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Thesis Description 
 
For manufacturing industries, activities such as procurement and replenishment are 
susceptible to uncertain purchase price volatility. Approaches such as long-term 
contracting and spot procurement can mitigate some risks due to price uncertainty. In this 
thesis, we develop an optimisation approach to manage risk in a contract procurement 
portfolio within the aluminium remelting industry. The presented model is a multistage 
stochastic program in which replenishment decisions are made at various stages along a 
time horizon. Replenishment quantities are jointly determined by the deterministic 
material demand and the stochastic price dynamics of the spot market. We minimise an 
objective function existing of two components: expected costs and a control measure to 
reflect the risk level, thus leading to multi-objective optimisation. The specific model 
presented considers both procurement planning and risk hedging. Numerical experiments 
are conducted to test the effectiveness of the proposed model.  
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Abstract 
 

In today’s increasingly turbulent and volatile commodity exchange markets, it is evident 
that controlling the risks in procurement strategies is an important issue. In this thesis, we 
develop a portfolio procurement optimisation model handling a Procurement Hedging 
Strategy Problem (PHSP). The portfolio optimisation problem has been one of the 
important research fields in modern risk management and there has been a growing interest 
in Conditional Value at Risk (CVaR) as a financial risk measurement tool in portfolio 
optimisation. This interest is based on many key advantages of CVaR compared with the 
more used measures of risk: standard deviation (SD) and Value-at-Risk (VaR). 
 
Aluminium remelters participating in the European scrap market face significant 
uncertainty in future spot prices. While facing this risk, a remelter selects a procurement 
portfolio of scrap contracts with different maturities and prices to satisfy the expected 
material usage. The procurement strategy is also created in accordance with the decision 
maker’s level of risk aversion. The methods described in this thesis will be useful as a 
decision support tool for determining risk management and hedging strategies in the 
aluminium remelting business. 
 
Taking the view of a single risk-averse producer, namely Holmestrand Rolling Mill (i.e. 
Norsk Hydro ASA), we propose a multistage stochastic model for the coordination of 
inventory and procurement, while considering uncertainty in the spot prices of aluminium. 
The presented model focuses on minimising a combination of expected cost and CVaR. 
Although the basis of the model is a standard CVaR approach, the model is further 
developed in a nested fashion, using recursive constraints, to handle time-inconsistency 
issues. Numerical results are presented for a six-stage, 256 scenario data instance with a 
one year horizon, and are based on data from Norsk Hydro and listed indexes on London 
Metal Exchange. 
 
The model is tested to demonstrate its application as a decision-making tool in practice. 
An assessment of the applicability and validity of the model is made based on several test 
instances. Results show that instances of considerable size are challenging to solve due to 
the model’s complexity. Nevertheless, optimal solutions can be found within a reasonable 
time frame for Holmestrand Rolling Mill. Moreover, findings prove the model’s ability to 
suggest hedging strategies according to the decision maker’s level of risk aversion. That is, 
the results show that hedging with the use of forward contracts reduces the risk in terms 
of CVaR. The percentage procurement through forward contracts vary between 46.21 % 
to 60.53 % depending on risk preferences and test cases, demonstrating diversification and 
hedging. The degree of risk-aversion also influences the maturity of the chosen long-term 
contracts: the higher the degree of risk aversion, the longer the maturity of the forward 
contracts. The model also demonstrates the ability to adjust the procurement strategy for 
different price data by shifting towards long-term contracts for increased price variation 
and scheduling more material purchase when the average prices are lower. 
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Sammendrag 
 
I dagens stadig turbulente råvaremarkeder er det åpenbart at risikostyring er et viktig 
tema i forbindelse med innkjøp og kontraktinngåelse. I denne masteroppgaven utvikler vi 
en optimeringsmodell som håndterer et Procurement Hedging Strategy Problem (PHSP). 
Porteføljeoptimering har vært et av de viktige forskningsområdene innen moderne 
risikostyring, og det har vært en økende interesse for Conditional Value at Risk (CVaR) 
som et finansielt risikomål. Denne interessen er basert på flere fordeler ved CVaR 
sammenlignet med de mer brukte risikomålene: standardavvik og Value-at-Risk (VaR). 
 
Aluminiumsmelteverk som deltar i det europeiske skrapmarkedet står overfor betydelig 
usikkerhet med fremtidige spotpriser. I møte med denne usikkerheten, velger en aluminium 
omsmelter en innkjøpsportefølje av skrapkontrakter med ulike løpetider og priser for å 
tilfredsstille forventet materialbruk. Anskaffelsesstrategien er også opprettet i samsvar med 
beslutningstakerens risikoaversjonsnivå. Metodene og modellen beskrevet i denne oppgaven 
vil være nyttige som et beslutningsstøtteverktøy for risikostyring og bestemmelse av 
hedging-strategier (i.e. sikringsstrategier) for bruk i aluminiumsindustrien.  
 
I denne oppgaven observerer vi en enkelt produsent, nemlig Holmestrand Rolling Mill (i.e. 
Norsk Hydro ASA), og foreslår en fler-stegs stokastisk optimeringsmodell for koordinering 
av inventar og innkjøp, mens vi vurderer usikkerhet i aluminium spotpriser. Den 
presenterte modellen fokuserer på å minimere en kombinasjon av forventet kostnad og 
CVaR. Selv om modellens grunnlag er en standard CVaR-tilnærming, er modellen 
videreutviklet rekursivt for å håndtere problemer med tidsinkonsekvente løsninger. 
Numeriske resultater presenteres for et 6-stegs, 256 scenario case med en tidshorisont på 
ett år, og benytter data fra Norsk Hydro og noterte indekser på London Metal Exchange. 
 
Det utviklede beslutningsverktøyet er testet for å demonstrere dets anvendelse i praksis. 
En vurdering av funksjonaliteten til det stokastiske programmet er gjort basert på flere 
testinstanser. Resultatene viser at testinstanser av betydelig størrelse er utfordrende å løse 
på grunn av modellens kompleksitet. Likevel finner vi optimale løsninger innen rimelig tid 
for Holmestrand Rolling Mill. Resultatene viser også modellens evne til å foreslå hedging 
strategier (i.e. sikringsstrategier) i henhold til beslutningstakernes grad av risikoaversjon. 
Det vil si at resultatene viser at hedging ved bruk av langsiktige terminkontrakter reduserer 
risikoen for CVaR. Resultatene bekrefter at økt grad av risikoaversjon fører til mindre 
anskaffelse gjennom spot innkjøp og mer gjennom langsiktige kontrakter, samt tilsvarende 
lavere CVaR-verdier. Andelen anskaffelse av langsiktige kontrakter med fast pris varierer 
mellom 46,21% til 60,53%, avhengig av risikograd og tetsinstanser, og viser modellens evne 
til å sikre og diversifisere. Graden av risikoaversjon påvirker også løpetidene til de valgte 
langsiktige kontraktene: jo høyere grad av risikoaversjon, desto lengre løpetid får 
kontraktene. Modellen demonstrerer også variasjon i anskaffelsesstrategi for ulik prisdata 
ved å skifte til langsiktige kontrakter for økt prisvariasjon og planlegger større materielle 
innkjøp når gjennomsnittsprisene er lavere. 
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Definitions 
 
 
Alloy 
 

-  A metal made by combining two or more metallic 
elements, especially to give greater strength or 
resistance to corrosion. 

   
Alloying Elements - Chemical elements such as aluminium, copper, 

magnesium, silicon, copper and zinc added in specified 
or standard amounts to a base-metal to make an alloy.  

   
Casthouse - The space in a foundry where a mixture of raw 

materials is melted down to make an alloy and 
transformed into ingots  
 

Primary Aluminium - Unalloyed aluminium produced from alumina usually 
by electrolysis, typically with an aluminium content of 
99.7% (OEA, 2006). 

   
Recycled aluminium  - Aluminium obtained through recycling of scrap. 

Recycled aluminium is also referred to secondary 
aluminium (OEA, 2006).  

   
Remelter - Producer of aluminium alloys, from mainly clean and 

sorted scrap (OEA, 2006). 
   
Rolled Products - The products of rolling, a metal forming process in 

which metal stock is passed through one or more pairs 
of rolls to reduce the thickness. 
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1 Introduction 
 
Sustainable and efficient handling of aluminium has become essential due to the 
exponential growth in global demand. In the last decades, application areas for aluminium 
have steadily increased. Aluminium is a flexible material that is commonly used in 
automotive, packaging and construction industries with substantial recent growth (Norsk 
Hydro ASA, 2012). This increasing demand for aluminium has outpaced the growth of 
primary aluminium production and the use of secondary, recycled aluminium materials has 
therefore become necessary to meet this shortfall.  
 

 

 
Figure 1.1  Amount of primary and recycled aluminium used globally (IAI, 2017) 

 
The amount of aluminium used globally has been increasing since 1950, illustrated in Figure 
1.1, and this trend is projected to continue (Cullen & Allwood, 2013). Aluminium has a 
number of good qualities that have led to it now being the metal with the fastest growing 
demand in the world. Perhaps the most important characteristic of the metal is that it can 
be recycled repeatedly without quality loss using only five percent of the energy required 
to initially produce it. Aluminium has historically been recycled at a higher rate than most 
other raw materials. Other advantages include high strength-to-weight ratio, good 
formability and high corrosion resistance (Soo, et al., 2018).  
  
Figure 1.1 also illustrates the gradual growing share of recycled compared to primary 
aluminium. Recycling is critical for sustainable development and will provide both 
environmental and economic benefits. In addition to the energy savings, greenhouse gas 
and other harmful emissions can be reduced in the future by limiting primary aluminium 
production while increasing aluminium recycling. In 2012, recycling of post-consumer 
aluminium saved over 90 million metric tonnes (mt) of emissions and over 100,000 GWh 
of electrical energy globally compared to primary production (Norsk Hydro ASA, 2012). 
This amount is equivalent to the annual power consumption of the Netherlands.  
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The context of this thesis is the Procurement Hedging Strategy Problem (PHSP) faced by 
Holmestrand Rolling Mill (HRM), owned by Norsk Hydro ASA. Based on their 
procurement of aluminium scrap, they produce aluminium products in a remelting process. 
Their procurement activities depend strongly on uncertain and highly fluctuating factors, 
and decision support is essential in maintaining profitable production. Today, HRM 
recycles approximately 20,000 metric tonnes (mt) of used scrap aluminium every year, 
purchased in the European market for scrap, and has a yearly production capacity of 86,000 
mt. With a listed aluminium price (LME) of $1770 per metric tonne, the annual revenue 
value generated by HRM is 152 million USD. These figures illustrate how even small efforts 
towards the application of Operations Research can lead to significant improvement in the 
profits realised by HRM.  
 
The foremost target of Hydro in Holmestrand today is to secure HRMs position as the 
leading recycling rolling mill in Europe. Since the early 1990s, recycled aluminium has been 
central for Hydro’s rolling mill production in Holmestrand. With considerable experience 
in remelting technology, HRM is positioned as a front-runner for aluminium processing in 
Norway. However, considerable cost is associated with aluminium scrap purchasing, and 
the core of HRM’s procurement problem is to determine how costs can be reduced through 
more efficient contracting of recycled aluminium. As aluminium is a commodity traded on 
the London Metal Exchange (LME), the value over time is easily measured. Pricing of 
scrap in contracting is often directly dependent on LME listings of aluminium. As a 
consequence, the price volatility of listed LME Aluminium prices is a source of risk for an 
aluminium remelter contracting scrap. As scrap materials must be contracted in advance 
to cover future production needs, the need for decision support rises for the task of creating 
a scrap procurement portfolio.  
 
Against a backdrop of uncertainty, the scope of this thesis is to present a decision support 
tool for aluminium scrap contracting while incorporating stochastic aspects. The purpose 
of considering elements of randomness is to enable viable decisions when information is 
limited, in order to reduce the risk of generating unfavourable strategies. A multi-stage 
stochastic model is proposed in order to capture uncertainty in the spot price of aluminium. 
Minimising the overall cost while managing risk constitutes the objective of the model. 
Owing to the generality of this model, it is readily applicable to a wider range of 
procurement contracting problems. However, in order to conduct a concrete computational 
study, this thesis will primarily deal with aluminium scrap contracting. 
 
To handle risk, we present the Conditional Value-at-Risk concept and combine an analysis 
that covers its application as a risk measure with a portfolio optimisation problem. More 
precisely, CVaR optimisation is analysed in the context of hedging a portfolio consisting 
of scrap procurement contracts. The risk of incurring extreme costs due to price uncertainty 
is limited through the use of CVaR in a multi-stage stochastic optimisation programme. A 
nested CVaR implementation is used to handle the problems of time-inconsistency in the 
model.   
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The main focus of the thesis is how the producer’s risk preferences influence the decision 
on whether to purchase the scrap using forward contracts in order to secure the price or to 
purchase the scrap based on variable price contracts depending on the spot price. A 
multistage stochastic programming problem is formulated to model the producer’s 
contracting decisions with time consistent risk constraints (e.g. Shapiro, 2009). The 
objective is to minimise the weighted sum of expected cost and the conditional value-at-
risk (CVaR) of the future cost. The weights associated with expected cost and the CVaR 
are used as a measure of the producer’s risk preference and by varying the weight one can 
examine how the producer’s decisions change as the degree of risk aversion increases. 
Degree of risk aversion is further adjusted through the specified confidence level of CVaR. 
 
In brief, the research objective is to gain insight and develop an optimisation model and 
solution method for the purpose of reducing the cost, as well as managing risk, of scrap 
procurement contracting at HRM. The type of analysis will provide valuable decision 
support to aluminium remelters regarding the choice of an optimal hedging strategy 
according to the company’s risk preferences. To the knowledge of the author, a multi-stage 
stochastic optimisation problem for procurement contracting, utilising CVaR as the risk 
management tool, has not yet been researched. Furthermore, CVaR has never been 
analysed in the context of scrap procurement for aluminium remelters. Though this thesis 
is written for HRM, the application area for the implemented model is broad and the model 
can easily be modified for other procurement players contracting in the commodity 
marketplace.  
 
