

Literature review and evaluation of the UMR-PRU EoS for predicting solid formation in low temperature natural gas processing

Kristoffer Lavik Bjaanes

Master of Energy and Environmental EngineeringSubmission date:April 2014Supervisor:Even Solbraa, EPTCo-supervisor:Eleni Panteli, Statoil

Norwegian University of Science and Technology Department of Energy and Process Engineering

Department of Energy and Process Engineering

EPT-M-2013-22

MASTER THESIS

for

Stud. Kristoffer Bjaanes

Autumn 2013

Literature review and evaluation of the UMR-PRU EoS for predicting solid formation in low

temperature natural gas processing

Litteraturstudie og evaluering av UMR-PRU EoS for beregning av faststoffdannelse i naturgassprosessering ved lave temperaturer

Background and objective

The motivation of the work is to increase the knowledge about thermodynamic modeling of freeze outs in natural gas systems and a deeper understanding of the phase behavior of natural gas mixtures, due to the problems experienced in cryogenic natural gas process-plants (NGL extraction/LNG processes). Critical components in natural gas mixtures introduce a risk of forming a solid coating and plugging the process equipment. Hence, it is relevant to examine methane rich binary mixtures containing components with high risk of freezing. Due to their high triple point temperatures, carbon dioxide, benzene and cyclohexane are regarded as the most critical components.

The preferred thermodynamic method for modeling the solid – fluid system is by describing the fluid phases with a traditionally equation of state in combination with an expression for the solid phase based on melting and triple point properties. This method is based on the assumption of a pure component solid phase, which does not always represent the precipitated substances in natural gas systems. However, it is the situation which represents the highest risk of crystallization at a given temperature.

The objective of this report is to review phase equilibrium of solid-fluid systems and to evaluate the performance of the UMR-PRU model. This model has been successfully used so far in predicting the dew points of natural gas systems. This work will focus on testing this model in solid-fluid equilibrium and compare it to other models.

The following tasks are to be considered:

- 1. Literatures review on available freezing point data for relevant for cryogenic natural gas processing (CO2, benzene, etc.)
- 2. Review of modelling methods used for solid-fluid equilibrium calculations.
- 3. Presentation of the UMR-PRU model and the solid model.
- 4. Evaluation of the UMR-PRU model on predicting the solid-fluid equilibrium.

Page 1 of 2

Within 14 days of receiving the written text on the master thesis, the candidate shall submit a research plan for his project to the department.

When the thesis is evaluated, emphasis is put on processing of the results, and that they are presented in tabular and/or graphic form in a clear manner, and that they are analyzed carefully.

The thesis should be formulated as a research report with summary both in English and Norwegian, conclusion, literature references, table of contents etc. During the preparation of the text, the candidate should make an effort to produce a well-structured and easily readable report. In order to ease the evaluation of the thesis, it is important that the cross-references are correct. In the making of the report, strong emphasis should be placed on both a thorough discussion of the results and an orderly presentation.

The candidate is requested to initiate and keep close contact with his/her academic supervisor(s) throughout the working period. The candidate must follow the rules and regulations of NTNU as well as passive directions given by the Department of Energy and Process Engineering.

Risk assessment of the candidate's work shall be carried out according to the department's procedures. The risk assessment must be documented and included as part of the final report. Events related to the candidate's work adversely affecting the health, safety or security, must be documented and included as part of the final report. If the documentation on risk assessment represents a large number of pages, the full version is to be submitted electronically to the supervisor and an excerpt is included in the report.

Pursuant to "Regulations concerning the supplementary provisions to the technology study program/Master of Science" at NTNU §20, the Department reserves the permission to utilize all the results and data for teaching and research purposes as well as in future publications.

The final report is to be submitted digitally in DAIM. An executive summary of the thesis including title, student's name, supervisor's name, year, department name, and NTNU's logo and name, shall be submitted to the department as a separate pdf file. Based on an agreement with the supervisor, the final report and other material and documents may be given to the supervisor in digital format.

Work to be done in lab (Water power lab, Fluids engineering lab, Thermal engineering lab) Field work

Department of Energy and Process Engineering, 1 October 2013

Olav Bolland Department Head

Even Solbraa Academic Supervisor

Research Advisor: Eleni Panteli (Statoil)

Preface

The thesis is written at the institute for Energy- and Process Technology at NTNU, in collaboration with Statoil. The process behind the finished result has been both exiting and educational, but also challenging.

My summer internship at Statoil Rotvoll in 2013, gave me the opportunity to write this thesis in collaboration with Statoil, which has been very valuable and rewarding. I would like to thank Eleni Panteli and Even Solbraa for taking the time to help me and make this thesis possible. I am very grateful for their feedback and motivation.

Finally, I would like to thank Mette for motivating and supporting me during this period.

Trondheim, 11.04.2014

Kristoffer Lavik Bjaanes

Abstract

Small amounts of carbon dioxide and heavy hydrocarbons are usually present in natural gas mixtures. Due to the relatively high triple point temperatures of these components, they create potential risks of solid formation in cryogenic equipment, such as heat exchangers, pipes and valves. Accurate and reliable thermodynamic models for predicting the solid-liquid phase behavior are necessary for the design of cryogenic systems in order to avoid the freeze out conditions.

Traditionally equations of state have gained popularity due to the capability of representing both vapor and liquid phases. For describing the solid-liquid equilibrium, they are normally combined with an expression for the solid phase. This study presents a review of the existing modelling methods used for describing the solid-liquid equilibrium.

The main objective of this thesis is to evaluate the performance of the UMR-PRU model on predicting the solid-fluid phase equilibrium. The UMR-PRU model has previously been found to be an accurate model for dew point predictions in natural gas systems. In the report, the model has been compared to the Soave-Redlich-Kwong (SRK) equation of state and the simplified Perturbed-Chain Statistic Associating Fluid Theory (sPC-SAFT) equation of state. For describing the solid phase, a solid model based on sub-cooled liquid has been used.

In order to evaluate the thermodynamic methods, a substantial amount of experimental data has been collected. The experimental methods behind this work have been accounted for and the data has been evaluated in order to check the consistency. However, the experimental data for solidliquid equilibrium are limited and this prevents to give the thermodynamic models a proper validation. New experimental data should be provided for these systems in the future.

The simulation results for the models UMR-PRU, SRK EoS and sPC-SAFT have been compared to the evaluated experimental data. The SRK equation of state fails in predicting the solid-liquid phase behavior without the binary interaction parameter. However, it shows good capability in correlating the experimental data with binary interaction parameter for all of the systems. In contrast to the SRK, the simplified PC-SAFT is very accurate predicting the solid-liquid phase behavior and proves to be less dependent of experimental data for correlation.

The UMR-PRU model gives reasonable predictions for CO₂-methane rich systems. However, at lower temperatures the deviations between experimental data and the UMR-PRU predictions start to increase. For the systems involving heavy hydrocarbons, the model fails predicting the freeze out temperatures when the temperature drops. The results indicate that the applicability of the UMR-PRU model should be extended in order to handle cryogenic conditions. New UNIFAC interaction parameters suited for lower temperatures are probably necessary.

Sammendrag

Små mengder av karbon dioksid og tunge hydrokarboner finnes vanligvis i naturgass. På grunn av de relativt høye trippelpunktstemperaturene til disse komponentene, utgjør de potensielle farer for faststoff-dannelse i kryogeniske systemer, slik som i varmevekslere, rør og ventiler. For å kunne beskrive faseoppførselen til naturgassblandinger, hvor en faststoff-fase er inkludert, er det viktig med nøyaktige og pålitelige termodynamiske modeller.

Tilstandsligninger har tradisjonelt vært populære, på grunn av sine egenskaper til å beskrive faseoppførselen til væske- og gassblandinger. For å beskrive faststoff-fluid likevekts systemer, er de vanligvis kombinert med en ligning for å beskrive faststoff-fasen. I denne rapporten presenteres de ulike metodene som er benyttet for å beskrive faststoff-fluid likevekts systemer.

Hovedmålet med denne rapporten er å evaluere evnen UMR-PRU har til å beregne utfrysninger i naturgass. UMR-PRU modellen har tidligere vist å være en vellykket modell til å gjøre duggpunkts beregning i naturgass systemer. I denne rapporten har modellen blitt sammenlignet med modeller basert på tilstandslikningene Soave-Redlich-Kwong (SRK) og simplified Perturbed-Chain Statistic Associating Fluid Theory (sPC-SAFT). For å beskrive faststoff fasen, benyttes en faststoffs modell basert på underkjølt væske.

For å evaluere modellene har det blitt samlet inn eksperimentell data relevant for faststoff-fluid likevekts systemer for naturgass. Det er gjort rede for de eksperimentelle metodene bak arbeidet, og data har blitt evaluert for å se om de samsvarer. Rapporten avdekker at det er stor mangel på eksperimentell data for binære metanrike- tunge hydrokarbon blandinger. Mangel på data gjør det vanskelig å gi en god evaluering av de termodynamiske modellene.

Simuleringsresultatene for UMR-PRU, SRK EoS og sPC-SAFT har blitt sammenlignet med den tilgjengelig eksperimentelle dataen. Tilstandslikningen SRK har problemer med å beskrive faststoff-fluid systemer når det ikke benyttes en interaksjons parameter. Modellen viser allikevel å gi nøyaktige beregninger når interaksjonsparameteren er tilpasset etter eksperimentell data. I motsetning til SRK, gir sPC-SAFT rimelig gode beskrivelser av faststoff-fluid systemer, og er mindre avhengig av å korreleres etter eksperimentell data

UMR-PRU modellen viser gode beregninger for CO₂-metan rike blandinger. Allikevel, når temperaturen reduseres, blir avviket mellom modellens beregninger og den eksperimentelle dataen større. For metanrike-tunge hydrokarbon blandinger feiler UMR-PRU å gi gode beregninger når temperaturen reduseres. Resultatene gir en indikasjon på at UMR-PRU modellen bør utvides slik at den kan håndtere kryogeniske forhold. Nye UNIFAC parametere som er beregnet for lave temperaturer er trolig nødvendig.

Contents

Preface	III
Abstract	IV
Sammendrag	V
List of figures	IX
List of tables	XII
1. Introduction	1
2. Solid-Liquid Phase Equilibrium	2
2.1 Introduction	2
2.2 Solid-liquid phase behavior of binary mixtures	3
2.2.1 Classification of solid-fluid phase behavior of binary mixtures	3
2.2.1.1 Type A phase behavior	3
2.2.1.2 Type B phase behavior	4
2.2.1.3 Type C phase behavior	5
2.2.2 Phase behavior of the CO ₂ -methane binary system	5
2.2.3 Phase behavior of the benzene-methane binary system	6
3. Thermodynamic Models for Solid-Fluid Calculations	9
3.1 Thermodynamic framework	9
3.2 Review of thermodynamic models used for solid-fluid calculations	9
3.3 Thermodynamic models for the fluid and gas phases	11
3.3.1 The soave Redlich Kwong equation of state	11
3.3.2 The Simplified PC-SAFT equation of state	12
3.3.3 The UMR-PRU model	13
3.3.4 The van der Waals mixing rule	15
3.4 Thermodynamic models for the solid phase	16
3.4.1 Solid model 1: Fugacity based on sublimation pressure	16
3.4.2 Solid model 2: Fugacity based on sub-cooled liquid	16
4. Evaluation of Experimental Data	
4.1 Solid-liquid data on CO ₂ -methane rich mixtures	
4.1.1 Solid-liquid and solid-liquid-vapor data for binary CO ₂ -methane system	
4.1.1.1 Experimental work behind the data	

4.1.1.2 Correction and validation of experimental data	19
4.1.2 Solid vapor data for CO ₂ -methane rich systems	20
4.1.2.1 Experimental work behind the data	20
4.2 Solid-liquid data for HHC-methane rich mixtures	21
4.2.1 Solid-liquid and solid-liquid-vapor data for the binary hexane-methane system	21
4.2.2 Solid-liquid and solid-liquid-vapor data for heptane-methane rich mixtures	23
4.2.3 Solid-liquid and solid-liquid-vapor data for the binary benzene-methane system.	25
4.2.4 Solid-liquid and solid-liquid-vapor data for octane-methane rich systems	27
4.2.5 Solid-liquid-vapor data for cyclohexane-methane rich systems	29
5. Modelling Results	31
5.1 Introduction	31
5.1.1 Comparison of experimental data and simulation results	31
5.2 Simulation results for CO ₂ -methane rich mixtures	32
5.2.1 SL and SLV data for the binary CO ₂ -methane system	32
5.2.1.1 Predictions by UMR-PRU and SRK EoS without interaction parameter	32
5.2.1.2 Prediction by SRK EoS with interaction parameter	33
5.2.1.3 Comparison of UMR-PRU and optimal SRK model	34
5.2.1 SL and SLV data for the binary CO ₂ -methane system	35
5.2.1.1 Frost point predictions by SRK EoS and UMR-PRU for the CO ₂ -methane syste	em
	35
5.2.2 Predictions of solid CO_2 formation in vapor methane along the three-phase loci.	37
5.2.3 SL, SV and SLV data for CO_2 - natural gas mixtures	38
5.2.3.1 Carbon dioxide solid behavior in $CO_2 - N_2 - CH_4$ system	38
5.2.3.2 Carbon dioxide solid behavior in $CO_2 - C_2H_6 - CH_4$ system	41
5.3 Simulation results for HHC-methane rich systems	43
5.3.1 SL and SLV data for the binary hexane-methane system	43
5.3.1.1 Prediction by UMR-PRU, SRK and sPC-SAFT without interaction parameter.	43
5.3.1.2 Predictions by SRK EoS and sPC-SAFT EoS with binary interaction parameter	rs44
5.3.2 SL and SLV data for the binary heptane-methane system	47
5.3.2.1 Prediction by UMR-PRU, SRK and sPC-SAFT without interaction parameter.	47
5.3.3 SL and SLV data for the binary benzene-methane system	51

5.3.3.1 Prediction by UMR-PRU, SRK and sPC-SAFT without interaction parameters51
5.3.3.2 Prediction by SRK EoS and sPC-SAFT with binary interaction parameter52
5.3.3.3 Freeze out predictions by UMR-PRU, SRK EoS and sPC-SAFT for the CH ₄ - C_2H_4 -benzene system
5.3.4 SL and SLV data for the binary octane-methane system
5.3.4.1 Prediction by SRK and sPC-SAFT without binary interaction parameter
5.3.4.2 Freeze out predictions by SRK, sPC-SAFT and UMR-PRU at high octane concentration
5.3.4.3 Prediction by SRK EoS and sPC-SAFT EoS with binary interaction parameter57
5.3.4.3 Solid octane behavior in CH ₄ - C ₂ H ₄ -octane mixture
5.3.5 SL and SLV data for the binary cyclohexane-methane system
5.3.5.1 Prediction by UMR-PRU, SRK EoS and sPC-SAFT EoS without binary interaction parameter
5.4 The freeze out risk in natural gas systems
6. Discussion
6.1 Evaluation of experimental data and simulation results
6.2 Evaluation of the UMR-PRU model64
6.3 Evaluation of SRK EoS and sPC-SAFT EoS65
6.4 Evaluation of the solid model
7. Conclusion and recommendations67
References
Appendix A: Fundamentals Phase Equilibrium72
Appendix B: Experimental Methods74
Appendix C: Simulation Results and Experimental Data77
Appendix D: Thermodynamic properties103

List of figures

Figure 1. Sketch of type A phase behavior
Figure 2. Sketch of type B phase behavior
Figure 3. Sketch of type C phase behavior
Figure 4. Qualitative Pressure-Temperature Diagram of the Methane – Carbon Dioxide Binary
[6]
Figure 5. Sketch of the benzene-methane phase diagram [8]7
Figure 6. Sketch of the benzene-methane phase diagram at fixed pressure [8]
Figure 7. Experimental SL and SLV data for the binary CO2-methane system
Figure 8. Experimental SLV data for the binary CO ₂ -methane system20
Figure 9. Experimental SL and SLV data of the binary hexane-methane system22
Figure 10. Experimental SL and SLV data of the binary heptane-methane system24
Figure 11: Experimental SLV data of the methane-heptane and methane-heptane-ethane mixture
Figure 12. Experimental SL and SLV data for the binary benzene-methane system
Figure 13. Experimental data of the three-phase locus of the binary benzene-methane system26
Figure 14. Experimental SL and SLV data for the binary octane-methane system28
Figure 15 Experimental data of the three-phase locus of the binary octane-methane system28
Figure 16. Experimental SLV data for the binary cyclohexane-methane system compared to the
benzene-methane system and octane-methane system
Figure 17. Experimental data of the three-phase locus of the binary cyclohexane-methane system
Figure 18. Freezing point predictions by UMR-PRU and SRK EoS without <i>kij</i> for the binary
CO ₂ -methane system
Figure 19. Predictions of the three-phase SLV loci by UMR-PRU and SRK EoS for the binary
CO ₂ -methane system
Figure 20. Freezing point predictions with interaction parameter for the binary CO ₂ -methane
system
Figure 21. Prediction of the three-phase SLV loci with interaction parameter for the CO_2 -methane
system
Figure 22. Freezing point predictions by UMR-PRU and SRK at different concentration and
pressure levels
Figure 23. Frost point predictions by UMR-PRU and SRK EoS compared to experimental data
from: Zhang [46], Agrawal [44], Pikaar [41] and Le [45]
Figure 24. Frost point predictions by UMR-PRU and SRK EoS compared to experimental data
from Zhang [46]
Figure 25. Predictions of CO ₂ freeze out along the SLV loci by SRK EoS and UMR-PRU for the
CO ₂ -methane system
Figure 26. Predicted CO ₂ phase behavior by UMR-PRU and SRK EoS in various CO ₂ -CH ₄ -N ₂
mixtures

Figure 27. Freeze out predictions by UMR-PRU and SRK EoS for CO ₂ -CH ₄ -N ₂ mixture
compared to data from Shen[16]
Figure 28. Freeze out predictions by SRK EoS with various CO ₂ -CH ₄ -N ₂ mixtures
Figure 29. Frost point predictions by UMR-PRU and SRK EoS for the CO ₂ -CH ₄ -N ₂ system
compared with experimental data from Agrawal [44]40
Figure 30. Frost point predictions by UMR-PRU and SRK EoS for the CO ₂ -CH ₄ -N ₂ system
compared with experimental data from Le [45]40
Figure 31. Predicted CO ₂ phase behavior by UMR-PRU and SRK EoS in various CO ₂ -CH ₄ -C ₂ H ₆
mixtures
Figure 32 Freeze out predictions for the CO ₂ -CH ₄ -C ₂ H ₆ mixture by UMR-PRU and SRK
compared with experimental data from Shen [12]42
Figure 33. Frost point predictions for the CO ₂ -CH ₄ -C ₂ H ₆ by UMR-PRU and SRK compared with
experimental data from Le[45]42
Figure 34. Prediction of pressures along the SLV loci43
Figure 35. Freeze out predictions of solid hexane in liquid methane along the SLV loci44
Figure 36. Freeze out predictions of solid hexane in liquid methane at different pressures by SRK
EoS45
Figure 37. Prediction of pressure along SLV loci by SRK EoS with optimal interaction parameter
Figure 38. Prediction of hexane solubility in liquid methane with different interaction parameters
along the SLV loci
Figure 39.Predictions of the SLV three phase equilibrium curve by UMR-PRU, SRK and sPC-
SAFT
Figure 40. Freeze out predictions by UMR-PRU, SRK and sPC-SAFT for the heptane-methane
system compared to experimental data
Figure 41. Freeze out prediction by SRK EoS for the heptane-methane system optimal binary
interaction parameter
Figure 42. Prediction by SRK EoS of the SLV three phase equilibrium curve with optimal
interaction parameter
Figure 43. Freeze out predictions by sPC-SAFT for the heptane-methane system with different
interaction parameters
Figure 44. Freeze out predictions of solid benzene in liquid methane
Figure 45. Predictions of the methane-benzene SLV three phase loci
Figure 46. Freeze out predictions by SRK with optimal interaction parameter
Figure 47. Freeze out predictions by sPC-SAFT with different interaction parameter53
Figure 48. Predictions of the methane-benzene SLV three phase loci with optimized interaction
parameters
Figure 49. Freeze out predictions for the CH_4 - C_2H_6 - C_6H_6 system
Figure 50. Freeze out predictions for solid n-octane in liquid methane
Figure 51. Predictions of the methane-octane SLV three phase loci
Figure 52. Freeze out predictions of high concentrated octane in liquid methane

Figure 53. Freeze out predictions of octane in liquid methane by SRK EoS with optimal	
interaction parameter	57
Figure 54. Freeze out predictions of octane in liquid methane by sPC-SAFT with optimal	
interaction parameter	58
Figure 55. Freeze out predictions for the CH4-C2H6-C8H16 system	58
Figure 56. Freeze out predictions at high octane concentrations in liquid methane	59
Figure 57. Predictions of the methane-cyclohexane SLV three phase loci	60
Figure 58. Solubility of the investigated components in liquid methane	61
Figure 59. The effect of UNIFAC parameter terms in the UMR-PRU model	65
Figure 60. Overview of Experimental methods for high-pressure phase equilibria	74

List of tables

Table 1. Experimental data for solid CO ₂ formation in liquid methane	.18
Table 2. Experimental data for solid CO2 formation in vapor methane	.20
Table 3. Experimental SL and SLV data for the binary hexane-methane system	.21
Table 4. Experimental SL and SLV data for heptane-methane rich mixtures	.23
Table 5. Experimental SL and SLV data for the binary benzene-methane system	.25
Table 6. Experimental SL and SLV data for octane- methane rich systems	.27
Table 7. Experimental SLV data for cyclohexane-methane rich systems	.29
Table 8. Parameters used in the SRK EoS and sPC-SAFT EoS and the solid model 2	.31
Table 9. Freezing point predictions by SRK with different interaction parameters	.44
Table 10. Freezing point predictions by sPC-SAFT with different interaction parameters	.46
Table 11. Freezing point predictions with different interaction parameters	.48
Table 12. Freezing point predictions by SRK with different interaction parameters for the	
methane-benzene system	.52
Table 13. Freezing point predictions by sPC-SAFT with different interaction parameters for the	e
methane-benzene system	.53
Table 14. Summary Results	.63
Table 15. UNIFAC group-interaction parameters (IPs) A _{nm} , B _{nm} and C _{nm} for the UMR-PRU	
model	.64

1. Introduction

According to BP [1], natural gas is projected to be the fastest growing fossil fuel (1.9% p.a.) over the next 20 years, with liquefied natural gas (LNG) trade increasing with 3.9 % per annum. Natural gas's share of global energy consumption was in 2012 23.9 %, with LNG accounting for 31.7% of the natural gas trade, BP [2].

Natural gas is liquefied to increase its energy density. At atmospheric pressure, the volume of the natural gas can be reduced to about 1/600 of the volume at standard gas condition. Thus, large quantities of natural gas can be transported in tanks by ship or truck, and for long distances LNG is preferred over pipeline transport.

The natural gas is liquefied at a temperature around -162° C, and this requires energy intensive cooling processes. Thus, new solutions have been developed to optimize the thermodynamic processes involved in the liquefaction process. A challenge in the development of new designs, is to avoid precipitation of trace components in the feed gas. The main component in natural gas is methane (85-90%), but traces of CO₂, heavy hydrocarbons and water is also found in the feed gas. These components introduce a risk of precipitation of a solid phase during the cooling process, which can cause fouling and plugging on heat exchangers, pipes and valves.

The main impurity in natural gas is CO_2 , and due to its high triple point temperature, there is a high risk of solid formation. Other critical impurities are n-hexane, n-heptane, n-octane, cyclohexane and benzene. The understanding of the phase behavior of the components in methane and methane rich mixtures, is crucial in order to avoid potential freeze out conditions. By investigating the experimental work done for such systems, it is possible to get the required knowledge. However, as literature shows, there has been done limited work in evaluating the solid formation risk in low temperature processes.

The experimental data can be used to make accurate modelling tools to predict the solid formation in natural gas systems. Different thermodynamic models have been developed in order to give reliable predictions. Most of them are based on classical equations of state. However, there is discrepancy in the quality of these models.

In this work, all available experimental data found in the literature for solid-liquid equilibrium and solid-vapor equilibrium, are presented. The experimental data have been evaluated in order to check the consistency of such data. The experimental data have been used to evaluate the performance of three thermodynamic models: SRK and sPC-SAFT equations of state and the UMR-PRU model.

2. Solid-Liquid Phase Equilibrium

2.1 Introduction

The understanding of the phase behavior of solid-liquid equilibrium systems, is necessary in order to handle and discuss the experimental data and the modeling results. In this report, both binary and ternary systems have been investigated. Most of the experimental and modeling work has been done for binary systems, due to the simplicity of this system.

- Binary systems: Two components present in the solid-liquid equilibrium system, usually one solute and one solvent
- Ternary systems: Three components present in the solid-liquid equilibrium systems, usually one solute and two solvents.

The phases in equilibrium which is of interest in a solid-liquid equilibrium system can be divided into:

- Solid-Liquid equilibrium (SLE): One solid phase and one liquid phase
- Solid-Vapor equilibrium (SVE): One solid phase and one vapor phase
- Solid-Liquid-Vapor (SLVE): One solid phase, one liquid phase and one vapor phase present together in the equilibrium system

In an equilibrium system the variables of temperature, pressure, compositions etc. are easily changeable. This will have an effect on the phase transitions, critical points, etc. occurring in a phase equilibrium system. When there are multiple components in the systems, the phase behavior is more complex. A general rule has been proposed to describe how these variables affect each other. The Gibbs phase rule determines the number of degrees of freedom in a system and is given by [3]:

$$F = 2 + N - P \tag{3.1}$$

where F is the number of independent intensive properties called degrees of freedom, N is the number of components and P is the number of phases in thermodynamic equilibrium with each other. For binary systems N = 2, and thus P determines the degrees of freedom:

- For P = 2: This gives F = 2. That is, two properties must be specified to fix the intensive state of the system. This applies for the SLE or SLV systems.
- For P = 3: This gives F = 3. That is, the intensive state is determined by a single intensive property value. This applies for the SLVE system.

2.2 Solid-liquid phase behavior of binary mixtures

The phase behavior of the different systems that are researched can be very different, due to the difference in thermodynamic properties such as triple point, critical point, etc. The molecular structure and difference in the properties between the solute and the solvent, will determine the phase behavior. There will be given a general classification of the solid-fluid equilibrium phase behavior, and then a more detailed description of the CO₂-methane and benzene-methane system is given. The study of the phase diagram of these systems will give the necessary understanding to evaluate the experimental data and the simulating results.

2.2.1 Classification of solid-fluid phase behavior of binary mixtures

Kohn and Luks [4] have classified the phase behavior of binary systems into four types. Three of these types are representative for the systems reported here.

2.2.1.1 Type A phase behavior

The solid-liquid-vapor three-phase locus for the type A phase behavior, starts at the triple point of the solute and terminates at a quadruple point (S_1-S_2-L-V) , near the triple point of the solvent. A quadruple point represents a point where four phases are in equilibrium. The SLV curve is represented with two branches terminating at each K-point. The two SLV branches can be seen in Figure 1, the first S_1 -L-V branch is at low temperature and the second S_2 -L-V is at a higher temperature. The K-points are where the liquid-vapor phase is in presence of a solid phase.

The CO_2 -methane, benzene-methane, octane-methane and cyclohexane-methane are binary systems that belong to this type of phase behavior. All of these components have triple point temperatures that are higher than the critical temperature of methane. For systems like these, there will be a gap in the solubility curve occurring around the maximum point of the SLV curve.

Due to the difference in the properties of these systems (triple point temperatures etc.), the phase diagrams of these systems will vary. Figure 1 is a general illustration of this type of phase behavior. For the mentioned binary systems, the figure is more representative for the benzene-methane and the cyclohexane-methane systems, where the triple point temperatures are much higher than the critical temperature for methane.

Figure 1. Sketch of type A phase behavior

2.2.1.2 Type B phase behavior

This is a system in which the solid-liquid-vapor locus runs from the triple point of the solvent to a quadruple point, occurring at the center of the SLV locus. At this point, immiscible liquids will form and combine with the vapor and solid phases. At the quadruple point there will be four phases; gas phase, two liquid phases and a solid phase. This gives a solubility curve that is non continuous, from low temperature to the triple point of the solute.

The heptane-methane system is an example of a type B phase behavior. For this system, the triple point temperature of heptane (182 K) is below the critical temperature of methane. The quadruple point will occur at a temperature below the critical temperature of pure methane (190.56 K) and at pressures considerably in excess of the critical for pure methane, Chang, et al. [5]. At this point the mixture will lose a L₁-phase and gain a L₂-phase, which is leaner in solute. Figure 2 illustrates this type of phase behavior. The three phase locus is separated into two branches. The low temperature branch (S-L₁-V) originates from the methane triple point, and ends up in the quadruple point (S-L₁-L₂-V). The high temperature branch (S-L₂-V) starts at the quadruple point (S-L₁-L₂-V), and ends up in the solute triple point.

Figure 2. Sketch of type B phase behavior

2.2.1.3 Type C phase behavior

In this type of system there are no discontinues between the triple point of the solute, and the Q-point near the triple point of the solvent. Therefore, there will be no gap in the solubility curve for this system. The system can contain liquid-liquid immiscibility as shown in Figure 3.

The hexane-methane system is an example that belongs to this type of phase behavior. For systems like these, the triple point temperature of the solute is lower than the critical temperature of methane.

Figure 3. Sketch of type C phase behavior

2.2.2 Phase behavior of the CO₂-methane binary system

 CO_2 has a triple point temperature of 216.58 K which is higher than the methane critical temperature (190.56 K). The methane-CO2 system belongs to the type A phase behavior, and there will be a gap in the solubility curve for this system.

The phase behavior of the methane- CO_2 binary system is illustrated in the pressure-temperature diagram in Figure 4. In this figure, the overall composition of the system is fixed. Gibbs phase rule gives two degrees of freedom for the two-phase region, and one for the three phase region. Thus, the SLVE system is represented by the line BDF (SLV three-phase loci) and is fixed when only one property is fixed. The lines FG and FH are also three-phase lines, but they are at temperatures below the triple point of methane, and are therefore irrelevant. An overall change in the composition will not change the SLV line, due to the degrees of freedom.

Figure 4. Qualitative Pressure-Temperature Diagram of the Methane – Carbon Dioxide Binary [6]

Line BD is the boundary between the liquid-vapor region and the solid-vapor region. When the temperature is lowered, the liquid-vapor region becomes unstable and CO_2 crystalizes. With further cooling, the solid CO_2 in the vapor phase will be dissolved by a liquid phase rich in methane.

Line DE, the freezing line, is the boundary between the liquid phase and the solid-liquid phase. When CO_2 exceeds the solubility limit in the liquid phase, solid CO_2 will precipitate in the mixture. Point B in the figure is the triple point for pure CO_2 and point F is the triple point for pure methane. The freezing line DE will vary between these points, following the SLV loci, when the overall composition is changed.

Line AB, the frost line, is the boundary curve between vapor and solid-vapor region. When CO_2 exceeds the solubility limit in the gas phase, solid CO_2 will form in the gas phase. The frost line, freezing line, dew point line and the bubble point line will be affected by a change in the overall composition.

2.2.3 Phase behavior of the benzene-methane binary system

Benzene has a triple point temperature of 278.83 K, which is much higher than the critical temperature of methane. In such systems, the critical locus is interrupted by the three-phase curve, with a high- and low-temperature branch. The branches are terminating in singular end points (K-points) having critical identity of the liquid and vapor phases, Kuebler and McKinley [7]. This is illustrated in the pT-diagram of the system in Figure 5. The low temperature branch originates in the triple point temperature of methane, and ends in the first critical end point of the

three-phase curve (K –points). The high temperature branch starts in the second critical end point, and ends in the triple point temperature of the solute.

The description of the phase behavior presented, is taken from the work of de Hemptinne [8]. In Figure 5 the dew-point line (1) is separating the liquid-vapor region, the freezing line (2) is separating the solid-liquid region, and the frost line (3) is separating the vapor-solid region. The dotted line (6) is the high- and low-temperature branches of the three-phase curve, with the two critical locus points (K-points) illustrated (5). For the light hydrocarbon, methane, the dew point line (4) is shown below.

Figure 5. Sketch of the benzene-methane phase diagram [8]

The description of the phase transitions can be understood easier in a temperature-composition diagram. Figure 6 illustrates the benzene - methane phase transitions at constant pressure, which is taken between the triple point pressures and critical pressures. At high temperatures the mixture is always in the vapor phase (1). Cooling a mixture rich in benzene will result in a vapor-liquid phase (2), where the liquid phase is richer in benzene than the vapor phase.

When the mixture is rich in benzene, cooling the mixture will result in a vapor-liquid phase (2). The liquid phase will be richer than the vapor phase in benzene. If the mixture is very rich in benzene, there will be a transition between the vapor-liquid phase and a liquid phase (3). Further cooling will then give solid benzene formation, after passing the high temperature solid-liquid line (4). This represents the highest risk of benzene formation.

With moderate benzene concentrations, further cooling from (2) will give the solid-vapor region (6), after passing the high temperature three-phase branch (5). At this temperature the liquid becomes unstable and starts to crystallize, until all the liquid disappears. At low benzene concentrations, the benzene will crystalize directly from the vapor phase (1). Since natural gas contains several components, the three phases may coexist in this region.

