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Abstract

In this thesis, we construct a portfolio of commodity futures, which mimics the Dow Jones Com-

modity Index, and perform an extensive stress testing exercise with a focus on hybrid scenarios.

Limitations to the risk management practices became clear during the recent financial crisis, and

the increased volume of investments in commodity markets over the last decades underline the im-

portance of a more thorough framework for stress testing of related portfolios. Our study is the

first to show the marginal impact of the model choice for portfolio components versus the marginal

role of tail dependency in stress testing exercises to assess the portfolio risk profile. We model the

distribution of portfolio components with an asymmetric GARCH model combined with Extreme

Value Theory for extreme tails. We then implement a copula function to model the time-varying

joint dependency structure. Our study reveals that indeed, for an accurate stress test, a special atten-

tion should be given to the tail risk in individual commodity returns as well as to tail correlations.

Furthermore, we find that the parameter risk in the model for the individual portfolio components

impact the portfolio profit and loss profile most in stress testing exercises. Finally yet importantly,

in line with Basel III, the study highlights the importance of using forward-looking hybrid and

hypothetical scenarios over historical scenarios, for a comprehensive stress testing.
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Sammendrag

I denne masteroppgaven bruker vi råvarefutures til å konstruere en portefølje som etterligner Dow

Jones Commodity Index. Vi gjennomfører en omfattende stresstestingsøvelse på denne porteføljen,

med fokus på hybride scenarioer. Begrensningene i risikostyringpraksis ble tydelige under den siste

finanskrisen, og det økte volumet av råvareinvesteringer over de siste tiår understreker viktigheten

av et grundigere rammeverk for stresstesting av porteføljer. Vår studie er den første til å vise den

marginale påvirkningen fra valg av modell for komponentene i en portefølje versus den marginale

påvirkningen fra haleavhengighet i stresstesting øvelser for å undersøke porteføljens risikoprofil.

Vi modellerer fordelingen til komponentene i porteføljen med en asymmetrisk GARCH-modell

kombinert med Extreme Value Theory for ekstreme haler. Vi implementerer så en copula-funksjon

for å modellere den felles tidsvarierende avhengighetsstrukturen. Vår studie viser at for en korrekt

stresstestingsøvelse bør et spesielt fokus rettes mot halerisiko for de individuelle råvareavkastningene,

samt til halekorrelasjoner. Videre finner vi at parameterrisiko i modellen for de individuelle kompo-

nentene påvirker porteføljens gevinst- og tapsfordeling mest i stresstestingsøvelser. Sist, men ikke

minst, fremhever studien viktigheten av å bruke framtidsrettede hybride og hypotetiske scenarioer,

snarere enn historiske scenarioer, for en omfattende stresstesting. Dette er sammenfallende med

Basel III rammeverket.
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1 Introduction

Financial investments in commodities have grown rapidly over the last decades. It is estimated

that the total value of commodity index related instruments purchased by institutional investors

increased from $15 billion in 2003 to $200 billion in mid-2008 (Commodity Futures Trading Com-

mission, 2008). Research such as Silvennoinen and Thorp (2013) and Daskalaki and Skiadopoulos

(2011) show increased integration of commodity and financial markets, with higher correlation,

especially in bearish times (Cheung and Miu, 2010). Adams and Glück (2015) show that the risk

spillovers to commodities from the financial crisis continue to be present today. In addition, volatil-

ity in commodity markets increased during the past decade (Tang and Xiong, 2010, Basak and

Pavlova, 2016). These changes in commodity characteristics is often referred to as the financializa-

tion of commodity markets (Cheng and Xiong, 2014). This leads to the need for an instrument to

measure and manage the associated risks in commodity futures investments.

A common tool for risk management is stress testing. European Banking Authority (2017, p.28)

point out in their new guidelines under development that ”Institutions should ensure that the sce-

nario analysis is a core part of their stress testing programme”. Implementing stress testing is now

mandatory for banks, due to regulations from Basel III formed in the post crisis environment (Basel

Committee on Banking Supervision, 2009). However, this stress testing framework does not pro-

vide an understanding of which underlying factors to focus on for the stress testing to be optimal.

Aepli (2011) suggests a stress testing framework with focus on realistic models for individual risk

factor distributions and dynamic dependence structure, with a special focus on tail risk, which we

will adapt in this thesis.

In this thesis, we focus on stress testing of a portfolio of commodity futures. The existing litera-

ture on stress testing of commodity portfolios is scarce, despite the massive investment growth in

commodities. We update the analysis in Paraschiv, Mudry and Andries (2015), keeping the same

procedure for constructing the stress portfolio as the original study. However, we innovated in sev-

eral directions. We extended the data set by including several new shocks, among these the oil price

drop in 2014. Secondly, we enriched the spectrum of stress testing scenarios, focusing more on the
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forward-looking ones. Paraschiv, Mudry and Andries (2015) limit their study to show the effects

of a reoccurring financial crisis on the portfolio. Our study shows the importance of combining

historical estimations with more flexible forward-looking scenario construction. Furthermore, this

is the first study in the literature where we disentangle the effect of individual model components

on the portfolio profit and loss.

For our portfolio construction we mimic the Dow Jones Commodity Index, a well known and much

traded index. The DJCI is a broad commodity index consisting of 24 commodities in three major

sectors: energy, metals and agriculture & livestocks. The weights are based on traded volume,

ensuring a liquid index. The index restrains the maximum and minimum weight each commodity

and sector can constitute (S&P Dow Jones Indices, 2017), providing diversification and continuity

for the potential investor, making it a good proxy for our study.

We will apply modern econometric techniques in our modelling. For the marginal distributions of

commodity returns, we use an asymmetric AR-GARCH process, and model the tails by applying

Extreme Value Theory. For the joint dependency we use a copula function. Finally, we simulate the

profit and loss distributions for the portfolio under different scenarios in a stress testing framework.

Our results are twofold. First we find that the simulated profit and loss distribution of the portfolio

is highly sensitive to the choice of modelling approach for the marginal distribution of portfolio

components. A close focus on estimating the marginal distributions, especially for the tails, is

of importance for the stress testing purpose. In addition, we found that dependence modelling is

less crucial for the stress testing to be informative. Secondly, we find the construction of hybrid

scenarios to be a relevant tool to combine both historical information and the flexibility of forward

looking approaches in line with the requirements from Basel III (Basel Committee on Banking

Supervision, 2009).

1.1 Aim and structure

The remainder of this thesis is structured as follows. Chapter two is an overview of the most relevant

literature for our study. In chapter three we will provide an introduction of our data, focusing on the
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characteristics of the portfolio. In chapter four we will move on to the theoretical background of the

different methodologies applied. Chapter five provides the implementation of the methodology for

our data set. Finally, in chapter six we will explain and apply stress testing and display our analysis.

For the accomplishment of this thesis we base the calculations on a protocol developed by The

Matworks Inc. We modify the code to fit our scope and data. The code is freely available online.
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2 Literature review

In this chapter we will discuss three literature streams relevant for our thesis. First, recent litera-

ture on stress testing is presented, before an overview of the economics of commodity markets is

provided. Finally, the financialization of commodities is investigated.

2.1 Stress testing

Stress testing can according to Lopez (2005) be defined as a risk management tool used to eval-

uate the potential impact on portfolio values of unlikely, although plausible events or movements

in a set of financial variables. The recent financial crisis led the attention of banks and authori-

ties to the insufficient methods of risk management, and the need for more accurate stress testing

became obvious, since financial institutions were not prepared to deal with the crisis. One main

concern was that the scenario selection and simulation was carried out by separate units for each

business line and for particular risk types (Basel Committee on Banking Supervision, 2009). This

indicates that the stress testing was isolated and did not provide a complete picture on the firm level.

Seemingly the most recent development in methodology for stress testing of portfolios is the use

of Extreme Value Theory (EVT) and copulas as input to the analysis. EVT was first introduced in

Embrechts, Mikosch and Klüppelberg (1997) to better model the tail distribution of risk factors.

Extreme Value Theory focuses on shaping the tails rather than the whole distribution of returns,

providing potentially better estimates of risk for financial portfolios. McNeil, Frey and Embrechts

(2015) suggest using a combination of GARCH and EVT where the GARCH residuals are used as

input to EVT. This methodology is somewhat adapted in recent literature, with the largest propor-

tion of new studies focusing on stock markets or single commodities (Ghorbel and Souilmi, 2014,

Liu, 2011, Wang et al., 2010, Aepli, 2011).

Koliai (2016) analyses existing risk models for stress testing purposes. The study presents a semi-

parametric copula-GARCH risk model for equity indices, exchange rates and commodity prices,

to perform stress testing on hypothetical portfolios, where the marginal distributions of returns are

specified using EVT. Findings are that different risk models produce significantly different results
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in terms of corresponding stress scenarios and impact on the portfolios. Further on, the proposed

model in the paper ensures the credibility of the stress scenario and the usefulness of the stress

testing results, because of considering flexible and consistent specifications.

Paraschiv, Mudry and Andries (2015) is to our knowledge the only example of stress testing with

the GARCH-EVT-Copula methodology for a broad portfolio of commodities. They find that im-

plementing Extreme Value Theory and a t copula for a commodity portfolio improves the capture

of potential losses. They also point out the importance of using forward-looking scenarios to enable

the simulations of extreme quantiles, providing a better understanding of risk.

Stress tests can be conducted with several methodologies. One can firstly differentiate between

univariate and multivariate stress tests. Univariate stress tests aim to identify the isolated influence

of stressing or shocking one single risk factor of a portfolio (Aepli, 2011, p. 4). This makes the uni-

variate stress tests simple to apply, but very limited, since they do not take dependencies between

risk factors in a portfolio into account, like a multivariate stress test would. Basel Committee on

Banking Supervision (2009) classifies stress test methodologies for financial institutions.

Further on, one can separate between different scenarios when running stress tests. The need

for hypothetical scenarios were highlighted after the crisis, since risk managers mostly performed

historical stress testing under Basel II (Basel Committee on Banking Supervision, 2006). The Eu-

ropean Banking Authority (2017, p.28) point out that ”the design of the stress test scenarios should

not only be based on historical events, but should also consider hypothetical scenarios, also based

on non-historical events”. Forward-looking scenarios are now required for European banks ac-

cording to Basel Committee on Banking Supervision (2009). Aepli (2011) presents an extensive

framework for complex stress testing for portfolios of futures. He develops a foundation that is in

agreement with the regulations from Basel III formed in the post crisis environment. We will give

a short description of the scenario categories, following Aepli (2011, p. 5-7).

Historical Scenario

Historical scenarios are based on actual, realised data steaming from a historical episode of finan-
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cial stress. This makes them realistic and easy to access. The profit and loss distribution in the

historical scenario is simply given by the realised empirical distributions. Lopez (2005) points out

that historical scenarios are developed more fully than other scenarios since they reflect an actual

stressed market environment that can be studied in great detail, therefore requiring fewer judge-

ments by risk managers.

One major drawback with historical scenarios is the assumption that passed financial crises will

reoccur with the same consequences on portfolio losses. This makes them unable to capture risks

linked to new products that may have significant impact on the outcome of a crisis. The worst

observed loss in the past might not reflect the worst possible outcome in the future. This drawback

was proven to be essential in the financial crisis of 2007 and resulted in the underestimation of the

risk level and interaction between risks (Basel Committee on Banking Supervision, 2009, p. 5).