The thesis is organised as follows. Chapter 2 gives a short introduction of Norsk Hydro and 
HRM in context of the aluminium recycling and remelting industry. This entails an 
introduction of the price volatility of aluminium listings and the unique features of scrap 
contracting. Also, the uncertainty factors involved in the contracting process and the initial 
assessments necessary to map out the scope of the problem are described.  Chapter 3 states 
the portfolio problem at hand in terms of relevant attributes. Aspects of uncertainty, the 
importance of restricting problem features and the objective of the problem are discussed 
in greater detail. In Chapter 4, a review of literature relevant to the portfolio problem is 
given in order to illustrate the differentiating value of the model proposed. This also entails 
motivation for utilising multi-stage stochastic programming and the implications of its use. 
Chapter 5 presents the nested stochastic optimisation model. Underlying assumptions of 
the model are stated along with the complete mathematical formulation and a discussion 
of essential features. Chapter 6 covers a computational study, including an evaluation and 
validation of the model in terms of practical value and computational efficiency. 
Implementation of the mathematical model in commercial software and a presentation of 
a numerical example is also presented in order to illustrate output, characteristics and 
application of the model. Finally, the conclusions of the findings followed by directions for 
future work are presented in Chapter 7. 
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2 Background 
 
The prominence of international aluminium scrap sourcing is exposing procurement 
activities to risk, which directly impacts the financial results of a remelter. This chapter 
provides a description of the aluminium remelting industry in general and the field of risk 
management and portfolio hedging in relation to HRM. A review of the main phases and 
associated activities invoked in scrap procurement and aluminium remelting will also be 
given to clarify central terminology.   
 
 

2.1 The Aluminium Remelting Industry 
 
Aluminium has a broad spectrum of applications and numerous benefits. Many of these 
benefits are related to recyclability and remelting. Primary aluminium production is an 
energy-intensive and time-consuming process. In fact, energy costs constitute a substantial 
part (i.e. 20-40 percent) of primary production (Norsk Hydro ASA, 2016). Nevertheless, 
once the aluminium is produced, it can be recycled repeatedly without losing its 
advantageous properties (Norsk Hydro ASA, 2012). The remelting process requires up to 
95 percent less energy than primary production, offering considerable energy savings. In a 
resource constrained reality, recycling is also essential to sustainable development. It allows 
resources to be spared and existing scrap to be reduced (Li & Kirchain, 2005). 
 
The term “aluminium scrap” can be defined as recyclable aluminium materials left over 
from product manufacturing and consumption, such as parts of vehicles and building. 
Unlike waste, i.e., unusable material, scrap has monetary value and is therefore recovered 
for recycling. The quantity of recycled aluminium has increased steadily in recent years, 
and remelters have implemented technologies to reduce harmful emissions from the 
remelting process (Cullen & Allwood, 2013). Presently, the process of recycling and 
remelting is increasing faster than primary metal production, as more scrap is available on 
the market. Currently, around 75 percent of all aluminium ever produced is still in use and 
creates a resource reservoir for future use (Norsk Hydro ASA, 2012). Also, the 
infrastructure required for the collection of scrap metals is already well-established and is 
likely to continue to improve on its own economic merit to provide an increasingly efficient 
recycling system. Given that Europe depends more on imported primary aluminium than 
any other continent, the increasing levels of scrap recycling will also reduce Europe's 
dependency on imports (Djukanovic, 2016). Today, the use of recycled metal is also a 
strong marketing advantage due to its environmental benefits. In other words, recycling 
and scrap procurement will continue to be highly relevant in the future.  
 
Even though the quantity of recycled aluminium has steadily increased, the access to 
aluminium scrap is still restricted. Most of the aluminium produced in recent years has 
ended up in products with long lifetimes such as vehicles and constructions (Norsk Hydro 
ASA, 2016), see Figure 2.1. Consequently, it will take a long time for a large amount of 
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the aluminium to be available for recycling. In fact, recycled aluminium scrap can only 
supply 20-25 percent of the currently increasing global demand for aluminium. The rest 
must be produced from primary production. In short, aluminium recycling is a significant 
source of economic, energy and aluminium resource savings, as well as in environmental 
protection. Consequently, the recycling industry plays a valuable part in the aluminium 
life cycle and will continue to do so. 
 

 
 

Figure 2.1  The material flow balance of aluminium (Norsk Hydro ASA, 2016) 

 
 

2.2 Norsk Hydro and HRM 
 
Norsk Hydro ASA, henceforth referred to as Hydro, is a major global supplier of high-
quality aluminium for applications in various market segments, such as building, transport, 
packaging, renewable energy and engineering. Based in Norway, Hydro has a strong 
presence in Europe and worldwide operations covering every step of the production chain, 
from the extraction of raw materials to semi-finished products, as well as recycling. Hydro’s 
ambition is to grow faster than the market in recycling and to take a strong position in 
this part of the value chain. By 2020, Hydro aims to recover 1 million metric tons (mt) of 
scrap annually. Hydro also has set fixed strategic targets to increase its production of 
recycled metal, such as reorganising to recycling plants, optimising procurement and 
processing of scrap, increasing sales of recyclable friendly alloys, and developing closed 
circuits in cooperation with customers (Norsk Hydro ASA, 2003). Regarding procurement 
(i.e the process of contracting and sourcing), Hydro has a high potential for cost reduction. 
 
Hydro Aluminium Rolled Products (HARP) is Norsk Hydro’s business unit for rolled 
aluminium products. Rolled products are the results of a metal forming process in which 
metal stock is passed through one or more pairs of rolls to reduce the thickness and to 
make the thickness uniform. HARP’s products are used in a number of applications in 
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industries such as construction, automotive, printing and packaging. The plant located in 
Holmestrand, Holmestrand Rolling Mill (HRM), manufactures rolled products almost 
exclusively based on the remelting of recycled and primary aluminium at its own facilities 
(i.e. foundry and casthouse). More than 95 percent of their production is exported, 
primarily to customers in Europe and the factory employs around 400 people with round-
the-clock operations (Norsk Hydro ASA, 2017). 
 
Though aluminium has a high scrap value, the benefits of recycling are influenced by the 
purity level of the scrap (Soo, et al., 2018). The casthouse at HRM has a remelting capacity 
of 120 million metric tonnes per year and utilises modern remelting furnaces to handle 
scrap with higher levels of impurities. One of the main difficulties of casting aluminium 
based on recycled scrap is achieving the correct chemical specifications of the melt with 
minimal additions of primary aluminium and alloying elements. Primary aluminium is 
produced from alumina usually by electrolysis, typically with an aluminium content of 
99.7%. Alloying elements, on the other hand, are chemical elements such as copper, 
magnesium, carbon etc., added in specified or standard amounts to a base-metal to make 
an alloy (OEA, 2006). The addition of primary aluminium is necessary to dilute impurities 
to an acceptable level, while alloying elements are added for correction if necessary. Since 
primary aluminium and alloying elements are generally more expensive than scrap 
materials, the producer will incur additional cost if utilising more primary material and 
alloying elements than necessary. Consequently, effective management of material 
inventory and scrap procurement is essential in keeping costs down. Consequently, the 
application of mathematical modelling and optimisation for better resources utilisation is 
of great potential. For more detailed description of HRM’s production process, the reader 
can refer to Hovland (2017).  
 
 

2.3 The Aluminium Scrap Market 
 
This section gives an overview of the aluminium scrap market, where HRM conducts 
procurement activities, and a discussion on concepts such as scrap pricing, aluminium spot 
listings and transportation costs.  
 
There are many aspects influencing the value of metals. Though purity and quality are 
main factors, demand and exchange rates can also have a strong influence on prices 
(Dabbas, 2007). In general, demand for aluminium is evolving in line with consumption 
patterns and industrial development (Norsk Gjenvinning, 2016). Scrap is normally priced 
at a discount to the primary aluminium price to reflect impurities. Along with this discount, 
the reduced energy costs of remelting and the added values of expensive alloying elements 
included in the scrap, there is a significant value increase in the remelting process. However, 
some additional costs are also related to scrap collection and processing. 
 
As aluminium is a commodity traded on the London Metal Exchange (LME), value 
development can be followed. The aluminium prices for scrap in the European market are 
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driven by the major players, and remain in alignment with the LME indexes. Concerning 
the aluminium market, aluminium has been traded on the London Metal Exchange (LME) 
since 1978 (Figuerola-Ferretti & Gilbert, 2010). Today, there exist two LME listings of 
aluminium; Aluminium High Grade and Secondary Aluminium. Aluminium High Grade is 
primary aluminium with strict impurity requirements, while Secondary Aluminium include 
aluminium alloys with a higher impurities acceptance level. Aluminium High Grade, also 
called LME Aluminium, is unalloyed primary ingots with minimum 99.7% purity and 
Secondary Aluminium, also called LME Aluminium Alloy, contains valuable alloying 
elements primary aluminium does not comprise (The London Metal Exchange, 2017). Price 
volatility of the two listings for the last 2 years can be viewed in Figure 2.2. 
 
 
 

 
 

Figure 2.2  Volatility of LME listings: High Grade (green) and Secondary (blue) 

 
Aluminium scrap is traded in the international market-place. Price, availability and 
shipping costs are usually the determining factors in choosing whether to sell scrap in the 
domestic market or the international market. HRM contracts scrap from suppliers such as 
Stena Metal, Metallco, Norsk Gjenvinning and S. Norton which are considered some of the 
major players in the market. The scrap material is transported to HRM mainly from 
various locations in Norway and England, but also from Sweden, Scotland, Germany and 
the Netherlands. 
 
A downside of international scrap sourcing is the large costs of transporting scrap from the 
market in Europe. Table 2.1 displays a selection of shipping costs for the scrap material 
referred to as OLD from available suppliers around Europe. The different shipping costs 
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data is given by HRM and gives information about weight per load and shipping location. 
The data can be used to calculate the shipping cost of a contract. All costs are based on a 
Free Carrier Agreement (FCA) where the seller is responsible for the delivery of goods to 
a specific destination. In all cases, the buyer assumes all risks and costs after the goods 
have been delivered at the determined delivery location. 
 
 
 

Table 2.1  Exemplification of transportation costs (FCA) to HRM for the material OLD  

 
Location Price per load 

[NOK] 
Weight per load 
[mt] 

Price 
|NOK/mt]  

Barnsley 7,000 14 500 
Brighton 18,000 13 1385 
Darlington 9,500 10 950 
Eberswalde 19,500 23.5 830 
Leeds 10,200 14 729 
London 12,700 14 907 
Malmø 10,600 28 379 
Manchester 9,900 14 707 
Moss 3,300 14 236 
Oldbury 12,300 12 1025 
Portsmouth 14,100 14 1007 
Poulton 10,100 14 721 
Rotherham 11,400 14 814 
Skien 4,200 28 150 
Trier 25,000 23.5 1064 

 

 
 

2.4 Procurement Contracting and Risk Management 
 
This section gives an overview of HRM’s scrap procurement activities by discussing 
concepts such as price volatility, material usage and procurement hedging. Also included 
is a detailed description of contracting and pricing activities, as well as an analysis of the 
main sources of risk related to these topics. Furthermore, elements of uncertainty relevant 
to the procurement portfolio problem will be discussed. Essentially, we present the LME 
spot price risk, which is the most important risk that an aluminium remelter face. Other 
sources of risk relevant to the problem are discussed along with a reasoning of why they 
fall outside the scope of this thesis. These include uncertain material demand for production 
and uncertainty in material composition. 
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Scrap procurement and portfolio hedging  
 

For an aluminium remelter, price risk stems from variations in the value of LME spot 
positions. The aluminium spot prices have high volatility and will therefore have significant 
impact on the cost of the production. The core of portfolio hedging is to protect against 
adverse price movements. Hedging in procurement contracting contributes locking in an 
agreed profit margin (by fixing procurement costs) and protects inventory value. As scrap 
must be contracted today to cover later production needs and multiple pricing alternatives 
exist, strategic planning is necessary in procurement contracting.  
 
Today, long-term contracts constitute about 20 percent of the procured scrap at HRM, 
while the rest is procured through spot purchases. Historically, HRM only entered spot 
contracts, with a few exceptions. A contract entered through spot purchasing includes one 
delivery of scrap at an agreed upon time and is priced based on the spot price (i.e. LME 
Aluminium Alloy) when entering the contract. Delivery for spot priced contracts are 
usually in the current month with a maximum delivery time of 2 weeks. However, HRM 
has recently adopted a new strategy and now wishes to include a bigger proportion of long-
term contracts in their scrap procurement portfolio. The motivation for entering more long-
term contracts is to be less exposed to changes in the scrap market. By basing the portfolio 
on spot-contracts only, HRM’s stock of scrap has previously been emptied when prices in 
the scrap market become too high. In such situations production has been solely based on 
primary material and alloying elements. The long-term contracts aim to prevent this to 
some extent, as they secure deliveries in periods when the scrap market collapses.  
 
