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Abstract. Offshore wind power research is a rapidly growing field, because of the present
climate crisis and increasing focus on renewable energy. Model testing plays an important role
in the risk and cost analysis associated with offshore wind turbines (OWTs). The real-time
hybrid model testing concept (ReaTHM testing) solves important challenges related to model
testing of OWTs, such as achieving an accurate modelling of the wind field, and the occurrence
of scaling issues when modelling wind and waves simultaneously. However, ReaTHM test set-ups
are generally sensitive to noise, signal loss and inaccuracies in sensor values. The present study
is focused on the design and implementation of a state estimator able to accurately estimate
the position and velocity of floating structures, while taking disturbances into account. By
combining the information received from several different sensors with mathematical models,
the estimator provides smooth and reliable position and velocity estimates for ReaTHM testing
applications. The main objective of the present study is to develop a kinematic state space
model that could represent the motion of any floating structure in six degrees of freedom
(6-DOF). The kinematic model is implemented in MATLAB, and acceleration time series
obtained with numerical simulations are used as inputs. The computed outputs agree with
the corresponding simulated motions. A Kalman estimator based on the state space model
is designed, implemented and tested against virtual data from the numerical model, with
artificially added disturbances. Sensitivity analyses addressing the robustness towards noise,
time delays, signal loss and uncertainties are performed to identify the limits of the estimator.
The estimator is demonstrated to be robust to most types of disturbances. Further, the state
estimator is tested against physical data from laboratory experiments. Good agreement between
the physically measured and the estimated states is observed.

1. Introduction
The recent energy and climate crisis has led to an increasing focus towards the renewable energy,
and offshore wind is one of the most important renewable energy sources. Compared to onshore
wind power projects, offshore wind turbines (OWTs) require significant extra engineering and
research efforts on installation, component design, electrical connection and materials [1].
On the other hand, they provide the opportunity for developments in areas previously not
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Figure 1. Real-time hybrid model testing approach

deemed suitable for wind turbines, giving access to a high energy potential without disturbing
neighbouring communities. The production and operational costs of OWTs has been reduced in
recent years due to the introduction of bigger turbines and higher voltage cables [2]. However, the
costs need to be further reduced, compared with other renewable energy technologies, for OWTs
to be commercially viable. Limited knowledge on the environmental loads and the structural
responses of wind turbines induces risks and uncertainties, which are the major cost driving
factors in the design of OWTs. Model testing can play an important role in decreasing the impact
of these factors, and is also a way of detecting over-conservative designs (thus reducing costs).
However, there are several challenges related to the model testing of OWTs [3]. These include
inherent modelling difficulties, issues linked to the simultaneous physical modelling of wind and
waves, and difficulties in implementing the control systems for blade angles and measurements.

A possible solution to these challenges is to use real-time hybrid model (ReaTHM) testing,
as described by Sauder et al [4]. In ReaTHM testing, the system under study is divided into a
physical and a numerical substructure that interact via sensors and actuators integrated in the
physical substructure (Fig. 1). This means that wind and aerodynamic loads may be replaced
by actuators that are controlled by outputs from a numerical model. The inputs to the numerical
model are the real-time measured motions of the structure, which are used to compute the rotor
loads in full scale. These loads are then scaled down to model scale, and applied to the structure
in real time. In this way, the Froude-scaled mass properties of the whole turbine are maintained.
The ReaTHM testing concept is a subclass of hardware-in-the-loop testing [4]. Such test set-ups
are generally sensitive to noise, signal loss and inaccuracies in sensor values. Any erroneous
input values to the numerical substructure may elicit erroneous or harmful actuator control
signals. The focus of the present work is therefore to design a state estimator that estimates
and filters the positions and velocities of the physical substructure, to achieve better accuracy
and reliability than what is possible through measurements alone.

