
An Evolutionary Algorithm for Waste
Collection in Complex City Environments

Dag Coll Mossige
Sondre Lerum Vigerust

Industrial Economics and Technology Management

Supervisor: Peter Schütz, IØT

Department of Industrial Economics and Technology Management

Submission date: June 2018

Norwegian University of Science and Technology

i

Problem Description

The purpose of this thesis is to develop a solution method for solving waste collec-

tion problems in complex city environments of realistic size. Modelling complex city

environments involve several extensions to the well known basic routing problems,

such as intermediate facilities, one way streets and time restrictions.

Previous research has shown that problem instances of realistic size are in-

tractable for exact methods. As such, the aim of this thesis is to design and im-

plement a heuristic solution method capable of handling larger problem instances.

The proposed solution method is applied to instances based on the real world waste

collection problem faced by the local authorities in Oslo, the capital city of Nor-

way. The performance of the heuristic will be tested on well known benchmark

instances.

ii

iii

Preface

This thesis was written during the spring of 2018 to fulfill the graduation require-

ments of the study program Managerial Economics and Operations Research at

the Norwegian University of Science and Technology. The thesis is based on our

project report written during the fall of 2017.

The idea for the thesis arose during the fall of 2016, when the ”waste crisis” in

Oslo received widespread media coverage. The media attention sparked an interest

in the area of waste collection, and we wanted to investigate how the process could

be improved using operations research.

The work was conducted with support from the public waste management

agency in Oslo, Renovasjonsetaten i Oslo (REN). It should be noted that REN

were not responsible for waste collection during the waste crisis. Instead, REN

were assigned the thankful job of cleaning up the mess the waste crisis had cre-

ated, when they had to assume responsibility for waste collection in the middle of

the nation-wide media storm.

We would like to thank our supervisor, Peter Schütz, for his dedicated support.

The skilled guidance and helpful feedback he provided throughout the process has

been invaluable to our work.

We would also like to thank Erik Bakos-Holthe and Rune Schau at REN for

sharing their insights in the process of waste collection, and for providing all the

information we asked for. Without their help, this thesis could not have been

written.

Lastly, Eirik Lerum Vigerust has our gratitude for suggesting the topic for the

thesis in the first place, and introducing us to REN.

Trondheim, 2018-06-11

Dag Coll Mossige

Sondre Lerum Vigerust

iv

v

Summary

As the population of the world is in rapid growth and economic development leads

to larger rates of consumption, the field of waste management is growing ever more

important.

This thesis is based on the waste collection problem faced by the public waste

management agency in Oslo, Norway. The purpose of the thesis is to develop an

algorithm able to generate collection routes for waste collection problems based on

real-world infrastructure.

We model the task of waste collection as a Capacitated Arc Routing Problem

(CARP), a well-known routing problem in which demand occurs along the arcs of

a network. The CARP is known to be ”very NP-hard”, and the potential for exact

approaches is limited. As such, we present an evolutionary algorithm, developed

to deal with large-scale CARP instances.

Two extensions are added to the CARP to realistically model the task of waste

collection, namely intermediate facilities and time constraints on shifts.

The performance of the algorithm is tested on three sets of benchmark instances

for the CARP. The algorithm performs well for the smaller instances but struggles

to find optimal solutions for more complex instances within the maximum number

of iterations and with the given run parameters. However, the algorithm performs

best on the instances having a topology most similar to the network representing

Oslo.

Four real-world instances are generated based on the infrastructure of Oslo.

The smallest instance represents about 2% of the city, whereas the largest instance

represents the city in its entirety. The EA is applied to the four instances, and

the results are discussed in light of the algorithm’s performance on the benchmark

instances.

The proposed EA is able to generate a valid collection plan for Oslo in its

entirety. However, running the algorithm on the largest instance is very time-

consuming. Because of time limitations, the EA was only run for 20 iterations on

the instance representing Oslo. For the smaller instances, significant improvements

in the solution quality were observed especially during the 200 first iterations. For

the larger instances, significant improvements were still being made within the 500

iterations they were run for. Thus, it is likely that the routing plan obtained for

the entire city is far from optimal.

vi

Sammendrag

Verdens befolkning vokser raskt, og økonomisk vekst fører til høyere forbruk og

økende søppelmengder. Dette fremhever viktigheten av god søppelh̊andtering i

tiden som kommer.

Denne masteroppgaven er basert p̊a utfordringen med søppelh̊andtering Ren-

ovasjonsetaten i Oslo (REN) st̊ar overfor. Form̊alet med oppgaven er å utvikle

en algoritme som er i stand til å generere ruter for søppelinnhenting for prob-

leminstanser basert p̊a infrastrukturen i Oslo.

I oppgaven er søppelinnsamling modellert som et Capacitated Arc Routing Prob-

lem (CARP), et velkjent problem innen optimering. Et CARP representerer et

rute-problem der oppgaver skal utføres langs kantene av et nettverk, noe som er til-

felle ved eksempelvis snøm̊aking, veisalting, levering av post og søppelhenting. Det

er velkjent at CARP tilhører klassen av NP-harde problemer, og eksakte metoder

har derfor et begrenset potensiale. P̊a bakgrunn av dette presenteres en evolusjonær

algoritme som er utviklet for å h̊andtere store CARP-problemer. To utvidelser blir

lagt til det originale problemet for å representere søppelhentingsproblemet p̊a en

mer realistisk m̊ate.

Evolusjonære algoritmer er en type biologisk inspirerte, populasjonsbaserte al-

goritmer. Virkem̊aten til slike algoritmer er basert p̊a evolusjonære konsepter som

seleksjon, reproduksjon og mutasjon. Den foresl̊atte algoritmen testes p̊a tre sett

med test-instanser fra litteraturen, i tillegg til fire instanser som er generert basert

p̊a omr̊ader i Oslo. Den minste av de genererte instansene utgjør cirka 2% av Oslo,

mens den største representerer Oslo i sin helhet.

Resultatene fra test-instansene viser at den foresl̊atte algoritmen sliter med

å finne optimal løsning etter hvert som problemstørrelsen øker. Kjøring p̊a den

største instansen fra Oslo gir s̊a høy kjøretid at kjøretidsbegrensninger gjør seg seg

gjeldende lenge før løsningen nærmer seg optimalitet.

Den foresl̊atte algoritmen er i stand til å generere gyldige innsamlingsplaner for

hele Oslo, men p̊a grunn av høy kjøretid er den bare kjørt gjennom 20 iterasjoner.

Kjøringene p̊a de mindre instansene viser konvergens før 200 iterasjoner, mens

den nest største av Oslo-instansene fortsatt forbedres etter 500 iterasjoner. Dette

indikerer at den største instansen trolig trenger langt mer enn 20 iterasjoner for

å n̊a gode løsninger, og at den foresl̊atte planen for denne instansen er langt fra

optimal.

Contents

Problem Description . i

Preface . iii

Summary . v

Sammendrag . vi

1 Introduction 3

1.1 The importance of waste management 3

1.2 Scope . 4

2 Background 7

2.1 Current situation . 7

2.2 Waste statistics for Oslo . 8

2.2.1 Waste generation . 8

2.2.2 Waste composition . 9

2.3 The waste collection process . 11

3 Literature Review 13

3.1 The Capacitated Arc Routing Problem 13

3.2 CARP Extensions . 16

3.3 Heuristics for the CARP . 17

3.3.1 Construction heuristics . 17

3.3.2 Improvement heuristics . 17

3.3.3 Evolutionary Algorithms . 18

4 Problem formulation 21

4.1 Problem description . 21

4.2 Assumptions and simplifications . 22

4.3 The CARPIFTC . 23

4.4 Potential objectives . 27

4.5 Improvements of the model . 28

4.6 Complete formulation . 29

vii

viii CONTENTS

5 Solution Method 31

5.1 Chromosome Representation . 32

5.2 Operators . 35

5.2.1 The Task Removal Operator 35

5.2.2 The Path Insertion Operator 36

5.3 Algorithmic overview . 38

5.4 Construction heuristic . 38

5.5 Fitness evaluation . 40

5.6 The splitting procedure . 40

5.7 Selection and crossover . 44

5.8 Mutation . 48

5.9 Post-processing . 48

6 Case Description 51

6.1 Benchmark instances . 51

6.2 Real-world instances . 53

6.2.1 Generating the instances . 54

6.2.2 Input parameters . 57

7 Computational Study 59

7.1 Technical specifications . 59

7.2 Run parameters . 61

7.2.1 Benchmark tests . 61

7.2.2 Real-world instance tests . 64

7.3 Algorithmic performance . 67

7.3.1 Benchmark results . 67

7.3.2 Exact method . 68

7.3.3 Solution quality . 68

7.3.4 Convergence . 69

7.3.5 Stochasticity of the EA . 70

7.3.6 The construction heuristic . 71

7.3.7 Impact of initial population 71

7.3.8 Iteration times . 72

7.4 Results for the real-world instances 73

7.4.1 Convergence . 74

7.4.2 Iteration times . 75

7.4.3 Applicability of the results 75

8 Concluding Remarks 79

9 Further Research 81

CONTENTS 1

A Solution of the RW3 instance 83

A.1 Suggested schedule . 84

A.2 Illustrations of the shifts . 85

Bibliography 95

2 CONTENTS

Chapter 1

Introduction

1.1 The importance of waste management

During the last decades, the world has seen explosive population growth, rising

rates of consumption, and steadily increasing amounts of generated waste. Ac-

cording to Worldometers (2018), the world population grew from 6 billion in 1998

to 7.6 billion in 2018 and is projected to reach 9.2 billion by 2040. While the popu-

lation growth alone suggests that the waste output of the world is likely to rise, an

increasing degree of urbanization is also a contributing factor. The proportion of

people living in urban areas grew from 46% in 1998 to 55% in 2018 and estimates

by the World Bank Group (2012) suggest that urban residents currently produce

about twice as much waste as rural residents. In 2002, the urban residents of the

world produced on average 234 kilograms of waste each. By 2012, this number

had almost doubled to 438 kilograms per person. These trends and their economic

and environmental implications highlight the importance of efficient urban waste

management systems in the future.

On a local scale, the task of waste collection and handling is one of the most

important aspects of city management. First and foremost, the local environmental

impact of poor waste management can be severe. Contamination of water, soil, and

air, as well as spreading of infectious diseases are just a few of the consequences.

Uncollected solid waste is pointed out as the primary cause of local flooding and

air and water pollution by the World Bank Group (2012). Failure to properly

collect, process and dispose of waste can also significantly affect an area’s perceived

desirability.

Furthermore, waste management is a costly affair, which burdens municipal

budgets. The World Bank Group estimates that the cost of waste management

worldwide will rise from $200 billion in 2012 to $300 billion in 2025, and that waste

management often makes up about 20% to 50% of municipal budgets.

3

4 CHAPTER 1. INTRODUCTION

1.2 Scope

The importance of waste management, both concerning economic, health-related

and environmental factors, makes it an attractive subject of research. Waste man-

agement is a complex task, including steps such as generation, collection, disposal,

and recycling. It has been widely studied within the field of Operations Research,

and OR methods can be applied to various aspects of waste management to im-

prove decision making. Examples of such decisions include the location of new

facilities, whether to expand existing facilities, the routing and allocation of col-

lection vehicles, and deciding the optimal way of sorting waste to reduce pollution

and financial costs. The interested reader is referred to Beliën et al. (2012) for an

excellent review of OR methods for waste management.

According to Beliën et al. (2012), waste collection is the most costly part of

waste management, due to the labor intensity of the work and the massive usage

of collection vehicles. Nuortio et al. (2006) note that waste collection is one of

the most difficult tasks faced by local authorities. Various studies, such as Teixeira

et al. (2004) and Tavares et al. (2009) estimate that transportation makes up about

70% to 80% of operational cost related to waste collection, suggesting that route

optimization can lead to substantial cost savings.

The background for this thesis is the waste collection problem faced by the

local authorities in Oslo, Norway. Until recently, private actors performed the

task of collecting waste in Oslo on behalf of the public waste management service,

Renovasjonsetaten i Oslo. In October 2016, a company named Veireno won the

public tender for waste collection in the entire city. However, it soon became

evident that the company was unable to fulfill the contract on the negotiated

terms. Consequently, Veireno went into bankruptcy in February 2017. During

these months, the company received about 30.000 complaints from thousands of

households, as hundreds of tonnes of waste remained uncollected. The period was

labeled ”the waste crisis” in the Norwegian media (Aftenposten (2017)). In the

midst of the waste crisis, Renovasjonsetaten i Oslo took over waste collection for

the entire city practically overnight.

Waste collection routing can be appropriately modeled both as a node rout-

ing problem and an arc routing problem. Nuortio et al. (2006) argue that what

approach is most suitable depends on where waste accumulates. When waste ac-

cumulates in central points, as is the case when collecting from larger businesses,

hospitals, and schools, a node routing approach is fitting. When waste accumu-

lates scattered along the streets, as is the case for kerbside collection in Oslo, an arc

routing approach may be more appropriate. As such, the task of waste collection

is modelled as a Capacitated Arc Routing Problem (CARP) in this thesis.

The routing of a fleet of vehicles in a complex road network is a computation-

1.2. SCOPE 5

ally demanding task, and well-known routing problems such as the vehicle routing

problem and the CARP belong to the class of NP-hard problems. For this reason,

exact methods have had limited success.

Various heuristic approaches have been applied to the CARP. For instance,

Hertz et al. (2000) propose the first tabu search method, Lacomme et al. (2001)

propose the first evolutionary algorithm and Lacomme et al. (2004b) introduce the

first ant colony optimization scheme for the problem.

Evolutionary Algorithms (EA) are population-based metaheuristics inspired by

biology. EAs use evolutionary concepts such as populations, generations, repro-

duction, and mutation to find good solutions. To the best of our knowledge, EAs

were first applied to routing problems in the 1990s, by researchers like Blanton Jr

and Wainwright (1993) and Potvin and Bengio (1996). Several researchers report

promising results using evolutionary approaches for routing problems and note that

they are computationally efficient when dealing with large problem sizes. For in-

stance, the genetic algorithm proposed by Lacomme et al. (2001) was better than

the best competing algorithms at the time. A more recent contribution is the EA

proposed by Chen et al. (2016), which according to the authors is competitive with

state-of-the-art CARP heuristics in terms of solution quality and runtime. Still,

the large instances referred to in the existing literature are small compared to real-

world scenarios, and most evolutionary algorithms are developed for such relatively

small instances.

The purpose of this thesis is to develop an evolutionary algorithm for dealing

with problem instances that are larger and more realistic than those studied in the

existing literature. Sets of widely studied benchmark instances are used to evaluate

the algorithm. Furthermore, the EA is applied to larger instances based on the real

world problem faced by Renovasjonsetaten i Oslo.

The thesis is organized as follows: Chapter 2 elaborates the background for

the work. Thereafter, a review of relevant literature, focusing on the CARP and

evolutionary algorithms, is given in Chapter 3. In Chapter 4 the problem of waste

collection faced by REN is further described, a mathematical formulation is pre-

sented. Chapter 5 discusses evolutionary algorithms in an arc routing context and

presents an evolutionary algorithm for the CARP. After that, Chapter 6 introduces

sets of benchmark instances from the literature and real-world instances from Oslo.

The results obtained by the evolutionary algorithm are presented and discussed in

Chapter 7. Lastly, Chapter 8 contains our concluding remarks, whereas Chapter 9

provides suggestions for further research.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

Renovasjonsetaten i Oslo (REN) is currently responsible for collection and pro-

cessing of municipal solid waste (MSW) in Oslo. MSW is the everyday waste

that is discarded by the public. Additionally, REN collects and processes waste

from smaller businesses. The waste is collected from small containers placed along

streets, larger containers located on designated pickup spots, and from small re-

cycling stations. The task of waste management in Oslo is quite comprehensive:

according to SSB (2018), the city’s 330 000 households generate 210 000 tonnes of

waste annually.

2.1 Current situation

For about 25 years, REN outsourced the task of waste collection in Oslo to private

actors. When the private actor responsible for the collection process went into

bankruptcy in 2017, REN took over equipment and personnel from the bankrupt

company, as well as the responsibility for waste collection. Since then, REN has

been managing, planning and executing waste collection in Oslo on their own.