Long-term contracts are often entered as a fixed-price contract where the price is 
determined at the time of contract signing. This price can then be calculated based on 
LME Aluminium or LME Aluminium Alloy. Long-term contracts can also adopt a so-called 
“formula” contract. While the price of spot contracts and fixed-price long-term contracts 
are fixed once for the entire delivery, formula contracts can be fixed several times. A typical 
formula contract in 2018 could be 1200 mt divided as 100 mt/month, priced at 75 % of 
LME Aluminium or priced based on LME Aluminium Alloy. Price fixing times are specified 
in the contract. An annual contract, as the one exemplified above, will typically be fixed 
6-15 times. For practical purposes, HRM does not fix less than 50-100 mt at a time. When 
referring to deliveries in this thesis, we refer to deliveries in terms of price fixing. The 
number of physical deliveries in a contract is simply the size of the contract divided by the 
average weight of a truckload (15-25 mt), so this varies greatly. Furthermore, it should be 
noted that all scrap materials purchased by HRM are linked to the value of Secondary 
LME, though the price formula can depend upon either Secondary LME or LME High 
Grade, depending on what is settled through negotiation.  
 
Given the spot price uncertainties, the fundamental challenge for HRM in terms of scrap 
procurement is to determine when to enter contracts, as well as contract specifications such 
as volume, pricing and delivery, given storage limitations and quantity requirement for 
production. Decisions regarding which long-term contracts to enter are performed on a 
monthly basis with a planning horizon of 6-12 months with a monthly resolution. Long-



 10 

term contract decisions are therefore referred to as tactical decisions (Schmidt & Wilhelm, 
2000). However, spot contracts are entered on a weekly basis to meet production needs 
closer to actual production. Note that a forecast of LME listings can be generated based 
on publically available LME listings on LME’s official website (HKEX Company, 2018).  

 
Uncertainty in material composition and usage 
 

Furthermore, unpredictable material usage patterns increase the complexity of the portfolio 
problem. Material usage can occasionally fluctuate unexpectedly due to a number of 
reasons. These include, the available levels of internal scrap from own production and 
varying scrap usage depending on the shift leader in charge of production. Furthermore, 
risk stems from the fact that sales orders for final products can vary slightly from year to 
year. A fairly reliable forecast of the scrap requirement for the planning period can however 
be generated based on material usage statistics from HRM. 
 
 

HRM has a business plan for the coming year forecasting the monthly material requirement 
for production. Significant changes in production plans due to variation in sales contracts 
are handled through spot purchases. The casthouse at HRM needs information about 
material requirements at least 2 weeks before actual production in order to obtain the 
relevant scrap material. If this information is not available on time, the casthouse often 
becomes short of the required scrap. In the latter situation, expensive primary material 
and alloying elements will replace the deficient scrap, incurring additional costs. However, 
due to good communication, the casthouse seldom experiences such shortage. Material 
usage has therefore been neglected as a source of uncertainty to the problem.  
 
Furthermore, for a remelter, uncertainty regarding material composition and impurities of 
purchased scrap is often a contributing factor to additional costs. However, HRM is 
advantageously positioned regarding detailed data on material composition due to good 
routines and usage of recent technology. Material composition is therefore not a significant 
factor of uncertainty for HRM. Hence, this aspect goes beyond the scope of this thesis and 
will not be treated further. For a more thorough explanation of why these risks are not 
significant for HRM, see (Hovland, 2017). In conclusion, to the extent that this study 
concerns uncertainty, the focus lays on the aspects of price uncertainty only and the 
consequences it entails. For an overview of the three discussed risk areas, see Table 2.2. 
 
 

Table 2.2  Relevant risks for this thesis 

Type of Risk Part of the thesis scope  

Price Risk Yes 
Material Usage No 
Material Composition No 
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2.5 Myopic Optimisation 
 
It should be noted that the basis for this thesis is the local optimisation of material 
procurement at the HRM casthouse (see Figure 2.3). The initial manner of producing a 
fixed production plan based on optimal sales orders is not ideal. More optimally, the sales 
department at HRM should coordinate with the production planning unit and the 
procurement material unit at the casthouse. What sales contracts to enter should therefore 
depend on overall profitability for HRM. However, based on HRM present day routines 
and wishes, this thesis handles the myopic optimisation of procurement optimisation at the 
casthouse given a fixed production plan from the sales department.  
 
 

 
Figure 2.3  Optimisation of material procurement vs. sales contracts  
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3 Problem Description  
 
This chapter defines the scope of the portfolio optimisation problem as described in the 
preceding sections and presents a general problem description. The problem will be stated 
in a general manner, and the timing and extent of decisions relevant to the decision maker 
will be described. Aspects concerning available information, assumptions and relevant 
elements of uncertainty will also be accounted for.  
 
This thesis considers the risk management and portfolio planning problem (i.e. the PHSP 
problem) for an aluminium remelter. More specifically, we take the perspective of the 
casthouse at HRM, operating in the scrap purchasing market. Overall, it is assumed that 
HRM’s objective is to minimise the expected cost of the contract portfolio while managing 
risk efficiently throughout the planning horizon. The main task is to establish what 
contracts to enter during the planning horizon depending on material type, quantity, 
maturity and pricing, to satisfy the expected material usage. As discussed in Section 2.4, 
the industry operates with several types of contracts, differing in how price and volume are 
established, the frequency of the deliveries and the time horizon of the agreement (i.e. 
maturity of the contract). The contracting decisions are made while seeking adherence with 
storage capabilities. The problem is further complicated by limited and uncertain 
information, resulting in planning activities of high complexity. More explicitly, we aim to 
determine an optimal mix of scrap contracts for HRM, given uncertainty in the future 
aluminium LME price listings. Figure 3.1 illustrates the portfolio decision problem as 
presented in this thesis, both in terms of the decision making and the information received 
throughout the planning horizon. Particularly, the timeline shows the here-and-now 
decisions, revealed information and recourse decisions. This structure repeats itself a 
number of times dependent on the number of stages considered.  
 
 

 
 

Figure 3.1  Information structure of the portfolio decision problem 
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Relevant costs to minimise include the purchasing cost of contracts, transportation cost, 
inventory holding cost as well as the cost of being short of scrap material. In the latter 
situation, expensive primary material and alloying elements will replace the deficient scrap, 
incurring additional costs. The value of the scrap inventory at the end of the planning 
horizon is also considered. In regard to boundary conditions, the problem is restricted by 
inventory management and a budget on the procurement expenditures. Since HRM has a 
limited storage capacity, the scrap inventory is restricted and must be regulated. The 
inventory balance incorporates the purchased scrap in addition to the present inventory, 
as well as deduction of material for production. The total inventory level must be equal or 
lower than the storage capacity at all times. In order to compare the amount of storage 
space required for different scrap types, we consider density specifications. Moreover, the 
problem is bounded by a procurement budget, where the sum of contract expenditures over 
the planning horizon must be equal to or lower than the given scrap procurement budget 
for the considered period. It should also be noted that with a planning horizon of 6-12 
months, the time value of money is not negligible. All expenditures during the time horizon 
must be discounted. Consequently, the problem is sensitive to when costs are incurred. In 
short, minimising the net present value will favour costs at the end of the horizon over 
costs today.  
 
All contracting and production decisions are subject to uncertainty about the future and 
this makes risk important to evaluate and respond to. Uncertain information and 
subsequent risk are therefore central parts of this problem. In order to incorporate risk 
management, a basic feature of the problem becomes risk aversion. HRM perceive 
themselves to be moderately risk-averse and consider price risk to be the most important 
source of risk. The price risk can be mitigated by purchasing scrap through fixed price 
contracts, guaranteeing a deterministic expenditure at the cost of foregoing the chance of 
purchasing the scrap later at a lower price or incurring a lower cost through a variable 
price contract. By entering a combination of fixed long-term contracts and spot purchases, 
HRM control their desired level of risk.  
 
Depending on HRM’s level of risk preference, we seek to optimise a combination of two 
objectives; expected cost and price risk. As an optimal procurement portfolio is dependent 
on the preferences of the decision maker, risk aversion is incorporated in a way that allows 
the producers to specify desired level of risk aversion. For a risk neutral decision maker, 
the objective will simply be to minimise the expected future cost of the procurement 
portfolio. Different types of risk metrics will be discussed in Chapter 4. 
 
Uncertainty may have great impact on the expenditures related to procurement 
contracting. Therefore, when deciding on what contracts to enter, it is important to 
incorporate the critical uncertain aspects of the problem. An appropriate representation of 
the uncertain elements is also of great importance. This thesis incorporates the uncertainty 
explicitly by representing future uncertain parameters through scenarios. With a random 
parameter fixed to one of its possible outcomes, a scenario is created representing one 
possible realisation of the future. For a more detailed explanation of how uncertain 
information is represented through scenarios, see Section 4.3. The main uncertain elements 
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that are incorporated in this thesis are the spot prices of aluminium listed at LME. See 
Section 2.4 for a detailed analysis of other risks that are relevant to the problem.  
 
In short, the thesis is intended to provide valuable decision support to aluminium remelters 
regarding cost reduction and the choice of an optimal hedging strategy according to the 
company’s risk preferences. That is, how much to hedge and when, while reducing overall 
costs of procurement. Depending on hedging strategy, HRM will opt for a procurement 
portfolio combining long-term contracts and spot purchases. It is the explicit incorporation 
of uncertainty that facilitates the advancement of flexible and robust solutions and 
consequently enables risk management. When new information is revealed concerning 
uncertain information, the decision maker will adjust his decisions to adapt to the shifting 
circumstances.  
 
The following chapter introduces theory and literature concerning different aspects of the 
problem. It covers different risk metrics, aspects related to stochastic programming and 
other existing literature relevant to this thesis. This is meant to give insights into the 
theoretic aspects of the problem and highlight the contributions of this thesis. 
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4 Literature Review  
 
This chapter introduces theory and literature concerning different aspects of the problem 
presented in Chapter 3. Furthermore, it highlights how this thesis utilises and contributes 
to existing literature. Section 4.1 presents operations research frameworks developed for 
the aluminium remelting industry, followed by an introduction to literature on hedging 
and portfolio management in Section 4.2. Section 4.3 and 4.4 contains a brief overview of 
relevant theory on the subject of stochastic programming. The sections serve as a 
framework for later discussion and introduce important terms and concepts used in the 
model developed in this thesis.  
 
Different financial assessment procedures of risk and examples of financial assessments of 
portfolios similar to the one we are assessing, are presented in section 4.5. This assessment 
is set into a context of stochastic programming. Section 4.6 further provides an insight into 
the subject of multi-objective optimisation. To round up this chapter, Section 4.7 places 
our work into the context of the existing literature presented, and highlights our 
contribution to the field of study. It should be noted that some sections are based on the 
work conducted in Hovland (2017).  

 
4.1 Operations Research in the Aluminium Industry 
 
Though the demand for aluminium is increasing, the competition from alternative materials 
to substitute aluminium in consumer goods and industrial components has also increased. 
This has forced the aluminium industry to intensify its efforts to reduce the cost of 
production either through alternative technologies or through improvements in existing 
processes by implementing operation research models. This thesis is motivated by the need 
for innovation in the emerging modern aluminium industry. The implementation of 
operations research in the aluminium industry can reduce production costs, enhance 
manufacturing functions and provide higher quality products, which can make a significant 
economic and sustainable impact (Dutta, Apujani, & Gupta, 2016).  
 
The number of operations research studies conducted in the area of aluminium remelting 
has increased steadily in the last decades (Dutta, Apujani, & Gupta, 2016). However, 
application areas for operations research are primarily restricted to optimisation of 
production planning and scheduling, material blending and some research on supply chain 
optimisation. As far as the author knows, the use of operations research in procurement 
contracting is non-existing. For a short literature summary of operation research literature 
in the remelting industry, see Hovland (2017) and Dutta, Apujani, & Gupta (2016). 
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4.2 Portfolio Management & Contracting 
 
The topic of this thesis is centralised around contracting and portfolio management, a 
thoroughly covered research area. As the main focus areas for this thesis is related to price 
risk, this section is limited to present published research focusing on the same aspect. 
Though the problem faced by HRM is a procurement problem, it has numerous similarities 
with sales contracting problems. By consequence, such problems will also be evaluated and 
considered in this section.  
 
Price risk can be mitigated to a certain extent through forward and futures contracts, as 
well as other instruments such as swaps and options. Forward contracts have a long history 
of use by producers of a commodity (e.g. aluminium) as a means to insure, or hedge, against 
unfavourable variations in the prices of that commodity (for an overview, see Bernstein 
(1996). The benefit of forward buying and selling of a commodity producing company is to 
secure a predetermined price and avoid the risk of making a loss should the commodity 
price change unfavourably. With this approach, the company avoids the expected costs 
linked with financial distress (Tufano, 1996); (Stulz, 1984). The downside of securing 
against risk is the lost opportunity of selling or purchasing at potentially more favourable 
prices in the future. The trade-off between reward and risk is a central element in all 
decisions under uncertainty.  
 
To exemplify, Schütz & Westgaard (2018) study the optimal hedging decisions for a risk-
averse producer within the seafood industry. Using a multistage stochastic programming 
model, the methods described in this paper are useful in determining hedging strategies in 
terms of selling salmon in the spot market or through forward contracts. Numerous other 
applications of contracts with the purpose of hedging are documented for a wide range of 
commodity producing companies, such as agricultural companies (Tomek and Peterson, 
2001), seafood companies (Martínez-Garmendia & Anderson, 1999), oil and energy 
producers (Wallace and Fleten, 2003), in particular hydro power producers (Fleten et al., 
2002; Fleten et al., 2011; Kettunen et al., 2010; Dupuis et al., 2016).  
 
 

4.3 Representing Uncertainty 
 
Uncertainty is a central part of this thesis and is taken into account through direct use in 
the problem formulation. This approach is referred to as stochastic programming, which in 
some cases can be superior in dealing with uncertainty compared to deterministic methods 
(Wallace S. W., 2003). The aim of stochastic programming is to find a policy or strategy 
that is feasible for all or almost all of the potential realisations of uncertain data, while 
minimising or maximising the expectation of a function of random variables. Stochastic 
programming can also be considered as a tool for discovering all the options in a decision 
problem. A stochastic recourse model is therefore incorporating flexibility at a price. This 
important characteristic of flexibility is not present in a deterministic model. It should also 
be noted that the probability distribution of the random variables, representing the 
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potential outcomes and their corresponding probabilities, is either known or can be 
estimated in order to model a problem stochastically. 
 