At very low temperatures the low temperature three-phase line will occur. There will be a transition from the vapor-solid, which results in solid benzene formation. For mixtures rich in methane, there will be two phase-transitions. The first one is the low temperature three-phase line, where the mixture enters a vapor-liquid region (7). Here the methane concentration is so high that the solid benzene dissolves in the liquid. The second is a dew-point line, from (1) to (7). When the mixture in the vapor-liquid is further cooled, there will be a bubble-point transition to a liquid phase (9). Even further cooling will result in solid benzene formation, after passing the low temperature solid-liquid line (10).

Figure 6. Sketch of the benzene-methane phase diagram at fixed pressure [8]

3. Thermodynamic Models for Solid-Fluid Calculations

3.1 Thermodynamic framework

The thermodynamic modelling of the solubility of a solid in a liquid solvent (i.e., solid-liquid equilibria), or at the triple point of a mixture (i.e., solid-liquid-vapor equilibria), is based on the fugacity balance. The fundamental theory governing thermodynamic equilibrium can be found in appendix A. For a solid-liquid equilibrium between a fluid phase (component 1 and 2) and a pure solid phase (component 2), the fugacity balance applies:

$$f_2^{1,liquid}(T,p) = f_2^{2,solid}(T,p)$$
(3.1)

where subscript 1 is the solvent in liquid phase, subscript 2 is the solute in solid phase, and f^{liquid} and f^{solid} are the fugacity of liquid and pure solid.

Two thermodynamic approaches are typically used for solid-fluid calculation: the activity coefficient model and the equation of state model. The models are combined with general mathematical terms for calculating the fugacity of the solid phase; solid model 1 and solid model 2 (see 3.4).

3.2 Review of thermodynamic models used for solid-fluid calculations

The activity coefficient approach has been used by Myers and Prausnitz [9], for calculating the solubility of CO_2 in liquid solvents at low temperatures. The model was related to pertinent intermolecular forces by a generalization of a Scatchard's equation. To calculate the fugacity of the solid phase, the model based on sub-cooled liquid was applied.

Eggeman and Chafin [10] used the activity coefficient approach together with the solid model 2 (eq. 3.30), for CO_2 freeze out determination in vapor and liquid methane. To calculate the activity coefficient the Non-Random Two Liquid (NRTL) equation was applied. The activity approach can also be estimated from the group-contributing method UNIFAC, Gmehling, et al. [11].

Equations of states have gained popularity due to the capability of representing both vapor and liquid phases. Equations of state can typically be used over a wide range of temperatures and pressures, and they can be applied to mixtures of diverse components, ranging from light gases to heavy liquids. EoS can be used to calculate vapor-liquid, liquid-liquid, and supercritical fluid-phase equilibria without any conceptual difficulties. Wei and Sadus [12].

In the same article by Eggeman and Chafin [10] they also combined the Peng-Robinson EoS together with the solid model 1. They reported good results for both models when compared to experimental data. The authors were surprised over the ability of PR EoS to give accurately predictions, although some numerical problems were detected.

ZareNezhad [5] studied the prediction of CO_2 freeze out in cryogenic natural gas plants. He applied the Peng-Robinson equation of state to calculate the liquid fugacity and the solid model based on sublimation pressure to calculate the solid fugacity. ZareNezhad [5] also developed a semi-empirical quadratic temperature-dependent binary interaction parameter to express the interaction in the CO_2 -CH₄ mixture. Their proposed thermodynamic model were able to give reliable predictions of the CO_2 -CH₄ system.

In the paper by Carter and Luks [13] they suggested a more general approach to describe the solid-liquid equilibrium, which is less dependent on experimental data for correlation. The authors used the cubic Soave-Redlich-Kwong equation of state (SRK EoS) for describing the liquid phase, and the solid model 2 for representing the solid phase. They reported predicting results compared to the experimental data for the binary methane - CO_2 system. However, they noticed that the predictions were sensitive to the choice of binary interaction parameter.

In the work by Zhang, et al. [14], the SRK EoS is employed together with the solid model 1(eq. 3.29) for frost point predictions in the CO₂-methane system. He has also conducted experimental data for the CO₂-methane system at low temperatures. Agreements between the model predictions and the experimental data are reported. The same model was used in the paper by Zhang and Solbraa [15], for the solubility of CO₂ and heavy hydrocarbons in gas mixture at low temperature . The modelling results correspond well with the experimental data.

In the report by Shen, et al. [16], the PR and SRK equations of state and solid model 1 are adopted to calculate the CO₂ solubility in CH₄ + N₂ and CH₄ + C₂H₆ mixtures. Results obtained from the models, are consistent with the experimental data. The authors have also derived two quadratic temperature-dependent $k_{CH_4-CO_2}$ correlations. De Guido, et al. [17] have developed two methods based on the SRK and PR EoS together with the solid model 2. The methods are used for prediction of SLV equilibrium of CO₂ mixture with n-alkanes or H2S. The models show good reliability when compared to experimental data.

Most of the thermodynamic models for solid-liquid calculations have been adapted and tested for the methane- CO_2 systems. CO_2 is the main impurity in natural gas, and most of the solid-liquid investigations are therefore on these types of systems. However, some work has also been done for systems containing methane and heavy hydrocarbons.

In the paper de Hemptinne [8] he investigates the risk of benzene crystallization in the LIQUEFIN gas liquefaction process. He has developed a model that uses the Peng-Robinson EoS with the Huron-Vidal mixing rule. Due to lack of experimental data for this system at low temperatures, the author was not able to give a comprehensive validation of the model. However, the author was able to match some conditions using the experimental data of Rijkers, et al. [18]. Rijkers experimental data is for rather high benzene concentration. The model predicted reasonable results compared to his experimental data.

Recent work done on systems containing methane and heavier hydrocarbons, is the work by Zhang and Solbraa [19]. Thermodynamic models based on SRK EoS and sPC-SAFT combined with solid model 2 (eq. 3.29), are used for calculating the solubility of heavier hydrocarbons in liquid methane. The van der Waals classic mixing rule is coefficient used with a single binary interaction. With optimized interaction parameters, the models are able to give good predictions compared to experimental data. The sPC-SAFT model is also able to give reasonable results with the interaction parameter set to zero.

3.3 Thermodynamic models for the fluid and gas phases

In this report, three models have been used to describe the fluid and gas phases: SRK EoS, sPC-SAFT EoS and the UMR-PRU model. The SRK EoS is widely used in the industry due to its simplicity and reasonable accuracy. The sPC-SAFT is more complicated in the structure than the SRK EoS, but has proven to be a successful model describing equilibrium systems, [19-21]. The UMR-PRU has so far been an accurate and efficient thermodynamic tool predicting dew points of natural gas systems, [22-24].

3.3.1 The soave Redlich Kwong equation of state

The SRK EoS of state is an improvement of the Redlich Known EoS. Soave [25] suggested a replacement of the term $a/T^{1.5}$ in the RK EoS with a more general temperature dependent term a(T). This resulted in a significant improvement of the Redlich-Kwong equation, [12]:

$$Z = \frac{V}{V - b} - \frac{a(T)}{RT(V + b)}$$
(3.2)

$$a(T) = 0.4274 \left(\frac{R^2 T^{c2}}{p^c}\right) \left\{ 1 + m \left[1 - \left(\frac{T}{T^c}\right)^{0.5} \right] \right\}^2$$
(3.3)

$$m = 0.480 + 1.57\omega - 0.176\omega^2 \tag{3.4}$$

$$b = 0.08664 \frac{RT^c}{p^c}$$
(3.5)

where ω is the acentric factor. The accuracy of the SRK equation has been tested and proven by Soave to give satisficing results. Compared to the Redlich-Kwong equation, Soaves modification gave matched the experimental data, and it was able to give accurate prediction of the phase behavior of mixtures.

3.3.2 The Simplified PC-SAFT equation of state

The simplified Perturbed-Chain Statistics Associating Fluid Theory (sPC-SAFT) proposed by von Solms, et al. [26], is a modification of the PC-SAFT model and the SAFT model. Theory behind the SAFT model can be read in following articles, Chapman, et al. [27], [28].

The PC-SAFT equation of state is given by Gross and Sadowski [29]:

$$Z = Z^{id} + Z^{hc} + Z^{disp} \tag{3.6}$$

where Z = pv/RT is the compressibility factor, $Z^{id} = 1$ is the ideal gas contribution, Z^{disp} is the perturbation contribution, and Z^{hc} is the hard-chain contribution given by:

$$Z^{hc} = \bar{m}Z^{hs} - \sum_{i} x_i (m_i - 1)\rho \,\frac{\partial \ln g_{ii}^{hs}}{\partial \rho}$$
(3.7)

$$\overline{m} = \sum_{i} x_{i} m_{i} \tag{3.8}$$

where x_i is the mole fraction of chains of component *i*, m_i is the number of segments in a chain of component *i*, ρ is the total number of density in a of molecules, g_{ii}^{hs} is the radial pair distrubiton function for segments of component *i* in the hard sphere system, and the superscript *hs* indicates quantities of the hard-sphere system.

The terms Z^{hs} and g_{ii}^{hs} , given in equation 3.7, have been simplified in the sPC-SAFT model. These modifications make the computational implementing in software tools easier, and it also reduces the computation times. The model has been documented to perform as well as the PC-SAFT model. More detailed theory behind the sPC-SAFT can be found in von Solms, et al. [26].

3.3.3 The UMR-PRU model

The theory behind the UMR-PRU EoS is based on the report by Louli, et al. [22]. The UMR-PRU model belongs to the class of EoS/G^E models. It combines the PR EoS with an original UNIFAC EoS/G^E model that employs temperature dependent group-interaction parameters through the Universal Mixing Rule (UMR) proposed by Voutsas, et al. [30].

The Peng-Robinson cubic EoS is given by:

$$P = \frac{RT}{v - b} = \frac{\alpha}{v(v + b) + b(v - b)}$$
(3.9)

With:

$$\alpha = a \cdot \alpha_c \tag{3.10}$$

$$\alpha_c = 0.45724 \cdot \frac{(RT_c)^2}{P_c}$$
(3.11)

$$a = \left[1 + m\left(1 - \sqrt{T_r}\right)\right]^2$$
(3.12)

$$b = 0.07780 \frac{RT_c}{P_c}$$
(3.13)

where P is the pressure, R is the gas constant, T is the temperature, v is the molar volume, T_c the critical temperature, P_c the critical pressure and α and b are the attractive and co-volume EoS parameters.

The Universal Mixing Rule (UMR) proposed by Voutsas, et al. [30] is given by:

$$\frac{\alpha}{bRT} = \frac{1}{A} \frac{G_{AC}^{E,SG} + G_{AC}^{E,res}}{RT} + \sum_{i} x_i \frac{\alpha_i}{b_i RT}$$
(3.14)

~

$$b = \sum_{i} \sum_{j} x_{i} x_{j} b_{ij}, \quad b_{ij} = \left(\frac{b_{i}^{1/2} + b_{j}^{1/2}}{2}\right)^{2}$$
(3.15)

where the parameter A depends on the EoS used (A = -0.53 for PR EoS), $G_{AC}^{E,SG}$ and $G_{AC}^{E,res}$ are the Staverman-Guggenheim term of the combinatorial part and the residual part of the excess Gibbs energy (G^E), respectively, obtained from the UNIFAC activity coefficient model:

$$\frac{G_{AC}^{E,SG}}{RT} = 5\sum_{i} x_i q_i \ln \frac{\theta_i}{\varphi_i}, \qquad \frac{G_{AC}^{E,res}}{RT} = \sum_{i} x_i v_k^i \left(\ln \Gamma_k - \ln \Gamma_k^i \right)$$
(3.16)

$$\theta_i = \frac{X_i r_i}{\sum_j X_j r_j}, \quad \varphi_i = \frac{X_i q_i}{\sum_j X_j q_j} \tag{3.17}$$

where v_k^i is the number of groups of type k in molecule *i*, Γ_k is the group residual activity coefficient, and Γ_k^i is the residual activity coefficient of group k in molecule *i*, Fredenslund, et al. [31]. The residual contribution to the logarithm of the activity of group k is given:

$$\ln \Gamma_k = Q_k \left[1 - \ln \left(\sum_m \theta_m \Psi_{mk} \right) - \sum_m \frac{\theta_m \Psi_{mk}}{\sum_n \theta_m \Psi_{nm}} \right]$$
(3.18)

where the surface area fraction of group m in the mixture is defined as:

$$\theta_m = \frac{Q_m X_m}{\sum_n Q_n X_n} \tag{3.19}$$

And X_m is the mole fraction of the group m in the mixture:

$$X_{m} = \frac{\sum_{j} v_{m}^{(j)} X_{j}}{\sum_{j} \sum_{n} v_{n}^{(j)} X_{j}}$$
(3.20)

The term Ψ in the residual contribution is a function of group interaction parameters (IPs). Different types of IPs can be utilized. In the original UNIFAC-type model proposed by Hansen et al. (1992), linear T-dependent IP's are utilized. But in in standard UNIFAC tables there are no parameters for pairs containing gases. They are instead calculated by considering them as separate groups, like in all EoS/G^E models.

Louli, et al. [24] have evaluated new UNIFAC group interaction parameters containing gas. The IP's were determined by fitting isothermal VLE experimental data. The IP's were determined by fitting isothermal VLE experimental data using an objective function. The UNIFAC Ψ function used in their study was:

$$\Psi = \exp\left[-\frac{A_{nm} + B_{nm} \cdot (T - 298.15) + C_{nm} \cdot (T - 298.15)^2}{T}\right]$$
(3.21)

3.3.4 The van der Waals mixing rule

Mixing rules are necessary when equations of state for pure fluids are used to calculate various thermodynamic properties of fluid mixtures. By applying mixing rules and combing rules, the same EoS used for pure fluids can be used for mixtures. The mixing rules relate the properties of the pure components to the properties of the mixture, Wei and Sadus [12].

The van der Waals one-fluid mixing rule is the most common mixing rule, and is expressed as:

$$a = \sum_{i} \sum_{j} x_i x_j a_{ij} \tag{3.22}$$

$$b = \sum_{i} \sum_{j} x_i x_j b_{ij} \tag{3.23}$$

where a_{ii} and b_{ii} are the constant of the equation for pure component, and a_{ij} and b_{ij} ($i \neq j$) are the cross parameters determined by an appropriate combining *i* rule, often given by:

$$a_{ij} = \sqrt{aiaj}(1 - k_{ij}) \tag{3.24}$$

$$b_{ij} = \frac{1}{2}(b_i + b_j) \tag{3.25}$$

where k_{ij} is the binary interaction parameter.

The binary interaction coefficient is an empirical parameter to adjust the deviation between the actual state and the ideal state. In this work, the k_{ij} has been correlated by fitting it to the experimental data. It can also be convenient to use temperature dependent k_{ij} correlations. This has been done in the work by ZareNezhad [32] and Shen, et al. [16], where they suggested the following k_{ij} equations for PR EoS and SRK EoS, respectively:

$$k_{ij} = -36.134 \frac{1}{T^2} + 5.4835 \frac{1}{T} + 0.09980 \tag{3.26}$$

$$k_{ij} = 107.48 \frac{1}{T^2} + 5.649 \frac{1}{T} + 0.0956 \tag{3.27}$$

3.4 Thermodynamic models for the solid phase

For the calculation of the fugacity of the solid phase, two different approaches are presented.

3.4.1 Solid model 1: Fugacity based on sublimation pressure

A general relation to calculate fugacity is given by, Prausnitz, et al. [33]

$$RT\ln\varphi_i = RT\ln\frac{f_i}{y_i P} = \int_0^P \left(\bar{v}_i - \frac{RT}{P}\right) dP$$
(3.28)

where $\bar{v}_i = (\partial V / \partial n_i)_{T,P,n_i}$ is the partial molar volume of component *i*, φ_i is the fugacity coefficient *i*, f_i is the fugacity of *i* and y_i is the molar fraction of *i*.

Equation 3.28 can be used to calculate fugacity for vapor, fluid and solid phases. The equation may be used to derive the following expression for calculating fugacity of the solid phase:

$$f_i^{solid} = P_i^{sub} \varphi_i^{sub} exp\left[V_i^{solid}\left(\frac{P - P_i^{sub}}{RT}\right)\right]$$
(3.29)

where P_i^{sub} is the sublimation pressure of *i*, φ_i^{sub} is the fugacity coefficient of *i* at sublimation pressure, and V_i^{solid} is the molar volume of solid *i*.

For this equation, it is assumed that the solid only forms at temperatures below the triple point temperature of component i.

3.4.2 Solid model 2: Fugacity based on sub-cooled liquid

This model is an expression for the two states of Gibbs energy difference (the fugacity ratio): the pure substance in the solid state and pure substance in an assumed liquid state. Both states are under the same conditions of temperature and pressure.

The equation is directly derived from the thermodynamic principles, by calculating partial molar Gibbs energy change between the solid and liquid phases, Pedersen, et al. [34]:

$$f_i^{\circ s}(P) = f_i^{\circ l}(P) \exp\left(-\frac{\Delta H_i^f}{RT} \left[1 - \frac{T}{T_i^f}\right] - \frac{\Delta C_{Pi}}{RT} \left(T_i^f - T\right) + \frac{\Delta C_{Pi}}{R} \ln \frac{T_i^f}{T} + \frac{\Delta V_i(P - P_{atm})}{RT}\right)$$
(3.30)

The term $f_i^{\circ solid}(P)$ is the reference fugacity of component *i* in solid state at pressure P and $f_i^{\circ liquid}(P)$ is the reference fugacity of component *i* in liquid state at pressure P. *Pressure P and temperature T is calculated from the fluid phase model.* ΔH_i^f is the heat of fusion at the triple point, ΔC_{Pi} equals the difference between the solid- and liquid heat capacities for component *i*

and ΔV_i is the difference between solid- and liquid phase molar volumes of component *i*. T_i^f is the melting temperature of component *i* and P_{atm} is atmospheric pressure.

In wax/asphaltene precipitation, it is common to neglect the last term of equation 3.30, which is known as the poynting correction factor, [35] This term is often very small, because the molar volume difference for liquid-solid transition is very small. Unless the pressure is very high, this term can be neglected.

4. Evaluation of Experimental Data

The experimental data have been conducted by several scientists with different experimental methods. It is therefore important to compare the data to check the consistency of the experimental data. For each systems investigated the experimental method behind the data will be accounted for. The description of the different methods can be found in Appendix B.

4.1 Solid-liquid data on CO₂-methane rich mixtures

 CO_2 is the main impurity in natural gas, and most of the solid-liquid investigations are therefore on these types of systems.

4.1.1 Solid-liquid and solid-liquid-vapor data for binary CO₂-methane system

Table 1 includes the available experimental data published in the literature for solid CO_2 formation in liquid methane.

Solvent	Tempera	mperature [K] Mole [[%]	Pressure [bar]		Tuno	Eve Mathad	Pof	
-	Min	Max	Min	Max	Min	Max	Type	Exp. Method	Nel.	
CH_4	90.92	215.37	0	100	9.51	48.51	SL/SLV	AnT	Katz [36]	
CH_4	111.5	128	0.03	0.15	-	-	SL	-	Boyle [37]	
CH_4	166.48	177.59	1.9	5.2	-	-	SLV	AnT	Sterner [38]	
CH_4	110.7	194.6	0.03	12.6	-	-	SLV	AnT	Cheung [13]	
CH_4	129.65	201.26	0.16	20.5	3.62	48.18	SLV	SynVis	Davis [14]	
CH_4	110	218.3	0.03	100	-	-	SL	-	Streich [39]	
CH_4	111.6	193.3	0.02	12.8	-	-	SL	-	Voss [40]	
CH_4	158.15	201.29	1	20	28.93	47.52	SL/SLV	AnPT	Pikaar [41]	
CH_4	129.6	214.3	0.16	90	3.57	20.79		Correlation	Kurata[41]	
CH_4	112	169.9	0.00213	2.896	0.93	23.15		AnPT	Shen[16]	

Table 1. Experimental data for solid CO_2 formation in liquid methane

4.1.1.1 Experimental work behind the data

The publications behind the data obtained by Boyle [37], Streich [39] and Voss [40] were not available, and are therefore not evaluated. The experimental data are directly obtained from the DECHEMA data series. Three authors have used analytical isothermal methods (AnT) to get their data, but with three different techniques to achieve equilibrium in the cell. Donnelly and Katz [36] used a technique by rocking the cell, Cheung and Zander [13] by stirring the mixture, and Sterner [38] by recirculating the vapor phase. Pikaar [42] used the analytical isobaric-isothermal method (AnPT), to obtain the solid liquid equilibrium data, and he measured the fluid composition with an infra-red analyzer. Shen, et al. [16] applied the AnPT method and chromatography was used to measure the sampling. Davis, et al. [14] used a synthetic visual

method (SynVis), or cryoscopic method to obtain the SL data. The work from Kurata [41] is a correlation of some data points from Davis and Katz.

4.1.1.2 Correction and validation of experimental data

Figure 7 present all the available experimental data for solid CO_2 formation in liquid rich methane mixture. The Y axis is in logarithmic scale and represents solid CO_2 mole percent in the liquid rich methane mixture. Figure 7 shows that the data from Streich [39] have a higher solubility in the area 130 K – 180 K. The data are inconsistent compared to the other data, and are therefore excluded. At 190 K the data points from Donnelly and Katz [36] differs from the other data at this point. These data points are also excluded. The few data points from Sterner [5] are scattered compared to Voss [40] and Davis, et al. [43], and these are removed. In temperature range 110 K- 130 K the data from Voss [40] and Shen, et al. [16] are more consistent compared to the others. In Figure 8 the experimental data for the three phase SLV locus are presented for the CO₂-methane system. As can be seen from the figure, the data correspond well, except for the inconsistent data from Donnelly and Katz [36] at 195K - 200K. These data points are removed. The data from Kurata [41] is a correlation of the data from Davis and Katz

The data from Shen, et al. [16], Davis, et al. [43] and Kurata [41] will be compared to the simulation results for the solid-liquid CO_2 -methane system.

Figure 7. Experimental SL and SLV data for the binary CO2-methane system

Figure 8. Experimental SLV data for the binary CO₂-methane system

4.1.2 Solid vapor data for CO₂-methane rich systems

Table 2 present the available experimental solid-vapor data for CO₂-methane rich systems.

-				-					
Solvent	Temperature [K]		Mol	Mole [%]		Pressure [bar]		o Eve Mathad	Pof
	Min	Max	Min	Max	Min	Max	туре	Lxp. Wethou	Nel.
CH_4	97.5	211.7	0.12	11.73	-	-	SLV	AnT	Davis[43]
CH_4	113.15	210.15	1	20	-	-	SV	SynNon	Pikaar [17]
CH4 + N2	137.5	198.1	0.12	10.67	-	-	SV	SynVis	Agrawl[44]
CH_4	191.1	210.3	10.8	54.2	-	-	SV	SynNon	Zhang[46]
CH4 + C2H6/N2	168.6	187.7	1	2.93	-	-	SV	SynVis	Le[45]

Table 2. Experimental data for solid CO2 formation in vapor methane

4.1.2.1 Experimental work behind the data

The experimental data involving solid CO_2 formation in vapor methane rich mixtures are mostly frost point data. However, the data from Davis, et al. [43] are CO_2 formation taken along the SLV loci.

All authors have used non-sampling methods to obtain the solubility data, except Davis, et al. [43], who used a sampling method (AnT) and analyzed the samples with mass spectrometer. Agrawal and Laverman [44] and Le and Trebble [45] both used visual observation methods to obtain the data. Pikaar [17] used a synthetic non-visual method by investigating the p-T diagram. The experimental work by Zhang [46] was carried out in 2011, and is probably one the most valuable sources of freeze point data for the CO₂-methane system. Zhang [46] used a synthetic non-visual method, where he recorded pressures and temperatures during the cooling and the

heating of the mixture. The intersecting point of the cooling line and heating line was taken as the frost points of the mixture, Zhang [46].

The experimental frost point data are taken at different CO_2 concentrations, which make it more difficult to verify the data. All of the experimental data will therefore be compared to the simulation results.

4.2 Solid-liquid data for HHC-methane rich mixtures

The traces of heavier hydrocarbons in natural gas can precipitate at low temperatures if it exceeds its solubility in the mixture. The experimental data represented here is for the components hexane, heptane, benzene, octane and cyclohexane in methane rich mixtures.

4.2.1 Solid-liquid and solid-liquid-vapor data for the binary hexane-methane system

Table 3 includes the available experimental data published in the literature for the binary hexane - methane system.

Solvent	Temp. [K]		Mole fraction		Pressure	[bar]	Tuno	Exp.	Exp.
Solvent	Min	Max	Min	Max	Min	Max	туре	Method	Rel.
CH_4	90.03	178.71	0	1	-	-	-	SynVis	Beck [47]
CH_4	162.88	177.80	0.195	1	<0.0026	65.5	SL/SLV	SynVis	Shim [50]
CH_4	161.3	176.2	0.062	0.915	-	-	SLV	SynNon	Dickin.[48]
CH_4	138	164	4.22E-03	0.034	5.80	17.0 1	SLV	SynVis	Luks[49]
CH_4	93.8	163.7	3.49E-05	0.15	68.99	130. 27	SL	AnPT	Kueble[50]
CH_4	103.4	150	1.37E-04	1.14E-05	-	-	SL	AnPT	Neuma[51]

Table 3. Experimental SL and SLV data for the binary hexane-methane system

4.2.1.1 Experimental work behind the data

Most of the solubility data have been obtained at the solid-liquid-vapor (SLV) equilibrium state. However, Kuebler and McKinley [50] and Neumann and Mann [51] obtained the data at the solid-liquid equilibrium state. Shim and Kohn [52] and Luks, et al. [49] and Beck, obtained from [47], used synthetic visual methods to obtain their data. Dickinson, et al. [48] used a non-visual method by investigating the cooling curve. Neumann and Mann [51] used an analytical method where he prepared the solution by mechanical stirring. Kuebler and McKinley [50] used a singlepass method, where the solvent flows through the solute and dissolves the solute.

The solubility is sensitive to extremely large changes in pressure, but for solid-liquid transition the change in volume is very small, which makes the pressure effect small. Shim and Kohn [22] studied the effect of the pressure change for the solid-liquid phase behavior. They reported that

the freezing points are increased to higher temperatures when the pressure is increased. This means that the solubility of hexane in liquid methane is decreased when the pressure is increased.

4.2.1.2 Correction and validation of experimental data

Figure 9 represents the available experimental data for the binary hexane-methane system. The Y axis is solid hexane mole percent in liquid methane, presented in a logarithmic scale. The X axis represents the temperature range. From Figure 9 it can be observed that some of the data obtained from Beck are in inconsistent with the rest of the data. The data from Beck are therefore excluded when comparing the experimental data with the modelling results. The rest of the data are consistent, but scattered points from 160 K to 165 K can be noticed. This temperature area is close to the maximum pressure along the three-phase line, where the two separate SLV lines converge together. In the article by Shim and Kohn [22] they commented this, and noticed that the composition is extremely sensitive to temperature in this region. This may be the reason for the uneven solubility values in this area.

Experimental data Shim and Kohn [22], Kuebler and McKinley [50] and Luks, et al. [49] will be compared against the simulation results for the binary hexane-methane system.

Figure 9. Experimental SL and SLV data of the binary hexane-methane system
4.2.2 Solid-liquid and solid-liquid-vapor data for heptane-methane rich mixtures

Table 4 contains available experimental data for heptane-methane rich mixtures.

Tusie in Experimental SE and SE + data for neptane mentale net mixtures										
Solvent -	Temperature [K]		Mole fraction		Pressu	ure [bar]	Type	Exp.	Pof	
	Min	Max	Min	Max	Min	Max	туре	Method	Ner.	
CH_4	131	181	7.72E-04	0.903	3.7	21.87	SLV	SynVis	Tiffin[53]	
CH_4	94.2	166.5	9.10E-06	0.0237	5.61	95.8	SL	AnPT	Kuebler[7]	
CH_4	103.2	150	4.50E-03	0.32	-	-	SL	ANPT	Neuma[51]	
CH4 + C2H6	146.1	170	6.06E-03	0.4183	7.75	18.1	SLV	SynVis	Tiffin[53]	

Table 4. Experimental SL and SLV data for heptane-methane rich mixtures

4.2.2.1 Experimental work behind the data

Two different experimental methods have been used to obtain these data. Tiffin, et al. [53] used a cryoscopic method (syntetic visual method) to obtain solubility data along the SLV curve. Kuebler and McKinley [7] and Neumann and Mann [21] obtained SL data with analytical methods, as described earlier, 4.3.1.1.

4.2.2.2 Correction and validation of experimental data

In Figure 10 the experimental data are plotted to check the consistency from the different authors. The Y axis is in logarithmic scale and represents heptane mole percent in liquid methane. The figure shows that the data are matched reasonably well for the low temperature range in mind. However, it can be noticed that the SL data obtained by Kuebler and McKinley [7] gives a higher solubility compared to the data obtained by Tiffin, et al. [53] and Neumann and Mann [51]. This can probably be explained by their method of over pressuring their system (up to 95.8 bar), giving SL data for compressed liquid methane. The consequence of the high pressure and the compressed liquid methane are therefore lower freezing points. Also shown in Figure 10 is the quadruple point, occuring at 169.35 K. At this point there is a "jump" in the benzene concentration, to a leaner concentration, see section 2.2.1.2 Type B phase behavior.

The experimental data from Kuebler and McKinley [7] and Tiffin, et al. [53] will be compared to the simulation results for the hexane-methane system.

Figure 10. Experimental SL and SLV data of the binary heptane-methane system

In the published article by Tiffin, et al. [53] they also present experimental data for a ternary SLV system containing methane-ethane-n-heptane, with a methane/ethane solvent mixture ratio 8:1. This system is presented in Figure 11, where it is compared to the binary SLV system of methane-n-heptane. Figure 11 shows that the addition of ethane, increases the solubility of heptane in the liquid methane-heptane-ethane mixture. This is because the molecular structure of heptane is more similar to ethane compared to methane.

Figure 11: Experimental SLV data of the methane-heptane and methane-heptane-ethane mixture

4.2.3 Solid-liquid and solid-liquid-vapor data for the binary benzene-methane system

Table 5. Ex	Table 5. Experimental SL and SLV data for the binary benzene-methane system									
Solvent	Tempera	Temperature [K]		Mole [%]		Pressure [bar]		Eve Mathad	Def	
	Min	Max	Min	Max	Min	Max	- туре	Exp. Wethou	Nei.	
CH_4	99.4	199.8	3.90E-05	1.40E-01	54.1	136.8	SL	AnPT	Kuebler [7]	
CH_4	165	277.7	1.10E-02	9.82E+01	10	170	SLV	SynVis	Luks[49]	
CH_4	103.8	185.4	6.00E-04	4.83E-02	-	-	SL	AnPT	Neum[51]	
CH_4	148.05	177.95	3.09E-03	2.60E-02	-	-	-	-	Teller[54]	
CH_4	264.95	278.45	8.04	100	0.05	539.81	SL/SV	SynVis	Rijkers[18]	

Table 1 contains the available experimental data for the binary benzene - methane system.

4.2.3.1 Experimental work behind the data

The three phase locus of the benzene-methane system was studied by Luks et al [49]. He obtained the data with a visual observation (SynVis) method. Figure 13 shows two SLV branches, one at low temperature and one at high temperature, which also can be recognized in Figure 5, section 2.2.3. This behavior occurs since benzene has a much higher triple-point temperature (278.7) than the critical temperature of methane (190.56 K). This also gives a critical point for the high temperature branch at a very high pressure level. The first critical locus point, referred to as K-point, is found at 190.5 K. The second K-point was not located by Luks et al [49], but the point was found by Rijkers, et al. [18] at 539.81 bar.

The experimental work by Teller and Knapp [54] is unpublished, and it is therefore not evaluated. The work by Rijkers, et al. [18] was the only source found concerning solid formation of heavy hydrocarbons in vapor methane. They used a synthetic visual observation method to determine the solid formation in both the vapor phase and the liquid phase. The work by Kuebler and McKinley [7] and Neumann and Mann [51] are the same as explained in 4.3.1.1.

4.2.3.2 Correction and validation of experimental data

Figure 12 presents all the available experimental SL and SLV data for the benzene-methane system at low temperatures. The Y axis is in logarithmic scale and represents benzene mole percent in liquid methane. The agreement is reasonably good between the data from Neumann and Mann [51] and Kuebler and McKinley [7]. However, at low temperatures the deviation starts increasing, and it also seems that the data from Neumann and Mann [51] are more linear than the data from Kuebler. Their work is based on the same experimental method, and they both have SL data at high pressures. The data from Teller and Knapp [54] follows the data from Kuebler and McKinley [7], but with lower solubility. The solubility data from Luks et al [49] are taken along the SLV loci. Figure 12 shows that the solubility data from Luks et al [49] are flattening out as the first K-point is approached. For the last data point the solubility has decreased, while the temperature have increased, Compared to the rest of the data there are large deviations at this

point. The reason for this behavior is explained in the work by Kohn and Luks [55]. The K-point (190.5 K) is very close to the critical point of pure methane (190.564 K). Thus the liquid phase begins to expand rapidly as the K-point is neared, accompanied by a drop in the solute solubility in that phase. This also makes the solubility very pressure sensitive in this area. Kohn and Luks [55] explains further that other authors take their data at higher pressure levels, which will be over this critical area.