REN is responsible for the entire waste management cycle, including monitoring,

collection, processing, and disposal.

When REN assumed responsibility, during the ”waste crisis” in Oslo, waste

collection had not been performed adequately for months. Although the situation

regarding waste collection in Oslo has significantly improved after REN took over,

they are still struggling to manage their new responsibility. Figure 2.1 shows in-

coming complaints in April 2018. The several hundred complaints were sent to

REN by concerned citizens, and they all regard uncollected waste. Route are man-

ually customized on a day to day basis to cope with the incoming complaints. This

costly practice suggests that there is still room for improvement in REN’s routing

operations.

7

8 CHAPTER 2. BACKGROUND

Figure 2.1: Complaints received by REN during April, 2018.

2.2 Waste statistics for Oslo

2.2.1 Waste generation

Today, Oslo has a population of about 674 000. It is by far the largest city of

Norway, as well as the capital city. The city is in continuous growth due to a

steady stream of people moving there. According to the news agency Reuters

(2018), Oslo is one of the fastest growing cities in western Europe. The population

rose from 495 000 in 1997 to 674 000 in 2018, and estimates by SSB (2018) suggest

the population will rise to between 787 000 and 950 000 by 2040. The growing

population itself suggests that waste generation will increase in the future. Figure

2.2.1 shows the total waste output and the per capita waste generation in Oslo for

the past eleven years.

2.2. WASTE STATISTICS FOR OSLO 9

0

100

200

300

400

500

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
0

50,000

1 · 105

1.5 · 105

2 · 105

2.5 · 105

P
er

ca
p

it
a

w
a
st

e
ge

n
er

at
io

n
(k

g
)

T
ot

al
w

as
te

ge
n

er
at

io
n

(k
g)

Figure 2.2: Per capita and total waste generation in Oslo. Source: SSB (2018)

As the figure indicates, the total waste output has remained relatively stable

during the last decade, despite the growing population. This is due to a steady

reduction in waste generation per capita during the same period.

While the total waste generation seems to be stable, it is possible that continued

population growth will cause increased waste generation as it seems unlikely that

the reduction rate of the per capita waste generation will remain at its current

level. Furthermore, an increasing population leads to a broader and more complex

network of roads and pickup points. As such, proper routing tools and practices

are of increasing importance for REN going forward.

2.2.2 Waste composition

For collection and processing purposes, REN sort waste into seven distinct cate-

gories: food waste, residual waste, plastic, paper, glass and metal, garden waste

and electronic appliances. Residual waste is the household waste that does not fit

into any of the other categories. 2.3 shows the composition of the waste processed

by REN.

10 CHAPTER 2. BACKGROUND

Figure 2.3: Composition of waste processed by REN in 2016.

Four of the waste types, namely food waste, paper, plastic, and residual waste

arce collected directly from the households. Food waste, plastic, and residual waste

are disposed of in the same containers, whereas paper is disposed of in separate

containers. REN do not collect the remaining waste types directly. Instead, peo-

ple deliver these types of waste to larger central containers, recycling stations or

directly to one of REN’s waste management facilities.

Independent routes and vehicle fleets for the different waste types. However,

food waste, plastic, and residual waste are collected by the same vehicles, from the

same containers, on the same routes. For sorting purposes, they are disposed of in

color-encoded plastic bags. As shown in figure 2.3, food waste, plastic and residual

waste constitute about 80% of the total waste processed by REN.

2.3. THE WASTE COLLECTION PROCESS 11

2.3 The waste collection process

This Section describes the task of collecting plastic, food, and residual waste, from

now on referred to simply as “waste”.

Currently, REN is using a commercial software called Spider for routing pur-

poses. Spider is used to generate routes and provides an interface for manual route

customization. REN continuously update the routes generated by Spider in an

effort to deal with incoming complaints.

REN’s planning and operations are controlled from the headquarter, which

collocates with one of their two large waste management facilities. These facilities

process and sort waste before it is recycled, burnt or taken to a landfill. In addition

to the two larger facilities, REN has five recycling stations in Oslo, where people

can bring larger amounts of sorted waste, as well as 27 ”mini recycling stations”.

The waste from the recycling and mini recycling stations is collected by REN and

brought to one of the two facilities for processing.

In REN’s systems, collection routes are presented as weekly pickup schedules

where each schedule services a number of pickup locations on a given day. A

pickup location is generally serviced once a week and at the same day and time

every week. Each vehicle is scheduled to service about 400 pickup locations during

a day, using two shifts. Currently, the shifts are conducted from 06:30 - 13:30 and

14:00 - 20:30. At the end of a shift, the vehicles have to unload at one of the two

waste management facilities before returning to the depot.

Shifts are driven by teams. A team drives one shift each of the five work days.

Currently, REN employs 47 teams and 27 collection vehicles to collect plastic,

paper, and residual waste in Oslo. Most vehicles are used for two shifts each day,

although REN has just decided that each vehicle should only drive one shift per day.

For this reason, REN is in the process of acquiring additional collection vehicles.

For routing purposes, REN divides the city into four distinct collection zones.

This division was made with the purpose of outsourcing each area, rather than for

simplifying the routing procedure. REN, however, still uses the division. Therefore,

vehicles generally service locations within a single collection zone during a shift.

The pickup locations are located within one of the four collection zones. Figure

2.4 shows the pickup locations and the road network of Oslo. Each pickup location

is colored according to the zone it is located in, and contains one or more containers.

12 CHAPTER 2. BACKGROUND

Figure 2.4: The street network in Oslo, as well as the containers for household
waste.

There are 46 000 pickup locations across Oslo, which contain about 62 000

containers designated for household waste. About 80% of the locations have only

one container, while the remaining 20% room up to 33 containers.

The containers are of six different sizes, ranging from 140 to 660 liters. However,

REN employs a near homogeneous fleet where all vehicles can service all containers.

In REN’s systems, pickup locations also have additional attributes that might

impact the collection process, increasing the time it takes to service the locations.

These attributes include distance from the containers to the street, whether stairs

or an elevator is used to reach them and whether the containers are locked or placed

behind locked doors.

Chapter 3

Literature Review

The purpose of this chapter is to set the problem faced by REN in context of previ-

ous research, by giving an overview of the relevant literature. The structure of the

chapter is as follows: Section 3.1 presents a formalized version of the Capacitated

Arc Routing Problem and Section 3.2 discusses several possible extensions to the

CARP. Lastly, Section 3.3 gives a survey of construction heuristics, improvement

heuristics and evolutionary algorithms for the problem.

3.1 The Capacitated Arc Routing Problem

In arc routing problems, the challenge is to route a fleet of vehicles to visit certain

arcs, called required arcs, in an underlying network of arcs and nodes. The objective

is typically to generate a set of feasible tours that visit all the required arcs, while

simultaneously minimizing the total cost. Arc routing is appropriate for modeling

several real-world applications such as salt gritting, snow plowing, mail delivery,

and waste collection.

Golden and Wong (1981) introduce the original Capacitated Arc Routing Prob-

lem (CARP), and prove it to be NP-hard. Golden and Wong define the original

CARP on an undirected network, where each arc has a demand and a traversal

cost, and vehicles have a capacity limit. A vehicle can traverse an arc any number

of times, and all vehicles start and end a trip in the depot. The vehicle fleet is

homogeneous, and the maximum demand of any single arc is assumed to be less

than the capacity of the vehicles. When a vehicle services a required arc, it has

to service the entire arc. The goal is to find a set of feasible trips that satisfy the

demand of all edges.

An integer programming formulation of the undirected CARP, as presented by

Mullaseril (1997), is described in the following. Let G = (N,A) be an undirected

13

14 CHAPTER 3. LITERATURE REVIEW

graph. The set A contains all arcs (i, j), where (i, j) ∈ A and i, j ∈ N . The set

N contains all nodes {1, ..., n}, with node 1 as the depot node. Each arc (i, j) is

associated with an arc cost cij = cji and a demand qij ≥ 0, where qij = qji. R

is a subset of A that contains all arcs with nonzero demand, called required arcs.

A required arcs only needs service in one direction. A fleet of K identical vehicles

with capacity Q services the demand, and one vehicle corresponds to one trip. No

arcs have a demand that exceeds the capacity of the vehicles, so Q ≥ qij for all

(i, j) ∈ R.

Two sets of binary variables are used: xijk is 1 if arc (i, j) is traversed by vehicle

k, and otherwise 0. The variable yijk is 1 if arc (i, j) is serviced when traversed by

vehicle k, and 0 otherwise. The complete CARP formulation is given in equations

3.1 - 3.8.

minimize

K∑
k=1

∑
(i,j)∈A

cijxijk (3.1)

∑
(j,i)∈A

xjik −
∑

(i,j)∈A

xijk = 0 i ∈ N, k ∈ {1, ...,K} (3.2)

K∑
k=1

(yjik + yjik) = 1 (i, j) ∈ R (3.3)

K∑
k=1

(yjik + yjik) = 0 (i, j) ∈ A \R (3.4)∑
(i,j)∈A

qijyijk ≤ Q k ∈ {1, ...,K} (3.5)

xijk ≥ yijk (i, j) ∈ A, k ∈ {1, ...,K} (3.6)

X ∈ C (3.7)

xijk, yijk ∈ 0, 1 i ∈ N, k ∈ {1, ...,K}. (3.8)

The objective function (3.1) minimizes the total cost. Constraint 3.2 ensures

that the flow in and out of nodes is the same. Constraint 3.3 requires that all

required arcs are serviced in one direction, and 3.4 states that only required arcs

should receive service. Constraint 3.5 imposes the capacity restrictions. It requires

that the sum of demands serviced by a vehicle k does not exceed the capacity of

the vehicle. Constraint 3.6 states that an arc (i, j) cannot be serviced by vehicle

k unless the vehicle traverses the arc simultaneously. Constraint 3.7 is a symbolic

representation of the subtour eliminating constraints - all trips must be connected,

and connected to the depot node.

3.1. THE CAPACITATED ARC ROUTING PROBLEM 15

Researchers such as Hirabayashi et al. (1992), Belenguer and Benavent (2003)

and Letchford and Oukil (2009) have tried exact methods to solve the CARP

directly. However, due to the computational complexity of the problem, these

exact methods are only apt to solve relatively small problems. Other researchers

utilize the fact that a CARP can be transformed into an equivalent VRP. This

equivalence was proven by Pearn et al. (1987), who show that a CARP with |R|
required arcs can be transformed into an equivalent VRP with 3 |R| + 1 nodes.

For example, Longo et al. (2006) and Baldacci and Maniezzo (2006) apply exact

VRP methods to VRP transformations of the CARP.

Due to the limited performance of exact approaches, heuristic solution methods

for the CARP are studied to a far greater degree in the literature, and various

heuristics are applied to solve the problem. Notable approaches include for instance

the tabu search proposed by Hertz et al. (2000), the variable neighborhood search

of Hertz and Mittaz (2001), the genetic algorithm by Lacomme et al. (2001), and

the ant colony optimization procedure of Santos et al. (2010).

The CARP heuristics in the literature are generally benchmarked against one or

several sets of CARP benchmark instances. The most widely used instance sets are

the GDB (Golden et al. (1983)), KSHS (Kiuchi et al. (1995)), EGL (Li and Eglese

(1996)), large-EGL (Brandão and Eglese (2008)), BBCM (Benavent et al. (1992)),

and BMCV (Beullens et al. (2003)) instance sets. More recently, Liu et al. (2014)

present a CARP instance generator which incorporates realistic extensions such

as one-way-streets and turn restrictions. Kiilerich and Wøhlk (2018) introduce a

set of CARP instances based on real-world infrastructure that are larger and have

more extensions than the ones mentioned.

For a more detailed overview of the CARP, its extensions and solution methods,

we referer the interested reader is referred to the excellent reviews of Wøhlk (2008)

and Corberán and Prins (2010), and to Mourão and Pinto (2017) for a survey of

more recent advances.

16 CHAPTER 3. LITERATURE REVIEW

3.2 CARP Extensions

There are many extensions to the basic CARP introduced in Section 3.1. These

extensions are generally added to represent real-world scenarios better. In the

following, some relevant extensions will be introduced and briefly described.

Objective function

Generally, the objective is to minimize the total cost of traversals. However, other

cost structures could be appropriate. Ulusoy (1985), for instance, use the sum

of the total traveling cost and a distinct cost for each vehicle type that is used.

Furthermore, while most researchers look at a single objective function, a multi-

objective approach can be more appropriate in some cases. Lacomme et al. (2003)

minimize both the total cost and the duration of the longest trip, whereas Zhang

et al. (2017) seek to minimize the number of vehicles used and the total cost.

Network

The CARP as introduced by Golden and Wong (1981) is defined on an undirected

network. However, this is not representative of many real-world scenarios. Street

networks in cities usually include one-way streets and U-turn restrictions. Further-

more, meandering may not be allowed, meaning that vehicles must service the arcs

in both directions. For these reasons, many researchers have extended the CARP

to be valid for other types of networks, and with additional restrictions. Lacomme

et al. (2001) for instance, define the CARP on a mixed multigraph with undirected

arcs, directed arcs and parallel arcs.

The Capacitated Arc Routing Problem with Intermediate Facilities (CARPIF),

introduced by Ghiani et al. (2001), represents scenarios where vehicles can unload

or restock several times during a trip. Other notable papers on the CARPIF include

Polacek et al. (2008), Ghiani et al. (2010) and Willemse and Joubert (2016).

Uncertainty

Another important aspect when considering a CARP is whether the problem is

stochastic or deterministic. Demand and traveling time, for instance, are often sub-

ject to uncertainty. However, both are generally treated as deterministic variables,

even though this is not the case in many real-world scenarios. Waste accumulation

rates, amounts of snow to be plowed, traffic traveling times may be related to con-

siderable uncertainty. A few researchers, such as Laporte et al. (2010), Fleury et al.

(2004) and Fleury et al. (2005) consider uncertainty by looking into the stochastic

CARP.

3.3. HEURISTICS FOR THE CARP 17

3.3 Heuristics for the CARP

Heuristics for the CARP can be divided into two types, namely construction heuris-

tics and improvement heuristics. Construction heuristics, such as greedy random-

ized adaptive search build solutions from scratch. Improvement heuristics, such as

simulated annealing, tabu search, variable neighborhood search, and evolutionary

algorithms, improve existing solutions in an iterative process (Gendreau and Potvin

(2005)). These improvement heuristic are metaheuristics; they can be applied to a

range of different problems. The next three sections are dedicated to construction

heuristics, improvement heuristics, and evolutionary algorithms, respectively, and

discuss these in relation to the CARP.

3.3.1 Construction heuristics

During the 1970s and 1980s, heuristics such as the Construct-Strike of Christofides

(1973) and the Augment-Merge and Path-Scanning methods of Golden et al. (1983)

were proposed for the CARP. These heuristics are all problem specific, meaning

that cannot easily be generalized to other problem types. Generally, Wøhlk (2008)

notes, the solutions found by these algorithms are 10 to 40 percent above the

optimal solutions. Dror (2012) describes the three heuristics in further detail.

In more recent years, extensions of these problem-specific heuristics are widely

used as construction heuristics for the CARP. For instance, Lacomme et al. (2004a)

use them, in addition to the route-first cluster-second procedure introduced in

Ulusoy (1985), to create good initial individuals for a genetic algorithm.

3.3.2 Improvement heuristics

The first improvement heuristic for the CARP is proposed by Eglese (1994) for

a road gritting problem. The authors use a simulated annealing approach, that

generates random neighborhood moves, and accepts them by default if they improve

the existing solution. Otherwise, the moves are accepted with a certain probability.

Wøhlk (2006) also presents a simulated annealing approach for the CARP.

The first tabu search for the CARP, named CARPET, was proposed by Hertz

et al. (2000). Tabu search is an iterative local search procedure. In each iteration,

the algorithm chooses the best solution in the neighborhood of the current solution

as the new current solution. It is called tabu search as a list of illegal, or ”tabu”

moves is kept in memory to avoid cycles and local optima. CARPET performed

better than existing methods at the time. For a detailed description of CARPET,

the reader is referred to Hertz et al. (2000). Various other researchers have also

applied tabu search methods to the problem. For example, Amberg et al. (2000)

propose a tabu search for the multiple depot CARP, Archetti et al. (2006) apply

18 CHAPTER 3. LITERATURE REVIEW

it to the classical CARP and Brandão and Eglese (2008) suggest a deterministic

tabu search.