Another drawback in historical scenarios is the sample size. Due to the limited number of obser-

vations, computing risk metrics in the higher confidence levels becomes problematic. This is a

considerable drawback as the most extreme losses are of great interest in stress testing exercises.

Hypothetical Scenario

Hypothetical scenarios are, unlike the historical scenarios, forward looking. Scenarios can be con-

structed in multiple ways, for example by shocking model parameters arbitrarily, based on own

experiences of market movements. Hypothetical scenarios have the advantage of being more flex-

ible and forward looking, making them more informative if conducted correctly. More focus on

hypothetical stress testing scenarios allows the institution to be both well prepared for potential

extreme unexpected outcomes, and lay the foundation to overcome these potential losses.

An extensive analysis has to be in place before constructing hypothetical scenarios, which can be

both time consuming and difficult. Basel Committee on Banking Supervision (2009, p. 5) point

out that banks had implemented hypothetical scenarios prior to the crisis, but it was difficult for

risk managers to obtain the support of the senior management, since the scenarios were extreme or

innovative, and often were considered as implausible. Extremes that have not yet been experienced
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are often difficult to imagine and to be taken seriously into consideration by risk managers.

Hybrid Scenario

Hybrid scenarios combine the knowledge found in historical scenarios with the flexibility of the

more hypothetical scenarios, making them a suitable alternative in stress testing. Hybrid scenarios

are also easier to implement than more extensive forward-looking scenarios, as they are anchored

in actual experienced market conditions. Hybrid scenarios are constructed by using historical data

during times of financial distress to calibrate the process of risk factor evolution, but allow extrap-

olation beyond experienced events.

Even though hybrid scenarios allow the construction of new possible scenarios, they are still some-

what backward looking in the sense that they do not fully explore the risk of shifting market con-

ditions or risk associated with new products. However, Lopez (2005) points out that risk managers

always face a trade-off between scenario realism and comprehensibility; that is, more fully devel-

oped scenarios generate results that are more difficult to interpret. The benefits from implementing

hybrid scenarios should not be neglected as they balance this trade-off.

2.2 Economics of Commodity markets

Commodities are a broad diversified non-homogeneous asset group. Commodities can roughly be

divided into energy, metals (industrial and precious) and livestocks & agriculture (grains and soft).

Each commodity is driven by specific supply and demand conditions, so their risk characteristics

differ from each other (Tyner, 2010, He, Wang and Lai, 2010). However, all commodities are af-

fected somewhat by global activity since most humans consume commodities in their everyday life,

whether it is grains for food, natural gas for heating or copper for electronics (Delle Chiaie, Ferrara

and Giannone, 2017, Pindyck, 2004). The supply and demand of commodities are mainly affected

by liquidity, weather and natural disasters, geopolitics and global activity. Typically, commodities

also show, like most financial assets, fat tails and skewness (Bhardwaj, Gorton and Rouwenhorst,

2015). Another important factor affecting prices and risk of commodities is the cost of storage.

While most commodities can be stored, the costs attached to this are varying. Some commodities,

like electricity, cannot be stored. See for example Pindyck (2004) for a deeper discussion.
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Delle Chiaie, Ferrara and Giannone (2017) study the co-integration of commodities of different

sectors. They examine the drivers of commodity prices, and bring evidence to the increased im-

pact of the global activity on the price developments of commodities, especially for oil. Their

price model reveals that global activity explains much of the fluctuations in commodity prices dur-

ing episodes linked to changes in global demand conditions (Delle Chiaie, Ferrara and Giannone,

2017, p. 4), while price fluctuations during episodes with changes in supply mostly are explained

by local commodity market conditions.

Despite the differences in price drivers among commodities one can observe a common increase in

prices since the beginning of the twenty-first century. Furthermore, one can observe an identical

drop in prices during the financial crisis. Cheng and Xiong (2014) call it a common boom and bust

cycle. They point out two main reasons for the simultaneous price boom; the first is the increased

demand for oil and other commodities from emerging markets, one example here is China (see also

Kilian and Zhou, 2018). The second reason is the entry of new technology transforming agricultural

commodities into substitutions for oil and energy commodities.

2.3 Financialization of commodity markets

The risk associated with weather, storage etc. led to the rise of commodity indices in the early

2000s, providing a hedge opportunity for commodity producers. The commodity indices also al-

lowed for easy-access investments in a diversified basket of commodities for all types of investors,

effectively reducing the risks of each individual commodity. This increased investment in com-

modities is often referred to as the financialization of commodity markets (Tang and Xiong, 2010).

The main derivative for financial investors in the commodity market is the future contract. The use

of futures allows the investors to expose themselves to the return and risk of commodities without

storing the physical product.

Investing in commodity indices is now common for big institutions such as pension funds and

banks. The diversification effect of including commodities in a stock and bond portfolio is driven

by the fact that commodity returns correlation with stocks and bonds have historically been low and
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there is still a diversification potential for portfolios found in recent literature (Bhardwaj, Gorton

and Rouwenhorst, 2015, Gorton and Rouwenhorst, 2006, Öztek and Öcal, 2017). Commodities

are known to be volatile, but have historically been less volatile than the stock market (Bhardwaj,

Gorton and Rouwenhorst, 2015). Stoll and Whaley (2015) argue that the commodities’ role as

inflation hedge is one important reason for the increased popularity of the commodity indices as a

risk management tool for institutions.

Basak and Pavlova (2016) examine how the presence of institutional investors may affect the com-

modity prices and their dynamics. They find that futures prices, volatility and correlations of all

commodities rise, especially for index commodities, in the presence of financial or investing insti-

tutions. They also find that demand and supply shocks to index commodities get transmitted to the

price of other commodities.

Tang and Xiong (2010) show that the increasing presence of index investors has exposed commod-

ity prices to market-wide shocks, such as shocks to the world equity index, the US dollar exchange

rate, and shocks to other commodities, such as oil. They extend their research by arguing that

the financialization with investors trading and linking different commodity prices is the main rea-

son of the overall increase in commodity correlations. Another important driver of correlation is

the linked demand for energy and agricultural commodities used for energy purposes, like biofuel

from corn, as the demand for green energy has spiked (Tang and Xiong, 2012). Bhardwaj, Gorton

and Rouwenhorst (2015) show that correlation among commodities also increase during periods of

intensive financial stress. They also show that correlations with other assets, such as stocks and

bonds, temporarily increase during times of extreme market turmoil. Pointing to the financializa-

tion of commodity markets they highlight an extreme growth in commodity investments, despite

the stable composition of traders. This urges the need to stress test commodity portfolios to prevent

extreme, but plausible losses.
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3 Data selection and description

In this chapter we will present our data set and show the construction of our test portfolio. We will

then analyse the descriptive statistics for the commodity returns and do preliminary tests.

3.1 Commodity indices

Commodity indices have become quite popular in the last decades (see Section 2.3) and several

commodity indices exist. Two big commodity indices are the S&P Goldman Sachs Commodity

Index (S&P GSCI) and the Dow Jones Commodity Index (DJCI). The S&P GSCI consists of 24

commodities and the weights are based on trading volume. It is therefore often seen as a bench-

mark for investment performance in commodities. The trading volume in energy commodities is

higher than any other commodity sector so this index is heavily based in energy (60% of the total

weight in 2017 (S&P Dow Jones Indices, 2018)). To get a more balanced portfolio across different

commodity sectors the DJCI will be the focus in this thesis. It consists of 24 commodities divided

into three major sectors; metals, energy and livestock & agriculture. The weights are based on the

total volume traded, but unlike the S&P GSCI, the DJCI has constraints on total weight allocated

in each sector and commodity. By not allowing any of the three sectors to obtain more than 35%

of the weight, and no single commodity to constitute less then 2% or more than 17% of the total

index, the DJCI becomes diversified. These restrictions also provide continuity and high liquidity

for potential investors. The weights are rebalanced annually. See S&P Dow Jones Indices (2017)

for a detailed methodology.

3.1.1 Risk factor selection

To select the risk factors (commodities) for our analysis we apply the method introduced in Mudry

(2013). We take the ten commodities with the largest weights for 2017 in the DJCI, and form

our test portfolio. This is done to get a more time efficient portfolio and to make the analysis

more practical. The ten commodities add up to 76% of the DJCI, providing a good proxy for the

movements of the entire index. To form our test portfolio we scale up the weights, proportionally

to 100%. The weights of the ten commodities can be seen in Table 3.1. Our selection leaves us

with three portfolio components in energy, three in metals and four in agriculture & livestocks.
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Commodity Weight in index Weight in test portfolio

Wheat 3.208% 4.217%

Corn 7.114% 9.351%

Soybeans 11.91% 15.656%

Live Cattle 2.730% 3.589%

Copper 10.39% 13.658%

Gold 10.23% 13.447%

Aluminium 4.613% 6.064%

WTI 9.718% 12.774%

Brent 8.849% 11.632%

Natural Gas 7.313% 9.613%

Sum 76.075% 100%

Table 3.1: Portfolio weights scaled up from the weights in DJCI 2017. Source: S&P Dow Jones Indices

(2016).

3.2 Data Extraction

We extracted daily data from 1996 - 2017 from Thomson Reuters Eikon for continuous series of fu-

tures with approximately one year to maturity for the ten selected commodities. This leaves us with

5741 observations for each commodity. Details about the data extraction are found in Table 3.2.

When working with futures the concept of rolling over is essential. This is done to adjust for the

increased volatility as a contract gets closer to maturity, and also to adjust for the sudden differences

in price when going from one contract to the next. There are many different methods to adjust the

time series dependent on the purpose etc. As for our data, the rolling over was done by Eikon.

Their methodology can be found in Thomson Reuters (2012). Shortly explained; for monthly

futures data roll over is done by jumping to the nearest future contract with a switch over following

the last trading day. In other words, they use the nearest contract month to form the first values

of the continuous series, and when the contract expires the next point of data is the next one year

to maturity contract. They do not adjust for price differentials when adjusting the data, but we

found this methodology to be sufficient for our analysis especially as our futures have one year to

maturity.
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Commodity Ticker Classification Units Price Quote Exchange

WTI CL Energy 1000 barrels USD/barrel NYMEX

Brent LCO Energy 1000 barrels USD/barrel ICE

Natural Gas NG Energy 10.000 Million BTU USD/MMBtu NYMEX

Corn C Grains 5000 bushels US cent/bushels CBoT

Wheat W Grains 5000 bushels US cent/bushels CBoT

Soybeans ISF Grains 5000 bushels US cent/bushels CBoT

Live Cattle LC Livestock 40.000 Pounds US cent/pound CME

Gold GC Precious Metal 100 Ounces USD/Troy oz COMEX

Aluminium MAL Industrial Metal 25 Metric Tonne USD/MT LME

Copper HG Industrial Metal 25.000 pounce USD/pounce COMEX

Table 3.2: Data extraction details. Source: Thomson Reuters Eikon

Figure 3.1 shows the historical price movements for the commodities, measured in a relative index

value. We observe a co-movement of many commodities. Especially in the 2000s the commodity

markets experienced a uniform rise in prices until the financial crisis (see Section 2.2 for discus-

sion).