Figure 12. Experimental SL and SLV data for the binary benzene-methane system

Figure 13. Experimental data of the three-phase locus of the binary benzene-methane system

4.2.4 Solid-liquid and solid-liquid-vapor data for octane-methane rich systems

Table 6 contains the available experimental SL and SLV data for octane - methane rich systems.

Solvent	Temperature [K]		Mole [%]		Pressure [bar]		Туре	Exp. Meth.	Ref.
	Min	Max	Min	Max	Min	Max			
CH_4	90.93	216.32	0	100	-	-	SL	-	Brewer [47]
CH_4	156	191.15	0.0214	0.0592	13.4	45.9	SLV	SynVis	Kohn et al. [57]
$*CH_4$	155	192.2	0.021	0.085	13.8	48.7	SLV	SynVis	Kohn [4]
CH_4	165	191.15	0.0068	0.038	45.9	19	SLV	SynVis	Kohn [4]
CH_4	109.9	150.13	0.00043	0.00307	-	-	-	-	Teller[55]
$*CH_4$	165.55	216.5	44	100	20	46.07	SLV	SynVis	Bradish[56]
CH4 + C2H6	162.37	192.42	0.838	0.787	15.13	39.67	SLV	SynVis	Tiffin [59]
CH4 + C2H6	159.28	192.79	0.086	1.261	13.62	39.50	SLV	SynVis	Kohn[4]

*Pure methane	(99	mole	%)
---------------	-----	------	----

4.2.4.1 Experimental work behind the data

Table 6. Experimental SL and SLV data for octane- methane rich systems

The data from Brewer and Kurata [47] originates from the work by Papahronis. The work behind the data from Teller [55] was unfortunately not available, and thus not evaluated. The rest of the experimental data were obtained using cryoscopic techniques, see appendix B.2.1. The methane used in the different studies has mainly been "ultra pure" grade (99.97 mol%). However, in the work by Kohn and Luks [4] and Kohn and Bradish [56] pure grade methane (99 mole %) was also studied. The effect of purity on the systems is discussed later.

4.2.4.2 Correction and validation of experimental data

In Figure 14 and Figure 15 all the available experimental data for the low temperature binary octane methane system are shown. The Y axis is in Figure 14 in logarithmic scale and represents octane mole percent in liquid methane. Figure 15 shows the Pressure-Temperature diagram of the SLV three-phase loci. The only data available for very low octane concentrations are those from Teller. The figure shows that these data points are uneven and scattered. It's therefore difficult to give any validation for these points. They will however still be compared to the simulation results, since they roughly indicates where the freeze out will occur.

The agreements between the data from Kohn, et al. [57] and Kohn and Luks [4] are good, both with "ultra pure" methane. There are some deviations near the K-point, where the data from Kohn and Luks [4] gives higher solubility. It is clear from the figure that the solubility increases when a lower grade of methane is used. This probably means that more octane has disolved due to the precence of impurities Figure 14 shows that the octane concentration increases with

increasing temperatures but drops off as the K-point is approached. The reason for this behavior is that the K-point is close to the critical point of pure methane. Thus the liquid phase begins to expand rapidly as the K-point is neared, accompanied by a drop in the solute solubility in that phase. Kohn and Luks [58].

The experimental data for the octane-methane system are very limited. There are few data sets, and most of it is gathered from the same authors. The collected data will be compared do the simulation results for the octane-methane system. However, more experimental are required in order to validate the thermodynamic models thorughly.

Figure 14. Experimental SL and SLV data for the binary octane-methane system

Figure 15 Experimental data of the three-phase locus of the binary octane-methane system

4.2.5 Solid-liquid-vapor data for cyclohexane-methane rich systems

Solvent	Temperature [K]		Mole [%]		Pressure [bar]		T	From Mastle and	Def
	Min	Max	Min	Max	Min	Max	Туре	Exp. Method	Ref.
CH_4	154	279.83	0.31	100	54.1	136.8	SLV	SynVis	Kohn [57]
CH4 + C2H6	136.3	177.85	0.538	6.19	23.16	3.75	SLV	SynVis	Tiffin[59]

Table 7 contains the available experimental SLV data for cyclohexane-methane rich systems.

Experimental data for cyclohexane-methane rich systems are very limited. The only data obtained for the binary cyclohexane – methane system is the work by Kohn, et al. [57]. Tiffin, et al. [59] has done experimental work on a methane-ethane-cyclohexane system, but for rater high ethane concentrations, 20-30 %. To evaluate the thermodynamic models properly, new experimental

 Table 7. Experimental SLV data for cyclohexane-methane rich systems

data are required.

There are some interesting remarks worth mentioning for this system. Figure 16 shows the same phenomenon as discovered in the benzene-methane system and octane-methane system. The solubility starts to decrease as the K-point is approached. The same explanation applies here, see 4.2.4.2. However, an interesting observation is that cyclohexane is more soluble in methane compared to octane and benzene. This is illustrated in Figure 16. All of the three components belong to the A type system, see 2.2.1.1. However, as it can be seen in Figure 17, the locus of the high temperature branch bends towards the low temperature branch. This phase behavior is similar to the phase behavior of hexane-methane and heptane methane system. Proceeding below 200 K, the locus starts rising sharply to high pressure, which is similar behavior as benzene and octane.

Figure 16. Experimental SLV data for the binary cyclohexane-methane system compared to the benzene-methane system and octane-methane system

Figure 17. Experimental data of the three-phase locus of the binary cyclohexane-methane system

5. Modelling Results

5.1 Introduction

This chapter gives the modeling results by using the thermodynamic models UMR-PRU, SRK EoS and sPC-SAFT EoS. The model for calculating the fugacity in the solid phase is the solid model 2 based on sub-cooled liquid, given in equation 3.30. Table 8 shows the parameters that have been used in SRK EoS, sPC-SAFT EoS and the solid model 2.

For the solid model 2 (eq.3.30), the difference in heat capacity is set like the heat capacity of water. The effect of this is small, since the two terms with ΔC_{Pi} approximately cancel each other out. The last term of the equation has been neglected. This is a reasonable assumption, since the difference in molar volume between the solid phase and liquid phase are hardly noticeable.

SRK EoS [Appendix D] s				SAFT Ec	s [29]		Solid model 2, eq. 3.29 [App. D]			
Pc [bar]	Pc [bar] Tc [K]	() [_]	M [g/mol]	m []	U	/k [k]	т: [¥]	ΔH	ΔCp	ΔV
	ω [-]		··· [-]	[Å]	/ [[]		[J/mol]	[J/molK]	[m³/mol]	
45.99	190.56	0.01	16.04	1.00	3.70	150.0	90.69	941.4	37.12	0
73.83	304.21	0.22	44.10	1.31	3.25	92.2	216.58	9019	37.12	0
30.25	507.60	0.30	86.17	3.06	3.79	236.8	177.83	13080	37.12	0
27.40	540.20	0.35	100.20	3.48	3.80	238.4	182.57	14050	37.12	0
48.95	562.05	0.21	78.14	2.47	3.64	287.4	278.68	9866	37.12	0
24.90	568.70	0.40	114.23	3.81	3.83	242.8	216.38	20740	37.12	0
40.80	553.80	0.21	84.16	2.53	3.85	278.1	279.69	2740	37.12	0

Table 8. Parameters used in the SRK EoS and sPC-SAFT EoS and the solid model 2.

The simulation tool used for the modelling is the Non-Equilibrium Simulator (NeqSim). The NeqSim program is developed by Even Solbraa at the Norwegian University of Science and Technology. NeqSim is based on rigorous thermodynamic and fluid mechanic models.

5.1.1 Comparison of experimental data and simulation results

The simulation results from the different systems will be compared to the experimental data evaluated in chapter 4. The method used for comparison between the predictions and experimental data is average absolute deviation AAD, giving in equation 5.1 and 5.2. For comparison of solid-liquid data, equation 5.1 will give the AAD in freezing point temperatures [K]. For comparison of solid-liquid-vapor data, both eq. 5.1 and eq. 51 can be used. Equation 5.1 will give then give AAD between predictions and experimental data relative to temperature (temperatures along the SLV loci), and equation 5.2 will give the AAD% relative to pressure (pressures along the SLV loci).

$$AAD = \frac{1}{n} \sum_{i=1}^{n} |(T_i^{calc} - T_i^{exp})|$$
(5.1)

$$AAD\% = 100 \frac{1}{n} \sum_{i=1}^{n} \left| \frac{P_i^{calc} - P_i^{exp}}{P_i^{exp}} \right|$$
(5.2)

5.2 Simulation results for CO₂-methane rich mixtures

The section includes the freeze out predictions of solid CO_2 in vapor and liquid methane rich mixtures. It was attempted to do simulations with the sPC-SAFT EoS. However, due to a lot of simulation problems occurring in NeqSim, this was not possible. This section therefore only includes simulation results done with UMR-PRU and SRK EoS.

5.2.1 SL and SLV data for the binary CO₂-methane system

5.2.1.1 Predictions by UMR-PRU and SRK EoS without interaction parameter

Figure 18 and Figure 19 shows the predictive behavior of UMR-PRU and SRK for the binary CO₂-methane system. To check the predictive strength of SRK, the binary interaction parameter is set to zero. As seen from the first figure, SRK is not able to give any freeze out predictions compared to the experimental data. The UMR-PRU model is however able to give reasonable results, with AAD 1.85 K compared to the data from Kurata [41]. However, this is for a temperature range from 130 K - 214 K. At a lower temperature range the deviations starts to increase. Compared to the data from Shen, et al. [16] the AAD is 4.4 K at temperature range 112 K – 148.3 K.

Figure 18. Freezing point predictions by UMR-PRU and SRK EoS without k_{ij} for the binary CO₂-methane system

Figure 19 shows the simulated behavior of the SLV three-phase loci, where the pressures along the SLV loci have been predicted. SRK is unable to predict the pressures along the SLV three-phase loci. UMR-PRU however, gives accurate predictions where the AAD for pressures is 2.9%, compared to Kurata [41].

Figure 19. Predictions of the three-phase SLV loci by UMR-PRU and SRK EoS for the binary CO2-methane system

5.2.1.2 Prediction by SRK EoS with interaction parameter

The binary interaction parameter was found in the NeqSim library, which is set to $k_{ij} = 0.0973$. Figure 20 and Figure 21 shows the predictions with the interaction parameter. SRK is now able to give reliable predictions for the whole temperature range. The AAD is 1.17 K compared to the data from Kurata [41], and AAD = 0.86 K compared to the data from Shen, et al. [16].

Figure 20. Freezing point predictions with interaction parameter for the binary CO₂-methane system

Figure 21. Prediction of the three-phase SLV loci with interaction parameter for the CO₂-methane system

5.2.1.3 Comparison of UMR-PRU and optimal SRK model

Figure 22 shows the freezing lines of CO_2 at different concentrations and pressures predicted by SRK EoS and UMR-PRU. It is clear from the figure that the pressure has a very small effect on the solubility of CO_2 in liquid methane. This is because the solid-liquid transition represents a very small change in volume. However, it can be noticed that this effect starts increasing when the maximum SLV loci is approached. This might be explained by the fact that the critical point of methane (46 bar, 190.58 K) is approached. The liquid methane vapor line may have an effect on the density in this area, and thus the solubility will be sensitive to the pressure.

Previously in Figure 20, it was shown that the SRK EoS with interaction parameter is able to give good predictions of the freezing temperatures at low temperatures. The UMR-PRU however started to predict poorer at lower temperatures. Figure 22 illustrates this in a temperature-pressure diagram. The deviation between SRK EoS and UMR-PRU starts to increase the temperature is decreasing. Here, SRK EoS represents a good correlation of the experimental data. It comes clear that the UMR-PRU model has problems predicting the freeze out at lower temperatures. This problem will be reflected in the discussion part.

Figure 22. Freezing point predictions by UMR-PRU and SRK at different concentration and pressure levels

5.2.1 SL and SLV data for the binary CO₂-methane system

The simulations with SRK EoS for the solid-vapor system are done with same binary interaction parameters as applied for the solid-liquid predictions.

5.2.1.1 Frost point predictions by SRK EoS and UMR-PRU for the CO₂-methane system

Figure 23 shows the frost point predictions by UMR-PRU and SRK EoS compared to experimental data. The simulation is done for the CO_2 concentrations indicated in the figure. The simulation result seems to be a good correlation of the experimental data. However, the UMR-PRU model has problems predicting the frost points when the CO_2 concentration is lowered.

Figure 23. Frost point predictions by UMR-PRU and SRK EoS compared to experimental data from: Zhang [46], Agrawal [44], Pikaar [41] and Le [45]

Figure 24 shows the p-T diagram for the frost point predictions compared to the work by Zhang [46]. Both UMR-PRU and SRK EoS are able to give reasonable results. SRK gives an average absolute deviation of 0.698 K and UMR-PRU gives AAD 0.697 K.

Figure 24. Frost point predictions by UMR-PRU and SRK EoS compared to experimental data from Zhang [46]

5.2.2 Predictions of solid CO₂ formation in vapor methane along the three-phase loci

Figure 25 shows the simulation results for CO₂ freezing points along the SLV loci in a vapor rich methane mixture, by SRK and UMR-PRU. The results are compared to the data from Davis, et al. [43] and 1 point from Agrawal and Laverman [44]. Both models are able to give good simulation results compared to the experimental data. However, for the mixture containing 0.12 mole % CO₂, the deviations are severe compared to Davis, et al. [43], with AAD 10 K for SRK and 11 K for UMR. To check the reliability of this point, data from Agrawal and Laverman [44] have been used for comparison. They did several frost points measurements with 0.12 mole % CO₂ mixtures. One of the points is close to the SLV curve, and has a pressure of 8.55 bar, which is close to the one from Davis (6.85 bar). They measured the freezing temperature to be 149.76 K at this point, which only deviates 1 K from SRK and 3 K for UMR-PRU.

To verify these simulation results, it is necessary to have more experimental SV data for the CO₂-methane system.

Figure 25. Predictions of CO₂ freeze out along the SLV loci by SRK EoS and UMR-PRU for the CO₂-methane system

5.2.3 SL, SV and SLV data for CO₂- natural gas mixtures

In natural feed gas components such as nitrogen and ethane are normally present. In the following sections, simulations have been done to see how these components affect the freeze out of CO_2 .

5.2.3.1 Carbon dioxide solid behavior in CO₂ – N₂ – CH₄ system

Figure 26 shows how nitrogen affects a system containing 1.94 % CO₂. The figure shows that; first, the addition of nitrogen causes CO₂ to freeze out earlier. This can probably be explained by that nitrogen, compared to methane, has a molecular structure and properties (triple point 63 K) that are different of CO₂. Thus, CO₂ will be less soluble in a mixture containing nitrogen. Second, the solid-liquid-vapor three phase temperatures have been lowered, giving a larger solid-vapor region. The reason for this is probably due to the low boiling point of nitrogen (77 K), which will try to make the mixture more gaseous. Third, there are no obvious effects on the frost point line, which can be explained by that the gas mixture behaves as an ideal gas at low pressures.

Figure 26. Predicted CO₂ phase behavior by UMR-PRU and SRK EoS in various CO₂-CH₄-N₂ mixtures

Freeze out predictions of CO₂ in liquid nitrogen and methane

Figure 27 shows the CO2 freeze out predictions in a mixture containing 98 % mole methane and 2 % nitrogen. The interaction parameters for SRK are taken from the work by Shen, et al. [16], with $k_{CH_4-CO_2} = 0.0956$ and $k_{CH_4-N_2} = 0.0312$. SRK is able to give accurate predictions results compared to Shen, et al. [12], with AAD 0.91 K. The UMR-PRU model gives very good prediction results at high CO2 concentrations. However, at lower concentrations the devations are increased, giving a total average deviation of 3.44 K.

Figure 27. Freeze out predictions by UMR-PRU and SRK EoS for CO₂-CH₄-N₂ mixture compared to data from Shen[16]

There are some interesting results for this system. First, the addition of nitrogen in the methane + CO_2 mixture increases the solubility of CO_2 at temperatures below 126.8 K. At temperatures above 126.8 K, the solubility of CO_2 decreases in the mixture. Secondly, the solubility effect of adding nitrogen is decreased when the nitrogen concentration is increased. Figure 28 illustrates both remarks.

Figure 28. Freeze out predictions by SRK EoS with various CO₂-CH₄-N₂ mixtures

Frost point predictions of the $CO_2 - N_2 - CH_4$ system

In Figure 29 and Figure 30 the prediction of the frost points for this system have been compared to experimental data from Agrawal and Laverman [44] and Le and Trebble [45]. Compared with Agrawal's data the AAD is 1.7 K for SRK and 3.64 K for UMR-PRU. Compared with the data from Le the AAD is 1.8 K for SRK and 2 K for UMR-PRU. The data from Le shows higher frost point temperatures with increased N_2 concentration, but the simulation results however, shows no obvious effect. Because of the lack of experimental data regarding this system, it is difficult to make any conclusion on the reliability of these experimental data, and thereby the simulation results.

Figure 29. Frost point predictions by UMR-PRU and SRK EoS for the CO₂-CH₄-N₂ system compared with experimental data from Agrawal [44]

Figure 30. Frost point predictions by UMR-PRU and SRK EoS for the CO₂-CH₄-N₂ system compared with experimental data from Le [45]

5.2.3.2 Carbon dioxide solid behavior in CO₂ - C₂H₆ - CH₄ system

Figure 31 shows the simulation of how ethane affects a system containing $1.94 \ \% CO_2$. In contrast to nitrogen the addition of ethane decreases the freezing temperatures of CO_2 . This is probably because the molecular structure of ethane is more similar to CO_2 , and thus the solubility of CO_2 increases. The temperatures of the SLV locus have been increased, giving less area for solid formation in the solid-vapor region. This is probably due to the high boiling point of ethane (184 K), which tends to make the mixture less gaseous. Again, there are no obvious effects on the frost point lines adding ethane, probably due to ideal gas behavior. The bending of the lines which can be noticed is due to the decreased solid-vapor area, which makes the SLV loci to bend earlier.

Figure 31. Predicted CO₂ phase behavior by UMR-PRU and SRK EoS in various CO₂-CH₄-C₂H₆ mixtures

Freeze out predictions of CO₂ in liquid nitrogen and methane

Figure 32 shows the CO_2 freeze out predictions in a mixture containing 98 % mole methane and 2 % ethane. SRK is able to give accurate predictions results compared to Shen, et al. [12], with AAD 0.66 K. The AAD for UMR-PRU is 3.25 K. It was also done simulations for solvents containg 95% methane + 5% ethane, and 90% methane + 10% ethane. Compared to the experimental data, the AAD for SRK is increased and the AAD for UMR-PRU is decreased, when the ethane concent is increased.

Figure 32 Freeze out predictions for the CO₂-CH₄-C₂H₆ mixture by UMR-PRU and SRK compared with experimental data from Shen [12]

Frost point predictions of the $CO_2 - C_2H_6 - CH_4$ system

The simulation results of the CO₂ frost points for this system have been compared to the data from Le and Trebble [45]. For two systems containing 1.95 % CO₂ + 0.997 % N₂, and 1.96 % CO₂ and 1.99 % N₂ the AAD for SRK is 1.92 K and 2.185 K for UMR-PRU. The data from Le shows higher frost point temperatures, while the simulation shows no clear effect. Again, more accurate experimental data are required to give accurate conclusions of these results.

Figure 33. Frost point predictions for the CO₂-CH₄-C₂H₆ by UMR-PRU and SRK compared with experimental data from Le[45]

5.3 Simulation results for HHC-methane rich systems

For the simulation for the HHC-methane rich systems, all of the three models have been applied. However, a lot of simulation problems occurred with the sPC-SAFT EoS.

5.3.1 SL and SLV data for the binary hexane-methane system

5.3.1.1 Prediction by UMR-PRU, SRK and sPC-SAFT without interaction parameter

To check the predictive strength of the different models, the binary interaction parameter is set to zero. Figure 34 shows the simulated behavior of the SLV three-phase loci for the three models. For this system the pressures along the SLV loci have been predicted and compared to experimental data. SRK EoS and UMR-PRU are not able to predict the pressures and compared to the experimental data by Shim and Kohn [52] and Luks, et al. [49] the AAD is 15.99 % for SRK and 19.35 % for UMR-PRU. The sPC-SAFT EoS is however able give a reasonable prediction of the pressures, with an AAD of 5.24 %.

Figure 34. Prediction of pressures along the SLV loci

In Figure 35 the freeze out predictions along the SLV loci are shown. With high concentrations of hexane, all of the models are able to give reasonable predictions. However, when the concentration and temperature drops, SRK and UMR-PRU are not able to predict the freeze out. For the model based on UMR-PRU, the simulation fails completely when the hexane concentration goes below 10 mole %. The sPC-SAFT models is however able to give good predictions with AAD 1.78 K.

Figure 35. Freeze out predictions of solid hexane in liquid methane along the SLV loci

5.3.1.2 Predictions by SRK EoS and sPC-SAFT EoS with binary interaction parameters

Experimental data from Kuebler and McKinley [7] and Shim and Kohn [52] are used to find the optimal interaction parameter for SRK and sPC-SAFT. The optimal interaction parameter is found by minimizing the AAD between the freezing points compared to the experimental data.

Prediction by SRK EoS with binary interaction parameter

Table 9 shows the deviations for the freezing point predictions with different interaction parameters for the SRK EoS.

SRK	kij = 0	kij = 0.025	kij = 0.03	kij = 0.0325	kij = 0.035	kij = 0.05			
AAD [K]	9.82	2.11	1.47	1.42	1.55	5.651			

Table 9.Freezing point predictions by SRK with different interaction parameters

The optimal value will probably have an k_{ij} in the area between 0.03 – 0.04. As indicated in Table 9 the best interaction parameter found for this system is $k_{ij} = 0.0325$, which minimizes the AAD to 1.42 K.

Figure 36 shows the freeze out predictions with the optimal interaction parameter for SRK EoS. The model is now able to give better results when compared to the experimental data. However, the figure shows that SRK gives lower solubility and higher freeze out compared to the experimental data when the temperature drops below 130 K. In the temperature area 160 K – 165 K the solubility changes rapidly, and SRK is not able to give good predictions. Figure 36 also shows the freeze out predictions at different pressure levels, and it can be seen that the increasing pressure only has an impact in the area 140 K -162, where increasing pressure increases the

solubility of solid hexane. This is opposite of what Shim and Kohn [52] reported in their article, see 4.3.1.1.

Figure 36. Freeze out predictions of solid hexane in liquid methane at different pressures by SRK EoS

In Figure 37 the PT-diagram of the SLV loci predicted by SRK with optimal interaction parameter is shown. The AAD for the pressures has been reduced to 2.79 %.

Figure 37. Prediction of pressure along SLV loci by SRK EoS with optimal interaction parameter

Prediction by sPC-SAFT EoS with binary interaction parameter

Table 10 shows the deviations for the freezing point predictions by sPC-SAFT with different interaction parameters. There were a lot of problems during the simulations with sPC-SAFT, and especially the choice of pressure was crucial for the simulation to work. The freezes out predictions were done at pressures along the SLV loci, when simulations at higher pressure failed with sPC-SAFT

Table 10. I recently point predictions by 51 C 5111 1 with different interaction parameters									
SRK	kij = 0	kij = 0.005	kij = 0.01						
AAD [K]	2.232	2.787	4.65						

Table 10. Freezing point predictions by sPC-SAFT with different interaction parameters

Figure 38 presents the sPC-SAFT simulations with different interaction parameters. The figure shows that increasing the interaction parameter gives lower solubility and thus earlier hexane freeze out. It's difficult to determine the optimal interaction parameter in this case. The figure suggest that the optimal k_{ii} probably is between 0 – 0.005.

Figure 38. Prediction of hexane solubility in liquid methane with different interaction parameters along the SLV loci

5.3.2 SL and SLV data for the binary heptane-methane system

5.3.2.1 Prediction by UMR-PRU, SRK and sPC-SAFT without interaction parameter

To check the predictive strength of the different models, the binary interaction parameter is set to $k_{ij} = 0$. Figure 39 and Figure 40 illustrates the predictive behavior of UMR-PRU EoS, SRK EoS and sPC-SAFT EoS for the methane-heptane system. Figure 39 shows the prediction of the SLV three-phase loci. Compared to the experimental data from Tiffin, et al. [53] neither SRK nor UMR-PRU are able to predict the pressures along the SLV three-phase loci. For SRK EoS the AAD for pressures is 20.17 % and for UMR-PRU its 19.18 %. The model based on sPC-SAFT predicts good results, giving AAD 4.97%.

Figure 39.Predictions of the SLV three phase equilibrium curve by UMR-PRU, SRK and sPC-SAFT

Figure 40 shows the freezing point predictions of hexane along the SLV loci. SRK and UMR-PRU are only able to predict the freezing point temperatures for high concentration of heptane. At lower concentrations the UMR-PRU simulation fails, while SRK predicts freezing point temperatures that are too low. The model based on sPC-SAFT is however able to give reasonable results, with AAD 3.12 K. Larger deviations are noticed at lower temperatures.

Figure 40. Freeze out predictions by UMR-PRU, SRK and sPC-SAFT for the heptane-methane system compared to experimental data

5.3.2.2 Prediction by SRK EoS and sPC-SAFT EoS with binary interaction parameter

To find the optimal binary interaction parameter for SRK EoS and sPC-SAFT EoS, data points from Kuebler and McKinley [7] and Tiffin, et al. [53] have been used.

Prediction by SRK EoS with binary interaction parameter

Table 11 shows the deviations for the freezing point predictions with different interaction parameters for SRK EoS. As indicated in Table 11, the best interaction parameter found is $k_{ii} = 0.038$, which minimizes the AAD to 1.76 K.

Tuble 111111002mig point predictions with different interfactors									
SRK EoS	kij = 0	kij = 0.03	kij = 0.035	kij = 0.036	kij = 0.037	kij = 0.038			
AAD [K]	16.70	2.87	1.89	1.80	1.76	1.83			

Table 11. Freezing point predictions with different interaction parameters

Figure 41 shows the prediction of the freezing point temperatures of heptane in liquid methane with the optimal interaction parameter. The simulations are performed at 40 bar and 50 bar. The simulation results gives reasonable results compared to the experimental data. There are however larger deviations at lower temperatures. SRK is now able to predict a quadruple point which occurs at 167.5 K, deviating 1.85 K from the quadruple point by Tiffin, et al. [53]. It can also be seen that the increasing pressure depresses the solubility of solid heptane in liquid methane, and that the quadruple point decreases towards a lower temperature.

Figure 41. Freeze out prediction by SRK EoS for the heptane-methane system optimal binary interaction parameter

Figure 42 shows the pressure-temperature diagram of the SLV three-phase loci predicted by SRK EoS with optimal interaction parameter. The AAD% for the pressure has been reduced to 0.881. Larger deviations are noticed close to the maximum pressure point along the SLV loci.

Figure 42. Prediction by SRK EoS of the SLV three phase equilibrium curve with optimal interaction parameter

Prediction by sPC-SAFT with binary interaction parameter

There were a lot of errors during the simulations with sPC-SAFT. The pressure had to be adjusted for almost every point to get the simulation to work.

Changing the interaction parameter for sPC-SAFT did not improve the predictions. Figure 43 shows that the deviations are increased with higher interaction parameter for the lowest temperature range. The optimized interaction parameter is probably between 0 - 0.005.

Figure 43. Freeze out predictions by sPC-SAFT for the heptane-methane system with different interaction parameters

5.3.3 SL and SLV data for the binary benzene-methane system

5.3.3.1 Prediction by UMR-PRU, SRK and sPC-SAFT without interaction parameters

Figure 44 shows the freeze out predictions of solid benzene in liquid methane for low benzene concentrations. SRK and sPS-SAFT predicts freeze out temperatures that are much lower than the experimental data from Kuebler and McKinley [7]. The AAD is 17.1 K for SRK and 8.7 K for sPC-SAFT. The UMR-PRU model however, predicts freeze out temperatures that are higher than the experimental data, giving AAD of 6.9 K. For this system UMR-PRU doesn't fail during the simulations, and gives much better results compared to the system with heptane and hexane.

Figure 44. Freeze out predictions of solid benzene in liquid methane

Figure 45 shows the prediction of the low and high temperature three-phase branches for the binary benzene-methane system. All of the models are able to predict the behavior of the low temperature branch. For the high temperature branch UMR-PRU predicts the best result. The average deviation for the models are; 5.2 K for UMR-PRU, 7.14 K for SRK and 6.1 K for sPC-SAFT.

Figure 45. Predictions of the methane-benzene SLV three phase loci

5.3.3.2 Prediction by SRK EoS and sPC-SAFT with binary interaction parameter

The optimal interaction parameter was found by minimizing the AAD compared with the experimental data from Kuebler and McKinley [7]

Prediction by SRK EoS with binary interaction parameter

Table 12 shows the absolute average deviations with different binary interaction parameters for SRK EoS. The most promising interaction parameter found is $k_{ij} = 0.06$, which reduces AAD to 0.78 K.

Table 12. Freezing point predictions by SKK with different interaction parameters for the methane-benzene system								
SRK	kij = 0	kij = 0.05	kij = 0.058	kij = 0.06	kij = 0.062	kij = 0.05		
ADD [K]	23.940	3.736	1.05	0.78	0.89	5.651		

Table 12. Freezing point predictions by SRK with different interaction parameters for the methane-benzene system

Figure 46 shows the freeze out predictions of solid benzene in liquid methane with optimized interaction parameter. The simulation result agrees well with the experimental data from Kuebler and McKinley [26]. From the figure it can be seen that the increasing pressure doesn't effect the freeze out temperatures. However, at higher temperature, around 145 K, a small increase in solubility is noticeable, and thus the freeze out temperatures have been lowered.

Figure 46. Freeze out predictions by SRK with optimal interaction parameter

Prediction by sPC-SAFT EoS with binary interaction parameter

Table 13 shows the deviations for the freezing point predictions with different binary interaction parameters for sPC-SAFT EoS. The table indicates $k_{ij} = 0.025$ to be the best value. However, as seen in Figure 47, with this parameter the deviations are increase at low temperatures. The "optimized" interaction parameter is therefore chosen to be $k_{ij} = 0.02$

Table 13. Freezing point predictions by sPC-SAFT with different interaction parameters for the methane-benzene system

sPC-SAFT	kij = 0	kij = 0.02	kij = 0.025	kij = 0.03					
ADD [K]	8.94	2.62	2.27	3.16					

Figure 47. Freeze out predictions by sPC-SAFT with different interaction parameter

Figure 48 shows the p-T diagram for the SLV three phase loci predicted by SRK and sPC-SAFT with optimized interaction parameters. The AAD for sPC-SAFT has been reduced to 1 K and 3.3 K for SRK.

Figure 48. Predictions of the methane-benzene SLV three phase loci with optimized interaction parameters

5.3.3.3 Freeze out predictions by UMR-PRU, SRK EoS and sPC-SAFT for the CH₄- C₂H₄benzene system

The experimental data from Tiffin, et al. [33] are based on three experimental runs. Figure 49 shows the freeze out predictions for the third run, where the ethane varies from 25 mole % to 10 mole %. The UMR-PRU model predicts a higher freeze out temperature than the other two models, with AAD 1.43 K. The AAD for SRK is 1.34 K and 1 K for sPC-SAFT.

Figure 49. Freeze out predictions for the CH₄-C₂H₆-C₆H₆ system

5.3.4 SL and SLV data for the binary octane-methane system

The simulations with the octane-methane system prove to be a challenge for all three models. The UMR-PRU model was not able to give any results for low octane concentrations. For the lower SLV loci branch, the solubility of octane in the liquid mixture tended to be extremely pressure sensitive. As discussed in part 4.3.4, the K-point of the lower branch is very close to the critical point of pure methane. This can affect the density of the liquid, and thus the solubility will change when the pressure is increased. Another explanation for this behavior can be due to computational errors in the simulation file. This problem made it impossible to find the freeze out temperatures at low pressure levels. To avoid the problem all the simulations were done at pressures at 50 bar or higher, which is over this critical region. The pressures did not affect the solubility at this level.

5.3.4.1 Prediction by SRK and sPC-SAFT without binary interaction parameter

Figure 50 shows the freeze out predictions of the solid octane in liquid methane for SRK and sPC-SAFT. SRK is not able to predict the freezing temperatures compared to the experimental data. sPC-SAFT predicts reasonable results, and compared to the experimental data from Kohn, et al. [57] the AAD is 8.4 K.

Figure 50. Freeze out predictions for solid n-octane in liquid methane

In Figure 51 the predictions of the three-phase equilibrium curve are shown. For the low temperature branch all of the models are able to give good SLV predictions. For the high temperature branch sPC-SAFT and UMR predicts good results compared to the data from Kohn, et al. [57], with AAD 0.653 K and 1.533 K. Both tends to give lower freezing points at higher pressures. SRK is unable to predict the high SLV temperature branch, giving AAD 4.26 K.

Figure 51. Predictions of the methane-octane SLV three phase loci

5.3.4.2 Freeze out predictions by SRK, sPC-SAFT and UMR-PRU at high octane concentration

Figure 52 shows the freeze out predictions for high octane concentrations. All of the models are able to give good predictions compared to the experimental data from Kohn and Bradish [5]. sPc-SAFT gives the best results with AAD 0.398 K, SRK second with 0.771 K and UMR with AAD 0.785 K. The SRK and UMR predictions are almost identical, and they both starts deviating from the experimental data at decreasing temperature.