A Very Large Neighbourhood Descent (VND) algorithm for the undirected

CARP is suggested by Hertz and Mittaz (2001). The authors report that the VND

algorithm is competitive with CARPET, and outperforms CARPET for larger

problem instances where it provides better solutions and shorter runtimes.

A Genetic Algorithm (GA) which outperforms the best CARP heuristics at

the time, including CARPET, is proposed by Lacomme et al. (2001). Genetic

algorithms for the CARP are discussed in further detail in subsection 3.3.3.

Another important class of metaheuristics is Ant Colony Optimization (ACO),

in which pathfinding is inspired by the behavior of ants. Dorigo et al. (2006)

provide an excellent introduction to this class, that has been applied to various

versions of the CARP. Lacomme et al. (2004a) propose an ACO based algorithm,

and compare it to CARPET and the mentioned genetic algorithm by Lacomme

et al. (2001). While the ACO algorithm performed better than CARPET, the

researchers note that it could not compete with the GA regarding computational

time. Santos et al. (2010) also apply ACO to the CARP, and report that their

algorithm was competitive with the best algorithms at the time, such as CARPET

and the GA of Lacomme et al..

3.3.3 Evolutionary Algorithms

Evolutionary Algorithm (EA) is a term describing algorithms that are inspired

by fundamental evolutionary concepts, such as populations, generations, selection,

reproduction and mutation. Genetic Algorithms and Memetic Algorithms (MA)

are very similar, and both belong to the class of evolutionary algorithms. However,

MAs generally apply a more extensive search procedure than GAs.

The first published GA for the CARP is introduced by Lacomme et al. (2001).

Their GA considers three extensions of the basic CARP, namely directed arcs, a set

of required arcs with servicing costs in addition to traversal costs, and prohibited

U-turns. Lacomme et al. (2004a) build on this work, and suggest several memetic

algorithms for a similar version of the CARP.

A memetic algorithm for the Node Edge Arc Routing Problem (NEARP), in

which demand can occur both along edges and at nodes, is proposed by Prins and

Bouchenoua (2005). The authors argue that VRP and CARP are inadequate in

representing all real-world scenarios. A memetic algorithm for the Split Delivery

CARP, in which multiple vehicles can participate in servicing a single required arc,

is proposed by Labadi et al. (2008).

In Tang et al. (2009), a Memetic Algorithm with Extended Neighbourhood

Search (MAENS) is proposed for the CARP. The authors use a new operator

3.3. HEURISTICS FOR THE CARP 19

called the Merge-Split, which has a large step size that allows it to search through

a greater neighborhood, reducing the chances of getting stuck in local optima.

The Merge-Split operator is a combination of the Path-Scanning and Ulusoy’s tour

splitting heuristics. MAENS obtains the best solution in 175 out of 181 CARP

benchmark instances and finds improved best-known solutions to 16 of them.

A memetic algorithm for the open CARP is suggested by Fung et al. (2013). In

the open CARP, vehicles do not need to return to the depot at the end of a trip.

The approach utilizes the equivalence of the CARP and the VRP by transforming

the open CARP to the corresponding open VRP before applying the memetic

algorithm.

In Liu et al. (2014) a memetic algorithm is suggested and tested for three

real-world capacitated arc routing scenarios, namely winter gritting, inspection of

electric power lines and waste collection. A modified neighborhood search operator

is used to improve the rate of convergence.

In Chen et al. (2016) a genetic algorithm is combined with a tabu threshold

procedure, and a new crossover operator is proposed. The authors report that the

algorithm finds best known or improved best-known results for nearly all of the

benchmark instances to which it is applied.

A bi-objective memetic algorithm for the periodic CARP is suggested by Zhang

et al. (2017). A new operator called the Route Decomposition operator is intro-

duced. The authors report that their algorithm outperforms competing heuristics

for the periodic CARP.

20 CHAPTER 3. LITERATURE REVIEW

Chapter 4

Problem formulation

The following chapter describes the waste collection problem faced by REN and

presents a mathematical formulation for the problem.

Section 4.1 describes the problem, followed by an overview of assumptions that

are made in section 4.2. Thereafter, Section 4.3 presents a mathematical for-

mulation for problem. Section 4.4 elaborates potential objective functions and

consequences of these, whereas Section 4.5 introduces two symmetry breaking con-

straints. For the reader’s convenience, Section 4.6 contains the complete mathe-

matical formulation.

4.1 Problem description

The basis for the problem is the task of waste collection faced by REN. In short, the

challenge is routing a fleet of vehicles to collect waste from all private households

in the large, complex city environment of Oslo.

A fleet of identical waste collection vehicles performs the waste collection. The

vehicles drive in shifts and can conduct a given number of shifts each day. A shift

has a start time and an end time, and the duration of all shifts is equal. The vehicles

leave a central depot at the beginning of each shift and return before the end of

the shift. Each vehicle has a given waste capacity and must unload at one of the

available waste management facilities when it reaches its capacity limit. A vehicle

can unload multiple times during each shift. The vehicles also have to unload at

one of the facilities at the end of a shift, before heading back to the depot.

A trip is a path driven by a vehicle between consecutive visits to the depot or

a waste management facility. A trip therefore always starts and ends in the depot

or a waste management facility. A vehicle can drive multiple trips during a shift,

within the given shift duration.

21

22 CHAPTER 4. PROBLEM FORMULATION

A city environment like the one found in Oslo can be described as a network of

streets and intersections. A street between two neighboring intersections is referred

to as a street segment. The network includes both one-way streets and ”regular”

two-way streets. For most of the two way-streets, the vehicles can collect waste

from both sides of the street regardless of the driving direction. For some two-way

streets, however, the vehicles have to drive along the street in both directions to

collect waste from both sides.

The vehicles collect waste from a series of pickup locations that lie along streets.

Each pickup location must be serviced precisely once within the planning horizon.

The term deadheading refers to a vehicle that drives a street segment with-

out collecting waste. Picking up waste along a segment takes significantly more

time than deadheading it. The cost associated with servicing a street segment is

therefore additional to the cost associated with deadheading it.

The overall goal of the problem is to find a set of shifts that minimize the total

cost while adhering to the capacity, time and collection constraints.

4.2 Assumptions and simplifications

In order to model the problem mathematically, several assumptions and simpli-

fications are introduced. Firstly, the proposed model is deterministic. Secondly,

service is conducted on street segments, not on individual containers. Thus, the

total waste volume associated with a street segment is the aggregate of the volume

of all bins along the given segment. If a vehicle collects from a street segment, it

must collect from all of its associated containers. Therefore, a vehicle cannot ser-

vice a street segment if the amount of waste along it exceeds the remaining vehicle

capacity. This also leads to another assumption: no street segment can have a

total waste volume that exceeds the maximum vehicle capacity.

Lastly, the model disregards periodic variations in traffic. In practice, certain

areas, such as districts near the city center, should be serviced during certain times

of day to avoid traffic.

4.3. THE CARPIFTC 23

4.3 The Capacitated Arc Routing Problem with

Intermediate Facilities and Time Constraints

Let G = (N ,A) be a directed graph with nodes N and arcs A. N represents

the intersections in a network of road segments, whereas A represents the road

segments between intersections. The set A consists of all possible arcs (i,j), where

i, j ∈ N . A street that can be traversed in both directions is represented with two

oppositely directed arcs. Such a segment between nodes i and j is represented by

the arcs (i,j) and (j,i).

The case where a vehicle may collect from both sides of the street when driving

in one direction is referred to as meandering. The set AR, AR ⊂ A, represents

all arcs that require service, and in general, demand is added to both oppositely

directed arcs (i,j) and (j,i). If meandering is allowed for a required arc, service

must only be conducted on one of the arcs for demand to be satisfied. The set

ATWS , which is a subset of A represents the arcs where meandering is not allowed.

It contains all required arcs (i,j) that require service in both directions. For these

arcs, both oppositely directed arcs must be serviced to satisfy the demand.

The set NE contains all nodes that represent waste management facilities,

where NE ⊂ N . The node D̂ represents the depot node.

R represents the set of all possible shifts that can be generated, defined as

R := {1, ..., r̄}, where r̄ is the maximum number of shifts that can be conducted

in the planning horizon. Each shift r ∈ R starts in the depot and has to return to

the depot within the maximum shift duration, Tmax. During a shift, a vehicle can

conduct one or more trips.

A trip, k, is the path traveled between two consecutive visits at either the depot

or a waste management facility. Thus, a new trip always starts when leaving the

depot or a waste management facility, and ends when visiting the depot or a waste

management facility. The parameter k̄ gives the maximum number of trips per

shift. The set K represents all possible trips and is defined as K := {1, ..., k̄}.
The binary variable xijkr describes whether arc (i, j) is serviced in trip k of

shift r, while the integer variable yijkr is equal to the number of times an arc is

traversed, with or without service, on trip k of shift r. The binary variable ar is

set to 1 if shift r is used, 0 otherwise. Likewise, lkr is 1 if trip k is used on shift r,

and 0 otherwise.

The parameter Vij describes the total volume of waste along an arc (i, j), and

V max is the volume capacity of the vehicles. TD
ij denotes the time it takes to

deadhead the arc (i, j), and TS
ij is the extra time it takes to service arc (i, j)

compared to deadheading the arc.

An overview of the notation is provided in the following.

24 CHAPTER 4. PROBLEM FORMULATION

Notation

Indices:

i,j,n Nodes

D̂ Depot node

k Trip

r Shift

Parameters:

r̄ Maximum number of shifts in the planning horizon

k̄ Maximum number of trips per shift

Vij Total waste volume on arc (i, j)

V max Maximum capacity of any vehicle

TD
ij Total traversal time of arc (i, j) when deadheading the arc

TS
ij Additional traversal time of arc (i, j) when servicing the arc

Tmax Maximum allowed cumulative time for any shift

MV Represents a large volume, e.g. V max

MT Represents a large time, e.g. Tmax

MC Represents a large number of times an arc can be traversed during a trip

MN Represents a large number of times a node can be visited during a trip

Sets:

N Set of all nodes

NE Set of all dumpsites (NE ⊂ N)

A Set of all possible arcs, i.e. all streets the vehicles can drive

AR Set of all required arcs, i.e. all arcs with positive waste volumes (AR ⊂ A)

ATWS Set of all arcs which requires service in both directions (ATWS ⊂ AR)

R Set of all shifts, R := {1...r̄}
K Set of possible trips, K := {1...k̄}
S Set of possible subtours

Ss Set of nodes representing a subtour (Ss ⊂ S)

Variables:

xijkr 1 if arc (i,j) is serviced on trip k, shift r, 0 otherwise

yijkr Integer, equals the number of time arc (i,j) is serviced on trip k, shift r

ar 1 if shift r is used, 0 otherwise

lkr 1 if trip k is used on shift r, 0 otherwise

cnkr 1 if node n is visited on trip k, shift r, 0 otherwise

4.3. THE CARPIFTC 25

Constraints

The constraints of the model belong to two categories: resource constraints and

bookkeeping constraints. The resource constraints regard duration and capacity,

and are given in constraints 4.1 and 4.2.∑
(i,j)∈A

xijkrVij ≤ V max k ∈ K, r ∈ R (4.1)

∑
(i,j)∈A

∑
k∈K

(yijkrT
T
ij + xijkrT

S
ij) ≤ Tmax r ∈ R. (4.2)

Constraint 4.1 ensures that the waste volume of a vehicle can not exceed the vehicle

capacity, while constraint 4.2 states that no shift can have a duration longer than

the maximum duration of a shift.

Further, the bookkeeping constraints of the model are presented. First, con-

straints are added to ensure that each required arc is serviced.∑
r∈R

∑
k∈K

(xijkr + xjikr) = 1 (i, j) ∈ AR \ ATWS (4.3)∑
r∈R

∑
k∈K

(xijkr + xjikr) = 2 (i, j) ∈ ATWS (4.4)

Constraint 4.3 states that each required pair of arcs that only needs servicing in

one direction is serviced exactly once. Constraint 4.4 expresses that if a pair of

oppositely directed arcs does not allow meandering, both arcs in the pair must be

serviced.

Each shift used in a solution must start in the depot, leave the depot exactly

once and enter the depot exactly once. The following constraints add these re-

quirements to the model:∑
j∈N

∑
k∈K

yD̂jkr = ar r ∈ R (4.5)

∑
j∈N

yD̂j1r = ar r ∈ R (4.6)

∑
i∈N\{D̂}

∑
k∈K

yiD̂kr = ar r ∈ R, (4.7)

where 4.5 ensures that a vehicle leaves the depot exactly once during a shift, and

4.6 expresses that this must happen during the first trip of the shift. Constraint

4.7 ensures that a vehicle visits the depot node exactly once during a shift.

All trips should start either in the depot or a waste management facility. The

26 CHAPTER 4. PROBLEM FORMULATION

constraint (4.8),∑
j∈N

yij(k+1)r =
∑
j∈N

yjikr i ∈ NE , k ∈ K \ {k̄}, r ∈ R, (4.8)

ensures that a new trip starts from a waste management facility node if the previous

trip in the shift ended up in the respective node.

The constraint (4.9),∑
i∈N

∑
j∈NE

yijkr +
∑
i∈N

yiD̂kr = lkr k ∈ K, r ∈ R, (4.9)

expresses that either the depot or one of the waste management facilities should

be visited exactly once for each trip that is used.

For each trip, the number of traversals entering a node is the same as the

number of traversals leaving the node. Constraint (4.10) ensures this.∑
i∈N\{j}

yijkr =
∑

i∈N\{j}

yjikr j ∈ N \ (NE , {D̂}), k ∈ K, r ∈ R. (4.10)

The constraint (4.11),

xijkr ≤ yijkr (i, j) ∈ A, k ∈ K, r ∈ R, (4.11)

is added to ensure that an arc cannot be serviced in a trip unless it is traversed on

the same trip.

Furthermore, the constraints

lkr ≤ ar k ∈ K, r ∈ R (4.12)

yijkr ≤ lkrM
C (i, j) ∈ A, k ∈ K, r ∈ R (4.13)

are added. Constraint 4.12 states that no trip should be used unless its respective

shift is used, and 4.13 expresses that no arc should be traversed unless its respective

trip is used.

The above formulation does not ensure connectivity of each trip. To ensure

connectivity, the constraints∑
i∈N

yinkr ≤ cnkrM
N n ∈ N , k ∈ K, r ∈ R (4.14)

cnkr ≤
∑
i∈Ss

∑
j∈N\Ss

yijkr Ss ∈ S, n ∈ Ss, k ∈ K, r ∈ R (4.15)

are added to the formulation. Constraint 4.14 ensures that cnkr is 1 if node n

4.4. POTENTIAL OBJECTIVES 27

is visited during the respective trip. Constraint 4.15 eliminates subtours. The

constraint can be interpreted as ”if node n is in subset SS and the node is visited

during trip k, shift r, then there must be at least one traversal leaving the subset

of nodes during the respective trip.” Figure 4.1 illustrates a possible solution to

the problem with and without the connectivity constraints. The nodes included

in the subtour in figure 4.1a represent a subset SS , and applying the connectivity

constraints ensures that there is at least one arc leaving the subset, thus eliminating

the subtour. The numbers in the figure denotes trips.

(a) Without subtour elimination (b) With subtour elimination

Figure 4.1: Conceptual sketch of shift with and without subtour elimination.

Lastly, the following domain constraints are added:

xijkr ∈ {0, 1} (i, j) ∈ A, k ∈ K, r ∈ R (4.16)

yijkr ≥ 0, integer (i, j) ∈ A, k ∈ K, r ∈ R (4.17)

ar ∈ {0, 1} r ∈ R (4.18)

lkr ∈ {0, 1} k ∈ K, r ∈ R (4.19)

cnkr ∈ {0, 1} n ∈ N , k ∈ K, r ∈ R. (4.20)

4.4 Potential objectives

Multiple alternative objectives can be considered. Firstly, one could seek to min-

imize costs directly. This requires detailed estimates of the costs associated with

the purchase, operation, and maintenance of the vehicles, as well as staffing costs.