Conversely, a deterministic approach does not incorporate the uncertainty directly in the 
model, but instead relies on either thorough selection of the input parameters or detailed 
analysis of the solution using methods such as what-if analysis, sensitivity analysis or 
scenario analysis (Wallace S. W., 2017). Commonly, the deterministic approach is applied 
due to its simplicity, as stochastic modelling problems often struggle with an acceptable 
solution time and tractability when including all relevant aspects of the problem. However, 
when uncertainty is an important part of a problem, deterministic models can fail to 
represent reality adequately, and the introduction of stochasticity may be necessary.  
 
Other prominent methods to model uncertainty are chance constrained optimisation, 
robust optimisation, simulation and real option theory. A short overview of these methods 
is presented in this section. The chance constrained method, first introduced by Charnes 
et al. (1958) and Charnes & Cooper (1959), is one of the foremost approaches to solving 
optimisation problems under uncertainty. The optimisation problem is formulated in such 
a manner ensuring that the probability of satisfying a particular constraint is above a 
certain level. However, the chance-constrained method is often difficult to solve. While the 
chance-constrained method ensures a high confidence level of the solution, robust 
optimisation pursues a solution that will have an acceptable performance under most 
realisations of the uncertain parameters. It is a conservative, worst-case oriented 
methodology. Commonly, no distribution is used for uncertain parameters. Main 
contributors to the field of robust optimisation include Soyster (1973) and Bertsimas & 
Sim (2004).  
 
Simulation is often used in combination with optimisation to handle uncertainty. In short, 
simulation imitates a real-world process or system over time (Banks et al., 2001). The key 
aim is to evaluate how different input variables affect the system. Main issues in simulation 
include the attainment of the relevant selection of key characteristics and behaviours of 
the problem, and the use of simplifying approximations and assumptions within the 
simulation. Simulation is frequently used when the complexity and tractability of a 
stochastic model becomes too high.  
 
Moreover, the field of real options theory is also often encountered when modelling 
uncertainty. In short, an option is an opportunity to make a decision after having observed 
the outcome of random variables (Wallace S. W., 2010). An option is typically offered at 
a cost, i.e. the option cost, but will in return provide valuable flexibility. An option should 
only be purchased if the cost is less than the expected benefit. One important advantage 
of real options is its usage in very complex options which are hard or impossible to handle 
in stochastic programming. However, it should be noted that real option theory can only 
value options (i.e. the option of doing it differently), not find them. Contrary, a major 
strength of stochastic programming is the ability to create operational flexibility. This is 
one of the main reasons stochastic programming has been chosen as the best framework 
for our problem.  
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4.4 Multistage Stochastic Programming 
 
This section is devoted to the field of multistage stochastic programming which is the 
foundation for the model developed in this thesis. Multistage stochastic programming is a 
natural framework for financial long-term planning problems, procurement management 
and contracting in particular. In short, the major reason for developing multistage 
stochastic models is to incorporate the flexibility of dynamic decisions to improve the 
objective. The flexibility is based on the option to change a strategy after the realisation 
of random variables (Rudloff, Street, & Valladão, 2014).  
 
Multistage recourse problems represent a planning situation where new information is 
revealed at specific time points during the planning horizon and decisions have to be made 
repeatedly based on the available information (Higle, 2005). When modelling a dynamic 
setting, a timeline perspective of decisions is incorporated and a decision at a given stage 
is taken facing an unknown future. In stochastic programming the term stage is defined as 
a point in time where new and useful information is revealed (Kall & Wallace, 1994). After 
decisions are implemented, the following period information is revealed and the procedure 
is repeated for the following stage (Valladão, Veiga, & Veiga, 2014). The possibility to 
adapt a solution to updated information when it becomes available is referred to as recourse 
(Higle, 2005). It should be noted that the recourse in a problem can be classified as either 
simple, fixed, general or complete, depending on problem characteristics (Birge & 
Louveaux, 2011). We will only handle what is referred to as general recourse in this thesis. 
Further information on the other classifications is covered by Birge and Louveaux (1997). 
 
There are numerous options when formulating a multistage stochastic linear problem. It 
should be noted that the structure of a recourse problem will have implications for potential 
solution methods, computational demand and feasibility. The information structure can be 
implicitly represented, as modelled by the scenario tree, see Figure 4.1. Alternatively, but 
equally valid, the problem can be formulated explicitly for each possible scenario. 
Constraints are then added to ensure that the information structure associated with the 
decision process is honoured (Higle, 2005). These constraints are referred to as non-
anticipativity constraints, which forces decision variables at a given stage to be equal if 
their scenarios share the same history (Valladão, Veiga, & Veiga, 2014) see Figure 4.2. 
This thesis uses a combination of the two approaches. A special focus of this chapter is 
therefore put on explaining the difference between these two formulations.  
 
A scenario tree is an organised distributional representation of the stochastic variables 
and the way in which they may progress over the time periods included in the problem 
(Higle, 2005). A path in the tree is referred to as a scenario and a policy or strategy is 
defined as the set of decisions for all scenarios and stages. In other words, the tree is 
structured based on predicted sequences of events, that is, the way in which a state may 
develop depending on outcomes for uncertain parameters. It is the enumeration of all 
possible combinations of outcomes that allows us to represent the scenarios in a tree. 
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Figure 4.1 displays a scenario tree with 4 scenarios, 3 stages and 6 time periods. The nodes 
indicate the state of the process at decision points and arcs indicate the realisations of 
uncertainty before the subsequent stage, see Figure 4.1. A path from the initial root node 
to any leaf node (i.e nodes in the last time period) represents a scenario, a complete course 
of events that is considered during the planning. A model formulation based on the 
exemplified scenario tree in Figure 4.1  is commonly referred to as an implicit formulation 
of the stochastic problem and is recognised as a node formulation or compact form 
representation. 
 

 
Figure 4.1  Implicit scenario tree exemplification with three stages 

 
As the paths divide, unique realisations develop and consequently the state in each node 
is directly reliant on all previous and potential following nodes. Furthermore, each possible 
outcome is associated with an occurrence probability. All possible realisations of the 
succeeding stage and their corresponding probabilities are known, though, it is not known 
what realisation will occur. Finding a present decision that will ensure the best expected 
results given all forecasted outlooks and adapting to each of the potential scenarios is an 
essential part of solving recourse problems. 
 
As represented in Figure 4.1, multiple scenarios go through each node in all but the nodes 
in the last stage, meaning that they share common stochastic parameters and have equal 
choices made for all decisions in these stages. This is known as the non-anticipativity 
requirement. An alternative explicit formulation, also called an extensive formulation or 
scenario formulation (Higle, 2005) is based on Figure 4.2. The explicit formulation of a 
multistage model is generalised as follows.  
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In this formulation, 𝑥#

&  represent the decisions made in time period t and scenario ω. All 
potential scenarios ω are specified by the set Ω, containing every scenario in the tree. Each 
scenario is weighted with their respective probability of occurrence 𝑝# in the objective. 
Further, by introducing a set of envelopments, 𝒩, indexed by 𝑛, the constraints in 
Equation (3) ensure that each decision 𝑥#

&  in time period 𝑡 ∈ 𝑇 (𝑛) is equal in all scenarios 
given by 𝜔 ∈ Ω 𝑛 . Consequently, the non-anticipativity constraints enforce the right 
relationship between decisions and information structure. This is illustrated in Figure 4.2, 
where the non-anticipativity constraints are represented by the same coloured envelopment 
and time period. For more information on stochastic models and modelling of uncertainty 
see Hovland (2017), Higle (2005), Birge & Louveaux (2011) and Kall & Wallace (1994). 
 
 

 
 

Figure 4.2  Explicit scenario representation with non-anticipativity constraints  
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4.5 Risk Management and Stochastic Modelling 
 
The concept of risk aversion is often encountered in problems modelled through stochastic 
programming. This section will give a brief introduction to relevant research related to risk 
management and stochastic optimisation. 
 
 

Risk management 
 

In this section, we discuss different considerations related to risk management from the 
point of view of an aluminium remelter. Firstly, we define risk management as the 
limitation and control of the risks confronted by an organisation due to market volatility 
exposure (Krapels, 2000). In order to employ risk management correctly, an organisation 
must identify its risk factors and further evaluate the exposure to these risk factors. 
Subsequently, there is a need to prioritise and to resolve how the risks should be controlled. 
Depending on organisational goals and attitude towards risk, some risks should be reduced, 
some should be eliminated and some should be disregarded. It is important to note that 
the return will be limited if the goal is to eliminate all risk exposure (Fleten, Bråthen, & 
Nissen-Meyer, 2011). However, the fundamental aspect of proper risk management is to be 
conscious of all the risks that the organisation faces and to constantly measure and control 
them in a way that is coherent with the goals and risk attitude of the organisation. For a 
risk-averse producer seeking predictability of future costs, a risk management program with 
considerable hedging is suitable. For a risk-neutral producer that can handle a greater 
standard deviation in costs, a risk management program with less hedging is desired. 

The two main goals of a hedging strategy are to reduce the standard deviation of future 
cost for better decision and budgeting support, and to insure against major shortfalls. A 
natural hedging strategy can be seen as the maximum degree of risk that the producer is 
able to undertake, under the assumption that it is not speculating (Fleten, Bråthen, & 
Nissen-Meyer, 2011). A natural hedge gives a strategy with highest uncertainty in future 
cost and the highest possible target shortfalls, but also the highest upside potential. 
Consequently, a natural hedge is the same as not hedging at all. A natural hedge strategy 
will therefore be appropriate for producers with a low degree of risk aversion. Alternatively, 
a static strategy regulates a standard deviation reduction and the protection against target 
shortfalls. This is determined based on the amount of shorting on forward contracts and 
by the time horizon (i.e. contract maturity) of these contracts. One main issue when 
planning a static hedging strategy is therefore to determine the proportions and time 
horizon in order to meet the producer’s risk preferences.  
 
 

Risk aversion and expected utility theory 
 

In economics and finance, risk aversion is a description of an investor’s attitude when 
exposed to uncertainty. When faced with two investments with a similar expected return 
but with different risk levels, a risk averse investor will always prefer the low-risk 
investment. It is generally believed that people are risk-averse, and that they need a 
premium to take part in a risky decision (Kall & Wallace, Stochastic Programming, 1994). 
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Expected utility is the standard framework for modelling investor choices with risk aversion 
and was first considered by Von Neumann and Morgenstern in 1944. Von Neumann and 
Morgenstern (1944) derived conditions on an individual’s preferences that are consistent 
with an expected utility function. Using expected-utility theory, risk aversion is modelled 
based on a concave utility function over wealth, depicted in Figure 4.3. The diminishing-
marginal-utility-of-wealth theory of risk aversion is intuitive, and aids in explaining risk 
aversion to large-scale risk and how people are approximately risk neutral when stakes are 
small. However, accordion to Rabin (2000), the utility-of-wealth function is an unlikely 
explanation for risk aversion, except when the stakes are very large. In short, expected-
utility theory is a useful and adequate model of risk aversion for many purposes, though it 
is not applicable to risk attitudes over modest stakes (Rabin, 2000). 

 

 
Figure 4.3  Example of a typical concave utility function representing risk aversion 

 
 

Risk measurement and modelling  
 

Minimisation of expected losses or maximisation of expected gains leads to decisions that 
are optimal on average while possible risks are neglected. In some circumstances, this is 
not an acceptable goal. The recent tendency is to explicitly incorporate risk monitoring 
and control. There are various types of risk and the choice of a suitable risk definition 
depends on the context, on the decision maker’s preferences and the company goals 
(Kozmík, 2014). To reflect risks in a stochastic model formulation, it is necessary to 
quantify them through risk measures by assigning real values to the random outcomes. 
Furthermore, as for the risk-neutral expected value criterion, risk measures should not 
depend on individual realisations of stochastic data, but on decisions and the probability 
distribution. Popular examples of risk measures include Standard Deviation, Value at 
Risk and the Conditional Value at Risk. Hedging with use of forward contracts will 
reduce the risk in terms of such risk measures (Fleten, Bråthen, & Nissen-Meyer, 2011). 
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Risk aversion: Expected Shortfall  
 

Modelling of risk depends on the problem and available data. An elementary approach to 
incorporate risk, resulting in a piecewise linear model, is to minimise expected shortfall 
(Kusy & Ziemba, 1986). As the decision maker perceives risk as the potential for downside 
losses, shortfall is defined as profit underperformance relative to pre-set financial 
performance target at various periods. A way of incorporating this in a model is to 
progressively penalise shortfall in the objective. This way of modelling operational risk has 
been very successful in asset and liability models (Ziemba & Mulvey, 1998). 
 
To exemplify this approach, Fleten et. al (2002) adoption of shortfall is presented. They 
discuss a risk management model for a hydropower producer operating in a competitive 
electricity market. Taking the view of a single risk-averse producer, Fleten et. al (2002) 
propose a stochastic programming model for the coordination of production with hedging 
through the forward and option market. They define shortfall as profit underperformance 
relative to pre-set profit targets at various periods. Risk is then progressively penalised in 
the objective function through shortfall costs in the form of a piecewise linear cost function 
as shown in Figure 4.4. The objective function is thus understood as a utility function that 
reflects the level of risk aversion. The approach of Fleten et. al (2002), yields a piecewise 
linear concave objective function in profit, interpreted as a utility function that reflects 
risk aversion (see Figure 4.4).  
 
