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Problem Description

Ambitious CO2-emission reduction targets, recent developments within renewable energy
and changing dynamics of electricity demand frames the transition in the European power
sector in the coming decades. The purpose of this thesis is to develop a model and solu-
tion method for solving the stochastic capacity expansion problem in the European power
system. The problem at hand is concerned with simultaneously optimizing (1) strategic
investments in generation, transmission and storage capacity and (2) operational dispatch
to assess system performance and profitability of investments. Due to the long planning
horizon being considered, dealing with uncertain input parameters becomes an integral
part of the problem, which calls for tailored solution methods. An implementation of a
distributed progressive hedging algorithm is therefore proposed.
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Abstract

In an attempt to limit the adverse effects of human-generated greenhouse gas emissions,
the EU has set ambitious targets to reduce its domestic CO2-emissions by more than 80
percent from 1990 to 2050. The European power system has proven a significant poten-
tial for emission reductions, implying almost complete decarbonization of the sector in a
time where both electricity demand and the share of intermittent, renewable power supply
are expected to increase. To support policy makers in this transition, optimization based
models are often used to study optimal capacity expansion pathways for the European
power system. The task of modeling both technological details and economic behavior in
a broad geographical and sectoral scope gives rise to substantial computational complex-
ity, often resulting in the use of deterministic modeling approaches. Solutions from such
approaches are, however, tailored to a particular realization of the future, neglecting the
uncertain nature of many essential model inputs.

Several power system optimization models accounting for either long- or short-term
uncertainty already exist, but models accounting for both have not been observed in the
research literature. In this thesis, this gap is addressed by defining and formulating a math-
ematical model for the Long- and Short-term Stochastic Capacity Expansion Problem for
Power Systems (LSSCEPPS). Central to the problem is the simultaneous co-optimization
of long-term investment decisions and short-term operational decisions in the European
power system over several decades, in the presence of stochastic long- and short-term input
parameters. The primary objective is to find a sustainable, least-cost and robust develop-
ment for the European power system while securing coverage of demand and complying
with political regulations. To solve this problem, the EMPIRE model, a power system
capacity expansion model developed at NTNU, is extended in this thesis to account for
both long- and short-term uncertainty. This extension quickly results in intractable prob-
lem sizes for commercially available solvers, resulting in a need for improved solution
methods.

In this thesis, a distributed progressive hedging algorithm is implemented to solve large
instances of the EMPIRE model. The method decomposes the model by long-term sce-
nario, iteratively solving decentralized subproblems in parallel. The performance of the
algorithm is tested on a number of different problem instances under variation of both
short- and long-term input data. It is demonstrated to be capable of solving instances of
the EMPIRE model with more than 1.2 billion variables and 1.7 billion constraints, obtain-
ing an optimality gap of 0.1 percent in 18 iterations after about 70 hours. The algorithm
exhibits impressive convergence properties, generating tight gaps of less than 0.35 percent
for all instances tested for in this thesis. It is further observed that the elapsed time required
to solve instances with differing numbers of long-term scenarios remains roughly constant.
This result illustrates the algorithm’s profound scaling properties as long as sufficient com-
putational resources are available, and implies that the convergence rate is mainly driven
by the size and complexity of the short-term input data.

To verify the practical implications of including long-term uncertainty in power system
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capacity expansion models, a thorough analysis of the techno-economic implications of
introducing stochastic CO2-emission restrictions is conducted. In a comparison of a long-
term stochastic approach to a long-term deterministic approach, VSS-calculations display
significant values of modeling both long- and short-term uncertainty compared to short-
term uncertainty only, ranging from 7.9-11.6 percent for test instances with 8 or more long-
term scenarios. Analyses further show that including fewer long-term scenarios results in
a negligible VSS, indicating that a sufficient amount of long-term scenarios need to be
assessed to capture the value of modeling long-term uncertainty.

The long-term stochastic approach is also proven to choose hedging strategies through
increased investments in low-CO2 power generation and infrastructure that increases the
flexibility of the power system, such as transmission, storage and more flexible thermal
generation. These strategies are shown to yield slightly higher investment costs upfront,
but with the benefit of vast reductions in future expected operational costs, indicating that
politicians can significantly reduce the expected costs of power system capacity expansion
by eliminating uncertainty about future energy policy.
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Sammendrag

Med formål om å begrense de negative effektene av menneskeskapte CO2-utslipp, har EU
satt ambisiøse mål for å redusere mengden CO2-utslipp i Europa med mer enn 80 prosent
i 2050 sammenlignet med nivået fra 1990. Det europeiske kraftsystemet har utvist be-
tydelig potensial for utslippsreduksjoner, noe som betyr at en overgang til et kraftsystem
med tilnærmet null utslipp er forventet i en tid der både strømforbruk og andelen ureg-
ulerbar, fornybar kraftforsyning trolig vil øke. Optimeringsmodeller blir ofte anvendt i
analyser av optimal kapasitetsutvidelse i det Europeiske kraftsystemet, og kan benyttes
som beslutningsstøtte til politikere i overgangen nevnt ovenfor. Det å matematisk mod-
ellere både teknologiske detaljer og økonomisk adferd i et bredt geografisk og industrielt
omfang medfører betydelig kompleksitet, noe som ofte resulterer i bruk av determinis-
tiske optimeringsmodeller. Løsningene slike modeller finner er imidlertid skreddersydd
for en bestemt realisering av fremtiden, og overser dermed usikkerheten i mange viktige
modellparametere.

Det finnes flere optimeringsmodeller for kraftsystemer som inkluderer enten lang- eller
korttidsusikkerhet, men modeller som inkluderer usikkerhet langs begge disse tidsaksene
har ikke blitt funnet i relevant forskningslitteratur. I denne oppgaven adresseres denne
mangelen i litteraturen ved å definere og formulere en matematisk modell for det lang- og
kortsiktig stokastiske kapasitetsutvidelsesproblemet for kraftsystemer (Long- and Short-
term Stochastic Capacity Expansion Problem for Power Systems - LSSCEPPS). Sentralt
for problemet er samtidig optimering av både langsiktige investeringsbeslutninger og ko-
rtsiktige operasjonelle beslutninger i det europeiske kraftsystemet over flere tiår, hvor
usikkerhet er inkludert i både lang- og kortsiktige modellparametere. Formålet med å
studere problemet er å finne en bærekraftig, kostnadseffektiv og robust utvikling for det
europeiske kraftsystemet samtidig som kraftetterspørsel skal dekkes og politiske regu-
leringer skal overholdes. For å løse dette problemet har EMPIRE-modellen, en kapasitet-
sutvidelsesmodell for kraftsystemer utviklet ved NTNU, i denne oppgaven blitt utvidet
til å inkludere usikkerhet i både lang- og kortsiktige modellparametere. En slik utvidelse
resulterer ofte i at kommersielt tilgjengelige løsningsalgoritmer ikke klarer å håndtere re-
alistiske problemstørrelser, hvilket resulterer i et behov for forbedrede løsningsmetoder.

I denne oppgaven implementeres en distribuert progressive hedging-algoritme for å
løse store instanser av EMPIRE-modellen. Metoden dekomponerer modellen per langtidss-
cenario for deretter å iterativt løse desentraliserte subproblemer i parallell. Algoritmenes
oppførsel blir testet på en rekke forskjellige probleminstanser under variasjon av både
kort- og langsiktige inndata. Den viser seg å kunne løse instanser av EMPIRE-modellen
med mer enn 1,2 milliarder variabler og 1,7 milliarder beskrankninger, og oppnår et op-
timalitetsgap for denne instansen på 0,1 prosent etter 18 iterasjoner og ca. 70 timer. Al-
goritmen utviser gode egenskaper for konvergens, og produserer optimalitetsgap på un-
der 0,35 prosent for alle instanser testet i denne oppgaven. Det observeres også at kon-
vergenstiden for å løse instanser med varierende antall langtidsscenarier er omtrent kon-
stant. Dette resultatet viser algoritmens solide skaleringsegenskaper så lenge tilstrekkelige
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beregningsressurser er tilgjengelig, og innebærer at tiden til konvergens hovedsakelig er
drevet av størrelsen og kompleksiteten til kortsiktige inndata.

For å studere de praktiske implikasjonene av å inkludere langtidsusikkerhet i kapasitet-
sutvidelsesmodeller for kraftsystemer, gjøres en grundig analyse av de teknisk-økonomiske
implikasjonene av å innføre stokastiske restriksjoner for CO2-utslipp. I en sammenlign-
ing av en langsiktig stokastisk tilnærming med en langsiktig deterministisk tilnærming,
viser VSS-beregninger signifikante verdier av å modellere både lang- og kortsiktig usikker-
het sammenlignet med kun kortsiktig usikkerhet, med VSS mellom 7,9-11,6 prosent for
instanser med 8 eller flere langtidsscenarier. Analyser viser videre at det å inkludere
færre langtidsscenarier enn dette resulterer i en neglisjerbar VSS, noe som indikerer at
et tilstrekkelig antall langtidsscenarier er nødvendig for å finne verdien av å modellere
langtidsusikkerhet.

Den langsiktige stokastiske tilnærmingen har også vist seg å velge sikringsstrategier
(hedging strategies) gjennom økte investeringer i lav-CO2-kraftproduksjon og infrastruk-
tur for økt fleksibilitet til kraftsystemet, for eksempel overføringslinjer, lagringskapasitet
og mer fleksibel termisk produksjon. Disse strategiene viser seg å gi noe høyere invester-
ingskostnader i forkant, men resulterer i betydelige reduksjoner i fremtidige forventede
driftskostnader i kraftsystemet, noe som indikerer at politikere kan redusere de forven-
tet kostnadene av kapasitetsutvidelse i kraftsystemet betydelig ved å eliminere usikkerhet
rundt fremtidig energipolitikk.
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Chapter 1
Introduction

In recent years, much political focus has been directed towards climate-related questions,
and the Paris Agreement on Climate Change in 2015 (UNFCCC, 2015) confirmed that this
topic is a top priority for many governments around the world. Figure 1.1 shows that the
European power sector is responsible for more than 20 percent of current greenhouse gas
emissions in Europe. In addition, it is communicated in EC (2011) that significant emis-
sion reduction potentials exist in the European power sector due to expected technological
improvements and reductions in the cost of renewable energy technologies. Therefore, in
2011 the European Council reconfirmed the European Union’s objective to reduce CO2-
emissions by 80 to 95 percent below 1990 levels in 2050 (EC, 2011). It is further commu-
nicated that due to the large emission reduction potentials of the power system, targets for
almost complete decarbonization of the sector are implied. However, even though ambi-
tious targets for emission reductions have been communicated, it is still unclear how and
when political regulations aiming to achieve these targets will be implemented, giving rise
to substantial uncertainty in European energy policy going forward.

To study the implications of climate policy and technological or economic develop-
ments relevant for power systems, quantitative models are often used. Multiple different
modeling approaches exist, and an increasingly appreciated tool for this purpose is opti-
mization based modeling. The need for quantitative models in this context is evident due
to the combination of a high level of technological and engineering detail together with
economic behavior that needs to be modeled, giving rise to models beyond the scope of
qualitative judgment. The need to co-optimize both long-term investments and short-term
operational decisions over several decades and large geographical areas, in the presence of
profound uncertainties, yield an enormous decision space and tend to generate computa-
tionally intractable models that current state-of-the-art optimization software is unable to
solve.

Several optimization models for energy policy analysis already exist, but due to the
high degree of complexity in such models, deterministic approaches are often used. By
applying such a modeling approach, the evident uncertain nature of many essential input
parameters is neglected, such as the timing of policy regulations, future investment costs
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Chapter 1. Introduction

Figure 1.1: Targeted European greenhouse gas emissions towards an 80 percent reduction in 2050
(100 percent corresponds to 1990-levels), implying an almost complete decarbonization of the Eu-
ropean power sector.

of power generation capacity, or the technological development in carbon capture and
storage. By acknowledging the future as uncertain and practically impossible to forecast
with a reasonable amount of accuracy, any argument for using deterministic optimization
models in this context quickly loses its foundation.

The need to reflect uncertainty in optimization models for power systems sets the con-
text for the research conducted in this thesis. The underlying hypothesis of the thesis is that
the ability to include a treatment of future uncertainties can give insights beyond the scope
of a deterministic analysis. The linear optimization model EMPIRE, developed at The
Norwegian University of Science and Technology (Skar et al., 2016), defines the starting
point of the model used in the studies in this thesis. It is a capacity expansion model for the
European power system. The model was initially formulated with the ability to account
for uncertainty in short-term input parameters, while an extension of the model including
uncertainty in long-term input parameters was developed in Mikkelsen and Reiten (2017).
However, this extension of the model is unable to scale and handle a realistic amount of
long-term scenarios, establishing a need for improved solution methods and algorithmic
implementations. With this foundation and the hypothesis mentioned above, some quite
fundamental issues should be addressed:

1. If the future is acknowledged as uncertain, in what manner should uncertainty be
incorporated into a rigorous, mathematical model?

2. How should the issue of added computational complexity from including uncer-
tainty in an optimization model be addressed?

3. What are the techno-economic implications of considering both long- and short-term
uncertainty in capacity expansion models for power systems?

2



1.1 Structure of the thesis

The purpose of this thesis is to develop an optimization model and solution method that
enables these three questions to be addressed. In addressing the first question above, the
approach of large-scale stochastic optimization has been applied in an extended version
of the EMPIRE model. In addition, a literature review and discussion of possible ways to
represent uncertainty in both long- and short-term parameters is conducted. To address the
second question, a considerable effort has been put into implementing a decomposition
method, more specifically a distributed progressive hedging algorithm, that handles the in-
crease in computational complexity from accounting for long-term stochastics in capacity
expansion models. Finally, to the best of the authors’ knowledge, an analysis of simulta-
neously including long- and short-term uncertainty in a capacity expansion optimization
model for power systems has not been carried out in previous research efforts. Hence, to
address the third question above, a demonstration of the techno-economic implications of
considering both long- and short-term uncertainty in capacity expansion models for power
systems is conducted, a demonstration enabled by the enhanced solution algorithm devel-
oped as part of the work with this thesis. As a result, the main contributions of this thesis
are the following:

• A review of treatment of uncertainty in power system capacity expansion models,
with a particular emphasis on handling long-term uncertainty in such models.

• A model for power system capacity expansion accounting for both long- and short-
term uncertainty.

• A proprietary library of code that implements a distributed progressive hedging al-
gorithm for solving stochastic capacity expansion models for power systems, to-
gether with a comprehensive computational study of the algorithm’s performance.

• An analysis of the techno-economic implications of including political long-term
uncertainty in power system capacity expansion models.

These contributions represent a natural advancement within research on energy and
power system capacity expansion, due to an increasing appreciation that a proper con-
sideration of uncertainty is imperative in such systems. In addition, these contributions
advance the knowledge of decomposition methods and algorithms for solving large-scale
stochastic optimization models. These methods have received increasing attention in re-
cent years due to the development of computational power enabling such methods to be
applied.

1.1 Structure of the thesis
The rest of the thesis is organized as follows. First, a comprehensive description of the
power system capacity expansion problem studied in this thesis, together with relevant
background for the problem, will be presented in chapter 2. Next, in chapter 3 a brief
introduction to the EMPIRE model and a review of existing literature relating to modeling
capacity expansion in energy and power systems is presented. Note that this chapter does
not focus on the inclusion of uncertainty in such models, as chapter 4 presents a thorough
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Chapter 1. Introduction

review of treating uncertainty in capacity expansion models, including a literature review
of representing long- and short-term uncertainty. Following these introductory chapters,
a detailed and technical description of the mathematical formulation of the extended ver-
sion of the EMPIRE model including both long- and short-term uncertainty is presented
in chapter 5. Chapter 6 presents the progressive hedging algorithm developed for solving
this model, along with a description of its distributed, parallel implementation. Chapter 7
presents important input data to the model, including a description of the methods used for
generating long- and short-term scenarios for uncertain input parameters. This is followed
by a documentation and analysis of the performance of the implemented progressive hedg-
ing algorithm in chapter 8. In chapter 9 a demonstration of the significance of the solution
algorithm is conducted, by analyzing the techno-economic implications of including long-
term political uncertainty in the EMPIRE model. Finally, chapter 10 concludes the most
important results of this thesis and suggests further research topics to be examined.
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Chapter 2
Description of the Stochastic Power
System Capacity Expansion
Problem

The importance of ensuring optimal development of power systems is evident for a mul-
titude of reasons. With increased attention towards reducing global CO2 emissions, indi-
cated by e.g. the political targets of the EU pointed at in the previous chapter, the impor-
tance of reducing emissions from the power sector goes without saying. This also applies
to other pollutants, as reducing air pollution has become an increasingly challenging task
in many large cities, see for example Zhao et al. (2018) for a study of this in China. Other
environmental considerations also add to the importance of expanding power systems in a
balanced way. For instance, large power lines or windmills may be viewed as visual noise
to local residents, and the regulation of rivers and watercourses for hydropower generation
purposes may alter the local biological and ecological balance.

The task of securing a reliable supply of electricity is also an obvious target in the
context of capacity expansion in power systems. As discussed in Castro et al. (2016) this
target can be split into three different components; reliability and availability of electricity
supply, power quality such as adequate frequencies and voltage magnitudes, and commer-
cial quality such as the ability to handle customer requests on time without noticeable
delay. Sustaining wealth creation and jobs in the power sector also adds to the importance
of the problem.

In recent years there has been an exceptional technological development within re-
newable energy, both for energy generation and storage purposes. This development has
led to steep declines in the cost of renewable energy, and these declines are only assumed
to continue, see EU Reference Scenario (2016). As clean, unsubsidized renewable energy
generation is about to become competitive with traditional energy generation technologies,
increased adoption rates and learning effects are only assumed to speed up this develop-
ment. Technological advances on the demand side of the power system, such as electric
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Figure 2.1: Conceptual overview of the LSSCEPPS with inputs on the left side and outputs on the
right side.

vehicles, distributed generation, and smart grids, are also anticipated to have a profound
impact on the power system of the future. All these technological developments, along
with the other aspects discussed above, impact the task of developing and expanding the
power system of the future, hence motivating the task of studying the capacity expansion
problem for power systems.

With the above motivation in mind, this chapter will provide a background descrip-
tion and detailed discussion of central issues and attributes related to the problem to be
studied in this thesis, which is the Long- and Short-term Stochastic Capacity Expansion
Problem for Power Systems (LSSCEPPS). Due to the geographical specificity of political
regulations and a focus on Europe in the rest of the thesis, the scope of the problem will
be limited to the European power system. Several subtle, yet important considerations and
issues arise in the context of this problem, and the purpose of this chapter is to shed light
on these to aid the reader’s understanding of the problem.

Capacity expansion refers to the problem of obtaining optimal developments for a sup-
ply chain that satisfies a demand for a good, in this case, electricity. Central to the power
system capacity expansion problem is the co-optimization of long-term investments and
short-term system dispatch in the presence of long- and short-term uncertainty in different
input parameters. The co-optimization is done in a context of electricity demand require-
ments, unpredictable generation from intermittent renewable energy sources, political reg-
ulations and technological restrictions. Figure 2.1 illustrates the conceptual principles of
the LSSCEPPS, including inputs to the problem on the left and outputs of the problem to
the right.
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2.1 Objective of the LSSCEPPS

In section 2.1 the objective and desired outputs of the problem is presented. Section
2.2 lays out the scope of the problem in terms of geographical, temporal and technological
considerations, while the relevance of political regulations in the power sector is presented
in section 2.3. In section 2.4 the issue of handling uncertainties in the power system is
discussed, while section 2.5 summarizes the discussion of the problem. Note that this
chapter is meant to give a background overview and description of the generic problem
referred to as LSSCEPPS, while modeling assumptions and choices specific for the model
formulation developed as part of the work with this thesis will be elaborated and discussed
in chapter 3, 4 and 5.

2.1 Objective of the LSSCEPPS
The objective of the LSSCEPPS is to identify cost-efficient and robust developments for
the power system several decades ahead, given uncertain developments of important inputs
to the problem in both the short- and long-term. Robustness is here defined as solutions
that are resilient to several possible outcomes of the future. The costs considered in the
problem include (1) the costs of investing in power system infrastructure and (2) the costs
of utilizing the invested capacity to operate the system.

2.1.1 Finding optimal investments in power system infrastructure
Infrastructure investment decisions can be made in several geographical locations and mul-
tiple investment stages over a long planning horizon. The infrastructure considered for
investments includes both generation, transmission or storage capacity. The costs incurred
over the lifetime of an investment in one of these three types of infrastructure include both
fixed capital expenditures (CAPEX) and fixed operational and maintenance expenditures
(O&M) per unit of invested capacity. The technical details of these types of infrastructure
will be further elaborated in section 2.2.3 below.

2.1.2 Finding optimal operational system dispatch for the power sys-
tem

The short-term operational decisions for system dispatch consist of deciding how to utilize
the invested and available capacity of generation, transmission and storage in a least-cost
manner to satisfy operational requirements in each operational period. These decisions in-
clude how much electricity to produce from each generator, how much energy to transfer
from a net supply to a net demand location, and how much each storage should be charged
or discharged in each operational period. Figure 2.2 illustrates how these operational deci-
sions are coordinated to satisfy electricity demand in a particular location and operational
period h. Note that the system is also given the option of not meeting demand at a cost,
from here denoted as lost load.

When electricity is generated from a given generation technology, variable operational
expenditures (OPEX) and variable O&M costs are incurred per unit of electricity. Variable
OPEX includes the cost of fuel for technologies that require this to generate electricity, e.g.
coal plants or natural gas plants. In addition, both CAPEX and OPEX related to carbon
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Figure 2.2: The short-term operational dispatch problem of satisfying demand in a particular loca-
tion and given operational period h. The gray nodes denote decisions that need to be made to ensure
satisfaction of demand during an operational period.

capture and storage (CCS) is included for generation technologies with such possibilities.
The cost of not satisfying parts of the demand for electricity, i.e. cost of lost load, is also
included as part of the operational costs of the system.

The operational requirements alluded to above typically include the following: Polit-
ical targets for emission reductions from electricity generation, availability of generation
plants at any point in time (e.g. if the wind is not blowing at a particular location, invested
wind generation capacity at that location cannot be utilized in full), electricity demand
requirements with a certain degree of supply security at each location and all operational
periods, and certain technical constraints that are further elaborated in section 2.2.3 below.

2.2 Problem scope
Several considerations need to be made when restricting the scope of the LSSCEPPS. In
this section, a discussion of issues and considerations relating to the choice of geographi-
cal, temporal and technological scope is presented.

2.2.1 Geographical considerations
An increasing acceptance that reductions in CO2-emissions have to come from a coordi-
nated international effort is one argument for including multiple European countries in the
study. In addition, availability of energy from renewable technologies varies a lot with
geography - for example, access to solar energy is more favorable in Southern Europe
while conditions for offshore wind is better in the Northern part of Europe with harsher
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maritime environments. For these reasons, the study should utilize a wide geographical
scope. This will enable a correct identification of the trade-off between relying on local
generation capacity at high-demand locations versus investing more in generation capacity
where electricity can be produced in the cleanest and cheapest manner. The latter choice
would lead to a larger reliance on overseas and cross-border transmission infrastructure
and possibly make it easier to reduce emissions at a low cost. The choice of such a ge-
ographical scope also facilitates an integrated assessment able to capture the synergies
between long-term decisions, by identifying possibly profitable investments in generation
capacity that would not otherwise be profitable if transmission infrastructure into or out
from that location was considered.

2.2.2 Dynamics and temporal considerations
As stated above, the purpose of the LSSCEPPS is to co-optimize both long-term invest-
ment decisions and short-term operational decisions in the power system. Note that the
terms long-term decisions and investment decisions will be used interchangeably to refer
to decisions to invest in generation, transmission and storage capacity, while the terms
short-term decisions and operational decisions will be used interchangeably to refer to
short-term decisions for how to operate the system. Due to the long-term nature of invest-
ments in power system infrastructure, planning horizons of several decades are typically
applied. At the same time, to properly analyze the operational characteristics of the power
system, a granular time-scale of days, hours or possibly even minutes is needed. With
such a granular time-scale spanning a planning horizon of several decades, the problem
size quickly becomes too difficult to handle. Therefore, two different time-scales are intro-
duced, where investment decisions are made along a long-term time-scale and operational
decisions are made along a short-term time-scale. As an example, the dynamics between
investment decisions and operational decisions along both time-scales is illustrated in Fig-
ure 2.3, where infrastructure investment decisions are made along the long-term time-scale
and operational decisions for utilizing the available capacity are made along the short-term
time-scale.

The two different time-scales for making decisions give rise to some interesting dy-
namics due to the interactions between long-term and short-term decisions. Important
attributes of the power system, such as weather conditions or demand for electricity, are
naturally fluctuating on a short-term basis, and as a result, the usefulness of long-term
investment decisions is affected by these short-term operational characteristics. These dy-
namics also work the other way around, as the short-term operational decisions for the
system are restricted by long-term investment decisions that already have been made, e.g.
utilizing a particular wind generator is limited by the amount of invested and available
generator capacity.

Other characteristics of the power system are inherently long-term, such as the devel-
opment of investment costs of different generation technologies. This calls for a dynamic,
multi-stage approach where investments in infrastructure are allowed several times along
the planning horizon. This opens up for the possibility to postpone investments if such
a wait-and-see strategy has lower expected costs. Furthermore, the combination of long
planning horizons and a wide geographical scope also enables a dynamic approach to
long-term investments. For example, as more investments in transmission infrastructure
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Figure 2.3: Dynamics of investments and operational decisions in the LSSCEPPS for a small ex-
ample problem instance with three investment stages each followed by three short-term operational
periods. Note that the figure intends to show the dynamics of decisions and does not intend to
visualize any notion of uncertainty.

are made, unprofitable generation investments may turn profitable due to the added possi-
bilities for transmitting surplus electricity to nearby locations. Such synergies are possible
to identify due to the dynamic approach to investment decisions and a wide scope both
geographically and temporally.

It is worth noting that the main intention of assessing operational periods and deci-
sions as part of the LSSCEPPS is not to search for optimal operational decisions in the
system, but rather to account for the impacts of operational variability on the usefulness
of long-term investments. Therefore, short-term operational periods are included to vali-
date the profitability, performance and usefulness of the infrastructure investments, since
operational costs make up a significant amount of total costs during the planning horizon.

2.2.3 Technological scope
In power system planning, inputs from multiple different sectors have to be integrated.
This type of planning is different from single industry planning where interactions between
sectors, such as the effect of variations in natural gas prices on the demand for nuclear
power, are neglected. This gives rise to an extensive technological scope for problems
where power systems are analyzed, where characteristics for different technologies within
generation, transmission and energy storage have to be considered in the analysis.

Attributes of generation technologies

When investing in generation capacity, several generation technologies with different char-
acteristics are available. Decisions are made for both the amount of invested capacity and
the share of different generation technologies to be invested in. The amount of invested
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Figure 2.4: Examples of controllable and uncontrollable generation technologies

capacity in each period is restricted by reasonable upper limits for new capacity additions
at each location and period of time. Typical generation technologies being considered
include solar power plants, wind power plants (onshore and offshore), natural gas power
plants, coal-fired power plants, nuclear power plants, hydroelectric power stations, oil-
fired power plants, tidal water power plants, wave power plants, geothermal power plants
and biomass-fired power plants. Note that the technological scope is not restricted to these
as more technologies may be considered. Versions of relevant technologies with installed
CCS-capabilitees is also included in the scope of the problem.

The mentioned generation technologies have different characteristics and will affect
the problem in different ways. Retirement factors are associated with some of the tech-
nologies, meaning that some of the invested capacity is made unavailable from one period
to the next due to deterioration and wear and tear. In addition, anticipated lifetimes for
investments in power plants are associated with the different types of generation tech-
nology, which have to be taken into account when assessing the usefulness of a capacity
investment. All generation technologies that rely on fossil fuel as input also have specified
properties such as heat rates, efficiency numbers for the amount of electricity produced
from a given amount of fuel input and CO2-emissions per unit of produced energy.

It is worth mentioning that there is an important distinction between intermittent, un-
controllable generation technologies such as solar and wind power on the one hand and
stable, controllable baseload generation technologies such as coal-fired power plants or
hydropower stations. As nobody can control the amount of sunshine or wind at a location,
the availability of such intermittent generation capacity is restricted by this uncontrollable
resource availability. In contrast, generation from the stable type of technologies is fully
controllable, only restricted by the installed capacity and ramp-up restrictions (i.e. that a
certain amount of time to start up or increase production from the current production level
is required). This distinction between controllable and uncontrollable generation tech-
nologies have significant implications for the power system, particularly since ambitious
CO2-emission reduction targets call for an increased share of renewable energy which is
often intermittent and uncontrollable.

Figure 2.4 gives examples of generator technologies categorized as controllable and
uncontrollable power sources. Due to political ambitions of reducing greenhouse gas emis-
sions, a transition of the power system towards a higher share of uncontrollable renewable
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energy generation is anticipated. A phase-out of controllable, conventional thermal gen-
erators, such as coal and gas power plants, and an increase in the share of uncontrollable,
intermittent renewable sources such as wind and solar, is therefore expected (Skar et al.,
2016; Nagl et al., 2013; Richter, 2011). Consequently, an important aspect of the LSS-
CEPPS in Europe is to find the most cost optimal pathway for this transition.

Attributes of transmission infrastructure

To facilitate transmission of electricity, investments in transmission networks between
geographical locations is possible. Decisions are made for both the amount of invested
transmission capacity and whether the investment should be made in direct current or al-
ternating current lines (HVDC and HVAC, respectively). Both transmission line types
have specified transmission loss coefficients stating the power losses associated with each
type of line. Investments can be made either through expanding the capacity of existing
infrastructure or through building entirely new interconnectors.

Attributes of electricity storage

Investments in storage is defined as investments in both capacity for energy storage and
capacity for charging and discharging of the storages. Decisions are made for both the
amount of invested capacity and the share of different storage technologies to be invested
in. For some storage technologies such as certain types of batteries, there is a coupled
relationship between investments in energy capacity and investments in charging and dis-
charging capacity, for example, that discharging a battery entirely cannot be done within
a very short amount of time. When charged, the storage capacity can be used as an op-
erational source of electricity just like a generator, is depicted in Figure 2.2. Available
storage technologies are quite heterogeneous and can have very different characteristics.
For instance, the storage of liquid hydrogen needs a constant flow of energy to keep it
cold, while other storage technologies can stay untouched for long periods without being
discharged, while yet other storage technologies can self-discharge entirely if it is not dis-
charged quickly after being charged. In addition to the mentioned characteristics, losses
in charging and discharging of different storage technologies should be accounted for.

Note that although not fully commercialized in today’s power system, the possibility
to store electric energy from the transmission grid is anticipated to play a significant role in
future power systems where intermittent renewable energy sources are anticipated to make
up a significant amount of the generation capacity, as discussed in Whittingham (2012).
With a forecasted increase in the amount of intermittent renewable energy capacity, stor-
ages might provide the necessary buffers needed to stabilize the power system, as physical
laws state that power otherwise has to be consumed at the instant when it is produced.

2.3 Political regulations
A central part of the LSSCEPPS is the various energy policies being set by either national
governments or international institutions, where the EU system is the most relevant in-
stitution for the European power system. These policies are implemented with the target
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of reaching a more favorable equilibrium state than the current, such as getting to a state
where it is profitable to invest in renewable energy capacity. Possible policies may include
targets for shares of renewable energy production or restrictions on the amount of invested
capacity in a given generation technology, transmission type or storage technology. An
example of the latter is Germany’s nuclear moratorium implying a complete phase-out of
nuclear power in Germany by 2022 (World Nuclear Association, 2017). Restrictions may
also be put in place to ensure domestic energy security without having to rely on transmis-
sion from neighboring countries, such as requirements for minimum domestic generation
capacity. Further, depending on the political environment, emission policies can be en-
forced either through emission restrictions or by taxing emissions. The latter case would
imply an inclusion of these taxes in the variable OPEX of generation technologies that
emit CO2.

2.4 Uncertainties and risks in power system capacity ex-
pansion

In the context of capacity expansion in power systems where planning horizons typically
span several decades, a deliberate treatment of risks and uncertainty is imperative. Note
that this section contains a generic description of risks and uncertainties relating to capac-
ity expansion in power systems, while issues relating to the incorporation of uncertainty
in power system modeling are discussed in chapter 4.

There are several approaches to dealing with the issue of uncertainty in this context:
One possible approach is to not assume anything about the future, a second approach is to
assume a probability distribution about the possible outcomes of the future, and a third is
to assume exact knowledge about the future. Given an objective to find robust solutions to
the LSSCEPPS that are resilient to different kinds of uncertainties, the second approach is
argued to stand out as a reasonable approach.

Two fundamentally different types of uncertainty should be considered as part of the
LSSCEPPS. The first one relates to highly frequent and unpredictable variability in the
short-term, a type of uncertainty that can be included in the problem by utilizing statistical
methods on historical data. Examples of such uncertainties include variability in short-
term electricity demand or varying availability of renewable energy generation capacity
due to unpredictable weather conditions. These uncertainties should be included as part of
the problem to reflect the varying operational nature of power systems.

The second type of uncertainty relates to longer-term, low-frequency uncertainties
about future trends and developments in the system. Due to the low frequency of such
events, statistical methods fall short in trying to capture their impact on the system, but
their potential impact may be too significant to ignore. These uncertainties may include
the development of future investment costs of generation capacity due to maturation pro-
cesses and learning effects, changes to policy regulations or long-term changes to electric-
ity demand trends. Note that the two types of uncertainty presented correspond to the two
different time-scales being considered in the LSSCEPPS, as discussed above in section
2.2.2.

The uncertainties discussed above may have large impacts on the choice of genera-
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tion portfolio in the future power system, due to the inherent risks they represent. For
instance, the risk of stranded assets due to overinvestments or the risk of undercapacity
due to too low investments in generation capacity becomes more prevalent with increas-
ing amounts of new, immature generation technologies. In addition, fluctuating electricity
prices introduces the risk of not collecting enough revenue to cover the costs of capital
during the lifetime of an investment in a generation plant, particularly when renewable en-
ergy technologies with close to zero variable costs, such as solar, wind or hydropower, are
introduced to a larger extent. Other risks include inadequate diversification of the power
supply portfolio, resulting in a power system that is vulnerable to extreme, unexpected
events.

2.5 Summary of the LSSCEPPS
To summarize, the problem explored in this thesis is the co-optimization of long-term in-
vestment decisions and short-term operational decisions in the European power system
several decades ahead. The objective is to find a sustainable, least-cost and robust devel-
opment of the power system while securing coverage of future power demand and com-
plying with given political regulations. The co-optimization is done in a context of uncer-
tainty in both long- and short-term input parameters. In the rest of the thesis, this problem
will be studied using the long- and short-term stochastic version of the EMPIRE model,
which is a simultaneous capacity expansion and system dispatch optimization model for
the European power system. The EMPIRE model will be briefly introduced in chapter
3 while modeling issues related to uncertainty will be presented in chapter 4. Finally, a
detailed presentation of the mathematical formulation of the extended version of the EM-
PIRE model including long-term uncertainty will be presented in chapter 5.
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Chapter 3
Review of Relevant Literature on
Energy System Capacity Expansion

This chapter will provide an overview of the existing literature related to capacity expan-
sion models for energy and power systems. Note that throughout this chapter, the term
energy system will refer to all sectors relevant for energy supply and demand, while the
term power system will refer to the electricity sector only. The main objectives of the
chapter are to (1) examine different approaches to capacity expansion modeling, (2) cre-
ate an overview of the most relevant power system models that have been developed and
how these deal with different modeling issues, and (3) discuss key results from studies
conducted utilizing such models. Mikkelsen and Reiten (2017) presents a literature review
touching on some of the similar topics, and some parts of this literature review are based
on elements of the work done there.