We observe several structural breaks across the commodities during our time period. Especially the

financial crisis in 2007-2009 heavily affected commodity markets. Delle Chiaie, Ferrara and Gian-

none (2017) bring evidence supporting that global activity has clear implications for the commodity

markets. Their analysis shows that since the year 2000 the price drivers of oil have fundamentally

changed, and during the time of the financial crisis global activity strongly affected the oil price.

The acute drop in oil price in 2014 was driven by several factors, among them the increased supply

of unconventional oil and a significant shift in OPEC policy (Baffes et al., 2015). What differ-

entiates the price drop in 2014 from previous collapses in oil price is, according to Baffes et al.

(2015), that the fluctuation could not be explained by a weakened demand or expansion of supply

in isolation, but rather a combination of the two.

While during the financial crisis all commodity sectors were affected, the price drop in 2014 to a
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lesser degree showed spillover to non-energy sectors. This indicates the decoupling of oil price

from other commodities in agriculture and metals. According to Erdős (2012) the co-integration of

oil and natural gas ended in 2009 after an increase in shale gas production. We observe from the

graph that the commodities in non-energy sectors in more recent years do not necessarily follow

the oil price as closely as in the past decade, potentially affecting the dynamics of the commodity

markets.
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Figure 3.1: Historical daily price movements from 1996-2017 for the ten commodities in relative value.

3.3 Descriptive statistics

McNeil, Frey and Embrechts (2015, p. 117) present six stylized facts of financial returns that can

be observed, especially when looking at monthly, weekly and daily data:

1. Return series are not i.i.d. although they show little serial correlation.

2. Series of absolute or squared returns show profound serial correlation.

3. Conditional expected returns are close to zero.

4. Volatility appears to vary over time.

5. Return series are leptokurtic or heavy-tailed.
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6. Extreme returns appear in clusters.

Commodity Mean Std. Dev. Max. Min. Skewness Kurtosis Jarque-Bera (p-value)

Wheat 0.0014% 1.529% 8.15% -12.17% -0.1123 6.86 3573 (0.001)

Corn 0.0046% 1.447% 9.74% -14.48% -0.2157 8.19 6467 (0.001)

Soybeans 0.0049% 1.364% 7.04% -8.11% -0.3039 6.48 2984 (0.001)

Live Cattle 0.0098% 0.722% 6.61% -6.89% -0.6774 12.98 24 210 (0.001)

Copper 0.019% 1.545% 11.41% -11.26% -0.1425 7.80 5512 (0.001)

Gold 0.021% 1.062% 8.62% -9.87% -0.1347 9.89 11 351 (0.001)

Aluminium 0.0046% 1.131% 6.37% -7.60% -0.2470 6.09 2335 (0.001)

WTI 0.0208% 1.623% 10.00% -9.19% -0.1655 6.33 2670 (0.001)

Brent 0.02367% 1.582% 9.26% -9.26% -0.1055 6.00 2162 (0.001)

Natural Gas 0.0064% 2.752% 21.64% -31.12% -0.0807 10.30 12 716 (0.001)

Table 3.3: Daily descriptive statistics of commodity returns for years 1996-2017.

Table 3.3 shows the daily descriptive statistics of our time series. Referring to the stylized facts

above, we can see that they apply for our data. All ten commodity returns show positive mean

close to zero, in line with stylized fact 3. Natural gas is the most volatile commodity, while live

cattle is the least volatile. The commodity returns exhibit negative skewness and excess kurtosis,

which implies they have significant fat tails. The Jarqe-Bera test rejects the null hypothesis of a

normal distribution for all the commodity returns.

Figure 3.2 shows the sample autocorrelation plot of the returns and squared returns for WTI, as well

as the daily logarithmic returns and a quantile-quantile plot. Plots for the other commodities can be

viewed in Appendix A1, A2, A3, A4, which show similar results. We can now also see graphically

that the returns show autocorrelation, in line with stylized fact 2. The commodity returns further-

more show volatility clustering and substantiate fact 4 and 6. The QQ-plot in Figure 3.2 clearly

substantiates the rejection of the normal distribution by the Jarque-Bera test.
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Figure 3.2: Sample autocorrelation plot of the returns and squared returns for WTI, as well as the daily

logarithmic returns and a quantile-quantile plot. Corresponding graphs for all commodities are found in

Appendix A1, A2, A3, A4.

Figure 3.3 displays the probability plot of WTI returns, which shows that the returns follow the t

distribution better than the Normal distribution, but the data deviates from the t distribution in the

tails. This means that we have heavy tails, in line with stylized fact 5. The Student t distribution

is a symmetrical distribution. This indicates that it is not able to capture heavy tail asymmetry of

the risk factors. This argument strongly points toward using a different distribution estimation to

describe the tails.
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Figure 3.3: Probability Plot of WTI returns vs Standard Normal vs t distributions. Corresponding graphs

for the other commodities are found in Appendix A5.

Commodity ARCH(L5) ARCH(L10) ARCH(L15) ARCH(L20)

Wheat 237.06 (0.00) 315.09 (0.00) 360.67 (0.00) 396.00 (0.00)

Corn 195.32 (0.00) 261.28 (0.00) 281.01 (0.00) 296.43 (0.00)

Soybeans 326.98 (0.00) 419.83 (0.00) 449.80 (0.00) 466.46 (0.00)

Live Cattle 63.49 (0.00) 86.39 (0.00) 103.79 (0.00) 124.39 (0.00)

Copper 908.33 (0.00) 1025.04 (0.00) 1070.35 (0.00) 1099.46 (0.00)

Gold 241.25 (0.00) 274.14 (0.00) 323.52 (0.00) 339.13 (0.00)

Aluminium 306.52 (0.00) 410.75 (0.00) 487.77 (0.00) 515.77 (0.00)

WTI 491.58 (0.00) 596.96 (0.00) 671.05 (0.00) 708.36 (0.00)

Brent 497.78 (0.00) 579.76 (0.00) 641.59 (0.00) 662.43 (0.00)

Natural Gas 57.17 (0.00) 74.71 (0.00) 106.23 (0.00) 116.06 (0.00)

Table 3.4: Results from ARCH tests for conditional heteroscedastisity for lags 5, 10, 15 and 20 (p-values in

brackets). All the commodities show conditional heteroscedastisity.

The volatility clustering and serial correlation can be tested with a ARCH test for significant condi-

tional heteroscedastisity, following Engle (1982). Results from the ARCH tests are found in Table
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3.4. We performed the test for lags 5, 10, 15 and 20. The test rejects the null hypothesis of no

ARCH effects for all the lags for all ten commodities. This implicates that we have significant

conditional heteroscedastisity, and that we need to model volatility using a GARCH process.

Before we can proceed with the GARCH process the assumption of stationary data needs to be

tested. A stationary process is a stochastic process whose expected value and variance do not

change over time, and the unconditional joint probability distribution does not change when shifted

in time. We will perform both Augmented Dickey Fuller test (ADF), Kwiatkowski–Phillips–Schmidt–Shin

test (KPSS) and Phillips Perron test (PP). We follow Alexander (2008b) for methodology and refer

the reader to this author for further details about stationary processes and the tests.

The results from the stationarity tests can be found in Table 3.5. Both Augmented Dickey-Fuller

test, Phillips Perron test and KPSS test show that the returns of all the commodities are stationary,

which allows to proceed with a GARCH process.

Commodity ADF test PP test KPSS test

Wheat -76.54 (0.001) -76.54 (0.001) 0.083 (0.10)

Corn -74.71 (0.001) -74.71 (0.001) 0.073 (0.10)

Soybeans -76.76 (0.001) -76.76 (0.001) 0.083 (0.10)

Live Cattle -75.90 (0.001) -75.90 (0.001) 0.063 (0.10)

Copper -81.80 (0.001) -81.80 (0.001) 0.139 (0.063)

Gold -76.08 (0.001) -76.08 (0.001) 0.201 (0.016)

Aluminium -78.57 (0.001) -78.57 (0.001) 0.065 (0.10)

WTI -82.35 (0.001) -82.35 (0.001) 0.079 (0.10)

Brent -83.10 (0.001) -83.10 (0.001) 0.093 (0.10)

Natural Gas -78.23 (0.001) -78.23 (0.001) 0.023 (0.10)

Table 3.5: Stationarity tests statistics (p-value between brackets). Augmented Dickey Fuller (ADF) and

Phillips Perron (PP) test for non-stationarity and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for sta-

tionarity. The tests conclude that the returns of the ten commodities are stationary.

As a result of the return characteristics for the ten commodities we model the conditional volatility

with a GARCH process. A GARCH process can be extended in various ways, depending on the
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purpose. For commoditiy markets it has been shown that volatility tends to increase more after large

negative returns, than after large positive returns (Nyström and Skoglund, 2002b). We therefore see

it as an appropriate fit to extend to a GARCH-GJR model, which includes a leverage parameter to

capture this asymmetry.

Since our focus is on stress testing extreme returns are of special interest. We have shown the

deviation from the normal and student t distribution for the returns, especially in the tails, so these

distributions are not satisfying for modelling the individual return time series. Extreme Value The-

ory, with the Peak over Threshold method, has in earlier studies (Aepli, 2011, Mudry, 2013, Wang

et al., 2010) shown to be a good fit for modelling the tails accurately, and will therefore also be

applied in our analysis.

Due to the common bust and boom cycles and co-integration of commodity markets, the depen-

dency between the risk factors is important to be modelled realistically. Aepli et al. (2017) bring

evidence to the importance of modelling time-variation and asymmetries in the dependence struc-

ture of a commodity futures portfolio. In support to Basel III critics on over-reliance on historical

correlation, they introduce multivariate dynamic copula models as the superior alternative. There

exists a numerous amount of copulas to choose from, and the best choice is dependent on the aim

of the analysis and the data. Studies such as Mudry (2013), Aepli (2011) and McNeil, Frey and

Embrechts (2015) find the t copula to be superior over the Gaussian copula in the context of mod-

elling multivariate financial return data. For our purpose we therefore prefer a t copula over the

more common Gaussian copula. The asymmetry of our data would probably be better modelled

by an asymmetric copula. However, for our analysis we find the t copula suitable as it keeps the

analysis traceable and allows a direct comparison across stress tests. The theoretical background

for the methodology is presented in the next chapter.
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4 Methodology

In this chapter we will present the theoretical background for modelling the distributions of the

individual risk factors and the dependencies between them step by step. We will present an in-

troduction to GARCH processes to obtain standardised residuals, before introducing the empirical

background of Extreme Value Theory and copulas. The application for our data and analysis will

be presented in the next chapter.

4.1 AR models

The following sections are based on Alexander (2008b). Autocorrelation, also called serial corre-

lation, is when the return today is dependent on its passed history, the lagged returns. A simple

autoregressive AR(p) process is a simple way to capture the autocorrelation between the individual

commodity returns:

yt = µ+
p∑
i=1

φiyt−i + εt

where εt is i.i.d. with mean zero and variance σ2.

The AR(p) process above can be extended to an ARMA(p,q) process when we include a MA(q)

process to capture movements of the long term average. An ARMA(p,q) is given by:

yt = µ+
p∑
i=1

φiyt−i +
q∑
j=1

γjεt−i + εt

ARMA models are typically used to account for linear serial dependence. However, ARMA mod-

els fail to take into account the asymmetry of returns, fat tails and volatility clustering, which has

important implications for risk measurement. Therefore, an ARMA model is not optimal for our

study, and we need other specifications for the variance to take the mentioned problems into ac-

count.