Figure 52. Freeze out predictions of high concentrated octane in liquid methane

5.3.4.3 Prediction by SRK EoS and sPC-SAFT EoS with binary interaction parameter

The optimal interaction parameter is found by minimizing the AAD compared to the experimental data from Kohn, et al. [57].

Prediction by SRK EoS with binary interaction parameter

The optimal interaction parameter is found to be $k_{ij} = 0.04$ at a pressure of 50 bar, which reduces the AAD to 2 K. At higher temperatures the effect of increased pressure increases the solubility of n-octane.

Figure 53. Freeze out predictions of octane in liquid methane by SRK EoS with optimal interaction parameter

Prediction by sPC-SAFT EoS with binary interaction parameter

The optimal interaction parameter for sPC-SAFT was found to be $k_{ij} = 0.01$, which minimized the AAD to 3.2 K. As it can be seen in Figure 54, with an increased interaction parameter the solubility has been lowered and the freeze out occurs earlier.

Figure 54. Freeze out predictions of octane in liquid methane by sPC-SAFT with optimal interaction parameter

5.3.4.3 Solid octane behavior in CH₄- C₂H₄-octane mixture

Data from two experimental runs from the work by Tiffin, et al. [33] have been compared to the simulation results. The ethane concentration varies from 39 % - 10 %. Figure 55 shows the freeze out predictions by the three EoS models compared with these data. The AAD for sPC-SAFT is 1.1 K and for SRK 3.38 K. The UMR-PRU model are not able to give any logical predictions.

Figure 55. Freeze out predictions for the CH4-C2H6-C8H16 system
5.3.5 SL and SLV data for the binary cyclohexane-methane system

For low cyclohexane composition the simulations gave large deviations compared to the experimental data and in most cases the calculation failed. It was attempted to change the binary interaction parameters for SRK and sPC-SAFT to see if this could fix the problems. By changing the interaction parameters the calculations became very unstable, and gave illogical phase behavior compared to the experimental work and theory behind the cyclohexane –methane system. It was also tried to do simulations of a ternary system containing ethane, methane and cyclohexane, but the simulation results did not improve. Due to the simulation problems, this section only presents simulations of high octane concentration, and the prediction of the SLV three-phase loci.

5.3.5.1 Prediction by UMR-PRU, SRK EoS and sPC-SAFT EoS without binary interaction parameter

Figure 56 shows the freeze out predictions at high cyclohexane concentrations compared to the data from Kohn and Bradish [56]. The models predicts higher freeze out temperatures than the experimental data. The simulation results with UMR-PRU represent a good linear correlation of the data, with absolute deviation 3.5 K. SRK and sPC-SAFT gives AAD 4.7 K and 7 K.

Figure 56. Freeze out predictions at high octane concentrations in liquid methane

Figure 57 shows the predicted behavior of the SLV three phase loci of the methane-cyclohexane system. The models are not able to predict the SLV phase behavior of this system. Instead they

predict a phase behavior that is similar to the n-hexane-methane system. The sPC-SAFT model gives the best predictions compared to the experimental data.

Figure 57. Predictions of the methane-cyclohexane SLV three phase loci

5.4 The freeze out risk in natural gas systems.

Figure 58 shows the prediction of the solubility of the investigated components in liquid methane. The data for cyclohexane is taken from the experimental work by Kohn and Bradish [56], since the simulation failed for this system.

According to the predictions, the solubility of n-hexane in liquid methane is higher than the other hydrocarbons. Carbon dioxide has also a higher solubility compared to the others. However, the amount of CO_2 in natural gas, is higher compared to the other components and the risk of CO_2 freeze out in natural gas is therefore more crucial.

Octane and benzene represents the components with lowest solubility in methane. An interesting observation here is the difference between benzene and cyclohexane. The molecular structure of these two components has much in common (triple points of benzene and c-hexane are 278 K and 279 K). However, as shown in Figure 58, the risk of benzene freeze out is much higher than of cyclohexane, when it is highly diluted in methane. As mentioned in section 4.3.5, the phase behavior of the binary cyclohexane-methane differ from the A phase behavior (2.2.1.1). While benzene-methane represents a typical A phase behavior, the c-hexane-methane system are more similar to the hexane – and heptane – methane systems.

In a natural gas, components such as ethane, propane, butane and nitrogen will be present. These components will have an effect on the solubility of the critical components. As it has been seen in the simulation results (5.2.3, 5.3.3.3 and 5.2.4.3), the addition of light hydrocarbons increases the solubility of these components in the mixture. This means that the freeze out risk will be less in natural gas compared to the freeze out risk in pure liquid methane.

Figure 58. Solubility of the investigated components in liquid methane

6. Discussion

6.1 Evaluation of experimental data and simulation results

The understanding of the phase behavior of the different systems has been very important in order to evaluate the experimental data and the simulation results. In Table 14 all of the results have been summarized. The simulation results have been compared to different sources of experimental data. The quality and quantity of these experimental data vary a lot for the different systems. Carbon dioxide is the main component in natural gas, and therefore most of the solid-liquid experimental work has been done here. For systems involving heptane, benzene, octane and cyclohexane, the experimental data are scarce. This makes it difficult to evaluate the experimental data, which is crucial when evaluating the thermodynamic models. The quality of the results in this report regarding the systems, is therefore questionable. More quality experimental data are therefore required to be able to verify the models and correlate the model parameters (k_{ij}) .

In this work, there has also been experienced a lot of simulation problems. Especially the sPC-SAFT model has been troubled with a lot of computational problems. It was attempted to do simulations with the sPC-SAFT model for the CO_2 -methane system, but due a lot of errors during the simulation this was unfortunately not possible. For the benzene, octane and cyclohexane there were also experienced a lot of errors and especially the choice of pressure was crucial for the simulation to work. Based on this, the results with the sPC-SAFT model and the optimal k_{ij} found, may be questionable. For the systems involving octane and cyclohexane, SRK, UMR-PRU and sPC-SAFT gave strange results and illogical phase behavior, especially at low pressures near the SLV loci. For the cyclohexane system, the models were unable to give any results at low cyclohexane concentrations. Both computational issues and a challenging phase behaviors can be the reason for this. The UMR-PRU model had a lot of challenges at low temperatures. In some cases, the simulation with the UMR-PRU model failed due to computational errors. The reason for this could be due to errors in the computational file, or that the UMR-PRU model is not fitted for low temperatures. This issue is investigated in the next chapter.

			Comp	ared to e	periment	al data		Doliobility
System	Туре	Model	High	AAD	Low		kij	of exp data
			temp.	[K]	temp.			or exp.uata
	SLE	UMR-PRU	Good	1.85	Ok	4.4	-	
	SVE	UMR-PRU	Good	0.69	Ok	-	-	Good
	SLE	SRK	Good	1.17	Good	0.86	0.0973	Good
	SVE	SRK	Good	0.69	Good	-	0.0973	
	SLE	UMR-PRU	-	-	Ok	3.44	-	Cood
$CO_2 - N_2 - C\Pi_4$	SLE	SRK	-	-	Good	0.91	0.0956	Good
	SLE	UMR-PRU	-	-	Ok	3.25	-	Cood
CO_2 - $C_2\Pi_6$ - $C\Pi_4$	SLE	SRK	-	-	Good	0.66	0.0956	Good
	SIE		Good	1.64	Poor			
Havana CH	SLE		Good	1.04	(fails)	-	-	Cood
nexalle-Cn ₄	SLE	SRK	Good	-	Good	1.42 ^ª	0.03	Good
	SLE	sPC-SAFT	Ok	-	Ok	2.232ª	0	
	SIE		Cood		Poor			
Hantana CH	SLE		Good	-	(fails)		-	Ok
пертапе-сп4	SLE	SRK	Good	-	Good	1.76ª	0.037	ÜK
	SLE	sPC-SAFT	Good	-	Ok	3.12 ^ª	0	
	SLE	UMR-PRU	Good	3.52	Ok	5.2		
Benzene - CH_4	SLE	SRK	Good	3.18	Good	0.78	0.06	Ok
	SLE	sPC-SAFT	Fails [▶]		Ok	2.62	0.02	
Demonstra C II d	SLE	UMR-PRU	-	-	Good	1.43		
Benzene- C_2H_6 -	SLE	SRK	-	-	Good	1.34	0.06	Poor ^c
CH_4	SLE	sPC-SAFT	-	-	Good	1	0.02	
	SLE	UMR-PRU	Good	0.785	Fails	-	-	
Octane - CH_4	SLE	SRK	Good	0.771	Ok	2	0.04	Poor ^c
	SLE	sPC-SAFT	Good	0.398	Ok	3.2	0.01	
	<u> </u>				Poor			
Octane - $C_2H_6^{b}$ -	SLE	UMR-PRU	-	-	(Fails)	-	-	
CH_4	SLE	SRK	-	-	Ok	3.38	0.04	Poor
	SLE	sPC-SAFT	-	-	Good	1.1	0.01	
	SLE	UMR-PRU	Good	3.5	Fails	-	-	
Cyclohexane -CH ₄	SLE	SRK	Ok	4.7	Poor	-	0	Poor ^c
	SLE	sPC-SAFT	Ok	4.7	Poor	-	0	

Table 14. Summary Results

a:AAD over whole temperature range. b: Fails at high pressures. c: Exp data at low temp. needed. d: High ethane conc.

6.2 Evaluation of the UMR-PRU model

The UMR-PRU model is able to give reasonable predictions of CO_2 - natural gas component systems. At high CO_2 concentrations and temperatures, the UMR-PRU provides the same predictions as the SRK EoS. However, when the temperature is lowered the deviations between experimental data and the UMR-PRU are increased. This is reported for both freeze out in liquid methane and freeze out in vapor methane. By adding components such as nitrogen and ethane, the predictive ability of UMR-PRU is increased, see section 5.2.3. It seems like adding these components, which reduces the concentration of methane, makes the UMR-PRU model to give better predictions.

For methane mixtures containing heavier hydrocarbons, the UMR-PRU model can only give reasonable predictions at high temperatures and for high solute concentrations. At low solute concentrations the model predicts unrealistic freeze out temperatures. However, for the methanebenzene system, the UMR-PRU model is able to give reasonable results.

It was attempted to find a possible explanation for why UMR-PRU gives different results for the systems. Instead of binary interaction parameters, the UMR-PRU model utilizes UNIFAC group-interaction parameters (IPs), A_{nm} , B_{nm} , C_{nm} . The parameters used in the investigated systems are listed in Table 15, obtained from the NeqSim library. The heavy hydrocarbons, except benzene, belong to the same UNIFAC group, and therefore have the same parameters.

n	m	A _{nm} (K)	B _{nm} (K)	C _{nm} (K ⁻¹)
CO ₂	CH_4	272.73	0.9931	0
C_6H_{14}	CH_4	-250.17	-0.50672	-0.004539
C ₇ H ₁₆	CH_4	-250.17	-0.50672	-0.004539
C_8H_{18}	CH_4	-112.37	-0.4585	0.000063
C_6H_{12}	CH_4	-250.17	-0.50672	-0.004539
C_6H_6	CH_4	-250.17	-0.50672	-0.004539

Table 15. UNIFAC group-interaction parameters (IPs) A_{nm}, B_{nm} and C_{nm} for the UMR-PRU model

These parameters are utilized in the UNIFAC Ψ function:

$$\Psi = \exp\left[-\frac{A_{nm} + B_{nm} \cdot (T - 298.15) + C_{nm} \cdot (T - 298.15)^2}{T}\right]$$
(6.1)

The two terms, $B_{nm} \cdot (T - 298.15)$ and $C_{nm} \cdot (T - 298.15)^2$, have been plotted against low temperatures in Figure 59. The C_{nm} term seems only to affect the UNIFAC group 1 components: n-hexane, n-heptane, n-octane and cyclohexane. The term will have an exponential effect when the temperature is lowered under standard temperature 298 K. This might be the reason for why UMR-PRU fails for these components. For temperatures close to the standard state temperature 298 K the effect of this term is negligible.

The B_{nm} term for the CO₂ – methane system (group 56) might be the explanation for why UMR-PRU almost linearly deviates from experimental data when the temperature is decreased, see section 5.2.1.3.

Figure 59. The effect of UNIFAC parameter terms in the UMR-PRU model

The result with UMR-PRU shows that the model has to be investigated more thoroughly and extended to be able to predict the solid-liquid behavior at low temperatures. New UNIFAC interaction parameters are probably necessary for the model to be more suitable at low temperatures.

6.3 Evaluation of SRK EoS and sPC-SAFT EoS

The SRK EoS is not able to predict the phase behavior of the systems investigated when the binary interaction parameter is set to zero. However, it shows good capability in correlating the experimental data with optimal k_{ij} for all of the systems. For multicomponent systems this means that the model is highly dependable on fitting the k_{ij} between the components. This will increase the complexity of the calculations, and therefore it is recommend that SRK is applied for systems for correlating experimental data

The sPC-SAFT EoS shows good ability to predict the phase behavior of the HHC-methane systems, when the k_{ij} is zero. Compared to SRK, the sPC-SAFT EoS has problems correlating the experimental data with an interaction parameter. For most of the systems, changing the value of k_{ij} did not improve the prediction results. However, it was a lot of computational problems with the sPC-SAFT model, and this may have affected the results. Still, on the basis on these results, the sPC-SAFT has proven to be very accurate to predict the solid-liquid equilibrium behavior.

6.4 Evaluation of the solid model

The model for calculating the fugacity in the solid phase is giving in section 3.4.2. The term involving heat of fusion is the dominant one, and the value of heat of fusion is therefore crucial for determine the solid fugacity. For the systems investigated the difference in heat capacity is set to the heat capacity of water. The effect of this is very small, since the two terms with ΔC_{Pi} will approximately cancel each other out. However, to get precisely results the correct ΔC_{Pi} should be implemented. The difference in molar volume between the components is set to zero, and the effect of this is very small. However, at higher pressure levels the effect might increase, and correct values should therefore be used.

7. Conclusion and recommendations

The literature review shows that the favored method for describing the solid-fluid phase equilibrium is based on equations of state for calculating the liquid phase, combined with an expression for the fugacity in the solid phase. In this work, the UMR-PRU model, SRK EoS and sPC-SAFT have been applied together with a solid model (eq.3.30) based on sub-cooled liquid.

The report covers that there is a limited amount of experimental data for the solid-liquid equilibrium systems, especially for binary methane rich systems in equilibrium with octane and cyclohexane. This makes it difficult to give a proper evaluation of the thermodynamic models, and to correlate the interaction parameters. More accurate experimental data for natural gas systems at low temperatures should therefore be acquired.

The SRK equation of state is able to predict the solid-liquid phase behavior when it is correlated to experimental data. However, it fails to give predictions without a binary interaction parameter. It is here that the sPC-SAFT shows its strength. The model gives reasonable predictions of the solid-liquid phase behavior for the HHC-methane rich systems. The model is less dependent on being correlated by experimental data.

The UMR-PRU model gives reasonable prediction results for CO_2 -methane rich systems. However, when the temperature, drops the predictions starts deviating compared to the experimental data. For HHC-methane rich systems, the UMR-PRU model is only able to give predictions at high temperatures.

The UNIFAC interaction parameters utilized in the UMR-PRU model has been investigated. The components hexane, heptane, octane and cyclohexane belong to the same UNIFAC group. For these components the modelling with UMR-PRU fails. The components have the same parameter C_{nm} , which gives an exponential effect in the UNIFAC equation (6.1). For the CO₂-methane system this term is zero. This may have an effect on the UMR-PRU models ability to predict solid-liquid behavior at low temperatures. The UMR-PRU model should be investigated more extensively, and new UNIFAC parameters suited for low temperatures should probably be considered for the model.

References

- [1] BP. (2014, BP Energy Outlook 2035. Available: <u>http://www.bp.com/</u>
- [2] BP. (2013, BP Statistical Review of World Energy. Available: <u>http://www.bp.com/</u>
- [3] M. J. Moran and H. N. Shapiro, "Chemical and Phase Equilibrium," in *Fundamentals of Engineering Thermodynamics*, Wiley, Ed., Fifth edition ed, 2006.
- [4] J. P. Kohn and K. D. Luks, "Solubility of Hydrocarbons in Cryogenic LNG and NGL Mixtures," Gas Processors Association, Gas Processors Association Research Report RR-221976.
- [5] H. L. Chang, L. J. Hurt, and R. Kobayashi, "Vapor-liquid equilibria of light hydrocarbons at low temperatures and high pressures: The methane-n-heptane system," *AIChE Journal*, vol. 12, pp. 1212-1216, 1966.
- [6] M. W. Hlavinka and V. N. Hernandez. (2006, PROPER INTERPRETATION OF FREEZING AND HYDRATE PREDICTION RESULTS FROM PROCESS SIMULATION Available: <u>http://www.bre.com/portals/0/technicalarticles/Proper%20Interpretation%20of%20Freezing%2</u> <u>Oand%20Hydrate%20Prediction%20Results%20from%20Process%20Simulation%20Paper.pdf</u>
- [7] G. P. Kuebler and C. McKinley, "Solubility of Solid Benzene, Toluene, n-Hexane, and n-Heptane in Liquid Methane," in *Advances in Cryogenic Engineering*. vol. 19, K. D. Timmerhaus, Ed., ed: Springer US, 1995, pp. 320-326.
- [8] J. C. de Hemptinne, "Benzene crystallization risks in the LIQUEFIN liquefied natural gas process," *Process Safety Progress*, vol. 24, pp. 203-212, 2005.
- [9] A. L. Myers and J. M. Prausnitz, "Thermodynamics of Solid Carbon Dioxide Solubility in Liquid Solvents at Low Temperatures," *Industrial & Engineering Chemistry Fundamentals*, vol. 4, pp. 209-212, 1965/05/01 1965.

[10] T. Eggeman and S. Chafin, "Beware the pitfalls of CO2 freezing prediction," *Chem. Eng. Progress* vol. 101, pp. 39-44, 2005.

- [11] J. G. Gmehling, T. F. Anderson, and J. M. Prausnitz, "Solid-Liquid Equilibria Using UNIFAC," Industrial & Engineering Chemistry Fundamentals, vol. 17, pp. 269-273, 1978/11/01 1978.
- [12] Y. S. Wei and R. J. Sadus, "Equations of state for the calculation of fluid-phase equilibria," *AIChE Journal*, vol. 46, pp. 169-196, 2000.
- [13] K. Carter and K. D. Luks, "Extending a classical EOS correlation to represent solid–fluid phase equilibria," *Fluid Phase Equilibria*, vol. 243, pp. 151-155, 2006.
- [14] L. Zhang, R. Burgass, A. Chapoy, B. Tohidi, and E. Solbraa, "Measurement and modeling of CO 2 frost points in the CO 2-methane systems," *Journal of Chemical and Engineering Data*, vol. 56, pp. 2971-2975, 2011.
- [15] L. Zhang and E. Solbraa, "Solid phase behavior in offshore natural gas liquefaction concepts," *Huagong Xuebao/CIESC Journal*, vol. 60, pp. 44-49, 2009.
- [16] T. Shen, T. Gao, W. Lin, and A. Gu, "Determination of CO2 Solubility in Saturated Liquid CH4 + N2 and CH4 + C2H6 Mixtures above Atmospheric Pressure," *Journal of Chemical & Engineering Data*, vol. 57, pp. 2296-2303, 2012/08/09 2012.
- [17] G. De Guido, S. Langè, S. Moioli, and L. A. Pellegrini, "Thermodynamic method for the prediction of solid CO2 formation from multicomponent mixtures," *Process Safety and Environmental Protection*, vol. 92, pp. 70-79, 2014.
- [18] M. P. W. M. Rijkers, M. Malais, C. J. Peters, and J. de Swaan Arons, "Experimental determination of the phase behavior of binary mixtures of methane + benzene: Part I. Vapor + liquid, solid benzene + liquid, solid benzene + vapor and solid benzene + liquid + vapor equilibria," *Fluid Phase Equilibria*, vol. 77, pp. 327-342, 1992.

- [19] L. Zhang and E. Solbraa, "Prediction of solubility of n-hexane and other heavy hydrocarbons in LNG processes," 2011, pp. 698-722.
- [20] M. F. Gord, M. Roozbahani, H. R. Rahbari, and S. J. Haghighat Hosseini, "Modeling thermodynamic properties of natural gas mixtures using perturbed-chain statistical associating fluid theory," *Russian Journal of Applied Chemistry*, vol. 86, pp. 867-878, 2013.
- [21] D. N. Justo-García, F. García-Sánchez, N. L. Díaz-Ramírez, and E. Díaz-Herrera, "Modeling of three-phase vapor–liquid–liquid equilibria for a natural-gas system rich in nitrogen with the SRK and PC-SAFT EoS," *Fluid Phase Equilibria*, vol. 298, pp. 92-96, 2010.
- [22] V. Louli, G. Pappa, C. Boukouvalas, S. Skouras, E. Solbraa, K. O. Christensen, and E. Voutsas, "Measurement and prediction of dew point curves of natural gas mixtures," *Fluid Phase Equilibria*, vol. 334, pp. 1-9, 2012.
- [23] E. Skouras, V. Louli, G. Pappa, C. Boukouvalas, E. Solbraa, and E. Voutsas, "Dew point prediction of synthetic and real natural gas mixtures with the UMR-PRU model," 2010.
- [24] V. Louli, C. Boukouvalas, E. Voutsas, K. Magoulas, and D. Tassios, "Application of the UMR-PRU model to multicomponent systems: Prediction of the phase behavior of synthetic natural gas and oil systems," *Fluid Phase Equilibria*, vol. 261, pp. 351-358, 2007.
- [25] G. Soave, "Equilibrium constants from a modified Redlich-Kwong equation of state," *Chemical Engineering Science*, vol. 27, pp. 1197-1203, 1972.
- [26] N. von Solms, M. L. Michelsen, and G. M. Kontogeorgis, "Computational and Physical Performance of a Modified PC-SAFT Equation of State for Highly Asymmetric and Associating Mixtures," *Industrial & Engineering Chemistry Research*, vol. 42, pp. 1098-1105, 2003/03/01 2003.
- [27] W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, "SAFT: Equation-of-state solution model for associating fluids," *Fluid Phase Equilibria*, vol. 52, pp. 31-38, 1989.
- [28] W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, "New reference equation of state for associating liquids," *Industrial & Engineering Chemistry Research*, vol. 29, pp. 1709-1721, 1990/08/01 1990.
- [29] J. Gross and G. Sadowski, "Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules," *Industrial & Engineering Chemistry Research,* vol. 40, pp. 1244-1260, 2001/02/01 2001.
- [30] E. Voutsas, K. Magoulas, and D. Tassios, "Universal Mixing Rule for Cubic Equations of State Applicable to Symmetric and Asymmetric Systems: Results with the Peng–Robinson Equation of State," *Industrial & Engineering Chemistry Research*, vol. 43, pp. 6238-6246, 2004/09/01 2004.
- [31] A. Fredenslund, R. L. Jones, and J. M. Prausnitz, "Group-contribution estimation of activity coefficients in nonideal liquid mixtures," *AIChE Journal*, vol. 21, pp. 1086-1099, 1975.
- [32] B. ZareNezhad, "Prediction of CO2 freezing points for the mixtures of CO2-CH4 at cryogenic conditions of NGL extraction plants," *Korean Journal of Chemical Engineering*, vol. 23, pp. 827-831, 2006/09/01 2006.
- [33] J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, "Solubilites of Solid in Liquids," in Molecular thermodynamics of fluid-phase equilibria, Third edition ed: Prentice-Hall PTR, 1999, p. 860.
- [34] K. S. Pedersen, P. L. Christensen, and S. J. Azeem, "Wax Formation," in *Phase Behavior of Petroleum Reservoir Fluids*, ed: CRC Press, 2006, pp. 229-258.
- [35] L. F. Ayala and J. E. Fernandez, "Evaluating Crystallization Risks in Liquefied-Natural-Gas (LNG) Production," 2009/6/1/ 2009.
- [36] H. G. Donnelly and D. L. Katz, "Phase Equilibria in the Carbon Dioxide–Methane System," Industrial & Engineering Chemistry, vol. 46, pp. 511-517, 1954/03/01 1954.

- [37] G. J. Boyle, in *Solid-Liquid Equilibrium Data Collection*. vol. VIII, H. Knapp, M. Teller, and R. Langhorst, Eds., ed DECHEMA Chemistry Data Series: DECHEMA, p. 48.
- [38] C. J. Sterner, "Phase Equilibria in the CO2-Methane Systems," in *Advances in Cryogenic Engineering*. vol. 6, K. D. Timmerhaus, Ed., ed: Springer US, 1961, pp. 467-474.
- [39] M. Streich, "Hydrogen Process Voume 49, (86-88)," in Solid-Liquid Equilibrium Data Collection. vol. VIII, H. Knapp, M. Teller, and R. Langhorst, Eds., ed DECHEMA Chemistry Data Series: DECHEMA, 1970, p. 55.
- [40] G. Voss, "DISS, TU BERLIN," in *Solid-Liquid Equilibrium Data Collection*. vol. VIII, H. Knapp, M. Teller, and R. Langhorst, Eds., ed DECHEMA Chemistry Data Series: DECHEMA, 1975, p. 56.
- [41] F. Kurata, "Solubility of Solid Carbon Dioxide in Pure Light Hydrocarbons and Mixturesof Light Hydrocarbons," Gas Processors Association1974.
- [42] M. J. Pikaar, "A study of Phase Equilibrium in Hydricarbon-CO2 Systems. ," PhD thesis, Department of Chemical engineering, University of London, 1959.
- [43] J. A. Davis, N. Rodewald, and F. Kurata, "Solid-liquid-vapor phase behavior of the methanecarbon dioxide system," *AIChE Journal*, vol. 8, pp. 537-539, 1962.
- [44] G. M. Agrawal and R. J. Laverman, "Phase Behavior of the Methane-Carbon Dioxide System in the Solid-Vapor Region," in *Advances in Cryogenic Engineering*. vol. 19, K. D. Timmerhaus, Ed., ed: Springer US, 1995, pp. 327-338.
- [45] T. T. Le and M. A. Trebble, "Measurement of Carbon Dioxide Freezing in Mixtures of Methane, Ethane, and Nitrogen in the Solid–Vapor Equilibrium Region," *Journal of Chemical & Engineering Data*, vol. 52, pp. 683-686, 2007/05/01 2007.
- [46] L. Zhang, "Solid-Fluid Phase Equilibrium for Natural Gas Processing at Low Temperatures," Ph.D., Department of Energy and Process Engineering, Norwegian University of Science and Technology, 2012.
- [47] J. Brewer and F. Kurata, "Freezing points of binary mixtures of methane," *AIChE Journal*, vol. 4, pp. 317-318, 1958.
- [48] E. Dickinson, C. M. Knobler, and R. L. Scott, "Solid/liquid phase equilibria in the mixtures methane + n-hexane and methane + n-pentane," *Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases*, vol. 69, pp. 2179-2187, 1973.
- [49] K. D. Luks, J. D. Hottovy, and J. P. Kohn, "Three-phase solid-liquid-vapor equilibriums in the binary hydrocarbon systems methane-n-hexane and methane-benzene," *Journal of Chemical & Engineering Data*, vol. 26, pp. 402-403, 1981/10/01 1981.
- [50] G. P. Kuebler and G. McKinley, "Solubility of Solid n-Butane and n-Pentane in Liquid Methane," in Advances in Cryogenic Engineering. vol. 21, K. D. Timmerhaus and D. H. Weitzel, Eds., ed: Springer US, 1975, pp. 509-515.
- [51] A. Neumann and R. Mann, "Kaltetechnik-Klimatisierung,," in *Solid-Liquid Equilibrium Data Collection*. vol. VIII, H. Knapp, M. Teller, R. Langhorst, and Eds., ed DECHEMA Chemistry Data Series.: DECHEMA, 1970, p. 201.
- [52] J. Shim and J. P. Kohn, "Multiphase and Volumetric Equilibria of Methane-n-Hexane Binary System at Temperatures Between -110° and 150° C," *Journal of Chemical & Engineering Data*, vol. 7, pp. 3-8, 1962/01/01 1962.
- [53] D. L. Tiffin, K. D. Luks, and J. P. Kohn, "Solubility Enhancement of Solid Hydrocarbons in Liquid Methane due to the Presence of Ethane," in *Advances in Cryogenic Engineering*. vol. 23, K. D. Timmerhaus, Ed., ed: Springer US, 1978, pp. 538-543.
- [54] M. Teller and H. Knapp, "Unpublished data," in *Solid-Liquid Equilibrium Data Collection*. vol. VIII, H. Knapp, M. Teller, and R. Langhorst, Eds., ed DECHEMA Chemistry Data Series.: DECHEMA, 1985, pp. 219-220.

- [55] M. Teller, "DISS. TU BERLIN," in *Solid-Liquid Equilibrium Data Collection*. vol. VIII, H. Knapp, M. Teller, and R. Langhorst, Eds., ed DECHEMA Chemistry Data Series.: DECHEMA, 1982, p. 347.
- [56] J. P. Kohn and W. F. Bradish, "Multiphase and Volumetric Equilibria of the Methane-n-Octane System at Temperatures between -1100 and 1500 C," *Journal of Chemical & Engineering Data*, vol. 9, pp. 5-8, 1964/01/01 1964.
- [57] J. P. Kohn, K. D. Luks, P. H. Liu, and D. L. Tiffin, "Three-phase solid-liquid-vapor equilibriums of the binary hydrocarbon systems methane-n-octane and methane-cyclohexane," *Journal of Chemical & Engineering Data*, vol. 22, pp. 419-421, 1977/10/01 1977.
- [58] J. P. Kohn and K. D. Luks, "Solubility of Hydrocarbons in Cryogenic LNG and NGL Mixtures," Gas Processors Association Research Report RR-271977
- [59] D. L. Tiffin, J. P. Kohn, and K. D. Luks, "Solid hydrocarbon solubility in liquid methane-ethane mixtures along three-phase solid-liquid-vapor loci," *Journal of Chemical & Engineering Data*, vol. 24, pp. 306-310, 1979/10/01 1979.
- [60] M. Christov and R. Dohrn, "High-pressure fluid phase equilibria: Experimental methods and systems investigated (1994–1999)," *Fluid Phase Equilibria*, vol. 202, pp. 153-218, 2002.
- [61] R. Dohrn, S. Peper, and J. M. S. Fonseca, "High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2000–2004)," *Fluid Phase Equilibria*, vol. 288, pp. 1-54, 2010.
- [62] J. M. S. Fonseca, R. Dohrn, and S. Peper, "High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2005–2008)," *Fluid Phase Equilibria*, vol. 300, pp. 1-69, 2011.
- [63] V. De Stefani, A. Baba-Ahmed, and D. Richon, "A review of experimental methods for solid solubility determination in cryogenic systems," *Cryogenics,* vol. 44, pp. 631-641, 2004.

Appendix A: Fundamentals Phase Equilibrium

This appendix gives a general introduction for the calculation of thermodynamic equilibrium.

The first law of thermodynamics is the law of energy conservation and is given by:

$$dU = dQ - dW$$

The second law of thermodynamics concerns the change in total entropy of a system. The law states that the entropy of an isolated system never decreases. In general, it is given by:

$$dS \ge \frac{dQ}{T}$$

In phase equilibrium calculations, it is appropriate to work with the Gibbs free energy, which is defined by

$$G = H - TS = U + PV - TS$$

Combining equation 1, 2 and 3 we get:

$$dG \leq VdP - SdT$$

For processes at constant pressure and temperature the equation is given by:

$$dG$$
)_{T,p} ≤ 0

Chemical Potential

The chemical potential is defined as the molar Gibbs free energy, and is very useful for describing the phase behavior of mixture. The function is given by:

$$\mu_i = \bar{G}_i = \frac{\partial G}{\partial n_i} \Big|_{T,p,n_i}$$

The Gibbs free energy for a total system equals the Gibbs free energies for each phase

$$dG)_{T,p} = dG^{1})_{T,p} + dG^{2})_{T,p} = 0$$

$$dG)_{T,p} = \sum_{i=1}^{N} \mu_i^1 dn_i^1 + \sum_{i=1}^{N} \mu_i^2 dn_i^2 = 0$$

The system is close, and mass balance must apply. The equation can thus be rewritten as:

$$\mu_{i}^{1} = \mu_{i}^{2}$$

The equation states that the chemical potential of any component i, at a fixed pressure and temperature, must be the same when two phases are in equilibrium.

Fugacity

It is advantageous for many types of thermodynamic analyses to use fugacity instead of the chemical potential. The fugacity f, and is introduced with the expression:

$$\mu = \bar{R}T \,\ln f + C(T)$$

The fugacity has the same units as pressure and for ideal gas behavior the fugacity plats the same role as pressure. Equation xx can be rearranged to:

$$\bar{R}T\left(\frac{\partial\ln f}{\partial p}\right)_T = \bar{v}$$

Ideal gas behavior is approached as pressure tends to zero, and the constant term can be determined by requiring the fugacity of a pure component is equal to the pressure in the limit of zero pressure, describes as:

$$\lim_{p \to 0} \frac{f}{p} = 1$$

By combining the expression of fugacity with equation xx, the following equilibrium relation is given:

$$f_{i}^{1} = f_{i}^{2}$$

The fugacity coefficient of component *i*, is defined as:

$$\varphi_i = \frac{f_i}{p_i}$$

A general relation to calculate fugacity is given by, Prausnitz, et al. [33]

$$RT \ln \varphi_i = RT \ln \frac{f_i}{y_i P} = \int_0^P \left(\bar{v}_i - \frac{RT}{P} \right) dP$$

where $\bar{v}_i = (\partial V / \partial n_i)_{T,P,n_i}$ is the partial molar volume of component *i*, φ_i is the fugacity coefficient *i*, f_i is the fugacity of *i* and y_i is the molar fraction of *i*.