First, to set the context for the discussions in this chapter, a brief introduction to the
EMPIRE model is given in section 3.1. After this, different approaches to energy system
modeling with related issues are presented in section 3.2. This is followed by a discus-
sion of power system optimization models in section 3.3, including important features and
considerations that need to be made when formulating such models. Finally, section 3.4
summarizes the literature review. Selected models described in the chapter is also summa-
rized in Table 3.1 for convenient comparison between the model studied in this thesis and
other relevant research efforts. While this chapter reviews relevant literature for energy
and power system capacity expansion in general, literature relevant for the inclusion of
uncertainty in such models will be presented in chapter 4.

3.1 Introduction to the EMPIRE model
In order to facilitate a comparison between the EMPIRE model studied in this thesis and
other relevant capacity expansion models in the literature, a brief introduction is included
here, while an extensive presentation of the model will be given in chapter 5.
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A tradition of large-scale stochastic optimization has been applied when formulating
the European Model for Power System Investment with Renewable Energy (EMPIRE).
The model was first presented in Skar et al. (2016) and is a multistage, long-term capacity
expansion and system dispatch optimization model for the European power system. In the
version of the model studied in this thesis, the possibility to represent both short-term and
long-term dynamics in addition to short-term and long-term uncertainties is included. The
model simultaneously co-optimizes investment decisions in multiple stages with opera-
tional decisions for system dispatch. It was developed to study optimal capacity expansion
in the European power system in a context of fluctuating energy demand and variable, in-
termittent renewable energy (IRE) production. To cope with this uncertain variability, the
model was initially formulated with the ability to include uncertainty in short-term input
parameters in Skar et al. (2016), while an extension of the model including uncertainty in
long-term input parameters was developed in Mikkelsen and Reiten (2017).

3.2 Energy system modeling approaches
Due to the large, complex and interconnected nature of energy systems, several differ-
ent approaches exist for creating models for energy systems in general and for the LSS-
CEPPS in particular. Holz and von Hirschhausen (2013) makes a distinction between
top-down general equilibrium models and bottom-up optimization models. An approach-
able introduction to equilibrium modeling can be found in Gabriel et al. (2013), and Kiuila
and Rutherford (2014) discusses similarities and differences between equilibrium models
and optimization models. In equilibrium models, the behavior of market participants is
modeled through their decisions and interactions. Each market participant is assumed to
maximize their utility subject to a market clearing condition, i.e. that supply must match
demand. Supply and demand are matched by inputs such as demand functions and supply
curves, and together these determine the equilibrium state of the system, including market
prices and quantities. It is worth mentioning that under assumptions of price inelastic de-
mand and perfect competition, an equilibrium model is equivalent to minimizing costs and
satisfying demand in an optimization model for the energy system (Gabriel et al., 2013).
This stands in contrast to the assumption of imperfect competition where some market
participants have market power (see Schwenen (2014) and Sanstad and Howarth (1994)
for a discussion of imperfect competition in energy modeling). The choice between these
two classes of models is typically affected by several factors. Two of the most important
factors in such a consideration is (1) the desired scope and granularity of the system to be
studied and (2) assumptions about who are making decisions in the system.

3.2.1 Determining the scope and granularity of energy system models
When studying energy systems and energy policy questions, several modeling choices
regarding scope and granularity need to be addressed. One such choice relates to the
sectors to be included in the model. The energy system consists of several interacting
sectors that are mutually dependent on each other, such as the power sector, the coal sector,
the natural gas sector, the oil sector, the transportation sector and the heating sector. In the
energy system, the sectors are interconnected in the sense that they can take the role as both
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Power
system

Fuel sectors
(natural gas, coal, 

oil)

Transport 
sector

Heat
sector

The energy system

Figure 3.1: Illustration of the power system’s boundaries to other sectors of the energy system.

a consumer of other sectors’ outputs and a producer of other sectors’ inputs, as illustrated
in Figure 3.1.

Hübler and Löschel (2013) uses the PACE model (Policy Analysis based on Com-
putable Equilibrium) to study different decarbonization pathways for the European energy
system towards 2050. In their model, the world is partitioned into 13 regions, where 24
different production sectors are included. Compared to the single sectoral analysis of the
electricity sector spanning 31 European countries in the EMPIRE model, this is a much
wider scope both sectorally and geographically.

Capros et al. (2014) introduces the PRIMES model, which is a general equilibrium
model that simulates several energy sub-systems simultaneously, covering all sectors and
relevant markets for the energy system. The model is applied to 28 EU member states, i.e.
a similar geographical scope as in the EMPIRE model. However, similarly to the PACE
model discussed above, the sectoral scope is much wider than in the EMPIRE model, since
other sectors relevant for the energy system are treated as exogenous inputs in the EMPIRE
model. Note that the choice of not including other sectors of the energy system in a model
implies ignoring interactions and feedback loops between sectors. As an example, an
increase in electricity production from natural gas-powered generators may induce a need
to invest in more natural gas pipelines, possibly inducing a reduction in natural gas prices
due to higher supply, which in turn may increase the demand for natural gas. Such effects
cannot be modeled in a single sector model. Stated otherwise, co-optimization of both
power systems and fuel sectors may find more efficient solutions for the entire energy
system, but at the cost of increased computational complexity and increased requirements
for input data gathering and preparation.

The TIMES model, introduced in Loulou and Labriet (2008) and Loulou (2008), is a
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linear optimization model covering all sectors relevant for supply and demand of energy.
The linear optimization approach is a different one than the general equilibrium approach
used in the PACE-model and the PRIMES-model discussed above, but similar to the mod-
eling approach used in the EMPIRE model studied in this thesis. The authors argue that
optimization models are useful when a high level of technological detail is desired, due
to the bottom-up approach of these models. However, due to this granular level of detail
and the wide sectoral scope of the TIMES model, its application is limited to a single-
country level only, such as in Seljom and Tomasgard (2015) where the geographical scope
is limited to Denmark and in Pina et al. (2011) where the TIMES-model is applied to a
Portuguese island. This illustrates the trade-off between geographical scope and sectoral
scope and level of detail. When developing models to study energy or power systems,
these trade-offs have to be balanced in such a way that the model is able to capture the
relevant dynamics and interactions needed to study the questions of interest, but still not
too detailed making the model computationally intractable.

From the discussions above it can be argued that if the purpose of a model is to study
the high-level interactions between multiple sectors in the energy system, equilibrium
models are of great use. However, endogenously modeling several sectors comes at the
cost of higher computational complexity, thereby reducing the possibilities to model tem-
poral and geographical characteristics in great detail. As discussed, a remedy for this issue
is to assume all sectors but the one of interest as exogenous inputs to the model, as is
done in single-sector optimization models such as the EMPIRE model. This implies an
ignorance of feedback effects between sectors, or stated otherwise, that the power system
has negligible impacts on other sectors in the energy system. However, this choice has the
benefit of providing more granular results for the power system. This is evident from e.g.
the difference in geographical scope between the EMPIRE model and the PACE-model
presented in Hübler and Löschel (2013), as the PACE-model breaks the world into 13 re-
gions (only one of them being Europe), while the EMPIRE model includes 31 different
countries within Europe.

3.2.2 Centralized vs. decentralized decision making
The choice of modeling decisions as centralized or decentralized is an important one when
modeling energy systems in general, and power systems in particular. It is well understood
that these systems comprise numerous decision makers with their own agendas and con-
siderations, making it reasonable to claim that decisions should be assumed decentralized.
An assumption of centralized decision making in mathematical models results in decisions
that are unlikely to happen in a system with multiple decision makers. However, this may
still prove useful, since the assumption of a single decision maker with all relevant infor-
mation and complete decision-making authority will let the model find an optimistic target
for the system, and this target can direct and aid policy making. This stands in contrast
to the results from a model assuming decentralized decisions, as such a model enables a
validation of how the system and its decision makers will respond to the implementation
of specified political regulations.

The distinction between centralized and decentralized decision making corresponds
well with the distinction between optimization models and equilibrium models, respec-
tively. In optimization models for energy systems, an objective to maximize social welfare
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or minimize expected costs is typically used. This calls for an assumption of centralized
planning leading to socially optimal solutions, thereby neglecting profitability and ratio-
nality constraints for individual market participants. This stands in contrast to equilibrium
models where each participant maximizes their own objective. In a sense, both classes of
models complement each other when studying energy-related policy questions, since the
former type can be used to direct policy while the latter can be used to study the effect of
specific policies.

With the above discussions in mind, the EMPIRE model studied in this thesis has been
chosen to include the power system only, assuming interactions with other sectors in the
energy system as exogenous inputs (possibly stochastic). Due to an objective of searching
for optimal policies for the European power system going forward, and not to validate the
outcomes of specified policies already suggested, it has been formulated as an optimization
model. According to Hobbs (1995), optimization models are a natural choice for studying
capacity expansion in power systems due to the bottom-up approach able to capture a
high degree of complexity and technological granularity. This level of detail is required
due to the need to capture the dynamics between long-term infrastructure investments and
short-term scheduling of operational system dispatch. As a result, in the remaining part of
the chapter, the scope of the literature review will be limited to optimization models for
capacity expansion in power systems.

3.3 Optimization models for power systems
In this section, several different optimization models that are used to study capacity ex-
pansion in power systems will be introduced. While most of these models touch on many
of the relevant attributes and characteristics discussed in this section, only selected char-
acteristics will be discussed for each model. However, a table detailing the different char-
acteristics of a number of the models presented is included at the end of the section.

3.3.1 Operational considerations and short-term dynamics
In the EMPIRE model, long-term investment decisions and short-term operational deci-
sions are simultaneously co-optimized, which gives rise to the model’s ability to identify
and capture both dynamical effects and synergies along both time-scales.

A model comparable to the EMPIRE model is the Long-term Investment Model for
the Electricity Sector in Europe (LIMES-EU), documented in Nahmmacher et al. (2014).
LIMES-EU is a linear optimization model that minimizes investment and dispatch costs
from generation, storage and transmission in Europe from 2010 to 2050. Haller et al.
(2012) uses the model to explore long-term capacity expansion with high shares of in-
termittent renewable energy generation in the power system in the European and MENA
region, however, in a deterministic setting. They find that limitations to long-term, cross-
border transmission expansion increases both short-term temporal variations and geo-
graphical variations in electricity prices. That is, the long-term decision of limiting trans-
mission investments turns out to have an impact on the operations of the system in the
form of electricity price variability, showing the interplay between short-term operations
and long-term decisions in the system.
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Pina et al. (2011) extends the TIMES energy model to include seasonal, daily and
hourly dynamics of supply and demand, which enables a more accurate study of the effects
of an increased share of unpredictable renewable energy sources in the electricity system.
An important finding is that such a fine-grained time-scale is necessary when studying
the effects of different policy measures in systems with high shares of renewable energy.
Although instructive, the study is only performed on an island outside the coast of Portugal.
Note that in the EMPIRE model an hourly short-term time-scale has also been applied, but
in addition, a much wider geographical scope has been used, including 31 countries within
Europe. The reason why the TIMES model is unable to handle such a large geographical
scope is due to the greater sectoral scope, as discussed earlier.

The issue of modeling seasonal storages in a proper manner in capacity expansion
models has been discussed in Powell et al. (2012). This issue has also been addressed in
a similar power system model to EMPIRE, the Dispatch and Investment Model for Euro-
pean Electricity Markets (DIMENSION), presented in Richter (2011). The DIMENSION
model differentiates from the EMPIRE model by including options to study effects like
demand side management and decentralized electricity production. In addition, it includes
the possibility to represent short-term operations on an hourly time-scale with 8760 hours
per year, meaning that full operational years can be studied. This enables simplified model-
ing of seasonal storages since the need to link storage levels between time-periods is easily
accomplished when the operational time-scale spans the entire year. This is opposed to the
case where only a limited number of typical days in an operational year is modeled. Us-
ing this approach, planning of seasonal energy storages such as hydro reservoirs becomes
more difficult as the limited number of operational days is unable to capture the season-
ality of these storages. In addition, the temporal link between the last operational hour of
one operational period and the first operational hour in the next is lost. As a result, the
choice of only modeling a limited number of typical operational days in EMPIRE has the
benefit of reduced computational time, but at the cost of complicating the task of modeling
seasonal storages in a realistic manner.

3.3.2 Planning horizon and scope of infrastructure investments
The choice of planning horizon for long-term capacity expansion models for power sys-
tems may seem evident due to the long lifetimes of infrastructure investments. Schmid and
Knopf (2014) uses the LIMES-EU+ model to study the interactions between investments
in European transmission infrastructure and capacity investments in renewable energy gen-
eration towards 2050. They find that the optimality of investments in transmission infras-
tructure in Europe is vastly impacted by the development of solar and wind investment
costs the coming decades, confirming the importance of using a long enough planning
horizon to incorporate such long-term developments in important input parameters.

The EMPS model is presented in Wolfgang et al. (2009) where they study the effect
of deregulation of the Norwegian electricity market on reservoir levels in hydropower
plants. They take investment decisions for generation capacity from the PRIMES model as
exogenous inputs and utilize the extended operational modeling capabilities of the EMPS
model to study optimal transmission grid expansion with the requirement of satisfying
exogenous demand. The EMPS model differs from the EMPIRE model in the sense that it
includes enhanced operational modeling features, but at the expense of less sophisticated
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modeling of investments, as investments are taken as exogenous input. Their results show
that increases in transmission capacity, thereby extending the operational flexibility of the
power system, cause a reduction in average reservoir levels. This result indicates the need
to model transmission expansion endogenously due to its apparent effect on how the power
system is managed and operated.

Investments in storage capabilities for the power system is anticipated to increase with
a rising share of intermittent renewable energy in the power system. This is studied in
Gerbaulet and Lorenz (2017), where the dynELMOD model is presented. They study dif-
ferent decarbonization pathways for the European power system, including 33 countries in
Europe, five-year investment steps and a planning horizon until 2050. They find that if a
near complete phase-out of CO2 emissions from the power system is required, most of the
electricity will be provided from a combination of renewable technologies and storage ca-
pacity. They also find that as the share of renewables in the generation portfolio increases,
the optimal amount of installed storage capacity increases. These results are clear indica-
tions that an endogenous treatment of storages in the model is necessary since such results
are impossible to obtain with a model that excludes decisions for storage capabilities.

Krishnan et al. (2015) discusses the choice of whether to include transmission infras-
tructure investments as endogenous decisions in the model or not. They argue that gen-
eration and transmission investments often are substitutes, as electricity demand can be
met either by local generation or by transmitting electricity from distant supply locations.
In addition, generation investment decisions are often affected by the amount of nearby
transmission infrastructure and hence the possibility to transmit power to other demand
locations. This is also true the other way around. Therefore, it is argued that capacity ex-
pansion models should include a combined assessment of investments in both generation
and transmission. Furthermore, Haller et al. (2012) finds that if transmission and storage
investments are allowed, ambitious emission reduction targets set out by EU can be met
by an extensive expansion of renewable energy capacities. Powell et al. (2012) also argues
that the issues of intermittent and volatile sources of energy, such as wind and solar, can be
mitigated through the use of different types of storage such as batteries and pumped hydro.
All these results illustrate that it is important to consider endogenous investments in both
generation, transmission and storage capacity in order to enable the model to capture the
synergies that might emerge from an integrated assessment.

3.3.3 Modeling the transmission network
There are several different approaches to modeling the transmission network of a power
system, all with different levels of realism and complexity. Siddiqi and Baughman (1995)
discusses different approximations to modeling power flow networks and studies their
effect on the model results. In the process of reviewing relevant literature for capacity
expansion in power systems, four common approaches to modeling power flow networks
have been identified.

The first type is called the copper-plate assumption, where power is allowed to flow
freely from any supply location to any demand location in the model. A more realistic
assumption is a net transfer capacity (NTC) approach, also called a pipe flow equivalent.
In such an approach power is simply assumed to be transported from one geographical
location to another with specified losses per unit of transferred energy, only restricted by
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capacity restrictions and nodal balances, and not necessarily obeying Kirchhoff’s voltage
law (KVL).

An even more realistic modeling approach would be what is often called a DC power
flow model, where, in addition to the restrictions above, the KVL is assumed to hold
under certain assumptions about low resistance in the network, flat node voltage profiles
and small angular differences across lines in the network. These assumptions result in a
model that can detect bottlenecks in the grid and that considers active power flows, but not
reactive power.

Finally, the most realistic power flow model is an AC power flow model where the
KVL is assumed to hold without any further assumptions. In such a model reactive power
is also modeled, however at the expense of making the model non-linear. As noted in Ryan
et al. (2011), even linearized DC power flow models become non-linear if the impedance
is included in the model, due to the need to divide voltage angles by line reactances, both
of which are decision variables in such a formulation.

A recurring observation made when reviewing other power system capacity expansion
models is the trade-off between modeling detail and computational complexity, and the
case of modeling transmission networks is no different. With smaller, more detailed geo-
graphical scopes, AC or DC models might prove more appropriate, while NTC approaches
(or even the copper-plate assumption) may be sufficient for lower levels of detail, such as
when nations or several nations are modeled together as one region in the transmission
network.

Due to the non-linearity of AC and DC power flow models, the linear pipe flow equiv-
alent has been applied in the EMPIRE model to keep it linear. However, there do exist
mitigating measures for the issue of non-linearity in DC models. The dynELMOD model
presented in Gerbaulet and Lorenz (2017) iterates between a linear optimization model
for investments and dispatch and a separate, non-linear optimization model for solving
the intra-country grid expansion problem. Hence, the issue is mitigated at the expense of
increased computational complexity and an increased number of iterations in the solution
algorithm, but with the benefit of validating the solution on a more realistic transmis-
sion network expansion model. Note that the increased computational complexity in the
dynELMOD model explains the less sophisticated modeling choices of myopic investment
decisions (meaning that investments are made in sequential time steps only accounting for
here-and-now knowledge) and very few operational hours (18 hours compared to up to
720 in the EMPIRE model) included in the system dispatch optimization.

In a comparative study of several different capacity expansion models for the Euro-
pean power system, Holz and von Hirschhausen (2013) finds that the iterative approach to
intra-country grid expansion using a DC power flow model results in both lower invest-
ments in cross-border and intra-country transmission infrastructure compared to two other
models where the NTC approach is used. On the other hand, Fürsch et al. (2013) also
uses an iterative approach where investment and dispatch decisions are optimized using
the DIMENSION model, followed by a separate optimization of grid extensions using a
load flow based grid model. Contrary to the results found in Holz and von Hirschhausen
(2013), they find meaningful potential value in large expansions of the power flow net-
work, particularly when high shares of renewable energy generation is introduced in the
system. Consequently, whether the use of a separate, non-linear DC power flow model
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results in improved decision support for transmission expansion in power systems is an
ambiguous question, supporting the use of an NTC approach in the EMPIRE model in this
thesis.

3.3.4 Energy policy and political regulations

Power system models are important tools for advising governments and policy makers
on energy and environmental policy issues. These models are widely used in studies of
decarbonization pathways and optimal capacity expansion in power systems, particularly
in the context of EU’s target of almost fully decarbonizing the European power system by
2050 (EC, 2011).

There is no doubt that political regulations have major impacts on the power system.
In economics, the notion of externalities is a basic concept that formalizes the benefits
and costs of an individual decision maker’s choices for his or her surroundings (Pindyck
and Rubinfeld, 2013, p. 675). Within energy economics, the social cost of carbon is a
well agreed-upon externality and a foundation for a lot of the political regulation being
put in place for the energy sector. The target of these political regulations is to nudge the
equilibrium state of the society into a more favorable one, as economic theory states that
individual decision makers will not internalize these social costs by themselves, such as
the external costs of emissions and pollution from producing, transporting and consuming
energy.

Several types of political regulations have been discussed in the research literature and
implemented in practice by different governments and regulatory authorities. Schmid and
Knopf (2014) simulates climate policy by constraining annual CO2 emissions in a similar
manner as what is suggested in the ”Roadmap for moving to a competitive low carbon
economy in 2050” (EC, 2011). This kind of policy regulations is similar to those imple-
mented in this thesis, apart from the fact that the restrictions are modeled in a stochastic
manner in the EMPIRE model. This will be further elaborated in the next chapter.

Other kinds of political regulations are also found in the research literature. In Ger-
baulet and Lorenz (2017) political targets to reduce carbon emissions can be included
either by modeling particular emission paths, by imposing emission budgets for a speci-
fied period or by taxing emissions of CO2. Jägemann et al. (2013) uses the DIMENSION
model to study 36 different policy scenarios for the European power system towards 2050.
The different political regulations considered include CO2 emission limits, targets for re-
newable energy capacities, and restrictions on investments in nuclear generation capacity
or CCS-capabilities. They find that in the case of restrictions to investments in either ther-
mal generation plants (such as coal-fired or natural gas-fired plants) with CCS-capabilities
or to nuclear capacity, targets for investments in renewable energy capacity become redun-
dant. The reason is that the model finds it optimal to invest heavily in renewables to meet
required CO2 restrictions when other mitigating measures such as these are excluded. It is
worth mentioning that from the perspective of enforcing political regulations, renewable
share targets are probably easier to monitor than direct targets for CO2 emissions, since
measuring CO2 emissions is subject to great uncertainty (Global Carbon Project, 2017).
Although the possibility to include renewable share targets exists in the EMPIRE model,
this type of political regulation has not been studied in this thesis.
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The E2M2 model (Swider and Weber, 2007) is applied in a study of five different
policy scenarios or policy regimes in Spiecker and Weber (2014). The focus is to study
different approaches to decarbonizing the European electricity sector towards 2050, and
an important conclusion made is the importance of a coordinated policy effort across bor-
ders to introduce meaningful amounts of intermittent renewable energy capacity in the
European power system. The reason for this, they point to, is that in order to maximize
the value of uncontrollable renewable energy in Europe, coordination and cooperation of
investments in all kinds of infrastructure is needed.

3.4 Summarizing the literature review
In this chapter relevant literature for capacity expansion in energy and power systems has
been reviewed. Several issues and attributes specifically related to modeling this problem
has been discussed, including choice of model type, temporal and sectoral considerations
for scope and granularity, system dynamics between investments and operations, transmis-
sion network modeling and political regulations.

In Table 3.1 a summarizing overview of different attributes of the most relevant models
reviewed in this chapter is presented, including a comparison with the EMPIRE model
studied in this thesis. Note that no relevant literature has been found to include uncertainty
in the model in both the short and long term, which is the main objective of this thesis.

Yet to be discussed is the issue of incorporating stochastics in capacity expansion mod-
eling. Although some of the models presented in this chapter have embedded functional-
ity for including stochastics, most of them are deterministic models in both the short and
long term. Since such deterministic models can lead to overly optimistic predictions of
expected future costs (Wallace and Fleten, 2003), it is the authors’ view that including
uncertainty is of significant importance. For this reason, the next chapter will elaborate
on the inclusion of stochastics in multistage capacity expansion models, both in terms of
theory, methods, relevant literature on the subject and a discussion of mitigating measures
to reduce computational complexity.
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Chapter 3. Review of Relevant Literature on Energy System Capacity Expansion
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Chapter 4
Treatment of Uncertainty in Power
System Capacity Expansion Models

As nobody can forecast the future with perfect accuracy it should be acknowledged as in-
herently unpredictable, making uncertainty a fundamental part of most decision processes.
Capacity expansion models for power systems is no exception to this since these models
aim to capture the dynamic and complex development of power systems over a long plan-
ning horizon. As a result, uncertainty commonly arises in planning problems for power
systems (Hobbs, 1995).

There exist multiple approaches to dealing with uncertainty in large-scale capacity ex-
pansion models. These approaches can in most cases be classified into one of two groups -
uncertainty propagation or sequential decision making (Kann and Weyant, 2000). Within
uncertainty propagation, uncertain parameters are sampled from their probability distri-
butions and propagated through a deterministic model to generate distributions for the
model output. Although this approach provides a nice framework for carrying out un-
certainty analysis of the outputs, it does not instruct decision makers on optimal, robust
decisions before the uncertainty is revealed. That is, uncertainty propagation only gives
information about how uncertainty in the input parameters is transformed by the model
to uncertainty in the model outputs, but it does not provide optimal policies or decisions
as output. In contrast, sequential decision making frameworks, such as stochastic opti-
mization, endogenously find sets of decisions that incorporate the effect of uncertainty in
a balanced way, accounting for all possible realizations of the uncertain parameters. Fre-
quently used methods within stochastic optimization include robust optimization (Ben-Tal
and Nemirovski, 2002), chance-constrained optimization (Prékopa, 2003) and stochastic
programming (Bertsimas et al., 2011; Birge and Louveaux, 2011). As the latter of these
three is the chosen modeling method in this thesis, it will be introduced more formally in
this chapter, and the scope of this section will henceforth be limited to relevant theory and
literature covering stochastic optimization models.

The following chapter is divided into four parts. In section 4.1, fundamental theory of
multistage stochastic programming for capacity expansion models is presented, providing
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Chapter 4. Treatment of Uncertainty in Power System Capacity Expansion Models

context for later discussions and methods used in this thesis. This is followed by section
4.2 where a literature survey related to the role of uncertainty in power system capacity
expansion models is presented. Both short- and long-term uncertainty is studied, but since
studying the effects of long-term stochastics is the main focus of this thesis, a particular
focus has been directed towards understanding how this form of uncertainty is incorpo-
rated in the literature. Section 4.3 presents some relevant methods for solving large-scale
stochastic optimization models, before section 4.4 summarizes the first part of the thesis
and motivates the material presented in the rest of the thesis.

4.1 Theoretical background of stochastic optimization
Stochastic programming, as a framework for decision making under uncertainty, can be
traced back to Dantzig (1955). The main objective of stochastic programming is to find
optimal decisions in problems that involve uncertain input parameters, where a sequential
process is defined by alternating between decisions to be made and revelation of uncertain
information (Birge and Louveaux, 2011). In multistage stochastic optimization, such as
in the EMPIRE model, this process is repeated multiple times. A deterministic model can
tailor its solution to the input parameters due to the assumption that this particular scenario
will happen with probability 1, and the solution is therefore biased towards this particular
scenario. Contrary to this, stochastic models yield both cost optimal and robust solutions,
in the sense that the model chooses to invest in such a manner that it is able to handle
several possible realizations of the future. The purpose of this approach is to assign a
value to flexible solutions, and this effect is often referred to as hedging effects (Higle and
Wallace, 2003). The drawback of such a formulation, however, is increased computational
complexity, particularly when uncertainty is added in multiple time-scales.

In power system modeling, infrastructure investments are typically made in multiple
investment stages over a span of several decades. When optimizing over several decades,
it is evident that many of the exogenously given model inputs are based on forecasts and
subject to great uncertainty. Examples of inputs often considered uncertain in power sys-
tem models include long-term trend developments of power demand, long-term fuel price
trends, future developments of investment costs in generation capacity and governmental
policy regulations (Gardner, 1996; Reinelt and Keith, 2007; Usher and Strachan, 2012).
When uncertain input parameters are combined with a dynamic approach to investments,
i.e. including multiple investment stages, it is referred to as multistage stochastic program-
ming.

4.1.1 Formulation of a multistage stochastic program
In Birge and Louveaux (2011, p. 149), a very general introduction to multistage stochas-
tic programs can be found. Decisions are made sequentially as time passes and random
information influencing the system is revealed. Let x1, x2(ω2), ..., xH(ωH) denote the
decision vectors for the periods over the finite time horizon H , where the xt decision vari-
ables are understood to be functions of the random events ωt up to time t ∈ {1, ..,H}.
Furthermore, let ξt be a realization of the random vector ωt at time t. Then, a multistage
stochastic program with fixed recourse can be formulated as follows:
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4.1 Theoretical background of stochastic optimization

min c1x1 + Eξ2 [min c2(ω2)x2(ω2) + ...+ EξH [cH(ωH)xH(ωH)]...] (4.1)

s.t. W 1x1 = h1

T 1(ω2)x1 +W 2x2(ω2) = h2(ω2)
...

TH−1(ωH)xH−1(ωH−1) +WHxH(ωH) = hH(ωH)
x1 ≥ 0, xt(ωt) ≥ 0, t = 2, ..,H

The W t matrices, t ∈ {1, ..,H} are assumed to be known matrices, while the right-
hand side vectors ht(ωt)T , t ∈ {2, ..,H} and the matrices T t(ωt+1), t ∈ {1, ..,H − 1}
are understood to take values dependent on the realizations ξt of the random vectors ωt at
time t. Eξt denotes the mathematical expectation with respect to ξt.

The above model formulation is instructive in the sense that it formalizes how uncer-
tainty in model input parameters can be incorporated in stochastic programming. However,
such a formulation is in general infinite-dimensional due to continuous random variables.
A normal approach to deal with this complication is to create an approximation of the
problem by considering a finite number of realizations ξt of ωt with assigned probability
distributions. Dupačová (1995) presents a formulation of multistage stochastic programs
that incorporates the notion of scenarios in an explicit manner:

min
∑
s∈S

πsfs(xs) (4.2)

s.t xs ∈ Fs ∀s ∈ S
xs ∈ FNA ∀s ∈ S

Formulation (4.2) is made finite-dimensional by using a decomposition based on a fi-
nite number of scenarios indexed by s ∈ S. Note that vector notation has been introduced
for the decision vectors xs to underline that it is a vector of decisions for all time stages
t ∈ {1, ..,H}, hence enabling multiple time-scales in each decision vector. For clarity,
xs = [x1

s, x
2
s, ..., x

H
s ], i.e. there are |H| decision stages. The cost of making decisions

xs in scenario s is denoted by fs(xs), hence expected costs are minimized in formulation
(4.2). Note that stochasticity is now denoted through the use of the index s on the decision
vectors, as opposed to formulation (4.1) where stochasticity was denoted by the use of ωt.
Fs denotes the set of feasible solutions for a given scenario s ∈ S, while FNA is intro-
duced to denote the set of implementable solutions. Implementability is enforced through
the requirement of nonanticipativity, which is a central concept of multistage stochastic
programming. If a solution to a stochastic program is nonanticipative, or implementable,
it implies that decisions are only based on past and current information available, and not
on any future revelations of information. This is illustrated in Figure 4.1, where all pairs
of scenarios s and s′ that are indistinguishable up to decision stage t satisfy the condi-
tion xτs = xτs′ for 1 ≤ τ ≤ t. In practice this implies that if two scenarios share the
same node in a scenario tree, the decisions taken at that stage should be identical to satisfy
the nonanticipativity constraints (King and Wallace, 2012). Note that if the requirement
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of nonanticipativity were omitted, formulation (4.2) would be decomposable by scenario,
meaning that each scenario problem could be solved in a separate manner before each
objective value would be combined in a probability-weighted sum to yield the objective
value of the entire problem. The nonanticipativity constraints are therefore an example
of complicating constraints, and a brief review of exploiting this in solution methods is
presented in section 4.3.

With the support of formulation (4.2), the decision stages of a multistage stochastic
program can be visualized in a scenario tree, as illustrated in Figure 4.1, where the nodes
represent decision variables and edges represent discrete outcomes of stochastic parame-
ters. A path from the root node of the scenario tree to a leaf node is called a scenario.

x1
1 = x1

2 = x1
3 = x1

4Stage 1

x2
1 = x2

2Stage 2

Scenario 1

x3
1Stage 3

Scenario 2

x3
2

x2
3 = x2

4

Scenario 3

x3
3

Scenario 4

x3
4

Figure 4.1: Illustrative scenario tree with three stages and four scenarios.

4.1.2 Representing multistage scenario trees

In relevant literature, multiple formulation alternatives are provided to represent decision
variables in multistage stochastic programs. Two of the most used formulations are com-
pact formulations and split variable formulations (Gassmann and Ziemba, 2013). In a
compact formulation the decision variables are indexed by the nodes in the scenario tree,
which implies that nonanticipativity is accounted for implicitly through the formulation.
Formulation (4.1) is an example of a compact formulation. In a split variable formulation
the decision variables are indexed by scenario, and as a result, nonanticipativity constraints
must be explicitly defined in the formulation to enforce implementability. Formulation
(4.2) is an example of a split variable formulation. Both formulations are able to represent
the same multistage stochastic programs, a fact that is graphically illustrated in Figure 4.2
where (a) is the compact formulation and (b) is the split variable formulation. The circles
in Figure 4.2 (b) represent the nonanticipativity constraints.

There are certain practical differences between the two formulations. As illustrated
in Figure 4.2, a split variable formulation involves a matrix representation of the decision
tree where nodes and scenarios are coupled by nonanticipativity constraints. This implies
a large number of redundant variables and constraints, which is a clear limitation of using
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(a) Compact formulation (b) Split-variable formulation

Figure 4.2: Two equivalent representations of a multistage scenario tree: (a) Compact formulation,
(b) split variable formulation with explicit nonanticipativity constraints. Circles represent investment
decision variables, arcs represent pathways in a scenario, and the ellipses represent the nonanticipa-
tivity constraints.

a split variable formulation as compared to a compact formulation where nonanticipativity
constraints are implicitly enforced and decision variable only defined once. However, an
obvious advantage of the split variable formulation is that scenario based decomposition
algorithms, which are well suited for distributed programming, can easily be applied to
such formulations.

4.1.3 The value of using a stochastic model
Several measures of the value of information in stochastic programming have been dis-
cussed in the literature (Bistline and Weyant, 2013). One of the most commonly used
measures of this is the value of a stochastic solution (V SS). The V SS represents the ex-
pected benefit of accounting for uncertainty in the model instead of merely using a deter-
ministic version where all uncertain input parameters have been replaced by their expected
values.

VSS for two-stage stochastic programs

In Birge and Louveaux (2011) the notion of V SS is explained for two-stage recourse
problems, where the process of evaluating a stochastic program and obtaining its corre-
sponding V SS can be done in four steps. First, solve the stochastic program, or the re-
course problem RP , where RP = minx Eξz(x, ξ). Second, solve the expected value
problem EV = minx z(x, ξ̄) where all uncertain parameters are replaced by the ex-
pected values, i.e. ξ̄ = E(ξ), and obtain its optimal solution denoted as x̄(ξ̄). Third,
find the expected result of using the EV solution, EEV , where the first-stage decision
variables are fixed to the first-stage optimal decision variables obtained from solving EV ,
i.e. EEV = Eξ[z(x̄(ξ̄), ξ)]. Note that the second-stage decision variables can be cho-
sen freely as functions of x̄(ξ̄) and ξ when finding EEV . Then, finally, for minimization
problems the V SS can be calculated as in equation (4.3).

V SS = EEV −RP (4.3)
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VSS for multistage stochastic programs

For a multistage stochastic model, the definition of V SS is similar to the one for two-
stage recourse problems in the sense that it is an evaluation of the value of incorporating
stochastics in the model. However, calculating the V SS for multistage stochastic models
is a slightly more involved procedure (Maggioni et al., 2012). In order to reflect the fact
that information is gradually revealed, a rolling horizon approach should be applied, mean-
ing that the arrival of new information should be accounted for in the V SS-calculation.

