr define whether route r visits both the loading and the
unloading port of contract c, and AT

cr define whether route r visits both the
loading and unloading port within the transit time requirement of contract
c. The sailing time between ports is calculated using the fastest vessel at the
highest speed. Let |V| be the total number of voyages. Let integer variables
xr define how many, if any, times route r is sailed.

The model

min
∑
r∈R

Crxr (5.1)
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5.2 Step 1 - 4: Obtaining routes and assigning vessels

∑
r∈R

Acrxr ≥ P c, c ∈ C (5.2)∑
r∈R

AT
crxr ≥ P c, c ∈ CT (5.3)∑

r∈R

xr = |V| (5.4)

xr ≥ 0, and integer r ∈ R (5.5)

The objective function (5.1) is to minimize the total cost; the sum of the
distance of sailing route r. Constraints (5.2) ensure that the routes visit the
loading and unloading port of a contract at least as many times as the min-
imum pickup requirement. Constraints (5.3) ensure that the routes visit the
loading and unloading port within the transit time requirement of a contract
at least as many times as the minimum pickup requirement. Constraints
(5.4) ensure that the sum of routes sailed is equal to the total number of
voyages.

Removing previous solution from the set of possible routes

To ensure that the model provides new solutions every time the route model
is solved, the previous route solution is removed from the set by adding a
new constraint. Let R′ be the set of predetermined routes from the route
model. ∑

r∈R′

xr ≤ |V | − 1 (5.6)

5.2.3 Step 3: Assigning vessels to routes model

In this section, vessels are assigned to the predetermined routes from Sec-
tion 5.2.2, i.e. step 3. This is an important part of the heuristic, since the
product capacity of a vessel determines which contracts, as well as how
many contracts, can be serviced on a voyage. The vessels also have differ-
ent sailing costs, which affects the total cost.
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New notation

Let R′ be the set of predetermined routes from Section 5.2.2, and Crk be
the estimated cost of sailing route r with vessel k. Let binary variables xrk
define whether vessel k is assigned to route r, or not.

The model

min
∑
k∈K

∑
r∈R′

Crkxrk (5.7)

∑
r∈R′

xrk = 1, k ∈ K (5.8)∑
k∈K

xrk = 1, r ∈ R′
(5.9)∑

k∈K

∑
r∈R′

AcrK
V
kpxrk ≥ Dcp, p ∈ P , c ∈ C (5.10)∑

k∈K

∑
r∈R′

AT
crK

V
kpxrk ≥ Dcp, p ∈ P , c ∈ CT (5.11)

xrk ∈ {0, 1}, r ∈ R′, k ∈ K (5.12)

The objective function (5.7) is to minimize the cost of sailing the pre-
determined routes. Constraints (5.8) ensure that a vessel takes exactly one
route, while constraints (5.9) ensure that a route is assigned to only one
vessel. Constraints (5.10) ensure that the vessels that service contract c has
enough capacity to satisfy the demand for contract c. Constraints (5.11)
ensure that the vessels that service contract c has enough capacity to satisfy
the demand for contract c, as well as satisfy the transit time requirements.

Removing previous solution from the set

To ensure that the model provides new solutions every time the assigning-
vessels-to-routes model is solved, the previous route-vessel solution is re-
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moved from the set by adding a new constraint. Let Xrk be the set of route-
vessel pairs obtained from running the assigning-vessels-to-routes model.

∑
r∈R′

xrk ≤ |V | − 1, k ∈ K (5.13)

5.2.4 Step 4: Determining the sequence of routes

The vessels can be available at the start of the planning horizon, or become
available during the planning horizon, due to duties on other trades. A
vessel cannot arrive at a port before a vessel on an earlier voyage, if both
vessels service that port. Therefore, to reduce the waiting time for each
vessel, the sequence of the routes is determined based on when the vessels
assigned to the routes, are available. The vessel that is first available, along
with the corresponding route, is assigned the first voyage, the second vessel
that is available is assigned to the second voyage, and so on.

5.3 Step 5: Placing contracts on voyages

In this section, the process of deciding which voyages will service which
contracts, i.e. fixing the δvc-variables, of step 5 of the matheuristic is de-
scribed. Section 5.3.1 describes how the sequence of contracts to be placed
on voyages is determined. How the contracts are placed on voyages, and
the repair functions to fix load or transit time requirements, are described
in Subsection 5.3.2 and 5.3.3, respectively.

A crucial part of the matheuristic is to place the contracts on the voy-
ages obtained in Section 5.2. There are several requirements that has to
be fulfilled for a voyage to be able to service a contract. First of all, the
voyage has to visit both the loading and unloading port of that contract.
Due to the inherent planning flexibility in RoRo-shipping, the voyages do
not necessarily visit all the ports on the trade. Second, the vessel assigned
to the voyage has to have enough capacity to service at least the minimum
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required quantity to be picked up, of the product type specified in the con-
tract. The vessels have different capacities, and this also restricts which, as
well as how many, contracts that can be placed on the corresponding voy-
age. In addition, any transit time requirements of the contracts have to be
fulfilled. If the δvc-variables violate any of these requirements, the problem
will be infeasible.

5.3.1 Sorting contracts

Each contract is sorted lexicographically by four properties: product type,
number of route options, transit time requirement, and quantity. This is
done, so that the contracts that have the tightest restrictions, or have the
fewest options in terms of which voyages can service that contract, are
placed first.

Product type

All contracts are sorted by product types, where the product type that has
the fewest storage options is placed first. E.g. if product type A can only
be stored in space facilitated for product type A, and product type B can be
stored both in space facilitated for product type B, and space facilitated for
product type A. Then product type A will be placed before product type B.

Route options

The contracts are then sorted based on the number of routes that can service
the contract, i.e. routes that visit both the loading port and the unloading
port of the contract, minus the minimum number of times the contracts has
to be picked up, i.e. the minimum number of routes that have to service the
contract. So if a contract has three possible routes that can service it, and a
minimum number of pickups equal to two, then the contract will have one
route option.
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Transit time requirement

Next, the contracts are sorted by transit time requirements, where the con-
tracts with lowest transit time requirement are placed first. Contracts that
do not have any transit time requirements, are placed last.

Quantity

Lastly, the contracts are sorted by quantity, i.e. the minimum quantity to be
picked up every time, i.e. Qcp, where the contracts with the largest quantity
are placed first.

Example

To illustrate how the contracts are sorted, a small example is provided.
Here, product type A can only be stored on space facilitated for product
type A, while product type B can be stored on space facilitated for product
type B or product type A. A ”-” in the transit time req.-column indicates that
the contract has no transit time requirement. Table 5.1 shows the, unsorted,
contracts with the corresponding four properties.

Table 5.1: Example contracts - unsorted

Contract Product type Route options Transit time req. Qcp

1 A 0 - 2100
2 B 0 10 1700
3 B 1 - 2400
4 A 1 13 3000
5 B 0 17 1400
6 B 1 - 2300

Contracts 1 and 4 both contain product type A, and therefore placed be-
fore contracts 2, 3, 5, and 6, which contain product type B. Next, contract
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1 is placed before contract 4, and contracts 2 and 5 are placed before con-
tracts 3 and 6, as contracts 2, 4, and 5 have one extra route option, while
contracts 1, 3, and 6 have none, i.e. contracts 1, 3, and 6 have to be placed
on all the voyages that visit both the unloading and unloading port of that
contract. Since, both contracts 2 and 5 have transit time requirements, the
contract with the lowest transit time, contract 2, will be placed first. Lastly,
since neither contract 3 nor 6, have transit time requirement, the sequence
is determined by the size of the load. Therefore, contract 3, which has a
higher load, is placed before contract 6. Table 5.2 below shows the sorted
contracts.