Appendix B: Experimental Methods

This section introduces the experimental methods that have been used by the different authors to obtain the experimental data. The experimental methods used for fluid phase equilibria and solid-fluid phase equilibria are quite similar. The classification of the experimental methods are therefore based on the review articles, ""High-pressure fluid-phase equilibria: Experimental methods and systems investigated", by Christov and Dohrn [60], Dohrn, et al. [61] and Fonseca, et al. [62]. Only methods suitable for solid-liquid equilibrium are included in this review.

The classification of experimental methods for high-pressure phase equilibria is shown in Figure 60. There are two main categories, depending on how the compositions of the equilibrium phases are determined (analytically or not) and whether the mixture to be investigated has been prepared (synthesized) with known composition or not: analytical methods and synthetic methods.

Figure 60. Overview of Experimental methods for high-pressure phase equilibria

B.1 Analytical Method (An)

The analytical method (An) involves first a procedure of making the equilibrium solution and then an analytical determination of the compositions of the coexisting phases. This can be done with sampling or without sampling.

In analytical methods with samples, the samples are analyzed outside the equilibrium cell. The use of gas chromatography has been a common technique for analyzing the composition.

Analytical methods with sampling can be classified into: isothermal methods (AnT), isobaricisothermal methods (AnPt) and isobaric methods (AnP).

Analytical methods without sampling use a physicochemical method of analysis inside the equilibrium cell under pressure, mainly spectroscopic methods (AnSpec). For cryogenic systems the infrared spectroscopy is most used among the available spectroscopic techniques, De Stefani, et al. [63].

B.1.1 Analytical isobaric- isothermal methods (AnT)

The characterization of the isothermal method is that the temperature stays constant in the equilibrium cell. In the start of an experiment an equilibrium cell is charged with the mixture of interest, and is kept at the desired temperature. The pressure is adjusted above or below the desired equilibrium value. A technique of preparing the solution is to agitate the mixture in the presence of excess solute by mechanical stirring or recirculation of the vapor phase, Kuebler and McKinley [50].

B.1.2 Analytical-isothermal methods (AnPT)

In isobaric-isothermal methods, often called dynamic models, one or more fluid flows continuously through another phase in the equilibrium cell. The cell is regulated at a desired temperature, and the pressure is kept constant during the experiment by controlling the vapor phase. For solid-fluid equilibrium experiments solutions can be formed using a single-pass mode either with solute precipitating from a feed mixture or a previously deposited solute dissolved into a pure solvent feed, Kuebler and McKinley [50]. Isobaric-isothermal methods have the advantage that sampling does not disturb the equilibrium, and large amounts of sample can be taken.

B.2 Synthetic methods (Syn)

For syntactic methods sampling is not necessary. The idea is to prepare a mixture of a known composition, which is established by accurate weighing techniques. After the mixture is placed into the equilibrium cell, the temperature and pressure is adjusted so that the mixture is homogeneous, in a single phase. Depending on how the phase transition is detected, synthetic methods with a phase transitions can be divided into visual (SynVis) and non-visual synthetic methods (SynNon).

B.2.1 Synthetic visual methods (SynVis)

In synthetic visual methods (often referred as cryoscopic methods) the new phase is detected by visual observation. When the mixture is homogenous, temperature or pressure is lowered or increased until the formation of a new phase is observed. For solid-liquid equilibrium detection, the frost points or freezing points are noted.

B.2.2 Synthetic non-visual methods (SynNon)

Instead of visual observation, other physical properties can be detected to determine the phase transition. If the total volume of a variable-volume cell can be measured, the appearance of a new phase can be determined where there is a rapid change in the slope between pressure and volume.

Investigating Pressure-Temperature relationship: The temperature is reduced until the solid phase appears. The equilibrium cell is then slowly warmed, and pressures and temperatures are recorded until the solid melts. By investigating the p-T diagram, the transition will be where there is a sudden change in the p-T relationship.

Appendix C: Simulation Results and Experimental Data

C.1 Experimental data from literature and simulated data: Solid CO_2 formation in liquid methane

		-			-	-							
Number	Compositio	n [mole %]	Experime	ental data	N	leqSim (SRK), kij = 0.0		Ne	qSim (UMR-PRU)		NeqSim (SRK), kij = 0.0973	
Number	CH4	CO2	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	AAD [K]	Temperature [K]	Pressure [bar]	AAD [K]	Temperature [K]	Pressure [bar]	AAD [K]
1	10.000	90	214.3	20.79	212.490	50.000	1.810	212.940	50.000	1.360	212.820	50.000	1.480
2	13.500	86.5	213.7	24.31	211.150	50.000	2.550	212.065	50.000	1.635	211.758	50.000	1.942
3	20.000	80	212.6	30.14	208.800	50.000	3.800	210.390	50.000	2.210	210.100	50.000	2.500
4	23.200	76.8	211.2	36.39	207.696	50.000	3.504	209.762	50.000	1.438	209.434	50.000	1.766
5	30.000	70	210.4	39.37	205.450	50.000	4.950	208.639	50.000	1.761	208.278	50.000	2.122
6	40.000	60	209	43.57	202.318	50.000	6.682	207.400	50.000	1.600	207.119	50.000	1.881
7	45.700	54.3	207.6	46.47	200.567	50.000	7.033	206.845	50.000	0.755	206.652	50.000	0.948
8	50.000	50	207.3	46.93	199.230	50.000	8.070	206.445	50.000	0.855	206.334	50.000	0.966
9	57.400	42.6	206.2	48.18	196.800	50.000	9.400	205.712	50.000	0.488	205.790	50.000	0.410
10	79.500	20.5	201.3	48.18	185.942	50.000	15.358	200.270	50.000	1.030	200.678	50.000	0.622
11	84.610	15.39	196.9	45.18	181.150	50.000	15.750	197.800	50.000	0.900	197.150	50.000	0.250
12	89.920	10.08	189.3	39.54	173.604	50.000	15.696	189.350	50.000	0.050	189.200	50.000	0.100
13	94.150	5.85	182.2	32.91	163.739	50.000	18.461	180.234	50.000	1.966	179.300	50.000	2.900
14	97.060	2.94	169.9	22.35	151.960	50.000	17.940	169.515	50.000	0.385	167.600	50.000	2.300
15	98.170	1.83	162	16.7	144.547	50.000	17.453	162.750	50.000	0.750	160.225	50.000	1.775
16	99.070	0.93	150.4	10.53	135.000	50.000	15.400	153.900	50.000	3.500	150.627	50.000	0.227
17	99.420	0.58	144.5	8.08	129.000	50.000	15.500	148.237	50.000	3.737	144.546	50.000	0.046
18	99.630	0.37	139.4	6.29	123.786	50.000	15.614	143.190	50.000	3.790	139.183	50.000	0.217
19	99.750	0.25	135.2	5.07	119.557	50.000	15.643	139.000	50.000	3.800	134.817	50.000	0.383
20	99.840	0.16	129.6	3.57	115.084	50.000	65.084	134.630	50.000	5.030	130.172	50.000	0.572
					AAD		13.785	AAD		1.852	AAD		1.170

C.1.1 Predictions and experimental data from Kurata [41]

Numbor	Compo	sition	[mole %]	Experim	ental data	Neq	Sim (SRK), kij = 0.097	3	N	leqSim (UMR-PRU)	
Number	CH4	C2H₄	CO2	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	AAD [K]	Temperature [K]	Pressure [bar]	AAD [K]
1	99.9787		0.0213	112.00	0.93	112.58	5.93	0.585	117.80	5.93	5.804
2	99.9177		0.0823	124.00	2.41	123.76	7.41	0.242	128.72	7.41	4.724
3	99.8587		0.1413	129.70	3.65	128.90	8.65	0.802	133.68	8.65	3.978
4	99.7521		0.2479	135.20	4.89	134.74	9.89	0.463	139.25	9.89	4.052
5	99.6322		0.3678	139.40	6.17	139.17	11.17	0.233	143.45	11.17	4.046
6	99.4335		0.5665	144.50	8	144.37	13.00	0.132	148.33	13.00	3.830
7	99.1775		0.8225	150.40	10.55	149.17	15.55	1.229	152.81	15.55	2.406
8	98.236		1.764	162.00	17.18	160.01	22.18	1.990	162.81	22.18	0.812
9	97.104		2.896	169.90	23.15	167.81	28.15	2.087	169.97	28.15	0.067
						AAD		0.863	AAD		3.302

.1.2 Predictions and experimental data from Shen, et al. [16]

C.1.3 SLV predictions (pressure) and experimental data from Davis, et al. [43]

Number	Experime	ntal data		NeqSim (SRK)		N	eqSim (UMR-PRU)	
Number	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS [%]	Temperature [K]	Pressure [bar]	ABS [%]
1	211.56	32.38	211.56	29.050	10.292	211.56	30.98	4.333
2	207.94	45.13	207.94	43.250	4.165	207.94	43.95	2.614
3	205.06	48.64	205.06	48.000	1.323	205.06	47.79	1.754
4	201.11	48.16	201.11	47.530	1.310	201.11	47.59	1.186
5	197.39	46.09	197.39	45.480	1.332	197.39	45.59	1.094
6	194.89	43.41	194.89	43.650	0.560	194.89	43.70	0.675
7	193.50	43.20	193.50	42.500	1.621	193.50	42.65	1.274
8	188.28	38.72	188.28	38.150	1.477	188.28	38.19	1.373
9	184.17	34.86	184.17	34.550	0.899	184.17	34.40	1.329
10	180.17	31.28	180.17	31.050	0.737	180.17	30.95	1.057
11	178.11	29.28	178.11	29.250	0.111	178.11	29.15	0.452
12	176.94	28.46	176.94	28.250	0.723	176.94	28.05	1.426
13	173.00	25.15	173.00	25.050	0.392	173.00	24.85	1.187
14	170.61	23.29	170.61	23.150	0.593	170.61	22.95	1.452
15	169.61	22.32	169.61	22.400	0.342	169.61	22.15	0.778
16	166.17	19.98	166.17	19.900	0.405	166.17	19.65	1.657
17	163.72	18.19	163.72	18.200	0.057	163.72	17.95	1.317
18	161.00	16.26	161.00	16.400	0.859	161.00	16.20	0.371
19	159.28	15.43	159.28	15.350	0.542	159.28	15.14	1.902
20	151.72	11.37	151.72	11.250	1.042	151.72	11.00	3.241
21	148.44	9.78	148.44	9.650	1.368	148.44	9.45	3.412
22	143.78	7.92	143.78	7.750	2.190	143.78	7.55	4.714
23	139.44	6.41	139.44	6.250	2.461	139.44	6.10	4.802
24	132.22	4.34	132.22	4.180	3.702	132.22	4.10	5.545
26	129.39	3.58	129.39	3.530	1.474	129.39	3.45	3.707
27	125.89	3.03	125.89	2.850	5.990	125.89	2.78	8.299
28	120.67	2.14	120.67	1.970	7.767	120.67	1.96	8.235
29	116.39	1.55	116.39	1.430	7.757	116.39	1.45	6.467
30	111.22	1.03	111.22	0.930	9.411	111.22	0.97	5.514
31	105.33	0.61	105.33	0.570	7.047	105.33	0.58	5.416
32	97.39	0.28	97.39	0.245	13.271	97.39	0.26	7.607
			AAD		2.851	AAD		2.943

C.2 Experimental data from literature and simulated data: Solid CO₂ formation in vapor methane

Number	Compositio	n [mole %]	Experimen	tal data	NeqSim	(SRK), kij = 0.097	3	Ne	qSim (UMR-PRU)		NeqSi	m (SRK), kij = 0.00	
Number	CH4	CO2	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	AAD [K]	Temperature [K]	Pressure [bar]	AAD [K]
1	99.88	0.12	137.54	1.79	142.53	1.79	4.990	145.10	1.79	7.561	142.47	1.79	4.930
2			143.21	3.45	146.26	3.45	3.053	148.57	3.45	5.362	146.14	3.45	2.933
3			144.32	5.17	148.54	5.17	4.220	150.70	5.17	6.380	148.36	5.17	4.037
4			147.82	6.83	150.05	6.83	2.230	152.12	6.83	4.304	149.81	6.83	1.989
5			149.76	8.55	151.22	8.55	1.460	153.22	8.55	3.460	150.90	8.55	1.140
6			-	-	151.99	10	-	153.94	10	-	151.60	10	-
7			-	-	152.50	11.25	-	154.55	11.7	-	152.08	11.7	-
8	99.03	0.97	155.15	1.79	156.46	1.79	1.310	158.11	1.79	2.962	156.40	1.79	1.252
9			158.21	3.79	161.84	3.79	3.629	163.19	3.79	4.981	161.71	3.79	3.504
10			161.26	5.24	164.19	5.24	2.930	165.42	5.24	4.160	164.02	5.24	2.755
11			163.98	6.96	166.23	6.96	2.250	167.36	6.96	3.382	166.00	6.96	2.016
12			166.48	10.82	169.29	10.82	2.810	170.28	10.82	3.796	168.90	10.82	2.420
13			168.37	13.79	170.84	13.79	2.470	171.76	13.79	3.387	170.32	13.79	1.946
14			170.59	17.86	172.29	17.86	1.700	173.15	17.86	2.557	171.55	17.86	0.961
15			172.04	20.68	172.95	20.68	0.910	173.79	20.68	1.752	172.04	20.68	0.002
16					173 51	25		174.61	26				
17	98.2	1.8	158 21	1 72	160.88	1.72	2 670	162.29	1.72	4 076	160.83	1 72	2 620
18	5012	1.0	159.22	1.86	161.47	1.86	2 150	162.84	1.85	3 525	161.42	1.96	2.096
19			163.98	3.45	165.24	3.45	2.150	167.36	3.45	3 383	166.13	3.45	2.050
20			164.54	2.52	166.29	2.52	1 950	167.50	2.52	2 972	166.29	2.50	1 742
20			169.27	5.32	169.52	5.34	1.000	170.49	5.32	2.575	169.25	5.32	0.992
21			170.32	5.24	171.75	5.24	1.130	170.45	5.24	2.122	171.50	5.24	1.100
22			174.15	0.50	172.40	8.63	0.750	172.02	8.60	0.052	172.11	0.50	1.035
25			174.15	12.12	175.40	12.12	1 600	174.20	12.12	2,200	175.11	12.12	1.050
24			174.20	12.13	173.35	12.13	1.050	170.03	12.13	2.300	173.35	12.13	1.200
25			176.04	15.72	177.75	15.72	1.709	1/8.37	13.72	2.323	177.10	13.72	1.110
20			1/0./0	22.01	1/9.01	22.01	5.050	180.07	22.01	3.394	170.04	22.01	2.077
27			-	-	180.44	2/	-	100.57	2/	-	1/5.11	27	-
20	05.02	2.07	-	1.70	160.32	51.5	-	161.00	51.5	- 705	105.10	-	-
29	90.93	3.07	159.59	1.72	105.21	1.72	5.620	100.39	1.72	0.790	165.16	1.72	5.046
30			160.43	1.79	105.53	1.79	5.100	100.09	1.79	0.200	105.48	1.79	5.040
31			100.21	3.52	171.00	3.52	4.790	171.99	3.52	5.780	170.98	3.52	4.772
32			166.43	3.55	1/1.16	3.55	4.730	172.06	3.55	5.628	1/1.05	3.55	4.622
33			170.82	5.24	1/4.44	5.24	3.620	175.20	5.24	4.382	174.28	5.24	3.463
34			174.98	0.90	1/6.85	0.90	1.870	177.51	0.90	2.528	1/0.03	0.90	1.649
35			1/9.37	14	182.56	14	3.190	183.00	14	3.632	182.08	14	2.706
36			181.59	20.62	185.30	20.62	3.710	185.64	20.62	4.047	184.50	20.62	2.913
37			183.21	20.82	185.36	20.82	2.150	185.69	20.82	2.484	184.55	20.82	1.343
38			182.15	21.44	185.54	21.44	3.390	185.87	21.44	3.717	184.70	21.44	2.548
39			184.04	27.85	186.85	27.85	2.808	187.12	27.85	3.082	185.58	27.85	1.535
40			-	-	187.18	32	-	187.45	32	-	-	-	-
41			-	-	186.88	36.8	-	187.15	37	-	-	-	-
42	89.33	10.67	177.71	1.72	176.40	1.72	1.308	177.08	1.72	0.627	176.36	1.72	1.352
43			184.32	3.52	183.30	3.52	1.017	183.74	3.52	0.582	183.21	3.52	1.107
44			187.65	5.24	187.30	5.24	0.355	187.60	5.24	0.046	187.16	5.24	0.493
45			191.21	7.1	190.39	7.1	0.822	190.61	7.1	0.603	190.20	7.1	1.011
46			193.98	8.69	192.45	8.69	1.528	192.61	8.69	1.367	192.22	8.69	1.764
47			196.65	10.34	194.22	10.34	2.430	194.33	10.34	2.317	193.93	10.34	2.716
48			197.71	12.07	195.78	12.07	1.934	195.85	12.07	1.863	195.44	12.07	2.274
49			198.09	14.13	197.34	14.13	0.755	197.36	14.13	0.726	196.93	14.13	1.162
50			-	-	202.47	25	-	202.34	25	-	-	-	-
51			-	-	204.59	35	-	204.36	35	-	-	-	-
52			-	-	204.22	48	-	203.92	48	-	-	-	-
					AAD		2.471			3.268			2.243

C.2.1 Predictions and experimental data from Agrawal and Laverman [44]

Number	Composit	ion [mole %]	Experime	ental data	Neq	Sim (SRK), kij = 0.0973	}	N	NeqSim (UMR-PRU)		Neq	Sim (SRK), kij = 0.00	
Number	CH4	CO2	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	AAD [K]	Temperature [K]	Pressure [bar]	AAD [K]
1	89.2	10.8	205.3	44.46	205.06	44.46	0.242	204.76	44.46	0.540	200.27	20.31	5.034
2			200.5	20.31	200.89	20.31	0.390	200.83	20.31	0.326	-	44.46	-
3			197.5	13.42	196.98	13.42	0.520	197.00	13.42	0.500	196.60	13.42	0.900
4	82.2	17.8	210.3	29.43	211.27	29.43	0.966	211.00	29.43	0.700	-	29.43	-
5			205.1	15.81	205.35	15.81	0.248	205.24	15.81	0.139	204.95	15.81	0.150
6			197.4	8.69	198.80	8.69	1.400	198.83	8.69	1.433	198.60	8.69	1.200
7			191.1	4.97	192.64	4.97	1.535	192.80	4.97	1.700	192.52	4.97	1.420
8	66.6	33.4	209.5	11.44	210.68	11.44	1.180	210.55	11.44	1.050	210.50	11.44	1.000
9			203.8	7.27	205.09	7.27	1.290	205.04	7.27	1.240	204.98	7.27	1.180
10			202.6	5.72	202.16	5.72	0.438	202.16	5.72	0.440	202.08	5.72	0.523
11			199.5	4.48	199.22	4.48	0.280	199.27	4.48	0.230	199.16	4.48	0.345
12			194.2	3.07	194.78	3.07	0.580	194.92	3.07	0.720	194.73	3.07	0.530
13	57.6	42.4	210.3	8.54	210.50	8.54	0.200	210.40	8.54	0.100	210.40	8.54	0.100
14			202.5	4.78	203.14	4.78	0.640	203.13	4.78	0.630	203.09	4.78	0.588
15			196.5	2.93	197.17	2.93	0.670	197.27	2.93	0.770	197.14	2.93	0.643
16	45.8	54.2	209.1	5.69	208.78	5.69	0.323	208.70	5.69	0.400	208.74	5.69	0.363
17			202.7	3.29	201.74	3.29	0.960	201.76	3.29	0.935	201.72	3.29	0.980
					AAD		0.698			0.697			0.997

C.2.2 Predictions and experimental data from Zhang [46]

C.2.3 Predictions and experimental data from Davis, et al. [43]

Numbor	Composi	tion [m	nole %]	Experiment	al data	NeqS	im (SRK), kij = 0.0973		NeqSim (UMR-PRU)			
Number	CH4	N2	CO ₂	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	AAD [K]	Temperature [K]	Pressure [bar]	AAD[K]	
1	99.88	-	0.12	140.93	6.85	150.08	6.85	9.146	152.14	6.85	11.208	
2	99.37	-	0.63	165.59	19.59	168.55	19.59	2.960	169.60	19.59	4.006	
3	98.92	-	1.08	175.87	27.51	174.97	26.5	0.901	176.28	27.51	0.412	
4	98.28	-	1.72	177.59	28.8	180.03	28.8	2.437	180.58	28.8	2.986	
5	97.21	-	2.79	183.98	34.62	185.88	34.62	1.896	186.20	34.62	2.223	
6	96.33	-	3.67	188.71	39.09	189.30	38.9	0.587	189.28	39.09	0.574	
7	94.35	-	5.65	193.65	43.22	194.64	43.22	0.993	194.65	43.22	1.005	
8	88.27	-	11.73	205.71	48.4	205.79	48.4	0.077	205.84	48.4	0.130	
						AAD		2.37	AAD		2.82	

C.3 Experimental data from literature and simulated data: Solid CO₂ formation in natural gas mixtures

		Compo	sition [mol	e %1	Fynerim	ental data	Neg	Sim (SRK) kii = 0.007	2	N	leaSim (LIMR-PPLI)			
Solvent	Number	CH4	N2	(0)	Temperature [K]	Pressure [har]	Temperature [K]	Pressure [har]	, ΔΔD	Temperature [K]	Pressure [bar]	ΔΔD	AAD - LIMR	AAD - SRK
	1	97 97795	1 99955	0.023	112 00	1 55	112 95	6 55	0.946	118.02	6 55	6.019		7010 5110
	2	97 91288	1 998222	0.029	124.00	3.26	174 44	8 26	0.444	129.25	8.26	5 250		
	2	07 853	1 997	0.005	129.70	1.46	129.49	9.46	0.210	13/ 11	9.46	1 109		
	1	07 755	1.005	0.15	125.70	4.40 5.96	123.43	10.96	0.257	120.22	10.96	4.405		
98%CH/+2%N2	5	07 6274	1.995	0.23	133.20	7.24	134.04	10.50	0.337	135.22	10.50	4.013		
56/0611412/0112	6	07.461	1.9920	0.57	135.40	0.20	135.27	14.20	0.125	143.41	14.20	3.409		
		97.401	1.969	0.55	144.50	9.29	144.05	14.29	0.446	147.91	14.29	3.400		
	/	97.19542	1.98358	0.821	150.40	11.68	149.23	10.08	1.100	152.74	10.08	2.343		
	8	96.285	1.965	1.75	162.00	18.45	160.05	23.45	1.948	162.75	23.45	0.745	2.445	0.015617417
	9	95.2854	1.9446	2.77	169.90	24.21	167.31	29.21	2.593	169.10	29.21	0.801	3.445	0.91561/41/
	10	94.97739	4.99881	0.024	112.00	2.68	113.31	7.68	1.307	118.1/	7.68	6.1/5		
	11	94.91365	4.995455	0.091	124.00	4.18	124.63	9.18	0.634	129.24	9.18	5.238		
	12	94.8499	4.9921	0.158	129.70	5.45	130.03	10.45	0.328	134.43	10.45	4.732		
	13	94.7568	4.9872	0.256	135.20	7.25	135.15	12.25	0.054	139.32	12.25	4.118		
95%CH4+5%N2	14	94.64375	4.98125	0.375	139.40	8.80	139.50	13.80	0.100	143.44	13.80	4.043		
	15	94.4851	4.9729	0.542	144.50	10.95	143.98	15.95	0.523	147.66	15.95	3.156		
	16	94.221	4.959	0.82	150.40	13.85	149.37	18.85	1.034	152.69	18.85	2.293		
	17	93.461	4.919	1.62	162.00	20.97	159.11	25.97	2.893	162.93	25.97	0.933		
	18	92.454	4.866	2.68	169.90	26.85	167.10	31.85	2.796	169.09	31.85	0.806	3.499	1.074260802
	19	89.97714	9.99746	0.025	112.00	3.18	113.74	8.18	1.735	117.63	8.18	5.633		
	20	89.91747	9.99083	0.092	124.00	5.8	124.73	10.80	0.727	128.21	10.80	4.209		
	21	89.8569	9.9841	0.159	129.70	7.48	130.16	12.48	0.456	133.36	12.48	3.655		
	22	89.7615	9.9735	0.265	135.20	9.68	135.65	14.68	0.454	138.52	14.68	3.316		
90%CH4+10%N2	23	89.6607	9.9623	0.377	139.40	11.46	139.74	16.46	0.340	142.32	16.46	2.920		
	24	89.5167	9.9463	0.537	144.50	13.97	144.10	18.97	0.403	147.49	18.97	2.993		
	25	89.2656	9.9184	0.816	150.40	16.78	149.64	21.78	0.763	152.69	21.78	2.285		
	26	88.569	9.841	1.59	162.00	24.48	159.35	29.48	2.653	160.24	29.48	1.760		
	27	87.732	9.748	2.52	169.90	31.5	166.72	36.50	3.181	168.542	36.50	1.358	3.126	1.190217598

C.3.1 Predictions and experimental data from Shen, et al. [16] : Nitrogen

Solvent	Numbor	Compo	sition [mole	e %]	Experim	ental data	NeqSim (SR	<), kij = 0.0956 and kij	= 0.0312	N	leqSim (UMR-PRU)			
Solvent	Number	CH4	C2H4	CO2	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	AAD	Temperature [K]	Pressure [bar]	AAD	AAD - UMR	AAD-SRK
	1	97.94345	1.998846	0.058	120.00	1.75	120.45	6.75	0.449	125.23	6.75	5.230		
	2	97.91954	1.998358	0.082	124.00	2.33	123.56	7.33	0.435	128.27	7.33	4.274		
	3	97.8481	1.9969	0.155	129.70	3.42	129.62	8.42	0.078	134.14	8.42	4.444		
	4	97.74226	1.99474	0.263	135.20	4.73	135.15	9.73	0.055	139.44	9.73	4.241		
98%CH4+2%C2H4	5	97.62368	1.99232	0.384	139.40	5.90	139.40	10.90	0.002	143.49	10.90	4.087		
	6	97.43748	1.98852	0.574	144.50	7.70	144.22	12.70	0.276	148.04	12.70	3.535		
	7	97.16308	1.98292	0.854	150.40	10.12	149.32	15.12	1.081	152.80	15.12	2.401		
	8	96.1772	1.9628	1.86	162.00	16.32	160.34	21.32	1.657	163.00	21.32	1.004		
	9	95.0306	1.9394	3.03	169.90	22.28	167.97	27.28	1.933	170.00	27.28	0.100	3.257387776	0.662881587
	10	94.94291	4.996995	0.06	120.00	1.71	120.59	6.71	0.594	124.96	6.71	4.961		
	11	94.91023	4.995275	0.095	124.00	2.29	124.62	7.29	0.623	128.93	7.29	4.929		
	12	94.85085	4.99215	0.157	129.70	3.31	129.48	8.31	0.218	133.67	8.31	3.975		
	13	94.74635	4.98665	0.267	135.20	4.59	135.00	9.59	0.204	139.00	9.59	3.805		
95%CH4+5%C2H4	14	94.63045	4.98055	0.389	139.40	5.78	139.20	10.78	0.201	143.03	10.78	3.629		
	15	94.4262	4.9698	0.604	144.50	7.45	144.45	12.45	0.048	148.02	12.45	3.515		
	16	94.17065	4.95635	0.873	150.40	9.82	149.15	14.82	1.254	152.43	14.82	2.032		
	17	93.1665	4.9035	1.93	162.00	15.88	160.27	20.88	1.730	162.77	20.88	0.773		
	18	91.9695	4.8405	3.19	169.90	21.55	168.04	26.55	1.864	169.92	26.55	0.017	3.07085122	0.748450525
	19	89.94384	9.99376	0.062	120.00	1.62	120.64	6.62	0.638	124.35	6.62	4.351		
	20	89.91396	9.99044	0.096	124.00	2.18	124.42	7.18	0.416	128.12	7.18	4.122		
	21	89.8569	9.9841	0.159	129.70	3.15	129.25	8.15	0.453	132.90	8.15	3.203		
	22	89.7543	9.9727	0.273	135.20	4.37	134.81	9.37	0.385	138.35	9.37	3.153		
90%CH4+10%C2H4	23	89.6445	9.9605	0.395	139.40	5.48	138.90	10.48	0.498	142.31	10.48	2.914		
	24	89.4393	9.9377	0.623	144.50	7.08	144.29	12.08	0.212	147.48	12.08	2.983		
	25	89.1693	9.9077	0.923	150.40	9.3	149.26	14.30	1.142	152.21	14.30	1.805		
	26	88.218	9.802	1.98	162.00	14.88	159.83	19.88	2.167	162.11	19.88	0.115		
	27	87.021	9.669	3.31	169.90	20.06	167.64	25.06	2.256	169.34	25.06	0.559	2.578187846	0.907386883

Number	Compo	sition [mole	e %]	Experim	ental data	Neq	Sim (SRK), kij = 0.0973	3	N	leqSim (UMR-PRU)	
Number	CH4	N2	CO ₂	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	AAD [K]	Temperature [K]	Pressure [bar]	AAD [K]
1	98.36	0.68	0.96	154.93	1.76	156.215	1.76	1.287	157.881	1.76	2.953
2				158.76	3.59	161.309	3.59	2.548	162.689	3.59	3.928
3				161.48	5.24	164.049	5.24	2.565	165.284	5.24	3.801
4				162.59	6.96	166.088	6.96	3.493	167.221	6.96	4.627
5				165.87	10.41	168.881	10.41	3.009	169.882	10.41	4.009
6				167.26	14.00	170.774	14.00	3.513	171.690	14.00	4.429
7				169.21	17.24	171.947	17.24	2.741	172.814	17.24	3.608
8				170.82	20.75	172.804	20.75	1.987	173.642	20.75	2.825
9				171.65	22.41	173.080	22.41	1.430	173.912	22.41	2.262
10				171.65	24.41	173.303	24.41	1.653	174.137	24.41	2.487
11	96.13	2.94	0.93	154.15	1.72	155.658	1.72	1.508	157.357	1.72	3.207
12				158.48	3.45	160.595	3.45	2.112	162.012	3.45	3.529
13				160.98	5.24	163.602	5.24	2.618	164.859	5.24	3.875
14				163.15	6.96	165.625	6.96	2.475	166.780	6.96	3.630
15				165.93	10.41	168.397	10.41	2.469	169.416	10.41	3.488
16				168.09	13.93	170.243	13.93	2.148	171.177	13.93	3.082
17				169.65	17.10	171.391	17.10	1.741	172.275	17.10	2.625
18				171.93	20.75	172.280	20.75	0.352	173.131	20.75	1.204
19				172.76	24.27	172.762	24.27	0.001	173.607	24.27	0.846
						AAD		1.714			3.641

C.3.3 Predictions and experimental data from Agrawal and Laverman [44] : Nitrogen

Number		Composition [n	nole %]	Experim	ental data	Nec	Sim (SRK), kij = 0.0	973	N	leqSim (UMR-PRU	
Number	CH4	CO ₂	N2	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	AAD [K]	Temperature [K]	Pressure [bar]	ADD [K]
1	97.06	1.94	1	173.9	12.44	176.89	12.44	2.991	177.54	12.44	3.640
2				174.4	13.04	177.23	13.04	2.831	177.87	13.04	3.466
3				174.5	13.41	177.43	13.41	2.931	178.06	13.41	3.557
4				176.6	15.91	178.61	15.91	2.006	179.18	15.91	2.585
5				176.7	16.06	178.67	16.06	1.968	179.24	16.06	2.544
6				177.2	16.49	178.84	16.49	1.640	179.41	16.49	2.210
7				178	18.69	179.62	18.69	1.621	180.16	18.69	2.159
8				178	18.61	179.60	18.61	1.595	180.13	18.61	2.135
9				178.6	18.41	179.53	18.41	0.930	180.07	18.41	1.472
10				182.4	22.11	180.54	22.11	1.861	181.04	22.11	1.358
11				183	22.12	180.54	22.12	2.459	181.04	22.12	1.956
12				183.1	22.39	180.60	22.39	2.500	181.10	22.39	1.999
13	96.11	1.94	1.95	174.4	13.21	177.32	13.21	2.925	177.95	13.21	3.553
14				174.5	13.15	177.29	13.15	2.792	177.92	13.15	3.422
15				175	13.31	177.38	13.31	2.378	178.00	13.31	3.004
16				178.3	16.91	179.00	16.91	0.704	179.56	16.91	1.264
17				178.4	16.67	178.91	16.67	0.512	179.48	16.67	1.076
18				178.7	16.36	178.79	16.36	0.091	179.36	16.36	0.659
19				179.6	18.38	179.52	18.38	0.077	180.06	18.38	0.462
20				179.6	18.53	179.57	18.53	0.028	180.11	18.53	0.509
21				179.7	18.74	179.64	18.74	0.061	180.17	18.74	0.474
22				183.4	22.36	180.60	22.36	2.801	181.10	22.36	2.305
23				183.5	22.62	180.65	22.62	2.846	181.15	22.62	2.352
24				183.5	22.53	180.64	22.53	2.865	181.13	22.53	2.370
						AAD		1.809			2.105