The implementation is based on solving the deterministic version of the model once for
each branching point in the scenario tree. This is done to obtain decision variables for de-
cisions to be made from the previous branching point up until the current branching point.
When solving the model once for each branching point, the stochastic input parameters
are replaced by their expected values according to the most recently arrived information.
The process can be illustrated using Figure 4.1. First, all stochastic input parameters are
set to their expected values, and the model is solved to obtain the decision variables x1 for
stage 1, the root node of the tree. After this decision, new information is assumed to arrive
between decision stages 1 and 2, which should be accounted for in the rolling horizon
approach. Therefore, one deterministic version of the model is solved for each branching
point in stage 2, fixing stage 1 decision variables to x1. Hence, with reference to Figure
4.1, two models are solved: one where stochastic input data are replaced by the expected
values for scenarios 1 and 2, and another where stochastic input data are replaced by the
expected values for scenario 3 and 4. By solving these two models, stage 2 decision vari-
ables for the left and right hand side of the scenario tree, x2

left and x2
right respectively, are

obtained. Finally, the stochastic version of the model is solved, however fixing stage 1 and
stage 2 decision variables to x1, x2

left and x2
right, respectively. The objective value of this

final model yields the expected result of using the rolling horizon expected value solution,
the ERHEV , for multistage stochastic problems. Finally, the rolling horizon value of a
stochastic solution is calculated as in equation (4.4).

RHV SS = ERHEV −RP (4.4)

Note that since stochastic programs in general are harder to solve than determinis-
tic programs, the V SS or RHV SS can give reasonable indications whether including
stochasticity in a model brings additional value or if the deterministic model simply is
good enough. Hence, it can be a reasonable evaluation procedure to understand if uncer-
tainty matters from a modeling perspective. However, an important note regarding V SS
or RHV SS is that these metrics are unable to capture structural differences between the
solutions of the stochastic and deterministic versions of a model. That is, if the V SS or
RHV SS are close to zero, structural differences between optimal decisions in the deter-
ministic and stochastic approach may still exist, and these can only be found by studying
the differences between decisions made in the two different versions of a model.
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4.2 Including uncertainty in power system capacity ex-
pansion models

Optimization models for capacity expansion in power systems are powerful tools for policy
analysis when conclusions are consistent across several different models. However, a lot of
variation in results and recommendations is also observed, thereby reducing the credibility
of the conclusions drawn. Kann and Weyant (2000) argues that one reason for this variation
is due to different assumptions about exogenous input parameters. A remedy for this issue
is to model important input parameters in a stochastic manner. Stochastic programming
has been successfully applied to power system models for several decades, where the goal
is to capture the value of flexibility in such systems, as discussed in Wallace and Fleten
(2003).

In chapter 2 long- and short-term uncertainties were presented as the two fundamen-
tally different types of uncertainty that are considered as part of the LSSCEPPS. The devel-
opment of important economic, technological or political conditions give rise to profound
long-term uncertainties that impact central model inputs, such as projections of long-term
power demand, long-term changes in fuel prices, future investment costs of generation
capacity or CO2-emission restrictions. Uncertainties in the short-term affect everyday op-
erations of the power system and may have a notable impact on operational costs, and
hence on the usefulness and profitability of infrastructure investments. Availability of in-
termittent renewable energy sources, inflows to hydro reservoirs, short-term fluctuations
in power demand and short-term fuel price volatility are relevant examples of short-term
uncertainties.

In the rest of this section, a review of relevant methods and literature relating to short-
term uncertainty in capacity expansion models are presented in section 4.2.1, while a sim-
ilar discussion related to long-term uncertainty is presented in section 4.2.2.

4.2.1 Short-term uncertainty in power system capacity expansion

Short-term uncertainty is reflected in optimization models by assuming selected exoge-
nously given short-term input parameters to be stochastic. This is implemented by gener-
ating multiple scenarios for the realizations of these uncertain input parameters, typically
through an application of statistical methods on historical data, often referred to as scenario
generation methods. In this section a brief review of methods for generating short-term
scenario trees will be presented, followed by a review of the inclusion of short-term uncer-
tainty in relevant literature on capacity expansion models. Note that the specific method
used to generate the short-term scenarios used in the studies conducted in this thesis will
be presented in chapter 7.

Methods for generating short-term scenario trees

For most of the short-term input parameters that are relevant for stochastic analysis, the
sample space is continuous. However, allowing continuous probability distributions for in-
put parameters to stochastic programs leads to very large and complex problem instances.
Hence, as discussed above, a discretization is normally used to approximate the sample
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space. This discretization is represented through a scenario tree, where a path from the
root node down to a leaf node corresponds to a scenario, i.e. one possible future realiza-
tion of all the uncertain parameters.

In Kaut and Wallace (2003) methods for scenario generation and evaluation of scenario
trees are presented. Different methods are suitable for different problems and applications,
therefore one method is not generally better than others. One widely used scenario gen-
eration method is called conditional sampling, where realizations of uncertain inputs are
sampled for each branching point in the scenario tree. The reason for its name is that
when sampling of data for a given branching point is done, it is implicitly assumed that
the process has already reached this point, hence the use of the word conditional. This
method is appropriate for scenario trees with a lot of branching points, i.e. a lot of re-
course actions. However, as stated in chapter 2, the main intention of assessing several
different operational scenarios as part of the LSSCEPPS is simply to make the model
account for the impacts of operational variability on the usefulness of long-term invest-
ments. Therefore, the short-term scenario tree should be generated as a simple two-stage
tree where investment decisions are the first stage decisions and operational decisions are
the recourse actions. In this sense, the operational decisions are made under operational
perfect foresight (but investments are made under short-term operational uncertainty). For
this reason, the method of conditional sampling is not considered further.

Another method presented involves sampling from specified marginals and correla-
tions for the stochastic processes of interest. Although a preferred method if the statistical
properties of the underlying processes were known, it is not suitable for generating short-
term scenarios for the LSSCEPPS simply because marginal statistical properties are not
known for the relevant uncertain short-term parameters. That being said, the moments
of the historical data, such as the mean, variance, skewness and kurtosis of the historical
time series, can be obtained using statistical methods. By sampling subsets of the histori-
cal data and keeping the samples that best match the moments of the entire data series, a
useful method for generating short-term scenarios for the LSSCEPPS stands out. By sam-
pling data from the exact same points in time for all uncertain short-term parameters, both
autocorrelations within time series and correlations between time series for the different
parameters are preserved. Due to these favorable properties, this method has been applied
when generating the short-term scenarios for the studies conducted in chapter 8 and 9, and
the actual procedure will be thoroughly presented in chapter 7.

Short-term uncertainty in relevant literature for power system capacity expansion

A lot of research effort has been put into studying the impact of introducing increasing
amounts of unpredictable, intermittent generation capacity, such as solar and wind energy,
in the power system. In Swider and Weber (2007) the E2M2 model is presented, and this
is used to analyze how integration costs of wind power and operational decisions are af-
fected by short-term uncertainty. More specifically, a recombining tree formulation (see
Dupačová et al. (2000) for a presentation of this) is used to model the operation of the
system as a multistage stochastic program, where uncertainty is introduced in the avail-
ability of wind power generation. Power plant investments are modeled sequentially by
means of a myopic approach, meaning that investments are optimized only accounting for
here-and-now-knowledge. They find that when stochastics are included in the availability

34



4.2 Including uncertainty in power system capacity expansion models

of wind power generation, larger amounts of investments in controllable power generation
capacity, such as natural gas-fired or nuclear power plants, are required. This is in line
with the assertion that deterministic models may provide too optimistic results, since the
stochastic evaluation suggests a more flexible solution by investing more in other genera-
tion technologies.

It is worth noting the difference of the operational modeling in the E2M2 model com-
pared to the EMPIRE model. The EMPIRE model incorporates several stochastic scenar-
ios for the short-term inputs, but operational decisions are made under operational perfect
foresight, as discussed above. In contrast, the recombining tree formulation used in the
E2M2 model includes multiple recourse actions, one for each operational time-step, hence
allowing a much more sophisticated operational analysis. The choice between these two
approaches should depend on the main research questions of interest, as the recombin-
ing tree formulation enables a detailed operational analysis, while the formulation used in
the EMPIRE model provides less operational detail and is therefore suitable for analyzing
longer-term research questions.

A similar conclusion to the one in Swider and Weber (2007) is drawn in Sun et al.
(2008), where a mixed-integer unit commitment model for generation investments is used
in a case study on the German electricity system. They find that the negligence of stochas-
ticity in modeling wind power generation availability results in an undervaluation of in-
vesting for flexibility and too low investments in controllable power generation.

Other methods for introducing uncertainty in capacity expansion models also exist.
Sioshansi and Short (2009) use a unit commitment model for the power system in Texas
to demonstrate the implications of large amounts of wind power generation on the power
system. By simulating decisions in a rolling horizon model using different scenarios for
wind power availability two days ahead, they find that there is a substantial additional
value of wind power plants in the power system. This is due to the close to zero variable
costs of wind generation, offsetting costly production when the wind blows.

An extended version of the DIMENSION model (Richter, 2011) where short-term un-
certainty in both solar and wind generation availability is included is presented in Nagl
et al. (2013). This version of the model is long-term static, meaning investments are only
possible once. Therefore, it cannot be used to study long-term transitions of the power
system, but it can be used to study operational effects of stochastics in wind and solar
generation. In line with other modeling results discussed earlier, they find that including
stochastics increases expected system costs, confirming the presumption that stochastic
models are able to avoid the overly optimistic results often found by deterministic models
tailoring solutions for a particular realization of the future. Another interesting finding is
that solar generation is undervalued compared to wind generation if the negative corre-
lation between solar irradiance and wind infeed is disregarded. This result supports the
methodology used to generate short-term scenarios in this thesis, where each scenario for
all uncertain short-term inputs is sampled from the same historical time periods, enabling
the routine to capture correlations between short-term inputs in a proper manner.

Jaehnert et al. (2013) extends the EMPS model, which includes short-term uncertainty
(Wolfgang et al., 2009), to include endogenous investment decisions. However, their ap-
proach to co-optimizing investments and operation is slightly different from the one used
in the EMPIRE model. Instead of optimizing both investments and operations simultane-
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ously, they iterate between a detailed, stochastic power system simulation and determin-
ing investment decisions. In contrast to investments in the EMPIRE model, investments
in this study are myopic, i.e. investments are only optimized for current conditions. In
their study they find that production from hydropower plants is expected to be much more
volatile due to the need to balance unpredictable generation from solar and wind power.
They also identify profitable investments in transmission infrastructure from the Nordics
to continental Europe and the UK, primarily due to electricity surplus in the Nordics and
anticipated greater demand overseas.

Seljom and Tomasgard (2015) presents a methodology for introducing short-term un-
certainty in the TIMES model (Loulou and Labriet, 2008; Loulou, 2008), where they intro-
duce a two-stage approach where investments are made under uncertainty about operating
conditions and the operational decisions are the recourse actions. This is comparable to the
approach presented for the EMPIRE model in Skar et al. (2016), but not to the extended
version of the EMPIRE model used in this thesis. The reason for this is that in this thesis,
the EMPIRE model has been extended to include uncertainty in not only short-term inputs,
but also long-term inputs. The inclusion of long-term uncertainty in capacity expansion
models will be discussed in the next section.

4.2.2 Long-term uncertainty in power system capacity expansion
Due to the long-term horizon of power system capacity expansion models, many of the
exogenously given input parameters are highly uncertain in the long-term. For example,
even though the European Union has a stated target related to emission reductions in the
European power system, this does not mean that future policy may deviate from current
targets due to unknown future technological, political or economic developments. Hence,
policy targets are subject to great uncertainty. Put differently, omitting long-term uncer-
tainty in an optimization model is similar to assuming perfect foresight about all long-term
model inputs, possibly leading to far too optimistic estimates of the future and sub-optimal
investment decisions.

In this section, a discussion of issues and methods for generating long-term scenar-
ios for capacity expansion models is included, in addition to a review of how long-term
uncertainty has been incorporated in the relevant literature.

Issues when generating long-term scenario trees

One observation from reviewing relevant literature for long-term stochastic capacity ex-
pansion modeling of power systems is that there is no unified framework for generating
scenarios for these uncertain long-term parameters. As opposed to methods for gener-
ating short-term operational scenarios, generating long-term scenarios is described much
more as an art than a science. That being said, some different approaches have been dis-
cussed. One approach could be to specify a joint probability distribution for all uncertain
parameters and draw random realizations from this distribution. There are, however, solid
arguments for why this method is not suitable in the context of long-term uncertainty. It
is argued in Ryan et al. (2011) that for many of the parameters considered to be uncertain
in the long term, new information is revealed on a too infrequent and unpredictable basis.
Hence, it would be unwise to rely on historical data in an attempt to estimate probabilistic
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properties of these long-term parameters. As discussed in Weitzman (2009), the fact that
an event has not been observed in the past does not imply that ignoring them as a possible
realization of the future is a good idea. As an example, it would be unwise to look at
historical changes to policy regulations affecting the power system in order to gain insight
into the frequency and probability of similar policy changes in the future.

As a result, one is often left with the only option of using separate forecasts for each
uncertain long-term parameter, leaving out all questions about correlations between them.
There are considerable amounts of evidence in the literature that both regular people and
experts are poor at dealing with and anticipating correlations (Morgan and Henrion, 1990),
especially when there is no or limited amounts of historical data able to back up any
such correlational predictions. Therefore, similarly to Hu and Hobbs (2010) and all other
research studies surveyed as part of the work with this thesis, no attempts at modeling
correlations between different uncertain long-term parameters are made, implying an as-
sumption of independence between all uncertain long-term input parameters. Whether this
is a correct assumption, e.g. if the development of CO2-emission regulations is dependent
on the development of electricity demand in the years to come, is out of the scope of this
thesis.

The issue of spanning a suitable outcome space of uncertain long-term, real-valued
input parameters is another challenge in the context of generating long-term scenarios.
Trutnevyte (2013) finds that maximally different scenarios should be assessed in order to
get a proper grasp of the outcome space of such long-term input parameters. Although
it is difficult, if not impossible, to identify the exact maximally different scenarios, this
study at least supports the view that long-term scenario trees should span a large part of
the possible outcome space.

Methods for generating long-term scenario trees

The following section gives a brief discussion of possible approaches to creating long-term
scenario trees. With the above discussion in mind, these approaches should be viewed as
strategies guiding this task, as no consensus methods for creating these scenario trees have
been found in relevant research literature.

In Boßmann (2015) a Partial Decomposition Approach to generating long-term sce-
narios for power demand is described. In this approach, total demand is broken down into
separate sectors, and forecasts of demand are then created for each of these sectors in a
bottom-up manner. Finally, the forecasts and their associated uncertainty estimates are
aggregated into a total power demand with an aggregated uncertainty measure. However
useful for demand forecasts, this method is not necessarily suitable for other long-term un-
certain input parameters such as uncertainty in political regulations, simply because of the
lack of natural ways of breaking down political uncertainty into sub-sectors or sub-groups.

A widely used and simple approach to generate long-term scenarios is to use forecasts
from experts or results from other research studies aiming at predicting the development
of relevant uncertain long-term parameters. These forecasts can then form the basis for
several long-term scenarios through two different methods. The first method would be to
obtain external forecasts from several different sources and combine these into a scenario
tree. The second method is to use one forecast as a baseline for the scenario tree and
generate multiple other scenarios by perturbing this scenario through stochastic errors or
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by scaling it by different factors. The latter method has been used in the studies in chapter
8 and 9, and the method will be more thoroughly presented in chapter 7.

Results from implementing long-term uncertainty in capacity expansion models in
the literature

In relevant research literature, there are multiple studies on the effect of including long-
term uncertainty in stochastic models for power system capacity expansion. Gardner
(1996) shows that the value of technologies with shorter lead-times increase in environ-
ments with high uncertainty related to long-term demand. Reinelt and Keith (2007) uses
a stochastic programming model to analyze optimal decisions for investments in gener-
ation technology subject to uncertainty in future carbon and natural gas prices. Fortes
et al. (2008) applies the TIMES model on the Portuguese electricity market, and shows
that seemingly cost-effective solutions to deterministic models can result in obsolete and
inadequate decisions when long-term uncertainty is introduced in demand and fuel prices.

Hu and Hobbs (2010) studies the impact of uncertainties in electricity demand growth,
natural gas prices and greenhouse gas regulations on investments decisions and costs in
the US power sector up to 2050, using the MARKAL model (G. and Harold, 1981). Simi-
larly to this thesis, they represent the uncertainty with scenario trees, using three different
scenarios for each uncertain parameter. It also applies equal probabilities to the different
scenarios, reflecting the lack of other natural choices for these probabilities. Their results
show that possible regulations of greenhouse gas emissions constitute the most important
long-term uncertainty, motivating the choice to study uncertainty in emission restrictions
in this thesis (the analysis will be presented in chapter 9).

Kanudia and Loulou (1998) also uses the stochastic version of the MARKAL model to
study the effect of long-term uncertainty in carbon mitigation measures for Québec. More
specifically, similarly to the policy uncertainty studied later in this thesis, they implement
uncertain CO2 emission constraints for the power system. They pick four different sce-
narios, where combinations of stringent and non-stringent carbon policies are combined
with high and low demand growth scenarios, and find that the inclusion of uncertainty
through the use of stochastic programming yields insights that are not observed in any of
the deterministic cases.

In Usher and Strachan (2012), long-term uncertainty in future fossil fuel prices and in
the availability of biomass imports is introduced in a two-stage stochastic version of the
MARKAL model for the UK. They study the effect of these long-term uncertainties on
optimal near-term investments, and similarly to Kanudia and Loulou (1998) they find that
the hedging strategies discovered by the stochastic model are structurally different from
any of the deterministic scenarios studied. Their results also show that the uncertainty in
fossil fuel prices is very expensive, while the uncertainty of biomass import availability
is less important with regards to expected system costs. However, as a side note, it is
interesting to observe that since this paper was published, the UK has started the process
of exiting the EU and therefore stepping away from a set of established trade agreements,
hence illustrating the relevance of such long-term uncertainties.

In Fürsch et al. (2014) the DIMENSION model is extended to assess optimal in-
vestments in thermal generators under uncertain long-term renewable energy deployment
paths. It is found that uncertainty regarding political renewable share targets significantly
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affects optimal investment and dispatch decisions. Compared to the EMPIRE model im-
plemented in this thesis, this version of the DIMENSION model is long-term stochastic,
but they do not include stochastics in short-term parameters.

In Messner et al. (1996) the MESSAGE model (Model for Energy Supply Strategy Al-
ternatives and their General Environmental impact, see Messner and Strubegger (1995))
is extended with long-term uncertainty in investment costs of new generation capacity.
They conclude with the promising result that letting the stochastic model endogenously
find robust solutions has lower expected costs than diversifying through explicit flexibility
constraints in a deterministic model. That is, they conclude that a stochastic model is bet-
ter than modelers themselves at identifying optimal and robust solutions given stochastic
inputs.

4.3 Solving stochastic capacity expansion models for power
systems

Introducing uncertainty in multistage stochastic optimization models with multiple time-
scales is a challenge from a computational perspective due to the vast increase in the
number of decision variables. This happens because uncertainty is incorporated along one
or more of the time-scales (Kaut et al., 2014). The results of doing this is illustrated in Fig-
ure 4.3, where represents long-term investment decisions and a represents short-term
operational decisions. The figure depicts how the scenario tree of a multistage stochastic
model with two time-scales grows as various forms of stochasticity are included. In (a)
neither long-term nor short-term uncertainty is included and the illustration represents a
deterministic model. In (b) long-term uncertainty is included, and in (c) both long-term
and short-term uncertainty has been included. As the figure illustrates, introducing uncer-
tainty along both time-scales greatly increases the size of the scenario tree. Despite the
apparent intractability of problems with this scenario trees, there exist alternative formu-
lations and solution techniques that can cope with such models. In the remaining parts of
this section, two central concepts related to this is discussed. The first concept is a tech-
nique known as a multihorizon formulation which decouples future investment decisions
from past operational decisions, leading to vast reductions in the decision variable space
and problem size. The second concept is a survey of decomposition techniques used for
solving large-scale models when uncertainty is added and complexity increases.

4.3.1 Problem size reduction with multihorizon modeling

Alternative formulation techniques exist that can drastically contribute to reducing the
problem size of capacity expansion models. One option is to apply a multihorizon for-
mulation. This formulation, originally presented in Kaut et al. (2014), is an approach to
limit the growth in problem size of multistage stochastic models with multiple time-scales.
The multihorizon formulation can be illustrated with a tree structure where the evolution
of decisions and revelation of uncertain information is depicted. Figure 4.4 shows an ex-
ample of a multistage and multihorizon stochastic program, where (a) shows a program
with long-term uncertainty, and (b) shows a program with both long-term and short-term
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(a) deterministic (b) long-term uncertainty (c) both long-term and short-term uncertainty

Figure 4.3: Stochastic multistage scenario trees with two time-scales illustrated for (a) a determin-
istic model without any uncertainty, (b) a stochastic model with long-term uncertainty, and (c) a
stochastic model with both long-term and short-term uncertainty. Note that represents long-term
investment decisions and represent operational decisions.

uncertainty. Note from the figure that a result of the multihorizon formulation is that the
operational periods and decisions are somewhat embedded into each long-term investment
decision stage. This result comes from a set of assumptions that are implicitly made in the
multihorizon formulation, as discussed below.

In Kaut et al. (2014) it is argued that the reduction in problem size in the multihorizon
formulation comes from a decoupling of certain dependency structures in the scenario tree,
which is a simplification that can be considered exact if two key assumptions are satisfied:

• Long-term uncertainty is independent of short-term uncertainty, and investment de-
cisions are independent of past operational decisions. This enables a single invest-
ment stage to follow multiple operational scenarios.

• The first operational decision embedded in an investment decision stage is indepen-
dent on the last operational decision embedded in nodes from the previous invest-
ment stage. Consequently, there is no connection between operational scenarios and
decisions of two consecutive investment stages.

As an example, these assumptions imply that the decision of how much to be invested
in new generation capacity (an investment decision in the current time period) or how
much electricity to produce from a particular power plant (an operational decision in the
current time period) does not depend on how much it rained a particular hour five years ago
(the realization of an uncertain short-term parameter in a previous time period) or whether
production from coal power plants was unusually high a particular hour several years ago
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(a) long-term uncertainty (b) both long-term and short-term uncertainty

Figure 4.4: Multihorizon scenario trees with (a) long-term uncertainty and (b) both long-term and
short-term uncertainty. Note that represents investment decisions and represent operational de-
cisions.

(an operational decision in a previous time period). In practice, this means that there is
only a loose coupling between future decisions and current or past operation of the power
system.

Even though the assumptions significantly contribute to reducing the problem size of
a stochastic program, they come at a cost of realism. The first assumption regarding the
independence of investments and past operational decisions can be considered reasonable
in many capacity expansion models. This is particularly the case in models where the
difference between the time-scales vary significantly, as for example with years along the
long-term time-scale and hours along the short-term time-scale. The second assumption
regarding lack of connection between operational decision variables can in many cases
be problematic. An example is the modeling of storage in hydropower plants, where a
memory aspect between consecutive long-term periods ideally should be required. There-
fore, introducing a multihorizon formulation for capacity expansion models clearly comes
with a benefit of reducing the size of the problem, but at the cost of realism in applica-
tions where the connection between operational decision variables between consecutive
investment stages are of importance.

4.3.2 Decomposition Methods for Multistage Stochastic Programs
Even though techniques such as multihorizon formulations can contribute to reducing the
problem size, power system capacity expansion models of realistic scope and granularity
are still difficult to solve with current state-of-the-art optimization software. Therefore,
a considerable amount of research effort has been devoted to studying various methods
for solving such large-scale stochastic optimization problems. An alternative to solv-
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ing stochastic programs using classical direct solving methods is to apply decomposition
methods to the problem. A thorough presentation of decomposition techniques for opti-
mization models is given in Conejo et al. (2006), while Sagastizábal (2012) elaborates on
the use of decomposition methods in optimization models for energy systems.

Decomposition in this context refers to breaking up the optimization problem into
smaller subproblems, where each subproblem can be solved separately in an efficient man-
ner before the subproblems are reintegrated into a master-problem to obtain the optimal
solution. Such techniques can only be applied to models which exhibit a decomposable
structure. A problem is decomposable if the feasible area can be divided into independent
subproblems by relaxing some complicating variables or constraints that affect the prob-
lem as a whole. Then, the decomposition procedures can utilize computational techniques
to make the subproblems indirectly consider the complicating constraints or variables,
progressively improving optimal decisions at the cost of iterations (Conejo et al., 2006).
Depending on the choice of modeling formulation for multistage stochastic programs, sev-
eral different decomposition algorithms are described in the research literature.

Nested Benders decomposition method for problems with complicating variables

A decomposition method often used to solve stochastic programming models is the Ben-
ders decomposition algorithm. The original formulation was presented in Benders (1962),
and has been widely applied to solve two-stage stochastic programs in the literature, see
for example Birge and Louveaux (2011). The Benders decomposition algorithm can be
used when the feasible region of the original problem contains complicating variables,
and is thus a particularly relevant method for multistage stochastic programs formulated
and implemented using compact formulations (Conejo et al., 2006), as illustrated in Fig-
ure 4.2(a). The general idea is that the master problem sends initial feasible first-stage
solutions to the subproblems, where the optimal value of the problem is progressively im-
proved through the addition of Benders’ cuts computed from the subproblems. This tech-
nique is frequently used as a solution method for power system capacity expansion models
in the literature, see for example Skar et al. (2014), Abdolmohammadi and Kazemi (2013)
and Sadeghian and Ardehali (2016).

Since many capacity expansion problems are formulated as multistage stochastic pro-
gramming models, a modification of the Benders decomposition algorithm, originally de-
veloped for two-stage problems, is required for a valid implementation. Nested Benders,
as described in Birge (1985), is a solution method that applies the Benders decomposition
scheme recursively over a scenario tree, where the algorithm views the tree as a set of
nested two-stage problems. This implies that initial decisions are passed along the sce-
nario tree, where the total system costs are progressively improved by adding Benders’
cuts from the recursively solved subproblems. Each subproblem is solved using Benders
decomposition for two-stage problems. In the literature, the nested benders decomposition
algorithm is frequently used to find optimal values of large-scale power system optimiza-
tion problems, e.g. see Archibald et al. (1999) which uses a nested benders decomposition
algorithm for reservoir optimization, or Akbari et al. (2011) which applies the technique
on a transmission expansion planning problem.
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Scenario-based decomposition methods for problems with complicating constraints

As opposed to the Nested Benders decomposition method, which can be used to decom-
pose stochastic programs with complicating variables, there exist a class of solution meth-
ods that perform well when complicating constraints are relaxed. This class of methods
is often referred to as scenario-based decomposition methods (Conejo et al., 2006). As
the name implies, such methods decompose the problem by scenario, which can be par-
ticularly useful in problems where a split variable formulation has been chosen. Recall
that in a split variable formulation of a multistage stochastic program the nonanticipativity
constraints form a set of complicating constraints, binding together the decision variables
across scenarios. Scenario-based decomposition methods solve each scenario (or a bundle
of them) individually, and then iteratively enforce nonanticipativity by penalizing devia-
tions in the objective function.

Lagrangian decomposition is one of the most used decomposition methods for prob-
lems with complicating constraints. In this method, complicating constraints are removed
and put into the objective function as soft constraints, and deviations in the soft constraints
are multiplied by Lagrangian multipliers. At the optimum these multipliers are set in such
a manner that the optimal value of the original problem is found at the same time as the
complicating constraint is satisfied without being explicitly enforced in the formulation.
A more thorough description of this decomposition method can be found in Conejo et al.
(2006, p. 187). An extension of this method can also be found in the same book, and is
called the augmented Lagrangian decomposition method. This is similar to the regular La-
grangian decomposition method, but in addition a quadratic term is added in the objective
function where the squared deviations from the complicating constraints are penalized.
The benefit of the latter method is normally quicker convergence (Conejo et al., 2006, p.
222), but at the cost of not being separable by scenario. An alternative method that resem-
bles the augmented Lagrangian method was therefore developed in Rockafellar and Wets
(1991). The method presented in this thesis is a frequently applied method for scenario-
based decomposition known as the Progressive Hedging algorithm (PHA). In the PHA,
the complicating nonanticipativity constraints are relaxed and added as an augmented La-
grangian term in the objective function, where a set of dual multipliers are included and
updated at each iteration to force the linear program to converge towards its optimal value.
There exist multiple examples in recent literature where the PHA is applied to stochastic
programming models of the power system, see for example Gonçalves et al. (2012); dos
Santos et al. (2009). In addition, recent research on the PHA has resulted in techniques
for increasing convergence rates Watson and Woodruff (2011) and methods for obtaining
lower and upper bounds (Gade et al., 2016). As discussed earlier, the Progressive Hedging
Algorithm is the applied solution method in this thesis, and will be explained in detail in
chapter 6.

4.4 Summarizing the first part and motivating the rest of
the thesis

The task of identifying optimal capacity expansion pathways for the European power sys-
tem in the decades to come is a challenging one, but also a very important one for a
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multitude of reasons. Irreversible and costly infrastructure investments are to be made in a
context of climate change mitigation initiatives, changing dynamics of electricity demand
and increasing amounts of unpredictable, intermittent renewable energy supply. In chapter
2 this problem was formalized and described as the LSSCEPPS, while chapter 3 discussed
relevant issues when formulating a mathematical model for this problem, and compared
the EMPIRE model to other relevant literature.

The issue of uncertainty should be viewed as an integral part of the LSSCEPPS, and
only adds to the complexity alluded to above. In reviewing relevant research on stochastic
capacity expansion in power systems, some recurring results were observed. An important
finding is that stochastic models tend to yield structurally different solutions than any de-
terministic models are able to find, confirming the hypothesis that including stochastics in
the model gives insights beyond the scope of a deterministic analysis. In addition, stochas-
tic models tend to suggest solutions that have higher expected costs due to increased in-
vestments, also referred to as hedging, to ensure flexibility in the system, and they provide
better hedging strategies than modelers are able to. However, a gap in existing literature
related to the treatment of uncertainty in such models has also been identified. That is,
to our knowledge the simultaneous inclusion of long-term and short-term uncertainty in
a capacity expansion model for power systems of similar scope as in the EMPIRE model
has not been observed in previous research efforts. The reason for this is probably that the
size of such models quickly becomes unmanageable. This forms the foundation of how
this thesis adds to current literature, and it calls for improved solution methods.

Part of the motivation for the work done in this thesis is the need for improved solution
methods able to solve large-scale, multistage stochastic optimization problems including
uncertainty in several time-scales, since the inclusion of uncertainty has been shown to
be of importance in previous research. Therefore, as part of the work with this thesis, a
considerable effort has been put into developing and implementing a distributed progres-
sive hedging algorithm to address the issue of computational complexity alluded to in such
models.

In the chapters to follow, the challenges, questions and hypotheses alluded to above
will be elaborated. In chapter 5 the complete mathematical formulation of the EMPIRE
model is presented, before the solution method and the distributed algorithm is presented
in chapter 6. Data for the analyses conducted later is presented in chapter 7, while a
computational study of the performance of the implemented solution infrastructure and a
study of the techno-economic implications of the improved solution method is presented
in chapter 8 and 9, respectively.
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Chapter 5
Mathematical Formulation of
EMPIRE with Long-term
Uncertainty

This chapter presents a mathematical formulation of the extended version of the EMPIRE
model with long-term uncertainty. The EMPIRE model was initially presented in Skar
et al. (2016), while an extension of the model that introduced uncertainty in long-term
input parameters was developed in Mikkelsen and Reiten (2017). The formulation pre-
sented here is therefore similar to the model formulation presented in Mikkelsen and Re-
iten (2017). Note that since this formulation is an extension of the version of the EMPIRE
model presented in Skar et al. (2016), some of the notation introduced there has been
reused in this thesis.

The primary focus of this chapter will be to introduce the mathematical formulation
of the EMPIRE model studied in this thesis. Although most of the important modeling
assumptions and choices have already been elaborated in chapter 3 and 4, some of them
are repeated for clarity and readability in section 5.1. Section 5.2 lays out the complete
notation used in the model, while the complete mathematical formulation of the model is
presented in section 5.3.

5.1 Model assumptions

5.1.1 Sectoral scope and choice of decision variables
A central issue related to formulating a mathematical model for the LSSCEPPS is the
choice of sectoral scope, i.e. assumptions about what should be modeled endogenously
in the model, and what should be taken as exogenous inputs to the model. To illustrate,
as shown in chapter 3, short-term demand for electricity is often considered uncertain in
stochastic capacity expansion models. If demand is assumed to neither affect or be affected
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by the endogenous processes and decisions of a model, it is viewed as an exogenous input
parameter. In the future, however, measures to increase the responsiveness of demand to
prices and availability of electricity, such as demand response and demand side manage-
ment, may be introduced. This would turn demand into an endogenous part of the problem
since it would enable consumers to respond to price signals and adjust their consumption of
electricity according to the instantaneous price and availability of electricity. As discussed
in chapter 3, the power system in the EMPIRE model studied in this thesis is modeled
endogenously, while other sectors of the energy system are modeled exogenously.

A result of this separation of the power system from the rest of the energy system is that
decision variables are only introduced for decisions to be made within the power system.
Decision variables are introduced for infrastructure investments in generation, transmis-
sion and storage capacity for the power system. Investments are simultaneously optimized
in multiple stages and are made under both long-term and short-term uncertainty. The
decision variables for investments are linear, meaning that unit commitment characteris-
tics are neglected, as discussed in chapter 3. Decision variables are also introduced for
short-term decisions for operating the power system. Short-term uncertainty is included
through a two-stage approach, where investments are considered the first stage decisions
made under uncertainty about long- and short-term inputs, while the operational decisions
are the recourse actions made under operational perfect foresight.

5.1.2 Model formulation choices
A split variable formulation has been chosen to represent the long-term uncertainty of the
model. As discussed in section 4.1 of the previous chapter, this formulation is well suited
for scenario-based decomposition, and the details of the solution method developed will be
presented in chapter 6. The choice of a split variable formulation implies that independent
copies for each long-term scenario s ∈ S are made for each investment decision variable.
Nonanticipativity constraints are therefore applied in the model formulation to enforce
implementability, as discussed in chapter 4.

To reduce computational complexity, the EMPIRE model has been formulated using a
multihorizon approach, as described in chapter 4. This is included in the model formula-
tion by (1) avoiding to introduce a short-term scenario index ω on long-term investment
decision variables, and (2) avoiding to introduce constraints that connect the operational
decisions in one long-term investment stage with operational decisions made in previous
investment stages.

5.1.3 Temporal assumptions
As discussed in chapter 2, two time-scales have been introduced to enable the model to
capture the dynamics and interactions between long-term trends and operational short-term
variability of the power system. Investment decisions are optimized along a long-term
time-scale discretized into several five-year investment stages i ∈ I, while operational
decisions are co-optimized along a short-term time-scale discretized into operational hours
h ∈ H.

Instead of modeling all 8760 operational hours of an entire year, a representative subset
of operational hours, denoted byH, is used. This set is divided into disjoint sets of seasonal
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periods,Hp, p ∈ P , whereP is the set of seasonal periods. This division is done to include
representative operational data from different parts of the year. If this was omitted, it could
result in that for instance only operational data from the winter was included in the model,
resulting in very biased solutions.