4.2 GARCH

The residuals in the previous AR(q) model can be decomposed such that:

εt = ztσt

19



where zt is i.i.d. and σt is the conditional variance.

The generalized autocorrelation conditional heteroscedasticity model (GARCH) is then used to

capture the volatility change and clustering of returns over time.

The symmetric normal GARCH assumes that the dynamic behaviour of the conditional variance is

given by:

σ2
t = ω + αε2t−1 + βσ2

t−1 , εt|It−1 ∼ N(0, σ2
t ).

The parameters of the GARCH model are estimated by maximising the value of the log likelihood

function (see Alexander, 2008b, p. 137) .

4.2.1 GARCH-GJR model

It has been empirically shown that for commodity markets volatility tends to increase more after

large negative returns than after large positive returns (Nyström and Skoglund, 2002b, p. 5). This

is called a leverage effect and is captured by extending with one extra parameter, the leverage

parameter. The GARCH-GJR model was originally designed for stocks where the higher impact

on the volatility from the negative shocks than from positive shocks, is captured by the leverage

parameter. Since commodities also often show negative skewness it can also be applied to our

data. The GARCH-GJR can be written from the GARCH(1,1) model above, including the extra

parameter (Alexander, 2008b, p. 150):

σ2
t = ω + αε2t−1 + λ1(εt−1<0)ε

2
t−1 + βσ2

t−1

where the indicator function 1(εt<0) = 1 if εt < 0.

The estimation of the GARCH-GJR model is based on the likelihood function, same as the normal

GARCH, but with the extra leverage parameter λ to account for the asymmetry.

Nyström and Skoglund (2002a, p. 10-12) discuss which distribution should be assumed for the

filtered residuals zt for financial data, and find that there is no empirical support for the symmetry in
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normal distributions, nor is there support for the exponentially decaying tails. They therefore point

out that using normal distribution approximation for the high quantiles might lead to significant

underestimation. They suggest the t distribution as an alternative distribution assumption, which

might be more accurate in capturing fat tails, but unable to capture asymmetry. Nyström and

Skoglund (2002a) use Extreme Value Theory to account for both the fat tails and the skewness and

asymmetry of financial data. In this thesis we will apply this combined method. The distribution

of the filtered residuals from the GARCH-GJR process is a t distribution, and the tails will be

modelled based on Extreme Value Theory with the generalized Pareto distribution. The theoretical

background will be presented in the following section.

4.3 Extreme Value Theory

Extreme value theory (EVT) is the study of improbable, but extreme events. EVT is more com-

monly used in weather and insurance, but has over the past decade become more popular also in

financial studies. Embrechts, Mikosch and Klüppelberg (1997) introduced a full framework for the

analysis, and they argue that EVT should be given more attention in risk management for financial

institutions. McNeil, Frey and Embrechts (2015) introduced a combination of GARCH-EVT mod-

els where the GARCH residuals are used as input to EVT, since EVT requires the residuals to be

i.i.d.

The theoretical framework for Extreme Value Theory is extensively shown in Nyström and Skoglund

(2002b) and Embrechts, Mikosch and Klüppelberg (1997).

Let X1, ..., Xn be n observations from n independent and identically distributed random variables

with the distribution function F . The focus is now to understand the distribution function with a

closer look on its upper and lower tails. From this point of view we consider:

Mn = max(X1, ..., Xn)

mn = min(X1, ..., Xn)

Both Mn and mn are random variables that depend on the size of the sample n. We are focusing on

understanding asymptotic behaviour of these random variables as n→∞. From this it is important
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to notice that mn = (−X1, ...,−Xn), as this allows us to only concentrate on the upper tail for the

underlying distribution by describing the theory for Mn in the following.

EVT provides us with the structure of the asymptotic limit of the random variable Mn that we de-

fined above.

To clarify the theory we introduce an example, showed by Nyström and Skoglund (2002b, p. 9).

Let F (x) = (1− exp(−x))X[0,∞)(x), and if we assume independence we have

P (Mn ≤ x) = (1− exp(−x))n

If we now let n → 0 the right hand side of the equation will, for every positive value of x, tend to

zero. Hence, we cannot get a non-degenerated limit without a normalisation. One should therefore

redo the calculation in such a way that

P (Mn ≤ x+ log n) = (1− exp(−(x+ log n)))n

= (1− exp(−x)
n

)n → exp(−exp(−x)) =: Γ(x)

From this the limit indicates that we let n tend to infinity. And from this we can prove that the

convergence is uniform, and so for large numbers we have

P (Mn ≤ x) ∼ Γ(x− log(n))

Related to this derivation, the generalised form of extreme value distribution introduced by Nyström

and Skoglund (2002b) is

Γξ,µ,σ(x) = exp(−(1 + ξ (x−µ)
σ

)
−1/ξ
+ ), x ∈ R

1
ξ

is known as the tail index. It indicates the heaviness of the upper tail of the underlying distribu-

tion F . If we let ξ → 0 the tail index will go towards infinity and Γξ,µ,σ(x) → Γ((x − µ)/σ) with

the parameters µ and σ as translation and scaling.

ξ = 0 is the Gumbel distribution

ξ > 0 is the Fréchet distribution

ξ < 0 is the Weibull distribution
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The Gumbel distribution indicates that the distribution will extend along the entire real axis, while

the Weibull distribution indicates that the distribution has a upper bound. The Fréchet distribution

has a lower bound, and t distributions empirically tends to converge to the Fréchet distribution. The

different cases are illustrated in Figure 4.1.

The generalised Pareto distribution (GPD) is introduced for any ξ ∈ R, β ∈ R+:

GPξ,β(x) = 1− (1 + ξ x
β
)
− 1
ξ

+ , x ∈ R

The link between the generalised Pareto distribution and extreme value theory can be expressed as

the following:

1−GPξ,β(x) = − ln Γξ,0,β(x)

From the literature there are two practical methods for applying EVT to our data. The first is the

block maxima method. In this approach we define blocks in the data, and then extract the maxima

(maximum loss) in each block. There are several drawbacks to this approach. The local maxima in

a block might not capture the actual maximas in the time series, and the second and third maxima

in a block might be of significance to the investor but will not be captured by the block maxima

approach.

The second method, the Peak over threshold, focuses on the events that exceed a specified, high

threshold. Here the observations over the threshold are asymptotically described by the generalised

Pareto distribution. The Peak over threshold is the preferred method for practitioners as it makes

better use of the data, and so we will use this approach in our thesis.

The central point here is how the GPD can be used in the tail estimation for the unknown dis-

tribution F (x). The distribution function of the excess distribution over the selected threshold u

is:

Fu(z) = P (Z ≤ z|Z ≥ u) = F (z)−F (u)
1−F (u)

And so,
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1− F (z) = (1− F (u))(1− Fu(z))

The goal is to apply EVT to the estimation of the tail for large values of z. To do this we have to

define where the tail starts, in other words we need to select the threshold u. For our sample with n

point sorted according to sixe: Zn,n ≤ ... ≤ Z1,n we can define the upper tail by the integer k < n.

The observations in the upper tail for the distribution are then Zk,n ≤ ... ≤ Z1,n. The threshold is

then u = Zk+1,n, and k/n is an estimator for 1− F (u).

For any z > u the estimation of the tail distribution below is obtained by the GPD.

F̃ (z) = 1− k
n
(1 + ξ̃

(z−Zk+1,n)

β̃
)
− 1

ξ̃

+

ξ̃ and β̃ are parameter estimates of the generalised Pareto distribution. To estimate the parameters

in the GPD we use maximum likelihood. This is the preferred method as it provides estimates of

the parameters that are consistent and asymptotically normal as n → ∞ given that ξ > −1/2.

When using the maximum likelihood it is nearly invariant to the level of the threshold given that

the threshold is within a reasonable limit. Determining the optimal threshold is challenging, and

there are several methods which can be used. However, Nyström and Skoglund (2002b) argue that

the threshold should be between 5-13% of the data.
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Figure 4.1: Probability density of the generalized Pareto distribution with β = 1 in all cases
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4.3.1 Kernel smoothed interior

The data between the thresholds are fitted by a Gaussian Kernel estimator. A kernel estimator is

a function that derives a smooth curve from the observed data that is the best possible representa-

tion of the probability density. Alexander (2008a, p. 106) defines the kernel approximation to the

density of X as:

f̂(x) = (nh)−1
n∑
i=1

K
(x− xi)

h

where (x1, x2, ..., xn) is a random sample on a random variable X , K is the kernel function, that

satisfies
∫
K(x)dx = 1, and h is the bandwidth parameter, which is strictly positive. K is normally

selected from a unimodel probability density function which needs to be symmetric around zero.

In most cases the choice of density function is of little importance. In this thesis we will use the

Gaussian one, such that

K(x) = 1√
2π
exp(−x2

2
)

4.4 Dependence structure

The GARCH-GJR-EVT process focuses on modelling the distribution of individual risk factors by

modelling the conditional volatility, asymmetric adjustment and fat tails. However, this is done by

modelling each risk factor in isolation, and tells us nothing about the dependence structure, which

is a very important part of stress testing. The most popular and simple measurement of dependence

is Pearson’s linear correlation. In the following section we discuss drawbacks of employing simple

correlations and motivate the use of copula functions.

4.5 Pearson’s linear Correlation

Pearson’s linear Correlation can be defined by (Alexander, 2008a, p. 112):

Let X and Y be vectors of random variables with non zero finite variances, then Pearson’s linear

correlation is given by

ρ(X, Y ) = Cov(X,Y )√
V ar(X)

√
V ar(Y )
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where Cov(X, Y ) denotes the covariance of X and Y , while V ar(X) and V ar(Y ) denote the vari-

ances, respectively. ρ can take on values in [−1, 1]. If ρ = 0, Xand Y are independent.

Embrechts, Mcneil and Straumann (1999) discuss that if risks have an elliptical distribution, such

as a jointly multivariate normal distribution, then the use of standard correlation is unproblematic.

This is however very often not the case. With elliptical distributions we constitute an ideal world

where nothing can go wrong. When moving forward with that assumption it can lead to a wide

misjudgement of risk. This means that outside the elliptical world simple correlation must be used

with care.

Another major fallacy pointed out by Embrechts, Mcneil and Straumann (1999) is that all corre-

lations between -1 and 1 can be attained. When Pearson’s linear correlation coefficient is 1, it is

interpreted as perfect positive dependence, and perfect negative dependence for -1. For that to be

possible two risk factors must have identical distributions up to a change of location and scale. This

is again only true in the elliptical world. Further on, a correlation of zero does not indicate indepen-

dence of risks. They also correctly point out that correlation is not invariant under transformations

of the risks. For example, log(X) and log(Y) generally do not have the same correlation as X and

Y (Embrechts, Mcneil and Straumann, 1999, p. 5) .

4.6 Spearman’s rho and Kendall’s tau (concordance)

The Spearmans’s rho, and also Kendall’s tau, are perhaps the best alternatives to the linear cor-

relation coefficient to measure dependence for non-elliptical distributions like ours (Embrechts,

Lindskog and J. Mcneil, 2001). Spearman’s rho is called the correlation of ranks, and is a measure

of concordance. Concordance is a definition of association between two random variables.