Table 5.2: Example contracts - sorted

Contract Product type Route options Transit time req. Qcp

1 A 0 - 2100
4 A 1 13 3000
2 B 0 10 1700
5 B 0 17 1400
3 B 1 - 2400
6 B 1 - 2300
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5.3.2 Placing contract

This section describes how a contract is placed on a voyage, i.e. setting the
δ-variables. The spread, or the number of pickups, of a contract is deter-
mined by the minimum number of pickups required. The spread defines
how many voyages a contract should be placed on.

As mentioned above, when placing a contract on a voyage, there are
several requirements to be met. Therefore, three different checks have
been implemented to increase the possibility of getting feasible δ-variables:
check port visits, check capacity, and check transit time requirement. In
addition, the sorting of the contracts in Section 5.3.1, is used to place the
contracts with fewest possible options, or most requirements, first, as these
would be the most difficult contracts to place. If all these requirements are
fulfilled, the contract can be placed on the corresponding voyage. A pseudo
code for placing contracts is given in Algorithm 1.

Algorithm 1 Pseudo code for placing the contracts on voyages
Input: Contracts
Output: δvc
contracts← sorted(contracts) . Sort contracts - see section 5.3.1
while contracts not empty do

c← pop(contracts)
placed = 0
placed bound← minimum pickup frequency(contract)
possible voyages← get possible voyages(voyages) . Returns
voyages that satisfy port visit req. for contract c
while placed < placed bound and possible voyages not empty do

v← get voyage(possible voyages) . Returns the voyage with most
available space
if check capacity(v, c) and check transit requirement(v, c) then
δvc = 1 . Place contract c on voyage v
placed += 1

possible voyages.remove(v)
end

end
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Check port visits

The voyage has to visit both the loading and the unloading port of the con-
tract, to be able to service that contract. Which ports a voyage visits is
determined in Section 5.2. These routes are used as a guide when placing
contracts, to determines if a voyage can service a contract, or not. This
check returns a set of all possible voyages that can service the contract in
terms of visiting the loading and unloading ports.

Check capacity

A vessel has to have capacity to pick up at least the minimum quantity of
product p for contract c, Q

cp
, if the number of pickups is larger than one,

to be able to service the contract. If the contract is only picked up once,
the vessel has to have capacity to pick up the total demand of that contract,
Dcp. This quantity is referred to as the load of the contract. It is important
to note that the load used in this chapter is just a minimum quantity to be
picked up, and does not necessarily reflect the real load of the product,
after solving the model. The capacity check is performed by checking if
the vessel assigned to the voyage has enough capacity for the contract, as
well as all the other contracts already placed on that voyage.

Check transit time requirements

The transit times requirements give the maximum time allowed from the
load port to the unload port for the contract, i.e. the sum of the maximum
sailing time, piloting, handling, and waiting times. The sailing time is cal-
culated by using the highest speed alternative. The handling time is based
on the load of the product for that contract.
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5.3.3 Repair functions

The transit time requirement check in Section 5.3.2 is performed with-
out any information about the contracts that have not already been placed.
Therefore, an extra repair function, described below, is implemented to fix
any violations of transit time requirements.

Repair transit time requirements

Since the handling time depends on the the amount of product being loaded
or unloaded at the ports, the check in Subsection 5.3.2 is insufficient for
some contracts, as it only takes into consideration the load of that particu-
lar contract. Therefore, an extra check is performed after all contracts are
placed. For each contract with transit time requirement, the sailing time is
calculated using the highest speed alternative. Then the handling time is
calculated for each visited port from, and including, the load to the unload
port, based on the loads of the contracts that are placed on that voyage.
Lastly, the node time for each port visited is added to the total time. If the
total time exceed the transit time requirement, the contract is added to a list
of violating contracts.

For each violating contract in the list, one of the following procedures
is done. The first procedure checks if the violating contract can be moved
to another viable voyage that has a lower total time from the loading port to
the unloading port. If there is no other viable voyage, or no viable voyage
with lower total time, the second procedure checks if other contracts on the
same voyage can be moved to another voyage. This is done in order to try
too reduce the handling time on the voyage.
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5.4 Step 6: Solving the reduced model with fixed
variables

In this section, step 6 of the matheuristic is presented. Section 5.4.1 de-
scribes how the variables are fixed, while the reduced model, i.e. the math-
ematical model from Chapter 4 after fixing the variables, is presented in
Section 5.4.2.

5.4.1 Preproccessing

The x-, z- and φ-variables are calculated based on the δ-variables from
Section 5.3, and the y-variables from Section 5.2. The routes from Section
5.2 are just used as a guide for placing the contracts, and does not directly
affect the x-variables. To calculate the x-variables, i.e. which ports are
visited on a voyage, the δ-variables are used to find which contracts are
placed on each voyage. Each contract has a specific load and unload port
associated with it, and the voyage has to visit both ports of all the contracts
that the voyage is servicing. The voyage does not visit any port that is not
either a loading or unloading port of a contract assigned to that voyage.

From the δ-variables, the z- and φ-variables are easily obtained. For
each contract the voyages servicing that contract, is added to a list. The list
of voyages is then sorted, and counted. The z-variables define whether a
voyage is the next voyage to service a contract after another voyage, and
are based on the sequence of the voyages in the list. The φ-variables define
how many times a contract is picked up during the planning period, and is
based on the count of the list of voyages that service the contract.

5.4.2 The reduced model

When fixing the x-, z-, φ-, δ-, and y-variables, (4.2) - (4.5), (4.9), (4.10),
(4.15) - (4.17), (4.27), (4.28), (4.30) - (4.34), (4.38), and (4.39) are redun-
dant, and can be removed from the model. This leaves the LP-model below.
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Objective function

min z =
∑
k∈K

∑
(i,j)∈Ak

∑
v∈V

∑
s∈S

CSC
ijkswijvks +

∑
(i,j)∈A

∑
v∈V

CV
i Xijv + (5.14)

∑
k∈K

CC
k t

HW
k + σ

∑
c∈CE

sc (5.15)

Vessel constraints

Xijv =
∑
k∈K

∑
s∈S

wijvks, (i, j) ∈ A, v ∈ V (5.16)∑
s∈S

wijvks ≤ Yvk, k ∈ K, (i, j) ∈ Ak, v ∈ V (5.17)

Capacity constraints

0 ≤ lijvp ≤
∑
k∈K

KV
kpYvk −

∑
p′∈PS

p

lijvp′ , (i, j) ∈ A, v ∈ V , p ∈ P (5.18)

lijvp ≤MC
p Xijv, (i, j) ∈ A, v ∈ V , p ∈ P (5.19)∑

j∈N

ljivp +
∑
c∈CL

i

qvcp −
∑
c∈CU

i

qvcp =
∑
j∈N

lijvp, i ∈ N , v ∈ V , p ∈ P

(5.20)

∑
k∈K

∑
j∈N

lo(k)jvp = 0, v ∈ V , p ∈ P (5.21)
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Loading constraints

Q
cp

∆vc ≤ qvcp ≤ Qcp∆vc, v ∈ V , c ∈ C, p ∈ P (5.22)∑
v∈V

qvcp ≤ Dcp, v ∈ V , p ∈ P (5.23)