In addition, in order to ensure feasibility of the power system even in extreme cases,
both regular and extreme periods are included in the set of periods P . Note that no con-
straints connecting different seasons are included, with the intended effect that the model is
unable to prepare for extreme seasons. Operational decisions from the representative sea-
sonal periods are then scaled into yearly figures according to a scaling factor per seasonal
period, αp.

5.1.4 Geographical scope and unit commitment considerations

In terms of geographic modeling considerations, the EMPIRE model is formulated as a
nodal network of geographical nodes representing countries. Hence, a reference to a
country is equivalent to a geographical node in the model. The nodes are connected by
arcs representing transmission capacity between countries. Figure 5.1 depicts all 31 geo-
graphical nodes included in the EMPIRE model, including all 28 member countries of the
European Union less Cyprus, plus Norway, Serbia, Bosnia-Hercegovina and Switzerland.
As discussed in chapter 3, the transmission network, i.e. the arcs between nodes, is mod-
eled using a net transfer capacity approach, meaning that the optimal solution’s feasibility
within individual countries and their grid networks is not verified.

Figure 5.1: Geographical coverage of the EMPIRE model. All 28 member countries of the EU
except Cyprus are included, plus Norway, Serbia, Bosnia-Hercegovina and Switzerland.

Capacity expansion is modeled in a bottom-up manner through aggregated investment
decisions for each country. The choice of using a national geographic granularity is con-
venient for a multitude of reasons. By aggregating infrastructure investments for an entire
country, the assumption of linearity in investment decision variables is made more realistic.
The reason for this is that certain unit commitment characteristics, such as requirements
for minimum operating times or down times, or one-offs when starting up or shutting down
power plants, can be neglected when using a national granularity. Neglecting these char-
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acteristics would be unreasonable in a model with a greater level of geographical detail
where every single power plant in a country is modeled individually. However, on a more
aggregate level, such effects play a less important role, allowing linearity of decision vari-
ables. As a result, some spatial granularity is sacrificed in order to reduce the complexity
of the model.

On the other hand, a drawback of modeling power plants on an aggregate level per
country is that no distinction is made between recently installed capacity and older power
plant capacity. As an example, solar power in Spain is modeled as one generator in the
EMPIRE model. The implication of this is that whenever a technological change or break-
through happens to this technology, the improvement is applied to all installed capacity of
the technology, and not only to capacity that has been installed after the breakthrough was
made. This drawback related to technological breakthroughs being applied to all power
plants has to be compared with two benefits of modeling on a national geographical scale.
First, the extra modeling and data preparation efforts needed to represent unit commitment
characteristics have to be considered. Second, and possibly more important, is the order
of magnitude of increase in computational complexity due to the need to introduce integer
variables to represent unit commitment characteristics, making the model non-linear. Due
to a desire to keep the model linear, investments are modeled on an aggregated national
level in the EMPIRE model.

5.2 Model Notation
This section presents the sets, indices, parameters and decision variables used in the model.
The complete nomenclature can be found in Table 5.1. The notation used in the model will
be further explained in section 5.3. Note that all units including monetary terms, i.e. units
including e, are discounted to 2010-values.

Table 5.1: Sets, indices, parameters and decision variables used in the mathematical formulation of
the EMPIRE model.

Sets and indices
I Investment stages indexed by i
H Operational hours indexed by h
P Seasonal periods indexed by p
Hp Operational hours in period p, ∀p ∈ P , indexed by h
H− H\{1}
N Nodes indexed by n
G Generators indexed by g
Gn Generators available in node n, indexed by g
T Distinct generator technologies indexed by t
T AggTech Aggregated generator technologies indexed by t
Gtn Generators of technology t available in node n
A Arcs between nodes indexed by a
Al A set mapping bidirectional lines l to unidirectional arcs indexed by a
Ain
n Arcs going into node n indexed by a
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Aout
n Arcs going out of node n indexed by a
L Transmission lines between nodes indexed by l
B Storages indexed by b
Bn Storages available in node n indexed by b
Ω Sample space of short-term scenarios indexed by ω
S Sample space of long-term scenarios indexed by s
{s}i Set of long-term scenarios indistinguishable from s at stage i

Cost parameters
cgen
gis Investment cost for generation, e/MW
ctran
lis Investment cost for transmission line, e/MW
cstorEN
bis Investment cost for storage in energy, e/MWh
cstorPW
bis Investment cost for storage in power, e/MW

qgen
gis Short-run marginal cost for electricity generation, e/MWh
qll
ni Value of lost load, e/MWh

Availability parameters for stochastic data
ξload
nhiω Electricity demand, MWh
ξgen
ghiω Hourly available generator capacity, share of total installed capacity
ξRegHydroLim
gpiω Max production from regulated hydro in seasonal period p, MWh
ξHydroLim
niω Max energy production from hydro at node n, MWh

Capacity parameters
x̄ gen
gi Initial generation capacity, MW
x̄ tran
li Initial transmission capacity, MW
x̄ storPW
bi Initial storage power capacity, MW
x̄ storEN
bi Initial storage energy capacity, MWh
X̄gen
gi Max allowed investment in generation capacity, MW

X̄ tran
li Max allowed investment in transmission capacity, MW

X̄storPW
bi Max allowed investment in storage power capacity, MW

X̄storEN
bi Max allowed investment in storage energy capacity, MWh

V̄ gen
gi Max allowed accumulated investments in generation capacity, MW
V̄ tran
li Max allowed accumulated investments in transmission capacity, MW
V̄ storPW
bi Max allowed accumulated investments in storage power capacity, MW
V̄ storEN
bi Max allowed accumulated investments in storage energy capacity, MWh

Technical parameters
ilife∗ Life time for investment (* used to represent g, l or b), years
ηtran
l Linear line efficiency where loss is 1− ηtran

l

ηtran
a Linear line efficiency where loss is 1− ηtran

a

ηchrg
b Storage charge efficiency
ηdischrg
b Storage discharge efficiency
ηroundtrip
b Storage round-trip efficiency
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γgen
g Generator ramp-up capability
ρb Storage discharge to charge power capacity ratio
βb Storage power to energy capacity ratio
εgi CO2-emissions per unit of electricity, tons of CO2 per MWh
Ēiωs Aggregated CO2-emission limit, tons of CO2

Other parameters
r Discount rate
θ Five year scale factor where θ =

∑4
j=0(1 + r)−j = (1+r)5−1

r(1+r)4

δi Discount factor calculated as (1 + r)−5(i−1)

πω Short-term scenario probability
πs Long-term scenario probability
αp Seasonal period scale factor

Decision variables
xgen
gis Generation capacity investments, MW
xtran
lis Line capacity investments, MW
xstorPW
bis Storage power capacity investments, MW
xstorEN
bis Storage energy capacity investments, MWh
vgen
gis Installed generation capacity, MW
vtran
lis Installed transmission capacity, MW
vstorPW
bis Installed storage power capacity, MW
vstorEN
bis Installed storage energy capacity, MWh
ygen
ghiωs Electricity production, MWh
yflow
ahiωs Line electricity flow, MWh
ychrg
bhiωs Storage charge, MWh per h
ydischrg
bhiωs Storage discharge, MWh per h
yll
nhiωs Lost load, MWh
wstor
bhiωs Storage energy content, MWh

5.3 Mathematical model formulation
This section introduces the mathematical formulation of the EMPIRE model including
long-term uncertainty in detail. First, the objective function is presented in section 5.3.1,
before the constraints of the model are presented in section 5.3.2-5.3.13.

5.3.1 Objective function

The EMPIRE model minimizes total expected system costs from a social planner perspec-
tive. This is done by minimizing the sum of expected investment costs and operational
costs over the planning horizon, as described in equation (5.1):

min z =
∑
i∈I

δi
∑
s∈S

πs{costinv
is + θ

∑
ω∈Ω

πωcost
ops
iωs} (5.1)
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where
δi = (1 + r)−5(i−1) (5.2)

is a factor that discounts costs for each five-year time-stage to current monetary value. θ,
as presented in section 5.2, is a factor that scales yearly operational costs to reflect the
operational costs of all five years of operation between the investment stages.

In the objective function, costinv
is denotes the total cost of investments in generation,

transmission and storage capacity for a given investment stage i ∈ I and long-term sce-
nario s ∈ S . The operational dispatch in year i, short-term scenario ω ∈ Ω and long-term
scenario s, is denoted as costops

iωs. The operational costs of each short-term scenario ω
are weighted by the short-term probabilities πω , and the total investment costs and op-
erational costs for each five-year period are weighted by the long-term probabilities πs.
Descriptions of these costs are presented in detail below.

Investment costs

Equation (5.3) gives the costs of investments in capacity expansion for a given investment
stage i ∈ I and long-term scenario s ∈ S.

costinv
is =

∑
g∈G

cgen
gisx

gen
gis +

∑
l∈L

ctran
lis x

tran
lis +

∑
b∈B

(cstorPW
bis xstorPW

bis + cstorEN
bis xstorEN

bis ) (5.3)

Capacity expansion can be done in either generators g ∈ G, transmission lines l ∈ L or
storages b ∈ B. Capacity investments in generators and transmission lines are denoted by
the decision variables xgen

gis and xtran
lis , respectively. For storage technologies the model takes

into account investments in both power and energy capacity, and therefore these investment
decisions are represented by the decision variables xstorPW

bis and xstorEN
bis , respectively.

Investment cost parameters are described by cgen
gis, c

tran
lis , cstorPW

bis and cstorEN
bis . These costs

include both the costs of building the infrastructure and the fixed operational and mainte-
nance costs accumulated over the lifetime of the asset, and are discounted to the time stage
corresponding to stage i ∈ I. The total investment costs are allocated over the lifetime
of a single asset, but adjustments are made such that investments made towards the end of
the planning horizon are reduced to reflect the costs over the usable time in the model. All
costs are assumed to be linear as a function of the invested amount.

Operational costs

costops
iωs =

∑
p∈P

αp
∑
h∈Hp

∑
n∈N

(
∑
g∈Gn

qgen
gisy

gen
ghiωs + qll

niy
ll
nhiωs) (5.4)

Equation (5.4) gives the costs of operating the system in a given investment stage i,
operational scenario ω ∈ Ω and long-term scenario s ∈ S . The amount of generation in
each generator g, hour h, investment stage i, short-term scenario ω and long-term scenario
s, accounted for by the decision variable ygen

ghiωs, is multiplied by the short-run marginal
cost qgen

gis and added to the lost load term to yield the operational costs of the system. To
keep track of the node of a specific generator, the sets Gn ∀ n ∈ N have been introduced,
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containing the set of generators at each node. The lost load term consists of the value
of lost load, qll

ni, and the amount of demand not being satisfied, denoted by the decision
variable yll

nhiωs. Analyses of the value of lost load are presented in London Economics
(2013).

The short-run marginal cost (SRMC), qgen
gis, is composed of several different parame-

ters; fuel costs, variable operational and maintenance costs (VOM), carbon emission costs
and carbon capture, transportation and storage costs (CCTS). To keep the model formula-
tion linear, the SRMC is assumed to be constant.

In the summation over the set of periods P , the periodic scale factor αp is included
to account for the fact that the operational costs of a particular seasonal period should be
weighted differently according to its representative share of an entire year. As an example:
If one seasonal period covers one week of input data, and this week is assumed to be
representative for three months of the year, the αp parameter for that particular seasonal
period will be set to 52 · 1

4 = 13. Note that the task of keeping track of the seasonal period
of each operational hour in the model is being handled by an indexed set of hours for each
period, denoted byHp.

5.3.2 Node flow balance
Constraint (5.5) enforces balance in the hourly system dispatch, as illustrated in Figure 2.2
in chapter 2:

∑
g∈Gn

ygen
ghiωs︸ ︷︷ ︸

Generation

+
∑
b∈Bn

ηdischrg
b ydischrg

bhiωs − y
chrg
bhiωs︸ ︷︷ ︸

Storage handling

+
∑
a∈Ain

n

ηtrana yflow
ahiωs −

∑
a∈Aout

n

yflow
ahiωs︸ ︷︷ ︸

Net import

= ξload
nhiωs − yll

nhiωs

n ∈ N , h ∈ H, i ∈ I, s ∈ S, ω ∈ Ω

(5.5)

The constraint forces the net generation and the net imports to equal the load (less lost
load) at a given node n ∈ N , hour h ∈ H, investment stage i ∈ I, long-term scenario
s ∈ S and short-term scenario ω ∈ Ω. The load balance is achieved through two main
mechanisms; net generation and net imports.

Net generation

Net generation consists of the produced energy, denoted by ygen
ghiωs, and the net energy dis-

charge from storage. Net energy discharge is decided by the amount of energy discharged
from a storage, ydischrg

bhiωs , and the amount of energy charge, ychrg
bhiωs. The technical parameter

ηdischrg
b gives the discharging efficiency of a storage technology. For simplicity, the set Bn

has been introduced to describe the available storage technologies for a given node.
As presented in the objective function, the model also allows nodes to not satisfy parts

of the load at a specific hour, represented by the decision variable yll
nhiωs. The cost of not

satisfying all demand is penalized through the value of lost load in the objective function.
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Net imports

Net imports consist of the amount of energy imported from other nodes less energy ex-
ported to other nodes. To simplify notation the setsAin

n andAout
n are defined, which denote

transmission lines into and out from node n, respectively. In order to decide the unidirec-
tional flow on these transmission lines, the decision variable yflow

ahiωs is used. Since power
transportation involves transmission losses, the model accounts for transmission losses in
the importing node only, through the parameter ηtrana .

5.3.3 CO2-emission constraints

As will be presented in larger detail in following chapters, the long-term uncertainty in
the analyses in this thesis is introduced through stochastic constraints for CO2-emissions.
The total emissions from the system in each five-year period i, long-term scenario s and
short-term scenario ω are limited by the following constraints:

∑
p∈P

αp
∑
h∈Hp

∑
g∈G

εgiy
gen
ghiωs ≤ Ēiωs i ∈ I, ω ∈ Ω, s ∈ S (5.6)

Constraint (5.6) states that the total amount of CO2-emissions in each long-term time-
stage i ∈ I is limited by an exogenously fixed threshold. This limit is denoted Ēiωs
and states the total aggregated amount of CO2-emissions allowed in each time period,
long-term and short-term scenario. εgi is a parameter that, for each generator g and each
time-stage i, states the emissions per unit of electricity production. It is calculated from
a heat rate stating how much fuel is needed to produce one unit of electrical energy, the
CO2-content per unit of fuel, and a carbon capture and storage removal fraction for each
generator.

5.3.4 Cumulative capacity restrictions

The cumulative capacity restrictions

v∗∗∗is = x̄∗∗∗is +
i∑

j=i′
x∗∗∗js, i′ = max{1, i− bilife∗ /5c}, i ∈ I (5.7)

are bookkeeping constraints that keep track of the total invested capacity for generation,
transmission, storage power or storage energy. The ∗∗-superscript is a placeholder for
either gen, tran, storPW or storEN, and the ∗-subscript is a placeholder for either g, l or b.
The x̄∗∗∗i -parameter keeps track of the remaining capacity of investments made before the
planning horizon of the model. The summation in equation (5.7) adds to this parameter
the cumulative investments made in previous investment stages that are yet to be fully
retired. The summation starts either in the first investment stage or later to make sure
retired capacity is not included in the available capacity for the different stages.
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5.3.5 Storage technology constraints
The following constraints are bookkeeping constraints that couple storage levels in con-
secutive hours with storage charge and discharge during that hour. Note that constraints
connecting operational hours from different seasonal periods are not enforced, in accor-
dance with the multihorizon formulation of the model.

wstor
b(h−1)iωs + ηchrg

b ychrg
bhiωs − y

dischrg
bhiωs = wstor

bhiωs b ∈ B, p ∈ P, h ∈ H−p , i ∈ I, (5.8)

ω ∈ Ω, s ∈ S

The next constraints make sure the stored energy, the charge and the discharge of a storage
are forced below their respective installed capacities.

wstor
bhiωs ≤ vstorEN

bis , ychrg
bhiωs ≤ v

storPW
bis , ydischrg

bhiωs ≤ ρbv
storPW
bis , b ∈ B, h ∈ H, (5.9)
i ∈ I, ω ∈ Ω, s ∈ S

5.3.6 Storage power and energy capacity coupling
The following constraint enforces a coupling between investments in storage energy ca-
pacity and storage power capacity. This is a technical restriction that applies to certain
types of storages, such as certain types of batteries.

vstorPW
bis = βbv

storEN
bis , b ∈ B, i ∈ I, s ∈ S (5.10)

5.3.7 Generator dispatch availability

ygen
ghiωs ≤ ξ

gen
ghiωv

gen
gis, g ∈ G\{GHydro}, h ∈ H, i ∈ I, ω ∈ Ω, s ∈ S (5.11)

These constraints restrict the production from each generator, both through installed ca-
pacities and through availability parameters. For wind and solar generation, this is where
operational stochasticity is introduced. The availability parameter ξgen

ghiω ∈ [0, 1] temporar-
ily reduces the available installed capacity in line with how varying weather conditions af-
fect the ability of solar panels and wind turbines to generate power. For thermal generators,
ξgen
ghiω is a constant capacity factor for the given technology.

5.3.8 Thermal production ramp-up constraint
Ramping up thermal generators to full production requires some time, and this coupling
between thermal generation in one hour and the next is enforced by the constraint

ygen
ghiωs − y

gen
g(h−1)iωs ≤ γ

gen
g vgen

gis g ∈ GThermal, p ∈ P, h ∈ H−p , i ∈ I, (5.12)

ω ∈ Ω, s ∈ S

γgen
g ∈ (0, 1) is a ramp up parameter that determines the possible hourly increase in pro-

duction as a share of total installed capacity for a given thermal generator. The set GThermal

is a set containing all thermal generators. Note that also here, no constraints connecting
operational hours from different seasonal periods are enforced, in accordance with the
multihorizon formulation of the model.
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5.3.9 Hydroelectric power generation constraint
Constraints on generation from hydro plants are modeled slightly different from the rest
of the generation technologies. For regulated hydro, the total production during a seasonal
period is limited by a stochastic parameter representing the total availability of water in
the reservoirs during that period.∑

h∈Hp

ygen
ghiωs ≤ ξ

RegHydroLim
gpiω , g ∈ GRegHydro, p ∈ P, i ∈ I, ω ∈ Ω, s ∈ S (5.13)

A stochastic limit is put on the total regulated and unregulated amount of energy pro-
duction from hydropower in each node∑

p∈P
αp

∑
h∈Hp

∑
g∈GHydro

n

ygen
ghiωs ≤ ξ

HydroLim
niω , n ∈ N , i ∈ I, ω ∈ Ω, s ∈ S (5.14)

5.3.10 Transmission flow constraints
The flow on installed transmission lines is limited to the capacity of the respective line
through the following constraint

yflow
ahiωs ≤ vtran

lis , l ∈ L, a ∈ Al, h ∈ H, i ∈ I, ω ∈ Ω, s ∈ S (5.15)

Here, Al is a mapping from a bidirectional line l to the touple of unidirectional arcs a
defined on that line.

5.3.11 Capacity investment constraints
The EMPIRE model enforces constraints on the amount of investments per five-year time-
stage and the total accumulated generation, transmission and storage capacity in each of
these stages to ensure realistic capacity expansion.

In equation (5.16), generation investments for a given investment stage i, node n and
long-term scenario s are limited on an aggregated basis by the parameter X̄gen

ti , where t
is an index stating the technological type of the generator and T AggTech denotes a set of
aggregated technologies. Similarly, in equation (5.17) the accumulated investments of the
aggregated generation capacity is constrained by V̄ gen

tis .

∑
g∈Gtn

xgen
gis ≤ X̄

gen
ti , t ∈ T AggTech, n ∈ N , i ∈ I, s ∈ S (5.16)

∑
g∈Gtn

vgen
gis ≤ V̄

gen
ti , t ∈ T AggTech, n ∈ N , i ∈ I, s ∈ S (5.17)

Transmission investments are limited in a similar manner by the parameter X̄ tran
li ,

which limits the maximum allowed investments in a transmission line l for a specific pe-
riod i, node n and scenario s. The accumulated capacity investments in transmission lines
are also limited by V̄ gen

lis .
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xtran
lis ≤ X̄ tran

li , l ∈ L, i ∈ I, s ∈ S (5.18)

vtran
lis ≤ V̄

gen
li , l ∈ L, i ∈ I, s ∈ S (5.19)

Investments in storage capacity are limited by the parameters X̄storEN
bi and X̄storPW

bi ,
which limits the maximum allowed investments in a storage technology b in a specific
time-stage i and node n for each long-term scenario s ∈ S. Similarly, the accumulated
capacity investments in storage is limited by V̄ storEN

bi and V̄ storPW
bi , respectively.

xstorEN
bis ≤ X̄storEN

bi , b ∈ B, n ∈ N , i ∈ I, s ∈ S (5.20)

vstorEN
bis ≤ V̄ storEN

bi , b ∈ B, n ∈ N , i ∈ I, s ∈ S (5.21)

xstorPW
bis ≤ X̄storPW

bi , b ∈ B, n ∈ N , i ∈ I, s ∈ S (5.22)

vstorPW
bis ≤ V̄ storPW

bi , b ∈ B, n ∈ N , i ∈ I, s ∈ S (5.23)

5.3.12 Nonanticipativity constraints

Due to the formulation choice of using a split variable formulation to include the long-term
uncertainty in the EMPIRE model, nonanticipativity constraints are added explicitly to the
model formulation. The nonanticipativity constraints ensure that all decision variables
sharing common history are set to equal values, as discussed in Mirkhani and Saboohi
(2012). Note that in the progressive hedging algorithm that will be presented in chapter 6,
these constraints are relaxed.

xgen
gis = xgen

gis′ , g ∈ G, i ∈ I, s ∈ S, s′ ∈ {s}i (5.24)

xtran
lis = xtran

lis′ , l ∈ L, i ∈ I, s ∈ S, s′ ∈ {s}i (5.25)

xstorEN
bis = xstorEN

bis′ , b ∈ B, i ∈ I, s ∈ S, s′ ∈ {s}i (5.26)

xstorPW
bis = xstorPW

bis′ , b ∈ B, i ∈ I, s ∈ S, s′ ∈ {s}i (5.27)

The set {s}i defines the set of scenarios that are indistinguishable or equivalent to
long-term scenario s ∈ S in time-stage i ∈ I.

Due to the properties of the multihorizon formulation where operational decisions are
independent of future long-term scenarios, it is not necessary to implement nonanticipa-
tivity constraints for the operational decision variables. Recall that since the operational
decision variables can be viewed as embedded within the nodes of the long-term scenario
tree in the multihorizon formulation, these decision variables are implicitly defined as
functions of the investment decision variables and hence do not require designated nonan-
ticipativity constraints.
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5.3.13 Non-negativity constraints
Finally, non-negativity constraints are enforced for the decision variables:

xgen
gis ≥ 0, g ∈ G, i ∈ I, s ∈ S (5.28)

xtran
lis ≥ 0, l ∈ L, i ∈ I, s ∈ S (5.29)

xstorEN
bis ≥ 0, b ∈ B, i ∈ I, s ∈ S (5.30)

xstorPW
bis ≥ 0, b ∈ B, i ∈ I, s ∈ S (5.31)

vgen
gis ≥ 0, g ∈ G, i ∈ I, s ∈ S (5.32)

vtran
lis ≥ 0, l ∈ L, i ∈ I, s ∈ S (5.33)

vstorPW
bis ≥ 0, b ∈ B, i ∈ I, s ∈ S (5.34)

vstorEN
bis ≥ 0, b ∈ B, i ∈ I, s ∈ S (5.35)

ygen
ghiωs ≥ 0, g ∈ G, h ∈ H, i ∈ I, ω ∈ Ω, s ∈ S (5.36)

yflow
ahiωs ≥ 0, a ∈ A, h ∈ H, i ∈ I, ω ∈ Ω, s ∈ S (5.37)

ychrg
bhiωs ≥ 0, b ∈ B, h ∈ H, i ∈ I, ω ∈ Ω, s ∈ S (5.38)

ydischrg
bhiωs ≥ 0, b ∈ B, h ∈ H, i ∈ I, ω ∈ Ω, s ∈ S (5.39)

yll
nhiωs ≥ 0, n ∈ N , h ∈ H, i ∈ I, ω ∈ Ω, s ∈ S (5.40)
wstor
bhiωs ≥ 0, b ∈ B, h ∈ H, i ∈ I, ω ∈ Ω, s ∈ S (5.41)
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Chapter 6
A Distributed Progressive Hedging
Algorithm for Solving EMPIRE

This chapter presents a solution method proposed for solving the EMPIRE model based
on the Progressive Hedging framework introduced in Rockafellar and Wets (1991). The
progressive hedging algorithm (PHA) applied to solve multistage stochastic programs de-
compose the problem by scenario and propose an iterative algorithm for gradually obtain-
ing solutions and updating dual variables, and is proven to converge towards the optimal
solution for linear programs. The primary objective of this chapter is to show how the PHA
is adapted to solve large-scale instances of the EMPIRE model in a distributed manner.

As discussed in chapter 4, other solution methods and decomposition algorithms exist
that could have been applied to solve the EMPIRE model, such as the alternating direc-
tion method (Boyd et al., 2011) or the nested benders method (Murphy, 2013). However,
the PHA is chosen as the preferred solution method in this thesis for three primary rea-
sons. First, the EMPIRE model is originally implemented with a scenario or split-variable
formulation for the long-term uncertainty. Consequently, a scenario based decomposition
technique is simply a more convenient choice given the current implementation. Secondly,
the PHA is highly applicable for distributed implementations, meaning that the subprob-
lems can be solved in parallel and the required time for solving the problem can in that
respect be significantly reduced. Finally, the PHA has substantial support in recent litera-
ture as a frequently applied solution method for large-scale multistage stochastic programs,
particularly within problems related to energy and power system modeling, making it an
interesting method for the purpose of this thesis (Gonçalves et al., 2012; dos Santos et al.,
2009).

In section 6.1 an overview of the PHA is provided. The first part of the section focuses
on presenting the preliminaries, assumptions and algorithmic notation of the procedure in
itself, while the latter part focuses on how the PHA is applied to solve the EMPIRE model
specifically. Procedures for obtaining upper and lower bounds for the optimal solutions
are also provided, since classical methods implemented in commercially available solvers
are incapable of solving many of the test instances in this thesis to optimality. Next, in

59



Chapter 6. A Distributed Progressive Hedging Algorithm for Solving EMPIRE

section 6.2, the focus is to present how the algorithm is implemented in a distributed
manner, with the corresponding computational challenges and advantages that follow with
this implemented code infrastructure.

6.1 The progressive hedging algorithm
The progressive hedging algorithm (PHA) is first introduced in Rockafellar and Wets
(1991) and is a scenario-based decomposition algorithm used to solve large-scale stochas-
tic optimization problems (Gade et al., 2016; Watson et al., 2007). The algorithm mitigates
the computational complexity of large problem instances by decomposing the problem into
scenarios and iteratively enforcing nonanticipative solutions by solving penalized versions
of the subproblems. As such, the original problem is divided into smaller, solvable in-
stances, and with a sufficient amount of iterations, the algorithm is proven to converge
towards the optimal solution for linear programs (Rockafellar and Wets, 1991).

6.1.1 Preliminaries
Recall that the mathematical formulation of a multistage stochastic program, as presented
in chapter 4, can be represented on the following form

min
∑
s∈S

πsfs(xs) (6.1)

s.t xs ∈ Fs ∀s ∈ S (6.2)
xs ∈ FNA ∀s ∈ S (6.3)

where πsfs(xs) represents the probability-weighted objective function solved for sce-
nario s ∈ S, and xs is a vector representing all decision variables in scenario s. The
decision variables xs are constrained to be in the feasible area defined by Fs for scenario
s, and must satisfy the nonanticipativity constraints defined in FNA. To illustrate, as-
sume that the feasible area of each scenario looks as depicted in Figure 6.1, consisting of
a block diagonal structure defined by constraints (6.2). The nonanticipativity constraints
(6.3) complicates the block diagonal structure of the problem.

The complicating nonanticipativity constraints are natural barriers for decomposition
because they couple decision variables across multiple scenarios. Therefore, by relaxing
these constraints and implicitly accounting for them in the objective function, the block
diagonal structure can be fully exploited and the problem can be decomposed into smaller,
independent subproblems. Since the subproblems have independent feasible regions, each
subproblem is both smaller in size and easier to solve than the original problem. In addi-
tion, since the subproblems are independent of each other, they can be solved in a decen-
tralized manner in parallel to reduce the required time to solve the problem.

A way of implicitly accounting for the relaxed complicating constraints in the subprob-
lems is to introduce dual multipliers and penalize deviations from the constraints with an
augmented Lagrangian penalty term in the objective function (Conejo et al., 2006). The
penalty term is based on dual multipliers ws and a constant ρ, and penalizes deviations
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FNA

F1

F2

F3

F4

Figure 6.1: The structure of the feasible area of a stochastic program with complicating constraints.
Note that if the constraints in FNA are relaxed, the remaining feasible area exhibits a block diagonal
structure well suited for scenario based decomposition techniques.

in each subproblem’s optimal decisions xs from nonanticipative solutions. The nonan-
ticipative solution is defined as the expected value of the decision variables, denoted by
x̄{s}, where {s} is the set of all indistinguishable scenarios for scenario s at each decision
stage. Based on this, each subproblem solves the problem formulated as in (6.4) for a
given scenario s ∈ S:

min fs(xs) + wTs (xs − x̄{s}) + 1
2ρ||xs − x̄{s}||2 (6.4)

s.t xs ∈ Fs

Two issues arise with the formulation in (6.4). First, since the calculation of x̄{s} for
each subproblem requires an optimization using decision variables from other scenarios,
the problem is not separable. This property makes it hard to exploit decentralized methods
for solving the problem. Secondly, in order to find the optimal solution, both optimal dual
variables and the step length ρ must be determined. Therefore, deciding how to configure
the optimal values of the dual variables and parameters is necessary.

To handle these two central issues, the PHA provides a framework for maintaining
separability and a regime for dual multiplier updates. It coordinates an iterative search for
the optimal decision variables that satisfies the nonanticipativity constraints. In order to
cope with the problem of separability, the algorithm uses an approximation of the expected
values of the decision variables from the previous iteration. This approximation is denoted
as x̄v−1

{s} , where v represents the current iteration, and can be interpreted mathematically
as a projection of individual scenario solutions onto the subspace of nonanticipative so-
lutions of the problem (Gade et al., 2016). Therefore, instead of co-optimizing decision
variables across scenarios and subproblems, each subproblem only needs to optimize its
designated and independent decision variables for the given scenario, resulting in separa-
ble subproblems. As such, the PHA can be interpreted as a separable approximation of the
augmented Lagrangian method. To deal with the problem of finding optimal dual variables
for a specific problem, the PHA defines an iterative update procedure for obtaining the op-
timal dual variables for a given ρ. The dual multipliers are updated at each iteration with
a step length ρ so that wvs = wv−1

s + ρ(xv−1
s − x̄v−1

s ). Based on these assumptions and
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procedures, each subproblem can iteratively solve an independent and separable convex
quadratic programming problem, as shown in formulation (6.5). Note that since wTs x̄v−1

{s}
now is defined as a constant term, it can be omitted from the objective function.

min fs(xvs) + (wvs)T xvs + 1
2ρ||x

v
s − x̄v−1

{s} ||
2 (6.5)

s.t xvs ∈ Fs

For each iteration of the PHA, solving formulation (6.5) yields an admissible solution
for a specific subproblem, meaning that the obtained solution does not violate any con-
straints within a given scenario. The ultimate goal of the algorithm is to also produce an
implementable solution, which refers to the quality that identical decisions are made in all
scenarios as long as they share a common history, i.e. nonanticipativity across scenarios
and subproblems is satisfied. This condition is achieved through a coordinated set of activ-
ities between the master- and subproblems defined in detail by the PHA, which is further
explained in the remaining parts of this section.

6.1.2 Overview of the Progressive Hedging Algorithm
The PHA defines a procedure that iterates between admissible (xvs ∈ Fs) and imple-
mentable (xvs ∈ FNA) solutions, and at convergence both of these properties are enforced
to within a prespecified tolerance (Rockafellar and Wets, 1991). The algorithm can be
summarized in six steps: (1) initialization of the problem, (2) solving the first iteration,
(3) aggregation of decision variables, (4) check of convergence, (5) update of iterators and
multipliers, and (6) resolving and repeating from step (3) until convergence is achieved.
To give a conceptual overview of the algorithm, an illustration is given in Figure 6.2 with
a detailed explanation of all included steps below.

Initialization and first iteration

The first step of the PHA is to initialize the iterator v and dual multipliers w0
s to zero. The

iterator v keeps track of the iterations and the dual multipliers are used in later steps of the
algorithm. Next, each subproblem solves the formulation defined in (6.6) once for a given
scenario s ∈ S with relaxed nonanticipativity constraints:

min fs(x0
s) (6.6)

s.t x0
s ∈ Fs

The intention of solving this problem is to obtain admissible scenario solutions which
can be used in the next step of the algorithm. After the initialization, the algorithm enters
a loop of iterations which do not terminate until a certain convergence requirement is met.

Aggregation of decision variables

The first step of the loop is conducted by the master problem and is an aggregation pro-
cedure applied to the decision variables received from the subproblems. The aggregation
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Initialization
Set v and dual mul-
tipliers ws to zero

First iteration
Solve each separable scenario

to obtain initial solutions

Aggregation
Calculate expected value solution
across indistinguishable scenarios

Check
convergence
Has the solution

converged according to
the criteria?

Stop
Return solution

Update
Update iterator v and dual

multipliers wv
s for all scenarios

Resolve
Solve each separable scenario
with updated dual multipliers

yes

no

Masterproblem

Subproblem

Figure 6.2: Conceptual overview of the progressive hedging algorithm
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procedure generates a projection of the individual scenario solutions onto the subspace of
nonanticipative solutions, where the projection is denoted as x̄v{s}. The projection is cal-
culated as the probability-weighted sum of decision variables sharing the same node in the
scenario tree, marginalized over these scenarios. For a given scenario s ∈ S at decision
stage i ∈ I the projection can be calculated as in equation (6.7):

x̄vs,i = 1
π{s}i

∑
k∈{s}i

(πk xvk,i) ∀i ∈ I, ∀s ∈ S (6.7)

In equation (6.7) the set of all scenarios that are indistinguishable from scenario s at
decision stage i is denoted as the set {s}i. The probability for a specific scenario is denoted
by πs and the total probability of all indistinguishable scenarios to s at stage i is denoted
by π{s}i

=
∑
k∈{s}i

πk.
Note that even though the aggregated solution x̄vs clearly represents an implementable

solution to the original problem, it does not necessarily represent admissible solutions for
the individual scenario problems. The intention of this procedure is therefore to obtain an
aggregated solution which can be used in later steps of the algorithm to either (1) verify if
an obtained solution is both implementable and admissible within a prespecified tolerance,
or (2) force the dual multipliers in a direction that pushes the subproblems closer to the
optimal solution.