 

 
 

Figure 4.4  Piecewise linear concave utility function and shortfall cost function 

 
Similarly, Valladão, Veiga, & Veiga (2014) guides optimal policies by including in the 
objective a penalty for highly leveraged debt positions in multistage linear stochastic 
programming model for optimal corporate debt management. As Fleten et. al. (2002), they 
propose a piecewise linear function that increasingly penalises the excess leverage based on 
a sequence of threshold targets. These target values correspond to critical leverage levels 
established by debt managers. In the objective function, they impose a cumulative penalty 
for violating each one of the leverage targets in each scenario, at each time period. However, 
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it should be noted that a model formulation using convex piecewise linear penalty in the 
objective requires particular problem insight for the specified cost targets for each stage. 
Also, linear cost functions must be specified, which requires knowledge about the relative 
cost of shortage. 
 
 

Value at Risk and chance constraints 
 

Value at Risk (VaR) is widely used in financial mathematics and financial risk management 
and measures the risk of loss. It estimates how much a set of investments could drop in 
value with a given probability, assumed normal market conditions, within a fixed time 
frame. In a financial context, VaR for a given portfolio and time period can be defined as 
the loss that will not be exceeded with a given probability 𝛼. In other words, it is a 
threshold loss value. Typical values for 𝛼 are 0.9, 0.95 and 0.99. However, it should be 
noted that the measure does not contain information about the expected loss. The curve 
in Figure 4.5 represents a hypothetical profit and loss probability density function with a 
mean of zero. The figure illustrates an asset with a one-month VaR of 𝑡 %, representing a 
5% chance of the asset declining in value by 𝑡 % during the one-month time frame.  
 
 

 
 

Figure 4.5  Profit-and-loss probability density function 

 

VaR can be formulated as a chance constraint, also referred to as a probabilistic constraint. 
The chance constrained method is one of the major approaches to solving optimisation 
problems under various uncertainties. It is a formulation of an optimisation problem that 
ensures that the probability of meeting a certain constraint is above a certain level. In 
other words, it restricts the feasible region so that the confidence level of the solution is 
high. As described in Section 4.3, the chance-constrained method is, however, often difficult 
to solve. The mathematical formulation of VaR as a chance constraint is given in Equation 
(5) and illustrated in Figure 4.6, where 𝐹< 𝑡 = 𝑃𝑟 𝜉 ≤ 𝑡  is the cumulative distribution 
function. This is the probability that the random variable 𝜉 will take a value less than or 
equal to 𝑡. 
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       𝑉𝑎𝑅1−C 𝜉 = 𝑖𝑛𝑓 𝑡:  𝐹< 𝑡 ≥  1 − 𝛼  (5) 

 
 

 
 

Figure 4.6  Cumulative probability distribution 

 
 
 
Conditional Value at Risk in Stochastic Programming 
 

The concept of conditional value at risk (CVaR) serves as an extension of VaR and 
calculates the average of the losses that occurs beyond the VaR cut-off point in the 
distribution (see Figure 4.7). CVaR was first introduced by Rockafellar and Uryasev (2000) 
and is a risk assessment method often used to reduce the probability that a portfolio will 
incur sizeable losses. This is performed by assessing the probability that a specific loss will 
exceed the value at risk. For a given portfolio, time period and probability 𝛼, CVaR can 
be defined as the expectation of the losses under the condition that they will exceed VaR 
(see e. g. Zenios, 2008, for more detailed information). Mathematically, CVaR is derived 
by calculating a weighted average between the value at risk and losses exceeding the value 
at risk. More specifically, the CVaR risk measure computes the expected shortfall below 
the specified quantile level. CVaR is also known as mean shortfall, expected shortfall, mean 
excess loss or average value at risk. When measuring loss, the smaller the value of the 
CVaR, the better.  
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Figure 4.7  VaR and CVaR representation for a frequency-of-loss distribution 

 
CVaR is a popular risk measure in stochastic programming and has a linear 
implementation. As CVaR provides information about the expected loss of a portfolio in 
the worst 𝛼 % of the cases, it is a value that can be utilised in optimisation. Pflug (2000) 
defines CVaR via an optimisation problem, based on Rockafellar and Uryasev (2000) in 
Optimization of Conditional Value-at-Risk. Several case studies showe that risk 
optimisation with the CVaR performance function and constraints can be done for large 
portfolios and a large number of scenarios with relatively small computational resources 
(Uryasev, 2000). The mathematical formulation can be viewed in Equation (6), where 
𝑓 𝑥, 𝜉 − 𝑎 + = 𝑚𝑎𝑥(𝑓 𝑥, 𝜉 − 𝑎, 0) and 𝑎 is 𝑉𝑎𝑅C 𝑥 . 
 

 𝐶𝑉𝑎𝑅C 𝑥 = minH 𝑎 +
1

1 − 𝛼
 𝐸 𝑓 𝑥, 𝜉 − 𝑎 +  (6) 

 

 
The following formulation is a portfolio optimisation problem represented as a minimisation 
problem for negative returns based on the definition of Pflug (2000). The formulation is a 
direct reproduction of the formulation in Chapter 1, page 8, of the publication Probabilistic 
Constrained Optimization: Methodology and Applications (Pflug, 2000).  
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  min              𝑎 +
1

1 − 𝛼
 𝑝J𝑧J

JKL
  

                
 

 
            s. t               𝑧J ≥ − 𝑥( 𝜉J − 𝑎             𝑠𝜖𝑆  

 

    𝑥( 𝜉J ≥  𝜇 
 

    𝑥( 1 ≥  1 
 

                              𝑧J  ≥  0                        𝑠𝜖𝑆 
 

 𝑥 ≥  0 

(7) 

 
 
We let 𝜉J = (𝜉1, . . . 𝜉Q) be the random return of asset categories 1, . . . 𝑘 and let 𝑥 = 
(𝑥1, . . . 𝑥Q) be the investments in these categories. We also assume that the total budget is 
1. The portfolio return is represented by  𝑥( 𝜉J and the aim is to minimise CVaR of the 
asset returns. The expected return must also exceed a pre-specified expected return 𝜇. It 
should be noted that the optimal 𝑎 is 𝑉𝑎𝑅C − 𝑥( 𝜉J = − 𝑉𝑎𝑅1−C 𝑥( 𝜉J  and we can 
reformulate it as a maximisation problem. 
 
In risk management, research has mostly focused on extreme risks. For example, by 
focusing on VaR measures to constrain expected losses at a given level of confidence. But, 
although VaR is a standard for risk monitoring in the financial sector, it may not capture 
correctly the portfolio diversification benefits. Consequently, CVaR, which measures the 
weighted average of the tail events for a given fractile, is theoretically preferable (Uryasev, 
2000). Furthermore, since it can be formulated using linear programming (Rockafellar & 
Uryasev, 2000), CVaR constraint portfolio optimisations have gained popularity 
(Kettunen, Salo, & Bunn, 2010).  
 
 
Conditional value at risk in multistage stochastic problems 
 

Time consistency is a requirement for ensuring optimal decisions in risk averse multistage 
stochastic programming problems (Rudloff, Street, & Valladão, 2014). However, using 
CVaR in stochastic programming for multistage problems is often faced by time consistency 
issues. Time consistency can occur if optimal decisions depend upon scenarios that with 
certainty cannot happen in the future (Shapiro, 2009). Similar to non-anticipativity, which 
forces identical decisions for scenarios sharing the same past, time consistency requires that 
optimality and feasibility should not depend on unrealizable scenarios. In other words, if 
we let the optimal solution of the multistage stochastic problem be computed, we let the 
optimal decision be assigned to the corresponding variables on the path from the root to 
node 𝑛 in an intermediate stage and let the problem be solved for the subtree proceeding 
from node 𝑛. If the optimal values of the subtree problem conform with those computed 
on the whole problem, the solution is time consistent, otherwise it is time inconsistent.  
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Al-Baali, Gradinetti and Purnama (2014) explain time inconsistency differently. If the 
implementation is based on a future model run with updated information of uncertain 
parameters, an optimal policy is time consistent only if the future planned decisions are 
truly going to be implemented. A time inconsistent model does not incorporate the value 
of the correct recourse variables in the different stages, and this produce distortions when 
defining optimal decisions in earlier stages. The property of time consistency does normally 
not hold for risk-averse optimality problems. See Shapiro (2009) and Rudloff et al. (2014) 
for further discussions of why time-inconsistent stochastic programs can produce 
unsatisfactory policies.  
 
However, a number of proposals have been put forward to extend the concept of risk 
measures to handle multistage stochastic optimisation while confronting the issue of time 
consistency. Pisciella et al., (2016) and Schütz & Westgaard (2018) use a nested CVaR-
implementation to ensure time consistent optimal decisions. The nested multistage CVaR 
definition iteratively solves a convex combination of performance and risk in the last stage, 
using it as the performance measure for the previous stage. The approach is based on the 
research by Philpott and de Matos (2012) and Rudloff et al. (2014). The concept has been 
adopted from dynamic programming and has been used by several academics in a stochastic 
programming framework, see Philpott and de Matos (2012), Ruczcynski (2010) and Rudloff 
et. al (2011). Schütz & Westgaard (2018) model is the first to use multistage stochastic 
programming with a time-consistent risk measure in the objective function to study how 
the hedging decisions of a commodity producer depend on the producer’s risk preferences. 
Other approaches include multi-period CVaR risk measure and a formulation with a sum 
of CVaR risk measure, both following the notion of Pflug & Römisch (2007). The models 
allow specification of different risk aversion coefficients and confidence levels at each stage. 
For more theory on coherent risk measurement to multiple time periods, the reader is also 
referred to Densing (2007). In a multi-period setting, Densing also builds upon a recursive 
definition over time to ensure time consistency. 
 
 

4.6 Multi-Objective Optimisation  
 
As this thesis handles a problem centred upon the recognised cost-risk trade-off, multi-
objective optimisation becomes a relevant topic. The main aim of this subsection is to 
provide a brief and general overview of the multi-objective optimisation field.  
 
Incorporating risk aversion in a model often involves the simultaneous optimisation of 
several objectives. These problems are called Multi-Objective Optimisation Problems 
(MOPs) (Jaimes, Zapotecas-Martínez, & Coello Coello, 2009). In single-objective 
optimisation, it is possible to determine a superior solution among any given pair of 
solutions and we usually obtain a single optimal solution. Conversely, in multi-objective 
optimisation this is not straightforward. The method most commonly adopted in multi-
objective optimisation to compare solutions is the one called Pareto dominance relation. 
Instead of attaining a single optimal solution, this approach leads to a set of alternatives 
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with different trade-offs among the objectives. These solutions are referred to as non-
dominated or Pareto optimal solutions. 
 
In the multi-objective optimisation procedure, two tasks can be distinguished, namely: i) 
finding a set of Pareto optimal solutions, and ii) select the most preferred solution of the 
set (Jaimes, Zapotecas-Martínez, & Coello Coello, 2009). Since Pareto optimal solutions 
are mathematically equivalent, the latter task requires a decision maker who can provide 
subjective preference information to select the best solution in a particular instance of the 
multi-objective optimisation problem. 
 
 

4.7 Relevance and Contribution of this Thesis 
 
This chapter has studied contributions of operations research within the aluminium 
remelting industry, and further investigated literature on risk management and 
incorporation of uncertainty in optimisation. To the best of our knowledge, there exists no 
published literature on stochastic modelling incorporating risk aversion from the 
perspective of an aluminium remelter. It also becomes clear from the reviewed literature 
that most operational research utilised by remelters today is limited to topics excluding 
procurement and inventory management. Hence, it is noted that the development of a 
model handling procurement portfolio optimisation while incorporating risk management 
contributes to existing literature.  
 
In short, this thesis is the first to use multistage stochastic programming with a time-
consistent risk measure to study hedging strategies based on the decision maker’s risk 
preferences. The basis of the developed model is the flexibility created when incorporating 
uncertainty through the multistage stochastic structure. That is, the potential impact of 
possible outcomes is balanced in the valuation. Additionally, this thesis contributes to 
theory on coherent risk measures for multistage stochastic problems by utilising existing 
theory on a new problem, within a new industry. Lastly, it should be noted that even 
though the problem formulation is intended for HRM, the model’s area of application can 
easily be extended for other procurement problems and utilised by other players operating 
in commodity markets.   
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5 Mathematical Model  
 
 
This chapter presents the mathematical model for the Procurement Hedging Strategy 
Problem (PHSP) handled in this thesis, namely a nested multistage stochastic model. 
Assumptions and limitations used in the construction of the model are discussed, as well 
as a comprehensive representation of necessary sets, definitions and constraints. As the 
model builds upon the procurement portfolio problem developed in Hovland (2017), the 
improvements and modifications from this model are also emphasised.   
 
In order to explicitly capture uncertainty in the model and to facilitate the development 
of flexible solutions, a multistage stochastic framework is used in this thesis. By utilising a 
multistage information structure, the decision maker can adjust his contracting decisions 
to adapt to the new information that is revealed during the planning horizon. Furthermore, 
several ways to handle risk in multistage optimisation are presented in this thesis, see 
Chapter 4. Based on an evaluation of the presented options with the industry partner and 
supervisor, the representation of uncertainty using CVaR has been decided as the preferred 
approach. CVaR does not require detailed cost information and further gives flexibility in 
managing cost. Also, CVaR is a financial performance measure widely used by practitioners 
and has experienced an increased relevance in the operations research field in recent years 
(Hafsa, 2015). Hence, it is considered the most appropriate risk measure for this problem.  
 