Time constraints

to(k)v = TA
k Yvk, v ∈ V , k ∈ K (5.24)

tiv +
∑
k∈K

∑
s∈S

T S
ijkswijvks + T P

ivXijv +
∑

c∈CL
i ∪CU

i

∑
p∈P

TH
kpqvcp ≤ tjv, (i, j) ∈ A, v ∈ V

(5.25)

tl(c)v + T T
c +MT

c (1−∆vc) ≥ tu(c)v, v ∈ V , c ∈ C (5.26)

tjv −MS
jk(1−Xo(k)jv) ≤ T PH , j ∈ N P , v ∈ V , k ∈ K (5.27)

tHW
k ≥ td(k)v − to(k)v −

∑
(i,j)∈Ak

T P
ivxijv −

∑
(i,j)∈Ak

∑
s∈S

T S
ijkswijvks

−ML
k (1− Yvk), v ∈ V , k ∈ K

(5.28)

∑
k∈K

tHW
k ≥

∑
v∈V

∑
i∈NP

∑
c∈CL

i ∪CU
i

∑
p∈P

TH
kpqvcp (5.29)
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Evenly spread constraints

P c∑
n=P c

T PHθnc
n

− sc −ME
c (1− Zvwc) ≤ tl(c)w − tl(c)v, v ∈ V , w ∈ VS

v , c ∈ CE

(5.30)
P c∑

n=P c

T PHθnc
n

+ sc +ME
c (1− Zvwc) ≤ tl(c)w − tl(c)v, v ∈ V , w ∈ VS

v , c ∈ CE

(5.31)∑
c∈CE

sc ≥ L (5.32)

Variable constraints

0 ≤ wijvks ≤ 1, k ∈ K, (i, j) ∈ Ak, v ∈ V , s ∈ S (5.33)

sc ≥ 0, c ∈ CE (5.34)

The objective function (5.14) replaces (4.1), where a penalty function is
added to reduce the total deviation in days from the evenly spread require-
ment for contracts. Constraints (5.16) and (5.17) corresponds to (4.6) and
(4.8). Constraints (5.18) - (5.21) replaces (4.11) - (4.14). Constraints (5.22)
- (5.29) replaces (4.18) - (4.25). Constraints (5.30) - (5.32) corresponds to
(4.35) - (4.37). Constraint (5.32) replaces (4.37). Constraint (5.33) and
(5.34) is equivalent to (4.29) and (4.37), respectively.

If the penalty, for deviation from the evenly spread requirement, is high
enough the model will prioritize reducing the deviation, even if that means
a higher cost. However, the service level requirement is defined by the
service level threshold L, which describes how much deviation is allowed.
Reducing the deviation further is not necessary.

Let us consider a small problem, where the service level threshold L is
15 days. Solution 1 has a total deviation of 15 days, i.e.

∑
c∈CE

sc = 15, and
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a total cost, without penalty, of 1000$. Solution 2 has a total deviation of
10 days, and a cost of 1200$. Since both the solutions, have an acceptable
service level, the solution with the lowest cost would be preferable, i.e.
solution 1. However, if the deviation penalty function σ is set to 100, then
the total cost, with penalty, of solution 1 would be 1000 + σ ∗

∑
c∈CE

sc =

1000 ∗ 100 ∗ 15 = 2500. The total cost of solution 2, would amount to
1200 + 100 ∗ 10 = 2200, which would be preferred over solution 1.

By replacing the constraint (5.31) with constraint (4.38), there is a pos-
sibility that a solution will have total deviation larger than the service level
threshold. Therefore, a service level search, described in Section 5.5 is
implemented, to correct the deviation.

5.5 Step 7: Service level search

This section describes the service level search performed in step 7. If the
LP-model returns a solution, the total deviation in days for all contracts
from the evenly spread requirement, i.e.

∑
c∈CE

sc, is calculated. If the to-

tal deviation is higher than the upper limit, L, the service level search is
performed.

The service level search is performed by sorting the contracts by size
of the deviation in descending order. The contract with the highest devi-
ation is then chosen from the list, and if possible, the contract is added to
another voyage, increasing the number of pickups of the contract by one. If
adding an extra pickup to that contract, the contract with the second high-
est deviation is chosen, and is then tried to be placed on another voyage.
This continues until a contract is placed on an extra voyage, or until there
are more voyages to try. If a pickup is added to a contract the matheuristic
returns to step 6, with the new δvc. Algorithm 2 shows the pseudo code for
the service level search.
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5.5 Step 7: Service level search

Algorithm 2 Pseudo code for the service level search
Input: sc, voyages, delta
Output: δvc
while solution and sum(sc) ≥ L do

s← sorted sc by descending order
smax = pop(s)
if smax can be moved then
δvc← move contract(smax)
sc, solution← voyage model(voyages, δvc)

end
end
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Chapter 6
Computational Study

In this chapter, the results from running the heuristic described in Chap-
ter 5 is presented. Section 6.1.1, describes the instances used for testing,
while Section 6.2 presents the results. In Section 6.3, an analysis of the
matheuristic is presented.

To better compare the matheuristic and the exact method, the mathe-
matical model in Chapter 4 was implemented using the modeling language
OPL, and solved with the optimization software Cplex. The matheuristic
has been coded in Python, and PyCharm has been the integrated devel-
opment environment. All computational experiments have been run on a
MacBook Pro with Intel Core i5 processor and 16 GB RAM running High
Sierra.

6.1 Test instances

To evaluate the performance and capabilities of the heuristic presented in
Chapter 5, the same instances as in Hansen et al. (2018) have been used.
Section 6.1.1 describes how the instances are created, while Section 6.1.2
describes the instance naming scheme.

49



Chapter 6. Computational Study

6.1.1 Creating instances

The instances used in this thesis is based on a combination of real data and
generated data. Each instance has been created using one of three different
trade routes that are geographically similar to trade routes sailed by ship-
ping companies. The difference is in the number of port visits made during
voyages over these trade routes. The instances has been created using the
following trade routes: Asia - Europe, Europe - US, US - Japan. These
trade routes have five, ten, and fifteen ports, respectively. For each trade
route, two different sets of instances are created. The first set consists of
instances with 50 contracts which must be serviced during the planning
horizon, while the second set consists of instances with 100 contracts. The
total volume of goods to be transported during the planning horizon is based
on real data from a shipping company.

For all instances 40% of the contracts comes with evenly spread require-
ments, 20% of the contracts comes with transit time requirements and 40%
of contracts comes without any service requirements. Further, 90% of the
contracts have loading and unloading ports randomly drawn from different
regions (for example, loading in Europe and unloading in the US), while
10% of the contracts have loading and unloading ports randomly drawn
from the same region (for example, loading and unloading in Europe.) All
voyages must begin within time window of the planning horizon, which is
set to 30 days for all instances.

The following contract data is generated randomly for all instances, and
is drawn from uniform distributions. A random number is drawn, between
0.05 and 1 for ordinary contracts and 0.2, 1.5 for evenly spread contracts.
These numbers are then normalized, meaning that this number is the con-
tract demand to total demand ratio for each contract. Using these ratios,
total demand is distributed among each of the contracts. Each contract has
a service frequency requirement, which is drawn from the following integer
interval: [1, minimum number of required voyages]. The minimum num-
ber of required voyages is calculated by finding the sum of all contractual
demand over the entire planning horizon, and dividing it by the capacity of
the largest vessel (rounding it up to the nearest integer.) That is, the amount
of voyages necessary if all vessels had equal capacity as our largest ves-
sel. For the contracts with transit time requirements, transit time limits are
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chosen in the following interval: [minimum sailing time 1.2, maximum
sailing time without waiting]. For a contract with loading port A and un-
loading port B, the minimum sailing time is the time it takes to sail directly
from A to B at the highest possible speed, while the maximum sailing time
without waiting is the time it takes to sail from A to B while visiting all
ports between A and B at the lowest possible speed.