A method for ReaTHM testing of OWTs is proposed by Chabaud [5], who suggests a design
and verification procedure for ReaTHM test campaigns and provides simple position and velocity
observer designs. Although these observers worked satisfactorily in that particular study, an
optimal state estimator (Kalman estimator) would typically be better suited for suppressing
erroneous properties in positions and velocities. It would use the past errors between predictions
and measurements to provide optimal estimates, hence minimizing the estimation error in the
statistical sense. In the marine control system designed by Vilsen et al. [6], a non-linear passive
observer (NPO) was designed and tested. The objectives of those tests were to generate estimates
of the states, and to filter out noise from the signals.

In the current work, values and variations in attitude angles (i.e. roll, pitch, yaw) are assumed
to be small, so that a linear estimation approach can be used. This enables the use of Kalman
estimators, which rely on a linear system model. The estimation performance is tested by
artificially adding different types of disturbances. The estimators are further validated using
physical data from previous experiments, conducted by Vilsen et al. [6].
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2. Numerical Model
In this section, a high-level overview of the system design is given as well as more detailed
descriptions of the kinematic modelling and the estimator design.

2.1. Overview
Two different versions of the system are designed for tests using virtual and physical data,
respectively (Fig. 2). Virtual data provided by the simulation platform SIMA [8] is used for
the development and verification of the estimator, while physical data obtained from laboratory
experiments is required for the final validation. The simulator that is meant to represent the
physical system does not have exactly the same inputs and outputs as the physical system.
Therefore, two sets of system matrices are necessary.

A kinematic state-space model is designed to represent the motion of any floating structure in
6-DOF. The virtual acceleration time series (U) is given as input and the corresponding system
states and outputs (X and Y , respectively) are computed. It is desirable to maintain these time
series without any disturbances, for comparison purposes. A plant model that takes process noise
originating from resonant structural vibrations (v1) into account is therefore implemented using
the same state-space matrices. The plant model is intended to simulate the physical system,
and measurement noise (v2) is therefore added to the output of the plant model, yielding the
measured outputs plantY . A Kalman estimator with U and plantY as inputs is then designed
using the same state-space matrices. The intent of the Kalman estimator is to provide estimates
of the states and outputs (kalmX and kalmY , respectively). Fig. 2a shows the overall system
design for tests using virtual data, where acceleration (U) and output from the plant model
(plantY ) are used as inputs to the Kalman estimator.

For the tests using physical data, it is not necessary to artificially add noise or other
disturbances, since these are inherently present in the physical data. The plant model is therefore
not needed, meaning that the kinematic model is only used to derive the system matrices of the
Kalman estimator. The physical acceleration time series (U) is given as input to the Kalman
estimator, along with the process outputs trueY , which are subject to real measurement and
process noise. The overall system design for tests using physical data is shown in Fig. 2b.

(a) (b)

Figure 2. Overview of system design for tests using (a) virtual data (b) physical data

2.2. Kinematic model
Since the estimator should be applicable to any floating structure, the mathematical models
incorporated into the estimator should be limited to the kinematic relations between positions,
velocities and accelerations. The state vector consists of the variables to be estimated:

X = [x, y, z, φ, θ, ψ, u, v, w, p, q, r]T (1)
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where x, y, and z are the translation coordinates of the structure’s center of mass (COM), and
φ, θ, and ψ are the Euler angles that define the structure’s orientation. Both translation and
rotation are defined with respect to the inertial frame (NED), and the order of rotations is
yaw(ψ), pitch (θ) and then roll (φ). The Euler angles are chosen to represent the attitude
angles, because the angles are assumed small and singularities will not occur. The variables
u, v, and w correspond to the linear velocities of the COM, while p, q and r denote the angular
velocities of the COM. For a time instant t, the Euler angles and the angular velocities of the
model are related through the equation:φ̇(t)

θ̇(t)

ψ̇(t)

 =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

p(t)q(t)
r(t)