Check convergence

The second step of the loop is also conducted by the master problem and consists of check-
ing whether the algorithm has converged within a prespecified tolerance ε. Convergence
is achieved if the probability-weighted sum of absolute differences between the decision
variables xvs,i and the corresponding aggregated variable x̄vs,i are within an ε-criterion. This
criterion is checked using equation (6.8):

∑
s∈S

πs||xvs,i − x̄vs,i|| < ε ∀i ∈ I (6.8)

Note that the comparison can be done either using Euclidean norms or elementwise
comparison. If this criterion is satisfied, it indicates that the algorithm has reached an
optimal solution that is both implementable within an ε tolerance of error and admissible
for the individual scenarios. As a result, the algorithm can terminate and return the optimal
solution. On the other hand, if the criterion is not met, the algorithm continues for yet
another iteration.

The convergence criterion can also be defined such that the algorithm terminates when
it reaches a prespecified optimality gap. However, as will be discussed in section 6.1.4
below, the process of obtaining upper and lower bounds from the algorithm requires the
additional computational time and resources more or less equivalent to a standard iteration
of the PHA. It is therefore cumbersome to apply this as a convergence criterion, and there-
fore an ε-tolerance of error as presented above is viewed as an equally good proxy for the
convergence of the algorithm.

64



6.1 The progressive hedging algorithm

Update iterator and dual multipliers

In the third step of the loop, the iterator v is incremented and each subproblem updates its
corresponding dual multipliers. The dual multipliers are used as inputs to the subproblems
to gradually enforce nonanticipative solutions, and are updated according to the procedure
described in equation (6.9):

wvs,i ← wv−1
s,i + ρ(xv−1

s,i − x̄v−1
s,i ) ∀s ∈ S, i ∈ I (6.9)

In this context, ρ can be considered as a step length for the update procedure, indicating
how much to penalize current deviations relative to the multiplier’s previous value. A
central issue related to the PHA is finding the optimal value of ρ. This is known to be
a highly problem-specific issue (Gade et al., 2016; Watson and Woodruff, 2011; Watson
et al., 2007), and will be further discussed in the context of the EMPIRE model specifically
in chapter 8.

Resolve problem

The fourth and final step of the loop is to resolve each subproblem with the updated dual
multipliers and the new aggregated solution from the master problem. Each subprob-
lem solves the problem formulated in (6.5) for a specific scenario s, where deviations
from nonanticipative solutions are implicitly accounted for through the included linear
and quadratic penalty terms based on dual multipliers and the previous iteration’s aggre-
gate solution. When all subproblems are finished, the loop continues at the first step of the
loop, i.e. aggregation of decision variables.

Summary of notation and algorithm

To summarize the algorithm, a detailed overview of the procedures in the PHA for a multi-
stage stochastic program is given in algorithm 1. In addition, for the reader’s convenience,
a summary of all relevant notation used in the algorithm is given in Table 6.1.

Table 6.1: Sets, indices and variables for the progressive hedging algorithm

Sets and indices
I Set of decision stages indexed by i.
S Set of scenarios indexed by s
{s}i Set of all scenarios that are indistinguishable from scenario s at stage i
π Set of probabilities πs indexed by scenario s
π{s}i

Sum of probability of indistinguishable scenarios, π{s}i
=
∑
k∈{s}i

πk

Parameters
v Progressive hedging iterator
ρ Progressive hedging step length

65



Chapter 6. A Distributed Progressive Hedging Algorithm for Solving EMPIRE

Decision variables
xvs,i Decision variables for scenario s at stage i in iteration v
x̄vs,i Aggregated decision variables for scenario s at stage i in iteration v
wvs,i Dual multipliers for scenario s at stage i in iteration v

Algorithm 1: A progressive hedging algorithm for Multistage Stochastic Programs
Result: A solution satisfying implementability within an ε-criterion

1 Initialization:
2 v ← 0 and wvs,i ← 0 ∀s ∈ S, i ∈ I
3 First iteration:
4 For s ∈ S compute x0

s = (x0
s,1, ..., x0

s,|I|) = arg minx0
s∈Fs fs(x0

s)
5 Aggregation:
6 x̄vs,i = 1

π{s}i

∑
k∈{s}i

(πk xvk,i) ∀i ∈ I, ∀s ∈ S
7 Check convergence:
8 If

∑
s∈S πs||xvs,i − x̄vs,i|| < ε ∀i ∈ I then stop

9 Iteration update:
10 v ← v + 1
11 Multiplier update:
12 wvs,i ← wv−1

s,i + ρ(xv−1
s,i − x̄v−1

s,i ) ∀s ∈ S, i ∈ I
13 Resolve:
14 For s ∈ S compute xvs = arg minxv

s∈Fs fs(xvs) + (wvs)T xvs + 1
2ρ||x

v
s − x̄v−1

s ||2
15 Repeat:
16 Go to line 5

6.1.3 Applying the Progressive Hedging Algorithm to Solve EMPIRE
The split-variable formulation for representing long-term uncertainty, as presented in the
version of the EMPIRE model in this thesis, exhibits a decomposable structure that can
be advantageously exploited by the PHA. The feasible area of the model, as defined by
constraints (5.5) - (5.41) in chapter 5, has a similar structure to the feasible area illustrated
in Figure 6.1. While the nonanticipativity constraints defined for the long-term investment
decisions represent the complicating constraints (5.24) - (5.27), the remaining constraints
form a block-diagonal structure where none of the investment decision variables are cou-
pled between the various long-term scenarios. Hence, by relaxing these nonanticipativity
constraints, the feasible area can be decomposed by long-term scenarios and solved by
applying the PHA.

In the multihorizon formulation of the EMPIRE model, operational decision variables
can be viewed as embedded within the investment nodes in the long-term scenario tree.
This implies that these variables neither require designated nonanticipativity constraints
nor need to be explicitly accounted for in the PHA. This is because the operational decision
variables are implicitly defined as functions of the investment variables. Consequently,
if two scenarios share a common history up to a certain long-term decision stage and
the obtained investment decisions from the PHA are implementable, then the relevant
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operational decision variables must be implementable too. A practical implication of this
property is that each subproblem only needs to include dual multipliers for the long-term
investment variables.

Defining the subproblems for the PHA solving the EMPIRE model

When decomposing the EMPIRE model by long-term scenario, each subproblem solves a
slightly modified version of the model for a particular scenario. The algorithm can also be
implemented such that a bundle of multiple scenarios is solved in each subproblem, where
the feasible region in each subproblem consists of the union of the included scenario’s
feasible regions, and nonanticipativity between the scenarios in the bundle is locally en-
forced. However, for simplicity, the remaining discussions assume that each subproblem
solves one individual scenario. To illustrate the modified version of the EMPIRE model
where a particular long-term scenario s ∈ S is solved in each subproblem of the PHA, the
objective function of a particular subproblem is provided in equation (6.10):

zs = min
∑
i∈I

δi

{
(6.10)

∑
g∈G

cgen
gisx

gen,v
gis +

∑
l∈L

ctran
lis x

tran,v
lis +

∑
b∈B

(cstorPW
bis xstorPW,v

bis + cstorEN
bis xstorEN,v

bis )︸ ︷︷ ︸
Investment costs

+

∑
g∈G

wgen,v
gis xgen,v

gis +
∑
l∈L

wtran,v
lis xtran,v

lis +
∑
b∈B

(wstorPW,v
bis xstorPW,v

bis + wstorEN,v
bis xstorEN,v

bis )︸ ︷︷ ︸
wT x

+

1
2ρ ∗

[∑
g∈G

(xgen,v
gis − x̄

gen,v−1
gis )2 +

∑
l∈L

(xtran,v
lis − x̄tran,v−1

lis )2+

∑
b∈B

(
(xstorPW,v
bis − x̄storPW,v−1

bis )2 + (xstorEN,v
bis − x̄storEN,v−1

bis )2)]
︸ ︷︷ ︸

1
2ρ ∗ ||x

v − x̄v−1||2

+

θ
∑
ω∈Ω

πωcost
ops
iωs︸ ︷︷ ︸

Operational costs

}

Equation (6.10) is tailored specifically for the EMPIRE model and is equivalent to the
objective function in formulation (6.5). In the formulation x∗,v∗is refers to the long-term
investment decisions at iteration v, where an asterisk refers to either a generator g ∈ G, a
transmission line l ∈ L or a storage b ∈ B for scenario s at investment stage i ∈ I. In
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addition, δi is a discount factor, and θ
∑
ω∈Ω πωcost

ops
iωs is the scaled expected operational

costs for a set of short-term scenarios Ω at investment stage i. The PHA specific nota-
tion consists of the dual multipliers w∗,v∗is (denoted without vector notation), the constant
step length ρ, and the aggregated investment decision variable from the previous iteration
x̄∗,v−1
∗is .

Defining the master problem for the PHA solving the EMPIRE model

The master problem is required to perform the aggregation procedure of the long-term
investment variables, check for convergence at each iteration, update dual multipliers and
to coordinate the activities in the subproblems. As discussed above, the aggregation pro-
cedure in the master problem is only necessary for the long-term investment variables.
Hence, for a specific generator g, investment stage i and scenario s the aggregation pro-
cedure to obtain x̄gen,v−1

gis can be performed as in equation (6.11). In each iteration, this
calculation is made for all investment stages, all long-term scenarios and all generators,
transmission lines, and storages. Note that equation (6.11) is similar for transmission lines
l and storages b.

x̄gen,v−1
gis = 1

π{s}i

∑
k∈{s}i

(πkxgen,v
gis ) (6.11)

Similarly, validating the convergence criterion is only necessary for the long-term in-
vestment variables. In equation (6.12) the procedure is exemplified for a particular gener-
ator g and investment stage i:

∑
s∈S

πs|xgen,v
gis − x

gen,v
gis | < ε (6.12)

If there exist one or more investment variables at a particular investment stage where
the criterion in equation (6.12) is not satisfied for prespecified ε-tolerance, the PHA has by
definition not converged, and the algorithm will continue for another iteration. However,
when convergence is achieved, the algorithm terminates and returns the obtained solution
as model output.

The obtained solution

A convenient property of the EMPIRE model is that the aggregated solution generated by
the master problem at each iteration is both implementable and admissible. The reason
for this is twofold: First, the long-term investment variables are only constrained by upper
limits on investments in each investment stage, as presented in constraints (5.16) - (5.23)
in chapter 5, and by the non-negativity constraints (5.28) - (5.41). It is therefore evident
that a probability-weighted sum of these investments also will satisfy these constraints.
Second, regardless of the available capacity determined by the investment decisions, the
operational requirements can always be fulfilled through the option of increasing lost load
in the solution. Therefore, the aggregated solution from the master problem is always a
primal feasible solution that can be reported as a suggested solution obtained by the PHA.
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6.1.4 Obtaining Optimality Bounds
Optimality bounds are useful when assessing the quality of a solution generated by the
PHA. Knowledge of both upper and lower bounds of an obtained solution is particularly
useful for instances of the EMPIRE model that are too large to handle for commercially
available solvers where the optimal solution is unknown. Therefore, a method for finding
both lower and upper bounds from the PHA solving the EMPIRE model is provided.

Obtaining lower bounds

In Gade et al. (2016) a method for obtaining lower bounds (LB) for the PHA applied to
mixed integer problems is presented. The same procedure is applied in this thesis to obtain
lower bounds for the solutions obtained by the PHA for the EMPIRE model. For a given
set of dual multipliers, the lower bound can be calculated by solving the optimization
problem given in (6.13):

zLB = min
∑
s∈S

πs
(
fs(xvs) + wTs (xvs − xv−1

s )
)

(6.13)

s.t xvs ∈ Fs ∀s ∈ S

This lower bound can be calculated in any iteration of the PHA. However, the calcula-
tion requires the additional computational resources more or less equivalent to a standard
iteration of the PHA, the only difference being that the objective function in the lower
bound calculation does not include a quadratic term. The produced bound is specific for a
given set of dual multipliers wvs and aggregated solution x̄vs .

Obtaining upper bounds

An upper bound is the best known solution to the primal problem. As argued above, the ag-
gregated long-term investment variables generated by the master problem in each iteration
is, in fact, a valid primal solution. Therefore, by re-optimizing the original problem with
all investment variables fixed to their aggregated value produced by the master problem
in the PHA, an upper bound can be found at any iteration of the algorithm. This requires
similar computational resources to the calculation of a lower bound and can be calculated
at any iteration of the algorithm.

Defining the optimality gap

In this thesis, two definitions of optimality gaps are used to assess the quality of the ob-
tained solutions. In cases where the optimal objective value of a certain test instance is
known, the relative gap from the upper bound (ub) and the optimal solution (z∗) is pro-
vided. This gap is calculated as in equation (6.14):

Gap (ub to z∗) = ub− z∗

ub
(6.14)
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In cases where the optimal cost is unknown, the relative gap between the upper bound
(ub) and the lower bound (lb) is given. This gap is calculated as in equation (6.15):

Gap (ub to lb) = ub− lb
ub

(6.15)

Both gaps are expressed as a percentage. The upper bound is used in both cases to
express the relative difference, because this is the optimal solution generated by the algo-
rithm which would have been communicated as the final solution produced by the PHA.

6.2 A distributed implementation of the algorithm
In the PHA there is a clear distinction between the procedures performed by the master-
and subproblems. This is illustrated in the conceptual overview of the algorithm in Figure
6.2. Since each subproblem solves a problem for an individual scenario that is indepen-
dent of all other scenarios, the subproblems can be solved in parallel at each iteration. This
is beneficial because it allows for significant reductions in the elapsed time required for
solving an iteration of the algorithm, particularly if the alternative is to solve the subprob-
lems sequentially. In the remaining parts of this chapter, the objective is to introduce how
a distributed version of the PHA is implemented, along with giving a brief overview of
important concepts and terms relevant for the thesis.

6.2.1 A Distributed Memory Infrastructure
In general, parallel programs can be designed as shared memory or distributed memory
programs (Pacheco, 2011). Because of the significant computational resources in terms
of memory availability and CPU processing capacity required to solve a single subprob-
lem when the PHA is used to solve the EMPIRE model, the discussion regarding parallel
programming in this thesis is limited to distributed memory programming. A distributed
memory system consists of a collection of core-memory pairs (i.e. processors) connected
by a network. Each core-memory pair can perform independent computations, but the
memory associated with an individual core is directly accessible only to that core. There-
fore, all communication and exchange of information between the cores need to be imple-
mented through a message-passing system.

The standard implementation of message-passing is called Message-Passing Interface
(MPI), which is a library of functions enabling collective communication between pro-
cesses in a distributed memory system. For a complete introduction to MPI programming
see Pacheco (2011). A central benefit of a distributed memory system utilizing message-
passing through MPI is the possibility of parallelization of the program across a distributed
set of nodes on a High-Performance Computing (HPC) cluster. This implies that the avail-
able resources are no longer constrained by the limited resources on a local machine,
but rather by the combined resources across all nodes in the cluster connected by MPI.
Today there exist multiple implementations of MPI with support for most programming
languages. One of the most frequently used implementations for MPI in distributed mem-
ory programming is the open-source version OpenMPI for the C programming language.
This is also the implementation applied in this thesis.
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Figure 6.3: Overview and illustration of the distributed implementation of the PHA on a set of
m+ 1 nodes each with k independent processors of a problem instance of the EMPIRE model with
n scenarios solved by n subproblems and one master problem. The illustration assumes that each
subproblem is designated to a particular processor.

In the distributed implementation of the PHA, both the master problem and each of
the subproblems are allocated to dedicated processors both within and across nodes in the
HPC-cluster. Consequently, since the problems are physically separated from each other,
they utilize MPI for exchanging information about long-term investment variables and dual
multipliers during the course of the PHA. The subproblems utilize MPI to send obtained,
admissible investment variables to the master problem after an iteration, and the master
problem utilizes MPI to send updated dual multipliers and aggregated, implementable in-
vestment variables to the subproblems. The process of coordination and communication
between the master problem and the subproblems is illustrated in Figure 6.3. The figure
also shows how the implemented master- and subproblems are organized in terms of the
distributed memory infrastructure, here depicted with n subproblems each solving an indi-
vidual scenario and m+ 1 nodes each with k independent available processors. Note that
the algorithm implements a bidirectional communication process as all master- and sub-
problems communicate both ways. Also, none of the subproblems require communication
with each other in this implementation.
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6.2.2 Expected Performance Gain of the Distributed Implementation
The expected performance gain of a distributed implementation of the algorithm relative to
a sequential implementation relates to (1) memory efficiency and (2) expected reduction in
computational time to solve the problem. In a distributed implementation, the subproblems
are solved and stored in RAM in a decentralized manner at separate memory locations.
Since the memory requirements for a single subproblem is much smaller than the sum
of memory requirements for all the subproblems, a distributed implementation allows for
higher memory efficiency while solving the same problem, though at the cost of distributed
resources and time spent on input/output operations.

The most significant performance gain of a distributed implementation compared to a
sequential implementation is the achieved reductions in computational time spent on solv-
ing the problem. Assume the computational time of the fully serialized implementation of
the program is denoted as Tserial and the computational time of the distributed implemen-
tation is denoted as Tparallel. Then the obtained speedup S of the distributed program is
defined as in equation (6.16):

S = Tserial
Tparallel

(6.16)

If p processors are available, then the best possible speedup of the distributed imple-
mentation is when Tparallel = Tserial

p , or equivalently S = p. If this is the case, the
distributed program has obtained linear speedup, which happens for the distributed imple-
mentation of the PHA if p is equal to the number of subproblems.

Another element that has a significant impact on the computational time required to
solve a distributed program is whether it is synchronous or asynchronous. While an asyn-
chronous program can operate in its own pace, synchronous programs must wait until all
processes have reached a particular stage in the execution cycle before any process can
continue from that stage. The characteristics of such programs are illustrated in Figure
6.4. The PHA for solving the EMPIRE model is implemented as a synchronous program.
This is due to the aggregation procedure and convergence verification in the master prob-
lem, which requires that the long-term investment variables have been received from all
subproblems at each iteration.

In theory, the computational time required to solve two single subproblems of the PHA
of identical size should take approximately the same time at any two processors with the
same technical specifications. In practice, however, this is often not the case. In chapter
8 this property is shown to be a major challenge for computational time when executing
code on a shared HPC-cluster. Transforming the current method into an asynchronously
distributed program is, therefore, an interesting topic for further research.
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Figure 6.4: Synchronous versus asynchronous parallel program.
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Chapter 7
Model Data

A central part of analyzing the LSSCEPPS with the EMPIRE model is the data given as
exogenous inputs. The objective of this chapter is to establish an understanding of the in-
put data used in the remaining part of this thesis, with a particular emphasis on describing
the implemented scenario generation procedures for short- and long-term uncertainty. In
section 7.1 some of the most important data used for the analyses conducted in chapter 8
and 9 is presented. In section 7.2 the procedure for generating short-term scenarios is de-
scribed, while section 7.3 presents the applied procedure for creating long-term scenarios.

7.1 Model inputs

The input data used in the studies conducted in this thesis is collected from multiple
sources. To establish the conditions for the long-term dynamic developments in the model,
the EU reference case published in 2016 by the European Commission (EU Reference
Scenario, 2016) is used as a primary source. This reference case describes trends and
scenarios within energy, transportation and greenhouse gas emissions until 2050 for the
28 member states of the EU. In Figure 7.1 the long-term developments in fuel prices and
total demand from 2010 to 2050 provided by this source is presented. Note that long-term
investment time-stages of five years are used in this thesis, meaning that long-term input
data is provided for every fifth year from 2010-2050.

Other input data, such as assumed developments in investment costs for generation
technologies, are gathered from other sources, such as ZEP (2013). In Figure 7.2 the in-
vestment costs for solar capacity, wind capacity and battery energy capacity is presented.
The assumed investment costs, fixed operational and maintenance costs, variable opera-
tional and maintenance costs, thermal generator efficiency, carbon capture, transport and
storage costs, derived short-run marginal costs and initial capacities for all relevant tech-
nologies is provided in the appendix, ensuring reproducible results.
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Figure 7.1: Assumed fuel price and electricity demand development in Europe from 2010-2050.
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Figure 7.2: Assumed development in technology investment costs from 2010-2050 for solar, wind
and battery energy capacity.

76



7.2 Procedure for generating short-term scenarios

7.2 Procedure for generating short-term scenarios

In this section, the procedure used for generating short-term scenarios for the uncertain
operational input parameters to the model is presented. This method is based on the sce-
nario generation procedure presented in Skar et al. (2016), but has been extended in two
ways: First, the use of different short-term scenario trees in each long-term time-stage has
been implemented, and second, moment matching has been introduced in the procedure
to improve the quality of the obtained scenario trees. As discussed in chapter 4, the main
intention of assessing several different operational scenarios is to capture the short-term
dynamics and uncertainty of the power system, preventing the model from tailoring the
solution to a particular scenario. The goal of the generation procedure is to obtain a repre-
sentative sample of the uncertain short-term inputs, hence enabling the model to account
for operational fluctuations when making long-term investment decisions. For this reason,
the short-term scenario tree is generated as a simple two-stage tree where investments are
the first stage decisions and the operational decisions are the recourse actions made under
operational perfect foresight. In addition, to ensure representative data sets, seasonal pe-
riods are used to divide the operational year into disjoint subsets. Each subset represents
a particular time of the year, and by sampling data from each seasonal period of the year,
the probability of obtaining biased samples is greatly reduced. As discussed in chapter 5,
the scenarios are made up of both regular and extreme seasonal periods, where the former
make up most of the representative hours in the data sets and the latter is introduced to
ensure feasibility of the model even in extreme scenarios.

As discussed in chapter 4, short-term uncertainty can be included in several different
input parameters to power system models. In this thesis short-term uncertainty has been
included in four different inputs:

1. Electricity load

2. Solar PV generation

3. Wind generation

4. Rain inflow to hydro reservoirs and run-of-the-river generation plants

The short-term scenarios are generated by selecting several random subsets of histor-
ical time series of the desired length for each parameter, followed by utilizing statistical
methods to choose the sample that best matches the first four moments of the entire time
series (i.e. the mean, variance, skewness and kurtosis). This procedure is repeated for each
new scenario included and for every long-term time stage, meaning that different short-
term scenario trees are used in each five-year period. By sampling data from the exact
same time periods for all uncertain parameters, as illustrated in Figure 7.3, both autocor-
relations within time series and correlations between time series for different parameters
are preserved. The colored parts of the data series in the figure also illustrate a possi-
ble example scenario for the uncertain short-term input parameters used in the EMPIRE
model.
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Figure 7.3: Illustration of short-term scenario sampling with hours on the x-axis. Note that sampling
from the same consecutive time periods for all uncertain parameters preserves both autocorrelations
within and correlations between the sampled scenarios.
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7.2.1 Notation and pseudocode for the scenario generation procedure
A detailed overview of the procedure for generating short-term scenarios for the regular
seasonal periods is presented in algorithm 2. Before the procedure for the scenario gener-
ation is presented, some notation is introduced in Table 7.1.

Table 7.1: Sets and parameters for the short-term scenario generation procedure

Sets and indices
Y Set of years for which historical time series are available, indexed by y.
Hfull Set of all hours in a year, with range [1, 8760].
P full Set of full seasonal periods within a historical year indexed by p.
Hfull
p Set of hours in full seasonal period p, ∀p ∈ P full.

Ω Set of short-term scenarios indexed by ω.
I Set of investment decision stages indexed by i.

Parameters
θparam
∗hy Raw data from historical data series. h ∈ Hfull, y ∈ Y .
ξparam
∗hiω Stochastic input parameter for the EMPIRE model. h ∈ Hfull, i ∈ I, ω ∈ Ω.
l Number of hours in each regular seasonal period p.
K Number of sample scenario trees generated before moment matching.

Algorithm 2: Short-term scenario generation routine for regular seasonal periods
Result: Set of K scenario trees with |Ω| scenarios per scenario tree for each

five-year investment stage
1 initialization;
2 Inputs: l, K ;
3 for each five-year time-stage i ∈ I do
4 for k ∈ {1, ...,K} do
5 for each short-term scenario ω ∈ Ω do
6 Select a random year y ∈ Y;
7 for each season p ∈ P full do
8 Sample a random number hp in the range [1, 8760

|P full| − (l + 1)];
9 for j ∈ {1, ..., l} do

10 h = j + l · (p− 1);
11 h′ = hp + (j − 1);
12 ξparam,k

∗hiω ← θparam,k
∗h′y ;

13 end
14 end
15 end
16 end
17 end
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In the work with this thesis, the scenario generation procedure has been implemented
in Matlab. The scenario trees are generated using data from |Y| different historical years.
The raw data from these time series is denoted by θparam

∗hy , where param refers to a particular
uncertain parameter, i.e. either solar, wind, load or rain. The * is a particular identifier for
the given parameter, e.g. for solar it would be a particular solar plant, and for load it would
be a country. The set Hfull consists of the range [1,8760], hence leap-years are neglected.
This set is partitioned into |P full| seasonal periods, denoted by Hfull

p , p ∈ P . The size of
the sets Hfull

p is then simply 8760
|P full| . This partitioning is done to ensure that representable

input data from the entire course of the historical years is used as input to the model.

The result of algorithm 2 is one set of K scenario trees with |Ω| scenarios for each
five-year investment stage i. After this procedure has been performed, moment matching
is used on the K scenario trees for each five-year stage i to find the one that best matches
the statistical properties of the historical data series. The moment matching is done by
calculating the total sum of the absolute value of relative differences in the mean, variance,
skewness and kurtosis between scenario tree k and the entire historical data series. The
scenario tree that best matches the four moments, i.e. that obtains the lowest sum in the
above calculation, is kept and used as input data for that time-stage i. This procedure is
repeated for each five-year investment stage i ∈ I, resulting in |I| scenario trees with
optimized moments.

To ensure feasibility in peak periods of load, extreme seasonal periods are generated
by selecting a random year y ∈ Y and finding

hextreme load
y = arg max

h

∑
n∈N

θload
nhy (7.1)

i.e. the historical hour in year y where the total load in the entire European power system
reached its highest value. An extreme season can then be obtained by finding the full
historical day that hextreme load

y is a part of, and using data from these 24 hours as an extreme
season.

To generate the input data for the test instances studied in the computational study in
chapter 8 and the techno-economic analyses in chapter 9, the short-term scenario genera-
tion procedure presented has been applied to generate three different short-term scenario
trees – the first with two scenarios and 72 operational hours (1 regular seasonal period
of 24 hours and 2 extreme seasons of 24 hours each, for a total of 3 full days) in each
scenario, the second with three scenarios and 240 operational hours (4 regular seasonal
periods of 48 hours and 2 extreme seasons of 24 hours each, for a total of 10 full days)
in each scenario, and the third with three scenarios and 720 operational hours (4 regular
seasonal periods of 168 hours and 2 extreme seasons of 24 hours each, for a total of 30
full days) in each scenario. All three will be used in the computational study in chapter 8
to verify the performance of the implemented PHA for different scenario trees, while the
techno-economic analyses in chapter 9 will be performed using the third scenario tree with
three scenarios and 720 consecutive hours in each scenario.
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7.3 Strategy for generating long-term scenario trees
In this section, the strategy for generating long-term scenario trees for the EMPIRE model
is presented. Even though the EMPIRE model and the solution method presented in this
thesis is generalized to any form of long-term uncertainty, this section intends to show
long-term scenario generation procedures for policy uncertainty specifically. The political
uncertainty is implemented through stochastic restrictions on the total amount of allowed
CO2-emissions across Europe per five-year time-stage i ∈ I in each short-term scenario
ω ∈ Ω and long-term scenario s ∈ S. The limits are denoted by Ēiωs in the mathematical
formulation.

As discussed in chapter 4 the procedures for generating scenario trees to represent
long-term uncertainty are described much more as an art than a science, and should there-
fore be viewed as guidelines or strategies instead of exact methods. Although no unified
framework for creating these scenario trees has been observed in the relevant literature,
some examples of scenario trees for long-term uncertainty in emission restrictions have
been found.

In Condevaux-Lanloy and Fragnière (2000) uncertainty related to CO2-emission con-
straints is studied using the SETSTOCH-tool for energy and environmental planning. They
implement in total three long-term scenarios; one stringent scenario where emissions are
drastically limited with probability 0.5, one moderate in-between scenario with probability
0.2 and one ”business as usual”-scenario where no emission constraints are enforced, with
probability 0.3.

Uncertainty in emission reduction constraints is also introduced in Laia et al. (2014),
where a unit commitment model is used to maximize expected profits for a price-taking
production agent when scheduling energy generation. Here, three different scenarios for
stochastic emission constraints are included; a baseline scenario level, one scenario with
upper limits on the emission of 20% higher than the baseline scenario, and one scenario
with upper limits 20% lower than the baseline scenario. A uniform, discrete probability
distribution is applied.

Investments in the Belgian energy system in the context of uncertainty about the max-
imum annual CO2-emissions allowed is studied in Aertsens et al. (1999). Four different
scenarios with equal probabilities are applied, where the average CO2 emissions up until
2030 are to be reduced by differing amounts. In the first scenario there are no emission
constraints, and in the three last scenarios, the average annual emissions are limited to 0%,
8% and 25% below 1990 levels, respectively.

As these three examples depict, different approaches are used in the research litera-
ture when generating long-term scenario trees for emission reductions. Both uniform and
non-uniform probability distributions are used, and both symmetric and non-symmetric
scenario trees are observed.

In the scenario trees used in the analyses in this thesis, communicated EU targets are
used as guidelines to anchor the expected value of the scenario trees. That is, the expected
values of the scenario trees used are in line with an 80% reduction of CO2 emissions in the
European power system until 2050 compared to 1990 levels. From this baseline, scenarios
are created by allowing policies to deviate from this trend in each branching stage of the
scenario tree. Supported by the assertion in Trutnevyte (2013) that maximally different
scenarios should be assessed to get a grasp of the possible outcome space, an attempt to
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Scenario tree with 27 scenarios

2010

2015

2020

2025

2030

2035

2040

2045

2050

Figure 7.4: Scenario tree with 27 long-term scenarios. In each branching stage, three new branches
emerge, corresponding to a branching factor of 3. Branching happens in 2020, 2030 and 2040. Note
that due to the multihorizon formulation, the operational periods can be viewed as embedded within
the investment nodes and are left out in this figure.

span a large part of the outcome space has been made. Note that no attempts at modeling
autocorrelations between different time-stages of the long-term scenario tree have been
made, implying an assumption of independence between time-stages.

The procedure for generating the long-term scenario trees used in the analyses in chap-
ter 8 and 9 goes as follows: First, define a branching factor that indicates the number of
branches in each branching stage in the scenario tree. In the test instances, a branching fac-
tor of either two or three has been used, meaning that in each branching stage two or three
different developments in the emission limit for the next stages emerge. Second, choose
the branching stages, i.e. the five-year stages where branching in the scenario tree will
happen. For the scenario trees used in this thesis, 4 scenarios correspond to a branching
factor of two and branching in stage 3 and 5 (corresponding to 2020 and 2030, respec-
tively). For the scenario tree with 8 scenarios, a branching factor of two and branching
in stage 3, 5 and 7 has been used, i.e. branching stages corresponding to 2020, 2030 and
2040. For the scenario tree with 27 scenarios, a branching factor of three and branching in
stage 3, 5 and 7 has been applied. The scenario tree with 81 scenarios is similar to the one
with 27 scenarios, only extended with an additional branching in stage 8 (corresponding
to 2045). In Figure 7.4 the scenario tree for 27 scenarios has been illustrated. In chap-
ter 9 the techno-economic implications of solving the EMPIRE model with this particular
long-term scenario tree will be studied.

In each branching stage of the test instances, a change in the trend of emission re-
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Table 7.2: Scenario tree data with policy uncertainty (27 scenarios). The political uncertainty is
implemented through stochastic restrictions on the total absolute amount of allowed CO2-emissions
across Europe per unit of time. Units are given in Mt CO2 per year.

Scenario 2010 2015 2020 2025 2030 2035 2040 2045 2050 Probability

1 1300 1138 975 1029 1083 1138 1192 1246 1300 0.001
2 1300 1138 975 1029 1083 1138 1192 1138 1083 0.002
3 1300 1138 975 1029 1083 1138 1192 1029 867 0.007
4 1300 1138 975 1029 1083 1029 975 1029 1083 0.002
5 1300 1138 975 1029 1083 1029 975 921 867 0.004
6 1300 1138 975 1029 1083 1029 975 813 650 0.014
7 1300 1138 975 1029 1083 921 758 813 867 0.007
8 1300 1138 975 1029 1083 921 758 704 650 0.014
9 1300 1138 975 1029 1083 921 758 596 433 0.049

10 1300 1138 975 921 867 921 975 1029 1083 0.002
11 1300 1138 975 921 867 921 975 921 867 0.004
12 1300 1138 975 921 867 921 975 813 650 0.014
13 1300 1138 975 921 867 813 758 813 867 0.004
14 1300 1138 975 921 867 813 758 704 650 0.008
15 1300 1138 975 921 867 813 758 596 433 0.028
16 1300 1138 975 921 867 704 542 596 650 0.014
17 1300 1138 975 921 867 704 542 488 433 0.028
18 1300 1138 975 921 867 704 542 379 217 0.098
19 1300 1138 975 813 650 704 758 813 867 0.007
20 1300 1138 975 813 650 704 758 704 650 0.014
21 1300 1138 975 813 650 704 758 596 433 0.049
22 1300 1138 975 813 650 596 542 596 650 0.014
23 1300 1138 975 813 650 596 542 488 433 0.028
24 1300 1138 975 813 650 596 542 379 217 0.098
25 1300 1138 975 813 650 488 325 379 433 0.049
26 1300 1138 975 813 650 488 325 271 217 0.098
27 1300 1138 975 813 650 488 325 163 0 0.343

Exp. val. 1300 1138 975 856 737 618 498 379 260 N/A

ductions may happen. For test instances with a branching factor of two, the development
of emission restrictions can either continue flat with probability 0.3 or continue with a
similar trend as targeting zero emissions from 2020 until 2050 with probability 0.7. With
a branching factor of three, the trends are either slightly upwards towards 2010 emission
levels with probability 0.1, slightly downwards with probability 0.2 or targeting zero emis-
sions in 2050 with probability 0.7. By applying these probabilities the result is scenario
trees with expected developments in emission restrictions of 80% reduction in 2050 com-
pared to 1990-levels, i.e. similar to EU targets. The scenario tree with 27 scenarios has
been depicted in Figure 7.5, and the data for this illustration can be found in Table 7.2.
The data for the rest of the scenario trees used in this thesis can be found in the appendix.
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Figure 7.5: Scenario tree with 27 scenarios, depicting the long term development in policy uncer-
tainty in emission restrictions.
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Chapter 8
Computational Study

In this chapter, the progressive hedging algorithm (PHA) presented in chapter 6 is thor-
oughly calibrated, documented and tested. The objective of the chapter is to obtain an
optimal configuration of the algorithm and use this to test both the performance of the al-
gorithm and the quality of the generated solutions on various test instances of the EMPIRE
model. For sufficiently small test instances, the algorithm is compared with a direct solu-
tion method, which refers to solving an instance directly without decomposing the problem
and relaxing the nonanticipativity constraints. For larger test instances that are intractable
for direct solving, optimality bounds are used to assess the quality of the solutions.

The chapter is organized in four sections. In section 8.1, a brief overview of the cur-
rent implementation and infrastructure is provided. Next, in section 8.2, a description of
relevant test instances is given. These test instances are then used in section 8.3, where an
extensive calibration of the algorithm’s parameters is performed and a final configuration
is proposed. Lastly, the final configuration is used to obtain results from the algorithm in
section 8.4, where a comparison between the obtained results from the PHA and the direct
solution method is provided. As this chapter focuses on the computational performance
of the PHA, an assessment of the techno-economic implications of the obtained solutions
using the PHA has been designated to chapter 9.