Another option is to minimize the number of shifts needed. However, such a

formulation does not necessarily facilitate optimal routing of the vehicles. Small

changes in the shifts may not increase the number of shifts needed, even though

other properties of the solution, such as total deadheading time, may be worsened.

28 CHAPTER 4. PROBLEM FORMULATION

A fourth alternative is to minimize either the time spent on deadheading or the

total makespan of the collection process. An objective function seeking to minimize

the total makespan of the collection process is used.

4.5 Improvements of the model

As the order of the shifts and trips does not matter, there is symmetry in the

problem. The following symmetry breaking constraints break this symmetry and

reduce the solution space.

ar ≥ ar+1 r ∈ R \ {r̄} (4.21)∑
k∈K

lkr ≥
∑
k∈K

lk(r+1) r ∈ R \ {r̄} (4.22)

Constraint 4.21 states that a shift r + 1 should only be used if shift r is used.

Furthermore, constraint 4.22 ensures that shift r + 1 cannot consist of a larger

number of trips than the shift r.

4.6. COMPLETE FORMULATION 29

4.6 Complete formulation

minimize
∑
r∈R

∑
k∈K

∑
(i,j)∈A

[xijkrT
S
ij + yijkrT

D
ij]

subject to ∑
(i,j)∈A

xijkrVij ≤ V max k ∈ K, r ∈ R

∑
(i,j)∈A

∑
k∈K

[yijkrT
T
ij + xijkrT

S
ij] ≤ Tmax r ∈ R

∑
r∈R

∑
k∈K

[xijkr + xjikr] = 1 (i, j) ∈ AR \ ATWS

∑
r∈R

∑
k∈K

[xijkr + xjikr] = 2 (i, j) ∈ ATWS

∑
j∈N

∑
k∈K

yD̂jkr = ar r ∈ R

∑
j∈N

yD̂j1r = ar r ∈ R

∑
i∈N\{D̂}

∑
k∈K

yiD̂kr = ar r ∈ R

∑
j∈N

yij(k+1)r =
∑
j∈N

yjikr i ∈ NE , k ∈ K \ {k̄}, r ∈ R

∑
i∈N

∑
j∈NE

[yijkr +
∑
i∈N

yiD̂kr] = lkr k ∈ K, r ∈ R

∑
i∈N\{j}

yijkr =
∑

i∈N\{j}

yjikr j ∈ N \ (NE , {D̂}), k ∈ K, r ∈ R

xijkr ≤ yijkr (i, j) ∈ A, k ∈ K, r ∈ R

lkr ≤ ar k ∈ K, r ∈ R

yijkr ≤ lkrM
C (i, j) ∈ A, k ∈ K, r ∈ R∑

i∈N

yinkr ≤ cnkrM
N n ∈ N , k ∈ K, r ∈ R

cnkr ≤
∑
i∈Ss

∑
j∈N\Ss

yijkr Ss ∈ S, n ∈ Ss, k ∈ K, r ∈ R

ar ≥ ar+1 r ∈ R \ {r̄}∑
k∈K

lkr ≥
∑
k∈K

lk(r+1) r ∈ R \ {r̄}

xijkr ∈ {0, 1} (i, j) ∈ A, k ∈ K, r ∈ R

yijkr ≥ 0, integer (i, j) ∈ A, k ∈ K, r ∈ R

ar ∈ {0, 1} r ∈ R

lkr ∈ {0, 1} k ∈ K, r ∈ R

cnkr ∈ {0, 1} n ∈ N , k ∈ K, r ∈ R.

30 CHAPTER 4. PROBLEM FORMULATION

Chapter 5

Solution Method

In this chapter, we propose an evolutionary algorithm developed to handle large-

scale capacitated arc routing problems, similar to the waste collection problem

faced by REN.

Evolutionary Algorithms (EAs) is a term describing biologically inspired, population-

based metaheuristics. The term population-based indicates that it operates on a

set of solutions simultaneously, rather than on a single solution. In this setting, a

solution is referred to as an individual. A population consists of a set of individuals,

and a generation is a population in a given iteration of the algorithm. For instance,

the set of solutions in the fourth iteration is referred to as the fourth generation.

The best solutions, i.e., the fittest individuals, in a generation have the highest

likelihood of propagating to the next generation.

A chromosome represents the genetic material of an individual. In the repro-

duction phase, individuals are selected for reproduction, and the chromosomes of

the selected individuals are combined to create new offspring. The reproduction

phase is referred to as crossover, and the crossover corresponds to the mating part

of evolution. The crossover results in one or more new individuals that are the

products of the two parents. Random alterations may be applied to some of the

individuals, and this procedure constitutes the mutation part of an EA. For a more

in-depth explanation of evolutionary algorithms, the reader is referred to Whitley

(1994).

The first two sections of this chapter present the technicalities of our algorithm.

The remaining sections elaborate on concepts in evolutionary algorithms and ex-

plain how our EA has implemented these concepts. This chapter is organized as

follows: Section 5.1 elaborates on our choice of chromosome representation, and

Section 5.2 presents two operators needed for constructing and altering chromo-

somes. A broad overview of the proposed EA is given in Section 5.3. Section 5.4

31

32 CHAPTER 5. SOLUTION METHOD

introduces a construction heuristic that is used to generate the initial populations,

whereas Section 5.5 describes how the fitness of the individuals is measured. Sec-

tion 5.6 explains how feasible solutions are extracted from chromosomes. Section

5.7 elaborates on the selection and crossover phase, whereas Section 5.8 discusses

mutation procedures. Lastly, Section 5.9 describes how the solutions generated by

the EA can be transformed into actual routing plans.

5.1 Chromosome Representation

An important aspect of an evolutionary algorithm is to decide how an individual

should be represented by it’s corresponding chromosome. One alternative is to let

chromosomes represent actual solutions to the problem simply. In evolutionary

terms, a chromosome is then the same as a phenotype. However, this is not a

necessity. The other option is to let the chromosome be a genotype, an abstraction

of the underlying solution. The actual solutions, phenotypes, are in this case

created by applying a decoding procedure on the genotypes.

In the routing context, chromosomes are generally genotypes. A very common

abstraction is to let chromosomes represent sequences of tasks. These sequences

specify the order in which the tasks are executed. This chromosome representa-

tion does not contain the paths between each consecutive task. Instead, shortest

paths are assumed. Trip delimiters are usually not included in this chromosome

representation, implying that the chromosomes represent giant tours that do not

adhere to capacity or time constraints. A chromosome represented in this manner

needs to be split into a set of feasible trips to get actual solutions.

The process of decoding giant tour chromosomes into feasible solutions is illus-

trated in figures 5.1 and 5.2. Figure 5.1a shows a giant tour chromosome where

capacity and time restrictions are ignored. The bold lines represent tasks, while the

thin lines represent deadheaded arcs. Dotted lines are arcs that are not used. After

applying an appropriate decoding procedure to the giant tour, which accounts for

the time and capacity restrictions, the resulting solution is found. Such a solution

is shown in 5.1b. The solution consists of two shifts, where shift 1 has two trips,

and shift 2 has one trip.

5.1. CHROMOSOME REPRESENTATION 33

(a) Giant tour (b) Solution

Figure 5.1: Difference between chromosome and solution.

In figure 5.2, the chromosome representing the giant tour, as well as the corre-

sponding solution, is shown. D denotes the depot, letters represent the arcs from

the network in 5.1, and S1-S5 are the tasks from the network. Grey entries represent

tasks, and white entries represent the arcs of the shortest path between consecu-

tive tasks. In the chromosome, these shortest paths are not explicitly represented.

Rather, the cost of the shortest paths between each pair of tasks is stored in a pre-

computed distance matrix. Thus, the shortest paths are given implicitly through

lookup in the distance matrix. The chromosome representation introduced above

has been used in several papers including Lacomme et al. (2001), Lacomme et al.

(2004b), Prins (2004), Prins and Bouchenoua (2005) and Lacomme et al. (2006).

These papers all apply a decoding procedure that splits a giant tour optimally.

This procedure is described in Section 5.6.

(a) Chromosome, genotype

(b) Corresponding solution, phenotype

Figure 5.2: Difference between chromosome and solution.

34 CHAPTER 5. SOLUTION METHOD

Our chromosome representation

Computing a matrix containing the distance between all task-pairs and all tasks

and the depot is trivial for small instances. However, the size of such a matrix

grows exponentially with the number of tasks. As does the number of shortest

path calculations needed to fill the matrix. For an instance containing 50 required

arcs, 2 500 shortest path calculations must be made, given that one operates on a

directed network. Creating such a matrix is manageable. For a network with 7 281

required arcs, like the one representing Oslo, however, the number of shortest path

calculations is over 53 million. Each shortest path calculation also gets more de-

manding as the size of the network increases. Thus, the approach of pre-calculating

such a distance matrix is problematic in terms of scalability.

The chromosome representation applied in our GA is based on the one prevalent

in the arc routing literature. The chromosomes are abstractions of the underlying

solutions and require a decoding procedure to produce valid solutions. Each chro-

mosome is given without trip delimiters and constitutes a giant tour. However, the

representation is different in an important way. Rather than using implied shortest

paths between tasks, and a distance matrix containing shortest paths between each

task-pair, our chromosomes contain explicit shortest paths. The reason is that this

eliminates the need for a distance matrix with shortest path costs between all task-

pairs. A chromosome, as well as the trips of the underlying solution, are illustrated

in figure 5.3a. Note that the resulting solution is equal to the one in figure 5.2a.

(a) Chromosome, genotype

(b) Corresponding solution, phenotype

Figure 5.3: Difference between our chromosome and solution.

5.2. OPERATORS 35

5.2 Operators

In order to construct initial chromosomes and perform crossovers and mutations,

we introduce two operators. The Task Removal Operator removes tasks from a

giant tour and then repairs it by adding new shortest paths. The Path Insertion

Operator uses a heuristic measure to find a suitable position to insert a path into

a giant tour. Note that in this setting, a giant tour refers to a tour that does not

adhere to capacity and time restrictions. A giant tour does not necessarily include

all tasks in a network.

5.2.1 The Task Removal Operator

The purpose of the Task Removal Operator is to remove a set of tasks from a giant

tour and then repair the giant tour to ensure connectivity after removal. The input

of the operator is a giant tour and path containing at least one task. The network

in figure 5.4 is used to explain the process. The thick, dotted lines, denoted S1 -

S5, represent tasks.

Figure 5.4: Underlying network

Figure 5.5 illustrates the process step by step. The string representations above

the figures show the permutation of tasks at the given step of the process. The

Task Removal Operator is used to remove the tasks found in the input path, colored

green, from the giant tour, colored red. Figure 5.5a shows the giant tour before

removal, whereas figure 5.5b shows the input path. The operator scans the giant

tour and removes all tasks that are also in the input path from the giant tour. The

traversals that connected removed tasks to their neighboring tasks in the giant

tour are also removed, resulting in the unconnected giant tour in figure 5.5c. In

the string representation of the giant tour the removed tasks and traversals are

colored red. The operator scans the giant tour again and identifies unconnectivity.

36 CHAPTER 5. SOLUTION METHOD

It then repairs the giant tour by adding new shortest paths between S4 and S2,

and S2 and S5. The result is the tour shown in figure 5.5d.

(a) Original giant tour (b) Input path

(c) Duplicate tasks removed (d) Connectivity restored

Figure 5.5: The Task Removal Operator

5.2.2 The Path Insertion Operator

The purpose of the Path Insertion Operator is to insert a connected path into a

giant tour in the position where it adds the least cost to the tour. The input path

can be inserted between any pair of consecutive tasks in the giant tour, or at the

giant tour’s start or end.

Since a giant tour services each task exactly once, all tasks that are present in

both the input path and the giant tour are removed from the giant tour before

insertion. The Task Removal Operator described in Section 5.2.1 is used for this

purpose.

After removal of duplicate tasks, the operator scans the giant tour and evaluates

the heuristic cost of inserting the input path at each possible position. For each

pair of neighboring tasks, the sum of the Euclidean distance from both tasks to

the start point and end point of the path is calculated. Furthermore, the heuristic

cost of inserting the input path at the beginning and the end of the giant tour is

calculated. The heuristic distance measure used for the start and end positions

is the Euclidean distance from the task to the first or last task, multiplied by 2.

5.2. OPERATORS 37

This is done to ensure that insertion at these positions are not favored to the other

positions, as other positions are scored by the sum of the two distances to the

neighboring tasks in the giant tour.

The sum of Euclidean distances is used as a cost measure rather than the actual

cost of the shortest paths. The rationale for using this heuristic measure is that

the Euclidean distance is easier to find than the shortest path between the start

and end node of the input path and each pair of adjacent tasks in the giant tour.

When the point of least cost insertion is identified, the path is inserted at this

point. This involves finding the shortest path between the two end nodes of the

path, and the two neighboring tasks in the giant tour. If the input path does not

contain any directed arcs, the path is inserted in the direction where it gives the

least cost. Otherwise, the path is inserted in its original direction.

Figure 5.6 shows the insertion of a path containing one task, S2, into a giant

tour. Only a part of the giant tour is shown, for simplicity. The tasks in the giant

tour are indicated in red. The blue, dotted lines show the Euclidean measurements

made to decide the point of insertion. The insertion operator inserts task S2,

choosing its position based on the minimal sum of Euclidean distances to the tasks

currently in the chromosome. The lowest sum of Euclidean distances is found when

inserting the path between task S1 and S3, as figure 5.6c illustrates. The input

path is therefore placed between task S1 and S3 in the giant tour.

(a) (b)

(c)

Figure 5.6: The Path Insertion Operator

38 CHAPTER 5. SOLUTION METHOD

5.3 Algorithmic overview

The proposed algorithm has four main phases: construction, selection and crossover,

mutation and evaluation. The latter three phases constitute the evolutionary part

of the algorithm. In figure 5.3 the algorithmic flow is illustrated.

First, the desired number of chromosomes is generated using the construction

heuristic presented in Section 5.4. Then, the iterative part of the algorithm starts

with the crossover phase, where parent chromosomes are randomly chosen and

combined to create the next generation. In the evaluation phase, the fitness value

of each chromosome in the new generation is calculated. The process is then

repeated with the new generation until a termination criterion is met.

5.4 Construction heuristic

A common approach to create an initial population is to use a combination of

construction heuristics and randomly generated chromosomes. The purpose is gen-

erally to find relatively good solutions within reasonable time, while simultaneously

adequately covering the solution space with the randomly generated chromosomes.

For instance, Lacomme et al. (2001) and Zhang et al. (2017) use this approach.

We propose a construction heuristic that generates chromosomes for the initial

population of the EA. The construction heuristic has two main steps. The first

step randomizes the order of a set containing all tasks, whereas the second part

builds a giant tour based on the permutation of the tasks.

The first step of the process is to randomize the order of the task set. Figure

5.8 illustrates this step. In the figure, a set containing the five tasks labeled S1 -

S5 is permutated randomly.

Figure 5.8: Permutation of tasks.

The next step builds the giant tour. The first task in the permuted set initializes

the giant tour. The remaining tasks are chosen for insertion in the order given by

the set, starting out with the second element. The tasks are inserted into the giant

tour using the Path Insertion Operator presented in Section 5.2. This operator

uses a simple heuristic based on Euclidean distances to decide where to insert each

task.

The result of this process is a giant tour where the Euclidean distance between

each consecutive task is minimized with respect to the permutation of the ini-

5.4. CONSTRUCTION HEURISTIC 39

generate initial popula-
tion as oldGeneration

initialize empty vec-
tor newGeneration

select parents from
oldGeneration

apply crossover operation

add child to
newGeneration

size of

newGeneration ==

populationSize?

populationSize

number of iter-
ations reached?

oldGeneration :=
newGeneration

maxIterations

perform post processing

yes

no

yes

no

Figure 5.7: Flow and main components of the EA.

40 CHAPTER 5. SOLUTION METHOD

tial randomized set. It is represented with explicit shortest paths between task,

calculated by the Path Insertion Operator.

Lastly, the fitness score of the constructed chromosome is calculated using the

splitting procedure which is presented in Section 5.6. The initial population is

sorted after increasing fitness values, and the population is fed into the EA.