CVaR is incorporated in the objective function through the linear programming 
formulation proposed by Rockafellar and Uryasev (2002). The cost-risk trade-off is 
implemented through two contrasting components: the first measuring the expected cost 
and the second measuring risk through CVaR. The objective is to minimise the weighted 
sum of expected costs and CVaR with respect to costs over the planning horizon. Central 
to the approach is a technique for portfolio optimisation which calculates VaR and 
optimises CVaR simultaneously. However, as the nature of this problem is multistage, the 
implementation of CVaR will result in issues with time inconsistency. This is discussed in 
Section 4.5. To prevent time inconsistency issues, a nested CVaR formulation based on 
Schütz & Westgaard (2018) is used in this thesis to handle risk-aversion. The nested 
approach is utilised due to the successful application in Schütz & Westgaard (2018), a 
problem with numerous similarities to ours.  
 
The set of decision variables in the model represents implementable policies and further 
includes auxiliary variables defining the inventory, costs and risk modelling. Solving the 
model should return the binary decision variables, which completely specify the hedging 
strategy by denoting what contracts to be entered and thereby the amount that should be 
traded at any point in time within the planning horizon. The selection of contracts includes 
the two most common contract types utilised by HRM. Both are based on fixed volume 
agreements, but differ in how the price is established, and thereby in how they affect the 
risk profile and predictability. The contracts can either be priced as fixed price long-term 
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contracts dependent on the value of LME High Grade or as variable price contracts 
dependent on the spot value of Secondary LME and priced for each delivery. Spot 
purchases, i.e. contracts with one immediate delivery, are modelled through variable price 
contracts. Fixed price long-term contracts give full predictability in terms of costs, avoiding 
the risk of incurring additional costs if the spot price rises during the contract period. Spot 
purchasing and adjustable price contracts expose HRM to the spot market volatility, thus 
providing less predictability. For both contract types, the price formula included is a fixed 
percent of the LME spot price as discussed in Section 2.4. This percentage remains constant 
throughout the planning horizon. An overview of the data input and output for the model 
is illustrated in Figure 5.1.  
 
 

 
 

Figure 5.1  Overview of model data input and outputs 

 
The producer’s optimal procurement portfolio is computed based on input of future 
scenarios. Based on estimated parameters, the scenario tree accounts for the unique 
characteristics of the two stochastic spot prices: LME High Grade and Secondary LME. 
The model uses the scenario tree to optimise the procurement portfolio while accounting 
for the risk constraints. This provides optimal purchasing decisions at discrete time steps 
of the planning horizon, as well as a contingency plan. Figure 5.2 illustrates the scenario 
tree structure. The total number of scenarios in the tree will depend on the number of 
scenarios that are generated in each stage (indicated by the dotted lines) and the number 
of stages.  
 
The information structure and time horizon of the implementation is motivated by the 
standard length of long-term contracts. As long-term contracts normally are entered with 
a maturity of 6 to 12 months, a time horizon of one year (with a monthly resolution) will 
constitute the basis for this thesis. As detailed decisions regarding spot purchase through 
short-term contracts are entered on a weekly basis, short term before production, spot 
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purchase will have contracting and delivery within a month, with maximum delivery time 
of two weeks. Consequently, with a monthly resolution, the spot purchases are modelled 
with immediate delivery. It should also be noted that the mathematical model provides the 
opportunity to incorporate more detailed contracting options in the early stages if desired. 
 

 

 
 

Figure 5.2  Structure of the multistage scenario tree used in the optimisation model 

 
 
The main differences and extensions between Hovland (2017) and the model presented in 
this thesis are linked to the addition of risk aversion. This addition has led to a necessary 
re-structuring of the problem adapting a recursive approach with inspiration from dynamic 
programming. The most complex part of the model is the recursive constraints 
implementing CVaR in the model. In addition, necessary adjustments have been made to 
the inventory balance constraints. The changes have been implemented to better capture 
HRM’s fundamental challenges in procurement contracting. Budget constraints, contract 
pricing and contract fulfilment constraints remain unchanged, as developed in Hovland 
(2017). 
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5.1 Definitions 

This section gives a formal definition of the sets, indices, constants and variables used in 
the mathematical formulation of the stochastic programming model proposed in this thesis. 
Sets, deterministic and stochastic data are denoted by upper-case letters, whereas indices 
and variables are denoted by standard lower-case letters. Unless otherwise indicated, all 
quantities are referred to in weight given in metric tonnes (mt), while prices and costs are 
given in USD/mt. A complete overview of the model without explanations can be found in 
Appendix A. 

5.1.1 Sets  

𝐶 𝑛  Set of children nodes (successors) of node 𝑛, 𝑛 ∈ 𝑁 . 
𝐾 Set of representative contracts 𝑘 considered during the planning horizon. 
𝐾U  Set of fixed price contracts 𝑘 based on Secondary LME, 𝐾U ⊂ 𝐾 . 
𝐾W  Set of initial contracts 𝑘 entered before the planning horizon. 
𝐾X  Set of variable price contracts 𝑘 based on LME High Grade, 𝐾X ⊂ 𝐾 . 
𝑀  Set of materials 𝑚.  
𝑁  Set of event nodes 𝑛 of the scenario tree.  
𝑁Z Set of event nodes at stage 𝑖 in the scenario tree.  
𝑁 [ Set of event nodes 𝑛 of the scenario tree where contracts are offered.  
𝑁 𝑠  Set of nodes belonging to the path forming scenario 𝑠, 𝑁 𝑠 ⊆ 𝑁 .  
𝑆 Set of scenarios 𝑠 representing the stochastic outcomes. 
𝑆 𝑛  Set of scenarios passing through event node 𝑛 of the scenario tree, 𝑆 𝑛 ⊆ 𝑆.  
𝑇  Set of time periods 𝑡 of the planning horizon. 
𝑇Q

] Set of delivery time periods associated with initial contract 𝑘. 
𝑇Q5

]  Set of delivery time periods associated with contract 𝑘 entered at node 𝑛. 

5.1.2 Indices   

𝑖 Stage of the scenario tree, 𝑖 = 1 ... I. 
𝑘 Contract index, 𝑘 ∈ 𝐾 . 
𝑚 Material index, 𝑚 ∈ 𝑀 . 
𝑛 Event node index for the scenario tree, 𝑛 ∈ 𝑁 . 
𝑠 Scenario index, 𝑠 ∈ 𝑆. 
𝑡 Time period index, 𝑡 ∈ 𝑇 . 

5.1.3 Parameters, constants and coefficients 

𝐴^
U  Fixed percent of LME High Grade for material 𝑚 for fixed price contracts. 
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𝐴^
X  Fixed percent of Secondary LME for material 𝑚 for variable price contracts. 

𝐵 Total budget for scrap purchase for the entire planning horizon. 
𝐶^&

L  Cost per mt of being short of material 𝑚 in time period 𝑡.  
𝐶Q

(  Total transportation cost in contract 𝑘. 
𝐷^&    Required scrap quantity of material 𝑚 in time period 𝑡.  
𝐻^ Inventory holding cost per mt of material 𝑚. 
𝐼^ 

0  Initial inventory level of material 𝑚. 
𝐿Q Number of deliveries in contract 𝑘. 
𝑀Q Material included in contract 𝑘. 
𝑃 5 Conditional probability of reaching node 𝑛 from its predecessor. 
𝑄Q Tonnage per delivery in contract 𝑘.  
𝑄L Total available storage space for the scrap material.  
𝑅& Discount rate in time period 𝑡. 
𝑇  The last time period of the planning horizon. 
𝑇 𝑛  The time period of node 𝑛. 
𝑉^ Density parameter [m3/mt] for scrap material 𝑚. 
𝑊  Weight factor for the residual scrap value at the end of the time horizon. 
𝛼 Confidence level (percentile) for VaR and CVaR. 
𝜆 Weight for HRM’s risk preference, 𝜆 ∈ 0,1 . 

5.1.4 Stochastic data 

𝐶&J
U  Spot value of LME High Grade in time period 𝑡 and scenario 𝑠.  

𝐶&J
X  Spot value of Secondary LME in time period 𝑡 and scenario 𝑠.  

5.1.5 Decision variables  

𝑐Q5J     Cost generated from entering contract 𝑘 at node 𝑛 in scenario 𝑠. 
𝑖^&J    Inventory level of material 𝑚 at the beginning of period 𝑡 in scenario 𝑠. 
𝑜Z5 Objective function value at stage 𝑖 and node 𝑛 of the scenario tree. 
𝑞^&J Quantity of material 𝑚 used for production in time period 𝑡 and scenario 𝑠. 
𝑥Q5^&   Quantity purchased of material 𝑚 through contract 𝑘 at node 𝑛 for delivery 

in time period 𝑡.  
𝑥Q^&

W  Quantity purchased of material 𝑚 through initial contract 𝑘 for delivery in 
time period 𝑡. 

𝑦Z5 Cost exceedance (shortfall) with respect to CVaR at stage 𝑖 and node 𝑛 of the 
scenario tree. 

𝑧Z5 Auxiliary variable for modelling CVaR, also representing VaR. 
𝛿Q5 Binary variable, 1 if a contract 𝑘 is entered at node 𝑛, 0 otherwise. 
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5.2 Mathematical Formulation 

In this section, we provide the mathematical formulation for the Procurement Hedging 
Strategy Problem. A multistage stochastic programming formulation for the hedging 
problem is formulated with a weighted minimisation objective reflecting a cost-risk trade-
off. The main decisions focus on how much of the required scrap should be purchased in 
the spot market and how much through long-term contracts, and at what point in time. 
The model output will be the optimal hedging strategy for HRM given the generated price 
scenarios and HRM’s risk preference, i.e. degree of risk aversion. The rest of this section is 
divided into subsections covering the objective function and constraints respectively.  
 
 

5.2.1 Objective function 
 

The objective is to minimise the weighted sum of expected costs and CVaR with respect 
to procurement costs over the planning horizon. The first part of the objective function 
(i.e. inside the square bracket) is the total expected cost of contract purchases, inventory 
and scrap shortfall for the entire planning horizon. The second part of the objective (i.e. 
the last parenthesis) is part of the nested CVaR implementation. The reason for only 
including the costs from stage one and weighted average of stage two in the objective, is 
the recursive nature of the model. As the objective value, 𝑜Z5, at a particular node 𝑛 and 
stage 𝑖 is calculated while incorporating the objective values at all succeeding nodes, the 
objective at stage one will account for costs of the whole scenario tree. The same applies 
to the shortfall variables 𝑦Z5. Consequently, it is sufficient to only include the weighted 
average of shortfall at the nodes of stage two.  
 
 

 

min   1 − λ
1
𝑆

  𝑐Q5J
5∈m1Q∈[J∈L

+ 𝐻^𝑖^,1,J +
^∈p

𝐶^,1
L 𝐷^,1 − 𝑞^,1,J

^∈p

+ 𝑃 5𝑜2,5
5∈m2

+  λ 𝑧2,1 + 
1

1 − 𝛼
 𝑃 5𝑦2,5

5∈m2

  	

 

(8) 

The weighting of risk is modelled based on the decisions-maker’s degree of risk aversion 
determined through the weight factor 𝜆 ∈ 0,1 , where 𝜆 = 1 signifies a risk-averse producer 
and 𝜆 = 0 signifies risk neutrality. Because this thesis comprises a cost minimisation 
problem, CVaR at the 𝛼 confidence level is defined as the expected cost of the 1 − 𝛼 100% 
scenarios that provide the highest costs. With a 𝛼% probability, the costs will not exceed 
VaR, where VaR is an endogenous variable. The risk managing part of the objective aims 
to minimise the cumulative cost of a given future time period in the (1 − α)100% worst 
cost scenarios. 
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The expected cost of contract purchases accounts for the average cost over all scenario 
outcomes. Furthermore, the inventory term is calculated by multiplying the periodic 
inventory level with the inventory cost (i.e. cost of storing one mt for one time period). 
The primary function of including inventory costs is to emphasise that storing ties up 
working capital and also incurs costs (Michalski, 2008). The shortfall term represents the 
cost of being short of scrap materials. The shortfall cost is based on the expensive 
alternative of using primary aluminium and alloying elements instead of scrap. It should 
be noted that since HRM has this alternative, the material requirement will always be 
satisfied and the use of backlogging is unnecessary.  
 
It is also important to note that the cost expression is not an accurate expression of 
expected future costs as the objective function only includes cost elements relevant to the 
decision-making process. Consequently, no fixed costs are included in the model objective. 
Furthermore, the time value of money is considered. All cost expenditures during the time 
horizon are discounted in the model. Subsequently, the problem is dependent on when costs 
are incurred. In short, minimising the net present value will favour costs at the end of the 
horizon over costs today. As no discounting is necessary in stage one, the discount factor 
is only included in the recursive cost formulations in (10) and (11). 
  
 

5.2.2 Constraints 
 

In this subsection follows a detailed description of the model in terms of its constituting 
constraints. Firstly, the necessary recursive CVaR constraints are presented. Secondly, the 
expected cost of contracting decisions accounted for in the objective function is further 
regulated through contract fulfilment and expenditure constraints. Lastly, the contracting 
of scrap material is limited by inventory restrictions, material demand and a purchasing 
budget. Below, a mathematical representation of these relations are presented.  
  
 
CVaR constraints 
 

Constraints (9) are the necessary nested CVaR constraints. As discussed in section 4.5, the 
nested multistage CVaR takes into account the potential cost exceedance of each decision. 
The two auxiliary variables, 𝑦Z5 and 𝑧Z5, are defined at each stage, where 𝑧Z5 plays the 
same role as VaR at the optimal solution of the problem. Figure 5.3 illustrates how the 
VaR, 𝑧Z5, is associated with the objective variables. To exemplify, the shortfall on node 2 
and 3 becomes; 𝑦2,2 = 𝑜2,2 −  𝑧2,1 and 𝑦2,2 = 𝑜2,3 −  𝑧2,1, respectively. That is, the 
shortfall on all children nodes (successors) of node 1 is calculated with the same local VaR, 
𝑧2,1. This is true for all stage nodes in the scenario tree.  
 