 = TΘ(Θnb)ω(t), (2)

where s · = sin(·), c · = cos(·) and t · = tan(·).
Angular velocities and linear accelerations are measured through gyrometers and

accelerometers attached to the structure, and are hence defined with respect to BODY. The
translations and orientations are provided by an optical position measurement system (OPMS),
and are therefore defined with respect to NED. The variables which can be measured, i.e.
the translations, orientations, angular velocities and linear accelerations (ax, ay, and az) of the
physical substructure, are considered as outputs. The output vector is therefore:

Y = [x, y, z, φ, θ, ψ, p, q, r, ax, ay, az]
T (3)

Therefore, the following continuous-time state-space system is proposed:{
Ẋ(t) = A(X)X(t) +BU(t) +Gv1(t)

Y (t) = CX(t) +DU(t) +Hv1(t) + v2(t)
(4)

where v1 and v2 are process and output noise, respectively. Since the angular accelerations ṗ, q̇,
and ṙ are not measured, they are considered as process noise. The angular accelerations should
only add to the differentiated angular velocities, hence v1 = [09×1, ṗ, q̇, ṙ]

T . The input vector is
defined as U = [ax, ay, az]

T , while the matrices A(X), B,C,D,G, and H are defined according
to Fossen [7], section 2.2.1, yielding:

A(X) =

 06×6 | Rnb (Θnb) | 03×3

| 03×3 | TΘ(Θnb)
06×12

 B =

 06×3

I3×3

03×3

 C =

 I6×6 | 06×6

06×9 | I3×3

| 03×3


D =

[
09×3

I3×3

]
G = I12×12 H = 012×12

(5)

The non-linearity of the system through the entries Rnb (Θnb) and TΘ(Θnb) in the matrix A(X)
should be noticed. However, the attitude angles involved (i.e. roll, pitch, yaw) will normally be
small, so the linear approximations described by Fossen [7], section 2.2.1, could be used.

2.3. Simplified model for testing with SIMA
The state estimator is first tested against a SIMA model of a floating wind turbine developed
by Chabaud [5]. The SIMA software simulates the aerodynamic and hydrodynamic loads (wind,
waves and current), and computes the global position, velocity and acceleration data of the
structure [8].
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Some simplifications and modifications of the kinematic model are necessary for this case
study. Both the linear and the angular accelerations are now treated as inputs to the kinematic
model, since they can be accessed in the SIMA output data. This yields the input vector
U = [ax, ay, az, ṗ, q̇, ṙ]

T . The initial condition of the state vector is taken as the first set of
position and velocity values from SIMA. All positions, velocities and accelerations are defined
globally in SIMA, unlike in the physical tests, where linear accelerations and angular velocities
are measured locally. In the simplified version, all values are therefore defined in the same
(global) reference frame. Hence, the rotation and transformation matrices Rnb (θnb) and Tθ(θnb)
are replaced by identity matrices (I). This makes the simplified kinematic model linear and
time-invariant. The continuous-time state-space system is then defined as follows:{

Ẋ(t) = AX(t) +BU(t) +Gv1(t)

Y (t) = CX(t) +DU(t) +Hv1(t) + v2(t)
(6)

A =

[
06×6 | I6×6

06×12

]
B =

[
06×6

I6×6

]
C =

 I6×6 | 06×6

06×9 | I3×3

| 03×3

 D =

[
09×6

I3×3 | 03×3

]
G = I12×12 H = 012×12

(7)

The kinematic model is implemented in MATLAB, and acceleration time series obtained with
the SIMA simulations are used as inputs. The computed outputs agree with the corresponding
simulated motions (results not shown here, but can be found in [9], section 6.1), hence providing
a verification of the kinematic model defined in 2.2.