5.5 Fitness evaluation

The fitness score of each chromosome is given as the total sum of the trip durations

in the corresponding solution. A lower fitness score, therefore, means higher fitness,

as the objective is to minimize the total duration.

The fitness cannot be extracted directly from the genotype. Rather, the fitness

is achieved by decoding the genotype into its corresponding phenotype. In other

words, a decoding procedure is used to split the giant tours of the chromosomes

into feasible trips and shifts. Then, the total duration of the resulting solution is

calculated and used as fitness score for the chromosome. The procedure of splitting

a giant tour into a feasible solution is presented in Section 5.6.

5.6 The splitting procedure

The purpose of a splitting procedure is to split a giant tour into a set of feasible

trips in a way that optimizes the objective function.

Ulusoy’s splitting procedure

Ulusoy (1985) presents a splitting heuristic that finds the optimal split of a given

giant tour. The giant tour, a complete graph with t tasks, is reduced by keeping

only the depot and the t tasks. Thus, the reduced giant tour is represented simply

by a permutation of the t tasks. A distance matrix of size (t + 1) · (t + 1) is

pre-computed to know the cost of the shortest path between any two tasks, and

between any task and the depot.

Figure 5.9a shows a giant tour in a network containing five tasks. The tasks,

indicated by bold lines, are denoted S1 to S5. The numbers given in parenthesis

are the demands associated with each task. All other numbers represent traversal

costs.

The splitting algorithm works by generating an auxiliary graph H with t + 1

nodes, with the depot as node 0 and the tasks labeled from 1 to t, as depicted in

figure 5.9c. The shortest path from the depot node 0 to t in H corresponds to the

optimal split of the given chromosome.

5.6. THE SPLITTING PROCEDURE 41

(a) Giant tour with 5 tasks (b) Resulting trips

(c) Auxiliary graph and resulting shortest path

Figure 5.9: Principle of split algorithm.

In figure 5.9c, each arc represents a trip servicing the tasks the arc is denoted

with before heading back to the depot. For instance, the arc labeled S1(37) rep-

resents a trip servicing only task S1 before heading back to the depot. This trip

has a cost of 37. Furthermore, the arc labeled S1S2(51) represents a trip of cost

51 servicing both S1 and S2 before heading back to the depot. The optimal spit is

indicated by the bold arcs in the graph in figure 5.9c and illustrated in figure 5.9b.

Prins et al. (2009) present an efficient implementation of Ulusoy’s splitting algo-

rithm without generating H explicitly. With pre-computed distances, the complex-

ity of this implementation is O(t). Neither Prins et al. (2009) nor Ulusoy (1985)

consider cost restrictions on sets of trips, such as shift durations, in their splitting

procedures. However, Prins (2004) applies a similar split procedure considering

cost constraints on a capacitated VRP.

Our procedure

The proposed splitting algorithm is based on the split procedure presented in Prins

(2004). Our split procedure is modified to work with explicit shortest paths between

tasks rather than a pre-computed distance matrix. To make the implementation

efficient, however, the distance from each node in any task to the depot is pre-

computed and stored as an attribute to each task node.

The pseudocode for our implementation is presented in algorithm 1. Here, node

0 is the depot node. For each of the t tasks, S1 to St, the split algorithm keeps

two labels: C(Sj) representing the cost of a shortest path from 0 to Sj adhering

to the time and capacity constraints, and P (Sj), which is the predecessor of Sj

42 CHAPTER 5. SOLUTION METHOD

on this path. DSj−1,Sj
is the cost of the shortest path between two consecutive

tasks, w(Si) is the cost of task Si and q(Si) is the demand in task Si. The splitting

algorithm operates on a set of tasks, while the costs of shortest paths between tasks

are extracted from the complete chromosome.

The main loop of the algorithm iterates over the set of tasks. For each task Si,

the algorithm forward iterates over the next tasks Sj , updating C(Sj) if the path

with a trip starting with Si improves C(Sj)’s value. j is incremented until either

the capacity limit Q or the time limit L is reached, or until the iterator reaches the

end of the set.

The cost DSj−1,Sj
between two neighbouring tasks Sj−1 and Sj is found by

scanning the complete chromosome, until Sj−1 is located. Then, iterating further,

the cost of the traversal on the current position of the iterator is added to DSj−1,Sj

for each iteration until Sj is reached.

In figure 5.9, V = {0, 37, 51, 91, 115, 139} and P = {0, 0, 0, 2, 2, 3}. The path

constituting the optimal split has a cost of 139, and can be extracted by backtrack-

ing parents from task t to node 0.

5.6. THE SPLITTING PROCEDURE 43

Algorithm 1 Split-algorithm

1: C0 := 0
2: P0 := 0
3: for i := 1 to t do Ci :=∞
4: end for
5: for i := 1 to t do
6: j := i
7: load := 0
8: repeat
9: DSj−1,Sj

:= GetDistanceBetweenTasks(Sj−1,Sj)
10: load := load + q(Sj)
11: if i = j then
12: cost := D(0, Si) + w(Si) + D(Si, 0)
13: else
14: cost := cost−D(Sj−1, 0) + D(Sj−1, Sj) + w(Sj) + D(Sj , 0)
15: end if
16: if (load ≤ Q) and (cost ≤ L) then
17: if (Ci−1 + cost < Cj) then
18: Cj := Ci−1 + cost
19: Pj := i− 1
20: end if
21: end if
22: j := j + 1
23: until (j > t) or (load > Q) or (cost > L)
24: end for
25: // Extract distance between subsequent tasks
26: procedure GetDistanceBetweenTasks(Sa,Sb)
27: DSa,Sb

:= 0
28: path← complete chromosome
29: k := 0
30: while path(k) 6= Sa do
31: k := k + 1
32: end while
33: k := k + 1
34: while path(k) 6= Sb do
35: DSa,Sb

:= DSa,Sb
+ w(path(k))

36: k := k + 1
37: end while
38: return DSa,Sb

39: end procedure

44 CHAPTER 5. SOLUTION METHOD

5.7 Selection and crossover

In the selection phase, parents are chosen to create offspring for the new generation.

In a network routing context, the binary tournament approach is widely used for

this purpose. In a binary tournament, two chromosomes are selected randomly,

and the one with the best fitness score is selected as the first parent. The second

parent is selected in the same way. The process is repeated until the required

number of parent-pairs is reached. This approach is used by for instance Baker

and Ayechew (2003) and Prins (2004) for the VRP, and by Lacomme et al. (2004a)

for the CARP.

The crossover phase produces offspring for the next generation by combining

the parent chromosomes. This can be done in many different ways. The most

notable in a routing setting include 2-point crossover (Baker and Ayechew (2003)),

order crossover, and linear order crossover (Oliver et al. (1987)).

In a 2-point crossover, two points are chosen at random in the parent chromo-

somes. This splits the parent chromosomes into three parts. The first and last part

of Parent 2 are combined with the second part of Parent 1, to create the first child.

The second child is created by reversing the parent roles. The two-point crossover

is illustrated in figure 5.10.

Figure 5.10: 2-point crossover

The most widely used crossovers for EAs solving arc routing problems, are the

Order Crossover (OX) and Linear Order Crossover (LOX). These procedures are

used in Prins (2004), Lacomme et al. (2004a) and Xing et al. (2010), to name

a few. Prins and Bouchenoua (2005) note that the LOX is suitable for linear

chromosomes that have a definite beginning and end, whereas the OX is apt for

circular chromosomes.

LOX works in the following manner: Let P1 and P2 denote the two parent

strings. Similar to two-point crossover, two split points, i and j, where i ≤ j, i ≥ 0

and j is smaller than the size of the string, are chosen randomly. P2(i) to P2(j) is

5.7. SELECTION AND CROSSOVER 45

copied into the first child, C1, at positions i to j. Now C1(i) to C1(j) is identical

to P2(i) to P2(j). Then, P1 is scanned, and any element in P1 that is not already

in C1 is added to the first position not yet assigned in C1. The roles are switched

and the process repeated to create the second child, C2. The LOX procedure is

illustrated in figure 5.11. Here, i = 3 and j = 6. The strings between position 3

and 6 is copied from P1 to C1 and P2 to C2 respectively.

Figure 5.11: Linear Order Crossover (LOX)

Our approach

The selection process in our EA is two-fold. First, a set of elite chromosomes are

chosen. Elite chromosomes are the chromosomes with the best fitness scores in

a population. These chromosomes are copied, and the copy is passed on to the

next generation without going through the crossover phase. Second, using binary

tournament, the appropriate number of parent pairs are selected. A chromosome

can be chosen as a parent multiple times in each generation.

For the crossover operation, two points in each of the parents in a parent pair

are randomly selected. This practice is different from most crossover operations

prevalent in the literature, such as the LOX, where the same points are used for

both parents. The reason for selecting different points for each parent is that these

chromosomes consist of both tasks and the explicit shortest paths between them, as

opposed to chromosomes only containing tasks. This chromosome representation

allows the chromosomes to be of different lengths. Thus, a point selected for one

of the chromosomes might be out of range for the other. The generated points are

referred to as i1 and j1 for Parent 1, and likewise i2 and j2 for Parent 2.

Figure 5.12 shows how two parents are combined to generate the first child.

The second child is created by repeating the process with reversed parent roles.

Figures 5.12a and 5.12b show the string and graph representations of the two

parents, as well as the crossover points i2 and j2 for Parent 2. First, the giant

46 CHAPTER 5. SOLUTION METHOD

tour of Parent 1 is copied into the child. Thereafter, the Path Insertion Operator

presented in Section 5.2.2 is applied to insert the path P2(i2) to P2(j2) into the

child chromosome. The tasks present in the input path are removed from the chro-

mosome, and the chromosome is repaired by finding new shortest paths between

the remaining unconnected tasks S1 and S3. Figure 5.12c shows the state of the

giant tour after the duplicate tasks have been removed and the giant tour has been

repaired, as well as the path to be inserted. The black arrows in the string rep-

resentation of Parent 1 point to the positions identified as the points of least cost

insertion. The operator inserts the input path from Parent 2 between these points

to create the offspring Child 1. The string and graph representations of Child 1 is

shown in figure 5.12d.

(a) Parent 1 (b) Parent 2

(c) Constructing child 1 (d) Child 1

Figure 5.12: The crossover mechanism.

The purpose of inserting the copied path at the point of least additional heuristic

costs, is to make the crossover procedure more aggressive in improving fitness than

crossover operations where paths are inserted at random points.

Figure 5.13 shows the crossover operation applied on a small part of Oslo. The

5.7. SELECTION AND CROSSOVER 47

colored lines in figures 5.13a and 5.13b show the giant tour of each parent. The

path between the blue marks in figure 5.13b is copied and inserted in the offspring,

as illustrated in figure 5.13c.

(a) Parent 1 (b) Parent 2

(c) Child 1

Figure 5.13: The crossover mechanism.

48 CHAPTER 5. SOLUTION METHOD

5.8 Mutation

The simplest mutation procedures include operators that move or swap the position

of certain tasks. More advanced mutation procedures are based on local search

techniques. Lacomme et al. (2001) argue that using local search procedures as

mutation operators is more efficient than the simple, random mutations.

For the proposed EA, three mutation operators are implemented and tested.

Because of the size and complexity of the problem, the improvement of chromo-

somes during mutation is emphasized. Hence, the mutations are accepted only

if the fitness of the chromosome is improved. Two of the operators are informed

search heuristics aimed at improving the fitness of chromosomes, while the last

operator applies a random swap mutation.

The first mutation procedure uses the Path Insertion Operator presented in

Section 5.2.2 for a single task. A random task is thus removed from the chromosome

and reinserted at the point of least heuristic cost.

The second mutation procedure also utilizes the Path Insertion Operator. How-

ever, in this mutation, the path between two random points in the chromosome is

removed from the chromosome, before it is reinserted into the chromosome at the

point of least heuristic cost.

The last mutation operator removes two random tasks from the giant tour and

swap their positions, before calculating new paths to repair the now unconnected

giant tour.

Tests performed on the mutation operators show that none of the proposed

procedures were able to improve fitness of the chromosomes. The fitness values of

the resulting chromosomes after mutation were in the best cases as good as the fit-

ness values before mutation. Additionally, the mutation operators caused increased

iteration times due to the added workload. As such, the mutation operation was

omitted when the results presented in chapter 7 were generated.

5.9 Post-processing

The purpose of the post-processing phase is to convert the output of the EA into

a valid routing plan for a real-world waste collection problem. The EA finds and

outputs a set of feasible shifts, and the shifts are distributed on days, vehicles and

teams in the post processing.

A routing schedule is generated by starting at Shift 1 in the output from the

EA, assigning the current shift to the first day, vehicle and team available for

assignment. The process is repeated for the next shifts, until all shifts are assigned.

By assigning shifts in the order of which they are created by the EA, one

5.9. POST-PROCESSING 49

achieves a flexible routing plan where areas in geographical proximity are serviced

close in time. However, by assigning shifts to the first free team, vehicle and day,

one can achieve an unbalanced schedule if there are more vehicles and personnel

available than strictly needed. If so, the schedule may need to be balanced out

after assignment.

50 CHAPTER 5. SOLUTION METHOD

Chapter 6

Case Description

The algorithm was run on two types of instances: widely studied benchmark in-

stances from the literature, and instances generated based on the real-world infras-

tructure of Oslo. The benchmark instances are introduced in Section 6.1 whereas

Section 6.2 introduces the set of real-world instances and explains how they are

generated.

6.1 Benchmark instances

Three sets of instances are used for benchmarking the EA. The three sets are subsets

of the GDB benchmark set introduced by Golden et al. (1983), the EGL benchmark

set provided by Li (1992) and Li and Eglese (1996), and the BMCV benchmark

set introduced by Beullens et al. (2003). Optimal values or tight lower and upper

bounds are available for all the instances. The instances, their descriptions, and

results obtained by other researchers are available online at http://logistik.bwl.uni-

mainz.de/benchmarks.php. The larger CARP instances introduced by Kiilerich

and Wøhlk (2018) were not used, as the bounds for these instances are not known.

Tables 6.1, 6.2 and 6.3 present the characteristics of the benchmark instances.

In the tables, N is the number of nodes in the network, A is the total number of

arcs and R is the number of required arcs. The next two columns give the fraction

of required arcs to the total number of arcs and the optimal value for the respective

instance. If the optimal value is unknown, the upper and lower bounds are given

instead.

51

52 CHAPTER 6. CASE DESCRIPTION

Table 6.1: GDB instances

N A R Density Optimal value LB UB
GDB 1 12 22 22 1.00 316 - -
GDB 4 11 19 19 1.00 287 - -
GDB 7 12 22 22 1.00 325 - -
GDB 14 7 21 21 1.00 100 - -
GDB 15 7 21 21 1.00 58 - -
GDB 17 8 28 28 1.00 91 - -
GDB 19 8 11 11 1.00 55 - -

Table 6.2: EGL instances

N A R Density Optimal value LB UB
egl-e1-A 77 98 51 0.52 3 548 - -
egl-e3-A 77 98 87 0.89 5 898 - -
egl-s1-A 140 190 75 0.39 5 018 - -
egl-s2-C 140 190 147 0.77 16 425 - -
egl-s3-C 140 190 159 0.84 17 188 - -

Table 6.3: BMCV instances

N A R Density Optimal value LB UB
C01 69 98 79 0.81 - 4 145 4 150
C08 66 88 63 0.72 4 090 - -
C17 43 56 42 0.75 3 555 - -
D15 97 140 107 0.76 3 990 - -
E07 73 98 44 0.45 4 155 - -

Adaption for benchmark instances

The proposed EA uses Euclidean distances both to efficiently calculate shortest

paths to find low-cost insertions of paths in the crossover phase. To the best of our

knowledge, a benchmark set for the CARP containing node coordinates does not

exist. Thus, to enable the algorithm to solve instances without available heuristic

costs, the EA is modified to use exact costs for these purposes. As such, for the

benchmark instances, all costs are calculated using the shortest path algorithm

introduced by Dijkstra (1959).

6.2. REAL-WORLD INSTANCES 53

6.2 Real-world instances

The EA was applied to four real-world instances generated based on the infras-

tructure of Oslo. Table 6.4 summarizes the characteristics of the instances, while

figure 6.1 illustrates their domains. In the figure, the red circle shows the location

of the depot. The RW0 instance represents all of Oslo.