Consider two pairs of observations of continuous random variables X and Y , and denote them

(x1, y1) and (x2, y2). For the pairs to be concordant x1 − x2 has to have the same sign as y1 − y2.

And, for the pairs to be discordant x1−x2 has to have the opposite sign of y1−y2. If the proportion

of concordance in a sample is increasing, then the probability that a large value of X is paired with

a large number of Y is also increasing.
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Rank correlations focus on the rank of the data point instead of the data itself. The smallest return

is given the rank of 1, and the second smallest return is ranked 2 and so on. Spearman’s Rho is

estimated for a data set of two variables, by ranking the data in each of the two time series, and

then taking the sum of the squared differences in rank between the two data series. It is defined by:

ρs(X1, X2) = ρ(F1(X1), F2(X2))

For a vector (X1, X2)
T of continous random variables with a copula C, the Spearman’s rho is given

by:

ρs(X1, X2) = 12
1∫
0

1∫
0
C(u, v)dudv − 3

4.7 Copulas

A copula allows for modelling the dependence structure without knowledge about the underlying

joint distributions. It bases on the joint distribution of two or more assets by only specifying

the marginals. Alexander (2008b) points out that one of the advantages of using a copula is that

it isolates the dependence structure from the structure of the different marginal distributions. A

copula can therefore be modelled for any marginal distribution, and the marginal distributions for

the different risk factors do not have to be the same. The theory and notation behind copulas was

already introduced in 1959 by Sklar. The use of copulas to measure dependence became more

popular in the literature in the end of the 1990s, but only in the recent decade have copulas become

a much used financial tool.

4.7.1 Sklar’s theorem

There exists a very large number of copulas, some more advanced than others. We will base our

theoretical framework of copulas on Alexander (2008b). To be able to understand copulas we

introduce The Sklar’s theorem (Sklar, 1959):

Theorem 1 Consider a n-dimensional distribution function with marginal distributions F1, ...Fn.

Then there will exist a copula C : [0, 1]n → [0, 1], such that

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn))
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for all xi, ..., xn in [−∞,∞]. C is unique if the marginal distributions are continuous.

If it exists the copula density from the theorem is the function

c(F1(x1), ..., Fn(xn)) = ∂nC(F1(x1),...,Fn(xn))
∂F1(x1).....∂Fn(xn)

If we have the marginal densities fi(x) = F
′
i (x) we will have access to the joint density of the

original variables from

f(x1, ..., xn) = f1(x1)...fn(xn)c(F1(x1), ..., Fn(xn)).

Since the values of the marginal distribution function Fi(xi)) are uniformly distributed we can give

the copula distribution an alternative notation by using uniformly distributed variables ui ∈ [0, 1] as

representation of the values of the marginal distributions at the realisations xi (Alexander, 2008b).

The copula density with ui = Fi(xi) might be written as

c(u1, ..., un) = ∂nC(u1,...,un)
∂u1..−∂un

Often the density function rather than the copula distribution is used in practise as they are easier

to interpret.

4.7.2 Tail dependence

Tail dependence for copulas tells us about the concordance in the tails for the joint distribution. In

other words, the upper tail dependence for two random variables implies that large positive values

of U1 tend to go together with large positive values for U2. For financial data the copulas tend to

have higher dependency in the tails. The upper tail dependence is defined by:

λiju = limq→[1] P (Xi > F−1i (q)|Xj > F−1j (q))

given that the limit exist. The coefficient λ is a conditional probability, and so λuij ∈ [0, 1]. The

copula shows upper tail dependence if λuij > 0.

Similarly, we have the lower tail dependence defined by:

λijl = limq→[0] P (Xi < F−1i (q)|Xj > F−1j (q))
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given that the limit exist. We have that λlij ∈ [0, 1]. And the copula has a lower tail dependency if

λlij > 0.

If λlij = λiju the tail dependence is symmetrical, and asymmetric tail dependence if the coefficients

are different.

4.8 Student t copula

We will only focus the theoretical background of the symmetric t copula. For a more detailed and

complementary background of copulas we refer the reader to Alexander (2008b) or McNeil, Frey

and Embrechts (2015).

4.8.1 Theoretical background

The multivariate t copula can be derived from the multivariate t distribution, and is defined as

(Alexander, 2008b, p. 268):

Cv(u1, ..., un; Σ) = tv(t
−1
v (u1), ..., t

−1
v (un)),

where tv and tv are multivariate and univariate Student t distribution functions. v is the degrees of

freedom, and Σ is the correlation matrix.
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Figure 4.2: t copula with ρ = +/-0.4 and DoF 1.5. Source: Mudry (2013)
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4.8.2 Estimation

To use the copula one will need to estimate the different parameters. Maximum likelihood estima-

tion is a common tool in this process. The maximum likelihood estimator is applied to the theo-

retical joint distribution function. This is a difficult process, especially for the multivariate case in

our analysis. This study will use the less time consuming approach of an approximate maximum

likelihood function. It is known as a canonical maximum likelihood (CML), or a semi-parametric

maximum likelihood estimation (see Bouyé et al., 2000, for parametric estimation). This method

does not imply any assumptions of the marginal distributions, but is based on the empirical distri-

butions. After transforming the standardized residuals to uniform variates the copula is fitted to the

transformed data.
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5 Application on the portfolio

In this chapter we will apply the presented methodology on our data. First we model the condi-

tional volatility with a GARCH-GJR model to get the filtered residuals and the filtered conditional

standard deviations. Further on, we standardise these residuals to model the tails with EVT. The

tails are modelled with a generalized Pareto distribution, by the Peak over threshold method. By

combining the tails with a Kernel smoothing for the interior, the entire distribution of the individual

risk factors is modelled. Next on, a multivariate t copula is applied to model the dependencies,

before moving on to the simulations and stress testing in the next chapter.

5.1 Application of the GARCH-GJR

To find the appropriate lag structure for the GARCH(p,q) process we estimate models with q and p

ranging from 1 to 6. To select the best model for the data we perform Akaike (AIC) and Bayesian

(BIC) information criteria (Box et al., 2015, p. 193). These criterias are the preferred ones for

selecting the best GARCH fit for the data because it penalises models for additional parameters

estimated.

AIC = −2(logL̂) + 2NumParams

BIC = −2(logL̂) +NumParams ∗ log(n)

The process which minimises these criteria is considered to be the best specification. Table 5.1

shows the results from the AIC and BIC criterion tests for lags from 1 to 2. We tested up to

6 lags, but the results show insignificant parameters, and higher AIC and BIC criterion than the

displayed models. The table indicates that the GARCH(1,1) is the optimal choice overall, and we

will continue with this specification. A similar approach has been applied in Mudry (2013) and

Aepli (2011).
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AIC criterion BIC criterion

Commodity

GARCH(p,q)
(1,1) (1,2) (2,1) (2,2) (1,1) (1,2) (2,1) (2,2)

Wheat -32810 -32809 -32805 -32808 -32764 -32749 -32752 -32741

Corn -33868 -33865 -33866 -33863 -33821 -33805 -33812 -33796

Soybeans -34272 -34271 -34270 -34268 -34225 -34211 -34217 -34202

Live Cattle -42571 -42569 -42568 -42569 -42524 -42509 -42515 -42503

Copper -33360 -33357 -33358 -33357 -33313 -33297 -33305 -33290

Gold -37650 -37649 -37648 -37644 -37603 -37589 -37594 -37578

Aluminium -36445 -36444 -36439 -36446 -36399 -36384 -36385 -36379

WTI -32432 -32428 -32434 -32431 -32385 -32368 -32381 -32364

Brent -32637 -32634 -32642 -32638 -32591 -32574 -32589 -32572

Natural Gas -25884 -25891 -25882 -25889 -25838 -25831 -25829 -25823

Table 5.1: AIC & BIC criterion for t distributed residuals for GARCH process with various (p,q) lag struc-

tures. Preferred model highlighted in blue.

Commodity ω̂ (SE) α̂ (SE) β̂ (SE) λ̂ (SE)

Wheat 1.36e-06** (5.63e-07) 0.043*** (0.005) 0.966*** (0.004) -0.030*** (0.006)

Corn 1.43e-06** (5.80e-07) 0.097*** (0.010) 0.913*** (0.007) -0.021* (0.012)

Soybeans 2.36e-06** (7.30e-07) 0.071*** (0.009) 0.937*** (0.007) -0.039*** (0.009)

Live Cattle 1.67e-06** (4.21e-07) 0.043** (0.011) 0.907*** (0.009) 0.076*** (0.016)

Copper 1.05e-06* (5.30e-07) 0.034*** (0.006) 0.955*** (0.005) 0.017** (0.007)

Gold 3.80e-07 (3.01e-07) 0.056*** (0.007) 0.956*** (0.004) -0.024** (0.008)

Aluminium 8.35e-07** (4.13e-07) 0.053*** (0.007) 0.946*** (0.006) -0.007 (0.009)

WTI 6.96e-07 (5.19e-07) 0.034*** (0.006) 0.955*** (0.005) 0.019** (0.008)

Brent 8.07e-07* (5.30e-07) 0.036*** (0.006) 0.955*** (0.005) 0.015** (0.008)

Natural Gas 1.28e-05*** (2.74e-06) 0.040*** (0.007) 0.944*** (0.008) -0.002 (0.008)

Table 5.2: Estimated GARCH-GJR(1,1) parameters for the variance equation. Standard errors (SE) in

brackets. ω is the constant, α is the reaction, β is the persistens, λ is the leverage.

***significant on 1% level, **significant on 5% level, *significant on 10% level.

Table 5.2 displays the estimated GARCH-GJR parameters. The parameters closely align with

previous empirical results for financial assets. Following Alexander (2008b, p. 137), the β is a
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measurement of the persistence in conditional volatility regardless of what happens in the market.

Large β, above 0.9, indicates that high volatility following market stress will persist for a long time

which is true for all of our commodities. α measures the reaction of conditional volatility to shocks

in the market. The sum of the two parameters is the rate of convergence, for our risk factors the sum

is close to 1, indicating high persistence and a relatively flat term structure of volatility forecasts.

From the table we see that the estimated ARCH and GARCH coefficients, α̂ and β̂, are significant

different from zero for all commodities. The estimated leverage parameter λ̂ indicates that not all

commodities show significant asymmetry.

The residuals from the GARCH process can be decomposed in two parts: εt = ztσt , where zt is

i.i.d. and t distributed, and σt is the conditional variance of each observation. Figure 5.1 displays

the filtered residuals and the filtered conditional standard deviation of WTI, corresponding figures

are shown in Appendix A6 and A7. We observe that the GARCH process models realistically the

volatility clustering pattern in commodity returns.
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Figure 5.1: Filtered residuals and filtered conditional standard deviation for WTI. Corresponding graphs for

the other commodities are in Appendix A6 and A7.

To be able to apply EVT to the tails we need to standardise the filtered residuals from each return

series. The standardised residuals are calculated by dividing the filtered residuals with the con-

ditional variance zt = ε
σt

to obtain mean zero and unit variance. The standardised residuals are
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plotted in Figure 5.2. We can now see graphically that the residuals are i.i.d. for WTI, and the other

commodities show similar results (see Appendix A8 and A9). The residuals are now applicable to

be modelled by EVT.
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Figure 5.2: Sample autocorrelation plot of standardised and squared standardised WTI residuals, show-

ing that the residuals are now i.i.d. Corresponding figures for the other commodities can be found in Ap-

pendix A8 and A9.