For contracts with evenly spread requirements, the minimum and maxi-
mum quantity bounds are created with by using equation 6.1 and 6.2, which
constrains the minimum quantity picked up for a contract to be the contract
demand divided by the pickup frequency for that contract, multiplied by a
factor of 80% to allow some degree of freedom. Similar for the maximum
quantity, except that it is multiplied by a factor of 120%, to create a quantity
window.

Qcp = 0.8Dcp/P̄c (6.1)

Q̄cp = 1.2Dcp/Pc (6.2)

For all other types of contracts, the minimum and maximum quantity
bounds are created by using equation 6.3 and 6.4.

Qcp = Dcp/|K| (6.3)

Q̄cp = Dcp (6.4)

Loading and unloading ports are drawn in such a manner that their dis-
tribution over the contracts reflect the actual, typical demand in these ports.
Port visit costs are uniformly drawn from the following interval: [25 000
USD, 40 000 USD]. Vessel characteristics, such as speed-dependent fuel
consumption functions, stowage capacities, and estimations of time charter
rates are provided by a shipping company, and each instance have a ran-
domly selected subset of these vessels.
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6.1.2 Naming of the instance

The instances are grouped into sets based on the size (that is, the number
of ports) of the trade route, and how many contracts to be serviced during
the planning period, see Table 6.1. For example, M-50 describes a set of
five instances on the medium trade, i.e. the Asia - Europe trade, with 50
contracts

Table 6.1: Sets of test instances

Instance set Trade route Contracts

S-50 US - JAPAN 50
S-100 US - JAPAN 100
M-50 ASIA - EUROPE 50

M-100 ASIA - EUROPE 100
L-50 EUROPE - US 50

L-100 EUROPE - US 100

To differentiate between the instances within a group, an index N is
assigned to each instance. An instance is identified by its group name,
Size-Contracts (S-C), as well as the index (N), see Table 6.2. For example,
M-50-0 is the first instance on the medium trade, with 50 contracts.

Table 6.2: Instance naming scheme

Instance name S-C-N

where
S - Size of the trade route ∈ [S,M,L]
C - Number of contracts ∈ [50, 100]
N - Index to separate instances in the same set ∈ [0, 9]
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6.1.3 Service level requirement

The service level requirement is defined by the service level threshold L.
The service level used in this thesis corresponds to the medium service
level in Hansen et al. (2018). The medium service level threshold is set as
LM = LH + (LN −LH)/3, where LN is the post calculated threshold with
no service level requirement. LH , is set by solving the STSRSP where the
objective function is replaced by LH =

∑
c∈C

sc.

6.2 Results

In Section 6.2.1, the results from running the matheuristic and the model
with no service level requirement is presented. In Section 6.2.2, the results
from running the matheuristic and the model with service level requirement
is presented.

6.2.1 Without service level requirement

In this section the heuristic is run with no service level requirement. The
heuristic was run once for 100 seconds and once for 1000 seconds for all
instances. A summary of the test results can be found in Table 6.3.. Each
of the six sets of instances are represented by separate rows in the table,
and each set contains 5 instances of the same type. The heuristic results are
compared with the solution obtained by running the model with the same
time limit as the heuristic. The table also shows the number of instances
where a feasible solution was obtained, as well as the average gap (%) for
those instances. Note that for some cases the gaps are missing. This is
because the the instances in those cases could not be solved to optimality
within a reasonable run time, and therefor no solution comparison could be
made. Complete results from running the heuristic with no service level
requirement, can be found in Appendix B.
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Table 6.3: Number of instances solved and average gap (%) compared to the opti-
mal solution, for the instance sets by running the matheuristic and model

Set of instances Model Matheuristic

100 sec Gap (%) 1000 sec Gap (%) 100 sec Gap (%) 1000 sec Gap (%)

S-50 5/5 0% 5/5 0% 5/5 0,20% 5/5 0,20%
S-100 5/5 0% 5/5 0% 5/5 0,26% 5/5 0,26%
M-50 5/5 0,97% 5/5 0% 5/5 1,65% 5/5 1,65%

M-100 5/5 9,72% 5/5 0% 5/5 1,20% 5/5 1,20%
L-50 4/5 NA 5/5 NA 0/5 NA 1/5 6,41%

L-100 2/5 NA 5/5 NA 1/5 0,48% 2/5 0,48%

For both the smallest and the medium instances, we can see that feasible
solutions are found fairly quickly by the heuristic. There is no gain by
running the heuristic for a longer period of time. We can also see that
solutions are fairly close to optimal. However, for the largest instances the
heuristic struggles to find feasible solutions within the time limit, finding
feasible solutions to only 1 of the 10 instances within 100 seconds, and only
3 of the 10 within 1000 seconds. The average gap (%) for the instances that
the heuristic manages to solve is within 0.23% for the smallest instances,
1.43% for the medium instances, and 3.45% for the large instances. It is
important to note that the average gap for the largest instances is based only
on three solutions.

We can also see that the model outperforms the heuristic in finding fea-
sible solutions for many of the test cases with the same run time. The main
reason for this will be discussed below. However, it is important to under-
stand that although the model finds very good feasible solutions, sometimes
even optimal, within short run time, they are not proven to be optimal. The
model would have to run for a considerable longer time to prove that these
are optimal solutions. And as the size of the instances grows, the model
is struggling with finding even feasible non-optimal solutions within the
short time limit. These instances are still considered small compared to the
large real instances, so all though running the model for a short while can
result in good solutions for small, unrealistic instances, it is not a practical
solution.
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Table 6.4: Number of instances solved, and average gap (%) compared to the
solution from running the model for 1000 seconds, for the instance sets by running
the matheuristic and model

Set of instances Model Matheuristic

100 sec Gap (%) 1000 sec Gap (%) 100 sec Gap (%) 1000 sec Gap (%)

S-50 5/5 0% 5/5 0% 5/5 0,20% 5/5 0,20%
S-100 5/5 0% 5/5 0% 5/5 0,26% 5/5 0,24%
M-50 5/5 0,97% 5/5 0% 5/5 1,65% 5/5 1,65%

M-100 5/5 9,72% 5/5 0% 5/5 1,20% 5/5 0,81%
L-50 4/5 39,82% 5/5 0% 0/5 NA 1/5 1,69%

L-100 2/5 23,94% 5/5 0% 1/5 1,57% 2/5 1,12%

In Table 6.4 we can see the same results, however here we calculate the
gap using the solutions found by the model with time limit 1000 seconds.
Hence we get gap values for most of the missing gap values in the Table 6.3,
with the exception of were the heuristic could not find any solution. When
we compare the model and the heuristic for the time limit of 100 seconds,
we can see that the heuristic outperforms the model for larger instances
when it is able to find a feasible solution.