2.4. Estimator design
The kinematic model forms the basis of the estimator design. There are many application-
specific approaches for estimating an unknown state from a set of process measurements, but
many of these methods do not consider the typically noisy nature of the measurements [10]. In
the present study, the fundamental sources of information are always the same: position, angular
velocity and linear acceleration measurements. These are all derived from noisy sensors, and the
noise is typically statistical in nature (or can be effectively modelled as such). This implies that
stochastic methods should be used to address the problem. Since the angular motion is relatively
small, the system is approximated as linear. The solution adopted in this study is therefore
the Kalman estimator, which would be more appropriate for ReaTHM testing applications
than the state observers previously implemented [5, 6] since it uses the previous errors between
predictions and measurements to provide optimal estimates. The state-space model is defined in
continuous time because this allows the use of the kinematic relations between position, velocity
and acceleration. However, the Kalman estimator must in practice be implemented in discrete
time. It is therefore decided to discretize the kinematic model and perform all computations in
discrete time. The next states and outputs are found using the discrete system dynamics:{

X[k + 1] = AdX[k] +BdU [k] +Gdv1[k]

Y [k] = CdX[k] +DdU [k] +Hdv1[k] + v2[k]
(8)

Ad =

[
I6×6 | 0.05× I6×6

06×6 | I6×6

]
Bd =

[
0.00125× I6×6

0.05× I6×6

]
Cd =

 I6×6 | 06×6

06×9 | I3×3

| 03×3


Dd =

[
09×6

I3×3 | 03×3

]
Gd = I12×12 Hd = 012×12

(9)
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In the Kalman estimator design, the process and measurement noise vectors are assumed to
be white, Gaussian and zero-mean:

v1 ∼WGN(0, Q) v2 ∼WGN(0, R) (10)

The time-varying one-step ahead Kalman predictor is given by [11]:{
X̂(k + 1|k) = AdX̂(k|k − 1) +BdU(k) +K(k) · e(k)

Ŷ (k + 1|k) = CdX̂(k + 1|k) +DdU(k + 1),
(11)

where
K(k) = Ad · P (k) · CTd [Cd · P (k) · CTd +R]−1 (12)

is a gain matrix ”weighting” the innovation, e(k) = Cdv(k) + v2(k). The state prediction error
can be expressed as:

v(k) = X(k)− X̂(k|k − 1), (13)

and the state prediction error covariance matrix can be computed recursively with the Ricatti
equation:

P (k + 1) = Ad
{
P (k)− P (k)CTd [R+ CdP (k)CTd ]−1CdP (k)

}
ATd +Q (14)

A convenient simplification when there is no expected change in the noise covariance matrix
is to replace K(k) and P (k + 1) with their steady-state values:

K̄ := lim
k→∞

K(k), P̄ := lim
k→∞

P (k) (15)

The constant matrices K̄ and P̄ can then be computed off-line beforehand. This yields the
steady-state one-step ahead Kalman predictor:{

X̂(k + 1|k) = AdX̂(k|k − 1) +BdU(k) + K̄(k) · e(k)

Ŷ (k + 1|k) = CdX̂(k + 1|k) +DdU(k + 1)
(16)

This is a sub-optimal estimator, but it allows the practical handling of high-dimensional
problems. The steady-state gain matrix can be computed as:

K̄ = Ad · P̄ · CTd [Cd · P̄ · CTd +R]−1, (17)

while the solution of the Algebraic Riccati Equation (ARE) yields the matrix P̄ :

P (k + 1) = P (k) = P̄

P̄ = Ad(P̄ − P̄CTd (R+ CdP̄C
T
d )−1CdP̄ )ATd +Q

(18)

Both steady-state and time-varying versions of the Kalman estimator are designed,
implemented in MATLAB and tested. Time-varying Kalman estimators perform better than
steady-state Kalman estimators in some cases, since they take changes in the noise covariance
into account.