5.2 Application of the EVT

We will show WTI as an example in this subsection. Corresponding graphs for the other commodi-

ties can be found in the Appendix.

5.2.1 Estimation of the semi-parametric cumulative distribution functions

The next step is to fit the generalised Pareto distribution to the exceedances over threshold by using

maximum likelihood. This is according to the Peak over threshold method, also called distribution

of exceedances. By optimising the log-likelihood function we estimate the tail indexes ξ and scale

parameters β.

34



We have fitted our data to the GPD with different thresholds between 5% and 15%. This allows us

to find a threshold where the tail indexes stabilise. In Table 5.3 we display the 7%, 10%, 11% and

12% thresholds upper tail index. The rest of the parameters from the different thresholds are located

in Appendix A1. Notice that the tail index naturally becomes smaller as the threshold allows for

more data in the maxima.

Upper tail (ξ), Threshold = u

Commodity u=7% u=10% u=11% u=12%

Wheat 0.0822 0.0223 0.0082 0.0063

Corn 0.1885 0.1775 0.1554 0.1320

Soybeans 0.0816 0.0504 0.0430 0.0356

Live Cattle 0.2781 0.2854 0.2702 0.2714

Copper -0.0069 -0.0290 -0.0572 -0.0555

Gold 0.2011 0.1450 0.1485 0.1413

Aluminium -0.0368 0.0022 0.0117 -0.0278

WTI 0.0646 0.0101 -0.0049 -0.0158

Brent -0.0021 0.0086 -0.0101 0.0006

Natural Gas 0.1583 0.0728 0.0688 0.0871

Table 5.3: Comparison of upper tail parameters (ξ) for different thresholds. The rest of the parameters from

the different thresholds are found in Appendix A1.

We will use 10% upper and lower threshold, which is well in the range 5% - 13% suggested by

Nyström and Skoglund (2002b). The reason is twofold, firstly the 10% threshold seems to be sta-

ble, and give the most accurate picture of the maximas. Secondly, previous studies such as Aepli

(2011) and Mudry (2013) have chosen a 10% threshold. We see the advantage of choosing a stan-

dard threshold as it gives us the opportunity to quality control our results.

The estimated parameters for our risk factors are listed in Table 5.4. We have Fréchet tails for nine

of the ten risk factors, only copper shows a negative tail index, which suggests a moderate upper

tail. The lower tails are positive for all commodities. This suggests both fat upper and lower tails,

and hence tail asymmetry. The findings are consistent with the theory and empirical results for

financial time series (Nyström and Skoglund, 2002b, Embrechts, Mikosch and Klüppelberg, 1997).
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ξ β

Commodity Upper tail Lower Tail Upper tail Lower Tail

Wheat 0.0223 0.0822 0.6163 0.4942

Corn 0.1775 0.1561 0.5396 0.5081

Soybeans 0.0504 0.1014 0.5595 0.5924

Live Cattle 0.2854 0.2509 0.4534 0.5704

Copper -0.0290 0.1178 0.5818 0.5654

Gold 0.1450 0.1003 0.5203 0.6121

Aluminium 0.0022 0.1003 0.5551 0.5197

WTI 0.0101 0.0926 0.5166 0.5805

Brent 0.0086 0.0664 0.5152 0.5965

Natural Gas 0.0728 0.0714 0.6126 0.5191

Table 5.4: Maximum likelihood estimators for the generalized Pareto distribution parameters. Threshold (u)

= 10%.

0 0.5 1 1.5 2 2.5 3 3.5 4

Exceedance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a

b
ili

ty

Upper Tail of Standardized Residuals (WTI)

Fitted Generalized Pareto CDF

Empirical CDF

Figure 5.3: Generalized Pareto upper tail of the standardised residuals fitted vs. empirical. Corresponding

figures for the other commodities can be found in Appendix A11.

In Figure 5.3 we display the empirical cumulative distribution of the upper tail of the standardised

residual exceedances for WTI. The fitted distribution follows the empirical exceedances closely,
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and so the chosen distribution is well suited to estimate the tails for the commodities.

The last step is to combine the parametric generalized Pareto tails for each commodity with the

corresponding Kernel smoothed interior to obtain the entire semi-parametric cumulative distribu-

tion function. Figure 5.4 displays the semi-parametric empirical cumulative distribution function

of WTI standardized residuals. The piecewise distribution object allows interpolation within the

interior of the CDF, displayed in black, and extrapolation in each tail, displayed in red and blue for

the lower and upper tail, respectively. The extrapolation allows for estimation of quantiles outside

the historical record, and is therefore important for the stress testing exercise.
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Figure 5.4: Semi-parametric empirical cumulative distribution function of WTI. Corresponding figures for

the other commodities can be found in Appendix A10.

5.3 Application of the t copula and simulation steps

Given the parameters of the t copula (the correlation matrix R and the degrees of freedom param-

eter) we simulate jointly dependent portfolio returns. This is done by first simulating the corre-

sponding dependent standardised residuals. This step is where we transform the uniform variables

to standardised residuals through the inversion of the semi-parametric marginal cumulative distri-
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bution function of each risk factor. To do this we extrapolate into the generalized Pareto tails, and

interpolate into the smoothed interior. This gives simulated standardized residuals consistent with

those obtained from the GARCH-GJR(1,1) filtering process described in Section 5.1 . These resid-

uals show no autocorrelation and are i.i.d. Each column of the simulated standardized residuals

array represents an i.i.d. univariate stochastic process when viewed in isolation, whereas each row

shares the rank correlation induced by the copula. Next on, we reintroduce the autocorrelation and

heteroskedasticity observed in the empirical risk factor returns. This is done by using the simulated

standardized residuals as the i.i.d. input noise process.

5.3.1 Risk metrics

To compare risk properties the use of Value at risk (VaR) and conditional value at risk (CVaR) is

common. These risk metrics provide an indication of the quantile losses. VaR is the amount of

maximum potential loss at a given percentage. Critics of the VaR point to the inability to account

for the properties beyond the VaR (Alexander, 2008c). CVaR corrects for the limitations of VaR,

often serving as a more thorough tool for the risk manager than VaR as it measures the average loss

in the tail beyond VaR (Alexander, 2008c). For our analysis we include both risk metrics at vari-

ous quantiles to mitigate the potential shortcomings of the individual risk metrics. This is in line

with European Banking Authority (2017, p. 28): ”The institutions should stress the identified risk

factors using different degrees of severity as an important step in their analysis to reveal nonlinear-

ities, threshold effects, i.e. critical values of risk factors beyond which stress responses accelerate.”.
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6 Stress testing and simulation

In this chapter we will perform stress tests on our commodity portfolio. We will simulate the

portfolio profit and loss distribution for each stress test case, to illustrate the role of stress testing

exercises for the portfolio risk management. For the simulations we calibrate the models on the

historical time period from 1996 - 2017 which makes the Baseline scenario. For the historical

stress period we use the years 2007 and 2008 to observe the impact of the financial crisis. This

time period is known for high market stress with high volatility and captures the simultaneous

pricedrop during the financial crisis (see Section 3.2 for discussion). The residuals and parameters

of the GARCH process and the t copula are here re-calibrated on the stress horizon, following the

same procedure as in Chapter 5. The re-estimated tails from the generalized Pareto distribution

parameters can be found in Appendix A2. For all scenarios we run 20 000 simulations over a

22 days horizon. Note that the portfolio weights are held fixed over the risk horizon and that the

simulation ignores any transaction costs required to re-balance the portfolio (the daily re-balancing

process is assumed to be self-financing). Since we run simulations, we will compare risk metrics

across scenarios to see tendencies and form expectations, rather than an exact estimation of the tail

losses that would occur.

6.1 Scenario composition

We limit the study mostly to hybrid scenarios, where we calibrate the model for risk factors or the

copula to the financial crisis data and shock them simultaneously or one at a time. Even more hy-

pothetical scenarios could have been implemented. Examples could be a scenario with recession in

China, which would decrease the demand for aluminium, oil, copper, soybeans and natural gas, and

look at the change in dependence structure and volatility. Other scenarios could be natural disasters

that affect crops or diseases that affect grains or livestocks. This is however out of the scope of this

thesis. We refer the reader to Aepli (2011) for stress testing with hypothetical scenarios.

Our analysis consists of seven different scenarios. Underneath follows a brief description of the

scenarios before the analysis is conducted.
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Baseline scenario:

The baseline scenarios is a default scenario simulation with the t copula and GARCH-GJR process

calibrated on the entire data set. Non of the parameters are stressed and the procedure follows

Chapter 5. The baseline scenario is constructed to be a reference for normal times to assess the

effect of stressing parameters compared to the steady state.

Historical scenario:

The historical scenario is a scenario without simulations. It is the actual returns over our time pe-

riod, so we refer to the empirical profit and loss distribution as observed. Unfortunately, due to the

limited number of observations when resuming ourselves to observed returns extreme quantiles are

hard to estimate.

Hybrid scenarios:

Due to the limitations of the historical empirical scenario, as discussed in Section 2.1, we con-

struct five hybrid scenarios. Hybrid scenarios allow extrapolation beyond realized returns, and are

therefore appropriate to estimate extreme quantiles and events that have not yet occurred. The fo-

cus in our hybrid scenario construction is to examine which of the estimated parameters challenge

mostly the test portfolios’ profit and loss distribution. The parameters changed between the dif-

ferent scenarios are the dependencies between risk factors, measured in Degrees of Freedom and

correlations, and the individual risk factor distributions (GARCH-GJR parameters). To isolate the

effect of various parameters, we construct the scenarios by mixing parameters from the baseline

with those during the period of financial distress. The hybrid scenarios are described in Table 6.1.
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Scenario Marginal distribution Correlations Degrees of Freedom

Risk factor stress stress baseline baseline

Dependency stress baseline stress stress

Full stress stress stress stress

DoF shock baseline baseline stress

Risk factor stress without EVT stress baseline baseline

Table 6.1: Description of input parameters for simulation in hybrid scenarios. Baseline means the parameters

from entire dataset 1996-2017 are used as input. Stress means the parameters are re-calibrated on our chosen

time of financial distress, years 2007-2008.

1. Risk factor stress scenario aims to show the impact of stressing the individual risk factors

marginal distributions on the portfolios’ profit and loss distribution, without a change in

dependencies between the factors.

2. Dependency stress scenario isolates how the dependencies between the returns of portfolio

components affect the profit and loss distribution, without changing the parameters for the

individual factors model (GARCH-GJR).

3. Full stress scenario aims to simulate the effects of a recurring financial crisis on the portfolio.

4. In the degrees of freedom shock we shock only the degrees of freedom of the copula, leaving

all other parameters unchanged.

5. Risk factor stress without EVT highlights how the application of Extreme Value Theory to

model the tails of portfolio components returns affect the profit and loss distribution of the

portfolio. The risk factor distributions are here not modelled with EVT, but with a Student t

distribution (see Section 4.2.1).
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6.2 Comparative analysis of simulated profit and loss distributions

6.2.1 Baseline scenario vs. Historical scenario
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Figure 6.1: Portfolio returns simulation, Baseline vs Historical scenario.