C.3.4 Predictions and experimental data from Le and Trebble [45] : Nitrogen

Number		Compositio	on [mole %]	Experime	ental data	Neq	Sim (SRK), kij = 0.097	3	N	leqSim (UMR-PRU)	-
Number	CH4	CO2	C2H6	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS
1	Composition CH4 CO2 97.053 1.95 97.053 1.95 97.053 1.95 97.053 1.95 97.053 1.95 97.053 1.95 97.053 1.95 97.053 1.95 97.053 1.95 97.053 1.96 96.05 1.96 96.05 1.96 97.053 1.96 97.053 1.96		0.997	173.6	12.68	177.07	12.68	3.471	177.71	12.68	4.114
2				173.9	12.93	177.21	12.93	3.310	177.85	12.93	3.948
3				174.2	13.45	177.49	13.45	3.293	178.12	13.45	3.919
4				176.3	15.67	178.54	15.67	2.243	179.13	15.67	2.827
5				176.7	15.93	178.65	15.93	1.954	179.23	15.93	2.534
6				176.7	16.03	178.69	16.03	1.995	179.27	16.03	2.573
7				178.4	18.10	179.46	18.10	1.062	180.01	18.10	1.610
8				178.9	17.79	179.36	17.79	0.457	179.91	17.79	1.009
9				178.9	18.25	179.51	18.25	0.615	180.06	18.25	1.161
10				182.4	22.30	180.60	22.30	1.796	181.11	22.30	1.290
11				182.9	21.79	180.49	21.79	2.407	181.00	21.79	1.897
12				183	22.37	180.62	22.37	2.380	181.13	22.37	1.875
13	96.05	1.96	1.99	174.8	13.15	177.38	13.15	2.575	178.01	13.15	3.206
14				175.1	13.21	177.41	13.21	2.308	178.04	13.21	2.938
15				175.3	13.07	177.34	13.07	2.035	177.97	13.07	2.668
16				177	16.36	178.87	16.36	1.870	179.44	16.36	2.442
17				177.4	16.52	178.93	16.52	1.532	179.50	16.52	2.100
18				177.4	16.24	178.82	16.24	1.421	179.39	16.24	1.994
19				179.6	18.39	179.60	18.39	0.004	180.14	18.39	0.539
20				179.9	18.32	179.57	18.32	0.327	180.12	18.32	0.217
21				180.2	18.48	179.63	18.48	0.573	180.17	18.48	0.031
22				183.3	22.20	180.61	22.20	2.686	181.12	22.20	2.181
23				183.6	22.23	180.62	22.23	2.981	181.12	22.23	2.475
24				183.6	22.50	180.68	22.50	2.924	181.18	22.50	2.420
						AAD		1.926			2.165

C.3.5 Predictions and experimental data from Le and Trebble [45] : Ethane

C.4 Experimental data from literature and simulated data: Solid hexane formation in liquid methane

Number	Compositi	on [mole %]	Experime	ental data	NeqS	im (SRK), kij = 0		Neq	Sim (UMR-PRU)		NeqSim	(sPC-SAFT), kij	= 0	NeqSin	n (SRK, kij= 0.038)	
Number	CH4	C6H14	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS [%]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar	ABS [%]	Temperature [K]	Pressure [bar]	ABS [%]
1	99.578	0.422	138.000	5.800	138.000	5.690	1.897	138.000	5.400	6.897	138.000	5.720	1.379	138.000	5.780	0.345
2	99.495	0.505	140.000	6.480	140.000	6.230	3.858	140.000	6.000	7.407	140.000	6.350	2.006	140.000	6.480	0.000
3	99.398	0.602	142.000	7.220	142.000	6.970	3.463	142.000	6.630	8.172	142.000	7.020	2.770	142.000	7.150	0.970
4	99.286	0.714	144.000	7.800	144.000	7.670	1.667	144.000	7.310	6.282	144.000	7.750	0.641	144.000	7.800	0.000
5	99.154	0.846	146.000	8.590	146.000	8.400	2.212	146.000	8.000	6.868	146.000	8.520	0.815	146.000	8.600	0.116
6	98.987	1.013	148.000	9.360	148.000	9.190	1.816	148.000	8.700	7.051	148.000	9.340	0.214	148.000	9.400	0.427
7	98.778	1.222	150.000	10.250	150.000	9.990	2.537	150.000	9.400	8.293	150.000	10.210	0.390	150.000	10.300	0.488
8	98.513	1.487	152.000	11.180	152.000	10.740	3.936	152.000	10.100	9.660	152.000	11.130	0.447	152.000	11.300	1.073
9	98.174	1.826	154.000	12.150	154.000	11.520	5.185	154.000	10.820	10.947	154.000	12.090	0.494	154.000	12.250	0.823
10	97.734	2.266	156.000	13.200	156.000	12.190	7.652	156.000	11.420	13.485	156.000	13.100	0.758	156.000	13.300	0.758
11	97.221	2.779	158.000	14.330	158.000	12.560	12.352	158.000	11.800	17.655	158.000	14.130	1.396	158.000	14.500	1.186
12	95.794	4.206	160.000	15.500	160.000	12.940	16.516	160.000	12.200	21.290	160.000	15.160	2.194	160.000	15.700	1.290
13	92.248	7.752	162.000	16.540	162.000	12.940	21.765	162.000	12.280	25.756	162.000	16.180	2.177	162.000	16.700	0.967
14	66.050	33.950	164.000	17.010	164.000	12.680	25.456	164.000	12.110	28.807	164.000	17.010	0.000	164.000	17.350	1.999
15	80.5	19.5	162.88	18	162.88	12.840	28.667	162.88	12.285	31.750	162.88	16.500	8.333	162.88	17.200	4.444
16	60	40	165.15	19.2	165.15	12.390	35.469	165.15	11.870	38.177	165.15	17.230	10.260	165.15	17.050	11.198
17	46.5	53.5	167.48	17.5	167.48	11.300	35.429	167.48	11.000	37.143	167.48	16.750	4.286	167.48	15.850	9.429
18	37.3	62.7	169.47	15	169.47	10.020	33.200	169.47	9.820	34.533	169.47	15.200	1.333	169.47	14.000	6.667
19	30	70	171.12	12.5	171.12	8.660	30.720	171.12	8.530	31.760	171.12	13.325	6.600	171.12	12.050	3.600
20	23.6	76.4	172.51	10	172.51	7.220	27.800	172.51	7.200	28.000	172.51	11.230	12.300	172.51	10.050	0.500
21	17.4	82.6	173.88	7.5	173.88	5.640	24.800	173.88	5.670	24.400	173.88	8.800	17.333	173.88	7.800	4.000
22	11.4	88.6	175.25	5	175.25	3.890	22.200	175.25	3.900	22.000	175.25	6.020	20.400	175.25	5.300	6.000
23	5.6	94.4	176.55	2.5	176.55	2.020	19.200	176.55	2.030	18.800	176.55	3.100	24.000	176.55	2.700	8.000
					AAD		15.991	AAD		19.354	AAD		5.240	AAD		2.795

C.4.1 SLV predictions (pressure) and experimental data from Shim and Kohn [52] and Luks, et al. [49]

Number	Compositi	on [mole %]	Experime	ntal data	Ne	qSim (SRK)		NeqS	im (UMR-PRU)		NeqS	im (sPC-SAFT)	
Number	CH4	C6H14	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS
1	80.5	19.5	162.88	18	156.038	12.840	6.842	151.560	12.285	6.950	163.630	16.500	0.750
2	60	40	165.15	19.2	162.920	12.390	2.230	162.000	11.870	1.91	166.933	17.230	1.783
3	46.5	53.5	167.48	17.5	166.870	11.300	0.610	166.514	11.000	0.577	169.000	16.750	1.520
4	37.3	62.7	169.47	15	169.340	10.020	0.130	169.570	9.820	0.059	170.590	15.200	1.120
5	30	70	171.12	12.5	171.170	8.660	0.050	171.079	8.530	0.024	171.930	13.325	0.810
6	23.6	76.4	172.51	10	172.710	7.220	0.200	172.658	7.200	0.086	173.140	11.230	0.630
7	17.4	82.6	173.88	7.5	174.130	5.640	0.250	174.100	5.670	0.127	174.350	8.800	0.470
8	11.4	88.6	175.25	5	175.450	3.890	0.200	175.440	3.900	0.108	175.530	6.020	0.280
9	5.6	94.4	176.55	2.5	176.680	2.020	0.130	176.680	2.030	0.074	176.700	3.100	0.150
11	68.5	31.5	164.35	18.9	160.188	18.900	4.162	158.430	18.9	3.602	165.780	18.900	1.430
12	68.5	31.5	164.45	48.1	160.070	48.100	4.380	158.080	48.1	3.874	-	-	-
13	68.5	31.5	164.55	65.5	160.010	65.500	4.540	157.876	65.5	4.056	-	-	-
					AAD		1.825			1.649			0.688

C.4.2 Predictions and experimental data from Shim and Kohn [52]

C.4.2 Predictions and experimental data from Luks, et al. [49]

Numbor	Composit	ion [mole %]	Experime	ntal data	Ne	eqSim (SRK)		Neq	Sim (UMR-PRU)		NeqS	im (sPC-SAFT)	
Number	CH4	C6H14	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS
1	99.578	0.422	138.000	5.800	122.500	5.690	15.500	-	5.400	-	136.560	5.720	1.440
2	99.495	0.505	140.000	6.480	124.369	6.230	15.631	-	6.000	-	138.250	6.350	1.750
3	99.398	0.602	142.000	7.220	126.227	6.970	15.773	-	6.630	-	139.942	7.020	2.058
4	99.286	0.714	144.000	7.800	128.072	7.670	15.928	-	7.310	-	141.612	7.750	2.388
5	99.154	0.846	146.000	8.590	129.928	8.400	16.072	-	8.000	-	143.290	8.520	2.710
6	98.987	1.013	148.000	9.360	131.922	9.190	16.078	-	8.700	-	145.080	9.340	2.920
7	98.778	1.222	150.000	10.250	134.000	9.990	16.000	-	9.400	-	146.960	10.210	3.040
8	98.513	1.487	152.000	11.180	136.174	10.740	15.826	-	10.100	-	148.900	11.130	3.100
9	98.174	1.826	154.000	12.150	138.400	11.520	15.600	-	10.820	-	150.890	12.090	3.110
10	97.734	2.266	156.000	13.200	140.620	12.190	15.380	-	11.420	-	152.897	13.100	3.103
11	97.221	2.779	158.000	14.330	142.680	12.560	15.320	-	11.800	-	154.670	14.130	3.330
12	95.794	4.206	160.000	15.500	146.390	12.940	13.610	-	12.200	-	157.843	15.160	2.157
13	92.248	7.752	162.000	16.540	150.550	12.940	11.450	128.389	12.280	33.611	161.200	16.180	0.800
14	66.050	33.950	164.000	17.010	160.300	12.680	3.700	159.577	12.110	4.423	165.700	17.010	1.700
					AAD		14.419			19.017			2.400

C.4.3 Different binary interaction parameters (SRK), SLE: Predictions and experimental data from Shim and Kohn [43], Luks, et al. [49] and Kuebler and McKinley [7]

Number	Compositio	on [mole %]	Experime	ental data	NeqS	5im (SRK), kij = 0.0		NeqSi	im (SRK, kij = 0.05)		NeqSim	(SRK, kij = 0.025	5)	NeqSir	n (SRK, kij = 0.03)		NeqSir	n (SRK, kij = 0.035)		NeqSim	(SRK, kij = 0.032	5)	NeqS	m (SRK, kij = 0.032	!5)	NeqSim	(SRK, kij = 0.032	25)
Number	CH4	C6H14 F	emperature [K	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS [%]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS
1	80.5	94.4	176.55	2.5	155.70	50	20.848	164.23	50	12.319	176.69	50	0.139	176.69	50	0.139	176.69	50	0.140	176.69	50	0.140	176.69	70	0.140	176.69	90	0.140
2	60	88.6	175.25	5	176.68	50	1.435	176.69	50	1.443	175.47	50	0.223	175.48	50	0.227	175.48	50	0.230	175.48	50	0.228	175.48	70	0.228	175.48	90	0.227
3	46.5	82.6	173.88	7.5	175.46	50	1.575	175.49	50	1.611	174.18	50	0.299	174.19	50	0.308	174.20	50	0.317	174.19	50	0.313	174.19	70	0.311	174.19	90	0.310
4	37.3	76.4	172.51	10	174.13	50	1.623	174.22	50	1.715	172.80	50	0.292	172.82	50	0.311	172.84	50	0.330	172.83	50	0.320	172.83	70	0.317	172.82	90	0.314
5	30	70	171.12	12.5	172.71	50	1.589	172.90	50	1.776	171.34	50	0.220	171.37	50	0.253	171.41	50	0.287	171.39	50	0.270	171.38	70	0.265	171.38	90	0.260
6	23.6	62.7	169.47	15	171.17	50	1.701	171.51	50	2.038	169.62	50	0.154	169.68	50	0.213	169.74	50	0.273	169.71	50	0.243	169.70	70	0.233	169.69	90	0.224
7	17.4	53.5	167.48	17.5	169.33	50	1.846	169.92	50	2.441	167.40	50	0.079	167.51	50	0.032	167.62	50	0.143	167.57	50	0.087	167.55	70	0.069	167.53	90	0.052
8	11.4	40	165.15	19.2	166.85	50	1.696	167.96	50	2.806	164.10	50	1.052	164.35	50	0.802	164.60	50	0.552	164.47	50	0.677	164.43	70	0.721	164.39	90	0.763
9	5.6	19.5	162.88	18	162.85	50	0.032	165.35	50	2.466	159.73	50	3.151	160.53	50	2.353	161.32	50	1.558	160.92	50	1.955	160.74	70	2.143	160.56	90	2.317
10	85.000	15.000	163.7	17	153.81	50	9.891	164.23	50	0.531	159.06	50	4.638	160.10	50	3.602	161.13	50	2.570	160.51	50	3.188	160.33	70	3.366	160.08	90	3.620
11	85.200	14.800	163.1	17	153.72	50	9.382	164.23	50	1.131	159.03	50	4.066	160.08	50	3.017	161.13	50	1.972	160.50	50	2.598	160.32	70	2.780	160.06	90	3.039
12	88.900	11.100	162.6	17	151.86	50	10.742	164.23	50	1.631	158.52	50	4.078	159.83	50	2.768	161.13	50	1.472	160.35	50	2.246	160.07	70	2.532	159.70	90	2.901
13	92.170	7.830	162	17	149.63	50	12.371	164.23	50	2.231	157.82	50	4.179	159.43	50	2.574	161.02	50	0.979	160.07	50	1.935	159.62	70	2.378	159.10	90	2.900
14	94.240	5.760	160.9	16	147.49	50	13.414	164.23	50	3.331	156.84	50	4.057	158.67	50	2.227	160.49	50	0.409	159.40	50	1.498	158.81	70	2.089	158.16	90	2.741
15	96.520	3.480	158.1	15	143.31	50	14.786	164.23	50	6.131	154.08	50	4.022	156.18	50	1.921	158.27	50	0.166	157.02	50	1.085	156.25	70	1.848	155.46	90	2.643
16	97.570	2.430	155.3	13	139.84	50	15.455	162.12	50	6.823	151.20	50	4.099	153.41	50	1.890	155.60	50	0.304	154.29	50	1.011	153.51	70	1.795	152.69	90	2.611
17	98.650	1.350	149.7	12	133.64	50	16.059	156.51	50	6.815	145.38	50	4.318	147.65	50	2.052	149.89	50	0.191	148.55	50	1.152	147.88	70	1.818	147.15	90	2.552
18	99.184	0.816	144.2	10	128.23	50	15.972	150.93	50	6.732	139.95	50	4.249	142.20	50	2.000	144.42	50	0.220	143.09	50	1.109	142.58	70	1.619	141.97	90	2.234
19	99.502	0.498	138.6	8	123.10	50	15.495	145.41	50	6.808	134.67	50	3.931	136.88	50	1.723	139.05	50	0.453	137.75	50	0.849	137.38	70	1.218	136.88	90	1.722
20	99.704	0.296	133	6	118.03	50	14.967	139.84	50	6.835	129.37	50	3.633	131.52	50	1.475	133.65	50	0.649	132.38	50	0.622	132.13	70	0.872	131.72	90	1.278
21	99.822	0.178	127.6	5	113.43	50	14.165	134.73	50	7.135	124.52	50	3.077	126.63	50	0.970	128.70	50	1.104	127.46	50	0.136	127.30	70	0.300	126.97	90	0.630
22	99.894	0.106	121.8	5	109.10	50	12.696	129.91	50	8.108	119.94	50	1.860	122.00	50	0.198	124.02	50	2.223	122.81	50	1.012	122.71	70	0.915	122.44	90	0.645
23	99.896	0.104	121.8	5	108.95	50	12.848	129.74	50	7.937	119.78	50	2.022	121.83	50	0.035	123.86	50	2.058	122.65	50	0.848	122.55	70	0.752	122.28	90	0.484
24	99.896	0.1043	121.8	5	108.97	50	12.825	129.76	50	7.963	119.80	50	1.997	121.86	50	0.059	123.88	50	2.083	122.67	50	0.873	122.58	70	0.777	122.31	90	0.509
25	99.897	0.1031	121.8	5	108.88	50	12.918	129.66	50	7.860	119.70	50	2.095	121.76	50	0.040	123.78	50	1.983	122.57	50	0.773	122.48	70	0.678	122.21	90	0.411
26	99.897	0.1027	121.8	5	108.85	50	12.949	129.63	50	7.825	119.67	50	2.128	121.73	50	0.073	123.75	50	1.949	122.54	50	0.740	122.45	70	0.645	122.18	90	0.379
27	99.941	0.0586	116.2	5	104.56	50	11.642	124.82	50	8.623	115.11	50	1.086	117.12	50	0.920	119.09	50	2.892	117.91	50	1.712	117.87	70	1.670	117.65	90	1.452
28	99.968	0.0317	110.6	5	100.25	50	10.347	119.99	50	9.394	110.53	50	0.066	112.49	50	1.888	114.41	50	3.809	113.26	50	2.660	113.26	70	2.659	113.08	90	2.481
29	99.984	0.0158	105	5	95.81	50	9.188	115.00	50	10.000	105.80	50	0.799	107.70	50	2.699	109.57	50	4.567	108.45	50	3.450	108.48	70	3.482	108.34	90	3.339
30	99.992	0.0077	99.4	5	91.65	50	7.753	110.31	50	10.906	101.35	50	1.953	103.20	50	3.800	105.02	50	5.618	103.93	50	4.530	103.99	70	4.587	103.87	90	4.470
31	99.997	0.00349	93.8	5	87.48	50	6.315	105.60	50	11.803	96.90	50	3.102	98.70	50	4.896	100.46	50	6.662	99.41	50	5.606	99.48	70	5.681	99.39	90	5.587
					AAD		9.823	AAD		5.651	AAD		2.111	AAD		1.467	AAD		1.554	AAD		1.415	AAD		1.577	AAD		1.717

C.4.4 Different binary interaction parameters (sPC-SAFT), SLE: Predictions and experimental data from Shim and Kohn [43], Luks, et al. [49] and Kuebler and McKinley [7]

Number	Compositi	on [mole %]] Experime	ental data	NeqSim	(sPC-SAFT), kij = 0	.0	NeqSim (sPC-SAFT), kij = 0.0)1	NeqSim (sl	PC-SAFT), kij = 0	.005
Number	CH4	C6H14	Femperature [K	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS [%]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS
1	80.5	94.4	176.55	2.5	176.71	18	0.155	176.71	20	0.159	176.71	20	0.157
2	60	88.6	175.25	5	175.55	18	0.296	175.56	20	0.311	175.55	20	0.304
3	46.5	82.6	173.88	7.5	174.36	18	0.479	174.40	20	0.515	174.38	20	0.497
4	37.3	76.4	172.51	10	173.15	18	0.641	173.22	20	0.714	173.19	20	0.677
5	30	70	171.12	12.5	171.93	18	0.814	172.06	20	0.941	172.00	20	0.878
6	23.6	62.7	169.47	15	170.60	18	1.127	170.81	20	1.342	170.70	20	1.234
7	17.4	53.5	167.48	17.5	169.01	18	1.530	169.39	20	1.911	169.20	20	1.720
8	11.4	40	165.15	19.2	166.94	18	1.786	167.72	20	2.571	167.33	20	2.178
9	5.6	19.5	162.88	18	164.22	18	1.337	166.40	20	3.520	165.25	20	2.374
10	85.000	15.000	163.7	17	163.47	18	0.228	166.12	20	2.418	164.79	20	1.087
11	85.200	14.800	163.1	17	163.43	18	0.333	166.11	20	3.006	164.76	20	1.662
12	88.900	11.100	162.6	17	162.54	18	0.058	165.77	20	3.170	164.14	20	1.543
13	92.170	7.830	162	17	161.19	19	0.806	164.97	25	2.966	163.11	20	1.114
14	94.240	5.760	160.9	16	159.71	18	1.192	164.02	25	3.119	161.83	20	0.931
15	96.520	3.480	158.1	15	156.37	18	1.731	161.31	18	3.214	158.75	20	0.649
16	97.570	2.430	155.3	13	153.35	17	1.946	158.49	18	3.188	155.91	18	0.606
17	98.650	1.350	149.7	12	147.77	16	1.926	152.84	18	3.136	150.26	18	0.564
18	99.184	0.816	144.2	10	142.73	14	1.471	147.65	18	3.450	145.16	18	0.961
19	99.502	0.498	138.6	8	137.96	10	0.636	142.68	16	4.077	140.33	16	1.726
20	99.704	0.296	133	6	133.24	10	0.243	137.73	15	4.731	135.46	16	2.463
21	99.822	0.178	127.6	5	128.88	10	1.277	133.34	10	5.736	131.07	13	3.474
22	99.894	0.106	121.8	5	124.75	10	2.950	129.05	10	7.253	126.91	10	5.107
23	99.896	0.104	121.8	5	124.60	10	2.804	128.90	10	7.102	126.76	10	4.959
24	99.896	0.1043	121.8	5	124.63	10	2.826	128.92	10	7.124	126.78	10	4.981
25	99.897	0.1031	121.8	5	124.54	10	2.737	128.83	10	7.033	126.69	10	4.891
26	99.897	0.1027	121.8	5	124.51	10	2.708	128.80	10	7.002	126.66	10	4.861
27	99.941	0.0586	116.2	5	120.39	10	4.194	124.54	10	8.338	122.47	10	6.273
28	99.968	0.0317	110.6	5	116.25	8	5.652	120.24	10	9.639	118.25	10	7.647
29	99.984	0.0158	105	5	111.93	8	6.934	115.77	10	10.773	113.86	8	8.863
30	99.992	0.0077	99.4	5	107.85	7	8.451	111.56	50	12.157	109.71	8	10.310
31	99.997	0.00349	93.8	5	103.74	6	9.937	107.30	50	13.504	105.53	6	11.726
					AAD		2.232	AAD		4.649	AAD		2.787

C.5 Experimental data from literature and simulated data: Solid heptane formation in liquid methane

Number	Compositio	n [mole %]	Experimen	tal data		NeqSim (SRK)			NeqSim (UMR-	PRU)	NeqSi	m (sPC-SAFT)		NeqSim (SR), kij = 0.037 ("optimal"	<i>'</i>)
Number	CH4	C7H16	Temperature [K]	Pressure [bar]	[emperature [K]	Pressure [bar]	ABS [%]	Temperature [K]	Pressure [bar]	ABS [%]	Temperature [K]	Pressure [bar]	ABS [%]	Temperature [K]	Pressure [bar]	ABS [%]
1	99.9228	0.0772	131	3.7	131	3.860	4.324	131	3.690	0.270	131.0	3.88	4.86	131	3.85	4.05
2	99.899	0.101	134	4.5	134	4.600	2.222	134	4.440	1.333	134.0	4.61	2.44	134	4.62	2.67
3	99.868	0.132	137	5.3	137	5.440	2.642	137	5.270	0.566	137.0	5.45	2.83	137	5.45	2.83
4	99.83	0.17	140	6.2	140	6.370	2.742	140	6.220	0.323	140.0	6.38	2.90	140	6.40	3.23
5	99.781	0.219	143	7.3	143	7.380	1.096	143	7.280	0.274	143.0	7.43	1.78	143	7.40	1.37
6	99.721	0.279	146	8.4	146	8.570	2.024	146	8.450	0.595	146.0	8.59	2.26	146	8.60	2.38
7	99.647	0.353	149	9.6	149	9.820	2.292	149	9.710	1.146	149.0	9.88	2.92	149	9.90	3.13
8	99.556	0.444	152	11.1	152	11.200	0.901	152	11.050	0.450	152.0	11.29	1.71	152	11.40	2.70
9	99.447	0.553	155	12.6	155	12.650	0.397	155	12.400	1.587	155.0	12.84	1.90	155	13.00	3.17
10	99.31	0.69	158	14.2	158	14.090	0.775	158	13.730	3.310	158.0	14.52	2.25	158	14.70	3.52
11	99.119	0.881	161	15.9	161	15.220	4.277	161	14.820	6.792	161.0	16.33	2.70	161	16.60	4.40
12	98.84	1.16	164	18	164	15.850	11.944	164	15.530	13.722	164.0	18.28	1.56	164	18.60	3.33
13	98.32	1.68	167	20.1	167	15.760	21.592	167	15.600	22.388	167.0	20.33	1.14	167	20.80	3.48
14	97.64	2.36	169.35	21.87	169.35	15.080	31.047	169.35	15.110	30.910	169.4	21.95	0.37	169.35	20.78	4.98
15	68	32	169.35	21.87	169.35	15.080	31.047	169.35	15.110	30.910	169.4	21.95	0.37	169.35	20.78	4.98
16	61.9	38.1	170	21.7	170	14.810	31.751	170	14.870	31.475	170.0	22.00	1.38	170	20.50	5.53
17	55.9	44.1	171	21.1	171	14.270	32.370	171	14.400	31.754	171.0	22.57	6.97	171	19.80	6.16
18	50.7	49.3	172	20.3	172	13.640	32.808	172	13.820	31.921	172.0	22.19	9.31	172	18.90	6.90
19	45.8	54.2	173	19.4	173	12.900	33.505	173	13.120	32.371	173.0	21.36	10.10	173	17.80	8.25
20	41.2	58.8	174	18.2	174	12.030	33.901	174	12.330	32.253	174.0	20.16	10.77	174	16.50	9.34
21	36.5	63.5	175	16.9	175	11.060	34.556	175	11.350	32.840	175.0	18.65	10.36	175	15.20	10.06
22	32	68	176	15.2	176	9.970	34.408	176	10.280	32.368	176.0	16.84	10.79	176	13.70	9.87
23	27.6	72.4	177	13.3	177	8.770	34.060	177	9.100	31.579	177.0	14.80	11.28	177	12.00	9.77
24	23.1	76.9	178	11.4	178	7.450	34.649	178	7.750	32.018	178.0	12.52	9.82	178	10.10	11.40
25	18.7	81.3	179	9.4	179	6.020	35.957	179	6.290	33.085	179.0	10.07	7.13	179	8.20	12.77
26	14.3	85.7	180	7.4	180	4.470	39.595	180	4.700	36.486	180.0	7.44	0.54	180	6.00	18.92
27	9.7	90.3	181	5.4	181	2.82	47.778	181	2.95	45.370	181.0	4.65	13.89	181	3.80	29.63
					AAD		20.173	AAD		19.189	AAD		4.976	AAD		6.994

C5.1 SLV predictions (pressure) and experimental data from Tiffin, et al. [53]

Number	Compositi	on [mole %]	Experimen	ntal data	Neo	Sim (SRK), kij=0		Ne	eqSim (UMR-PRU)		NeqSin	n (sPC-SAFT), kij=0)	NeqSim (SR	K), kij = 0.037 ("optim	al")
Number	CH4	C7H16	Temperature [K]	Pressure [bar]	Femperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS
1	99.9228	0.0772	131	3.7	113.28	3.70	17.72	-	3.7	0.000	131.0	3.88	0.00	130.00	50.00	1.00
2	99.899	0.101	134	4.5	115.60	4.50	18.40	-	4.5	0.000	134.0	4.61	0.00	132.48	50.00	1.52
3	99.868	0.132	137	5.3	118.01	5.30	18.99	-	5.3	0.000	136.6	5.45	0.38	135.06	50.00	1.94
4	99.83	0.17	140	6.2	120.39	6.20	19.61	-	6.2	0.000	138.9	6.38	1.14	137.61	50.00	2.39
5	99.781	0.219	143	7.3	122.87	7.30	20.13	-	7.3	0.000	141.2	7.43	1.81	140.27	50.00	2.73
6	99.721	0.279	146	8.4	125.34	8.40	20.66	-	8.4	0.000	143.5	8.59	2.50	142.91	50.00	3.09
7	99.647	0.353	149	9.6	127.83	9.60	21.17	-	9.6	0.000	145.8	9.88	3.16	145.58	50.00	3.42
8	99.556	0.444	152	11.1	130.33	11.10	21.67	-	11.1	0.000	148.2	11.29	3.82	148.25	50.00	3.75
9	99.447	0.553	155	12.6	132.78	12.60	22.22	-	12.6	0.000	150.5	12.84	4.53	150.88	50.00	4.12
10	99.31	0.69	158	14.2	135.31	14.20	22.69	-	14.2	0.000	152.8	14.52	5.18	153.57	50.00	4.43
11	99.119	0.881	161	15.9	138.13	15.90	22.87	-	15.9	0.000	155.4	16.33	5.56	156.55	50.00	4.45
12	98.84	1.16	164	18	141.28	18.00	22.73	-	18	0.000	158.3	18.28	5.67	159.82	50.00	4.18
13	98.32	1.68	167	20.1	145.37	20.10	21.63	-	20.1	0.000	162.0	20.33	5.01	163.79	50.00	3.21
*14	97.64	2.36	169.35	21.87	148.73	21.87	20.62	-	21.87	0.000	164.5	21.95	4.88	166.58	50.00	2.77
*15	68	32	169.35	21.87	165.13	21.87	4.22	163.88	21.87	5.471	171.3	21.95	1.93	167.65	50.00	1.70
16	61.9	38.1	170	21.7	167.12	21.70	2.88	166.31	21.7	3.694	171.9	22.00	1.89	168.88	50.00	1.12
17	55.9	44.1	171	21.1	168.99	21.10	2.01	168.44	21.1	2.565	172.6	22.57	1.61	170.21	50.00	0.79
18	50.7	49.3	172	20.3	170.53	20.30	1.47	170.14	20.3	1.860	173.3	22.19	1.33	171.41	50.00	0.59
19	45.8	54.2	173	19.4	171.91	19.40	1.09	171.64	19.4	1.363	174.1	21.36	1.07	172.56	50.00	0.44
20	41.2	58.8	174	18.2	173.17	18.20	0.83	172.97	18.2	1.035	174.8	20.16	0.81	173.64	50.00	0.36
21	36.5	63.5	175	16.9	174.40	16.90	0.60	174.25	16.9	0.746	175.6	18.65	0.61	174.73	50.00	0.27
22	32	68	176	15.2	175.53	15.20	0.47	175.43	15.2	0.569	176.4	16.84	0.41	175.76	50.00	0.24
23	27.6	72.4	177	13.3	176.60	13.30	0.40	176.53	13.3	0.466	177.3	14.80	0.27	176.76	50.00	0.24
24	23.1	76.9	178	11.4	177.66	11.40	0.34	177.61	11.4	0.386	178.1	12.52	0.10	177.76	50.00	0.24
25	18.7	81.3	179	9.4	178.65	9.40	0.35	178.63	9.4	0.369	179.0	10.07	0.00	178.72	50.00	0.28
26	14.3	85.7	180	7.4	179.62	7.40	0.38	179.61	7.4	0.391	179.8	7.44	0.22	179.66	50.00	0.34
27	9.7	90.3	181	5.4	180.60	5.40	0.40	180.60	5.4	0.404	180.7	4.65	0.34	180.62	50.00	0.38
					AAD		11.354	AAD		-	AAD		2.008	AAD		0.276

C5.2 Predictions and experimental SL data from Tiffin, et al. [53]

C.5.4 Different binary interaction parameters (SRK) : Predictions and experimental SL data from Tiffin, et al. [46]