8.1 Implementation
In this section, a presentation of the hardware and software used in the computational study
is provided, along with an overview of the implemented system infrastructure.

8.1.1 Hardware and software
The technical specifications of the software and hardware used to conduct the analyses in
this chapter are listed in Table 8.1.

All computations have been performed on a shared cluster at the Norwegian University
of Science and Technology, known as the Solstorm Cluster. This is a shared cluster utilized
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Table 8.1: Hardware and software used when testing the Progressive Hedging Algorithm.

Processor 3.4GHz Intel E5
Memory 512GB RAM
Available nodes 10
CPUs per node 24
Operating System Linux 3.10.0
Xpress-IVE version 1.24.18
Xpress-optimizer version 31.01.09
Mosel version 4.0.8
C-compiler GCC v4.8.5

by multiple other research initiatives at the university which currently lacks any form of
resource allocation and queuing systems. Be aware that this implies that the results related
to elapsed times required to solve the problem in this chapter may have been affected by
interfering traffic during program executions.

8.1.2 Overview of implemented infrastructure
The implemented algorithmic infrastructure for solving the EMPIRE model consists of
three separate modules, as illustrated in Figure 8.1. The first module consists of gathering
and generating scenarios for the input data, including implementations of the scenario
generation routines described in chapter 7. Data from the first module is then given as
input to the second module consisting of the implementation of the progressive hedging
algorithm described in chapter 6. The final module consists of procedures for efficient
analysis of the extensive amounts of outputs from the PHA solving the EMPIRE model.
The analyses in this chapter focus on the performance of the implemented code in the
second module.

In the distributed implementation of the PHA, the subproblems are solved in parallel
on the Solstorm cluster. MPI is used as the communication interface between the master-
and subproblems, and by default, MPI defines and creates one process per subproblem.
In this thesis, each process is assigned to a designated processor/CPU with private mem-
ory (this is an implementation choice explicitly made in this thesis, and not necessarily a
requirement for other parallel implementations). Each processor on the cluster has mul-
tiple cores that can be utilized for shared-memory parallelization by the Xpress solver
within each subproblem. The shared-memory parallelization procedure is an integral part
of the Xpress solver and hence not a part of the implemented algorithmic infrastructure
conducted as part of this thesis.

The distributed implementation is, as mentioned in chapter 6,

8.2 Test instances
Throughout this thesis, the term test instance refers to a unique set of input data and num-
ber of scenarios for the model. All test instances are constructed based on the model data
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Figure 8.1: Infrastructure of current implementation

and scenario generation procedures described in chapter 7. To avoid overfitting the model
parameters to a particular set of input data, multiple test instances are included for both
calibration and performance testing. An overview of all relevant test instances is shown in
Table 8.2.

The test instances differ in three ways: (1) the number of operational hours included
in each typical operational period, (2) the number of short-term scenarios and (3) the
number of long-term scenarios. Therefore, to easily identify the differences between
each test instance, they are denoted by the following naming convention: <operational
hours> <short-term scenarios> <long-term scenarios>.

Table 8.2: Overview of the test instances used in the computational study. The term branching
stages refers to a set of indices on the long-term time scale where a branching occurs in the long-
term scenario tree according to a branching factor. Problem sizes marked with a (∗) indicates that
the problem sizes are estimated, since no available commercially available software is able to set up
or solve the test instance.

Test Operational Short-term Long-term Branching Branching Problem size
instance hours scenarios scenarios stages factor Rows (106) Cols (106)

72 2 4 72 2 4 3,5 2 5.8 4.0
72 2 8 72 2 8 3,5,7 2 11.6 8.0
72 2 27 72 2 27 3,5,7 3 39.2 27.1

240 3 4 240 3 4 3,5 2 28.9 19.4
240 3 8 240 3 8 3,5,7 2 57.9 39.9
240 3 27 240 3 27 3,5,7 3 195.3∗ 134.6∗

720 3 4 720 3 4 3,5 2 87.9 59.8
720 3 8 720 3 8 3,5,7 2 174.0∗ 119.5∗

720 3 27 720 3 27 3,5,7 3 587.4∗ 403.4∗

720 3 81 720 3 81 3,5,7,8 3 1762.2∗ 1210.2∗
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The stochasticity in the test instances is represented both along the short- and long-
term time-scale. As can be seen from Table 8.2, the number of operational hours varies
between 72, 240 and 720, i.e. 3, 10 and 30 consecutive days. Additionally, either 2
or 3 short-term scenarios are used in the different test instances to represent operational
uncertainty and variability. Similarly, the number of long-term scenarios included in the
test instances range between 4 and 81. The long-term scenarios form symmetric scenario
trees in the sense that the same number of new branches, denoted the branching factor,
emerge from each node in each branching stage of the long-term scenario tree. As an
example, a branching factor of 3 and branching stages at time 3, 5 and 7 results in a
scenario tree with a total of 27 scenarios, as depicted in Figure 7.4 in chapter 7. Note that
although political uncertainty is the selected type of long-term uncertainty studied in this
thesis, these test instances are generalized for any type of long-term uncertainty.

In Table 8.2 the problem size of each test instance is presented. Observe that the
problem size of the different test instances varies significantly with the included number of
operational hours and the number of scenarios. The mark (*) indicates that the test instance
is insolvable through direct solution methods, and hence the problem size is estimated
based on scaling of equivalent test instance with a single long-term scenario. Since such
estimates omit nonanticipativity constraints, these estimates should be considered as a
lower bound for the problem size.

8.3 Configurations of the progressive hedging algorithm
In this section, a comprehensive documentation of the performance of the PHA is pro-
vided, including a thorough calibration to determine an optimal configuration of different
parameters in the algorithm. At first, the calibration methodology is presented, before the
most important model parameters are tested and calibrated. In addition, the algorithm is
tested for different bundling factors, i.e. for different numbers of scenarios included per
subproblem of the PHA. At last, some concluding remarks relating to the optimal config-
uration of the parameters in the algorithm is presented.

8.3.1 Progressive Hedging Parameter Calibration Methodology
In the PHA there are three key parameters that need to be calibrated. These parameters are
the step length ρ, the convergence criterion parameter ε and the bundling factor b which
indicates the number of long-term scenarios to be solved per subproblem. An overview of
these parameters with a brief description is given in Table 8.3. In the following paragraphs,
the calibration methodology for these three parameters is presented.

Table 8.3: Overview of the parameters to be configured in the progressive hedging algorithm

Parameter Description
ρ Parameter used in the subproblem’s objective function and dual multiplier update procedure
ε Convergence parameter that indicates the strictness of the implementability requirement
b Bundling parameter stating the number of long-term scenarios solved per subproblem
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Determining step length ρ

The performance of multiplier methods, such as the PHA, is in general sensitive to the
choice of ρ (Watson and Woodruff, 2011). This parameter both defines the step length in
the update procedure of the dual multipliers and scales the quadratic penalty term in the
objective function in each of the subproblems. Finding an optimal value of the parameter
is known to be challenging, and usually there is a trade-off between fast convergence for
the algorithm and tight optimality bounds (Gade et al., 2016).

In the literature there exist no unison framework for determining the optimal value of ρ.
Therefore, in most cases the value is empirically determined, where the order of magnitude
of the value seems to be highly dependent on the problem and input data. In Mulvey and
Vladimirou (1991) the ρ-value is obtained through testing and is found to yield best results
for values less than 1. In Listes and Dekker (2002), for a different problem, it is found that
the best ρ-value lies in the range between 50 and 100. Watson and Woodruff (2011) argues
that the optimal obtained ρ-value thus is an artifact of data-scaling and should be updated
dynamically at each iteration of the PHA based on the obtained decision variables and
the cost-coefficients of the specific problem. A literature survey for existing methods for
updating ρ can be found in Zehtabian and Bastin (2016).

In this thesis ρ is defined as a static parameter and therefore does not change between
iterations of the PHA. An approximation of the optimal value of ρ is found empirically
through testing. A reasonable initial range of the parameter is found through conducting
tests on the smallest data set, before a selected interval within this obtained range is ap-
plied on all test instances. Multiple test instances are used to find the optimal value of ρ to
identify if there are any instance specific conditions affecting the choice of optimal ρ. In-
teresting indicators for finding ρ is the gap from the optimal solution, tightness of obtained
bounds and the number of iterations and computational time required until convergence.

Determining convergence criterion ε

The convergence criterion defines when an obtained solution from the PHA is considered
good enough with respect to implementability requirements. As described in chapter 6, the
convergence criterion in this thesis is based on determining a fixed ε defining the maximum
allowed deviation from the nonanticipativity constraints for a particular decision variable.
This is argued to be a reasonable choice for convergence criterion since it is both fast and
computationally cheap to make this convergence check at each iteration.

As with methods for determining the optimal value of ρ, there are no consensus method-
ologies for determining ε in the literature. A common approach is therefore to define it as
a reasonably small value specific to the problem (Gade et al., 2016; Watson and Woodruff,
2011). For example, in Gonçalves et al. (2012) it is argued that an ε of 50 is a reasonable
convergence criterion, since decision variables for the given problem can take values in
the range between 10 and 30 000. In this thesis, a bound-study using multiple test in-
stances is conducted to calibrate a reasonable value of ε, with the intention of identifying
a relationship between the value of ε and the obtained optimality gaps.
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Determining scenario bundling b

In Gade et al. (2016) it is shown that decomposing the scenario trees by bundles of scenar-
ios of size b > 1 rather than individual scenarios (i.e. b = 1), leads to accelerated conver-
gence of the PHA through reductions to the required number of iterations and tighter op-
timality bounds. The challenge, however, in particular in combination with large problem
instances such as the EMPIRE model, is that the elapsed time for solving a single itera-
tion of a subproblem increases significantly with bundling of multiple scenarios. In some
cases, the problem instances may even get so large that commercially available solvers are
incapable of solving the bundled subproblems. Therefore, there is a trade-off between re-
ducing the number of iterations required to reach optimality and the total elapsed time for
solving the problem. The methodology applied in this thesis for determining the optimal
bundle of scenarios b is based on testing, where bounds, required iterations and total time
elapsed for solving the problem to optimality are studied to find the optimal value.

Relevant terms for the calibration

To explain the convergence properties of the PHA, four relevant terms are included in
the figures and tables presented in this chapter. For convenience, an explanation of the
individual terms is provided below:

• Bounds: Bounds refer to the optimality bounds calculated by the PHA. A bound
is referred to as either a lower bound (lb) or an upper bound (ub), and these are
calculated as explained in chapter 6. The unit of the bounds is given in e2010.

• Gaps: Gaps refer to the relative deviation between an upper bound (ub) and a lower
bound (lb), or, for instances where the exact solution can be obtained, the relative
deviation between an upper bound and the optimal value (z∗). The unit is given in
%.

• Deviation: Deviation refers to the sum of the absolute value of total deviation of
all nonanticipativity requirements for all investment decision variables. The unit is
given in MW or MWh, depending on the type of investment decision variable.

• Elapsed time: Elapsed time refers to the wall clock time for solving the problem,
excluding bound computations. Recall that since the programs are executed on a
shared cluster, the timing might be affected by interfering traffic. The units are most
often given as (hours:minutes).

The next paragraphs document the calibration of the various parameters in the algo-
rithm. For all test instances, a maximum number of iterations is set to limit the total time
allowed to spend on computations. The parameters are tested on multiple test instances,
and since the solution method in combination with static input data would yield the same
results if run multiple times, each configuration is only tested once per test instance. The
objective of the remaining parts of this section is both to document important properties
of the algorithm for different input data sets and to search for an optimal configuration for
later usage of the algorithm.
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8.3 Configurations of the progressive hedging algorithm

8.3.2 Calibration of ρ

Determining the initial range of ρ

To find a reasonable range for the value of ρ for the test instances, an initial bound study is
conducted on one of the instances. Upper and lower bounds are computed for test instance
72 2 4 at each iteration to assess how the value of ρ affects the quality of the solutions
found by the PHA. The results of the bound study are shown in Figure 8.2.
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Figure 8.2: Upper and lower bounds for 72 2 4 with different values of ρ over 20 iterations.

Based on Figure 8.2, it can be seen that the choice of ρ clearly affects both (1) the
quality of bounds and (2) the number of iterations required for convergence. For ρ = 1
and ρ = 10 both the upper and lower bounds only slightly improve over the course of 20
iterations, indicating that these values likely are too low for the given test instance. On
the other end of the scale, ρ = 10000 converges after just a few iterations, but exhibits
an oscillating behavior in the lower bounds, which might indicate that this value is too
large for the particular test instance. The behavior and rate of convergence for ρ = 100
and ρ = 1000 seems to be more sound, as both the upper and lower bounds converge
towards the optimal solution in a reasonable amount of iterations. Therefore, a preliminary
conclusion based on this study is that ρ = 1, ρ = 10 and ρ = 10000 likely are outside
the scope of optimal ρ-values and hence omitted from further testing, and that the optimal
value of ρ lies between 100 and 1000.

In Figure 8.3 the optimality gaps per iteration are illustrated along a logarithmic scale.
The figure shows that for ρ = 1000 the algorithm obtains an optimality gap of 0.1 %
after approximately 10 iterations, which is the tightest gap obtained by all values of ρ for
the given instance and number of iterations. Due to these preliminary results, a value of
ρ = 1000 is chosen as the initial starting point for the remaining calibrations, where also
ρ = 500 and ρ = 2000 are included in the calibration to avoid overfitting ρ to a particular
test instance. The next steps of the calibration involve understanding how differences in
long-term data affect the optimal choice of ρ, before analyzing these effects when varying
short-term data.

91



Chapter 8. Computational Study

0 5 10 15 20

10−1

100

101

102

Iterations

(%, log-scale) Gap (72 2 4)

ρ = 1
ρ = 10
ρ = 100
ρ = 1 000
ρ = 10 000

Figure 8.3: Optimality gaps for 72 2 4 with different values of ρ over 20 iterations.

Calibrating ρ under variation of long-term data

An analysis has been conducted to understand whether the optimal choice of ρ is affected
by variation of the long-term data in the test instances. Table 8.4 shows the results from
solving test instances with the same short-term operational input data, i.e. 72 short-term
hours and 2 short-term scenarios, but with different numbers of long-term scenarios. The
convergence criterion ε is set to 2, which later in this section is shown to be a sufficiently
low value to obtain satisfactory bounds for all test instances. The best obtained optimality
gap per test instance is marked with green.

Table 8.4: Calibrating ρ for instances with 72 short-term hours and 2 short-term scenarios under
variation of long-term scenarios. Convergence criterion ε = 2 and maximum iterations of 100 is
applied.

Test instance ρ
Elapsed time Iterations Gap (%) Bounds (109)

(H:M) (#) (ub to z∗) (ub to lb) (lb) (ub)

72 2 4
500 05:06 61 0.005 % 0.006 % 2514.142 2514.296
1000 03:15 39 0.014 % 0.018 % 2514.053 2514.511
2000 01:48 21 0.045 % 0.066 % 2513.623 2515.284

72 2 8
500 09:11 93 0.150 % 0.160 % 2546.787 2550.874
1000 04:42 51 0.117 % 0.140 % 2546.458 2550.015
2000 01:49 20 0.371 % 0.582 % 2541.630 2556.519

72 2 27
500 08:49 71 0.216 % 0.226 % 2552.955 2558.736
1000 04:43 38 0.308 % 0.343 % 2552.431 2561.207
2000 02:47 22 0.338 % 0.539 % 2548.176 2561.973

The results presented in Table 8.4 illustrate that the algorithm obtains tight optimality
bounds regardless of the choice of ρ within the specified range. All choices of ρ generate
relative gaps from ub to lb of less than 0.6 %, and relative gaps from ub to z∗ of less than
0.4 %. Still, an interesting observation is that ρ = 500 and ρ = 1000 seem to be more
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8.3 Configurations of the progressive hedging algorithm

versatile and robust for all test instances as they consistently produce tighter bounds than
ρ = 2000. This illustrates the benefits of using lower values of ρ, which clearly increase
the quality of the obtained solutions. On the other hand, one of the disadvantages of using
lower values of ρ is the decreased rate of convergence. This is elucidated in the observation
that ρ = 2000 converges faster for all test instances both in terms of elapsed time and in
number of iterations, which clearly emphasize the trade-off between speed of convergence
and tightness of bounds when determining an optimal value of ρ.
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Figure 8.4: Optimality gaps under the variation of long-term data sets for test instances 72 2 4,
72 2 8 and 72 2 27, for different values of ρ. Note that the y-axis is logarithmic.

In Figure 8.4 the development of optimality gaps are shown for the test instances forced
to run over the course of 80 iterations. It can be seen from the figure that as more long-term
scenarios are introduced, the more iterations are required to obtain tight bounds. As more
long-term scenarios are included, the number of investment variables increase as well.
This results in an increase in the number of dual multipliers in the problem, which needs to
be iteratively updated and enforced towards its optimal value. Thus, a possible explanation
for why the optimality gaps increase with the number of long-term scenarios could be that
it is harder to obtain the correct dual multipliers when the number of multipliers increases.

An important insight from Figure 8.4 is that allowing the algorithm to run for a given
number of iterations, instead of determining an ε to define the termination criterion, might
result in slightly different optimal values of ρ. For example, in Table 8.4 it is clear that
ρ = 500 provides the best optimality gap for the test instance with 27 long-term scenarios
72 2 27, which converges after 71 iterations for ε = 2. However, by letting the instance
run for 71 iterations with ρ = 1000 and ρ = 2000 as well, it can be seen from Figure 8.4
that both ρ = 1000 and ρ = 2000 in fact produce better gaps than ρ = 500 at that particular
iteration. From this figure it can also be observed that the optimality gaps seem to be more
stable for lower numbers of long-term scenarios, indicating that the increased amount of
dual multipliers introduced in test instances with more long-term scenarios induce more
instability to the gap calculations.

From Figure 8.4 it can further be observed that at some point there is a diminishing
marginal improvement on the optimality gaps of an additional iteration of the algorithm.
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For example, in the figure there is a significant improvement of the gaps until somewhere
between 20 to 40 iterations until it starts flattening out. This behavior can be explained by
inspecting the optimality bounds for the first 20 iterations illustrated in Figure 8.5. Here it
is shown that the fast convergence in the early iterations mostly is a result of improvements
in the upper bounds, which initially are quite poor until they approach the optimal solution
after approximately 5 to 20 iterations. In addition, it seems like the initial quality of the
upper bound is highly problem specific, as there are large differences between the value of
the upper bounds across all test instances in early iterations. The lower bound, on the other
hand, seems to converge toward the optimal solution much faster than the upper bound,
and in addition it seems to consistently converge approximately at the same iteration for
all long-term scenarios. Based on these results, it is hard to infer any direct relationship
between the number of long-term scenarios and the rate of convergence, as it seems to be
highly instance-specific.
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Figure 8.5: Lower and upper bounds for test instances 72 2 4, 72 2 8 and 72 2 27 for 20 iterations
and different values of ρ.

The value of ρ also impacts the development of the (absolute value of the) deviation
from the nonanticipativity requirements per iteration of the algorithm. A finding in the
study is that higher values of ρ lead to a more oscillating development in the deviations
from these requirements. This effect is illustrated in Figure 8.6, where ρ = 2000 clearly
exhibits a more oscillating development than the other two values of ρ, which is particu-
larly visible for ρ = 500. The oscillating development in the deviation for large values
of ρ may indicate that such values for ρ lead to unstable solutions that converge to local
optima. This is therefore an argument for using values of ρ in the lower parts of the range.

The findings above illustrate that the initial range of ρ-values is sufficient for finding
tight optimality gaps when varying long-term data for the given test instances. In general,
it is found that lower values of ρ produce tighter bounds, but at the cost of more iterations.
This is consistent for all test instances. However, introducing more long-term scenarios
results in larger numbers of dual multipliers, making it harder for the PHA to obtain tight
bounds. In addition, it is found that using large values of ρ lead to more oscillation in terms
of the deviation from the nonanticipativity requirements, which might lead to unstable
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Figure 8.6: Total deviation from the nonanticipativity requirements per iteration for 72 2 4, 72 2 8
and 72 2 27, for different values of ρ. Note that the y-axis is logarithmic.

solutions obtained from the PHA.

Calibrating ρ under variation of short-term data

The analyses in the previous paragraphs showed how variations in long-term data affect the
choice of optimal ρ for test instances with 72 operational hours and 2 short-term scenarios.
In the following paragraphs, the focus is directed towards understanding how different
short-term data affects the choice of ρ, holding the long-term data fixed. In Table 8.5 the
results of calibrating ρ on three test instances with 27 long-term scenarios and different
short-term data is provided. The convergence criterion is, as before, set to ε = 2, and the
maximum allowed number of iterations is limited to 100. The best obtained optimality
gap per test instance is marked with green.

Table 8.5: Calibrating ρ for instances with 27 long-term scenarios under variation of short-term
data. Convergence criterion is ε = 2 and maximum iterations is 100.

Test instance ρ
Elapsed time Iterations Gap (%) Bounds (109)

(H:M) (#) (ub to z∗) (ub to lb) (lb) (ub)

72 2 27
500 08:49 71 0.216 % 0.226 % 2552.955 2558.736
1000 04:43 38 0.308 % 0.343 % 2552.431 2561.207
2000 02:47 22 0.338 % 0.539 % 2548.176 2561.973

240 3 27
500 26:18 28 – 0.078 % 2713.883 2715.996
1000 15:08 16 – 0.168 % 2712.747 2717.318
2000 16:58 18 – 0.245 % 2711.484 2718.135

720 3 27
500 66:47 23 – 0.070 % 2622.254 2624.251
1000 28:001 10 – 0.204 % 2620.722 2626.070
2000 33:55 12 – 0.225 % 2620.500 2626.414

95



Chapter 8. Computational Study

The results presented in Table 8.5 illustrate that the PHA obtains tight optimality
bounds for the specified range of ρ also under variation of short-term data. All choices
of ρ generate relative gaps from ub to lb of less than 0.6 %, and the best obtained gaps
for the largest test instances 720 3 27 and 240 3 27 are found to be less than 0.1 %. Still,
it is evident from the results that also when varying short-term data the trade-off between
the number of iterations required to meet the convergence criterion and tight optimality
bounds is present. Based on the total elapsed time required to solve the problem for the
largest test instance 720 3 27, approaching almost three full days, reducing the number
of iterations might be beneficial, or even necessary, for practical use of the implemented
algorithm.

An interesting effect observed from the results in Table 8.5 is that the number of itera-
tions required to converge is significantly reduced for 240 3 27 and 720 3 27 as compared
to 72 2 27 (and all the other test instances with 72 operational hours and 2 short-term sce-
narios previously presented). The optimality gaps for the larger test instances are also
tighter. An observation from Figure 8.7, which plots the optimality gaps for the three test
instances over the course of 30 iterations, is that the optimality gaps in 240 3 27 mono-
tonically decrease in an ordered manner under variation of ρ. This is different from the
behavior observed in 72 2 27 where the gaps are fluctuating. This might indicate that the
specified range of ρ fits 240 3 27 and 720 3 27 even better than 72 2 27, and that there
exist instance specific properties affecting both the performance of the algorithm’s rate of
convergence and the quality of the obtained solution.
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Figure 8.7: Optimality gaps under variation of short-term data sets for 72 2 27, 240 3 27 and
720 3 27, for different values of ρ. The gaps are calculated at every fifth iteration. The test instance
720 3 27 with ρ = 1000 was executed multiple times, but due to interfering traffic on the shared
cluster none of the executions were successful at converging. Note that the y-axis is logarithmic.

A finding from Table 8.5 is that runs with ρ = 1000 converges faster than runs with
ρ = 2000 for test instance 240 3 27. This result differs from all other test results presented
so far where instances with high values of ρ converge faster, and is a consequence of the

1The test instance 720 3 27 with ρ = 1000 was executed multiple times, but due to interfering traffic on the
shared cluster none of the executions were successful at converging.
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oscillating effects seen on the decision variables when ρ gets too large. In Figure 8.8 the
oscillations in terms of total sum of deviations from the nonanticipativity requirements are
shown for 72 2 27 and 240 3 27. For 240 3 27 an early oscillation of the deviation can
be observed, resulting in an increased number of iterations required to solve the problem.
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Figure 8.8: Total deviation from nonanticipativity requirements when varying ρ on 72 2 27 and
240 3 27. Testing made with ε = 1 and maximum iterations equal to 80.

Concluding remarks regarding calibration of ρ

The results presented in this section illustrate that the initial range of ρ-values is sufficient
for finding tight optimality bounds when varying both short-term and long-term data for
the given test instances. It is worth noting that the test instances presented in this section
are either fixed to the short-term data with 72 operational hours and 2 short-term scenarios,
or with 27 long-term scenarios. Nonetheless, during testing it has been found that the
convergence properties and the quality of the solutions obtained are similar for other test
instances with different short- and long-term data.

It has further been shown above that the value of ρ cannot be tailored for all test in-
stances, as it varies with the properties of the given problem. Still, it is reasonable to
believe that an optimal value of ρ for the test instances presented in this thesis lies around
or below ρ = 1000. This is mainly due to the oscillating effects that are observed when
increasing ρ to 2000, leading to a sort of premature, local convergence with a resulting
reduction in the bound quality. Therefore, for the remaining part of this thesis, ρ will be
set to values in the lower part of the initially proposed range of ρ-values.

8.3.3 Calibration of ε

A study has been conducted to understand the relationship between the choice of ε and (1)
the rate of convergence and (2) the quality of the obtained solutions. Table 8.6 presents the
relationship between different values of ε and the optimality gaps, as well as the number
of iterations and elapsed time required for solving the problem. For obtaining the results,
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the value of ρ is set to 1000 and the number of iterations is limited to 100 iterations for
72 2 8 and 240 3 8 and 40 iterations for 720 3 8. The best obtained gap per test instance
is marked with green.

Table 8.6: Calibrating convergence parameter ε for various test instances. ρ = 1000 and maximum
number of iterations is limited to 100 for 72 2 8 and 240 3 8, and 40 for 720 3 8.

Test instance ε
Elapsed time Iterations Gap (%) Bounds (109)

(H:M) (#) (ub to z∗) (ub to lb) (lb) (ub)

72 2 8

1 09:12 100 – – – –
2 04:42 51 0.117 % 0.140 % 2546.458 2550.015
10 01:02 11 3.094 % 3.375 % 2539.648 2628.344
20 00:26 4 15.859 % 16.292 % 2533.93 3027.093

240 3 8

1 23:40 53 0.047 % 0.078 % 2704.453 2706.555
2 09:22 21 0.081 % 0.141 % 2703.641 2707.460
10 02:26 5 0.266 % 0.433 % 2700.732 2712.483
20 02:03 4 2.312 % 3.542 % 2671.230 2769.306

720 3 8

1 111:10 40 – – – –
2 59:46 21 – 0.158 % 2521.063 2525.042
10 26:27 6 – 0.945 % 2502.415 2526.278
20 12:06 4 – 2.630 % 2515.119 2583.056

In terms of the time and iterations required to solve the problem, it can be seen from
Table 8.6 that high values of ε require relatively few iterations and less elapsed time for
convergence. A low number of iterations comes at a cost of poor optimality gaps, perhaps
best illustrated by the 16.3 % optimality gap for ε = 20 and test instance 72 2 8. At the
same time, it can be seen that low values of ε leads to significantly more computational
effort in terms of iterations for finding an optimal solution satisfying the convergence
criterion. In fact, if ε < 2 both 72 2 8 and 720 3 8 are incapable of converging within
their predefined maximum number of iterations. Therefore, calibrating the value of ε to
account for both a sufficient optimality gap and the time required to solve the problem is
of the essence.

The average deviation of all decision variables deviating from their nonanticipativity
requirements is a metric found to be a reasonable proxy for ε. This metric can be used
to determine a range of values of ε which results in acceptable optimality gaps within a
reasonable number of iterations. In Figure 8.9 the number of iterations of the PHA is
plotted along the x-axis, and the corresponding average deviation and optimality gaps are
plotted along the left and right y-axis respectively. The figure illustrates that to obtain an
optimality gap of 1.0 % for the test instance 72 2 27, 11 iterations are required, which
yields an average deviation of variables of 3.9. Consequently, since the average deviation
is a proxy of ε, by setting ε to 4 this would imply that the algorithm terminates after
approximately 11 iterations at an optimality gap of approximately 1 %. In addition, as
can be seen from the figure, the optimality gap below 1 % only marginally improves over
the course of 40 iterations, which is an argument for finding a sufficient value of ε that
produces good enough solutions without the use of too large amounts of computational
resources or time.
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Figure 8.9: The figure depicts the average deviation of all variables deviating from the nonanticipa-
tivity constraints versus the optimality gap per iteration for 72 2 27. Iterations of the PHA is plotted
along the x-axis, and the corresponding average deviation and optimality gaps are plotted along the
left and right y-axis respectively.

The findings above illustrate the clear trade-off between rate of convergence and qual-
ity of obtained solutions with respect to the parameter ε. It seems like setting ε to around
2 results in a threshold for which all test instances in Table 8.6 are capable of converging
within a reasonable amount of iterations. At the same time, it seems that this choice for ε
provides sufficient optimality gaps, where all gaps are less than 0.2 %. In 72 2 27 there
are around 175′000 investment variables, each taking values in the range between 0 and
135′000 MW or MWh (depending on the type of investment variable) in the optimal so-
lution. Allowing a probability-weighted deviation of a single decision variable to deviate
with at most 2 MW or MWh can therefore be considered acceptable.

8.3.4 Calibrating Scenario Bundling
In Table 8.7 the results of running the PHA on 72 2 8 and 240 3 8 with variations in
scenario bundling is presented. The results are generated with ρ = 1000 and ε = 2,
and with a bundling factor b which indicates the number of long-term scenarios that are
bundled with nonanticipativity constraints within each subproblem. The best obtained
optimality gap per test instance is marked with green.

The results from Table 8.7 show that increasing the bundling factor clearly improves
the quality of the optimality bounds. Solving for a bundle of four scenarios per subproblem
for both of the test instances yields optimality gaps of less than half of any of the gaps pro-
duced by bundling 2 or 1 scenario per subproblem. This is possible because fewer unique
dual multipliers are included in the total problem. In addition, it can be seen that fewer
iterations are needed with higher bundling factors for convergence. Note that the obtained
effects from bundling 2 scenarios per subproblem are significantly less than bundling 4
scenarios per subproblem.
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Table 8.7: Configuring bundling factor b, which indicates how many scenarios to be solved per
subproblem in the progressive hedging algorithm. Convergence criterion ε = 2 and ρ = 1000.

Test instance b
Elapsed time Iterations Gap (%) Bounds (109)

(H:M) (#) (ub to z∗) (ub to lb) (lb) (ub)

72 2 8
1 04:38 51 0.117 % 0.140 % 2546.458 2550.015
2 12:44 34 0.075 % 0.154 % 2545.013 2548.937
4 08:50 17 0.020 % 0.026% 2546.894 2547.545

240 3 8
1 09:22 21 0.081 % 0.141 % 2703.641 2707.460
2 26:38 19 0.077 % 0.118 % 2704.183 2707.366
4 46:13 11 0.030 % 0.052 % 2704.695 2706.093

A disadvantage with bundling is the increase in elapsed time per iteration. In Figure
8.10 the average elapsed time per iteration for various bundling factors is shown. As
can be seen from the figure, the elapsed time required to solve a single iteration more
than doubles when the bundling factors doubles. In addition, for some test instances that
are sufficiently large, introducing bundling factors are often not applicable because the
subproblems are not possible to solve. Hence, determining the bundling factor is a trade-
off between tightness of the optimality bounds and the time and resources available for
computations.
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Figure 8.10: Elapsed time per iteration with different bundling factors for 72 2 8 and 240 3 8.

Figure 8.11 shows the optimality gap at specific times for test instance 240 3 8 for
various bundling factors. A finding from these results is that using smaller bundling fac-
tors, illustrated with orange in the figure, produces tighter optimality gaps faster than using
larger bundling factors. To facilitate for more agile testing, and also be less dependent of
computational resources with high memory availability to solve larger bundles of scenar-
ios, the further calibration and testing conducted in this thesis assumes a bundling factor
of 1 so that one subproblem only solves a single scenario. Nonetheless, it should be noted
that if the objective is to obtain extensively tight bounds, a bundling factor should be used
to achieve the desired target.
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Figure 8.11: Obtained optimality gaps at specific times when varying bundling factor for test in-
stance 240 3 8. Convergence criterion ε = 0.0001 and ρ = 1000.

8.3.5 Summarizing the Progressive Hedging Algorithm Calibration

In this section, the configuration procedure for ρ, ε and b has been presented. The optimal
choice of ρwas shown to be highly instance-specific, but is likely to have a functional value
in the range between 100 and 2000 for the relevant test instances. The choice of ρ clearly is
a trade-off between tight optimality bounds and the number of iterations and elapsed time
required for convergence. This is illustrated by the observation that ρ = 2000 converged
in fewer iterations with looser bounds than ρ = 500 for all test instances. In addition,
observations from some of the tests illustrate that running the PHA with ρ = 2000 results
in oscillating effects and premature convergence of the algorithm, which was not observed
for the other values of ρ tested for. A reasonable trade-off between sufficient optimality
bounds and fast convergence is thus to choose ρ = 1000, which is used in the latter part
of this study. This value of ρ seems to be stable under the variations of both short- and
long-term input data.

The optimal value for the convergence criterion ε is estimated to be in the range be-
tween 1 and 5. Defining ε in this range is shown to produce an optimality gap of less
than 1 % for several test instances. In terms of the bundling constant b, it is shown that
bundling indeed improves the tightness of the optimality gap. However, a major drawback
of bundling is that the time required for solving the problem is significantly increased, as
the time it takes for solving one iteration increases exponentially. Hence, the final config-
uration used in the remaining parts of this thesis is ρ = 1000, ε = 2 and b = 1.

8.4 Comparing progressive hedging with direct solving

The remaining parts of this chapter are devoted to comparing the performance of the PHA
with the direct solving method. The study is conducted to better understand the advantages
and challenges of using the PHA to solve the EMPIRE model, as compared to solving the
problems directly whenever this is possible. The comparison is done in three steps. First,
a comparison of the elapsed time required to solve the test instances by the two methods
is presented. Second, the differences in computational resources required by the methods
are considered, with a particular emphasis on the necessary requirements within memory
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availability and CPU capacity. Finally, a comparison between the final results of solving
the test instances with both methods is shown in the latter part of the section.

8.4.1 Elapsed Time Required for Solving the Problem

The primary objective of implementing the PHA is to solve problems that the direct solving
method is not capable of solving. Therefore, achieving a reduction in the elapsed time for
solving a problem with the PHA if the problem is sufficiently small to be managed by the
direct solver is not an objective in itself with the implementation. Nonetheless, the PHA
possess solid convergence properties and scales well as the number of long-term scenarios
and problem size increase.
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Figure 8.12: Elapsed time when solving the test instances with the PHA. Parameters ε = 2, ρ =
1000 and b = 1

The elapsed time required by the PHA for solving test instances with different short-
and long-term data is shown in Figure 8.12. Based on these results, it is apparent that the
main driver of the elapsed time for solving the test instances with the PHA is related to the
size of the short-term operational data, and that the number of long-term scenarios included
has limited effects on the overall elapsed time to achieve convergence for the algorithm.
This finding implies that the required time for solving a problem can be considered more
or less constant under variation of long-term data when solved with the PHA, as long as
there are sufficient computational resources available.