6.2.2 With service level requirement

In this section the heuristic is run with service level requirement. The ser-
vice level used corresponds to the medium service level in Hansen et al.
(2018). The heuristic was run once for 100 seconds and once for 1000 sec-
onds for all instances. A summary of the test results can be found in Table
6.3. Each of the six sets of instances are represented by separate rows in
the table, and each set contains 5 instances of the same type. The heuristic
results are compared with the solution obtained by running the model with
the same time limit as the heuristic. The table also shows the number of in-
stances where a feasible solution was obtained, as well as the average gap
(%) for those instances. Complete results from running the heuristic with
medium service level requirement, can be found in Appendix C.
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Table 6.5: Number of instances solved, and average gap (%), for the instance sets
by running the matheuristic and model

Set of instances Model Matheuristic

100 sec Gap (%) 1000 sec Gap (%) 100 sec Gap (%) 1000 sec Gap (%)

S-50 5/5 0% 5/5 0% 5/5 14,05% 5/5 102,17%
S-100 5/5 2,17% 5/5 2,17% 4/5 33,66% 5/5 116,08%
M-50 5/5 NA 5/5 5,34% 1/5 7,97% 5/5 105,55%

M-100 1/5 NA 3/5 NA 0/5 NA 2/5 NA
L-50 0/5 NA 2/5 NA 0/5 NA 0/5 NA

L-100 0/5 NA 3/5 NA 0/5 NA 2/5 NA

As shown in Table 6.5, the number of instances solved decreases, and
the average gap (%) increases, when we add the service level requirement.
For the smallest instances, the heuristic solves 9 of 10 instances within 100
seconds, and finds feasible solutions to all the instances when run for 1000
seconds. However, the average gap is significantly higher for the solutions
found after only 100 seconds compared to the solutions found after 1000
seconds. For the medium instances the heuristic only finds feasible solu-
tions to 1 of 10 instances within 100 seconds, while 7 of 10 is solved within
1000 seconds. For the largest instances, the heuristic is not able to solve
any of the instances within 100 seconds, and only finds a feasible solution
to 1 of 10 instances within 1000 seconds. We can also see from the table
that the model struggles with finding any feasible solutions.

Table 6.6: Number of instances solved, and average gap (%) compared to the
solution from running the model for 1000 seconds, for the instance sets by running
the matheuristic and model

Set of instances Model Matheuristic

100 sec Gap (%) 1000 sec Gap (%) 100 sec Gap (%) 1000 sec Gap (%)

S-50 5/5 0% 5/5 0% 5/5 114,05% 5/5 2,16%
S-100 5/5 0% 5/5 0% 4/5 133,66% 5/5 13,39%
M-50 5/5 13,95% 5/5 0% 1/5 107,97% 5/5 2,04%
M-100 1/5 38,26% 3/5 0% 0/5 NA 2/5 -8,31%
L-50 0/5 NA 2/5 0% 0/5 NA 0/5 NA

L-100 0/5 NA 3/5 0% 0/5 NA 2/5 -3,76%

In Table 6.6 we can see the same results, however here we calculate the
gap using the solutions found by the model with time limit 1000 seconds.
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Hence we get gap values for most of the missing gap values in the Table 6.3,
with the exception of were the heuristic couldnt find any solution. When we
compare the model and the heuristic for the time limit of 100 seconds, we
can see that the heuristic outperforms the model for larger instances with a
large margin. In addition, note that for larger instances with time limit set
to 1000 seconds, the heuristic get a negative gap. That is, it outperforms
the model with the same time limit.

6.3 Analysis

This section contains an analysis of the results above, with focus on the
quality of the solutions obtained with the heuristic. It is important to re-
member that the size of the instances used affects the apparent equivalency
of the model and heuristic when run with the same time limits. For small
instances it seems almost trivial to find a feasible (and sometimes optimal)
solution by allowing the model to run for a limited time. However, as the
size of the instances grows, the model is struggling with finding even fea-
sible non-optimal solutions within the short time limit. These instances are
still considered small compared to the large real instances, so all though
running the model for a short while can result in good solutions for small,
unrealistic instances, it is not a practical solution. We can also see from
Table 6.4, that he heuristic outperforms the model as the instances grows
for a time limit of 100 seconds. In addition, we can see from Table 6.6 that
when the complexity is added by increasing the service level, the heuristic
outperforms the model for large instances with 1000 seconds as the time
limit.

As we saw in Chapter 5, this heuristic framework consists of several
separate algorithms, which solves separate parts of the problem in an effort
to do a quick search through the search space for good feasible solutions,
without necessarily finding the optimal solution to the problem. This pro-
cess is outlined in the flowchart in Figure 6.1. The result above indicates
that there is some issues either with the entire heuristic, or possibly with
part or parts of the heuristic. There are two main issues to consider. Firstly,
the heuristic seems to struggle with finding solutions to larger instances.
Secondly, the solution quality of the heuristics, all though reasonably good
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for smaller instances, does not reach the necessary accuracy for the larger
instances. We shall see that both of this issues stem from the same problem.
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Figure 6.1 Flow chart
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First we consider step 1 to step 3, in relation to both issues above. Step
1 will not be affected by an increase in the size of an instance, as this step
simply generate possible routes, a process which is independent of both
number of voyages and number of contracts. Step 2 to step 3 could pos-
sibly be the cause of the issues, as the models which selected route com-
binations and couples vessels with voyages could select a large number of
infeasible routes and vessel combinations before finding a combination that
could actually lead to a feasible solution. This would mean that the heuris-
tic would use a lot of time generating and testing solutions that could never
be feasible. However, this has been thoroughly tested for by allowing the
heuristic run for very large time limits. If this was the root of the issue, one
would expect to see a difference between solutions found with very large
time limits and those found in Section 6.2. No such difference were found.
Further more, Step 2 to step 4 were tested by locking the variables related
to routes, voyages and vessels to the values found in those steps for selected
runs, and running the model. All though the solver still used considerable
time to solve to optimality, the model statistically found feasible solutions
for routes and vessels combination more often then the heuristic, indicating
that the issue lies elsewhere.

Another possibility is step 5, the algorithm for placing contract pickups
on voyages. Let us consider this in relation to the first of the two issues
above, the difficulty with finding solutions for large instances. Based on
the results in Section 6.2 we could reasonably expect that as the size of the
instances increases, the number of feasible solutions as a percentage of total
number of solutions generated would decrease. In fact, this is exactly what
has was found to be happening. With smaller instances, as much as 50-
80% of suggested solutions were feasible, while that percentage decreased
for larger instances, sometimes to lower than 10%. A natural hypothesis
is that the contract placement algorithm is a function of the instances size
related dimensions, and the one current used in this heuristic in this thesis
does not properly take size variations into consideration. Two additional
observations allow us to further understand were in the algorithm the issue
lays. The logs from the heuristic shows that as the instance size increase
and fewer feasible solutions are generated, the solutions that are infeasible
are infeasible because they break capacity constraints. In addition, running
the heuristic without transit time requirements in the model (a constraint
closely related to loading and unloading constraints) allowed the heuristic
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to find solutions for 8 out of 10 of the large test instances (results can be
seen in Table D.1 and Table D.2 in appendix D.) Unlike a normal model
run, this is not caused by the reduction in complexity from relaxing con-
straints, as the heuristic uses the exact same algorithms to find solutions.
This all relates to the second of the two issues above as well, the solutions
quality. The algorithm that places contracts on voyages is not as good as
it should be, which possibly removes the good solutions from the search
space. For example, if the algorithm has difficulty placing pickups, it might
succeed only on routes and vessel combinations with more port visits than
necessary.