 
 𝑦Z+1,5  ≥  𝑜Z+1,5 −  𝑧Z+1,5      𝑖 = 1 … 𝐼 − 1, 𝑛 ∈ 𝑁Z, 𝑛 ∈ 𝐶 𝑛  (9) 
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Figure 5.3  Relationship between nested CVaR variables 

 
 
The recursive formulation for calculating the objective function at a given node in the 
scenario tree is given by Constraints (10). The objective value at a node is calculated by 
incorporating the objective values of all succeeding nodes. In a nested fashion, we iteratively 
solve a convex combination of cost performance and risk of the next stage and use it as 
the performance measure for the previous stage. The approach is based on the research by 
Philpott and de Matos (2012), Rudloff et al. (2014) and Schütz & Westgaard (2018), and 
is borrowed from dynamic programming.  
 
 
 

 

𝑜Z5 = 1 − λ
1

𝑆 𝑛
𝑅( (5) 𝑐Q5J

Q∈[
+ 𝐻^𝑖^( 5 J

^∈pJ∈L 5

+ 𝐶^,( (5)
L 𝐷^( 5 − 𝑞^( 5 J

^∈p
+ 𝑃 5𝑜Z+1,5

5∈u 5
 

+  λ 𝑧Z+1,5 + 
1

1 − 𝛼
 𝑃 5𝑦Z+1,5

5∈u 5
  𝑖 = 2 … 𝐼 − 1, 𝑛 ∈ 𝑁Z	

 

(10) 
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Constraints (11) calculate the cost in the last stage for each scenario. The last term also 
incorporates the residual value of the material at the end of the time horizon, where 𝑇  
represents the last time period of the planning horizon. A term that controls the end of 
horizon effects is included to avoid strange model behaviour. In order to value the material 
inventory at the end of the time horizon, the spot price of Secondary LME is used (i.e. 𝐶&5

X  
in the last time period and for the relevant scenario).  
 
 

 

 

𝑜W5 = 𝑅( ( 𝑐Q5L(5)
Q∈[

+ 𝐻^𝑖^( L(5)
^∈p

+ 𝐶^(
L 𝐷^( − 𝑞^( L(5)

^∈p

−  𝑊 𝐶( L(5)
X (𝑖^( L 5 −  𝑞^( L 5 ))     𝑛 ∈ 𝑁W

^∈p
 

(11) 

 
 
 
Contract fulfilment  
 

All signed contracts must be fulfilled, which is ensured by (12) and (13). (12) handles the 
fulfilment of contract decisions made during the planning horizon, while (13) quantifies the 
set of existing contracts 𝐾W . 
 
 
 
 𝑥Q5^& = 𝑄Q𝛿Q5     𝑘 ∈ 𝐾 , 𝑛 ∈ 𝑁 [ , 𝑚 ∈ 𝑀Q, 𝑡 ∈ 𝑇Q5

]  (12) 
 

 
 𝑥Q^&

W =  𝑄Q     𝑘 ∈ 𝐾W , 𝑚 ∈ 𝑀Q, 𝑡 ∈ 𝑇Q
] (13) 

 
 
 
The binary variable 𝛿5Q is equal to 1 if contract 𝑘 is entered in time period 𝑡 and scenario 
𝑠, and equal to 0 if not. A signed contract 𝑘 comprises a specified material 𝑀Q and a 
specified tonnage to be delivered 𝑄Q. Note that the total tonnage is uniformly distributed 
for multiple delivery contracts and 𝑄Q represents the distributed delivery value. Contracts 
can include either one or several deliveries, where 𝑇Q5

]  defines the set of delivery time 
periods comprised in contract 𝑘 entered at node 𝑛. It should also be noted that all offered 
contracts are assumed to be fulfilled within the planning horizon. 
 
 
Contract expenditures  
 

As described in Section 2.4, HRM operates with several different types of contracts, each 
of which must be modelled differently. The set of contracts, 𝐾 , is therefore divided into 
subsets, where 𝐾U  represents all fixed price contracts and the set 𝐾X  includes all contracts 
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where the price is variable. Common for both contract types is that the contract price is 
based on the stochastic outcomes of LME, while other contract characteristics are 
deterministic. In a fixed price contract 𝑘𝜖𝐾U , HRM and the supplier agree upon a fixed 
price per metric tonne, 𝐶&J

U  based on the spot price of LME High Grade (i.e. LME 
Aluminium) at the time of entering the contract. The cost of entering a fixed price contract 
is modelled in (14). Note that the price determined when entering the contract holds the 
entire contract period when the contract contains multiple deliveries. The cost of entering 
contract 𝑘 at node 𝑛 with the realisation of scenario price 𝑠 is represented by 𝑐Q5J. The 
cost is calculated by multiplying the binary variable 𝛿Q5 by the spot price of Secondary 
LME 𝐶( (5)J

U  and further multiply by the contracted tonnage 𝑄Q and number of deliveries 
𝐿Q for contract 𝑘. A fixed percentage 𝐴^

U , agreed upon before the planning period, is also 
multiplied with the price.  𝐶Q

(  represents the fixed transportation cost for the tonnage 
included in contract 𝑘.  
 
 

 
 𝑐Q5J = 𝛿Q5(𝐿Q𝑄Q𝐴pv

U 𝐶( 5 J
U + 𝐶Q

( )     𝑛 ∈ 𝑁 [ , 𝑘 ∈ 𝐾U , 𝑠 ∈ 𝑆 𝑛  (14) 
 

 
 
The second type of contract depends upon the spot price of Secondary LME (i.e LME 
Aluminium Alloy). In variable price contracts involving multiple deliveries, the price will 
be adjusted for each delivery. The cost generated from variable price contracts is calculated 
in (15). The classical spot price contracts with one delivery are modelled through (15) as 
well. These contracts will have material delivery in the same month as entering the 
contract. It should also be noted that each constraint in (15) represents the cost of entering 
a specific contract for a specific price scenario outcome. 

 
 
 

 𝑐Q5J = 𝛿Q5(𝑄Q𝐴pv
X 𝐶&J

X

&K(vw
x

+ 𝐶Q
( )     𝑛 ∈ 𝑁 [ , 𝑘 ∈ 𝐾X , 𝑠 ∈ 𝑆 𝑛  (15) 

 
 

In (15), the pricing is very similar to fixed price contracts, however, a sum of the LME 
Secondary spot price in each delivery period is included. The spot price for one constraint 
remains constant for scenario 𝑠𝜖𝑆 𝑛  and varies depending on the time period 𝑡 ∈ 𝑇Q5

] .  
Figure 5.4 depicts an example contract 𝑘 entered at node 𝑛 in time period 𝑡 with delivery 
in time periods 𝑇Q5

] = 𝑡 + 1, 𝑡 + 2 . The relevant spot prices for the contract cost 𝑐Q5J in 
the resulting price scenario 𝑠 is then represented by 𝐶&+1,J

X  and 𝐶&+2,J
X . 

 
 



 40 

 
 
 
 

Figure 5.4  Illustration of parameter relationships for variable price contracts 

 
 

Inventory balance 
 

Constraints in (16) and (17) are the inventory balancing constraints representing the 
material inventory at the beginning of period 𝑡 in scenario 𝑠. The inventory level for the 
next time period 𝑖^,&+1,J depends upon the inventory level from the previous time period 
𝑖^&J, the quantity usage 𝑞^&J of material 𝑚 in time period 𝑡 and scenario 𝑠, and the total 
quantity delivered 𝑥Q5^,&+15KmyQK[ + 𝑥Q^,&+1

W
QK[z  of material 𝑚 in time period 

𝑡 + 1. All deliveries are made at the beginning of specified time period 𝑡. Constraints (16) 
represent the initial inventory constraints. 

 
 

𝑖^&J = 𝐼^ 
0 + 𝑥Q5^&

5=1QK[
+ 𝑥Q^&

W

QK[z

     𝑚 ∈ 𝑀 , 𝑡 = 1, 𝑠 ∈ 𝑆 (16) 

 
 

𝑖^,&+1,J = 𝑖^&J − 𝑞^&J + 𝑥Q5^,&+1
5Km JQK[

+ 𝑥Q^,&+1
W

QK[z

 𝑚𝜖𝑀 , 𝑡 ∈ 𝑇 \ 𝑇 , 𝑠 ∈ 𝑆 (17) 

 
 
Constraints in (18) ensure that the quantity 𝑞^&J of material 𝑚 used for production in time 
period 𝑡 and scenario 𝑠 is less than or equal to the minimum of the material demand 𝐷^& 
and the inventory level 𝑖^&J for this time period.  
 
 
 𝑞^&J ≤  𝑚𝑖𝑛(𝑖^&J, 𝐷^&)     𝑚 ∈ 𝑀 , 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆   (18) 
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Figure 5.5 illustrates how the inventory variables are associated with quantity used for 
production and quantity purchased through contracts for a specific scenario. When a 
contract is entered at a particular node, the variable 𝛿Q5 becomes non-zero, and deliveries 
contained in the contract are quantified through the quantity purchase variable 𝑥Q5^& 
which is further included in the inventory balance.   
 
 

 
Figure 5.5  Relationship between inventory and quantity variables 

 
 
In (19), the level of inventory 𝑖^&J is restricted by the storage capacity, where  𝑄L is the 
total available storage. The density parameters 𝑉^ ensures that the volume relationship 
between materials is correct. 
 
 

 𝑉^𝑖^&J  ≤   𝑄L

^Kp
     𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 (19) 

 
 
Constraints in (20) represent the total budget for material purchase for the entire planning 
horizon. The total contract expenditure 𝑐Q5JQK[5Km J  must be within the total 

budget for contract purchase for all scenario outcomes. 
 

 

 𝑐Q5J
QK[5Km J

≤  𝐵       𝑠 ∈ 𝑆   (20) 
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Non-anticipativity 
 

Non-anticipativity constraints preserve the dynamic structure of the model by stating the 
equality of variables across different scenarios when they share the same history, or, 
equivalently, are associated with the same node in the event tree. This guarantees 
implementable optimal policies. In short, they force decisions that are based on the same 
information to be equal across the scenario tree and enforce the relationship between stages, 
periods and scenarios. The non-anticipativity constraints are represented in a concise 
manner in Equation (21). 
 
 
 

1
𝑆 𝑛

  (𝑖^&J′,, 𝑞^&J′  )
J′KL 5

= (𝑖^&J,, 𝑞^&J)     𝑚 ∈ 𝑀 , 𝑡 ∈ 𝑇 , 𝑛 ∈ 𝑁 , 𝑠 ∈ 𝑆 𝑛  (21) 

 
 
 
Variable constraints  
 

 
𝑐Q5J ≥ 0    𝑘 ∈ 𝐾 , 𝑛 ∈ 𝑁 [ , 𝑠 ∈ 𝑆 𝑛  
 
𝑖^&J  ≥ 0    𝑚 ∈ 𝑀 , 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 
 
𝑞^&J ≥ 0    𝑚 ∈ 𝑀 , 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 
 
𝑥Q5^& ≥ 0    𝑘 ∈ 𝐾 , 𝑛 ∈ 𝑁 [ , 𝑚 ∈ 𝑀 , 𝑡 ∈ 𝑇Q5

]  
 
𝑥Q^&

W ≥ 0    𝑘 ∈ 𝐾W , 𝑚 ∈ 𝑀 , 𝑡 ∈ 𝑇Q
]     

 
𝑜Z+1,5 ≥ 0    𝑖 = 1 … 𝐼 − 1, 𝑛 ∈ 𝑁Z+1 
 
𝑦Z+1,5 ≥ 0    𝑖 = 1 … 𝐼 − 1, 𝑛 ∈ 𝑁Z+1 
 
𝑧Z+1,5 ≥ 0    𝑖 = 1 … 𝐼 − 1, 𝑛 ∈ 𝑁Z 
 
𝛿Q5 ∈ 0, 1     𝑘 ∈ 𝐾 , 𝑛 ∈ 𝑁 [ 
 

(22) 
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6 Computational Study  
 
In this chapter, the applicability and value of the proposed model (presented in Chapter 
5) will be evaluated through a computational study. The implementation is conducted 
using commercial software and tested on a realistic case. After a brief introduction to 
hardware and software, the input data of the test case is presented. The analysis that 
follows will in turn move from technical evaluations of the implementation performance, 
to a more practical perspective. The practical analysis is mainly focused on how different 
boundary conditions affect inventory management and hedging strategy. 
 

6.1 Model Implementation 
 
This section briefly describes how the model presented in Chapter 5 is implemented using 
available commercial software. The optimisation model is implemented in Mosel and solved 
using FICO Xpress. All calculations and numerical experiments are carried out on a 
computer powered by an Intel® Core™ i7-7700 CPU clocked at 3.60 GHz with 32.0 GB of 
RAM. The software used is FICO® Xpress Optimization Suite, with Xpress-IVE version 
1.24.18, Xpress Mosel version 4.6.0 and Xpress Optimizer version 31.01.09.  
 
The module mmsheet has been used to acquire input data from Microsoft Excel. The 
module allows the accessing and modifying of spreadsheet files in different formats from 
initialisations blocks. An effort has been made to structure the input spreadsheets in a 
clear and understandable manner to ensure that the model can be used without detailed 
knowledge of modelling or optimisation. All calculations are done using functions in Xpress, 
thus eliminating the need for manual pre-solved calculations of the input. In other words, 
after entering the input data specified into the input spreadsheet and input text file, the 
Xpress models can be run and relevant output is written to the “Output/Input” tab of the 
“Run Bar” in Xpress. 
 
 

6.2 Problem Instances 
 
In this section, an overview of input parameters and construction of the test cases are 
presented. Spreadsheets in MS Excel are used to generate the test instances. The 
spreadsheets are written in a manner that is suited for Xpress. 
 