The direct solving method turns out to be much less robust than the PHA when con-
sidering the effect of changes in the number of long-term scenarios on the elapsed time
required to solve the problem. In Figure 8.13 it is shown that the time required to solve
one of the test instances directly, increases exponentially as the number of long-term sce-
narios increase. As previously shown, the PHA exhibits a more or less constant pattern
unaffected by the changes in long-term scenarios. Therefore, in addition to fulfilling its
primary objective with solving problem instances that are intractable for the direct solving
method, the PHA can also solve particular instances faster than the direct solving method
as the number of long-term scenarios and problem complexity increases sufficiently.
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Figure 8.13: The elapsed time required for solving three test instances with different long-term data
by the direct solving method and the Progressive Hedging Algorithm. Parameters ε = 2, ρ = 1000
and b = 1.

Since the PHA is implemented as a distributed program, some of the elapsed time is
devoted to input / output (IO) of data, i.e. communication, between the parallel processes.
This is an example of an overhead-cost that is not present in the direct solving method,
as it solves the problem instance in one particular program execution spawning a single
process (potentially utilizing multiple cores). In many large-scale distributed programs
the time spent on IO is significant and contributes to a radical increase in the elapsed
solution time. For the PHA this is far from the case and the time spent on IO is at most
negligible. For a test instance with 27 long-term scenarios, approximately 0.1 seconds
is related to IO between the processes during each iteration, which for the smallest test
instance 72 2 27 is about 0.03 % of the elapsed time of solving one particular iteration.
It is therefore apparent that the time spent on solving the particular subproblems is much
more expensive compared to the overhead cost related to IO in the parallelization.

As compared to the direct solving method, which solves the entire problem in one
program execution, the PHA is an iterative algorithm solving multiple smaller programs
in parallel. The combination of the PHA being both iterative, synchronously implemented
and distributedly executed on a shared cluster with interfering traffic, has a significant
impact on the elapsed time required to solve the problem. These factors are challenging
for the PHA and does not in any noteworthy manner impact the direct solving method.

In practice, a synchronous parallel program executed on a shared cluster is challeng-
ing because the elapsed time for solving each subproblem at a particular iteration varies
drastically with the interfering traffic and balance of computational resources. In theory,
each subproblem should approximately terminate at the same time. In practice, however,
this has not been the case for program executions on the shared cluster with the PHA. In
certain cases significant differences in the elapsed solution time per iteration have been
observed, the reason being that some subproblems run programs on nodes that are experi-
encing heavy traffic from other users. Due to the synchronous implementation this delays
the entire process because all subproblems must wait for the last subproblem to finish until
the algorithm can proceed to the next iteration. In Figure 8.14 a histogram illustrates the
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frequency of subproblems that terminates after a certain amount of time for one iteration
of a test run of instance 720 3 27. As can be seen from the figure, there is a small tail
of subproblems terminating far later than all others, which increase the total elapsed time
for the given iteration from 80 to 260 minutes. This significantly reduces the overall per-
formance of the algorithm and is a practical problem greatly affecting the elapsed time
for solving the problem for the PHA specifically. The direct solving method, on the other
hand, is less exposed to this problem as computations are not decentralized across multiple
nodes and processors.
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Figure 8.14: Histogram showing the frequency of subproblems in the 720 3 27 test instance ter-
minating within specified time intervals. The example illustrates the experienced challenge with
running a distributed, synchronous parallel program on a shared cluster, where interfering traffic
cause increases in the elapsed time required for some of the subproblems in the PHA.

Summarized, the PHA exhibits interesting properties which makes it highly suitable
for solving problems with multiple long-term scenarios. The PHA is both able to solve
problems with a high number of long-term scenarios and, in fact, once the number of
long-term scenarios and problem complexity increases sufficiently the PHA is observed
to reach convergence faster than the direct method. Through testing, it is shown that
the algorithm scales well, but only under the assumption that computational resources are
available, which enables additional scenarios to be added to new processors. The following
part of the computational study is included to get an understanding of the computational
resources required by the PHA for solving a particular problem.

8.4.2 Computational Resources Required for Solving the Problem

The PHA is able to solve large instances of the EMPIRE model, much larger than the
instances that the direct solving method is capable of. This is due to the extensive paral-
lelization and distributed computations across multiple processes on a shared cluster. This
allows the algorithm to utilize the computational resources in a different manner than the
direct solving method, replacing the need of one large resource with good computational
specifications with multiple resources, possibly with poorer specifications. As a result,
the computational requirements of the two methods differ both in terms of (1) memory
availability and (2) CPU capacity.
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In terms of memory availability, there are clear differences between the requirements
of the PHA and the direct solving method. A summary of the memory requirements is
given in Table 8.8. In the PHA each individual subproblem requires less memory than the
comparable total problem solved directly. This enables the subproblems in the PHA to be
solved on computer hardware with lower available memory capacity than what is required
for solving the total problem directly. Still, if the memory requirements per subproblem
are aggregated to compare the total requirements of a single iteration of the PHA with the
direct solving method, it is apparent that the total memory requirements of the PHA vastly
exceed the ones of the direct solving method. The aggregated memory mimics the sum
of the distributed memory capacity utilized by all processes when the PHA is solved in
parallel. For example, solving 240 3 4 with the PHA in parallel requires as much as 41.6
GB aggregated memory in each iteration (10.4 GB per subproblem and 4 subproblems).
This is almost the double of what is required by the direct method for solving the same
problem, which only requires a maximum of 23.1 GB. Therefore, even though each sub-
problem requires less memory than the total problem, the aggregated memory capacity for
the parallel version of the PHA exceeds the requirements of the direct solving method.

Table 8.8: Memory availability requirements for the progressive hedging algorithm and the direct
solving method. The requirements refer to the maximum available memory capacity that is needed
to solve a problem, either in one subproblem, aggregated for all subproblems in parallel, or directly.
The table is included to illustrate the differences in memory utilization between the methods.

Test instance

Progressive Hedging Direct Solving

Required memory per Number of Aggregated required Total required
subproblem (GB) subproblems (#) memory in parallel (GB) memory (GB)

72 2 4 2.1 4 8.4 8.4
72 2 8 2.1 8 16.8 16.7
72 2 27 2.1 27 56.7 43.7

240 3 4 10.4 4 41.6 23.1
240 3 8 10.4 8 83.2 46.2
240 3 27 10.4 27 280.8 –

720 3 4 30.1 4 120.4 100.4
720 3 8 30.1 8 240.8 –
720 3 27 30.1 27 812.7 –

The distributed PHA requires a large number of available CPUs to solve all subprob-
lems during a single iteration. In Table 8.9 the CPU time is shown for both the PHA and
the direct solving method. Note that the notion of CPU time is different from the elapsed
time to solve the problem previously used as a metric for time complexity in this chapter.
The CPU time is the time a CPU spends on processing instructions of a computer program,
as opposed to waiting for IO or being in low-power mode. In programs that utilize multi-
ple cores in its execution, the CPU time might exceed 100 percent of the elapsed time to
solve the problem. Since each subproblem in the PHA spans one process that utilizes mul-
tiple cores, the CPU time therefore gives an indication of the required resources to solve a
single iteration of the algorithm. As can be seen from the table, the required resources to
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solve a single iteration of the PHA significantly exceeds the required resources for solving
the problem directly.

Table 8.9: The CPU time for the progressive hedging algorithm (1 iteration) and the direct solving
method. The table is included to illustrate the large differences in CPU resources needed between
the methods. Note that CPU time refers to the time a CPU spends on processing instructions of a
computer program, and is different from the elapsed time to solve the problem, previously used as a
metric for time complexity.

Test instance

Progressive Hedging (per iteration) Direct Solving

CPU time per subproblem Max number of Total CPU time Total CPU time
(Minutes) subproblems (#) (Minutes) (Minutes)

72 2 4 73 4 294 120
72 2 8 152 8 1 219 252
72 2 27 464 27 12 529 1 531

240 3 4 304 4 1 215 405
240 3 8 616 8 4 924 556
240 3 27 2 145 27 57 921 –

720 3 4 1 079 4 4 317 789
720 3 8 2 405 8 19 237 –
720 3 27 8 115 27 219 116 –

The results presented in this section indicate that the aggregated computational re-
sources required for solving a single iteration of the distributed PHA significantly exceed
the requirements for solving the problem directly. However, due to the decomposition of
the large problem into smaller subproblems in the PHA, the algorithm is able to utilize the
hardware infrastructure differently and hence divide the aggregated load into decentralized
computations, with the result that much larger problem instances can be solved.

8.4.3 Final results
To summarize the above discussions, a comparison between the final results of solving
the test instances with both the PHA and the direct solving method is conducted. The
intention of this study is to better understand the quality of the solutions obtained by the
PHA relative to the exact solution and the optimality bounds. In Table 8.10, the final results
of solving the test instances with the different methods are presented. The parameters ρ, ε
and b are set according to the suggested value from the calibration procedure in the primer
parts of this chapter, such that ρ = 1000, ε = 2, and b = 1. Note that the optimal value of
ρ was previously found to be specific for the various instances. For comparison across test
instances, all results in Table 8.10 are generated from ρ = 1000, even though other values
of ρ was found to produce even tighter bounds for particular test instances. This is done
to enable comparisons of the elapsed time required to solve the problem instance and the
required number of iterations to reach the convergence criterion.

2The results were generated with ρ = 500
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Table 8.10: The final results of comparing the progressive hedging algorithm with the direct solving
method. Parameters ρ = 1000, ε = 2 and b = 1.

Test instance
Direct solving Progressive Hedging

Optimal cost Time Best known ub Time Iterations Gap

(109) (H:M) (109) (H:M) (#) (ub to z∗) (ub to lb)

72 2 4 2514.164 00:29 2514.511 03:15 39 0.018 % 0.014 %
72 2 8 2547.036 01:18 2550.015 04:42 51 0.117 % 0.140 %
72 2 27 2553.321 16:14 2561.207 04:43 38 0.308 % 0.343 %

240 3 4 2716.757 02:59 2717.703 09:59 20 0.035 % 0.041 %
240 3 8 2705.270 09:14 2707.460 09:22 21 0.081 % 0.141 %
240 3 27 – – 2717.318 15:08 16 – 0.168 %

720 3 4 2532.895 13:33 2534.147 51:08 13 0.049 % 0.081 %
720 3 8 – – 2525.042 59:46 21 – 0.158 %
720 3 272 – – 2624.251 66:47 23 – 0.070 %
720 3 81 – – 2615.249 73:07 18 – 0.117 %

From Table 8.10 it can be seen that all of the optimality gaps are found to be tighter
than 0.35 % for the test instances. In addition, by comparing the obtained solutions from
the PHA with the exact solution from the direct solving method for relevant test instances,
all of the gaps are found to be tighter than 0.31 %. Both these results indicate that the PHA
is capable of finding solutions that are sufficiently close to the optimal solution.

As a proof of concept, the algorithm is applied to solve the test instance 720 3 81,
including 81 long-term scenarios, with over 1.2 billion variables and 1.7 billion constraints.
When solving this instance with the PHA, an optimality gap of 0.2 % was obtained in less
than 48 hours, and a gap of 0.1 % was obtained in about 73 hours. This illustrates that the
algorithm scales with additional long-term scenarios, as long as computational resources
are available to handle the increased number of subproblems.

8.5 Summary of the algorithm’s performance
In this chapter, a computational study of the PHA has been conducted. The main focus has
been to (1) calibrate and understand the properties of the parameters used in the algorithm,
and (2) assess the quality of the obtained solutions.

In the calibration procedure, it was shown that the optimal choice of ρ is highly prob-
lem specific and varies for the different sets of short- and long-term input data. Nonethe-
less, an initial range of ρ-values was found, and further tests showed that satisfactory op-
timality gaps are provided within a reasonable number of iterations for all test instances.
The value of the convergence criterion ε and the bundling factor b per subproblem was also
studied and was found to have a smaller impact on the convergence properties of different
test instances. The ε-parameter was set to 2, as this choice was shown to generate satisfac-
tory optimality gaps for all test instances. In addition, the bundling factor b was calibrated
to 1 to allow for agile testing.

In the latter part of the chapter the performance and solutions obtained with the PHA
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were compared to the direct solving method. It was shown that the distributed implementa-
tion of the PHA is capable of handling the increased complexity resulting from including
a large number of long-term scenarios. The algorithm showed impressive properties of
scalability with increasing numbers of long-term scenarios, as long as computational re-
sources are available. The final results obtained from solving the test instances with both
the PHA and the direct solving method was presented, showing that the PHA finds tight
optimality gaps for all test instances in a reasonable amount of time.

In the next chapter, to verify the implications of including long-term uncertainty in
capacity expansion models, a thorough analysis of the techno-economic implications of
modeling short-term operational uncertainty and long-term political uncertainty through
stochastic emission restrictions has been conducted. The study is conducted on the test
instance 720 3 27 presented in this chapter.
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Chapter 9
Techno-Economic Implications of
Political Uncertainty

In chapter 2-4 the problem of capacity expansion in power systems was introduced, includ-
ing a review of how this problem can be modeled mathematically and how uncertainty can
be incorporated in the model. Further, in chapter 5, the version of the linear optimiza-
tion model EMPIRE with long-term uncertainty was presented, followed by a method and
algorithm for solving this model in chapter 6. Chapter 7 presented important input data
and methods for generating long- and short-term scenarios for the model, while chapter 8
provided a thorough review of the performance of the implemented progressive hedging
algorithm. Although a lot of the work conducted as part of this thesis has consisted of
developing the mentioned solution method and algorithmic infrastructure in order to be
able to solve large-scale stochastic programs, an analysis of the techno-economic impli-
cations of including long-term uncertainty in the LSSCEPPS should also be performed.
This analysis is based on the hypothesis that the inclusion of long-term uncertainties in the
model can give insights beyond the scope of an analysis based on a long-term determin-
istic approach. Therefore, in this chapter the value of the extensive implementation work
will be demonstrated by analyzing the results from solving model instances with a large
number of long-term scenarios for political uncertainty. In the model, the political uncer-
tainty has been implemented through stochastic long-term development of CO2-emission
constraints.

As will be further elaborated in section 9.1 below, a sufficiently large amount of long-
term scenarios has to be included in the model to capture the value of modeling long-term
uncertainty. Therefore, a test instance with 27 long-term scenarios has been used in the
analyses in this chapter. This is considered to be enough to illustrate the effect of including
long-term uncertainty, but still not too much to grasp for policymakers. In addition, the
largest short-term data set has been used to capture as realistic operational characteristics
as possible. As a result, all analyses in this chapter are conducted using the 720 3 27 test
instance, as presented in Table 8.2 in chapter 8. For reference, the scenario tree for 27
long-term scenarios is presented in Table 7.2 and Figure 7.5 in chapter 7.
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As discussed in chapter 4, the foundation of stochastic optimization is the alternation
between decisions to be made and revelation of uncertain information, followed by new
recourse decisions to be made. This structure is enforced for the short-term uncertainty
in the model by separating investment variables from operational variables, but for the
long-term uncertainty, this structure is not enforced without further ado. The reason for
this is that in the model formulation presented in chapter 5, investments are allowed after
long-term uncertainty is revealed, but before a new operational period is considered. As a
result, the model can tailor investments for each long-term scenario after the uncertainty is
revealed but before their usefulness and profitability is assessed in an operational period.
Hence, without extensions to the model formulation presented in chapter 5 it can be viewed
as a long-term rolling horizon deterministic scenario analysis with short-term uncertainty,
and not a model with both long- and short-term stochastics.

To capture the structure of alternation between investment decisions and revelation
of long-term uncertainty, a delay from the timing of the investment decision to the time
the capacity is available needs to be introduced. This is implemented in the model by not
allowing investments in stages after long-term uncertainty revelation, i.e. after a branching
stage in the long-term scenario tree. This modeling choice is equivalent to assuming a
five-year building process for all infrastructure technologies. Note that in stages where
uncertain long-term information is not revealed, there are no issues with assuming that
capacity is available at the instant the decision is made (possibly apart from negligible
differences in the discount factor for the timing of payments), since the building process
can commence earlier in order to make the capacity available when needed. Also note
that this argument only holds for long-term deterministic models, simply because optimal
decisions from long-term stochastic models cannot be implemented before the uncertainty
has been revealed.

As presented in the scenario tree including 27 long-term scenarios in chapter 7, the
revelation of long-term uncertainty happens in investment stage 3, 5 and 7. These stages
are denoted branching years in Table 8.2 in chapter 8. In terms of actual years these
stages correspond to 2020, 2030 and 2040, since the planning horizon of the model spans
nine five-year investment stages from 2010 (corresponding to investment stage 1) to 2050
(corresponding to investment stage 9). As a result of the time-delay discussion above,
investments are not allowed in the model in investment stage 4, 6 and 8, corresponding
to 2025, 2035 and 2045, respectively. It is also worth mentioning that since the EMPIRE
model was originally developed to optimize power system capacity expansion from 2010-
2050, 2010 and 2015 are included in the model even though they are historical years.
Therefore, investments are not allowed for the first two stages corresponding to 2010 and
2015, meaning that only already installed infrastructure can be utilized when optimizing
the operations of the system for these five-year periods.

In Figure 2.1 in chapter 2, the two most important outputs from a model for the LSS-
CEPPS were presented – (1) the expected costs of optimal power system development
during the planning horizon considered, and (2) the optimal infrastructure investment de-
cisions during this horizon. The techno-economic analyses conducted in this chapter will
be structured according to these two outputs. Section 9.1 embarks on a deep-dive into the
implications of including long-term political uncertainty on the total expected, discounted
costs of the system, while section 9.2 analyzes the implications of long-term political un-
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certainty on the optimality of infrastructure investment decisions. Since the backbone
of the treatment of uncertainty in this thesis is the hypothesis that a stochastic program-
ming (SP) approach can give insights that a rolling horizon (RH) deterministic approach
is unable to identify, the analyses in both sections will be centered around a comparison
between these two fundamentally different modeling approaches. A summary and discus-
sion of the most important techno-economic implications identified in the analyses will be
provided at the end of the chapter in section 9.3.

9.1 The effect of political uncertainty on expected costs

9.1.1 The Value of a Long-Term Stochastic Solution
In section 4.1.3 of chapter 4, the difference between using the SP- and the RH-approach
when formulating a mathematical model was explained. It was argued that the RH-
approach yields the expected result of using the rolling horizon expected value solution
(ERHEV), and that the value of including stochastics in the model (the VSS) can be ob-
tained using equation (4.4) from that chapter, i.e. by finding the difference in objective
value between the SP- and the RH-approach. Note that this VSS-calculation yields the
value of including both long-term and short-term uncertainty compared to assuming per-
fect foresight about long-term parameters and only including uncertainty in short-term
inputs. This subtle detail has an important implication for how the VSS should be inter-
preted. That is, it implies an assumption that the engineers designing the power system
have accounted for short-term operational fluctuations, but that investment decision mak-
ers have neglected the low-frequent uncertainties affecting the long-term parameters in the
model.

Table 9.1 presents the results from VSS-calculations for multiple different test in-
stances. Similarly to the previous chapter, test instances are denoted by the naming con-
vention <operational hours> <short-term scenarios> <long-term scenarios>. The val-
ues in the table indicate that introducing long-term political uncertainty in the model has
significant value when a sufficient amount of long-term scenarios are included, ranging
from 7.9% to 11.6% in the cases of 8 and 27 long-term scenarios. It is also worth not-
ing that in the cases of 4 long-term scenarios, the VSS is negligible, indicating that more
branching stages in the long-term scenario tree, and therefore a higher number of long-
term scenarios, is necessary to capture the value of modeling long-term uncertainty. This
observation supports the choice of using a test instance with 27 long-term scenarios in the
analyses conducted in this chapter.

9.1.2 Detailed analysis of total expected costs
In this section, the total expected system costs for the SP- and the RH-approach will be an-
alyzed in detail. The hypothesis that the SP-approach results in hedging actions compared
to the RH-approach will also be analyzed. The terms hedging action, hedging behavior or
hedging investment refers to the behavior of spending more on investments in infrastruc-
ture capacity early in the planning horizon in order to reduce future expected costs. Such
strategies reduce the need for remedy investments later in the planning horizon. The term
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Table 9.1: The Value of a Stochastic Solution for some test instances

Test instance Best known stochastic Rolling horizon det. VSS
solution (bn e2010) solution (bn e2010) (bn e2010) (%)

240 3 4 2692.0 2693.6 1.6 0.1 %
240 3 8 2705.3 3060.9 355.6 11.6 %
240 3 27 2715.3 3011.3 296.0 9.8 %

720 3 4 2497.4 2501.6 4.2 0.2 %
720 3 8 2526.3 2742.4 216.1 7.9 %
720 3 27 2624.3 2854.8 230.6 8.1 %

remedy action or remedy investment will throughout this chapter refer to cases where too
low amounts of capacity have been installed in early stages, resulting in a need to invest
heavily, possibly at a high cost, to satisfy the operational requirements of certain scenarios.
Thus, remedy actions can be viewed as the opposite of hedging actions.

To set the context for the rest of the analyses in this section, three descriptive charts of
the expected costs over the planning horizon is presented. Note that all expected costs pre-
sented in this chapter are long-term and short-term probability weighted sums discounted
to 2010-values and denoted in billion e. In the charts to follow, the optimal expected costs
for the 720 3 27 test instance is broken down into different components – investment costs
and operational costs. Investment costs are further divided into five categories – the costs
of investing in low-CO2 generation capacity, high-CO2 generation capacity, transmission
capacity, storage power capacity and storage energy capacity. Furthermore, the operational
costs are divided into the cost of power generation and the cost of lost load. In the first
three descriptive charts, only a split between investment costs and operational costs has
been applied.

In Figure 9.1 the optimal expected system costs generated by the SP-approach are
broken down by infrastructure type and technology. Note that the split between different
generation technologies and for transmission is aggregated to a less granular level of detail
compared to the technologies presented for the input data in the appendix. This is done to
simplify the analyses. From Figure 9.1 it is observed that a few key generation technolo-
gies, in addition to investments in transmission and storage, make up most of the expected
costs. In addition, the figure shows that apart from the cost of lost load, only fuel requiring
generation technologies add to the operational costs of the system.

A similar breakdown of the expected system costs is done per country in Figure 9.2.
Although a handful of countries contribute a lot to the total expected system costs, it
is evident that many smaller countries also contribute with a meaningful amount to the
expected costs.

In Figure 9.3 the expected costs are broken down per five-year investment stage. In
addition, a comparison between the SP- and the RH-approach has been included. Note
that due to the discounting of future costs to 2010-values, the expected costs in the figure
have a downward trend. Also note that as discussed in chapter 5, operational costs are only
optimized for a limited amount of typical hours in the model, in this case, 720 hours or 30
full days. The operational costs for these 30 full days are then scaled to reflect the costs of
operating the power system over a full five-year period. As a result, operational costs are
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Figure 9.1: Breakdown of total expected, discounted system costs per infrastructure type and gen-
eration technology, generated by the stochastic programming (SP) approach.
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reported on a five-year basis, where for instance the operational costs reported for 2020
comprise the costs of operating the system from 2020-2025. Furthermore, following the
discussion above, investments are not allowed in investment stages right after a branching
stage in the long-term scenario tree, with the result that investments are only allowed in
2020, 2030 and 2040.
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Figure 9.3: Breakdown of total expected, discounted system costs per five-year time stage. RH
refers to the rolling horizon deterministic approach, while SP refers to the stochastic programming
approach.

From Figure 9.3 slightly higher investment costs for the SP-approach relative to the
RH-approach can be observed in the years 2030 and 2040, i.e. the investment stages
where the second and third branching in the long-term scenario tree happen. This indicates
that the SP-approach finds hedging strategies to be optimal in these stages. Similarly,
indications of remedy investments in 2050 for the RH-approach can be observed. Another
important observation from this chart is the high operational costs in 2045 in the RH-
approach compared to the SP-approach. The mentioned observations indicate that hedging
strategies are not very expensive, but that such strategies seem to vastly reduce the future
expected operational costs of the system. Possible reasons for this result will be further
analyzed in the paragraphs below.

Analysis of the expected costs of infrastructure investments

In the following paragraphs, the total expected, discounted costs related to infrastructure
investments will be further analyzed. When studying hedging strategies in the context of
uncertainty related to emission restrictions, it is natural to look at investments in gener-
ation technologies with high and low intensities of CO2-emissions per unit of produced
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9.1 The effect of political uncertainty on expected costs

electricity in a separate manner. The reason for this is that investments in low-CO2 tech-
nologies should be considered as a hedging action against the possibility of more stringent
emission restrictions in the future, while investments in high-CO2 technologies should
not. For this reason, a categorical distinction has been made between capacity investments
in generation technologies with high and low CO2-emission intensities, respectively. The
intensities of CO2-emissions per unit of electricity production for the different generation
technologies are depicted in Figure 9.4.
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Figure 9.4: CO2-emission intensities for different generation technologies. A distinction has been
made between high and low CO2-emission intensity technologies, as illustrated by the line in the
chart.

In Figure 9.5, a breakdown of investment costs is presented per time stage where in-
vestments are made in the model. A distinction has been made between the SP- and the
RH-approach, and the investment costs are split between the five different categories for
investment costs mentioned above.

Figure 9.5 depicts some differences between the SP- and the RH-approach in terms
of investment costs for the different infrastructure types. To make these differences more
visible, a relative comparison has been made in Figure 9.6.

In Figure 9.6, the investment costs of the SP-approach relative to the RH-approach are
presented. As a simple example, the investment costs of low-CO2 generation investments
in 2030 amount to e317.5 bn in the SP-approach and e311.3 bn in the RH-approach. This
gives a relative investment cost in the SP-approach of 317.5−311.3

311.3 = 2.0%, i.e. higher
in the SP-approach than in the RH-approach. This means that in the SP-approach the
model finds it optimal to spend 2.0% more on low-CO2 generation technologies in 2030
compared to the RH-approach.

The figure provides further indications that the model chooses hedging investment de-
cisions before long-term uncertainty is revealed. Recall that hedging actions are expected
in 2020, 2030 and 2040 due to the branching stages of the long-term scenario tree for
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Figure 9.5: Comparison of investment costs for each investment stage for the SP- and RH-approach.
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Figure 9.6: Relative comparison of investment costs in each investment stage for the SP- and RH-
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the 720 3 27 test instance, while remedy investments might occur in the last year when
there is no uncertainty left to be revealed. Indeed, this expected behavior of the model
seems to be correct. Although the results for 2020 is slightly ambiguous regarding the
hedging behavior of the SP-approach, the results for 2030 and 2040 show clear indica-
tions of hedging. In both of these investment stages, the SP-approach chooses to invest
more in low-CO2 generation technologies compared to the RH-approach, as illustrated by
the positive relative values. As expected, it also finds it optimal to invest less in high-
CO2 generation technologies in 2030 compared to the RH-approach, since investments in
such technologies are not viewed as hedging investments in a context of uncertainty about
emission restrictions. An explanation for the more surprising result that the SP-approach
results in more high-CO2 generation capacity in 2040 may be that more capacity is needed
in general to limit future expected operational costs.

Furthermore, the SP-approach finds it optimal to invest more in both transmission and
storage infrastructure compared to the RH-approach in 2030 and 2040. This is in line with
the hypothesis that the SP-approach chooses hedging actions since the intermittency and
uncontrollable nature of several renewable, low-CO2 technologies requires transmission
and storage infrastructure to ensure balance in the power system. In addition, remedy in-
vestments triggered by too low investments in low-CO2 technologies in previous stages
are observed in 2050 for the RH-approach. This can be seen from the fact that the RH-
approach invests relatively more in low-CO2 generation technologies and storages (i.e. the
SP-approach invests relatively less) and relatively less in high-CO2 generation technolo-
gies (i.e. the SP-approach invests relatively more).

Analysis of the expected costs of operating the system

In the following paragraphs, the total expected, discounted costs related to operations of
the system will be further analyzed. Figure 9.7 presents a breakdown of operational costs
per five-year time stage. The operational costs are split into the costs of power generation
and the cost of lost load. The costs of power generation are made up of the variable costs
from generation technologies requiring fuel inputs, such as natural gas, coal, bio-fuels, oil
and nuclear. A distinction has also been made between the SP- and the RH-approach in
the figure.

Two important conclusions can be drawn from studying Figure 9.7. First, the cost of
lost load is comparatively equal for all five-year periods except from 2045, where it is
orders of magnitude larger in the RH-approach. This explains parts of the reason why the
SP-approach is superior to the RH-approach in the context of political uncertainty since
this is evidence that the RH-approach is incapable of handling the political uncertainty in
a proper manner.

The second observation made from Figure 9.7 is that the costs of power generation are
slightly higher in the five-year operational periods from 2020 to 2030 in the SP-approach,
while they are meaningfully lower in the five-year periods from 2035 to 2045. To make
these differences more visible, a comparison of the costs of power generation for the SP-
approach relative to the RH-approach has been made in Figure 9.8. The calculations of the
values in the figure is similar to the procedure presented for the relative values in Figure
9.6.
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Figure 9.7: Comparison of operational costs for each five-year time period for the SP- and the RH-
approach. The cost of lost load is comparative in all years but 2045, where it is drastically higher in
the RH-approach.

The observation that the costs of power generation are slightly higher for the SP-
approach in early years as compared to the RH-approach, indicates that the hedging be-
havior of the SP-

Based on the results presented above, it can be seen that the behavior of the SP-
approach in early years generates more robust and cost-efficient solutions to future policy
outcomes than the RH-approach. This is because the increased investment costs in the
SP-approach is more than offset by the reductions achieved in future operational costs,
as depicted in Figure 9.7 and 9.8. On the other hand, the increased operational costs in
the RH-approach, both in terms of power generation costs and cost of lost load, can be
explained by its overly optimistic and seemingly myopic approach to investments, lacking
resilience and robustness to handle the different possible scenarios for emission restric-
tions that could be implemented in the future.

9.2 The effect of political uncertainty on infrastructure
investments

In this section, the impact that long-term uncertainty in emission restrictions has on the
optimality of investments in generation, transmission and storage infrastructure will be
analyzed in detail. Note that in the analyses that will be presented in this section, it would
not be reasonable to simply study the probability-weighted investment decisions, since the
optimality of these decisions should be understood as conditional on a particular long-term
scenario being realized. Hence, the number of distinguishable scenarios included in the
analysis increases with each branching stage in the long-term scenario tree. Therefore, for
2020 there is only one distinguishable scenario to analyze, in 2030 there are three distin-
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Figure 9.8: Relative comparison of the costs of power generation in each five-year period for the
SP- and the RH-approach.

guishable scenarios (consisting of scenarios 1-9, 10-18 and 19-27 respectively), while in
2040 nine distinguishable scenarios have to be analyzed (consisting of scenarios 1-3, 4-6
and so on up to scenarios 25-27). Note that investment decisions are only analyzed for the
investment stages corresponding to 2020, 2030 and 2040, as the investment decisions in
2050 are not made under uncertainty and that it would involve a cumbersome comparison
of 27 distinguishable scenarios for both the SP- and the RH-approach.

9.2.1 Comparing investments in the SP-approach to the RH-approach
The comparisons of investment decisions in this section will be done for each investment
stage, i.e. 2020, 2030 and 2040, in a separate manner. For each stage, two different
analyses will be conducted. First, the absolute investment decisions for both the SP- and
the RH-approach will be presented for all distinguishable long-term scenarios. Second,
a relative comparison will be performed for the total accumulated infrastructure capacity
installed at each investment stage. As a result, the first analysis will provide insights into
the capacity additions in each investment stage, while the second analysis will provide a
relative snapshot of the installed capacity at each stage, meaning that capacity retirements
will also be accounted for in the second analysis.

2020-investments

The investment decisions for 2020 for different generation technologies are depicted in
Figure 9.9. The figure validates the hedging actions of the SP-approach compared to the
RH-approach, as more of the clean generation technologies wind and solar is installed.
In addition, the SP-approach invests more in natural gas and less in coal compared to the
RH-approach. This is an interesting observation that may explain the ambiguity alluded
to in the 2020-numbers for relative investment costs in Figure 9.6. To understand this, a
reference has to be made to Figure 9.4. Even though natural gas is categorized as a high-
CO2 generation technology, this figure shows that the CO2-emission intensity of natural
gas is less than half that of coal. Therefore, the observation that the SP-approach chooses to
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Investments in generation and transmission capacity in 2020 for the SP- and RH-approach (GW)
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Figure 9.9: Investments in generation and transmission capacity in 2020 are compared for the SP-
and the RH-approach.

invest relatively more in natural gas and relatively less in coal is in line with the hypothesis
that the SP-approach invests in technologies with lower CO2-emission intensities.

The total transmission investments in 2020 is also presented in Figure 9.9. This figure
also confirms the hypothesis that the SP-approach chooses to invest more in transmission
capacity with the target of introducing more flexibility in the power system and to balance
fluctuations from intermittent, renewable generation. Note that no storage investments
have been presented for 2020, simply because both approaches found it optimal to not
invest in storage capacity in 2020. The reason for this may be that the expansion of inter-
mittent, renewable generation has not come very far in 2020, making storage investments
redundant that early in the planning horizon.

A relative comparison of the accumulated infrastructure capacities in 2020 for the SP-
and the RH-approach is presented in Figure 9.10. The numbers in the figure present the
relative differences in accumulated capacity for different technologies in the SP-approach
compared to the RH-approach. As an example, the total optimal accumulated capacity
for natural gas-fired generation in 2020 is 192 GW in the SP-approach and 184 GW in
the RH-approach. This gives a relative difference in accumulated natural gas generation
capacity of 192−184

184 = 4.3%. This means that in the SP-approach the model finds it
optimal to invest in such a manner that the accumulated natural gas generation capacity is
4.3% higher in 2020 compared to the RH-approach.

Figure 9.10 confirms the hedging behavior of the SP-approach in 2020 since accumu-
lated capacities for both natural gas (which have a lower CO2-emission intensity than e.g.
coal), transmission, solar and wind are higher in the SP-case, while the capacity for coal
is lower in the SP-case. The SP-approach also results in lower accumulated capacities
for nuclear generation compared to the RH-approach despite the fact that nuclear is a low
CO2-emission intensity technology. Hence, it seems that the SP-approach favors invest-
ments in natural gas over nuclear. Both of the technologies are considered controllable
generation sources and hence suited to complement power systems with high shares of
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Figure 9.10: The figure shows the relative differences in accumulated capacity for different infras-
tructure technologies in 2020 in the SP-approach compared to the RH-approach.

intermittent renewable energy. However, the ramp-up characteristics of natural gas (i.e.
the amount of time required to start up or increase production from the current produc-
tion level) are significantly more flexible than for nuclear generation. This suggests that
investments in natural gas provide more flexibility to the power system, which is prefer-
able in the SP-approach due to the high accumulated capacities of intermittent, renewable
generation capacity.

2030-investments

In Figure 9.11 the investment decisions for the different generation technologies in the
investment stage corresponding to 2030 are presented. Since there are three distinguish-
able scenarios in 2030, a comparison between the SP- and the RH-approach has to be
made for all three. That is, the dark blue bars for the SP-approach have to be compared
to the light blue bars for the RH-approach, the dark green bars for the SP-approach have
to be compared to the light green bars for the RH-approach, and so on. The results are
somewhat ambiguous, however, hedging behavior is observed for solar investments in the
first scenario and for coal generation with CCS-capabilities (i.e. a low-CO2 generation
technology) in all scenarios.