Another possibility is that the error lays in step 7, the algorithm for im-
proving solutions with respect to service level requirements. The logs saved
from heuristic runs shows that the algorithm does find a number of im-
provements for solutions found with regards to service level requirements.
However, it is difficult to say if anything about the performance of this algo-
rithm when considering the issues with contracts placement and the effect
this can have on the evenly spread constraints.
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Concluding Remarks

The STSRSP is the problem of planning the routes sailed and which ves-
sels should be deployed for a set of interdependent voyages which are to
be performed on a given trade route, as well as where and when these
vessels should load and unload goods. A trade route, or trade, is a logisti-
cal network identified as a set of pathways and stoppages for commercial
transport. In the STSRSP these activities are constrained by a set of con-
tracts, and the objective is to minimize the total cost of all activities and
keeping them within a specific planning horizon, while satisfying contrac-
tual requirements Hansen et al. (2018). Efforts to solve mathematical for-
mulations of this problem with standard MIP solvers have shown that the
run time is prohibitively large for direct use in operational level decisions.
Hence, the purpose of this thesis have been to create a heuristic that can
be used to reduce the time used to solve single instances of the STSRSP to
within an acceptable accuracy.

The idea behind the heuristic is to divide different parts of the model
into separate steps in a sequential process. This way the heuristic makes
approximately good choices for each step and reduces the search space
considerably on its way. The goal is of the heuristic is to iteratively build
and evaluate solutions in a smart way, and hopefully generate solutions that
are good enough without having to evaluate too much of the entire search
space.
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The solution method created in this thesis uses a matheuristic approach
that divides the problem into several parts, combining both mathematical
models to determine routes and vessel assignment, as well as a heuristic
for placing the contracts on voyages. Finally, a service level search is im-
plemented to make sure the separation requirement is satisfied. A heuristic
framework was created in python to connect all the separate problems in
such a way that solutions could be generated and tested iteratively. To study
the performance of the heuristic, the best solutions it generated were com-
pared to the best solutions from the commercial MIP solver at different time
limits, as well as the optimal solutions. The results show that the heuristic
framework can be used to solve problem instances within very short time
limits. However, the results also indicate that the heuristic suffers from two
main issues. Firstly, the heuristic seems to struggle with finding solutions to
larger instances. Secondly, the solution quality of the heuristics, all though
reasonably good for smaller instances, does not reach the necessary accu-
racy for the larger instances. An analysis of the heuristic were performed
to see if the issue lay with the entire heuristic, or if it possibly lay with part
or parts of the heuristic.

The results of the analysis is that the algorithm responsible for coupling
contract pickups with port visits for specific routes is the source of both
issues. However, the other results indicates that the heuristic framework is
working well in its entirety, and that the results of the heuristic can most
likely be improved by improving just this specific algorithm. In addition to
improving this algorithm, the entire algorithm could be made to run much
faster if it were rewritten from python to a compiled programming language
like C++ or java. This would mean that the algorithm for coupling contract
pickups with port visits could be more complex and/or that more possible
solutions could be generated and tested over the same time limit.
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The results from this thesis indicates that the general framework of the
heuristic can successfully be used to solve problem instances within very
short time limits. The result does however show some issues in the part of
the heuristic that solves the problem of coupling contract pickups and voy-
ages. Specifically, when transit time requirements are included for a pro-
portion of the contracts for larger instances. Based on the results however,
the conclusion of this thesis is that the general framework of the heuris-
tic works, and that a good algorithm for contract and voyage coupling can
be created. This suggest a natural next step for research into a heuristic
solver for the STSRSP would be to create such an algorithm, and amend
the heuristic. This could more easily be accomplished by using a faster pro-
gramming language than the one used in this thesis (python), which would
mean that the algorithm could be more complex and/or that more possible
solutions could be generated and tested over the same time span.

Another next step can be to further extend the model while continuing
to develop the heuristic to also be able to solve the extended models. Any
model is a simplification of reality, and can usually be made more accurate
by including more information. A current simplification of this model is
that the vessels can only sail in one direction over the trade. For example, a
vessel could not skip a port to travel to another port which geographically
comes later during the voyage to unload goods and clear stowage space, and
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then travel back to the skipped port. Disallowing this could cut off poten-
tially better solutions from the search space, but allowing this does however
make the run time explode. By adapting the route generation algorithm to
allow the possibility of sailing both ways, and using domain knowledge to
limit the possible routes (for example, a vessel would never travel back over
a deep sea leg), these solutions could be included in the search space.

A major simplification in this model is that all data values used are
static, and that the environment the voyages takes place in are static as well.
Real-life optimization problems however, often contain uncertain data. As
an example, the speed that a vessel can travel between two ports can be
affected by the weather state in that area. Another example could be that
mechanical errors in the engines of a vessel, or any other damage to the
vessel, can affect port visit length or sailing times. One interesting appli-
cation of this heuristic would be to see if it could be used to do robustness
analysis within a reasonable run time, either by extending the framework to
include functionality for robust or stochastic optimization.
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Appendix A
Voyage model

A.1 Notation

Sets

V Set of voyages
VS
v Set of voyages succeeding voyage v
K Set of vessels
P Set of product types
PS

p Set of product types that can be stored
in the same space as product type p

N Set of ports
C Set of contracts
CT Set of contracts with transit time requirements
CLi Set of cargoes that may be loaded at port i
CUi Set of cargoes that may be unloaded at port i
CE Set of contracts with evenly spread requirements
N P Set of ports in the network
Ak Set of arcs that define the feasible movements for vessel k
A Set of arcs that define movements
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Parameters

CSC
ijks Sailing cost and chartering cost of the piloting and sailing time

from node i to j with vessel k using speed alternative s
CV

i Cost of calling port i
CC

k The daily charter rate for vessel k
KV

kp The capacity for product p on vessel k
P c Maximum number of pickups for contract c
P c Minimum number of pickups for contract c
Qcp Maximum quantity of product p to be picked up by a vessel for

contract c
Q

cp
Minimum quantity of product p to be picked up by a vessel for
contract c

Dcp Demand for product type p for contract c in square meters
TA
k The time vessel k is available at its origin
T S
ijks The sailing time from node i to node j by vessel k using speed

alternative s
T P
iv The time used on piloting at port i on voyage v
TH
kp The time used to handle (load or unload) one unit of

product type p on vessel k
T T
c The corresponding transit time for contract c
T PH The length of the planning horizon

Variables

xijv 1 if voyage v is routed from node i to node j, 0 otherwise
yvk 1 if vessel k sails voyage v, 0 otherwise
δvc 1 if voyage v serves contract c, 0 otherwise
lijvp The load of product type p on voyage v on the arc (i, j)
wijvks The weight of speed alternative s for vessel k on the arc (i, j)

on voyage v
qvcp The quantity picked up of product type p from contract c on voyage v
tiv The start of service at node i on voyage v
tHW
k The total time used for handling and waiting by vessel k

during the voyage
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A.2 The model

min
∑
k∈K

∑
(i,j)∈Ak

∑
v∈V

∑
s∈S

CSC
ijkswijvks +

∑
(i,j)∈A

∑
v∈V

CV
i xijv +

∑
k∈K

CC
k t

HW
k

(A.1)

∑
k∈K

∑
j∈NP

k ∪d(k)

xo(k)jv = 1, v ∈ V (A.2)∑
i∈N

xijv −
∑
i∈N

xjiv = 0, v ∈ V , j ∈ N P
(A.3)∑

k∈K

∑
i∈NP

k ∪o(k)

xid(k)v = 1, v ∈ V (A.4)∑
j∈N

∑
v∈V

xo(k)jv = 1, k ∈ K (A.5)∑
i∈N

∑
v∈V

xid(k)v = 1, k ∈ K (A.6)

xijv =
∑
k∈K

∑
s∈S

wijvks, (i, j) ∈ A, v ∈ V (A.7)∑
s∈S

wijvks ≤ yvk, k ∈ K, (i, j) ∈ Ak, v ∈ V (A.8)∑
v∈V

yvk = 1, k ∈ K (A.9)∑
k∈K

yvk = 1, v ∈ V (A.10)