Table 6.4: Real-world instances

N A R Density Pickup locations
RW1 1 058 1 252 159 0.13 1 569
RW2 3 107 4 066 553 0.14 4 223
RW3 6 202 8 601 1 647 0.19 9 003
RW0 23 577 31 160 7 282 0.23 46 208

Figure 6.1: Domains of the real-world instances.

54 CHAPTER 6. CASE DESCRIPTION

6.2.1 Generating the instances

The real-world instances are generated by combining data from two sources - con-

tainer data and GIS data. Detailed GIS data for Oslo was retrieved from the

Norwegian Mapping Authority (NMA), Norway’s national mapping agency. The

GIS files contain detailed information about the road network in Oslo, including

coordinates and names of streets, intersections and street addresses. Container

data was supplied by REN. This data includes coordinates for the pickup locations

and the number of containers at each location as well as their volume.

In the GIS files, many streets between two intersections are split into multiple

consecutive segments. To simplify the network, such segments are merged into a

single segment connecting the two intersections. By merging such segments, the

number of arcs in the resulting network is reduced from about 84 000 to approxi-

mately 70 000.

Containers are assigned to arcs using a two-stage process. First, the appropriate

street is identified by matching the street name and the address of the container.

Thereafter, each container is assigned to the street segment that minimizes the

ratio
dib+djb

dij
. Here, dib denotes the Euclidean distance from the container to the

start node of the segment, djb is the Euclidean distance from the container to the

end node of the segment and dij is the distance between the start and end nodes

of the segment.

Figure 6.2 shows how a container is assigned to a street segment. From the

street address of the container, it is known that the container belongs to the street

colored red, either segment (n1,n2) or segment (n2,n3). The assignment ratios are

given as
dn1B+dn2B

dn1n2
and

dn2B+dn3B

dn2n3
, respectively. As B is closer to segment (n2,n3)

than to segment(n1,n2), this is the segment with the lowest assignment ratio, and

thus the segment to which the container is assigned.

Figure 6.2: Illustration of the container assignment procedure.

For some street segments, meandering is not allowed. To ensure that these are

serviced in both directions, these street segments are replaced by two oppositely di-

6.2. REAL-WORLD INSTANCES 55

rected one-way street segments. Containers are assigned to one of the two segments

depending on which side of the road they are located.

The original GIS data contains a significant number of small dead-ends. Many

of these dead-ends represent driveways which the waste collection trucks do not

enter. Therefore, all dead-ends with a length less than 100 meters are identified. If

such a dead end is connected to exactly two other arcs, the dead end is removed.

Thereafter, the two remaining segments are merged, before the containers initially

assigned to the dead end are reassigned to the resulting, merged segment. This

operation more than halves the number of arcs in the network, to about 31 000.

The length limit of 100 meters represents a trade-off between retaining a realistic

representation of the network and reducing it’s complexity.

The process of removing such dead ends is illustrated in figure 6.3. The blue

segment in figure 6.3a is a dead end with a length of less than 100 meters. The

orange segment represents a required arc, while the black segment has no demand.

The dead end is removed (figure 6.3b), before the two remaining segments are

merged into one (figure 6.3c). The resulting arc has a demand equal to the waste

associated with all of the three original segments.

(a) (b)

(c)

Figure 6.3: Aggregation of dead ends.

Figure 6.4a shows a small section of Oslo before the alterations of the network,

while 6.4b shows the same section after the alterations. The colored nodes represent

the ends of segments in the network. Thus, the figure shows how the network is

reduced through aggregation of dead ends and merging of consecutive segments.

The real-world instances are generated by providing coordinates for the north-

eastern, and south-western corners of rectangles encompassing parts of Oslo of

different sizes. All the generated instances contain the depot.

To ensure a connected network in each of the generated instances, Djikstra’s

algorithm is applied to find the shortest path from each arc in the network to the

depot. If the algorithm does not find a path to the depot for a given arc, it means

56 CHAPTER 6. CASE DESCRIPTION

the arc is unconnected. These unconnected arcs are removed from the network.

(a) Segments before merge.

(b) Segments after merge.

Figure 6.4: A section of Oslo before and after the merge and removal of segments.

6.2. REAL-WORLD INSTANCES 57

6.2.2 Input parameters

For the real-world instances, all containers are assumed to contain waste volumes

equal to their intrinsic volume. Furthermore, the traversal time of segments while

deadheading is approximated according to dij/10, where dij is the segment length.

Similarly, the servicing time for each segment is calculated according to nij · 45,

where nij is the number of bins along segment ij, and 45 is the assumed number

of seconds it takes to empty a bin. A vehicle has a volume of 23m3, and a shift has

a duration of 7.5 hours. These run parameters are summarized in table 6.5.

Table 6.5: Real-world instance parameters

Vehicle speed (deadheading) 10 m/s
Pickup time per bin 45 s
Vehicle capacity 23 000 L
Time limit per shift 27 000 s

58 CHAPTER 6. CASE DESCRIPTION

Chapter 7

Computational Study

In this Chapter, the performance of the EA is studied in detail by running it on

17 different benchmark instances. The rationale for this is that these instances

have known bounds or optimal values, and can bring insight into the potential

and limitations of the proposed algorithm. The insight gained from the benchmark

analysis is then used to assess the results obtained by the EA on the four real-world

instances.

The chapter is organized in the following way: Section 7.1 presents the im-

plementation of the algorithm. In Section 7.2, the effect of different population

sizes and share of elite chromosomes are investigated. Thereafter, the benchmark

results are discussed and analyzed in Section 7.3. Lastly, Section 7.4 summarizes

and discusses the results obtained by the EA on the real-world instances.

7.1 Technical specifications

The EA is written in C++, and the implementation is parallelized to enhance

performance. The parallel processes are run on a cluster, and a Message Passing

Interface (MPI) is used to coordinate the parallelization. Both the construction of

each chromosome and each crossover operation are parallelized to run on separate

cores. The specifications of the cluster nodes are presented in table 7.1.

Table 7.1: Specifications of cluster nodes

OS Linux
CPUs 40 x 2.40 GHz
RAM 92.91 GB

Figure 7.1 shows how the workload is distributed between the coordinating

process and the worker processes for a population of six chromosomes with two

59

60 CHAPTER 7. COMPUTATIONAL STUDY

elite chromosomes. p0 represents the coordinating process, while p1 to p6 represent

the worker processes. The solid segments of a process show that the process is

active in the current stage, while the dashed segments indicate that the process is

inactive, i.e., waiting for input from another process to continue. The green lines

represent information being shared between processes, in the direction indicated

by the arrow. The red arrow indicates the section which is repeated until the

termination criterion of the EA is met.

p0

p1

p2

p3

p4

p5

p6

Construction and evaluation Crossover and evaluationParent selection Sort generation

Repeat until termination

Figure 7.1: Work flow of the processes.

In the construction phase, each of the worker processes generates and evaluates

a chromosome for the initial population. These chromosomes are passed to p0,

which gathers the chromosomes in a population. Thereafter, p0 selects two parents

for each crossover operation and passes these to the worker processes. While the

respective worker processes apply the crossover, p0 adds the elite chromosomes

from the old generation to the new generation. The worker processes perform the

crossover, evaluate the offspring chromosomes and pass the fittest offspring back

to p0. p0 adds the offspring to the new generation and sorts the generation. If

the termination criterion is met, the program terminates. Otherwise, the new

generation is used as the basis for a new parent selection and crossover.

7.2. RUN PARAMETERS 61

7.2 Run parameters

The EA was tested with varying run parameters on the benchmark instance C01

and RW1 instances, to analyze the impact of the population size and fraction of

elite chromosomes. The purpose of the assessment was to decide what population

composition should be applied in the further analysis. The EA was tested with five

different population, namely 20, 60, 100, 200 and 300. For each population size,

tests were run with 20% elite chromosomes, 30% elite chromosomes and 40% elite

chromosomes. The tests were conducted with 1000 iterations on the benchmark

instance and 200 iterations on the real-world instance.

The results from the benchmark test are presented in Section 7.2.1, while the

results from the real-world test instance are presented in Section 7.2.2.

7.2.1 Benchmark tests

Figure 7.2 shows the fitness score of the best individual in each generation for the

test runs on the C01 instance.

62 CHAPTER 7. COMPUTATIONAL STUDY

0 200 400 600 800 1,000

4,500

5,000

5,500

6,000

iterations

fi
tn

es
s

(s
)

(a) Population size = 20

0 200 400 600 800 1,000

4,500

5,000

5,500

6,000

iterations

fi
tn

es
s

(s
)

20% elite

30% elite

40% elite

(b) Population size = 60

0 200 400 600 800 1,000

4,500

5,000

5,500

6,000

iterations

fi
tn

es
s

(s
)

(c) Population size = 100

0 200 400 600 800 1,000

4,500

5,000

5,500

6,000

iterations

fi
tn

es
s

(s
)

(d) Population size = 200

0 200 400 600 800 1,000

4,500

5,000

5,500

6,000

iterations

fi
tn

es
s

(s
)

(e) Population size = 300

Figure 7.2: Evolution for the C01 instance.

Figure 7.2 shows that composition with the 20% elite chromosomes performed

far better than the other compositions for a population size of 20. However, the

20% composition is the worst performer for the population size of 60. The 30%

7.2. RUN PARAMETERS 63

elite composition outperforms the other compositions for the population sizes of 60

and 100, while the 40% composition is the worst performing with a population size

of 100. For the population size of 200, however, the 40% composition is superior.

As the population size grows to 300, there is no significant difference between the

performance of the three compositions.

Studying the graphs of figure 7.2, it seems that for the smallest population,

the compositions with a low fraction of elite chromosomes are superior. As the

population size increases, however, the compositions with a larger fraction of elites

perform better. This indicates that the optimal fraction of elites is dependent on

the population size.

A higher fraction of elite chromosomes means more chromosomes are passed on

unaltered to the next generation, and that fewer crossovers are performed. This

implies that a higher share of elite chromosomes gives less diversity. Small popula-

tions are less diverse than large ones, and thus, a low fraction of elite chromosomes

is favorable for these instances. For the larger, more diverse population of 300,

however, this effect is not observed.

The results show a negative correlation between population size and fitness.

As population sizes increase, the fitness score of the best chromosome in each

generation decreases, yielding better results.

64 CHAPTER 7. COMPUTATIONAL STUDY

0 50 100 150 200 250 300
0

0.5

1

1.5

2

population size

se
co

n
d

s

20% elite

30% elite

40% elite

Figure 7.3: Mean iteration times for the tests.

Figure 7.3 shows the average duration of the iterations for each test run. Since

the algorithm is run on a cluster where nodes can be shared, the workload on these

may vary, and hence the CPU time may vary between runs. However, studying the

duration of each run gives indications of actual performance.

The plot indicates a trend of increasing iteration time with increasing popu-

lation size. Furthermore, it seems that the increase in iteration time from one

population size to the next is larger for populations with a low fraction of elites.

This trend reflects the fact that all crossover operations are performed in paral-

lel, and that the duration of this operation equals the time it takes for the most

calculation intensive crossover operation, which does not depend directly on the

population size. The findings imply that time limitations may force a trade-off

between population size and the number of iterations one can conduct.

7.2.2 Real-world instance tests

The impact of the run parameters was also tested for the RW1 instance, to examine

the behavior of the EA on a network more resembling the one representing Oslo.

RW1 is significantly larger than C01 and has a lower fraction of required arcs.

7.2. RUN PARAMETERS 65

0 50 100 150 200

3.4

3.6

3.8
·104

iterations

fi
tn

es
s

(s
)

(a) Population size = 20

0 50 100 150 200

3.4

3.6

3.8
·104

iterations

fi
tn

es
s

(s
)

10% elite

20% elite

30% elite

(b) Population size = 60

50 100 150 200

3.4

3.6

3.8
·104

iterations

fi
tn

es
s

(s
)

(c) Population size = 100

0 50 100 150 200

3.4

3.6

3.8
·104

iterations

fi
tn

es
s

(s
)

(d) Population size = 200

0 50 100 150 200

3.4

3.6

3.8
·104

iterations

fi
tn

es
s

(s
)

(e) Population size = 300

Figure 7.4: Evolution for the RW1 instance.

Figure 7.4 illustrates the results for the runs on the RW1 instance. Compared

to the test run on C01 in Section 7.2.1, the share of elite chromosomes seems to

have less impact for the smallest population sizes of 20 and 60. However, similarly

66 CHAPTER 7. COMPUTATIONAL STUDY

to the C01 test, there is a significant difference for the population sizes of 100 and

200, and the effect of the fractions of elite chromosomes seems to diminish entirely

with a population size of 300.

Regarding population size, the same trend appears for RW1 as for C01. In-

creasing the population size leads to a reduction in the fitness score and better

solutions.

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

population size

se
co

n
d

s

20% elite

30% elite

40% elite

Figure 7.5: Mean iteration times for the test runs on the RW1 instance.

Figure 7.5 shows the mean iteration times for the runs on RW1. The mean

iteration times are in line with the discoveries made for the C01 instance. As the

population size increases, so does the iteration time, and for larger populations,

the compositions with the highest share of elites have the fastest iterations. It is

worth noting that the mean time per iteration ranges from 6 to 18 seconds for

RW1, compared to 0.5 to 2 seconds for C01. The likely reason for this difference is

that RW1 is far larger than C01. This means that the shortest path computations

that are made during crossover are more demanding for the larger instance.

A more extensive investigation is needed to optimize the size and composition

of the population with respect to performance. Nevertheless, the results from both

instances suggest that larger population sizes are needed to reduce the risk of

premature convergence and achieve the best possible solution quality. As such, the

7.3. ALGORITHMIC PERFORMANCE 67

population size of 300 is chosen to generate the results in the following section. As

the share of elite chromosomes seems to be of little importance given a population

of this size, the 40% elite composition is chosen for further runs as it has the lowest

runtime per iteration.

7.3 Algorithmic performance

7.3.1 Benchmark results

The EA was run on three sets of benchmark instances, namely the GDB, EGL and

BMCV instances introduced in chapter 6. Furthermore, the mathematical formu-

lation presented in chapter 4 was implemented in the commercial solver Xpress and

applied to the GDB instances. Table 7.2 shows the results from the runs on the

GDB instances, both for the EA and Xpress, while tables 7.3 and 7.4 provide the

results for the EGL and BMCV instances, respectively.

Table 7.2: Results for the GDB instances

EA Xpress
Fitness % gap Sol. time (s) Obj. value Best LB % gap Sol. time (s)

gdb1 316 0.0 5.2 316 301.5 5.6 1 000
gdb4 287 0.0 4.1 287 287 0.0 943
gdb7 325 0.0 4.7 325 293.5 9.7 1 000
gdb14 100 0.0 4.4 100 100 0.0 1
gdb15 58 0.0 2.7 58 58 0.0 2
gdb17 91 0.0 4.6 92 87 5.4 1 000
gdb19 55 0.0 0.1 55 55 0.0 0

Table 7.3: Results for the EGL instances

Fitness % gap Sol. time (s)
egl-e1-A 3 608 1.7 196.9
egl-e3-A 6 349 7.6 1 038.3
egl-s1-A 5 199 3.6 335.8
egl-s2-C 17 735 8.0 1 761.7
egl-s3-C 18 610 8.3 4 819.7

Table 7.4: Results for the BMCV instances

Fitness % gap Sol. time (s)
C01 4 385 5.7 1 497.4
C08 4 275 4.5 596.9
C17 3 700 4.1 39.2
D15 4 235 6.1 932.1
E07 4 155 0.0 591.4

68 CHAPTER 7. COMPUTATIONAL STUDY

7.3.2 Exact method

The results presented in table 7.2 indicate the shortcomings of the exact method.

The solver performed well for three of the GDB instances, which were solved to

optimality in 2 seconds or less. However, it was unable to find the optimal solution

for two of the instances within the maximum runtime. In comparison, the EA

solved all seven instances to optimality within a maximum of 5.2 seconds. The

CARP, being an NP-hard problem, is difficult to tackle with exact methods, and

it is expected that a heuristic method such as the EA should perform better. The

low runtimes combined with optimal results indicate that the EA has a potential

for solving problems of greater size.