Figure 6.1 displays the profit and loss distribution for the returns in baseline scenario simulated

with the t copula and the cdf of the historical returns of the test portfolio. The simulated returns

align with the historically observed returns in the centre, but deviate in both the upper and lower

tails. This can be further viewed in Table 6.2, where the maximum simulated loss is significantly

higher/lower for the historical returns than the simulated baseline, respectively. These results might

be linked to the symmetry of the t copula. It can be that the dependencies between the risk factors

are skewed. Furthermore, this difference steams from the different time spans of our simulation.

The baseline represents normal market conditions, and the simulated extreme losses that were ob-

served in the financial crisis challenge the profit and loss distribution under the hypothesis that a

similar financial crisis episode would reoccur. This result highlights the importance of implement-

ing forward-looking scenarios, both to simulate extreme returns in comparison to the baseline and

to simulate beyond the historical empirical observed returns.
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Metric Baseline Historical scenario

Degrees of Freedom 15.28 N/A

Max. Simulated loss -12.72% -34.01%

Max. Simulated gain 13.38% 17.08%

Simulated 90% VaR -3.09% -4.26%

Simulated 95% VaR -4.17% -6.01%

Simulated 99% VaR -6.13% -12.47%

Simulated 90% CVaR -4.48% -7.38%

Simulated 95% CVaR -5.39% -9.75%

Simulated 99% CVaR -7.30% -17.82%

Simulated 99.9% CVaR -10.10% N/A

Simulated 99.99% CVaR -12.55% N/A

Table 6.2: Simulation metrics for Baseline scenario and Historical scenario CDF.

The previous statement is further substantiated when we look at very high confidence levels dis-

played in Table 6.2. The historical scenario is limited to already experienced events so there are

not enough observations in the data set to calculate the expected shortfall at very high confidence

levels. This emphasizes the discussion about the scenarios in Section 2.1 and the drawback of

using historical scenarios highlighted in Basel Committee on Banking Supervision (2009). In ad-

dition the historical scenario neglects the dependence structure between the risk factors, which is

an important factor in stress testing. European Banking Authority (2017, p. 24) state that stress

tests should take into account changes in correlations between risk types and risk factors and that

correlations tend to increase during times of economic or financial distress. This statement and its

implications for stress testing exercises will be further investigated in the next subsection where we

analyse the hybrid scenarios.

6.2.2 Hybrid scenarios

In the following the results from the hybrid scenarios are analyzed. Table 6.3 shows the risk metrics

from the scenarios. The tail dependence for the simulated returns is measured in the degrees of

freedom parameter from the t copula. From the entire data set the DoF are 15.28, while during
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the stressed period they shift to 13.78. Our decrease in DoF signals that the tail dependence in

the commodity portfolio is increasing during times of stress. Lower degrees of freedom indicate a

higher tendency of extreme events to occur jointly across risk factors (Mudry, 2013, p. 58), which

is in line with our simulation result.

1 2 3 4 5

Metric Risk factor stress Dependency stress Full stress DoF shock without EVT

Degrees of Freedom 15.28 13.78 13.78 13.78 15.28

Max. Simulated loss -36.40% -18.67% -45.90% -16.53% -34.24%

Max. Simulated gain 31.93% 16.32% 42.89% 13.82% 32.38%

Simulated 90% VaR -8.84% -3.75% -10.85% -3.08% -6.91%

Simulated 95% VaR -11.91% -5.05% -14.53% -4.12% -9.78%

Simulated 99% VaR -17.87% -7.46% -21.92% -6.13% -15.79%

Simulated 90% CVaR -12.98% -5.47% -15.89% -4.49% -10.91%

Simulated 95% CVaR -15.71% -6.61% -19.31% -5.42% -13.61%

Simulated 99% CVaR -21.55% -9.08% -26.74% -7.38% -19.57%

Simulated 99.9% CVaR -30.35% -12.99% -37.17% -10.63% -28.04%

Simulated 99.99% CVaR -35.79% -17.40% -44.77% -15.00% -33.72%

Table 6.3: Risk Metrics for hybrid scenarios.

Risk factor stress vs. Dependency stress

Figure 6.2 shows the baseline scenario, the scenario where we stress the dependencies between the

risk factors, the full stress scenario and the scenario where the individual risk factors are stressed.

Starting from the baseline we can see that by only stressing the dependencies, the simulation dis-

plays more severe losses (green vs. red). The correlation matrix and the decrease in DoF show

that the dependencies between the risk factors increase in times of stress (see Table 6.4), which

leads to larger simulated losses for the portfolio overall. However, by stressing only the GARCH-

EVT parameters for the individual risk factors the effect on the portfolio is even stronger (red vs.

light blue). This result indicates that stressing the individual risk factors has a larger impact on

the profit and loss distribution than shifts in the dependencies between the risk factors. This shows

that considering the individual portfolio components might be of higher relevance than the shifts in

dependencies between them.
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Figure 6.2: Simulated one-month portfolio returns CDF for Baseline vs Hybrid scenarios: Risk factor

stress, Dependency stress and Full stress.

Commodity Wheat Corn Soybeans Live Cattle Copper Gold Aluminium WTI Brent Natural Gas

Wheat - -0.0342 0.0085 0.1184 0.1634 0.1518 0.0993 0.1622 0.1688 0.0579

Corn -0.0342 - 0.0562 0.1542 0.1561 0.1564 0.1569 0.2181 0.2156 0.1259

Soybeans 0.0085 0.0562 - 0.1797 0.1634 0.1851 0.1237 0.2668 0.2614 0.1246

Live Cattle 0.1184 0.1542 0.1797 - 0.1342 0.1327 0.1160 0.1546 0.1552 0.1409

Copper 0.1634 0.1561 0.1634 0.1342 - 0.2088 0.0583 0.1615 0.1631 0.0925

Gold 0.1518 0.1564 0.1851 0.1327 0.2088 - 0.1596 0.2597 0.2582 0.1304

Aluminium 0.0993 0.1569 0.1237 0.1160 0.0583 0.1596 - 0.1573 0.1671 0.1023

WTI 0.1622 0.2181 0.2668 0.1546 0.1615 0.2597 0.1573 - 0.0750 0.1907

Brent 0.1688 0.2156 0.2614 0.1552 0.1631 0.2582 0.1671 0.0750 - 0.1959

Natural Gas 0.0579 0.1259 0.1246 0.1409 0.0925 0.1304 0.1023 0.1907 0.1959 -

Table 6.4: Correlation increases between baseline and stress scenario. The correlation matrices from the

Baseline and financial stress period are located in Appendix A3 and A4. (Light blue is correlation increase

larger than 0.15. Dark blue is correlation increase larger than 0.20).
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Further on, we can compare the mentioned scenarios with the full stress scenario. Naturally this

stress scenario simulates the largest tail losses since both the dependencies and the individual pa-

rameters are stressed (black line). Comparing the risk metrics in Table 6.3 we see that the risk factor

stress scenario simulates the second largest losses, after the full stress scenario, which substantiates

the previous result.

Comparing with Mudry (2013) the full stress scenario in his study gives more severe losses overall

as well as in the tails. Our study replicated the methodology for the marginal distributions, depen-

dence structure and simulations from this study, making comparison ideal. The difference between

the results might be explained by: i) The difference in weights of the test portfolio where our study

uses weights from 2017 while Mudry (2013) use the weights from 2013. ii) Our extended data

sample. We include the years 1996-1998, and 2011 - 2017 beyond his data set. iii) Differences

might be due partially to the randomness in the scenario generation.

In Mudry (2013) natural gas makes 15.11% of the portfolio, while for our portfolio it is 9.6%.

From the descriptive statistics natural gas is by far the most volatile commodity, and with the most

extreme losses natural gas has performed poorly over the last decades compared to most of the

other commodities. Several structural breaks in natural gas prices are also included in our data

set, examples being the supply shortfall in Libya 2011 and the Russian export stop in 2012 (Nick

and Thoenes, 2014). Including more natural gas the portfolio might therefore be one of the main

reasons of the more severe simulated loss in his study.

Soybean is the second commodity with the most deviating weight from Mudry (2013). In our port-

folio soybean make 15.66% of the total weight, in comparison to his 6.89%. Over our time period

soybean returns showed low volatility. We expect that the increased allocation in soybean in our

portfolio provides the same consequences as the down-scaling of natural gas.
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DoF shock vs. Dependency stress
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Figure 6.3: Simulated one-month portfolio returns CDF for Baseline vs Hybrid scenarios: Dependency

stress and DoF shock.

In Figure 6.3 we compare the scenario where both correlation and DoF are stressed (green line),

with the scenario where only the DoF are shocked from 15.28 for the Baseline to 13.78 for the

financial crisis (purple line). For both scenarios the individual portfolio component parameters are

calibrated on the entire data set. By doing so we can discuss the impact of correlations as a driver

of losses in isolation.

From Figure 6.3 we observe that a small shock to degrees of freedom does not provide a significant

stress scenario. The baseline scenario and the DoF shock scenario do not deviate much from each

other (red vs. purple), although the DoF shock scenario simulates larger extreme losses in the lower

quantiles (see Table 6.3). Furthermore we see that the scenario where the correlations between the

risk factors as well as the DoF are shocked displays the largest simulated loss of the three scenarios.

This indicates that shocking the DoF in isolation is limited in a stress testing exercise.

For more forward-looking hypothetical scenarios the implementation of more severe shocks to
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DoF might be of interest. We therefore tested by including a set of hypothetical scenarios where

several more substantial downward changes to DoF are included. The results can be found in

Table 6.5. For our data we found that extreme shocks to DoF yield no substantial increase in

simulated tail losses. Furthermore, the analysis shows that the impact from DoF shocks are very

varying. When shifting the parameter some intervals yield higher losses, as expected, while others

yield the opposite result. For example, when shifting from 13.78 to 10 DoF the simulated losses

decrease, but when we continue the downward shift from 10 to 7 DoF the simulated losses increase.

We therefore underline the importance of a more detailed analysis to avoid shortsightedness when

implementing hypothetical scenarios.

Metric
DoF 5 7 10 13.78 15.28 17

Max. Simulated loss -16.72% -17.25% -13.85% -16.53% -12.72% -15.88%

Max. Simulated gain 15.28% 15.47% 14.05% 13.82% 13.38% 16.77%

Simulated 90% VaR -3.08% -3.11% -3.12% -3.08% -3.09% -3.11%

Simulated 95% VaR -4.12% -4.18% -4.20% -4.12% -4.17% -4.19%

Simulated 99% VaR -6.18% -6.32% -6.31% -6.13% -6.13% -6.15%

Simulated 90% CVaR -4.50% -4.55% -4.55% -4.49% -4.48% -4.53%

Simulated 95% CVaR -5.46% -5.52% -5.50% -5.42% -5.39% -5.47%

Simulated 99% CVaR -7.57% -7.64% -7.48% -7.38% -7.30% -7.47%

Simulated 99.9% CVaR -11.14% -11.28% -10.36% -10.63% -10.10% -10.54%

Simulated 99.99% CVaR -14.44% -17.13% -12.81% -15.00% -12.55% -14.20%

Table 6.5: Risk metrics from different DoF shock scenarios. DoF 15.28 is from the Baseline (1996-2017),

and DoF 13.78 is from the time of financial stress (2007-2008). The other DoF are hypothetical shocks.