Number	Composit	ion [mole %]	Experimenta	al data	Ne	qSim (SRK), kij = 0		Neq	Sim (SRK), kij = 0.0	3	NeqSir	n (SRK), kij = 0.035		NeqSi	m (SRK), kij = 0.036		NeqSim	(SRK), kij = 0.037		NeqSim	(SRK), kij = 0.038	\$
Number	CH4	C7H16	Temperature [K] P	ressure [bar]	Temperature [#	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS
1.0	97.6	2.4	166.5	-	147.0	50.0	19.5	162.9	50.0	3.6	165.5	50.0	1.0	166.1	50.0	0.4	166.6	50.0	0.1	167.0	50.0	0.5
2.0	98.5	1.5	163.7	-	142.5	50.0	21.2	158.9	50.0	4.8	161.7	50.0	2.0	162.2	50.0	1.5	162.8	50.0	0.9	163.4	50.0	0.3
3.0	98.7	1.3	160.9	-	140.4	50.0	20.5	156.9	50.0	4.0	159.7	50.0	1.2	160.2	50.0	0.7	160.8	50.0	0.1	161.3	50.0	0.4
4.0	98.9	1.1	160.9	-	139.1	50.0	21.8	155.6	50.0	5.3	158.3	50.0	2.6	158.9	50.0	2.0	159.4	50.0	1.5	160.0	50.0	0.9
5.0	99.2	0.8	155.6	-	134.9	50.0	20.7	151.2	50.0	4.4	153.9	50.0	1.7	154.4	50.0	1.2	155.0	50.0	0.6	155.5	50.0	0.1
6.0	99.3	0.7	155.6	-	133.8	50.0	21.8	150.1	50.0	5.5	152.7	50.0	2.9	153.2	50.0	2.4	153.8	50.0	1.8	154.3	50.0	1.3
7.0	99.5	0.5	150.1	-	129.7	50.0	20.4	145.7	50.0	4.4	148.2	50.0	1.9	148.7	50.0	1.4	149.2	50.0	0.9	149.7	50.0	0.4
8.0	99.7	0.3	144.4	-	124.7	50.0	19.7	140.2	50.0	4.2	142.6	50.0	1.8	143.1	50.0	1.3	143.6	50.0	0.8	144.1	50.0	0.3
9.0	99.8	0.2	138.7	-	119.8	50.0	18.9	134.9	50.0	3.8	137.3	50.0	1.4	137.7	50.0	1.0	138.2	50.0	0.5	138.7	50.0	0.0
10.0	99.8	0.2	138.7	-	119.6	50.0	19.1	134.6	50.0	4.1	137.0	50.0	1.7	137.4	50.0	1.3	137.9	50.0	0.8	138.4	50.0	0.3
11.0	99.9	0.1	133.1	-	115.3	50.0	17.8	129.9	50.0	3.2	132.2	50.0	0.9	132.7	40.0	0.4	133.1	40.0	0.0	133.6	40.0	0.5
12.0	99.9	0.1	127.6	-	110.7	50.0	16.9	125.0	50.0	2.6	127.2	50.0	0.4	127.6	30.0	0.0	128.1	30.0	0.5	128.5	30.0	0.9
13.0	100.0	0.0	122.0	-	106.5	50.0	15.5	120.3	50.0	1.7	122.5	50.0	0.5	122.9	50.0	0.9	123.4	50.0	1.4	123.8	50.0	1.8
14.0	100.0	0.0	122.0	-	106.4	50.0	15.6	120.2	50.0	1.8	122.4	50.0	0.4	122.8	50.0	0.8	123.2	50.0	1.2	123.6	50.0	1.6
15.0	100.0	0.0	118.6	-	103.6	50.0	15.0	117.1	50.0	1.5	119.3	50.0	0.7	119.7	50.0	1.1	120.1	50.0	1.5	120.5	50.0	1.9
16.0	100.0	0.0	116.4	-	102.1	50.0	14.3	115.6	50.0	0.8	117.7	50.0	1.3	118.1	50.0	1.7	118.5	50.0	2.1	118.9	50.0	2.5
17.0	100.0	0.0	110.9	-	98.0	50.0	12.9	111.1	50.0	0.2	113.1	50.0	2.2	113.5	50.0	2.6	113.9	50.0	3.0	114.3	50.0	3.4
18.0	100.0	0.0	110.9	-	97.9	50.0	13.0	111.0	50.0	0.1	113.0	50.0	2.1	113.4	50.0	2.5	113.8	50.0	2.9	114.2	50.0	3.3
19.0	100.0	0.0	110.9	-	97.9	50.0	13.0	110.9	50.0	0.0	113.0	50.0	2.1	113.4	50.0	2.5	113.8	50.0	2.9	114.2	50.0	3.3
20.0	100.0	0.0	105.3	-	93.9	50.0	11.4	106.6	50.0	1.3	108.6	50.0	3.3	109.0	50.0	3.7	109.4	50.0	4.1	109.7	50.0	4.4
21.0	100.0	0.0	99.8	-	89.8	50.0	10.0	102.1	50.0	2.3	104.1	50.0	4.3	104.5	50.0	4.7	104.8	50.0	5.0	105.2	50.0	5.4
22.0	100.0	0.0	94.2		85.7	50.0	8.5	97.7	50.0	3.5	99.6	50.0	5.4	99.9	50.0	5.7	100.3	50.0	6.1	100.7	50.0	6.5
					AAD		16.699	AAD		2.870	AAD		1.893	AAD		1.804	AAD		1.763	AAD		1.833
Number	Composi	tion [mole %]	Experimer	ntal data	NeqSim	(sPC-SAFT), kij =	0	NeqSim	n (sPC-SAFT), kij =	0.005												
--------	---------	---------------	-----------------	----------------	-----------------	-------------------	-------	-----------------	---------------------	-------												
Number	CH4	C7H16	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS												
1	97.63	2.37	166.50	-	163.06	50.00	3.44	165.90	50.00	0.60												
2	98.48	1.52	163.70	-	159.14	50.00	4.56	162.03	50.00	1.67												
3	98.74	1.26	160.90	-	157.31	50.00	3.59	160.19	50.00	0.71												
4	98.88	1.12	160.90	-	156.13	50.00	4.77	158.99	50.00	1.91												
5	99.23	0.77	155.60	-	152.37	50.00	3.23	155.15	50.00	0.45												
6	99.30	0.70	155.60	-	151.36	50.00	4.24	154.12	50.00	1.48												
7	99.52	0.48	150.10	-	147.62	50.00	2.48	150.29	50.00	0.19												
8	99.70	0.30	144.40	-	142.97	50.00	1.43	145.53	50.00	1.13												
9	99.82	0.18	138.70	-	138.47	50.00	0.23	140.93	50.00	2.23												
10	99.83	0.18	138.70	-	138.53	50.00	0.17	140.68	50.00	1.98												
11	99.89	0.11	133.10	-	134.31	50.00	1.21	136.76	50.00	3.66												
12	99.94	0.06	127.60	-	130.00	50.00	2.40	132.00	50.00	4.40												
13	99.96	0.04	122.00	-	125.93	50.00	3.93	127.98	50.00	5.98												
14	99.97	0.03	122.00	-	125.79	50.00	3.79	127.98	50.00	5.98												
15	99.98	0.02	118.60	-	123.11	50.00	4.51	125.25	50.00	6.65												
16	99.98	0.02	116.40	-	121.73	50.00	5.33	123.84	50.00	7.44												
17	99.99	0.01	110.90	-	117.73	50.00	6.83	119.77	50.00	8.87												
18	99.99	0.01	110.90	-	117.66	50.00	6.76	119.70	50.00	8.80												
19	99.99	0.01	110.90	-	117.61	50.00	6.71	119.65	50.00	8.75												
20	100.00	0.00	105.30	-	112.69	50.00	7.39	115.68	50.00	10.38												
21	100.00	0.00	99.80	-	-	-	-	-	-	-												
22	100.00	0.00	94.20	-	-	-	-	-	-	-												
					AAD		3.849	AAD		4.163												

C.5.5Different binary interaction parameters (sPC-SAFT): Predictions and experimental SL data from Tiffin, et al. [46]

C.6 Experimental data from literature and simulated data: Solid benzene formation in liquid methane

C.6.1 SLV predictions (temperature) and experimental data from Kuebler and McKinley [7]

Number	Pr Composition [mole %] Experimental data		ental data		NeqSim (SRK, kij = 0.00)		N	eqSim (SRK, kij = 0.06)		Neo	Sim (sPC-SAFT, kij =	0)	Nei	qSim (sPC-SAFT, kij = 0.	02)	NeqSin	m (sPC-SAFT, kij = 0.025)		NeqSim (UMR-PRU		
Number	CH4	C6H6	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar] A	BS	Temperature [K]	Pressure [bar]	ABS
1	27.54	72.46	268.1	170	251.6	170.0	16.5	260.6	170.0	7.5	254.0	170.0	14.1	266.1	170.0	2.0	260.5	170.0	7.6	256.0	170.0	12.1
2	26.92	73.08	268.2	160	252.5	160.0	15.7	261.1	160.0	7.1	255.0	160.0	13.2	266.4	160.0	1.8	261.0	160.0	7.2	256.8	160.0	11.4
3	25.91	74.09	268.4	150	253.4	150.0	15.0	261.7	150.0	6.7	256.0	150.0	12.4	266.8	150.0	1.6	261.6	150.0	6.8	257.6	150.0	10.8
4	24.63	75.37	268.7	140	254.5	140.0	14.2	262.3	140.0	6.4	256.9	140.0	11.8	267.2	140.0	1.5	262.2	140.0	6.5	258.5	140.0	10.2
5	23.58	76.42	269	130	255.6	130.0	13.4	263.0	130.0	6.0	257.8	130.0	11.2	267.6	130.0	1.4	262.8	130.0	6.2	259.4	130.0	9.6
6	22.25	77.75	269.4	120	256.8	120.0	12.6	263.8	120.0	5.6	258.8	120.0	10.6	268.1	120.0	1.3	263.5	120.0	5.9	260.4	120.0	9.0
7	20.69	79.31	269.9	110	258.1	110.0	11.8	264.6	110.0	5.3	259.9	110.0	10.0	268.6	110.0	1.3	264.3	110.0	5.6	261.5	110.0	8.4
8	19.08	80.92	270.4	100	259.5	100.0	10.9	265.5	100.0	4.9	261.1	100.0	9.3	269.1	100.0	1.3	265.2	100.0	5.2	262.7	100.0	7.7
9	17.51	82.49	270.9	90	261.1	90.0	9.8	266.4	90.0	4.5	262.4	90.0	8.5	269.8	90.0	1.1	266.1	90.0	4.8	263.9	90.0	7.0
10	15.56	84.44	271.6	80	262.7	80.0	8.9	267.5	80.0	4.1	263.8	80.0	7.8	270.5	80.0	1.1	267.2	80.0	4.4	265.2	80.0	6.4
11	14.02	85.98	272.2	70	264.4	70.0	7.8	268.6	70.0	3.6	265.4	70.0	6.8	271.3	70.0	0.9	268.3	70.0	3.9	266.7	70.0	5.5
12	11.76	88.24	273.1	60	266.3	60.0	6.8	269.8	60.0	3.3	267.0	60.0	6.1	272.1	60.0	1.0	269.5	60.0	3.6	268.2	60.0	4.9
13	9.81	90.19	273.9	50	268.2	50.0	5.7	271.1	50.0	2.8	268.8	50.0	5.1	273.0	50.0	0.9	270.8	50.0	3.1	269.7	50.0	4.2
14	7.53	92.47	274.9	40	270.1	40.0	4.8	272.4	40.0	2.5	270.6	40.0	4.3	274.0	40.0	0.9	272.2	40.0	2.7	271.4	40.0	3.5
15	5.67	94.33	275.8	30	272.2	30.0	3.6	273.9	30.0	1.9	272.5	30.0	3.3	275.1	30.0	0.7	273.7	30.0	2.1	273.1	30.0	2.7
16	3.65	96.35	276.8	20	274.2	20.0	2.6	275.4	20.0	1.4	274.4	20.0	2.4	276.1	20.0	0.7	275.2	20.0	1.6	274.8	20.0	2.0
17	1.85	98.15	277.7	10	276.4	10.0	1.3	276.9	10.0	0.8	276.4	10.0	1.3	277.3	10.0	0.4	276.8	10.0	0.9	276.6	10.0	1.1
18																						
19																						
20																						
21																						
22	99.989	0.011	165	19.5	164.9	19.5	0.2	164.9	19.5	0.1	165.2	19.5	0.2	165.2	19.5	0.2	165.2	19.5	0.2	165.7	19.5	0.7
23	99.9865	5 0.0135	170	23.3	169.7	23.3	0.3	169.7	23.3	0.3	170.0	23.3	0.0	169.9	23.3	0.1	169.9	23.3	0.1	170.1	23.3	0.1
24	99.985	0.015	175	29.7	176.5	29.7	1.4	176.7	29.7	1.7	176.9	29.7	1.9	176.9	29.7	1.8	176.8	29.7	1.8	176.9	29.7	1.9
25	99.9835	5 0.0165	180	32.8	179.7	32.8	0.3	179.7	32.8	0.3	179.9	32.8	0.1	179.9	32.8	0.1	179.9	32.8	0.1	179.9	32.8	0.1
26	99.983	0.017	185	38.4	184.6	38.4	0.4	184.6	38.4	0.4	184.9	38.4	0.1	184.9	38.4	0.1	184.9	38.4	0.1	184.8	38.4	0.3
27	99.985	0.015	190.5	45.66	190.4	45.7	0.2	190.3	45.7	0.3	190.4	45.7	0.2	192.2	45.7	1.7	192.2	45.7	1.7	189.9	45.7	0.6
					AAD		7.14593	AAD		3.370	AAD		6.120	AAD		1.045	AAD		3.552	AAD		5.218

C.6.2 Predictions and experimental SL data from Kuebler and McKinley [7]

	Compositi	on [mole %]	Experime	ental data		NeqSim (SRK,kij = 0.0)			NegSim (UMR-PRU)		Ne	qSim (sPC-SAFT, kij = 0))	NeqSi	m (SRK,kij = 0.06 "optim	al")	NegSim	SRK,kij = 0.06 "optima	I")	NegSir	n (SRK,kij = 0.06 "oj	otimal")
Number	CH4	C6H6	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS
1	99.86000	0.140000	199.8	136.8	-			-		-	-			-		-	-		-	-		
2	99.87100	0.129000	199.8	126.1	-					-												
3	99.89200	0.108000	199.8	105.4						-												
4	99.90840	0.091600	188.7	136.1	-					-												
5	99.91320	0.086800	188.7	125.4	-			-		-			-	-		-	-	-	-	-		-
6	99.92210	0.077900	188.7	105.4	-		-	-	-	-							-			-		-
7	99.92890	0.071100	183.1	136.1	-	-	-	-	-	-	-			-		-	-	-	-	-		-
8	99.93860	0.061400	183.1	105.4	-		-	-		-	-	-		-	-	-	-		-	-		-
9	99.94630	0.053700	183.1	86.1	-			-		-	-											
10	99.95600	0.044000	183.1	61.3	-		-			-	-		-	-	-	-	-	-		-		-
11	99.95810	0.041900	183.1	54.1	-		-	-		-	-	-		-	-		-		-			
12	99.96370	0.036300	177.6	54.1	-					-	-		-	-		-			-			
13	99.97070	0.029300	172	54.1	-					-				-					-			
14	99.97050	0.029500	166.4	135.8				-		-									-			
15	99.97300	0.027000	166.4	105.4	-									-								
16	99.97480	0.025200	166.4	86.1	-			-		-												-
17	99.97740	0.022600	166.4	54.1	-	-			-	-							-	-		-		-
18	99.98330	0.016700	160.9	54.1	132.23	50.00	28.67	168.44	50.00	7.54	145.15	50.00	21.25	161.63	50.00	0.73	157.29	70.00	3.61	159.05	90.00	1.85
19	99.98780	0.012200	155.3	54.1	127.78	50.00	27.52	161.90	50.00	6.60	141.18	50.00	19.72	155.47	50.00	0.17	152.33	70.00	2.97	153.67	90.00	1.63
20	99.99181	0.008190	149.8	54.1	122.69	50.00	27.11	155.39	50.00	5.59	136.87	40.00	18.43	148.95	50.00	0.85	146.66	70.00	3.14	147.68	90.00	2.12
21	99.99379	0.006210	144.2	135.8	119.45	50.00	24.75	151.50	50.00	7.30	133.89	40.00	15.91	144.96	50.00	0.76	143.06	70.00	1.14	143.92	90.00	0.28
22	99.99386	0.006140	144.2	126.1	119.32	50.00	24.88	151.34	50.00	7.14	133.77	40.00	10.43	144.81	50.00	0.61	142.92	70.00	1.28	143.78	90.00	0.42
23	99.99411	0.005890	144.2	105.4	118.85	50.00	25.35	150.79	50.00	6.59	133.34	40.00	10.86	144.24	50.00	0.04	142.40	70.00	1.80	143.24	90.00	0.96
24	99.99435	0.005650	144.2	83.7	118.39	50.00	25.81	150.25	50.00	6.05	132.91	40.00	11.29	143.68	50.00	0.52	141.89	70.00	2.31	142.70	90.00	1.50
25	99.99455	0.005450	144.2	69.9	117.99	50.00	26.21	149.78	50.00	5.58	132.55	40.00	11.65	143.20	50.00	1.00	141.45	70.00	2.75	142.25	90.00	1.95
26	99.99450	0.005500	144.2	60.6	118.09	50.00	26.11	149.90	50.00	5.70	132.64	40.00	11.56	143.32	50.00	0.88	141.56	70.00	2.64	142.36	90.00	1.84
27	99.99453	0.005470	144.2	54.1	118.03	50.00	26.17	149.83	50.00	5.63	132.59	40.00	11.61	143.25	50.00	0.95	141.49	70.00	2.71	142.29	90.00	1.91
28	99.99651	0.003490	138.6	54.1	113.33	50.00	25.27	144.41	50.00	5.81	128.23	40.00	15.97	137.65	50.00	0.95	136.28	70.00	2.32	136.91	90.00	1.69
29	99.99794	0.002060	133	54.1	108.36	50.00	24.64	138.77	50.00	5.77	123.88	20.00	14.72	131.81	50.00	1.19	130.74	70.00	2.26	131.24	90.00	1.76
30	99.99875	0.001250	127.4	54.1	104.09	50.00	23.31	133.97	50.00	6.57	119.78	20.00	13.22	126.84	50.00	0.56	125.97	70.00	1.43	126.38	90.00	1.02
31	99.99903	0.000970	125.1	54.1	102.07	50.00	23.03	131.70	50.00	6.60	117.83	20.00	9.57	124.49	50.00	0.61	123.70	70.00	1.40	124.08	90.00	1.02
32	99.99924	0.000760	121.8	136.1	100.20	50.00	21.60	129.61	50.00	7.81	116.02	20.00	9.08	122.33	50.00	0.53	121.61	70.00	0.19	121.95	90.00	0.15
33	99.99929	0.000710	121.8	54.1	99.69	50.00	22.11	129.04	50.00	7.24	115.53	20.00	6.27	121.75	50.00	0.05	121.04	70.00	0.76	121.38	90.00	0.42
34	99.99964	0.000360	116.2	54.1	94.93	50.00	21.27	123.69	50.00	7.49	111.01	20.00	10.79	116.24	50.00	0.04	115.68	70.00	0.52	115.95	90.00	0.25
35	99.99980	0.000200	110.6	54.1	91.18	50.00	19.42	119.48	50.00	8.88	107.30	5.00	8.90	111.93	50.00	1.33	111.45	70.00	0.85	111.68	90.00	1.08
36	99.99991	0.000090	105	54.1	86.58	50.00	18.42	114.26	50.00	9.26	102.70	5.00	7.90	106.61	50.00	1.61	106.23	70.00	1.23	106.41	90.00	1.41
37	99.99996	0.000039	99.4	54.1	82.26	50.00	17.14	109.32	50.00	9.92	98.33	5.00	6.67	101.61	50.00	2.21	101.30	70.00	1.90	101.45	90.00	2.05
					AAD		17.100	AAD		6.954	AAD		8.779	AAD		0.557	AAD		1.329	AAD		0.905

Number	Composi	tion [mole %]	Experim	ental data	Nec	qSim (SRK), kij=0.0209		Ne	qSim (SRK), kij=0.05		Ne	qSim (SRK), kij=0.058	3	Neg	5im (SRK), kij=0.06		Neq	Sim (SRK), kij=0.062		Neq	Sim (SRK), kij=0.00	1
Number	CH4	C6H6	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS
	99.98330	0.016700	160.9	-	142.66	50.00	18.24	156.74	50.00	4.16	160.64	50.00	0.26	161.63	50.00	0.73	162.63	50.00	1.73	132.23	50.00	28.67
	99.98780	0.012200	155.3		137.78	50.00	17.52	151.02	50.00	4.28	154.58	50.00	0.72	155.47	50.00	0.17	156.35	50.00	1.05	127.78	50.00	27.52
	99.99181	0.008190	149.8	-	132.27	50.00	17.53	144.81	50.00	4.99	148.12	50.00	1.68	148.95	50.00	0.85	149.76	50.00	0.04	122.69	50.00	27.11
	99.99379	0.006210	144.2	-	128.79	50.00	15.41	140.97	50.00	3.23	144.17	50.00	0.03	144.96	50.00	0.76	145.75	50.00	1.55	119.45	50.00	24.75
1	99.99386	0.006140	144.2	-	128.66	50.00	15.54	140.82	50.00	3.38	144.01	50.00	0.19	144.81	50.00	0.61	145.59	50.00	1.39	119.32	50.00	24.88
	99.99411	0.005890	144.2	-	128.16	50.00	16.04	140.27	50.00	3.93	143.45	50.00	0.75	144.24	50.00	0.04	145.02	50.00	0.82	118.85	50.00	25.35
	99.99435	0.005650	144.2	-	127.66	50.00	16.54	139.73	50.00	4.47	142.90	50.00	1.30	143.68	50.00	0.52	144.46	50.00	0.26	118.39	50.00	25.81
	99.99455	0.005450	144.2	-	127.24	50.00	16.96	139.26	50.00	4.94	142.42	50.00	1.78	143.20	50.00	1.00	143.98	50.00	0.22	117.99	50.00	26.21
	99.99450	0.005500	144.2		127.35	50.00	16.85	139.38	50.00	4.82	142.54	50.00	1.66	143.32	50.00	0.88	144.10	50.00	0.10	118.09	50.00	26.11
10	99.99453	0.005470	144.2	-	127.28	50.00	16.92	139.31	50.00	4.89	142.47	50.00	1.73	143.25	50.00	0.95	144.03	50.00	0.17	118.03	50.00	26.17
1	99,99651	0.003490	138.6		122.27	50.00	16.33	133.86	50.00	4.74	136.90	50.00	1.70	137.65	50.00	0.95	138.39	50.00	0.21	113.33	50.00	25.27
1	99,99794	0.002060	133		116.99	50.00	16.01	128.17	50.00	4.84	131.08	50.00	1.92	131.81	50.00	1.19	132.52	50.00	0.48	108.36	50.00	24.64
1	99,99875	0.001250	127.4		112.47	50.00	14.93	123.31	50.00	4.09	126.14	50.00	1.26	126.84	50.00	0.56	127.53	50.00	0.13	104.09	50.00	23.31
1	99,99903	0.000970	125.1		110.32	50.00	14.78	121.01	50.00	4.09	123.80	50.00	1.30	124.49	50.00	0.61	125.17	50.00	0.07	102.07	50.00	23.03
1	99 99924	0.000760	121.8		108.35	50.00	13.45	118 90	50.00	2.90	121.65	50.00	0.15	122.33	50.00	0.53	123.01	50.00	1.21	100.20	50.00	21.60
1	99 99929	0.000710	121.8		107.81	50.00	13.99	118 32	50.00	3.48	121.07	50.00	0.73	121.75	50.00	0.05	122.42	50.00	0.62	99.69	50.00	22.11
1	99 99964	0.000360	116.2		102.77	50.00	13.43	112.93	50.00	3.27	115 59	50.00	0.61	116.24	50.00	0.04	116.89	50.00	0.69	94.93	50.00	21.27
1	99,99980	0.000200	110.6		98.81	50.00	11 79	108 70	50.00	1.90	111.29	50.00	0.69	111.93	50.00	1 33	112.56	50.00	1.96	91.18	50.00	19.42
1	99 99991	0.000090	105		93.94	50.00	11.05	103.49	50.00	1.51	105.99	50.00	0.99	106.61	50.00	1.61	107.22	50.00	2.00	86.58	50.00	18.42
2	99 99996	0.000039	99.4		89.37	50.00	10.03	98.60	50.00	0.80	101.03	50.00	1.63	101.61	50.00	2.01	102.22	50.00	2.82	82.26	50.00	17.14
	55.55550	0.000035	2274	-	440	55100	15 169	440	55,00	2 726	AAD	55.00	1.054	440	"Ontimal"	0.790	AAD	55.00	0.999	AAD	55.00	22.040

C.6.3 Different binary interaction parameters (SRK), SLE: Predictions and experimental SL data from Kuebler and McKinley [7]

C.6.4 Different binary interaction parameters (sPC-SAFT), SLE: Predictions and experimental SL data from Kuebler and McKinley [7]

Compositi	on [mole %]	Experimental data NeqSim (si		Sim (SPC-SAFT), kii=0.0		NegSir	n (sPC-SAFT), kii=0.0	120	NegSin	n (sPC-SAFT), kii=0.0	209	NegSin	n (sPC-SAFT), kii=0.02	5	NeaSin	n (sPC-SAFT), kii=0.	.03	
CHA	CeHe	Temperature [K]	Pressure [har]	Temperature [K]	Pressure [har]	ABS	Temperature [K]	Pressure [har]	ARS	Temperature [K]	Pressure [har]	ABS	Temperature [K]	Pressure [har]	ABS	Temperature [K]	Pressure [bar]	ARS
00.000000	0.016700	temperature [K]	Pressure [bar]	Temperature [K]	Fressure [bar]	16.75	remperature [k]	Fressure [bar]	A03	Temperature [K]	Fressure [bar]	AD3	Temperature [K]	Fressure [bar]	A05	temperature [K]	Fressure [bar]	A05
99.98330	0.016700	160.9	-	145.15	50.00	15.75	155.23	50.00	5.67	155.08	50.00	5.22	157.80	50.00	3.10	100.40	50.00	0.50
99.98780	0.012200	155.3		141.18	50.00	14.12	150.73	50.00	4.57	151.16	50.00	4.14	153.12	50.00	2.18	155.53	50.00	0.23
99.99181	0.008190	149.8	-	136.87	40.00	12.93	145.65	50.00	4.15	146.05	50.00	3.75	147.90	50.00	1.90	150.15	50.00	0.35
99.99379	0.006210	144.2	-	133.89	40.00	10.31	142.74	40.00	1.46	143.13	40.00	1.07	144.61	50.00	0.41	146.77	50.00	2.57
99.99386	0.006140	144.2	-	133.77	40.00	10.43	142.61	40.00	1.59	143.01	40.00	1.19	144.48	50.00	0.28	146.64	50.00	2.44
99.99411	0.005890	144.2	-	133.34	40.00	10.86	142.14	40.00	2.06	142.53	40.00	1.67	144.00	50.00	0.20	146.16	50.00	1.96
99.99435	0.005650	144.2	-	132.91	40.00	11.29	141.67	40.00	2.53	142.06	40.00	2.14	143.53	50.00	0.67	145.68	50.00	1.48
99.99455	0.005450	144.2	-	132.55	40.00	11.65	141.27	40.00	2.93	141.66	40.00	2.54	143.13	50.00	1.07	145.27	50.00	1.07
99.99450	0.005500	144.2	-	132.64	40.00	11.56	141.47	40.00	2.73	141.76	40.00	2.44	143.33	50.00	0.87	145.37	50.00	1.17
99.99453	0.005470	144.2	-	132.59	40.00	11.61	141.31	40.00	2.89	141.70	40.00	2.50	143.18	50.00	1.02	145.31	50.00	1.11
99.99651	0.003490	138.6	-	128.23	40.00	10.37	136.59	40.00	2.01	137.19	30.00	1.41	138.42	50.00	0.18	140.46	50.00	1.86
99.99794	0.002060	133	-	123.88	20.00	9.12	131.57	40.00	1.43	132.11	30.00	0.89	134.00	20.00	1.00	135.32	50.00	2.32
99.99875	0.001250	127.4	-	119.78	20.00	7.62	127.25	40.00	0.15	127.89	20.00	0.49	129.46	20.00	2.06	131.19	30.00	3.79
99.99903	0.000970	125.1	-	117.83	20.00	7.27	125.45	20.00	0.35	125.79	20.00	0.69	127.33	20.00	2.23	129.05	30.00	3.95
99.99924	0.000760	121.8	-	116.02	20.00	5.78	123.52	20.00	1.72	123.85	20.00	2.05	125.37	20.00	3.57	127.07	30.00	5.27
99.99929	0.000710	121.8	-	115.53	20.00	6.27	123.00	20.00	1.20	123.33	20.00	1.53	124.83	20.00	3.03	126.66	20.00	4.86
99.99964	0.000360	116.2	-	111.01	20.00	5.19	118.04	20.00	1.84	118.36	20.00	2.16	119.80	20.00	3.60	121.55	20.00	5.35
99.99980	0.000200	110.6	-	107.30	5.00	3.30	114.12	20.00	3.52	114.43	20.00	3.83	115.82	10.00	5.22	117.52	10.00	6.92
99.99991	0.000090	105	-	102.70	5.00	2.30	109.32	10.00	4.32	109.61	10.00	4.61	110.95	10.00	5.95	112.58	10.00	7.58
99.99996	0.000039	99.4	-	98.33	5.00	1.07	104.69	10.00	5.29	104.97	10.00	5.57	106.29	5.00	6.89	107.86	5.00	8.46
				AAD		8.941	AAD		2.621	AAD		2.494	AAD		2.271	AAD		3.162

Run	Number	Co	mposition [mo	ole %]	Experime	ental data	Neo	ISim (SRK), kij = 0.038_"op	timal"	Neq	Sim (UMR), kij = 0.0		NeqSi	m (sPC-SAFT), kij = 0	0
		CH4	C2H6	C6H6	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS
1	1.000	88.200	11.690	0.113	190.170	38.960	-	50.0		-	50.0	-			
	2.000	88.700	11.220	0.085	184.650	31.680	179.55	50.0	5.10	-	50.0	-			
	3.000	88.980	10.950	0.077	180.870	28.340	177.13	50.0	3.74	-	50.0	-			
	4.000	84.910	14.980	0.113	181.900	27.530	179.54	50.0	2.36	-	50.0	-			
	5.000	81.580	18.270	0.148	182.540	26.710	180.80	50.0	1.74	184.02	50.0	1.48			
	6.000	75.770	24.030	0.205	182.350	24.400	180.15	50.0	2.20	183.32	50.0	0.97			
	7.000	64.260	35.420	0.315	181.490	20.110	177.21	50.0	4.28	181.22	50.0	0.27			
	8.000	73.770	26.040	0.193	179.940	22.360	176.17	50.0	3.77	178.83	50.0	1.11			
	9.000	79.740	20.140	0.121	177.000	22.220	172.99	50.0	4.01	174.96	50.0	2.04			
	10.000	82.400	17.510	0.090	174.170	21.130	169.95	50.0	4.22	171.61	50.0	2.56			
	11.000	84.080	15.850	0.070	171.000	19.430	166.84	50.0	4.16	168.25	50.0	2.75			
2	12.000	86.180	13.680	0.145	187.660	33.240	-	50.0		-	50.0	-			
	13.000	87.780	12.130	0.097	182.670	29.360	-	50.0		-	50.0	-			
	14.000	88.320	11.600	0.079	178.450	25.960	176.41	50.0	2.04	179.85	50.0	1.40			
	15.000	88.800	11.140	0.061	172.820	21.810	170.63	50.0	2.19	173.38	50.0	0.56			
	16.000	89.100	10.850	0.047	168.050	18.680	165.37	50.0	2.68	167.64	50.0	0.41			
	17.000	87.290	12.650	0.058	168.360	18.270	167.19	50.0	1.17	169.23	50.0	0.87			
	18.000	85.960	13.980	0.064	169.440	18.680	167.42	50.0	2.02	169.22	50.0	0.22			
	19.000	82.290	17.240	0.084	170.550	18.480	168.84	50.0	1.71	170.36	50.0	0.19			
	20.000	66.000	33.850	0.149	169.980	16.640	163.92	50.0	6.06	163.94	50.0	6.04			
	21.000	45.070	54.650	0.292	169.800	13.440	162.90	50.0	6.90	166.76	50.0	3.04			
	22.000	65.240	34.600	0.158	168.850	15.140	164.40	50.0	4.45	164.70	50.0	4.15			
	23.000	77.180	22.730	0.081	165.470	14.870	162.28	50.0	3.19	161.87	50.0	3.60			
	24.000	81.050	18.900	0.056	162.050	13.710	159.42	50.0	2.63	158.86	50.0	3.19			
	25.000	82.170	17.780	0.049	160.380	13.100	158.22	50.0	2.16	157.62	50.0	2.76			
3	26.000	67.310	32.300	0.390	187.180	25.010	185.43	50.0	1.75	190.23	50.0	3.05	186.48	30.00	0.70
	27.000	71.460	28.270	0.267	183.180	23.790	181.05	50.0	2.13	184.71	50.0	1.53	181.56	30.00	1.62
	28.000	75.910	23.940	0.148	174.700	19.570	172.77	50.0	1.93	174.72	50.0	0.02	173.05	30.00	1.65
	29.000	77.460	22.440	0.106	168.970	16.570	167.58	50.0	1.39	168.50	50.0	0.47	168.03	30.00	0.94
	30.000	78.140	21.770	0.083	165.000	14.400	163.63	50.0	1.37	163.68	50.0	1.32	164.53	25.00	0.47
	31.000	78.610	21.330	0.066	160.640	12.350	159.99	50.0	0.65	159.10	50.0	1.54	161.12	25.00	0.48
	32.000	78.880	21.060	0.053	156.730	10.590	156.57	50.0	0.16	154.62	50.0	2.11	158.11	20.00	1.38
							AAD RUN 3		1.341	AAD RUN 3		1.435	AAD RUN		1.036