7.3.3 Solution quality

Figure 7.6 illustrates the evolution of the best chromosome in each generation for

the runs on the benchmark instances. The first axis shows iterations, while the

second axis shows the percentage gap to the best known upper bound for the given

problem instance.

While the EA identified the optimal solution for all GDB instances, the optimal

value was found for only one of the ten EGL and BMCV instances. All the GDB

instances were solved to optimality in less than 50 iterations, while E07 used 475

iterations to reach optimality. The EGL and BMCV instances have more extensive

networks, making them harder to solve. Furthermore, while the GDB instances

have tasks on all arcs, a fraction of the arcs in the BMCV and EGL instances are

without tasks. This might explain why the EA performs differently on the instance

sets.

From figure 7.6b an 7.6c, it seems that the EA converges within about 200-300

iterations for the EGL and many of the BMCV instances. In most cases, the EA

converges towards a value above the optimal, indicating that the EA is stuck in

local optima.

The solutions obtained for three of the instances shown in figure 7.6b an 7.6c

stand out as significantly better than the others. These instances, egl-e1-A, egl-

s1-A, and E07, are characterized by having the lowest fractions of required arcs

of all the benchmark instances. The three instances have 52%, 39% and 45%

required arcs, respectively. This observation indicates that the EA might perform

better when the fraction of required arcs is low. As the network representing Oslo

consists of 23% required arcs, the algorithm’s performance on real-world instances

may be stronger than for the benchmark instances.

7.3. ALGORITHMIC PERFORMANCE 69

200 400

0

10

20

30

iterations

%
g
ap

fr
om

U
B

gdb1

gdb4

gdb7

gdb14

gdb15

gdb17

gdb19

(a) GDB

200 400

0

10

20

30

iterations

%
ga

p
fr

om
U

B

e1-A

e3-A

s1-A

s2-C

s3-C

(b) EGL

200 400

0

10

20

30

iterations

%
ga

p
fr

om
U

B

C01

C08

C17

D15

E07

E09

(c) BMCV

Figure 7.6: Fitness score of best chromosome in each generation.

7.3.4 Convergence

All GDB instances, which are far smaller than the EGL and BMCV instances,

were solved within 50 iterations. From the results, it appears that as the size and

complexity of the instances grow, the algorithm needs more iterations before it

reaches a point of convergence. This is in line with our expectations, as larger

instances, in general, have larger solution spaces, which the EA will need more

iterations to explore.

As suggested in Section 7.3.3, the EA seems to converge towards local optima

for most of the runs. A possible cause of this premature convergence is that the

initial solutions do not adequately cover the solutions space of the problem. While

the results indicate that the EA tends to get stuck in local optima, the parame-

ter analysis in section 7.2 shows that larger population sizes tend to yield better

solutions. A possible explanation for this observation is that that a larger popu-

70 CHAPTER 7. COMPUTATIONAL STUDY

lation size gives a lower probability of getting stuck in local optima, as the initial

population is likely to cover more substantial parts of the solution space.

Another potential reason for the premature convergence is that no mutation

procedures are used. Implementing a mutation procedure with stochastic elements

that increase the neighborhood size for each solution could lessen the probability of

converging prematurely, and in turn, increase the quality of the obtained solutions.

A third factor contributing to the EA getting stuck in local optima could be the

heuristic search procedure applied to find the insertion point in the crossover phase.

This procedure was implemented to speed up the convergence of the algorithm.

However, it increases the chance of getting stuck in local optima, since it always

selects the apparent best move. A possible solution to this problem could be to add

a random element in the selection of the insertion point in the crossover procedure.

However, this might lead to a slower rate of convergence. As such, there might be

a trade-off between a faster rate of convergence and improved solution quality.

7.3.5 Stochasticity of the EA

The EA has stochastic elements both in the construction and crossover phase.

Therefore, running the algorithm multiple times on the same instance should yield

different results, and in general lead to an improved best solution.

To examine how the solution quality varies with multiple runs, the EA was

run ten times with identical input parameters for the egl-s3-C instance. The test

results are plotted in figure 7.7

It is clear from the figure that running the algorithm multiple times yields

different solutions. The worst runs seem to converge at an optimality gap of about

10%, whereas the best solution reached a gap of about 7% within 200 iterations,

and did not seem to converge within the iteration limit. The reason for this is

likely the result of two factors: The EA is a stochastic method, so each run is

different. However, the converging runs seem to do so as a result of getting stuck

in local optima. These results suggest that to utilize the potential of the current

EA, multiple runs should be conducted.

7.3. ALGORITHMIC PERFORMANCE 71

20 40 60 80 100 120 140 160 180 200

6

8

10

12

14

16

18

20

iterations

%
ga

p
fr

om
op

ti
m

al
va

lu
e

Figure 7.7: Gap for 10 runs of the egl-s3-C instance with the same parameters

7.3.6 The construction heuristic

It is apparent that the initial solutions provided by the construction heuristic were

better for the GDB set than for the other sets, with a gap to optimality of between

5% to 40% for all instances. The EGL instances started out worse, with gaps

of about 25% to 50%, whereas the initial BMCV solutions had gaps of about

30% to 50%. Generally, it seems that the construction heuristic constructs better

solutions for the smaller instances. The construction heuristic seems to perform

slightly worse than the classical heuristics of Path-Scanning, Augment-Merge and

Ulusoy’s, which according to Wøhlk (2008) construct solutions that are generally

around 10 % to 40 % above the optimal solutions.

7.3.7 Impact of initial population

Table 7.5 lists the optimality gaps of the best chromosome in the initial popula-

tion and the best chromosome in the final generation for the ten runs that were

conducted on the egl-s3-C instance. The values in the rows of the table are graded

72 CHAPTER 7. COMPUTATIONAL STUDY

so that the lowest values are darkest. As such, a positive correlation between the

initial and final fitness score is indicated either by two corresponding dark values

or two corresponding light graded values.

Table 7.5: Gap after construction and after 200 iterations for 10 runs of the egl-s3-C
instance with the same input parameters.

1 2 3 4 5 6 7 8 9 10

% gap after construction 23.89 23.67 30.58 28.72 20.89 21.72 23.00 27.19 28.00 29.33

% gap after evolution 10.27 8.76 8.83 7.12 6.70 9.53 8.41 8.50 8.22 9.79

From the results in the Table, it is evident that the population with the fittest

chromosome after construction also achieved the best fitness value after 200 itera-

tions. However, the Pearson correlation coefficient for the fitness before and after

evolution is 0.074, indicating no strong correlation between the initial and final

fitness values. Thus, the fitness of the best chromosome in the initial population

does not seem to be critical for the performance of the EA.

The diversity of the initial population, however, could also impact the quality

of the resulting solutions, as discussed in Section 7.3.4. Our algorithm uses a

heuristic distance measure combined with a randomly permutated list of tasks to

create initial solutions. It is likely that the heuristic measure, while producing

better solutions, also leads to a less diverse initial population. As such, means that

make the initial population cover the solution space more thoroughly should be

considered. Using additional different construction heuristics to create the initial

population, as well as adding randomly generated chromosomes are examples of

such means.

As discussed in Section 7.2, larger populations seem to perform better because

they are likely to be more diverse. However, larger populations lead to longer

run times for the EA. By further diversifying the initial population, it is possible

that the performance of the EA with lower populations sizes will improve. This is

beneficial as the total run time would be reduced.

7.3.8 Iteration times

As one can see in figures 7.3 and 7.5, the CPU time for each iteration increases

with the size of the instance. For the largest instances, and RW0 in particular,

the iteration time is too high to be able to reach close to optimal values within

realistic time limits. As such, to enable the EA to be of practical use for very large

instances, the algorithm should be streamlined to reduce iteration times.

Three bottlenecks have been identified in the algorithm. First and foremost,

the crossover operation uses significant CPU time. The considerable time usage is

7.4. RESULTS FOR THE REAL-WORLD INSTANCES 73

likely in part caused by iteration over long chromosomes. However, the most time-

consuming operation is probably the shortest path calculations. The algorithm

runs no faster than the slowest worker process, and with a large population size,

the probability of at least one shortest path computation being computationally

demanding increases. The current algorithm calculates four shortest paths for each

insertion, namely to and from each of the end nodes of the path. By disregarding

the potential savings of reversing the path, the number of shortest path calculations

per crossover can thus be reduced to 2.

The second bottleneck is related to the MPI interface. As instances grow, so

do the chromosomes, and long chromosomes require more memory compared to

short ones. As the MPI interface passes a file containing the chromosome between

processes, the speed of this operation depends on the file size, and hence the length

of the chromosome to send.

The third bottleneck is the operation of converting chromosomes to string rep-

resentations and string representations back to chromosomes in each end of an

MPI communication procedure. Since our implementation of the chromosomes de-

pends on pointers to other objects, the chromosomes cannot be represented by the

standard data types accepted by the MPI interface. However, by representing the

chromosomes in terms of such data types, the conversion process can be omitted.

This will save time in both ends of a communication process. For a crossover, two

communication processes are conducted. As such, four conversions per crossover

can be omitted by changing the chromosome implementation.

7.4 Results for the real-world instances

In this Section, the results from the runs on the real-world instances are presented

and discussed in light of the findings in Section 7.3.

The real-world instances were run with the parameters given in 6.2.2. The

RW1, RW2 and RW3 instances were all run for 500 iterations. However, due to

the significant iteration time for the run on RW0, this instance was only run for 20

iterations.

The results are presented in Table 7.6, and the fitness of the best chromosomes

in each generation are plotted in Figure 7.8.

Table 7.6: Results for the real-world instances

Fitness Sol. time (s)
RW1 33 789.5 7 052.8
RW2 120 986.3 71 831.3
RW3 448 980.2 450 276.8
RW0 2 219 689.25 395 194.3

74 CHAPTER 7. COMPUTATIONAL STUDY

0 200 400

3.4

3.5

3.6

3.7

·104

iterations

fi
tn

es
s

(s
)

(a) RW1

0 200 400
1.2

1.25

1.3

·105

iterations

fi
tn

es
s

(s
)

(b) RW2

0 200 400

4.5

4.6

4.7
·105

iterations

fi
tn

es
s

(s
)

(c) RW3

0 5 10 15 20

2.22

2.23

2.24

2.25

·106

iterations

fi
tn

es
s

(s
)

(d) RW0

Figure 7.8: Evolution of the best chromosome in each generation for the RW in-
stances.

7.4.1 Convergence

The plots in 7.8 indicate that the fitness of the best chromosome in a population

converges slower as the size of the instance increases. This is in line with the

observations made in Section 7.3.4.

Figure 7.8a shows that the EA reaches a point of convergence after about 200

iterations for RW1, an instance far larger than the benchmark instances. The EA

tends to get stuck in local optima for these, suggesting that this could also be

the case for RW1. As such, performing multiple runs of the RW1 instance could

improve the best-found solution.

From figure 7.8b it appears that the EA has not converged within the 500

iterations it was run for on the RW2 instance. The RW2 instance is far larger

than the benchmark instances, so this observation is in line with our expectations.

7.4. RESULTS FOR THE REAL-WORLD INSTANCES 75

Furthermore, the observation implies that there is room for improving the solution

for RW2 by simply adding more iterations. The most significant improvements for

the RW2 run, however, occur before the 200 iteration mark.

The results for the RW3 instance are plotted in figure 7.8c. From the figure, it

appears that the EA does not converge within the 500 iterations. The curve is far

steeper at 500 iterations for RW3 than for RW2, which could indicate that the EA

is further away from reaching a point of convergence.

The RW0 instance is by far the largest instance and was only run for 20 iter-

ations. As even the smallest benchmark instances needed about 50 iterations to

reach convergence, we can conclude that the results obtained from the run on the

RW0 instance are far from optimal.

Furthermore, the results presented in Figure 7.8 shows that while the fitness

for the runs on the RW1 and RW2 instances seem to converge, the fitness graph

for the RW3 instance is in significant decline at iteration 500. As such, the fitness

of the RW3 run is still not approaching an optimum. These observations suggest

that the RW0 instance needs even more than 500 iterations to approach optima.

7.4.2 Iteration times

In terms of iteration times, the results obtained from the runs on the real-world in-

stances are in line with the findings presented in Section 7.3. The results presented

in Table 7.6 shows that iteration times increase with the size of the instance. While

the RW1 instance used 16 seconds per iteration on average, the RW0 instance used

five hours. Thus, one can conclude that the EA has issues regarding iteration times

for instances of this size and that the algorithm is insufficient for optimizing routing

problems at the size of Oslo.

7.4.3 Applicability of the results

To assess the applicability of the results, the solution obtained from the run on

the RW3 instance is used. The size of this instance is significant, and the resulting

routing plan was generated by running the EA for 500 iterations.

For the RW3 instance, the EA obtained a solution using 20 shifts. As this

instance contains about 9 000 pickup locations, each shift services 450 pickup lo-

cations on average. In comparison, REN estimates that each of their shifts service

about 400 pickup locations. As the best-obtained solution for the RW3 instance

does not seem to be close to optimal but still appears to be better that REN’s

current routes, this suggests that the input parameters presented in Section 6.2.2

are imprecise. As both the pickup times and vehicle speeds are simple estimations,

the results indicate that these parameters should be more carefully modeled to

76 CHAPTER 7. COMPUTATIONAL STUDY

achieve solutions of practical applicability. However, the results also show that

the algorithm yields solutions of the same magnitude as today’s routing practice

suggests.

Figure 7.9 shows the domain of the RW3 instance, as well as the streets traversed

in each shift. Each shift is marked with different colors. The red dot in the figure

shows the depot. Figures 7.10 and 7.11 shows two shifts from the obtained solution,

with each trip within the given shift indicated by a different color. Appendix A

provides a suggested routing schedule for the solution obtained for RW3, assigning

the shifts as suggested in Section 5.9 given two vehicles driving two shifts each day.

The appendix also includes illustrations of all shifts.

Figure 7.9: The shifts in the obtained solution for RW3.

One of the benefits of using giant tours as chromosomes is that close-to-optimal

solutions yield trips within the same area for each shift. This gives predictability

and flexibility in the planning and operations. If a vehicle has excess capacity and

the trips within a shift are in close proximity, the vehicle may relieve pressure from

other trips within the same shift. The trips of Shift 9 in Figure 7.10 exhibits this

property.

However, as Figure 7.11 indicates, this is not the case for all shifts in the

solution. Visual inspection of the trips indicates that tasks from three to four

different areas are serviced within the same shift. This observation indicates that

the obtained solution is not yet approaching an optimum.

7.4. RESULTS FOR THE REAL-WORLD INSTANCES 77

Figure 7.10: Shift 9 of the obtained solution.

Figure 7.11: Shift 17 of the obtained solution.

78 CHAPTER 7. COMPUTATIONAL STUDY

Chapter 8

Concluding Remarks

This thesis studies the waste collection problem faced by the public waste man-

agement agency in Oslo. A mathematical formulation, describing the problem as

a Capacitated Arc Routing Problem with intermediate facilities and time restric-

tions, is introduced. It is an extension of the original CARP, in which vehicles can

unload or replenish multiple times during a tour, and the tours have a maximum

duration.

An evolutionary algorithm, inspired by concepts prevalent in the literature, is

proposed. The EA is based on a hybrid crossover operation which incorporates

a heuristic search procedure. The search procedure is used to decide where a

random fraction of one parent chromosome should be inserted into another parent

chromosome. The purpose of the search procedure is to speed up the convergence

of the algorithm. Initial chromosomes for the EA are built using a stochastic

construction heuristic utilizing a greedy heuristic measure. The EA is tested on

well-known benchmark instances from the literature and applied to instances based

on real-world infrastructure.

The results from the benchmarking show that the proposed EA performs well

for small instances, while it struggles with the solution quality as the complexity of

the instances increases. However, the instances for which the algorithm performed

best were those with a topography most resembling the real-world instances.

The problem regarding solution quality seems to be that the EA gets stuck in

local optima. As a result, the algorithm converges before reaching optimal values.

Three potential causes of this are identified.