0 ≤ lijvp ≤
∑
k∈K

KV
kpyvk −

∑
p′∈PS

p

lijvp′ , (i, j) ∈ A, v ∈ V , p ∈ P (A.11)

lijvp ≤MC
p xijv, (i, j) ∈ A, v ∈ V , p ∈ P (A.12)∑

j∈N

ljivp +
∑
c∈CL

i

qvcp −
∑
c∈CU

i

qvcp =
∑
j∈N

lijvp, i ∈ N , v ∈ V , p ∈ P

(A.13)

73



∑
k∈K

∑
j∈N

lo(k)jvp = 0, v ∈ V , p ∈ P (A.14)

P c ≤
∑
v∈V

δvc ≤ P c, c ∈ C (A.15)

δvc ≤
∑
i∈N

xil(c)v, v ∈ V , c ∈ C (A.16)

δvc ≤
∑
i∈N

xiu(c)v, v ∈ V , c ∈ C (A.17)

Q
cp
δvc ≤ qvcp ≤ Qcpδvc, v ∈ V , c ∈ C, p ∈ P (A.18)∑

v∈V

qvcp = Dcp, v ∈ V , p ∈ P (A.19)

to(k)v = TA
k yvk, v ∈ V , k ∈ K (A.20)

tiv +
∑
k∈K

∑
s∈S

T S
ijkswijvks + T P

ivxijv +
∑

c∈CL
i ∪CU

i

∑
p∈P

TH
kpqvcp ≤ tjv, (i, j) ∈ A, v ∈ V

(A.21)

tl(c)v + T T
c +MT

c (1− δvc) ≥ tu(c)v, v ∈ V , c ∈ C (A.22)

tjv −MS
jk(1− xo(k)jv) ≤ T PH , j ∈ N P , v ∈ V , k ∈ K (A.23)

tHW
k ≥ td(k)v − to(k)v −

∑
(i,j)∈Ak

T P
ivxijv −

∑
(i,j)∈Ak

∑
s∈S

T S
ijkswijvks −ML

k (1− yvk),

v ∈ V , k ∈ K
(A.24)∑

k∈K

tHW
k ≥

∑
v∈V

∑
i∈NP

∑
c∈CL

i ∪CU
i

∑
p∈P

TH
kpqvcp (A.25)∑

i∈NP

∑
k∈K

xo(k)i(v+1) ≤
∑
i∈NP

∑
k∈K

xo(k)iv, v ∈ V\{| V |}, c ∈ C (A.26)∑
v∈V

∑
w∈VS

v

zvwc ≥
∑
v∈V

δvc − 1, c ∈ CE (A.27)∑
w∈VS

v

zvwc ≤ δvc, v ∈ V , c ∈ CE (A.28)
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∑
w∈V\(VS

v ∪{v})

zvwc ≤ δvc, v ∈ V , c ∈ CE (A.29)

P c∑
n=P c

nθnc =
∑
v∈V

δvc, c ∈ CE (A.30)

P c∑
n=P c

θnc = 1, c ∈ CE (A.31)

P c∑
n=P c

T PHθnc
n

− sc −ME
c (1− zvwc) ≤ tl(c)w − tl(c)v, v ∈ V , w ∈ VS

v , c ∈ CE

(A.32)
P c∑

n=P c

T PHθnc
n

+ sc +ME
c (1− zvwc) ≤ tl(c)w − tl(c)v, v ∈ V , w ∈ VS

v , c ∈ CE

(A.33)∑
c∈CE

sc ≤ L (A.34)

xijv ∈ {0, 1}, (i, j) ∈ A, v ∈ V (A.35)

δvc ∈ {0, 1}, v ∈ V , c ∈ CE (A.36)

0 ≤ wijvks ≤ 1, k ∈ K, (i, j) ∈ Ak, v ∈ V , s ∈ S (A.37)
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Appendix B
Results - No service level

B.1 Matheuristic

Table B.1: The result from running the heuristic on the small instances with no
service level requirement for 100 sec and for 1000 sec

Instance Optimal Heuristic

100 sec Gap (%) 1000 sec Gap (%)

S-50-0 3890067 3917742 0,71% 3917742 0,71%
S-50-1 3933852 3934403 0,01% 3934403 0,01%
S-50-2 3494305 3496859 0,07% 3496859 0,07%
S-50-3 3620722 3622688 0,05% 3622688 0,05%
S-50-4 3823285 3827966 0,12% 3827966 0,12%
S-100-5 3765947 3770675 0,13% 3770675 0,13%
S-100-6 3912489 3925737 0,34% 3925737 0,34%
S-100-7 3521849 3524243 0,07% 3524243 0,07%
S-100-8 4089479 4121349 0,78% 4121349 0,78%
S-100-9 3725234 3725234 0,00% 3725234 0,00%
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Table B.2: The result from running the heuristic on the medium instances with no
service level requirement for 100 sec and for 1000 sec

Instance Optimal Heuristic

100 sec Gap (%) 1000 sec Gap (%)

M-50-0 6277901 6584003 4,88% 6584003 4,88%
M-50-1 7004046 7083527 1,13% 7083527 1,13%
M-50-2 6387312 6402072 0,23% 6402072 0,23%
M-50-3 6615870 6745818 1,96% 6745818 1,96%
M-50-4 5993253 5995983 0,05% 5995983 0,05%

M-100-5 6599676 6607854 0,12% 6607854 0,12%
M-100-6 6482037 6503913 0,34% 6503913 0,34%
M-100-7 6182858 6183867 0,02% 6183867 0,02%
M-100-8 6397729 6623325 3,53% 6623325 3,53%
M-100-9 7799346 7955136 2,00% 7955136 2,00%

Table B.3: The result from running the heuristic on the large instances with no
service level requirement for 100 sec and for 1000 sec

Instance Optimal Heuristic

100 sec Gap (%) 1000 sec Gap (%)

L-50-0 6189820 NA NA 6586424 6,41%
L-50-1 NA NA NA NA NA
L-50-2 NA NA NA NA NA
L-50-3 NA NA NA NA NA
L-50-4 6617845 NA NA NA NA

L-100-5 NA NA NA NA NA
L-100-6 6773103 6805831 0,48% 6805831 0,48%
L-100-7 NA NA NA NA NA
L-100-8 NA NA NA NA NA
L-100-9 NA 9135644 NA 9050218 NA
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B.2 Model

Table B.4: The result from running the model on the small instances with no
service level requirement for 100 sec and for 1000 sec

Instance Optimal Model

100 sec Gap (%) 1000 sec Gap (%)

S-50-0 3890067 3890067 0% 3890067 0%
S-50-1 3933852 3933852 0% 3933852 0%
S-50-2 3494305 3494305 0% 3494305 0%
S-50-3 3620722 3620722 0% 3620722 0%
S-50-4 3823285 3823285 0% 3823285 0%
S-100-5 3765947 3765947 0% 3765947 0%
S-100-6 3912489 3912489 0% 3912489 0%
S-100-7 3521849 3521849 0% 3521849 0%
S-100-8 4089479 4089479 0% 4089479 0%
S-100-9 3725234 3725234 0% 3725234 0%

Table B.5: The result from running the model on the medium instances with no
service level requirement for 100 sec and for 1000 sec

Instance Optimal Model

100 sec Gap (%) 1000 sec Gap (%)