3. Results and discussion
This section presents the functionality of the Kalman estimator quantitatively. The numerical
model is validated, first using virtual data and then physical data. Due to limited space, only
the key results will be shown here. The full test data sets are available in the Github repository
[12] and are discussed in details by Mehammer [9].
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3.1. Sensitivity analyses using virtual data
Sensitivity analyses addressing the robustness towards different types of noise, uncertainties,
time delays and signal loss are performed to identify the limits of the estimator. The estimator
is demonstrated to be robust to most types of disturbances. Most of the sensitivity analyses are
carried out using the steady-state version of the Kalman estimator. To investigate the sensitivity
to signal loss, however, the time-varying version has to be used.
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Figure 3. Sensitivity to measurement noise, SNR = 10dB (10%)

The sensitivity of the estimator to different types of noise is investigated, and the results for
measurement noise is shown here to illustrate (Fig. 3). Measurement noise can only be seen
at the outputs, not at the states. Fig. 3a presents the time evolution of the first output from
the kinematic model (actual), the first output from the plant model (measured), and the first
output from the Kalman estimator (estimated) when 10% white measurement noise is added.
The estimator is able to track the actual output in the presence of measurement noise. A high
peak is observed in both signals around 20 s, then the values damp out with time. The relative
estimation error (absolute estimation error divided by absolute value) for state 1 (x-translation)
in the presence of 10% measurement noise (Fig. 3b) stays below 0.15% throughout most of
the simulation, but has two high peaks at around t=0 s and t=280 s. This is because the x-
translation has low absolute values at these time points. The estimator is thereby shown to be
robust towards measurement noise.
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Figure 4. Sensitivity to uncertainties in R (10 times the actual value), SNR = 20dB (1%)

Further, tests are carried out to investigate the sensitivity of the estimator to different kinds
of uncertainties. As an illustration, Fig. 4 presents the sensitivity to uncertain values of the
measurement noise covariance matrix R, in the presence of 1% measurement noise and 1%
process noise. In Fig. 4a, the time evolutions of the actual, measured and estimated output 1
(x-translation) is shown for an R matrix with values ten times larger values than the ideal noise
information. It can be observed that uncertain measurement noise values have limited effect on
the estimation performance, since the estimated output 1 is smooth and accurate. The relative
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estimation error is shown in Fig. 4b. A peak can be observed at the beginning of the simulation.
After this, the relative difference between the actual and the estimated state is insignificant until
t=270 s. Then it increases with time, reaching a peak value of around 4.5% at t=470 s.
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Figure 5. Sensitivity to time delay, 1 time step (50 ms)

Although recent improvements have reduced the time delays between the optical and inertial
measurements in ReaHTM tests to beneath 20 ms, delays were typically in the range 20-40 ms
at the time of the present study. Hence, simulations to test the effects of time delays are carried
out with a delay of 1 time step (50 ms). Fig. 5a presents the actual, measured and estimated
values of state 1 with a delay of 1 time step. Good agreement is observed between all three
signals. A few high peaks can be observed in the relative estimation error (Fig. 5b) due to the
low absolute values of the x-translation at these time values. Otherwise, the relative estimation
error stays below 0.5%. Hence, the estimator is shown to be robust towards time delays.
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Figure 6. Sensitivity to signal loss of duration 10 time steps at 4 instants

Lastly, the sensitivity to signal loss is investigated. The measured position outputs are set
to zero to simulate loss of the OPMS signal. Fig. 6a presents the time evolutions of the first
output of the kinematic model (actual), the first output of the plant model (measured) and the
first output of the Kalman estimator (estimated) when the position measurements are lost for
10 consecutive time steps at four different occasions (t=100 s, t=200 s, t=300 s, t=400 s). The
measured output drops to zero at these values of time, while the estimated output stays close to
the actual output. Hence, the estimator is robust to signal loss of 0.5 s duration for this output
(x-translation). Fig. 6b presents the relative estimation error for output 1 in the presence of
signal loss of duration 10 time steps. It has peaks at around t=0 s and t=280 s, due to the low
absolute values of the x-translation at these values of time.