C.6.5 Solid benzene behavior in CH4-C2H6 -benzene mixture. Experimental data from Tiffin, et al. [59]

C.7 Experimental data from literature and simulated data: Solid octane formation in liquid methane

Number	Comp	osition [mole %]	Experime	ental data	Neq	Sim (SRK), kij = (0.00	NeqSir	n (sPC-SAFT),kij =	- 0.00
number	CH4	C8H18	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS
1	99.98	0.0214	156	13.4	137.32	13.52	18.680	153.1619355	50.000	2.838
2	99.98	0.025	158	14.5	138.73	14.71	19.272	154.5511266	50.000	3.449
3	99.97	0.0288	160	15.7	140.05	15.95	19.955	155.8594772	50.000	4.141
4	99.97	0.0331	162	17	141.38	17.28	20.625	157.1916724	50.000	4.808
5	99.96	0.038	164	18.4	142.73	18.66	21.269	158.5630665	50.000	5.437
6	99.96	0.0431	166	19.8	144.00	20.15	22.000	159.8627338	50.000	6.137
7	99.95	0.0483	168	21.4	145.18	21.70	22.823	161.0834352	50.000	6.917
8	99.95	0.0538	170	23	146.32	23.35	23.682	162.2839756	50.000	7.716
9	99.94	0.0589	172	24.6	147.30	25.00	24.702	163.3304618	50.000	8.670
10	99.94	0.0638	174	26.4	148.18	26.80	25.821	164.2867038	50.000	9.713
11	99.93	0.0689	176	28.3	149.04	28.80	26.958	165.2398585	50.000	10.760
12	99.93	0.073	178	30.2	149.70	30.80	28.299	165.9802537	50.000	12.020
13	99.92	0.0772	180	32.3	150.35	32.93	29.652	166.7187964	50.000	13.281
14	99.92	0.0809	182	34.5	150.90	35.05	31.104	167.3554032	50.000	14.645
15	99.92	0.0837	184	36.7	151.30	37.35	32.702	167.8298135	50.000	16.170
16	99.92	0.0836	186	39.1						
17	99.92	0.0766	188	41.7						
18	99.93	0.0653	190	44.4						
19	99.94	0.0592	191.15	45.9						
					AAD		19.34444263			6.66848876

C.7.1 Solid octane behavior in CH4-octane mixture: Experimental data from kohn et al [57]

C.7.2 Solid octane behavior in (CH4-octane mixture at temperature:	Experimental dat	a from Kohn&Bradish [5]
	- -	F	· · · · · · L · J

Number	Comp	oosition [mole %]	Experime	ental data	Neo	Sim (SRK, kij = 0).00)	NeqSir	n (sPC-SAFT, kij =	0.00)	NeqS	im (UMR-PRU)	
Number	CH4	C8H18	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS
1	0.000	100	216.5	1	216.3981226	1	0.102	216.3981226	1	0.102	216.3981226	1	0.102
2	5.000	95	215.43	5.2	215.44502	5.2	0.015	215.4529297	5.2	0.023	215.4449413	5.2	0.015
3	10.000	90	214.5	10.25	214.455826	10.25	0.044	214.490087	10.25	0.010	214.4546067	10.25	0.045
4	20.000	80	212.5	20.6	212.3643854	20.6	0.136	212.5252411	20.6	0.025	212.3527336	20.6	0.147
5	30.000	70	210.5	31.25	210.1024596	31.25	0.398	210.5277257	31.25	0.028	210.0630234	31.25	0.437
6	40.000	60	208.6	43.2	207.6424783	43.2	0.958	208.5317616	43.2	0.068	207.5503391	43.2	1.050
7	50.000	50	206.6	57.3	204.9526283	57.3	1.647	206.5871537	57.3	0.013	204.7761547	57.3	1.824
8	56.000	44	205.6	70.5	203.2078945	70.5	2.392	205.4705379	70.5	0.129	202.9392073	70.5	2.661
							0.711			0.398			0.785

C.7.4 Different binary interaction parameters (SRK), SLE: Predictions and experimental SL data from Kohn et al [57]

	Composit	ion [mole %]	Exportmontal	data	Nor	sim (SPK) kii - 0.0	,	No	asim (SPK kii - 0.01		No			NogS	im (SPK) kii - (0.029	N	oasim (SPK) kii - 0	04	NogSim	(SPK) kii - 0.0	м	NorSim	(SPK) HI - 0 C	14
Number	composit	ion (mole xoj	Experimental		ive.	Jiiii (Jiik), kij = 0.0		-	q5iiii (5iiik,kij = 0.01			45iii (5iik), kij = 0.055		ivequ	пп (экк), кј = с			eq3iii (3iik), kij = 0		weqsiii	(Sitk), kij = 0.0		weqsiii	(Sitk), kij = 0.0	
	CH4	C8H18	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	emperature [K	Pressure [bar]	ABS	emperature [K	Pressure [bar]	ABS	emperature [K]	Pressure [bar]	ABS	emperature [K]	ressure [bar]	ABS
1	99.98	0.0214	156	5 13.	4 137.3195261	13.52	0.120	157.8513	50.000	1.851	153.5595084	50.000	2.440	154.8472507	50.000	1.153	155.704021	50.000	0.296	154.9895113	60.000	1.010	154.3808795	70.000	1.619
2	99.98	0.025	158	3 14.	5 138.7280698	14.705	0.205	159.2985	50.000	1.298	155.270296	50.000	2.730	156.5869397	50.000	1.413	157.4642066	50.000	0.536	156.6616885	60.000	1.338	155.9880812	70.000	2.012
3	99.97	0.0288	160) 15.	7 140.0451415	15.95	0.250	160.712	50.000	0.712	156.8981832	50.000	3.102	158.2462653	50.000	1.754	159.1459837	50.000	0.854	158.2460001	60.000	1.754	157.502646	70.000	2.497
4	99.97	0.0331	162	2 1	7 141.3751027	17.281	0.281	162.165459	50.000	0.165	158.5754893	50.000	3.425	159.9608552	50.000	2.039	160.8875916	50.000	1.112	159.8698012	60.000	2.130	159.0454185	70.000	2.955
5	99.96	0.038	164	18.	4 142.7305382	18.66	0.260	163.67674	50.000	0.323	160.3272109	50.000	3.673	161.7584226	50.000	2.242	162.7189469	50.000	1.281	161.5544011	60.000	2.446	160.6337507	70.000	3.366
6	99.96	0.0431	166	5 19.	8 144.0001424	20.15	0.350	165.12792	50.000	0.872	162.0164788	50.000	3.984	163.500586	50.000	2.499	164.5008568	50.000	1.499	163.1652434	60.000	2.835	162.1387352	70.000	3.861
7	99.95	0.0483	168	3 21.	4 145.1773203	21.7	0.300	166.5122	50.000	1.488	163.6356044	50.000	4.364	165.1811857	50.000	2.819	166.2288875	50.000	1.771	164.6934596	60.000	3.307	163.5514995	70.000	4.449
8	99.95	0.0538	170) 2	3 146.3184459	23.35	0.350	167.8998	50.000	2.100	165.2674434	50.000	4.733	166.8896894	50.000	3.110	167.9983542	50.000	2.002	166.2137316	60.000	3.786	164.9396507	70.000	5.060
9	99.94	0.0589	172	2 24.	6 147.2978412	25	0.400	169.13674	50.000	2.863	166.7315934	50.000	5.268	168.4400309	50.000	3.560	169.6204383	50.000	2.380	167.5560467	60.000	4.444	166.1480868	70.000	5.852
10	99.94	0.0638	174	26.	4 148.178734	26.8	0.400	170.296174	50.000	3.704	168.1143754	50.000	5.886	169.9261418	50.000	4.074	171.1973468	50.000	2.803	168.799615	60.000	5.200	167.250517	70.000	6.749
11	99.93	0.0689	176	5 28.	3 149.0419112	28.8	0.500	171.4887	50.000	4.511	169.5505055	50.000	6.449	171.5030957	50.000	4.497	172.9088954	50.000	3.091	170.0591485	60.000	5.941	168.3471719	70.000	7.653
12	99.93	0.073	178	3 30.	2 149.7010769	30.8	0.600	172.4488	50.000	5.551	170.7205667	50.000	7.279	172.8269916	50.000	5.173	174.3983774	50.000	3.602	171.0544037	60.000	6.946	169.1970929	70.000	8.803
13	99.92	0.0772	180	32.	3 150.347783	32.93	0.630	173.446189	50.000	6.554	171.9544883	50.000	8.046	174.2863747	50.000	5.714	176.1533765	50.000	3.847	172.0652745	60.000	7.935	170.042804	70.000	9.957
14	99.92	0.0809	182	34.	5 150.895814	35.05	0.550	174.349049	50.000	7.651	173.0949572	50.000	8.905	175.7402984	50.000	6.260	178.2412327	50.000	3.759	172.9543332	60.000	9.046	170.7697917	70.000	11.230
15	99.92	0.0837	184	36.	7 151.2981428	37.35	0.650	175.05721	50.000	8.943	174.012632	50.000	9.987	177.0649315	50.000	6.935	-	-		173.6297896	60.000	10.370	171.310152	70.000	12.690
16	99.92	0.0836	186	5 39.	1								5.35137779	Э		3.54939606	2		2.059391754			4.151239			5.433134

C.7.5	Different binary	interaction p	parameters ((sPC-SAFT)	, SLE: Predictions and	l experimental S	L from Kohn et al	[57]
					,	1		

Number	Comp	osition [mole %]	Experime	ental data	NeqSi	m (sPC-SAFT), ki	j = 0.0	NeqSi	m (sPC-SAFT), kij =	0.01	NeqSim (s	PC-SAFT), kij = 0.	005
Number	CH4	C8H18	Temperature [K]	Pressure [bar]	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS	Temperature [K]	Pressure [bar]	ABS
1	99.979	0.021	155	13.8	152.996	50.000	2.004	157.631	50.000	2.631	155.307	50.000	0.307
2	99.970	0.03	160	16.7	156.245	50.000	3.755	161.132	50.000	1.132	158.674	50.000	1.326
3	99.958	0.042	165	20.2	159.592	50.000	5.408	164.823	50.000	0.177	162.176	50.000	2.824
4	99.941	0.059	170	24	163.350	50.000	6.650	169.161	50.000	0.839	166.180	50.000	3.820
5	99.919	0.081	175	28.4	167.372	50.000	7.628	174.374	50.000	0.626	170.635	50.000	4.365
6	99.892	0.108	180	33.4	171.815	50.000	8.185	180.096	50.000	0.096	176.235	50.000	3.765
7	99.873	0.127	183	36.9	175.083	50.000	7.917	184.270	50.000	1.270	179.128	50.000	3.872
					AAD		5.935235714			0.967351714			2.897074714

Appendix D: Thermodynamic properties

Chemical Abstracts Name:	methane					CH ₄
Synonyms:	fire damp marsh gas		1	methyl hydride refrigerant 50		methane
Chemical Abstracts Numbe	er*: 74-82-8			-	Structura	<u>l Formula</u> : CH ₄
Property					Quality Code	
(click property name for references and data)	Units	Value	Note	Data type	Uncertainty	Source type
<u>Molecular Weight</u> <u>Critical Temperature</u> <u>Critical Pressure</u> <u>Critical Volume</u> <u>Criti Compress Factor</u>	kg/kmol K Pa m^3/kmol unitless	16.042 190.564 4.59900E+06 9.86000E-02 0.286		Smoothed Smoothed Experimental Defined	< 0.2% < 0.2% < 0.2%	Evaluated Evaluated Evaluated Staff
Melting Point Triple Pt Temperature Triple Pt Pressure Normal Boiling Point Liq Molar Volume	K K Pa K m^3/kmol	90.694 90.694 1.16960E+04 111.66 3.79694E-02	1 2 3	Predicted Experimental Experimental Experimental Experimental	< 0.2% < 0.2% < 1% < 1% < 1%	Staff Evaluated Evaluated Evaluated Staff
IG Heat of Formation IG Gibbs of Formation IG Absolute Entropy Std Heat of Formation Std Gibbs of Formation	J/kmol J/kmol J/kmol*K J/kmol J/kmol	-7.45200E+07 -5.04900E+07 1.86270E+05 -7.45200E+07 -5.04900E+07	<u>4</u> <u>5</u>	Experimental Defined Experimental Experimental Defined	$< 1\% \\ < 1\% \\ < 1\% \\ < 1\% \\ < 1\% \\ < 1\% \\ < 1\% $	Evaluated Staff Evaluated Evaluated Staff
Std Absolute Entropy Heat Fusion at Melt Pt Std Net Heat of Comb Acentric Factor Radius of Gyration	J/kmol*K J/kmol J/kmol unitless m	1.86270E+05 9.41400E+05 -8.02620E+08 1.15478E-02 1.11800E-10		Experimental Experimental Experimental Defined Defined	<1% <1% <0.2% <3%	Evaluated Evaluated Evaluated Staff Staff
Solubility Parameter Dipole Moment van der Waals Volume van der Waals Area Refractive Index	(J/m^3)^0.5 C*m m^3/kmol m^2/kmol unitless	1.16000E+04 0.0 1.70500E-02 2.88000E+08 1.0004	<u>6</u> <u>7</u> <u>8</u>	Defined Defined Defined Experimental	< 3% < 3% < 0.2%	Staff Staff Staff Evaluated
Flash Point Lower Flammability Limit Upper Flammability Limit Lower Flamm Limit Temp Upper Flamm Limit Temp	K vol% in air vol% in air K K	87.12 5 15 86.15 92.3	<u>9</u> <u>10</u>	Predicted Experimental Experimental Unknown Predicted	< 3% < 1% < 3%	Staff Unevaluated Unevaluated Unevaluated Staff
Auto Ignition Temp Parachor Heat of Sublimation Dielectric Constant	K unitless J/kmol unitless	810 72.2 9.64000E+06 1.6	$ \begin{array}{c} \underline{11}\\ \underline{12}\\ \underline{13} \end{array} $	Experimental Experimental Experimental Experimental	Unknown < 1% < 0.2% < 5%	Unevaluated Unevaluated Staff Evaluated

IUPAC Name:carbon dioxide

Synonyms:

carbonic acid gas carbonic anhydride

Chemical Abstracts Number*: 124-38-9

dry ice	
refrigerant 7	44

Structural Formula: OCO

Property				Quality Code			
(click property name for				Data type	Uncertainty	Source type	
references and data)	Units	Value	Note				
Molecular Weight	kg/kmol	44.0095	<u>1</u>				
Critical Temperature	K	304.21		Experimental	< 1%	Evaluated	
Critical Pressure	Pa	7.38300E+06		Experimental	< 3%	Evaluated	
Critical Volume	m^3/kmol	9.40000E-02		Experimental	< 5%	Evaluated	
Crit Compress Factor	unitless	0.274		Defined		Staff	
Melting Point	K	216.58	2	Experimental	< 1%	Evaluated	
Triple Pt Temperature	K	216.58		Experimental	< 1%	Evaluated	
Triple Pt Pressure	Pa	5.18000E+05	3	Experimental	< 1%	Staff	
Normal Boiling Point	K		1				
<u>Liq Molar Volume</u>	m^3/kmol	6.16782E-02	<u>4</u>	Experimental	< 1%	Staff	
IG Heat of Formation	J/kmol	-3.93510E+08		Experimental	< 0.2%	Evaluated	
IG Gibbs of Formation	J/kmol	-3.94370E+08	5	Defined		Staff	
IG Absolute Entropy	J/kmol*K	2.13677E+05		Experimental	< 0.2%	Evaluated	
Std Heat of Formation	J/kmol	-3.93510E+08		Experimental	< 0.2%	Evaluated	
Std Gibbs of Formation	J/kmol	-3.94370E+08	<u>6</u>	Defined	< 1%	Staff	
Std Absolute Entropy	J/kmol*K	2.13677E+05		Experimental	< 0.2%	Evaluated	
Heat Fusion at Melt Pt	J/kmol	9.01900E+06	7	Experimental	< 5%	Evaluated	
Std Net Heat of Comb	J/kmol		8				
Acentric Factor	unitless	0.223621		Defined		Staff	
<u>Radius of Gyration</u>	m	1.04000E-10		Defined	< 3%	Staff	
Solubility Parameter	(J/m^3)^0.5	1.45600E+04	9	Defined		Staff	
Dipole Moment	C*m	0.0					
van der Waals Volume	m^3/kmol	1.97000E-02		Defined	< 3%	Staff	
<u>van der Waals Area</u>	m^2/kmol	3.23000E+08	<u>10</u>	Defined	< 5%	Staff	
<u>Refractive Index</u>	unitless	1.00041	<u>11</u>	Experimental	Unknown	Evaluated	
Flash Point	K		8				
Lower Flammability Limit	vol% in air		8				
Upper Flammability Limit	vol% in air		8				
Lower Flamm Limit Temp	K						
<u>Upper Flamm Limit Temp</u>	K						
Auto Ignition Temp	K		8				
Parachor	unitless						
Heat of Sublimation	J/kmol	2.38000E+07	<u>12</u>	Experimental	< 1%	Staff	
Dielectric Constant	unitless	1.6	<u>13</u>	Experimental	< 5%	Evaluated	

CO₂

carbon dioxide

Chemical Abstracts Name:hexane

IUPAC Name:hexane

Synonyms:

hexyl hydride skellysolve

Chemical Abstracts Number*: 110-54-3

Property					Quality Code	
(click property name for references and data)	Units	Value	Note	Data type	Uncertainty	Source type
Molecular Weight Critical Temperature Critical Pressure Critical Volume Crit Compress Factor	kg/kmol K Pa m^3/kmol unitless	86.17536 507.6 3.02500E+06 0.371 0.266		Smoothed Smoothed Experimental Defined	< 0.2% < 1% < 3%	Evaluated Evaluated Evaluated Staff
Melting Point Triple Pt Temperature Triple Pt Pressure Normal Boiling Point Liq Molar Volume	K K Pa K m^3/kmol	177.83 177.83 0.901695 341.88 0.131362		Experimental Predicted Predicted Experimental Experimental	< 0.2% < 0.2% < 5% < 1% < 1%	Evaluated Staff Staff Evaluated Staff
IG Heat of Formation IG Gibbs of Formation IG Absolute Entropy Std Heat of Formation Std Gibbs of Formation	J/kmol J/kmol J/kmol*K J/kmol J/kmol	-1.66940E+08 -6.63400E+04 3.88740E+05 -1.98660E+08 -4.15400E+06	1 2	Experimental Defined Experimental Experimental Defined	$< 1\% \\ < 1\% \\ < 1\% \\ < 1\% \\ < 1\% \\ < 1\% \\ < 1\% $	Evaluated Staff Evaluated Unevaluated Staff
Std Absolute Entropy Heat Fusion at Melt Pt Std Net Heat of Comb Acentric Factor Radius of Gyration	J/kmol*K J/kmol J/kmol unitless m	2.96060E+05 1.30800E+07 -3.85510E+09 0.301261 3.76900E-10		Experimental Experimental Experimental Defined Defined	<1% <1% <0.2% <3%	Unevaluated Evaluated Evaluated Staff Staff
Solubility Parameter Dipole Moment van der Waals Volume van der Waals Area Refractive Index	(J/m^3)^0.5 C*m m^3/kmol m^2/kmol unitless	1.48800E+04 0.0 6.82600E-02 9.64000E+08 1.37226		Defined Defined Defined Experimental	< 3% < 1% < 1% < 0.2%	Staff Staff Staff Evaluated
<u>Flash Point</u> <u>Lower Flammability Limit</u> <u>Upper Flammability Limit</u> <u>Lower Flamm Limit Temp</u> <u>Upper Flamm Limit Temp</u>	K vol% in air vol% in air K K	250.15 1.2 7.2 247.15 277	3	Experimental Experimental Smoothed Experimental Experimental	< 1% < 5% < 5%	Unevaluated Unevaluated Staff Unevaluated Unevaluated
Auto Ignition Temp Parachor Heat of Sublimation Dielectric Constant	K unitless J/kmol unitless	498 270.7 1.8865	<u>4</u> <u>5</u>	Experimental Experimental Experimental	Unknown < 1%	Unevaluated Unevaluated Unevaluated

C₆H₁₄ n-hexane

Structural Formula: CH₃(CH₂)₄CH₃

105

Chemical Abstracts Name:heptane

IUPAC Name:heptane

Synonyms:

dipropylmethane heptyl hydride

Chemical Abstracts Number*: 142-82-5 Structural Formula: CH ₃ (CH ₂) ₅ CH						CH ₃ (CH ₂) ₅ CH ₃	
Property				Quality Code			
(click property name for references and data)	Units	Value	Note	Data type	Uncertainty	Source type	
Molecular Weight Critical Temperature Critical Pressure Critical Volume Crit Compress Factor Melting Point Triple Pt Temperature Triple Pt Pressure	kg/kmol K Pa m^3/kmol unitless K K K Pa	100.20194 540.2 2.74000E+06 0.428 0.261 182.57 182.57 0.182694		Smoothed Smoothed Experimental Defined Experimental Predicted Predicted	< 0.2% < 3% < 5% < 0.2% < 0.2% < 5%	Evaluated Evaluated Evaluated Staff Evaluated Staff Staff	
<u>Normal Boiling Point</u> Liq Molar Volume	K m^3/kmol	371.58 0.147024		Experimental Experimental	< 1% < 1%	Evaluated Staff	
IG Heat of Formation IG Gibbs of Formation IG Absolute Entropy Std Heat of Formation Std Gibbs of Formation	J/kmol J/kmol J/kmol*K J/kmol J/kmol	-1.87650E+08 8.16500E+06 4.27980E+05 -2.24050E+08 1.40400E+06	1	Experimental Defined Experimental Experimental Defined	<1% <1% <1% <1% <1%	Evaluated Staff Evaluated Unevaluated Staff	
<u>Std Absolute Entropy</u> <u>Heat Fusion at Melt Pt</u> <u>Std Net Heat of Comb</u> <u>Acentric Factor</u> <u>Radius of Gyration</u>	J/kmol*K J/kmol J/kmol unitless m	3.28570E+05 1.40500E+07 -4.46473E+09 0.349469 4.17300E-10		Experimental Experimental Experimental Defined Defined	<1% <1% <0.2% <3%	Unevaluated Evaluated Evaluated Staff Staff	
Solubility Parameter Dipole Moment van der Waals Volume van der Waals Area Refractive Index	(J/m^3)^0.5 C*m m^3/kmol m^2/kmol unitless	1.52400E+04 0.0 7.84900E-02 1.09900E+09 1.38511		Defined Defined Defined Experimental	< 3% < 1% < 1% < 0.2%	Staff Staff Staff Evaluated	
<u>Flash Point</u> <u>Lower Flammability Limit</u> <u>Upper Flammability Limit</u> <u>Lower Flamm Limit Temp</u> <u>Upper Flamm Limit Temp</u>	K vol% in air vol% in air K K	269 1.05 6.7 269.15 299	<u>3</u> <u>4</u>	Experimental Experimental Experimental Experimental Experimental	< 3% < 3% < 5%	Unevaluated Unevaluated Unevaluated Unevaluated Unevaluated	
Auto Ignition Temp Parachor Heat of Sublimation Dielectric Constant	K unitless J/kmol unitless	477 309.7 5.67000E+07 1.9209	<u>5</u> <u>6</u> Z	Experimental Smoothed Predicted Experimental	Unknown < 5% < 10%	Unevaluated Evaluated Staff Unevaluated	

n-heptane

r						
Chemical Abstracts Name:	benzene					C ₆ H ₆
IUPAC Name:benzene						benzene
Synonyms: Chemical Abstracts Numbe	benzol benzolene bicarburet of hyd carbon oil coal naphtha cyclohexatriene er*: 71-43-2	drogen		mineral naphtha motor benzol phenyl hydride pyrobenzole <u>Structural</u>	Formula: -CHC	НСНСНСНСН-
Property					Quality Code	
(click property name for references and data)	Units	Value	Note	Data type	Uncertainty	Source type
Molecular Weight Critical Temperature Critical Pressure Critical Volume Crit Compress Factor	kg/kmol K Pa m^3/kmol unitless	78.11184 562.05 4.89500E+06 0.256 0.268		Smoothed Smoothed Smoothed Defined	< 0.2% < 0.2% < 3%	Evaluated Evaluated Evaluated Staff
<u>Melting Point</u> <u>Triple Pt Temperature</u> <u>Triple Pt Pressure</u> <u>Normal Boiling Point</u> <u>Liq Molar Volume</u>	K K Pa K m^3/kmol	278.68 278.68 4.76422E+03 353.24 8.94764E-02	1	Experimental Predicted Predicted Experimental Experimental	$< 1\% \\ < 1\% \\ < 3\% \\ < 1\% \\ < 1\% \\ < 1\% \\ < 1\%$	Evaluated Staff Staff Evaluated Staff
IG Heat of Formation IG Gibbs of Formation IG Absolute Entropy Std Heat of Formation Std Gibbs of Formation	J/kmol J/kmol J/kmol*K J/kmol J/kmol	8.28800E+07 1.29600E+08 2.69300E+05 4.89500E+07 1.24400E+08	<u>2</u> <u>3</u>	Experimental Defined Experimental Experimental Defined	< 3% < 3% < 3% < 5% < 5%	Evaluated Staff Evaluated Unevaluated Staff
<u>Std Absolute Entropy</u> <u>Heat Fusion at Melt Pt</u> <u>Std Net Heat of Comb</u> <u>Acentric Factor</u> <u>Radius of Gyration</u>	J/kmol*K J/kmol J/kmol unitless m	1.73260E+05 9.86600E+06 -3.13600E+09 0.2103 3.00400E-10		Experimental Experimental Experimental Defined Defined	< 5% < 1% < 3% < 3%	Unevaluated Evaluated Evaluated Staff Staff
Solubility Parameter Dipole Moment van der Waals Volume van der Waals Area Refractive Index	(J/m^3)^0.5 C*m m^3/kmol m^2/kmol unitless	1.87300E+04 0.0 4.84000E-02 6.00000E+08 1.49792		Defined Defined Defined Experimental	<1% <1% <1% <0.2%	Staff Staff Staff Evaluated
Flash Point Lower Flammability Limit Upper Flammability Limit Lower Flamm Limit Temp Upper Flamm Limit Temp	K vol% in air vol% in air K K	262 1.2 8 261 288	$ \begin{array}{c} \underline{4}\\ \underline{4}}\\ \underline{4}\\ 4$	Experimental Experimental Experimental Experimental Experimental	< 3% < 10% < 10%	Unevaluated Unevaluated Unevaluated Unevaluated Unevaluated
Auto Ignition Temp Parachor Heat of Sublimation Dielectric Constant	K unitless J/kmol unitless	833.15 206.2 4.53000E+07 2.2825	<u>5</u> <u>6</u> <u>7</u>	Experimental Smoothed Experimental Experimental	Unknown < 5% < 1%	Unevaluated Evaluated Staff Unevaluated

Chemical Abstracts Name:octane

IUPAC Name:octane

Synonym:

Chemical Abstracts Number*: 111-65-9

octyl hydride

Property				Quality Code			
(click property name for references and data)	Units	Value	Note	Data type	Uncertainty	Source type	
Molecular Weight Critical Temperature Critical Pressure Critical Volume Crit Compress Factor	kg/kmol K Pa m^3/kmol unitless	114.22852 568.7 2.49000E+06 0.486 0.256	1	Smoothed Smoothed Predicted Defined	< 0.2% < 3% < 5% < 10%	Evaluated Evaluated Staff Staff	
Melting Point Triple Pt Temperature <u>Triple Pt Pressure</u> <u>Normal Boiling Point</u> Liq Molar Volume	K K Pa K m^3/kmol	216.38 216.38 2.1083 398.83 0.162561	2	Experimental Predicted Predicted Experimental Experimental	< 0.2% < 0.2% < 5% < 1% < 1%	Evaluated Staff Staff Evaluated Staff	
IG Heat of Formation IG Gibbs of Formation IG Absolute Entropy Std Heat of Formation Std Gibbs of Formation	J/kmol J/kmol J/kmol*K J/kmol J/kmol	-2.08750E+08 1.60000E+07 4.67230E+05 -2.49780E+08 6.58700E+06	<u>4</u> <u>5</u>	Experimental Defined Experimental Experimental Defined	<1% <1% <1% <1% <1% <1%	Evaluated Staff Evaluated Unevaluated Staff	
Std Absolute Entropy Heat Fusion at Melt Pt Std Net Heat of Comb Acentric Factor Radius of Gyration	J/kmol*K J/kmol J/kmol unitless m	3.61200E+05 2.07400E+07 -5.07415E+09 0.399552 4.54600E-10		Experimental Experimental Experimental Defined Defined	<1% <1% <0.2% <3%	Unevaluated Evaluated Evaluated Staff Staff	
Solubility Parameter Dipole Moment van der Waals Volume van der Waals Area Refractive Index	(J/m^3)^0.5 C*m m^3/kmol m^2/kmol unitless	1.54900E+04 0.0 8.87200E-02 1.23400E+09 1.39505		Defined Defined Defined Experimental	< 3% < 1% < 1% < 0.2%	Staff Staff Staff Evaluated	
Flash Point Lower Flammability Limit Upper Flammability Limit Lower Flamm Limit Temp Upper Flamm Limit Temp	K vol% in air vol% in air K K	287.15 0.96 6.5 287 323	<u>6</u> 7 8 9	Experimental Experimental Experimental Predicted Experimental	< 1% < 3% < 5%	Unevaluated Unevaluated Unevaluated Staff Unevaluated	
Auto Ignition Temp Parachor Heat of Sublimation Dielectric Constant	K unitless J/kmol unitless	479 350.6 6.34000E+07 1.948	$ \begin{array}{c} \underline{10}\\ \underline{11}\\ \underline{12}\\ \underline{13} \end{array} $	Experimental Experimental Predicted Experimental	Unknown < 1% < 10%	Unevaluated Unevaluated Staff Unevaluated	

n-octane

 C_8H_{18}

Structural Formula: CH3(CH2)6CH3

Chemical Abstracts Name:cyclohexane

IUPAC Name:cyclohexane

Synonyms:

hexahydrobenzene hexamethylene

Chemical Abstracts Number*: 110-82-7

hexanaphthene

Structural Formula: -(CH2)6-

Property					Quality Code	
(click property name for references and data)	Units	Value	Note	Data type	Uncertainty	Source type
<u>Molecular Weight</u> Critical Temperature <u>Critical Pressure</u> <u>Critical Volume</u> <u>Criti Compress Factor</u>	kg/kmol K Pa m^3/kmol unitless	84.15948 553.8 4.08000E+06 0.308 0.273	1	Smoothed Experimental Experimental Defined	< 0.2% < 1% < 1%	Evaluated Evaluated Evaluated Staff
Melting Point <u>Triple Pt Temperature</u> <u>Triple Pt Pressure</u> Normal Boiling Point Liq Molar Volume	K K Pa K m^3/kmol	279.69 279.69 5.36251E+03 353.87 0.108856	2	Experimental Predicted Predicted Experimental Experimental	<1% <1% <3% <1% <1%	Evaluated Staff Staff Evaluated Staff
IG Heat of Formation IG Gibbs of Formation IG Absolute Entropy Std Heat of Formation Std Gibbs of Formation	J/kmol J/kmol J/kmol*K J/kmol J/kmol	-1.23300E+08 3.19100E+07 2.97276E+05 -1.56150E+08 2.67700E+07	3	Experimental Defined Experimental Experimental Defined	< 3% < 3% < 3% < 1% < 1%	Evaluated Staff Evaluated Unevaluated Staff
Std Absolute Entropy Heat Fusion at Melt Pt Std Net Heat of Comb Acentric Factor Radius of Gyration	J/kmol*K J/kmol J/kmol unitless m	2.04350E+05 2.74000E+06 -3.65600E+09 0.208054 3.24200E-10		Experimental Experimental Experimental Defined Defined	<1% <3% <3% <3%	Unevaluated Unevaluated Evaluated Staff Staff
Solubility Parameter Dipole Moment van der Waals Volume van der Waals Area Refractive Index Flash Point	(J/m^3)^0.5 C*m m^3/kmol m^2/kmol unitless K	1.67300E+04 0.0 6.14000E-02 8.10000E+08 1.42354 255.93	5	Defined Experimental Defined Defined Experimental Unknown	< 3% Unknown < 1% < 1% < 0.2%	Staff Evaluated Staff Staff Evaluated Unevaluated
Lower Flammability Limit Upper Flammability Limit Lower Flamm Limit Temp Upper Flamm Limit Temp	vol% in air vol% in air K K	1.3 7.8 257.2 288	<u>6</u> <u>7</u> <u>8</u>	Experimental Experimental Predicted Experimental	< 5% < 10%	Unevaluated Unevaluated Staff Unevaluated
Auto Ignition Temp <u>Parachor</u> <u>Heat of Sublimation</u> Dielectric Constant	K unitless J/kmol unitless	518.15 241.2 3.63000E+07 2.0243	9 10 11	Experimental Smoothed Experimental Experimental	Unknown < 5% < 3%	Unevaluated Evaluated Staff Unevaluated

cyclohexane

C₆H₁₂