Firstly, it is possible that the initial population does not adequately cover the

solution space. The EA obtained better fitness scores with larger, more diverse

populations, which indicates that this is the case. This problem can be solved by

applying additional construction heuristics and adding randomly generated chro-

79

80 CHAPTER 8. CONCLUDING REMARKS

mosomes when creating the initial population.

Secondly, the crossover operation applies a search procedure with the purpose

of speeding up the convergence of the algorithm, which may contribute to the

premature convergence. By adding a random element when choosing the insertion

point could help avoid this effect.

Thirdly, the EA was run without mutation, as the three proposed mutation

operators were unable to improve the fitness of the chromosomes and increased the

run time of the algorithm. This lack of a mutation phase leads to an EA that is

less explorative. Experiments with mutation operators and more advanced search

procedures could improve the performance of the EA by counteracting premature

convergence.

The proposed algorithm was able to produce feasible solutions to real-world

problems of significant size and to generate a routing plan for the collection of

waste from the entire city of Oslo. However, due to long run times, this plan

was generated using a mere 20 iterations. The results from the other instances

suggest that as the problem size grows, more iterations are needed to reach a point

of convergence for the fitness score. To reach close-to-optimal solutions for an

instance of the size of Oslo, one would need far more than 20 iterations.

The purpose of the EA is to solve such large-scale waste collection problems.

Even though the EA has problems regarding exploration of the solution space, the

most pressing issue is the long run time of the algorithm, as the algorithm is far

from reaching convergence for the largest instances due to run time limitations.

Chapter 9

Further Research

During the process of writing this thesis, several areas arose as potential topics

further research. First and foremost, the primary focus in the literature on EAs for

routing purposes is on solving small, theoretical benchmark instances rather than

practical applications. Thus, we suggest that practical routing applications should

be emphasized going forward, as such applications may require other characteristics

of an EA than the benchmark instances prevalent in the literature do. As an

extension of this, we suggest that more complex benchmark instances containing

the coordinates of nodes or heuristic distances between nodes should be developed,

to exploit efficient heuristic methods in the algorithms. Such benchmark sets would

enable for a better assessment of the performance of algorithms targeted at real-

world applications.

Additionally, several aspects should be considered to improve the proposed algo-

rithm. A functional mutation procedure would benefit the algorithm by countering

the issue of premature convergence. However, as the algorithm converges slowly

for larger instances, combining a mutation operator with a local search procedure

could improve the performance of the algorithm.

Lastly, the EA could be altered to better represent the real-world scenario of

waste collection. Such improvements include accounting for uncertainty. Several

parameters, such as waste volumes and traversal times, are stochastic, and an im-

proved algorithm should reflect this trait. Furthermore, by extending the algorithm

to account for multiple waste management facilities, the EA could be adapted to

even more realistic scenarios.

81

82 CHAPTER 9. FURTHER RESEARCH

Appendix A

Solution of the RW3 instance

83

A.1 Suggested schedule

Vehicle Monday, 1. shift Monday, 2. shift Tuesday, 1. shift Tuesday, 2. shift Wednesday, 1. shift Wednesday, 2. shift Thursday, 1. shift Thursday, 2. shift Friday, 1. shift Friday, 2. shift

1 Shift 1 Shift 3 Shift 5 Shift 7 Shift 9 Shift 11 Shift 13 Shift 15 Shift 17 Shift 19

2 Shift 2 Shift 4 Shift 6 Shift 8 Shift 10 Shift 12 Shift 14 Shift 16 Shift 18 Shift 20

Table A.1: Suggested schedule for the RW3 solution

A.2. ILLUSTRATIONS OF THE SHIFTS 85

A.2 Illustrations of the shifts

Figure A.1: Shift 1

Figure A.2: Shift 2

86 APPENDIX A. SOLUTION OF THE RW3 INSTANCE

Figure A.3: Shift 3

Figure A.4: Shift 4

A.2. ILLUSTRATIONS OF THE SHIFTS 87

Figure A.5: Shift 5

Figure A.6: Shift 6

88 APPENDIX A. SOLUTION OF THE RW3 INSTANCE

Figure A.7: Shift 7

Figure A.8: Shift 8

A.2. ILLUSTRATIONS OF THE SHIFTS 89

Figure A.9: Shift 9

Figure A.10: Shift 10

90 APPENDIX A. SOLUTION OF THE RW3 INSTANCE

Figure A.11: Shift 11

Figure A.12: Shift 12

A.2. ILLUSTRATIONS OF THE SHIFTS 91

Figure A.13: Shift 13

Figure A.14: Shift 14

92 APPENDIX A. SOLUTION OF THE RW3 INSTANCE

Figure A.15: Shift 15

Figure A.16: Shift 16

A.2. ILLUSTRATIONS OF THE SHIFTS 93

Figure A.17: Shift 17

Figure A.18: Shift 18

94 APPENDIX A. SOLUTION OF THE RW3 INSTANCE

Figure A.19: Shift 19

Figure A.20: Shift 20

Bibliography

Aftenposten (2017). Kommunefakta oslo.

Amberg, A., Domschke, W., and Voß, S. (2000). Multiple center capacitated arc

routing problems: A tabu search algorithm using capacitated trees. European

Journal of Operational Research, 124(2):360–376.

Archetti, C., Speranza, M. G., and Hertz, A. (2006). A tabu search algorithm for

the split delivery vehicle routing problem. Transportation science, 40(1):64–73.

Baker, B. M. and Ayechew, M. (2003). A genetic algorithm for the vehicle routing

problem. Computers & Operations Research, 30(5):787–800.

Baldacci, R. and Maniezzo, V. (2006). Exact methods based on node-routing

formulations for undirected arc-routing problems. Networks, 47(1):52–60.

Belenguer, J. M. and Benavent, E. (2003). A cutting plane algorithm for the

capacitated arc routing problem. Computers & Operations Research, 30(5):705–

728.

Beliën, J., De Boeck, L., and Van Ackere, J. (2012). Municipal solid waste col-

lection and management problems: a literature review. Transportation Science,

48(1):78–102.

Benavent, E., Campos, V., Corberán, A., and Mota, E. (1992). The capacitated

arc routing problem: lower bounds. Networks, 22(7):669–690.

Beullens, P., Muyldermans, L., Cattrysse, D., and Van Oudheusden, D. (2003). A

guided local search heuristic for the capacitated arc routing problem. European

Journal of Operational Research, 147(3):629–643.

Blanton Jr, J. L. and Wainwright, R. L. (1993). Multiple vehicle routing with

time and capacity constraints using genetic algorithms. In Proceedings of the

5th International Conference on Genetic Algorithms, pages 452–459. Morgan

Kaufmann Publishers Inc.

95

96 BIBLIOGRAPHY

Brandão, J. and Eglese, R. (2008). A deterministic tabu search algorithm for the

capacitated arc routing problem. Computers & Operations Research, 35(4):1112–

1126.

Chen, Y., Hao, J.-K., and Glover, F. (2016). A hybrid metaheuristic approach for

the capacitated arc routing problem. European Journal of Operational Research,

253(1):25–39.

Christofides, N. (1973). The optimum traversal of a graph. Omega, 1(6):719–732.

Corberán, A. and Prins, C. (2010). Recent results on arc routing problems: An

annotated bibliography. Networks, 56(1):50–69.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Nu-

merische mathematik, 1(1):269–271.

Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant colony optimization. IEEE

computational intelligence magazine, 1(4):28–39.

Dror, M. (2012). Arc routing: theory, solutions and applications. Springer Science

& Business Media.

Eglese, R. W. (1994). Routeing winter gritting vehicles. Discrete applied mathe-

matics, 48(3):231–244.

Fleury, G., Lacomme, P., and Prins, C. (2004). Evolutionary algorithms for stochas-

tic arc routing problems. In Workshops on Applications of Evolutionary Com-

putation, pages 501–512. Springer.

Fleury, G., Lacomme, P., Prins, C., and Ramdane-Cherif, W. (2005). Improv-

ing robustness of solutions to arc routing problems. Journal of the operational

research society, 56(5):526–538.

Fung, R. Y., Liu, R., and Jiang, Z. (2013). A memetic algorithm for the open

capacitated arc routing problem. Transportation Research Part E: Logistics and

Transportation Review, 50:53–67.

Gendreau, M. and Potvin, J.-Y. (2005). Metaheuristics in combinatorial optimiza-

tion. Annals of Operations Research, 140(1):189–213.

Ghiani, G., Improta, G., and Laporte, G. (2001). The capacitated arc routing

problem with intermediate facilities. Networks, 37(3):134–143.

Ghiani, G., Laganà, D., Laporte, G., and Mari, F. (2010). Ant colony optimiza-

tion for the arc routing problem with intermediate facilities under capacity and

BIBLIOGRAPHY 97

length restrictions. Journal of Heuristics, 16(2):211–233. Copyright - Springer

Science+Business Media, LLC 2010; Document feature - ; Tables; Equations;

Last updated - 2012-07-24.

Golden, B. L., DeArmon, J. S., and Baker, E. K. (1983). Computational experi-

ments with algorithms for a class of routing problems. Computers & Operations

Research, 10(1):47–59.

Golden, B. L. and Wong, R. T. (1981). Capacitated arc routing problems. Networks,

11(3):305–315.

Hertz, A., Laporte, G., and Mittaz, M. (2000). A tabu search heuristic for the

capacitated arc routing problem. Operations research, 48(1):129–135.

Hertz, A. and Mittaz, M. (2001). A variable neighborhood descent algorithm for the

undirected capacitated arc routing problem. Transportation science, 35(4):425–

434.

Hirabayashi, R., Saruwatari, Y., and Nishida, N. (1992). Tour construction algo-

rithm for the capacitated arc routing-problems. Asia-Pacific Journal of Opera-

tional Research, 9(2):155–175.

Kiilerich, L. and Wøhlk, S. (2018). New large-scale data instances for carp and

new variations of carp. INFOR: Information Systems and Operational Research,

56(1):1–32.

Kiuchi, M., Shinano, Y., Hirabayashi, R., and Saruwatari, Y. (1995). An exact

algorithm for the capacitated arc routing problem using parallel branch and

bound method. In Spring national conference of the operational research society

of Japan, pages 28–29.

Labadi, N., Prins, C., and Reghioui, M. (2008). An evolutionary algorithm with

distance measure for the split delivery capacitated arc routing problem. In Recent

advances in evolutionary computation for combinatorial optimization, pages 275–

294. Springer.

Lacomme, P., Prins, C., and Ramdane-Chérif, W. (2001). A genetic algorithm for

the capacitated arc routing problem and its extensions. Applications of evolu-

tionary computing, pages 473–483.

Lacomme, P., Prins, C., and Ramdane-Cherif, W. (2004a). Competitive memetic

algorithms for arc routing problems. Annals of Operations Research, 131(1):159–

185.

98 BIBLIOGRAPHY

Lacomme, P., Prins, C., and Sevaux, M. (2003). Multiobjective capacitated arc

routing problem. In International Conference on Evolutionary Multi-Criterion

Optimization, pages 550–564. Springer.

Lacomme, P., Prins, C., and Sevaux, M. (2006). A genetic algorithm for a bi-

objective capacitated arc routing problem. Computers & Operations Research,

33(12):3473–3493.

Lacomme, P., Prins, C., and Tanguy, A. (2004b). First competitive ant colony

scheme for the carp. In International Workshop on Ant Colony Optimization

and Swarm Intelligence, pages 426–427. Springer.

Laporte, G., Musmanno, R., and Vocaturo, F. (2010). An adaptive large neigh-

bourhood search heuristic for the capacitated arc-routing problem with stochastic

demands. Transportation Science, 44(1):125–135.

Letchford, A. N. and Oukil, A. (2009). Exploiting sparsity in pricing routines

for the capacitated arc routing problem. Computers & Operations Research,

36(7):2320–2327.

Li, L. Y. and Eglese, R. W. (1996). An interactive algorithm for vehicle routeing

for winter—gritting. Journal of the Operational Research Society, 47(2):217–228.

Li, L. Y. O. (1992). Vehicle routeing for winter gritting. PhD thesis, University of

Lancaster.

Liu, M., Singh, H. K., and Ray, T. (2014). Application specific instance generator

and a memetic algorithm for capacitated arc routing problems. Transportation

Research Part C: Emerging Technologies, 43:249–266.

Longo, H., De Aragao, M. P., and Uchoa, E. (2006). Solving capacitated arc routing

problems using a transformation to the cvrp. Computers & Operations Research,

33(6):1823–1837.

Mourão, M. C. and Pinto, L. S. (2017). An updated annotated bibliography on arc

routing problems. Networks, 70(3):144–194.

Mullaseril, P. A. (1997). Capacitated rural postman problem with time windows

and split delivery.

Nuortio, T., Kytöjoki, J., Niska, H., and Bräysy, O. (2006). Improved route plan-

ning and scheduling of waste collection and transport. Expert systems with ap-

plications, 30(2):223–232.

BIBLIOGRAPHY 99

Oliver, I., Smith, D., and Holland, J. R. (1987). Study of permutation crossover

operators on the traveling salesman problem. In Genetic algorithms and their

applications: proceedings of the second International Conference on Genetic Al-

gorithms: July 28-31, 1987 at the Massachusetts Institute of Technology, Cam-

bridge, MA. Hillsdale, NJ: L. Erlhaum Associates, 1987.

Pearn, W.-L., Assad, A., and Golden, B. L. (1987). Transforming arc routing into

node routing problems. Computers & operations research, 14(4):285–288.

Polacek, M., Doerner, K. F., Hartl, R. F., and Maniezzo, V. (2008). A variable

neighborhood search for the capacitated arc routing problem with intermediate

facilities. Journal of Heuristics, 14(5):405–423.

Potvin, J.-Y. and Bengio, S. (1996). The vehicle routing problem with time windows

part ii: genetic search. INFORMS journal on Computing, 8(2):165–172.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle

routing problem. Computers & Operations Research, 31(12):1985–2002.

Prins, C. and Bouchenoua, S. (2005). A memetic algorithm solving the vrp, the carp

and general routing problems with nodes, edges and arcs. In Recent advances in

memetic algorithms, pages 65–85. Springer.

Prins, C., Labadi, N., and Reghioui, M. (2009). Tour splitting algorithms for vehicle

routing problems. International Journal of Production Research, 47(2):507–535.

Reuters (2018). Key facts about norway.

Santos, L., Coutinho-Rodrigues, J., and Current, J. R. (2010). An improved ant

colony optimization based algorithm for the capacitated arc routing problem.

Transportation Research Part B: Methodological, 44(2):246–266.

SSB (2018). Kommunefakta oslo.

Tang, K., Mei, Y., and Yao, X. (2009). Memetic algorithm with extended neigh-

borhood search for capacitated arc routing problems. IEEE Transactions on

Evolutionary Computation, 13(5):1151–1166.

Tavares, G., Zsigraiova, Z., Semiao, V., and Carvalho, M. d. G. (2009). Opti-

misation of msw collection routes for minimum fuel consumption using 3d gis

modelling. Waste Management, 29(3):1176–1185.

Teixeira, J., Antunes, A. P., and de Sousa, J. P. (2004). Recyclable waste collection

planning—-a case study. European Journal of Operational Research, 158(3):543–

554.

100 BIBLIOGRAPHY

the World Bank Group (2012). What a waste : A global review of solid waste

management.

Ulusoy, G. (1985). The fleet size and mix problem for capacitated arc routing.

European Journal of Operational Research, 22(3):329–337.

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2):65–

85.

Willemse, E. J. and Joubert, J. W. (2016). Constructive heuristics for the mixed

capacity arc routing problem under time restrictions with intermediate facilities.

Computers & Operations Research, 68:30–62.

Wøhlk, S. (2006). Contributions to arc routing. Citeseer.

Wøhlk, S. (2008). A decade of capacitated arc routing. The vehicle routing problem:

latest advances and new challenges, pages 29–48.

Worldometers (2018).

Xing, L., Rohlfshagen, P., Chen, Y., and Yao, X. (2010). An evolutionary ap-

proach to the multidepot capacitated arc routing problem. IEEE Transactions

on Evolutionary Computation, 14(3):356–374.

Zhang, Y., Mei, Y., Tang, K., and Jiang, K. (2017). Memetic algorithm with

route decomposing for periodic capacitated arc routing problem. Applied Soft

Computing, 52:1130–1142.