M-50-0 6277901 6343397 1,04% 6277935 0%
M-50-1 7004046 7163756 2,28% 7004046 0%
M-50-2 6387312 6419496 0,50% 6387312 0%
M-50-3 6615870 6682565 1,01% 6615870 0%
M-50-4 5993253 5993253 0,00% 5993253 0%

M-100-5 6599676 6881244 4,27% 6599676 0%
M-100-6 6482037 6568302 1,33% 6482037 0%
M-100-7 6182858 7725021 24,94% 6182858 0%
M-100-8 6397729 7510763 17,40% 6397729 0%
M-100-9 7799346 7852010 0,68% 7802892 0,05%
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Table B.6: The result from running the model on the large instances with no ser-
vice level requirement for 100 sec and for 1000 sec

Instance Optimal Model

100 sec Gap (%) 1000 sec Gap (%)

L-50-0 6189820 NA NA 6477268 104,64%
L-50-1 NA 9434313 NA 7122511 NA
L-50-2 NA 10154274 NA 7821080 NA
L-50-3 NA 10103715 NA 7001703 NA
L-50-4 6617845 10160487 53,53% 6655337 0,06%

L-100-5 NA 8763046 NA 5926470 NA
L-100-6 6773103 6773746 0,00% 6773103 0,00%
L-100-7 NA NA NA 8277735 NA
L-100-8 NA NA NA 7870752 NA
L-100-9 NA NA NA 8899472 NA

80



Appendix C
Results - With service level
requirement

C.1 Matheuristic

Table C.1: The result from running the heuristic on the small instances with ser-
vice level requirement for 100 sec and for 1000 sec

Instance Optimal Heuristic

100 sec Gap (%) 1000 sec Gap (%)

S-50-0 3975144 5118291 28,76% 3980082 0,12%
S-50-1 4004882 4071643 1,67% 4153293 3,71%
S-50-2 3567693 3651131 2,34% 3654165 2,42%
S-50-3 3682495 3916196 6,35% 3795716 3,07%
S-50-4 3830775 5023684 31,14% 3888291 1,50%
S-100-5 3810662 5138481 34,84% 3822061 0,30%
S-100-6 4130666 5443042 31,77% 4515144 9,31%
S-100-7 3528324 4545760 28,84% 4545760 28,84%
S-100-8 4106115 5662462 37,90% 4174666 1,67%
S-100-9 4072472 NA NA 5713406 40,29%
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Table C.2: The result from running the heuristic on the medium instances with
service level requirement for 100 sec and for 1000 sec

Instance Optimal Heuristic

100 sec Gap (%) 1000 sec Gap (%)

M-50-0 6329721 6833927 7,97% 6833927 7,97%
M-50-1 7076120 NA NA 7267827 2,71%
M-50-2 6456452 NA NA 6824265 5,70%
M-50-3 NA NA NA 7209662 NA
M-50-4 NA NA NA 6982359 NA

M-100-5 NA NA NA 7227241 NA
M-100-6 NA NA NA NA NA
M-100-7 NA NA NA NA NA
M-100-8 NA NA NA NA NA
M-100-9 NA NA NA 8165453 NA

Table C.3: The result from running the heuristic on the large instances with service
level requirement for 100 sec and for 1000 sec

Instance Optimal Heuristic

100 sec Gap (%) 1000 sec Gap (%)

L-50-0 NA NA NA NA NA
L-50-1 NA NA NA NA NA
L-50-2 NA NA NA NA NA
L-50-3 NA NA NA NA NA
L-50-4 NA NA NA NA NA

L-100-5 NA NA NA NA NA
L-100-6 NA NA NA 6880431 NA
L-100-7 NA NA NA NA NA
L-100-8 NA NA NA NA NA
L-100-9 NA NA NA NA NA
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C.2 Model

Table C.4: The result from running the model on the small instances with service
level requirement for 100 sec and for 1000 sec

Instance Optimal Model

100 sec Gap (%) 1000 sec Gap (%)

S-50-0 3975144 3975144 0% 3975144 0%
S-50-1 4004882 4005087 0% 4005087 0%
S-50-2 3567693 3567693 0% 3567693 0%
S-50-3 3682495 3682495 0% 3682495 0%
S-50-4 3830775 3830775 0% 3830775 0%
S-100-5 3810662 3810662 0% 3810662 0%
S-100-6 4130666 4240829 2,67% 4130666 0%
S-100-7 3528324 3528324 0% 3528324 0%
S-100-8 4106115 4106115 0% 4106115 0%
S-100-9 4072472 4405495 8,18% 4072472 0%

Table C.5: The result from running the model on the medium instances with ser-
vice level requirement for 100 sec and for 1000 sec

Instance Optimal Model

100 sec Gap (%) 1000 sec Gap (%)

M-50-0 6329721 6904860 9,08% 6425753 0,02%
M-50-1 7076120 7835191 10,73% 7076123 0.0%
M-50-2 6456452 7764875 20,27% 6527922 NA%
M-50-3 NA 7379064 NA 7206523
M-50-4 NA 9443102 NA 7252515 NA

M-100-5 NA NA NA NA NA
M-100-6 NA NA NA NA NA
M-100-7 NA 9874545 NA 7142268 NA
M-100-8 NA NA NA 9801953 NA
M-100-9 NA NA NA 8905512 NA
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Table C.6: The result from running the model on the large instances with service
level requirement for 100 sec and for 1000 sec

Instance Optimal Model

100 sec Gap (%) 1000 sec Gap (%)

L-50-0 NA NA NA 7226492 NA
L-50-1 NA NA NA NA NA
L-50-2 NA NA NA NA NA
L-50-3 NA NA NA 7499185 NA
L-50-4 NA NA NA 7129414 NA

L-100-5 NA NA NA 6337408 NA
L-100-6 NA NA NA 7149261 NA
L-100-7 NA NA NA NA NA
L-100-8 NA NA NA 8637864 NA
L-100-9 NA NA NA NA NA
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Appendix D
Results - No transit time
requirement

D.1 Heuristic

Table D.1: The result from running the heuristic without transit time requirements
on the large instances with no service level requirement for 100 sec and for 1000
sec

Instance Heuristic

100 sec Gap (%) 1000 sec Gap (%)

L-50-0 NA NA 6303125 NA
L-50-1 7099372 NA 7026990 NA
L-50-2 7798099 NA 7743374 NA
L-50-3 NA NA 6993036 NA
L-50-4 NA NA NA NA

L-100-5 NA NA NA NA
L-100-6 6802567 NA 6802681 NA
L-100-7 8062008 NA 8062435 NA
L-100-8 7941418 NA 7823697 NA
L-100-9 9141755 NA 9060027 NA
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D.2 Model

Table D.2: The result from running the model without transit time requirements
on the large instances with no service level requirement for 100 sec and for 1000
sec

Instance Model

100 sec Gap (%) 1000 sec Gap (%)

L-50-0 6337477 NA 5982456 NA
L-50-1 9485506 NA 7006578 NA
L-50-2 10338526 NA 7748661 NA
L-50-3 11277473 NA 6918582 NA
L-50-4 10052114 NA 6657172 NA

L-100-5 7329700 NA 6008687 NA
L-100-6 6813369 NA 6771504 NA
L-100-7 10009302 NA 7944368 NA
L-100-8 7759654 NA 7758043 NA
L-100-9 11054900 NA 8656299 NA

86


	
	
	
	
	
	
	
	
	
	
	
	

	
	
	

	
	
	
	

	
	
	
	


	
	
	
	
	
	
	

	
	
	
	

	
	
	

	

	
	
	
	
	

	
	
	

	

	
	
	
	
	
	

	
	
	

	
	
	

	
	
	