On the other hand, Figure 9.12 presents strong indications of hedging behavior for both
transmission and battery storage investments. As discussed before, this is in line with a
hedging strategy that invests in flexible solutions in order to balance possible future fluctu-
ations in the power system from an increasing amount of renewable, low-CO2 generation
capacity.
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Figure 9.11: Investments in generation capacity in 2030 is compared for the SP- and the RH-
approach. Since there are three distinguishable scenarios in the scenario tree in 2030, three different
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a particular color has been chosen for eased comparison between the SP- and the RH-approach
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Figure 9.12: Investments in transmission and storage capacity in 2030 is compared for the SP- and
the RH-approach. Since there are three distinguishable scenarios in the scenario tree in 2030, three
different comparisons have to be made between the SP- and RH-approach. For each distinguishable
scenario, a particular color has been chosen for eased comparison between the SP- and the RH-
approach
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Relative accumulated infrastructure capacities in 2030 for the SP- and RH-approach (%)

Scenario 
1-9

Scenario 
10-18

Scenario 
19-27

Coal CCS >100 % 55.6 % 17.2 %

Batt. energy 21.4 % 4.8 % 9.1 %

Batt. power 21.4 % 4.8 % 9.1 %

Solar 10.6 % -2.0 % -0.9 %

Natural gas 5.6 % 1.3 % -2.4 %

Transmission 2.6 % -0.4 % 3.2 %

Wind 1.2 % 0.0 % 0.5 %

Pumped hydro energy 0.0 % 0.0 % 0.0 %

Pumped hydro power 2.0 % 0.6 % 0.7 %

Hydro/Geo/Ocean 0.0 % 0.0 % 0.1 %

Bio/Oil 0.0 % 0.0 % 0.0 %

Coal -3.8 % -3.5 % -2.1 %

Nuclear -3.8 % -2.3 % -4.3 %

Natural gas CCS -21.3 % -17.1 % 57.9 %

Figure 9.13: The table shows the relative differences in accumulated capacity for different infras-
tructure technologies in 2030 in the SP-approach compared to the RH-approach.

Figure 9.13 presents a relative comparison of accumulated infrastructure capacities in
2030 for the SP- and the RH-approach. This comparison for 2030 is analogous to the
comparison presented for the 2020-capacities in Figure 9.10 in the sense that positive
numbers mean higher investments in the SP-approach is found to be optimal. However,
due to the large number of scenarios and infrastructure technologies, the comparison is
presented in a tabular format. The results for all infrastructure types correspond very
well with the hedging behavior hypothesis for the SP-approach, as this approach results in
higher accumulated capacities in 2030 for both coal with CCS-capabilities, battery storage,
natural gas, transmission infrastructure, wind capacity and pumped hydro storage in most
scenarios, and for solar in one out of three scenarios. In addition, the SP-approach results
in lower accumulated capacities for coal generation and nuclear.

2040-investments

In the investment stage corresponding to 2040, there are nine distinguishable scenarios,
giving rise to nine different pairs of results for the SP- and the RH-approach to be analyzed.
A selection of the results is presented in Figure 9.14, where generation investments for
solar and wind capacity, transmission investments and battery energy storage investments
for 2040 are presented. Similarly to the 2030-results, these charts have to be compared
pairwise per color in order to see the differences between investment decisions in the
SP- and the RH-approach. For completeness, the rest of the results can be found in the
appendix.
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Figure 9.14: Investments in selected infrastructure types in 2040 is compared for the SP- and the
RH-approach. Since there are nine distinguishable scenarios in the scenario tree in 2040, nine dif-
ferent comparisons have to be made between the SP- and RH-approach. For each distinguishable
scenario, a particular color has been chosen for eased comparison between the SP- and the RH-
approach. Note that results for the rest of the infrastructure types have been included in the appendix
for completeness.
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At first glance, the results seem quite ambiguous with little coherence. However, some
insights in line with the hypothesis of hedging behavior for the SP-approach may still be
extracted. First, investments in wind generation capacity are higher in the SP-approach
compared to the RH-approach for most scenarios. This also applies to investments in bat-
tery energy investments. However, for many of the other infrastructure types, hedging
behavior for the SP-approach is difficult to infer. An explanation for this may be that since
the SP-approach has chosen to invest more heavily in both low-CO2 generation technolo-
gies, transmission capacity and storage capacity in previous investment stages, the SP-
approach may simply end up in a state where no more hedging investments are needed.
That is, the SP-approach seems to be able to operate the power system in a robust and
resilient manner during the rest of the planning horizon without investing a lot compared
to the RH-approach. On the other hand, it may seem that the RH-approach has to em-
bark on remedy investments already in 2040 to be able to comply with given operational
requirements.

Figure 9.15 supports this explanation. That is, it shows that compared to the RH-
approach, the SP-approach results in higher accumulated capacities in 2040 in most of
the scenarios for most of the infrastructure types for which hedging investments should be
expected, such as battery investments, coal with CCS-capabilities, natural gas, solar and
wind capacity and transmission. Accumulated capacity for coal generation is also lower
in the SP-approach.
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Relative accumulated infrastructure capacities in 2040 for the SP- and RH-approach (%)

Scenario 
1-3

Scenario 
4-6

Scenario 
7-9

Scenario 
10-12

Scenario 
13-15

Scenario 
16-18

Scenario 
19-21

Scenario 
22-24

Scenario 
25-27

Battery energy 20 % 22 % 10 % 8 % 8 % -6 % 9 % 9 % 19 %

Battery power 20 % 22 % 10 % 8 % 8 % -6 % 9 % 9 % 19 %

Coal CCS 6 % -1 % 5 % 8 % 4 % 7 % 0 % 7 % -21 %

Natural gas 9 % 4 % 4 % 3 % -1 % 2 % 1 % -5 % -3 %

Solar 2 % 3 % -2 % -2 % 0 % -4 % -1 % 0 % 2 %

Wind 2 % 3 % 0 % 0 % 1 % 1 % 0 % 1 % 6 %

Transmission 2 % 1 % 0 % 0 % 0 % 0 % 2 % 3 % 5 %

Nuclear -9 % -6 % 2 % 3 % -1 % -3 % 8 % -6 % 13 %

Hydro/Geo/Ocean 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %

Bio/Oil 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %

Pumped hydro
energy

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %

Pumped hydro power 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 1 %

Coal -4 % -2 % -5 % -4 % -1 % -4 % -4 % -1 % -3 %

Figure 9.15: The table shows the relative differences in accumulated capacity for different infras-
tructure technologies in 2040 in the SP-approach compared to the RH-approach. Positive values
indicate that higher accumulated capacities were found to be optimal in the SP-approach compared
to the RH-approach.
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9.3 Summarizing the techno-economic analyses
In this chapter, a thorough analysis of the techno-economic implications of introducing
long-term stochastic emission restrictions in the model has been conducted. The analysis
has been performed with the underlying hypothesis that a treatment of long-term uncertain-
ties in the model can give insights beyond the scope of a long-term deterministic approach.
Therefore, a stochastic programming (SP) approach including both short-term operational
uncertainty and long-term political uncertainty has been compared to a rolling horizon
(RH) long-term deterministic approach where only short-term operational uncertainty has
been included. Both total expected system costs and the optimality of investment deci-
sions has been analyzed and compared for the two approaches, and some very interesting
insights have been identified.

The analyses of total expected system costs have provided some notable results. First
and foremost, VSS-calculations for several different test instances indicated significant
values of modeling both long- and short-term uncertainty compared to short-term uncer-
tainty only, ranging from 7.9% to 11.6% in the cases of 8 and 27 long-term scenarios. In
addition, the calculations showed that the VSS was negligible for test instances with fewer
long-term scenarios, indicating that a higher number of long-term scenarios is needed to
capture the effect of modeling long-term uncertainty. Another interesting observation has
been that the alternation between decisions and revelation of uncertainty in stochastic pro-
grams introduces a need to assume a time-lag from investment decision to the capacity is
available, i.e. a lead-time for capacity expansions, in order to capture the value of mod-
eling uncertainty. By neglecting lead-times overly optimistic and unrealistic results were
found, as the model was given unrealistically much flexibility. This indicates that there
may be a value to shortening lead-times for infrastructure investments from the time the
investment decision is made. It also indicates that the value of infrastructure types with
shorter lead-times may increase when long-term uncertainty is introduced in the model.

Further insights from the analysis include that compared to the RH-approach, the SP-
approach seems to favor hedging actions in stages before long-term uncertainty is revealed.
That is, it seems to spend larger amounts on investments in infrastructure capacity that are
robust to handle possible different realizations of political uncertainty. On the other hand,
the RH-approach seems to be forced to spend more on remedy investments later in the
planning horizon due to an overly optimistic and seemingly myopic approach to invest-
ments early in the planning horizon. The hedging behavior of the SP-approach is observed
before all uncertainty in the planning horizon is revealed, both in terms of increased in-
vestments in low-CO2 generation technologies, transmission infrastructure and storage
capacity. Note that investments in transmission and storage are viewed as hedging invest-
ments due to their ability to introduce operational flexibility and balance fluctuations in the
system induced by an anticipated increase in the amount of unpredictable and intermittent
renewable generation capacity. On the other hand, the RH-approach seems to increase in-
vestments in the same types of infrastructure later on in the planning horizon, underlining
the overly optimistic approach to investments in the beginning. If in addition natural gas
is viewed as a low-CO2 generation technology compared to coal (considering the signif-
icantly lower emission intensity in natural gas) and a more flexible alternative to nuclear
(considering the favorable ramp-up characteristics of natural gas for increased flexibility),
the pattern of hedging investments early in the planning horizon for the SP-approach and

127



Chapter 9. Techno-Economic Implications of Political Uncertainty

remedy investments for the RH-approach later in the planning horizon becomes even more
evident.

The analyses show that the hedging behavior of the SP-approach is not overly ex-
pensive, particularly if the extra investment costs are compared to the future reductions in
expected operational costs. That is, the investment decisions of the RH-approach results in
drastically higher operational costs compared to the SP-approach. Further research efforts
should verify this result for different values of lost load, as the costs of lost load make up
a meaningful amount of the operational costs. However, the conclusion still stands – com-
pared to the SP-approach the RH-approach to modeling the LSSCEPPS with uncertainty
related to long-term emission restrictions seems to be incapable of handling the inherent
uncertainty of the problem in a proper manner.

To summarize, the above analyses show that a treatment of long-term uncertainty in-
deed has given insights that the long-term deterministic approach was unable to identify,
even though short-term operational uncertainty has been included in both approaches. Re-
sults from the analyses indicate that politicians can significantly reduce the expected costs
of power system capacity expansion by reducing uncertainty about future energy policy in
general and uncertainty about regulations for CO2-emission restrictions in particular. In
addition, the results suggest that energy policy should facilitate transmission and storage
expansion in order to promote the progress of capacity expansion of renewable, typically
intermittent generation capacity. In the meantime, before these uncertainties are resolved,
the above results indicate that hedging investments as defined in this chapter is both favor-
able and valuable for the European power system.
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Chapter 10
Conclusion

In 2011 the European Council reconfirmed the EU’s objective to reduce greenhouse gas
emissions by more than 80 percent in 2050 compared to 1990-levels. Due to the large
emission reduction potentials of the European power system, almost complete decar-
bonization of the sector is implied. This transition will take place in a period of significant
expected changes in the power system. Due to the high-cost and irreversible nature of
power system capacity investments, careful planning and quantitative models are needed
to identify optimal capacity expansion pathways. Such models quickly become too com-
plex to handle due to the broad scope and granular level of detail required, often resulting
in deterministic approaches being applied.

This thesis presents and formulates the Long- and Short-term Stochastic Capacity Ex-
pansion Problem for the Power System (LSSCEPPS) in Europe. In this problem, long-term
investment decisions are simultaneously co-optimized with short-term operational deci-
sions to obtain least-cost and robust capacity expansion pathways for the European power
system in the presence of both long- and short-term uncertainty. A thorough review of
treatment of uncertainty in power system capacity expansion models is conducted as part
of the thesis, finding that, at least to the best of the authors’ knowledge, no optimization
models including both long- and short-term uncertainty have been developed in previous
research efforts.

To bridge this gap in the research literature, the EMPIRE model, a capacity expansion
model for the European power system, is extended to include both long- and short-term
uncertainty in this thesis. However, accounting for stochastics in two time-scales signifi-
cantly increases the complexity of the model, making direct solution methods incapable of
solving realistic problem instances. Hence, improved solution methods are needed, moti-
vating the work in this thesis with developing a distributed progressive hedging algorithm
to solve large instances of the EMPIRE model by decomposing the model by long-term
scenarios.

The performance of this distributed progressive hedging algorithm is tested through a
comprehensive computational study on a number of different test instances. The algorithm
is proven to generate tight optimality gaps below 0.35 percent within a reasonable time for
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all test instances studied in the thesis, underlining its stable convergence properties. It
is also shown to be capable of solving problem instances with as much as 81 long-term
scenarios, 720 short-term operational hours and 3 short-term scenarios (resulting in a prob-
lem instance with more than 1.2 billion variables and 1.7 billion constraints), obtaining an
optimality gap of about 0.1 percent in 18 iterations after approximately 70 hours. This
clearly illustrates the algorithm’s ability to solve much larger instances than direct solu-
tion methods. The algorithm is also found to scale very well when additional long-term
scenarios are included, as long as sufficient computational resources are available. This is
demonstrated by the result that both the number of iterations and the elapsed time required
to solve an instance is more or less constant for test instances with differing numbers of
long-term scenarios. The main contributor to time-complexity is, therefore, found to be
the size of the short-term operational input data, which is proven to significantly affect the
elapsed time required to solve different test instances.

To verify the practical implications of including long-term uncertainty in power system
capacity expansion models, an analysis of the techno-economic implications of introduc-
ing stochastic long-term emission limits is presented. VSS-calculations indicate signifi-
cant values of using a long- and short-term stochastic approach compared to a long-term
deterministic approach with short-term uncertainty only, ranging from 7.9 to 11.6 percent
for the test instances with 8 or 27 long-term scenarios. In addition, the calculations show
that the VSS is negligible for test instances with fewer long-term scenarios, indicating
that a larger number of long-term scenarios is needed to illustrate the effect of modeling
long-term uncertainty. The analyses also show that it is necessary to assume a lead-time
from investment decision to the time the capacity is made available to capture the value
of modeling uncertainty. This is due to the alternation between decisions and revelation
of uncertainty characterizing stochastic programs. By neglecting lead-times, overly op-
timistic and unrealistic results are found, simply because the model is given unrealistic
flexibility. These findings indicate that there may be a value of infrastructure types and
generation technologies with shorter lead-times when long-term policy uncertainty is in-
troduced in the model.

Further insights from the analyses indicate that compared to the long-term determin-
istic approach, the stochastic approach seems to favor hedging actions in stages before
long-term uncertainty is revealed. That is, compared to the deterministic approach, the
stochastic approach spends slightly more on robust infrastructure investments that exhibit
the flexibility needed to handle several different possible emission scenarios. This in-
cludes higher investments in low-CO2 generation, transmission, storage, and even natural
gas power plants. This latter observation can be explained by the lower CO2-emission
intensity of natural gas compared to coal, and favorable ramp-up characteristics compared
to both coal and nuclear power. Thus, the results indicate that natural gas may be a suitable
complement to the anticipated increased shares of intermittent, renewable power supply in
the future power system.

The results obtained also show that, compared to the long-term deterministic approach,
the hedging behavior exhibited by the stochastic approach is comparatively inexpensive
when measured against the vast reductions in future expected operational costs. This find-
ing shows that politicians can significantly reduce the expected costs of power system
capacity expansion by reducing uncertainty about future energy policy. The above results
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are also clear evidence that a treatment of long-term uncertainty in capacity expansion
models indeed provides insights beyond the scope of a long-term deterministic approach,
as the latter approach seems to be incapable of handling the inherent uncertainty of the
problem in a proper manner.

Further research

In this thesis, a substantial effort has been devoted to developing a proprietary library of
code that implements a distributed progressive hedging algorithm aiming to solve instances
of the EMPIRE model with a large number of long-term scenarios. The algorithm has been
proven to scale well with increasing numbers of long-term scenarios, but the size of the
short-term operational input data has been shown to vastly impact the elapsed time of
the algorithm. Therefore, a natural next step for further research is to study methods for
solving each subproblem of the distributed PHA in a shorter time. One such method could
be to implement warm-start of the next iteration using the previously obtained solution.
This is viable since only the objective function is changed between each iteration of the
PHA, while the feasible area stays the same. Another strategy for improving the solution
time could be to implement improved solution methods for each subproblem, for instance
by using Benders decomposition as presented in chapter 4.

Another issue of the distributed progressive hedging algorithm relates to its synchronous
implementation. The algorithm is solved synchronously in parallel, giving rise to signifi-
cant challenges regarding resource allocation and interfering traffic, which has been shown
to limit the algorithm’s performance. A potential opportunity to remedy some of these ef-
fects is to understand how the progressive hedging algorithm can be implemented as an
asynchronous parallel program, which might result in improved utilization of the aggre-
gated computational resources on a computing cluster.

In the formulation of the EMPIRE model used in this thesis, a homogeneous lead-
time of five years has been implemented for all types of investment decisions. This is a
simplification since different infrastructure types require different amounts of time to be
installed. Motivated by the results found in this thesis, indicating that reduced lead-times
may reduce the costs of uncertainty in stochastic models, an analysis where different lead-
times for each technology is implemented could be an exciting area of future research.

Finally, in the techno-economic analyses conducted, small increases in investment
costs due to hedging behavior in the long-term stochastic approach were shown to reduce
future expected operational costs drastically. A potential weakness with this observation is
that a large portion of this increase comes from increases in the costs of lost load. As a re-
sult, further research efforts should verify the results obtained in this thesis by conducting
sensitivity analyses for different values of lost load.
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aspects in solving the medium-term operation planning problem of hydrothermal power
systems by using the progressive hedging method. International Journal of Electrical
Power Energy Systems 31 (9), 546 – 552, power Systems Computation Conference
(PSCC) 2008.
URL http://www.sciencedirect.com/science/article/pii/
S0142061509000726
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Jägemann, C., Fürsch, M., Hagspiel, S., Nagl, S., 2013. Decarbonizing europe’s power
sector by 2050 — analyzing the economic implications of alternative decarbonization
pathways. Energy Economics 40 (Supplement C), 622 – 636.
URL http://www.sciencedirect.com/science/article/pii/
S0140988313001928

Kann, A., Weyant, J. P., Jan 2000. Approaches for performing uncertainty analysis in
large-scale energy/economic policy models. Environmental Modeling & Assessment
5 (1), 29–46.
URL https://doi.org/10.1023/A:1019041023520

Kanudia, A., Loulou, R., 1998. Robust responses to climate change via stochastic markal:
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Appendix

Scenario trees

Table 10.1: Scenario tree with policy uncertainty for 4 long-term scenarios, restricting the total
absolute amount of allowed CO2-emissions across Europe per five-year time-stage. Units are given
in MT CO2/year.

Scenario 2010 2015 2020 2025 2030 2035 2040 2045 2050 Probability

1 1300 1138 975 975 975 975 975 975 975 0.090
2 1300 1138 975 975 975 813 650 488 325 0.210
3 1300 1138 975 813 650 650 650 650 650 0.210
4 1300 1138 975 813 650 488 325 163 0 0.490

Table 10.2: Scenario tree with policy uncertainty for 8 long-term scenarios, restricting the total
absolute amount of allowed CO2-emissions across Europe per five-year time-stage. Units are given
in MT CO2/year.

Scenario 2010 2015 2020 2025 2030 2035 2040 2045 2050 Probability

1 1300 1138 975 975 975 975 975 975 975 0.027
2 1300 1138 975 975 975 975 975 813 650 0.063
3 1300 1138 975 975 975 813 650 650 650 0.063
4 1300 1138 975 975 975 813 650 488 325 0.063
5 1300 1138 975 813 650 650 650 650 650 0.147
6 1300 1138 975 813 650 650 650 488 325 0.147
7 1300 1138 975 813 650 488 325 325 325 0.147
8 1300 1138 975 813 650 488 325 163 0 0.343
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Table 10.3: Scenario tree with policy uncertainty for 81 long-term scenarios (part 1/2), restricting
the total absolute amount of allowed CO2-emissions across Europe per five-year time-stage. Units
are given in MT CO2/year.

Scenario 2010 2015 2020 2025 2030 2035 2040 2045 2050 Probability

1 1300 1138 975 1029 1083 1138 1192 1246 1300 0.0001
2 1300 1138 975 1029 1083 1138 1192 1246 1192 0.0002
3 1300 1138 975 1029 1083 1138 1192 1246 1083 0.0007
4 1300 1138 975 1029 1083 1138 1192 1138 1192 0.0002
5 1300 1138 975 1029 1083 1138 1192 1138 1083 0.0004
6 1300 1138 975 1029 1083 1138 1192 1138 975 0.0014
7 1300 1138 975 1029 1083 1138 1192 1029 1083 0.0007
8 1300 1138 975 1029 1083 1138 1192 1029 975 0.0014
9 1300 1138 975 1029 1083 1138 1192 1029 867 0.0049

10 1300 1138 975 1029 1083 1029 975 1029 1083 0.0002
11 1300 1138 975 1029 1083 1029 975 1029 975 0.0004
12 1300 1138 975 1029 1083 1029 975 1029 867 0.0014
13 1300 1138 975 1029 1083 1029 975 921 975 0.0004
14 1300 1138 975 1029 1083 1029 975 921 867 0.0008
15 1300 1138 975 1029 1083 1029 975 921 758 0.0028
16 1300 1138 975 1029 1083 1029 975 813 867 0.0014
17 1300 1138 975 1029 1083 1029 975 813 758 0.0028
18 1300 1138 975 1029 1083 1029 975 813 650 0.0098
19 1300 1138 975 1029 1083 921 758 813 867 0.0007
20 1300 1138 975 1029 1083 921 758 813 758 0.0014
21 1300 1138 975 1029 1083 921 758 813 650 0.0049
22 1300 1138 975 1029 1083 921 758 704 758 0.0014
23 1300 1138 975 1029 1083 921 758 704 650 0.0028
24 1300 1138 975 1029 1083 921 758 704 542 0.0098
25 1300 1138 975 1029 1083 921 758 596 650 0.0049
26 1300 1138 975 1029 1083 921 758 596 542 0.0098
27 1300 1138 975 1029 1083 921 758 596 433 0.0343
28 1300 1138 975 921 867 921 975 1029 1083 0.0002
29 1300 1138 975 921 867 921 975 1029 975 0.0004
30 1300 1138 975 921 867 921 975 1029 867 0.0014
31 1300 1138 975 921 867 921 975 921 975 0.0004
32 1300 1138 975 921 867 921 975 921 867 0.0008
33 1300 1138 975 921 867 921 975 921 758 0.0028
34 1300 1138 975 921 867 921 975 813 867 0.0014
35 1300 1138 975 921 867 921 975 813 758 0.0028
36 1300 1138 975 921 867 921 975 813 650 0.0098
37 1300 1138 975 921 867 813 758 813 867 0.0004
38 1300 1138 975 921 867 813 758 813 758 0.0008
39 1300 1138 975 921 867 813 758 813 650 0.0028
40 1300 1138 975 921 867 813 758 704 758 0.0008
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Table 10.4: Scenario tree with policy uncertainty for 81 long-term scenarios (part 2/2), restricting
the total absolute amount of allowed CO2-emissions across Europe per five-year time-stage. Units
are given in MT CO2/year.

Scenario 2010 2015 2020 2025 2030 2035 2040 2045 2050 Probability

41 1300 1138 975 921 867 813 758 704 650 0.0016
42 1300 1138 975 921 867 813 758 704 542 0.0056
43 1300 1138 975 921 867 813 758 596 650 0.0028
44 1300 1138 975 921 867 813 758 596 542 0.0056
45 1300 1138 975 921 867 813 758 596 433 0.0196
46 1300 1138 975 921 867 704 542 596 650 0.0014
47 1300 1138 975 921 867 704 542 596 542 0.0028
48 1300 1138 975 921 867 704 542 596 433 0.0098
49 1300 1138 975 921 867 704 542 488 542 0.0028
50 1300 1138 975 921 867 704 542 488 433 0.0056
51 1300 1138 975 921 867 704 542 488 325 0.0196
52 1300 1138 975 921 867 704 542 379 433 0.0098
53 1300 1138 975 921 867 704 542 379 325 0.0196
54 1300 1138 975 921 867 704 542 379 217 0.0686
55 1300 1138 975 813 650 704 758 813 867 0.0007
56 1300 1138 975 813 650 704 758 813 758 0.0014
57 1300 1138 975 813 650 704 758 813 650 0.0049
58 1300 1138 975 813 650 704 758 704 758 0.0014
59 1300 1138 975 813 650 704 758 704 650 0.0028
60 1300 1138 975 813 650 704 758 704 542 0.0098
61 1300 1138 975 813 650 704 758 596 650 0.0049
62 1300 1138 975 813 650 704 758 596 542 0.0098
63 1300 1138 975 813 650 704 758 596 433 0.0343
64 1300 1138 975 813 650 596 542 596 650 0.0014
65 1300 1138 975 813 650 596 542 596 542 0.0028
66 1300 1138 975 813 650 596 542 596 433 0.0098
67 1300 1138 975 813 650 596 542 488 542 0.0028
68 1300 1138 975 813 650 596 542 488 433 0.0056
69 1300 1138 975 813 650 596 542 488 325 0.0196
70 1300 1138 975 813 650 596 542 379 433 0.0098
71 1300 1138 975 813 650 596 542 379 325 0.0196
72 1300 1138 975 813 650 596 542 379 217 0.0686
73 1300 1138 975 813 650 488 325 379 433 0.0049
74 1300 1138 975 813 650 488 325 379 325 0.0098
75 1300 1138 975 813 650 488 325 379 217 0.0343
76 1300 1138 975 813 650 488 325 271 325 0.0098
77 1300 1138 975 813 650 488 325 271 217 0.0196
78 1300 1138 975 813 650 488 325 271 108 0.0686
79 1300 1138 975 813 650 488 325 163 217 0.0343
80 1300 1138 975 813 650 488 325 163 108 0.0686
81 1300 1138 975 813 650 488 325 163 0 0.2401
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Model input data

Table 10.5: Investment cost for generation technologies in e2010/kW (ZEP, 2013)

2010 2015 2020 2025 2030 2035 2040 2045 2050

Lignite 1600 1600 1600 1600 1600 1600 1600 1600 1600
Lignite CCS 2600 2600 2600 2600 2600 2600 2600 2600 2600
Coal 1500 1500 1500 1500 1500 1500 1500 1500 1500
Coal CCS 2500 2500 2500 2500 2500 2500 2500 2500 2500
Gas CCS 1350 1350 1350 1350 1350 1350 1350 1350 1350
Gas OCGT 400 400 400 400 400 400 400 400 400
Gas CCGT 800 800 800 800 800 800 800 800 800
Gas CCS 1350 1350 1350 1350 1350 1350 1350 1350 1350
Bio 10 % cofiring 1600 1600 1600 1600 1600 1600 1600 1600 1600
Bio 10 % cofiring CCS 0 0 0 2600 2530 2470 2400 2330 2250
Nuclear 4500 4500 4500 4500 4500 4500 4500 4500 4500
Wave 6050 5669 5288 4906 4525 4144 3763 3381 3000
Geo 5500 5500 5500 5500 5500 5500 5500 5500 5500
Hydro regulated 3000 3000 3000 3000 3000 3000 3000 3000 3000
Hydro run-of-the-river 4000 4000 4000 4000 4000 4000 4000 4000 4000
Wind onshore 1200 1063 1033 1002 972 942 912 881 851
Wind offshore 4080 4080 3205 2770 2510 2375 2290 2222 2172
PV Solar 1900 998 760 540 325 295 285 260 232

Table 10.6: Investment cost for transmission infrastructure in e2010/MW/km (de Joode et al., 2011)

2010 2015 2020 2025 2030 2035 2040 2045 2050

HVAC 719 719 662 662 604 604 604 604 604
HVDC 2769 2769 2769 2769 2160 2160 1551 1551 1551

Table 10.7: Investment costs for storage technologies in e2010/kW or e2010/kWh

2010 2015 2020 2025 2030 2035 2040 2045 2050

Pumped hydro power (e2010/kW) 1000 1000 1000 1000 1000 1000 1000 1000 1000
Pumped hydro energy (e2010/kWh) 100 100 100 100 100 100 100 100 100
Battery energy (e2010/kWh) 733 349 246 198 198 198 198 198 198
Battery power (e2010/kW) 0 0 0 0 0 0 0 0 0
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Table 10.8: Fixed operation and maintenance costs in e2010/kW/an (ZEP, 2013)

2010 2015 2020 2025 2030 2035 2040 2045 2050

Liginite existing 32 32 32 32 32 32 32 32 32
Lignite 32 32 32 32 32 32 32 32 32
Lignite CCS 80 80 80 80 80 80 80 80 80
Coal existing 31 31 31 31 31 31 31 31 31
Coal 31 31 31 31 31 31 31 31 31
Coal CCS 78 78 78 78 78 78 78 78 78
Gas existing 20 20 20 20 20 20 20 20 20
Gas OCGT 20 20 20 20 20 20 20 20 20
Gas CCGT 30 30 30 30 30 30 30 30 30
Gas CCS 78 78 78 78 78 78 78 78 78
Oil existing 20 20 20 20 20 20 20 20 20
Bio existing 48 47 46 45 44 43 42 41 40
Bio 10 % cofiring 32 32 32 32 32 32 32 32 32
Bio 10 % cofiring CCS 0 0 0 51 50 49 47 46 45
Nuclear 134 131 127 123 120 116 112 108 105
Wave 154 154 154 154 154 154 154 154 154
Geo 92 92 92 92 92 92 92 92 92
Hydro regulated 125 125 125 125 125 125 125 125 125
Hydro run-of-the-river 125 125 125 125 125 125 125 125 125
Wind onshore 54 54 53 52 51 50 49 48 47
Wind offshore 138 133 128 122 117 112 107 102 96
PV Solar 20 20 19 17 16 14 13 11 10

Table 10.9: Generator efficiency for thermal technologies in percent (ZEP, 2013)

2010 2015 2020 2025 2030 2035 2040 2045 2050

Liginite existing 35 35 36 36 36 36 36 37 37
Lignite 43 44 45 45 46 47 48 48 49
Lignite CCS 31 31 31 31 31 31 31 31 31
Coal existing 37 38 38 38 38 38 39 39 39
Coal 45 46 46 47 47 48 48 49 49
Coal CCS 33 33 33 33 33 33 33 33 33
Gas existing 48 49 50 51 52 52 53 54 55
Gas OCGT 40 40 41 41 41 41 42 42 42
Gas CCGT 60 60 60 60 61 63 64 65 66
Gas CCS 48 48 48 48 48 48 48 48 48
Oil existing 38 38 38 38 38 38 38 38 38
Bio existing 35 35 35 35 35 35 35 35 35
Bio 10 % cofiring 45 46 46 47 47 48 48 49 49
Bio 10 % cofiring CCS adv 0 0 0 39 40 41 41 42 43
Nuclear 36 36 36 36 37 37 37 37 37
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Table 10.10: Variable operation and maintenance (O&M) costs in e2010/MWh. The variable for
oil, bio, hydro, wind and solar are added to the fixed O&M costs and reported in Table 10.8 (ZEP,
2013)

2010 2015 2020 2025 2030 2035 2040 2045 2050

Liginite existing 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
Lignite 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
Lignite CCS 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18
Coal existing 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46
Coal 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46
Coal CCS 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16
Gas existing 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
Gas OCGT 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
Gas CCGT 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
Gas CCS 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16
Bio 10 % cofiring 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
Bio 10 % cofiring CCS adv 0 0 0 3.28 3.28 3.28 3.28 3.28 3.28
Nuclear 1.8 1.75 1.7 1.65 1.6 1.55 1.5 1.45 1.4

Table 10.11: Transport and storage costs assumed for carbon capture and storage technologies,
given in e2010/tCO2.

2025 2030 2035 2040 2045 2050

CCS T&S cost 20 20 20 20 20 20

Table 10.12: Derived short-run marginal costs for the various technologies in e2010/MWh. Om-
mited technologies have SRCM less than 1 e/MWh. Based on procedure described in Skar et al.
(2016).

2010 2015 2020 2025 2030 2035 2040 2045 2050

Liginite existing 15 15 15 15 15 15 15 15 15
Lignite 12 12 12 12 12 12 12 12 12
Lignite CCS 0 0 0 35 34 33 32 32 31
Coal existing 27 19 23 27 33 34 36 37 37
Coal 23 16 19 23 27 28 29 29 30
Coal CCS 0 0 0 46 50 50 51 51 51
Gas existing 50 48 59 62 67 70 71 71 71
Gas OCGT 60 58 72 77 84 89 91 92 93
Gas CCGT 40 39 49 53 56 59 60 60 60
Gas CCS 0 0 0 69 72 74 74 74 73
Oil existing 100 77 120 136 150 156 165 169 173
Bio existing 70 77 85 93 102 113 124 136 150
Bio 10 % cofiring 26 20 24 27 32 33 35 36 38
Nuclear 12 12 12 12 12 12 13 13 13
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Table 10.13: Initial capacities for the ten countries with the highest installed capacity in 2010, as
assumed in the EMPIRE model. The other countries are aggregated. Numbers are given in GW.
Data based on Skar et al. (2016)

Bio/Oil Coal Coal CCS Natural gas Natural gas CCS Hydro/Geo/Ocean Nuclear Solar Wind

Other 13 46 0 48 0 47 23 13 23
Germany 11 46 0 29 0 4 11 40 45
France 10 3 0 11 0 21 63 7 10
Italy 4 9 0 55 0 15 0 19 9
Great Brit. 2 18 0 29 0 2 9 9 14
Spain 4 10 0 33 0 16 8 5 23
Sweden 6 0 0 1 0 16 10 0 6
Poland 1 26 0 1 0 1 0 0 5
Norway 0 0 0 2 0 30 0 0 1
Netherlands 0 6 0 20 0 0 0 1 3
Romania 0 5 0 4 0 6 1 1 3

Total 52 169 0 232 0 159 125 95 142
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Figure 10.1: Investments in coal capacity in 2040 (GW) in the stochastic- and rolling horizon de-
terministic approach
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Figure 10.2: Nuclear, natural gas and other technology investments in 2040 in the stochastic- and
rolling horizon deterministic approach
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Figure 10.3: Investments in battery energy (GWh) and battery power (GW) in 2040 in the stochastic-
and rolling horizon deterministic approach

 -

  1

  1

  2

  2

  3

  3

  4

  4

  5

  5

Pumped hydro energy (GWh) Pumped hydro power (GW)

Investments in pumped hydro energy (GWh) and pumped hydro power (GW)

RH  1-3 SP 1-3 RH  4-6 SP 4-6 RH  7-9 SP 7-9 RH  10-12 SP 10-12 RH  13-15 SP 13-15 RH  16-18 SP 16-18 RH  19-21 SP 19-21 RH  22-24 SP 22-24 RH  25-27 SP 25-27

Figure 10.4: Investments in battery energy (GWh) and battery power (GW) in 2040 in the stochastic-
and rolling horizon deterministic approach
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