Impact of EVT

In Figure 6.4 we display two hybrid scenarios to highlight the importance of implementing EVT for

modelling extremely large return changes of portfolio components before running the actual stress

testing. For both scenarios the correlation matrix and the DoF parameter are calibrated on the

entire data set, so the difference between them is how the individual risk factors are modelled. In

the risk factor stress scenario the tail distributions are modelled with EVT where the tail indexes are

calibrated on the financial crisis data, and the other scenario with a Student t distribution. One can

see that the scenario where EVT is implemented estimates more severe losses, where simulated
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99.99% CVaR is -35.79% in comparison to -33.72% for the scenario without EVT. Overall, the

profit and loss distribution in the stress test excluding EVT is shifted to the right. So applying

EVT strengthens the accuracy and understanding of the most extreme, potential losses. In light of

this we can say that the risk might be underestimated when the individual risk factor distributions

are not modelled with consideration to the impact of extreme events (Embrechts, Mikosch and

Klüppelberg, 1997).
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Figure 6.4: Simulated one-month portfolio returns CDF for Baseline and Hybrid scenarios: Risk factor

stress and scenario without modelling with EVT.

Stress testing is a part of risk management for extreme events, so called black swans. Our analysis

shows that one should not underestimate the impact from the extreme returns observed during the

times off financial distress in forward-looking stress testing exercises. Further on we emphasise

that it is useful to construct different hybrid scenarios to get a more comprehensive risk picture, in

line with the requirements from Basel Committee on Banking Supervision (2009).
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7 Conclusion

In this study we update the analysis in Paraschiv, Mudry and Andries (2015) with a more extensive

data set, and a more detailed focus on stress testing. In particular, hybrid scenarios are explored.

Our stress testing exercise reveals that we can rearrange arbitrarily shocks linked to a specific event

or time to reveal the importance of correlations, tail correlations or extreme movements of port-

folio components on the profit and loss distribution. This is the first study in the literature that

clearly illustrates the marginal impact of the model for the individual portfolio components versus

the marginal role of tail dependency on the portfolio risk profile.

We mimic the DJCI, by forming a portfolio of ten commodities. We use a GARCH-GJR approach

to model stylized facts observed in commodity return data, and implement Extreme Value Theory

to model the tails accurately. To account for the dependence structure we use a t copula. We then

stress tested the portfolio with different scenarios, examining the drivers of the profit and loss dis-

tribution.

Our study revealed three main results. First, we bring empirical evidence showing the importance

of hybrid (forward-looking) scenarios for comprehensive stress testing. In addition, we show the

value added of forward looking over historical scenarios and show numerically the drawbacks of

the latter. We confirm the stress testing requirements from Basel III accordingly to which different

stress testing approaches cannot be used in isolation, but combined, for a comprehensive picture.

Our second finding is that before implementing a stress test a special attention should be given

to an accurate model identification for the evolution of returns of portfolio components, where a

special attention should be given to time-varibility of correlations and tail dependency to make the

stress testing outcome more accurate. In addition, our third finding enhanced the previous find-

ings in Mudry (2013) by disentangling the effects of stressing at one time model parameters for

the individual portfolio components versus correlation and their tail dependency. We found clear

evidence that the first accounts more than the latter while stress testing the portfolio profit and loss

profile. At the same time, our analysis represents an integration of the ”model risk” concept into

stress testing exercises, highly relevant for portfolio managers. Special attention should be given to
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extreme tails, time-varying dependencies, in line with the regulatory frame on stress testing.

Our analysis is bounded by the number of scenarios, and simulations as a generator of random

numbers. Our analysis is limited to display tendencies, and the numbers generated can not be

transferred directly to risk management. On the other hand, the simulations can form expectations

and contribute to a overall understanding of stress testing for capital requirements, liquidity risks

management etc. For further analysis we recommend to update our analysis with asymmetric cop-

ulas to capture the dependence structure. In addition a more extensive use of hypothetical shocks

to a commodity portfolio would be of value.
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Appendices

Table A1: Comparison of ML estimators for the GPD parameters for different thresholds (u) for years

1996-2017.

u = 7% ξ β

Commodity Upper tail Lower Tail Upper tail Lower Tail

Wheat 0.082 0.114 0.566 0.477

Corn 0.188 0.233 0.564 0.456

Soybeans 0.082 0.071 0.540 0.645

Live cattle 0.278 0.313 0.516 0.560

Copper -0.007 0.116 0.551 0.591

Gold 0.201 0.124 0.488 0.609

Aluminum -0.037 0.148 0.592 0.494

WTI 0.065 0.075 0.466 0.624

Brent -0.002 0.109 0.527 0.562

Natural gas 0.158 0.123 0.531 0.473

u = 10% ξ β

Commodity Upper tail Lower Tail Upper tail Lower Tail

Wheat 0.022 0.082 0.616 0.494

Corn 0.178 0.156 0.540 0.508

Soybeans 0.050 0.101 0.559 0.592

Live cattle 0.285 0.251 0.453 0.570

Copper -0.029 0.118 0.582 0.565

Gold 0.145 0.100 0.520 0.612

Aluminum 0.002 0.100 0.555 0.520

WTI 0.010 0.093 0.517 0.581

Brent 0.009 0.066 0.515 0.597

Natural gas 0.073 0.071 0.613 0.519

u = 11% ξ β

Commodity Upper tail Lower Tail Upper tail Lower Tail

Wheat 0.008 0.092 0.632 0.480

Corn 0.155 0.152 0.557 0.504

Soybeans 0.043 0.098 0.564 0.591

Live cattle 0.270 0.253 0.454 0.553

Copper -0.057 0.102 0.620 0.577

Gold 0.148 0.103 0.507 0.602

Aluminum 0.012 0.089 0.546 0.528

WTI -0.005 0.098 0.534 0.568

Brent -0.010 0.063 0.535 0.597

Natural gas 0.069 0.062 0.614 0.529

u = 12% ξ β

Commodity Upper tail Lower Tail Upper tail Lower Tail

Wheat 0.006 0.075 0.634 0.493

Corn 0.132 0.138 0.580 0.514

Soybeans 0.036 0.096 0.571 0.588

Live cattle 0.271 0.266 0.440 0.525

Copper -0.056 0.097 0.621 0.578

Gold 0.141 0.073 0.508 0.636

Aluminum -0.028 0.070 0.587 0.549

WTI -0.016 0.077 0.547 0.588

Brent 0.001 0.044 0.523 0.621

Natural gas 0.087 0.060 0.586 0.528
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ξ β

Commodity Upper tail Lower Tail Upper tail Lower Tail

Wheat 0.0452 0.0021 0.4820 0.6991

Corn -0.1141 -0.0896 0.4715 0.5985

Soybeans -0.0309 -0.1642 0.5149 0.7738

Live Cattle 0.2708 0.2140 0.4478 0.5416

Copper -0.5240 -0.0681 0.9359 0.5994

Gold 0.1864 -0.0017 0.3939 0.7062

Aluminium 0.1976 -0.1715 0.4346 0.6775

WTI -0.1542 -0.1232 0.5696 0.5557

Brent -0.1876 -0.1805 0.5822 0.5868

Natural Gas 0.1348 0.0107 0.5633 0.5841

Table A2: Recalibrated Maximum Likelihood estimators for the generalized Pareto distribution parameters

for the time of financial distress, years 2007-2008. Threshold: 10%.

Commodity Wheat Corn Soybeans Live Cattle Copper Gold Aluminium WTI Brent Natural Gas

Wheat 1.0000 0.6217 0.4768 0.1259 0.1251 0.1221 0.1048 0.1468 0.1393 0.0793

Corn 0.6217 1.0000 0.6215 0.1508 0.1556 0.1393 0.1316 0.1689 0.1634 0.1071

Soybeans 0.4768 0.6215 1.0000 0.1462 0.2035 0.1633 0.1676 0.1995 0.1971 0.1144

Live Cattle 0.1259 0.1508 0.1462 1.0000 0.0983 0.0450 0.0907 0.1095 0.1035 0.0493

Copper 0.1251 0.1556 0.2035 0.0983 1.0000 0.2637 0.5829 0.2641 0.2496 0.0668

Gold 0.1221 0.1393 0.1633 0.0450 0.2637 1.0000 0.2280 0.2057 0.1979 0.0735

Aluminium 0.1048 0.1316 0.1676 0.0907 0.5829 0.2280 1.0000 0.2156 0.2023 0.0714

WTI 0.1468 0.1689 0.1995 0.1095 0.2641 0.2057 0.2156 1.0000 0.9083 0.2566

Brent 0.1393 0.1634 0.1971 0.1035 0.2496 0.1979 0.2023 0.9083 1.0000 0.2368

Natural Gas 0.0793 0.1071 0.1144 0.0493 0.0668 0.0735 0.0714 0.2566 0.2368 1.0000

Table A3: Correlation matrix for the baseline, years 1996-2017. Light blue is correlation between 0.15 and

0.19. Dark blue is correlation larger than 0.20.
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Commodity Wheat Corn Soybeans Live Cattle Copper Gold Aluminium WTI Brent Natural Gas

Wheat 1.0000 0.5875 0.4854 0.2443 0.2885 0.2738 0.2041 0.3090 0.3080 0.1372

Corn 0.5875 1.0000 0.6777 0.3050 0.3117 0.2956 0.2885 0.3870 0.3790 0.2330

Soybeans 0.4854 0.6777 1.0000 0.3259 0.3670 0.3484 0.2913 0.4663 0.4586 0.2391

Live Cattle 0.2443 0.3050 0.3259 1.0000 0.2326 0.1777 0.2067 0.2641 0.2587 0.1902

Copper 0.2885 0.3117 0.3670 0.2326 1.0000 0.4725 0.6412 0.4256 0.4127 0.1594

Gold 0.2738 0.2956 0.3484 0.1777 0.4725 1.0000 0.3876 0.4654 0.4561 0.2038

Aluminium 0.2041 0.2885 0.2913 0.2067 0.6412 0.3876 1.0000 0.3729 0.3694 0.1737

WTI 0.3090 0.3870 0.4663 0.2641 0.4256 0.4654 0.3729 1.0000 0.9833 0.4473

Brent 0.3080 0.3790 0.4586 0.2587 0.4127 0.4561 0.3694 0.9833 1.0000 0.4326

Natural Gas 0.1372 0.2330 0.2391 0.1902 0.1594 0.2038 0.1737 0.4473 0.4326 1.0000

Table A4: Correlation matrix for scenarios re-calibrated on time of financial distress, years 2007-2008.

Light blue is correlation between 0.15 and 0.19. Dark blue is correlation larger than 0.20.
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Figure A1: Daily Logarithmic Returns.
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Figure A2: Sample ACF of Returns.
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Figure A3: Sample ACF of Squared Returns.
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Figure A4: QQ Plot of Returns vs Standard Normal Distribution.
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Figure A5: Probability Plots of Returns vs Standard Normal vs t distributions.
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Figure A6: Filtered Residuals.
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Figure A7: Filtered Conditional Standard Deviations.
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Figure A8: Sample ACF of Standardized Residuals.
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Figure A9: Sample ACF of Squared Standardized Residuals.
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Figure A10: Semi-parametric Empirical CDFs.
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Figure A11: Fitted vs empirical upper tails of the standardized residuals.
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