3.2. Validation of the Kalman estimator using physical data
Further, the state estimator is tested against physical data from the laboratory experiments
conducted by Vilsen et al. [6]. The experimental data was obtained using a buoy that was
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moored to the walls of a still-water basin at three points. The buoy was pulled away from
its equilibrium position and released, leading to a decaying oscillatory movement as the buoy
gradually converged back to the equilibrium due to the stiffness of the mooring system. Both
the steady-state and the time-varying implementations of the Kalman estimator are tested, and
knowledge about delays and inaccuracies in the sensors used is taken into account. The OPMS
delay is compensated for by predicting the position data 25 ms ahead of time. Furthermore,
the impact of gravity is compensated for by rotating the measured accelerations to the global
reference frame, and then subtracting the gravitational acceleration in the z-direction. The
validation is performed by comparing the estimator results with the experimental data. Good
results are obtained for both versions of the Kalman estimator, as implied by the results for
state 1 and state 7 (linear velocity in x-direction).
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Figure 7. Comparison of steady-state and time-varying Kalman estimates with physical data

Fig. 7 compares the performance of the steady-state and the time-varying Kalman estimators
in estimating state 1. Fig. 7a presents the time evolution of the measured state 1, along with the
estimations computed by the steady-state and the time-varying Kalman estimators (only a short
section of the signals are shown, in order to highlight the interesting parts). Good agreement is
observed between all three signals. As expected, the relative estimation error is relatively high
when the measured value of the x-translation is close to zero (Fig. 7b). However, the error stays
below 2% for the parts of the measured signal with relevant magnitude. The relative estimation
errors are similar for the steady-state and the time-varying Kalman estimators.
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Figure 8. Comparison of steady-state & time-varying Kalman estimators with NPO

The linear velocities are not measured in the physical tests. To evaluate the performance of
the two different versions of the Kalman estimator, the linear velocities are therefore compared
with the values estimated by the non-linear passive observer (NPO) implemented by Vilsen et
al. [6]. Fig. 8a presents the estimated state values computed by the NPO, the steady-state
Kalman estimator and the time-varying Kalman estimator. The steady-state and time-varying
Kalman estimates are very similar, but different from the NPO estimates. However, all the
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values decay uniformly. When magnifying a short section of the graph, it is apparent that the
Kalman estimates are smoother than the NPO estimates, and that the NPO has a longer time
delay than the Kalman estimators (Fig. 8b). This might be because the Kalman estimators
provide optimal estimates, minimizing the estimation error in the statistical sense.

4. Conclusions and further work
The current project focuses on developing a kinematic state estimator using a sensor fusion
algorithm, and a Kalman estimator is found to provide reliable position and velocity estimates
in 6-DOF for ReaTHM testing applications. The main task of the estimator is to handle
disturbances such as noise, signal loss, time delays and uncertainties. Sensitivity analyses are
carried out to identify the limits of the Kalman estimator. Virtual data from a floating wind
turbine case study is used in the sensitivity analyses. The estimator is further validated through
comparison with physical data. The main conclusions of the work are:

• The generic kinematic model developed can recreate the SIMA simulated motions with
reasonable accuracy.

• A Kalman estimator providing smooth and accurate position and velocity estimates in six
degrees of freedom is designed, implemented and tested.

• The Kalman estimator is proven to be robust towards disturbances such as measurement
noise, uncertainties, time delays and signal loss.

• The Kalman estimator is able to estimate the states with a good accuracy, when compared
with physical measurements. An improvement from the previously implemented estimators
is demonstrated.

In the further work, ReaTHM tests should be carried out to investigate the estimator
performance in closed-loop and real-time applications. In such tests, Kalman filter tuning should
be performed to adjust the noise covariance matrices Q, R and N , according to the different
applications. For cases where the angular motion is more significant, an extended Kalman filter
(EKF) or an NPO should be implemented to better deal with the non-linearities.
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