Scenario generation  
In terms of scenario generation, the unknown parameters are the LME spot prices. These 
spot prices are directly observed from the market. Historical Prices (Secondary LME and 
LME High Grade) are displayed in Figure 6.1. 
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Figure 6.1  LME listings: High Grade (green) and Secondary (blue) 

 
Examining the historical prices from London Metal Exchange during the period January 
2015 to December 2017, two characteristic periods stand out: Between January 2015 and 
June 2016, the two listings overlap and cross each other several times over a steady drop 
period. Since then, the prices have exhibited an increasing trend, starting early 2017 and 
lasting all through 2017. We therefore choose three different points in time to study the 
remelters optimal hedging strategy: the first time period studied, P1, is towards the end of 
the drop in aluminium prices, starting with the first stage in January 2016. The second 
problem instance, P2, starts before experiencing a long period of increasing prices, with 
July 2017 as the start of the planning horizon. The last price development, P3, starts in 
January 2015, and displays considerable overlap in the two listings. 
 
The expected price development for the test cases is given in Table 6.1 and illustrated in 
Figure 6.2, 6.3 and 6.4. Testing the model using three problem instances with different 
price data is completed to illustrate portfolio strategy variation. It should also be noted 
that a factor of 0.85 is multiplied with the prices of LME High Grade for P2, as this 
historically was the practice for HRM for this time period. For test case P1, the standard 
deviation is calculated as the lowest of the three instances at 15.0 USD for Secondary LME 
and 38.2 USD for LME High Grade. For test case P2 the standard deviation is considerably 
higher: 78.4 and 81.9 USD for Secondary LME and LME High Grade respectively. For test 
case P3 the standard deviation is calculated at: 25.7 and 52.5 USD for Secondary LME 
and LME High Grade respectively. The difference in standard deviation in the three price 
samples should be considered when comparing procurement portfolio compositions 
developed by the model. The scenario tree used in the computational study has 6 stages 
and covers a planning horizon of 12 months. As we have a monthly resolution of the 
planning horizon, we use average monthly LME listings as basis when creating the scenario 
tree. More information on the scenario tree is presented later in Section 6.2. 
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Table 6.1  Expected monthly prices in USD/mt for P1, P2 and P3 

 P1 P2 P3 
Stage Secondary High Grade Secondary High Grade Secondary High Grade 

1 1560 1479 1623 1618 1819 1808 
2 1553 1536 1727 1726 1797 1821 
3 1555 1531 1755 1785 1753 1773 
4 1545 1564 1815 1811 1790 1817 
5 1529 1556 1840 1786 1771 1805 
6 1523 1592 1798 1760 1756 1683 

 

 
Figure 6.2  Expected price development for P1 

 
Figure 6.3  Expected price development for P2 

 
Figure 6.4  Expected price development for P3 
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Material Demand and Initial Inventory 
 

Material demand for the planning horizon used for all test cases is presented in Figure 6.5 
and Figure 6.6. We use the monthly registered scrap consumption data from HRM realised 
in 2017. For this thesis, all test instances use the three most common scrap materials 
contracted at HRM; namely Old, Mix1 and Mix2. The period for the consumption volumes 
matches the planning horizon as given by the scenario tree. Note that both prices and 
deliveries are only specified by month, not exact dates, as prices and deliveries are 
aggregated on a monthly basis. Inventory values for December 2016 from HRM are used 
as basis for initial inventory values in the model, see Table 6.2. As the model is run on 
historical data, it can also be used as a benchmark against HRM’s current hedging strategy. 

 

 
 

Figure 6.5  Stacked line chart of the material demand for the planning horizon 

 
 

 
 

Figure 6.6  Stacked bar chart of the material demand for the planning horizon  
 

 
Table 6.2  Initial Inventory 

Material Old Mix1 Mix2 

Inventory [mt] 307 127 116 
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Contract Data 
 

A selection of available contracts is offered during the time horizon. A total number of 81 
contracts can be selected at all decision nodes, varying in pricing method, quantity and 
number of deliveries. For a complete overview of the contract selection, see Appendix B. 
In the selection, all spot contracts are linked to Secondary LME (Aluminium Alloy) and 
all long-term contracts to LME High Grade (Aluminium). The selection does not include 
variable price contracts with more than one delivery (i.e. spot purchases), as investigated 
in Hovland (2017), since the purpose of this computational study is to illustrate how the 
model can be used as a hedging tool for HRM. However, it should be noted that the model 
is implemented in a manner that allows long-term variable price contracts as well. Via 
SOS1, we ensure that at most one contract is non-zero (entered) at each node for each 
material. An assortment of initial contracts signed before the planning horizon is also 
included. The assortment comprises one initial contract for each material. The initial 
contracts for Mix1, Mix2 and OLD contain 12 deliveries respectively and each delivery 
comprises 100 mt, 200 mt and 300 mt respectively, see Table 6.3.  

 
Table 6.3  Initial Contracts 

Material Number of 
Deliveries 

Delivery 
Periods 

Delivery 
Volume [mt] 

Mix1 12 1-12 100 
Mix2 12 1-12 200 
OLD 12 1-12 300 

 

 
 
Table 6.4 contains information about the fixed input parameters. It should be noted that 
all costs are calculated in USD per month. The weight λ specifying the producer’s risk 
preference is increased in steps of 0.1 in the interval [0,1]. The problem is solved for two 
different CVaR percentiles, 𝛼: 0.9 and 0.95. For all test instances, we use a discount rate 
of 0.5 % per month. Due to similar density of the materials used, we run the model with 
storage capacity given in weight [mt] instead of volume [m3]. However, if needed, the model 
is implemented in a manner that allows density specifications. Inventory cost is set to 3,000 
USD/mt. This is a relatively high cost considering purchasing prices, however, this cost is 
set due to HRM’s limited storage ability and need for available storage at all times. 
Shortage cost is set to 20,000 USD/mt for the first 6 time periods (i.e. the stages of the 
planning horizon) and reduced to 5,000 USD/mt for the rest of the planning horizon. This 
reduction is included to allow additional contracting options in the future. Furthermore, 
all transportation costs are set to zero because the relevant quantities for the materials can 
be ordered from a single supplier and the freight cost increases linearly with contracted 
weight. Consequently, the inclusion of transportation cost will not affect the solution for 
the included test cases. However, the implementation allows the specification of 
transportation cost for each contract if necessary.  
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Table 6.4  Parameter Input 

Parameter Value 
Storage Capacity [mt] 4,000 
Budget [USD] 25,000,000 
Shortage Cost in period 1-6 [USD/mt] 20,000  
Shortage Cost in period 7-12 [USD/mt] 5,000 
Inventory cost, IC [USD/mt] 3000 
LME factor 1 for P1, P2 and P3 1.00/0.85/1.00 
LME factor 2 for P1, P2 and P3 1.00 
Density Parameter [m3/mt] 1.00 
Inventory Weight Factor, W 0.90 
Risk Weight Factor, λ [0,1] 
Confidence Level, 𝛼 [0,1] 

 
 
The computational study includes the extension of the planning horizon from 6 to 12 
months compared with the test cases in (Hovland, 2017). Furthermore, a greater selection 
of contracts is available at each node to better reflect the contracting options available for 
HRM. For all test instances, the 6 first months include the option of entering contracts 
and the following 6 months is an evaluation of the inventory level and production quantity. 
Consequently, this study uses 6 stages. That is, the decision maker will have full 
information about the future prices as of month 6, see Figure 6.7. We use a stylised price 
scenario tree for the analysis. The scenario tree comprises 3 successors for each node 
developing as 95%, 100% and 105% of the average price value for the given stage. All 
scenario outcomes have the same probability. The resulting optimisation problem of 243 
scenarios has 260,965 variables and 504,492 constraints before pre-processing versus 41,260 
variables and 13,963 constraints after pre-processing.  

 

 
 

Figure 6.7  Nodal overview of the scenario tree 
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6.3 Computational Results 
 
For this computational study, a brief computational efficiency study is conducted. In an 
economic study, the model is analysed and examined for changes in risk preferences and 
risk percentiles. Furthermore, a detailed analysis of hedging strategies and procurement 
portfolio composition is completed for the different price scenarios, followed by a sensitivity 
analysis performed with respect to the budget and storage restrictions. 
 
 

6.3.1 Computational Efficiency 
 
In this subsection, model size and time considerations for different test instances are 
considered. The test instances are extended stepwise and model sizes are recorded. Table 
6.5 gives a detailed overview of the number of continuous variables, binary variables and 
number of equations before pre-processing for the different test instances. The solution 
time and gap of the test instances are also presented in Table 6.5. 
 
With a test case of 243 scenarios, the gap is reduced to 0.19% after 36.6 hours. The best 
solution is found already after 1.22 hours. The rest of the time, the solver is working on 
reducing the gap by improving the lower bound. Figure 6.8 displays the upper and lower 
bound output for the first 30 minutes of the model run on the test case with 243 scenarios. 
It can be observed that a lot of solutions are found the first 2 minutes, reducing the gap 
considerably. Henceforth, solutions are found in a less frequent manner, reducing the gap 
gradually. For the 81-scenario test case, the best solution is found by the solver after 2.58 
hours. An overview of the gap development for the 81-scenario case can be viewed in Figure 
6.9 illustrating when the last solution is found and the solvers effort to reduce the gap (i.e. 
by improving the lower bound) for the rest of the run. After 24 hours, the gap is at 0.02%. 
For the 27-scenario test instance, the model is solved to optimality after 19.4 hours. The 
best solution is found after 1.50 hours.   
 

 
Table 6.5  Computational Efficiency 

 

Scenarios Stages Continuous 
variables 

Binary 
variables 

Constraints Running 
time 

Gap [%] 

243 6 231,211 29,484 504,492 36.6 hours  
 

0.19 

81 5 69,784 9,801 101,658 24.0 hours 
 

0.02 

27 4 20,929 3,240 24,966  19.4 hours 0.00 
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It should also be noted that all runs are done with scaling. All prices and costs are entered 
as USD/1000 mt, while volumes are entered in mt, to more quickly reduce the gaps in 
Xpress. The cost results are therefore multiplied with a factor of 1000 before they are 
presented in this thesis. The model is also sensitive to input data. Depending on the fixed 
input, the solution time and gap can increase. However, all the presented results in this 
thesis have a gap below 1 % unless otherwise stated.  

 
 

 
 

Figure 6.8  Upper and lower bound output for 243 scenarios 

 
 

 

Figure 6.9  Gap advancement for 81 scenarios 
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6.3.2 Economic Study 
 
For the economic study, all test instances constitute 243 scenarios and 81 contracting 
options on each decision node. The study includes an analysis of the model’s hedging ability 
by testing for different risk weight factors λ and confidence levels α = 0.90, 0.95 , also 
referred to as CVaR percentiles. The analysis also considers model behaviour for the three 
presented price developments referred to as P1, P2 and P3 (see Section 6.2). It should be 
noted that, unless otherwise stated, all results given in this economic study are the average 
solution over all scenarios.   
 

 
Reducing spot purchase: higher level of risk aversion 
 

The first part of this analysis examines the model solution for different levels of risk 
aversion. Primarily, we look at how much of the total contracted tonnage is purchased 
through long-term contracts over the planning horizon. The rest of the contracted material 
is thus contracted through spot purchases. We see from the results (i.e. Figure 6.10) that 
the amount of material purchased through long-term contracts increase as the degree of 
risk-aversion increase. Contrary, the amount purchased in the spot market decrease. While 
there might be scenarios outcomes in which the solution recommends to not decrease the 
amount of spot trades, the average spot volumes are clearly decreasing. The results in 
Figure 6.10 are run on a test case with P1 at a confidence level of 95 %. It should also be 
noted that for 𝜆 = 1, the percentage amount purchased through long-term contracts 
increase to 89.5 %. This large growth is not visible in Figure 6.10, as the y-axis is limited 
to 50 % in order to better illustrate the increase between 𝜆 = 0 and 𝜆 = 0.99.  
 

 

 

Figure 6.10  Percent of the purchase contracted through long-term contracts  

 
A risk-neutral producer is defined by 𝜆 = 0. The results above indicate that HRM should 
consider a fairly diversified procurement portfolio from a low degree of risk aversion. That 
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is, the portfolio consists of 45.6 % long-term contracts for a risk neutral producer. The rest 
of the portfolio consists of spot contracts (i.e. spot purchases). While increasing the degree 
of risk aversion, a gradual increase in long term contract purchase is observed with an 
inversely decreasing purchase in spot contracts. The share of long-term purchases increases 
with 6.8 % between risk neutrality and a risk weight of 99 %. For the extreme case of a 
100 % risk averse producer, 89.5 % is invested in long-term contracts. Observe that for this 
last setting, the expected cost part of the objective is not counted whatsoever. All the 
entered long-term contracts for 𝜆 = 1 consist of contracts with a maturity of 6 months. 
This is also the maximum available maturity in the selection of offered contracts.     
 
The results presented here are in line with the presented theory in Chapter 4. A risk neutral 
model, 𝜆 = 0, determines the values of the decision variables that minimise, over all 
scenarios, the expected cost along the planning horizon. It does not take into account the 
variability of the objective function value over the scenarios and does not highlight the 
possibility of realising some scenarios with very high costs. For our results, the expected 
cost is lowest with a portfolio consisting of a very similar percentage of spot purchases and 
long-term contracts. Contrary, a risk averse model, 𝜆 > 0, will also minimise the risk of 
realising very high costs. That is, the model will minimise the expected value of costs in 
the worst 𝛼-percentile of cases, where 𝛼 is the confidence level assigned by HRM. When 
risk is more heavily weighted, long-term contracts will benefit in avoiding the extreme price 
scenarios. Consequently, the moderate increase of long-term contracts in the portfolio is 
anticipated. Figure 6.11 displays the percentage share purchased through spot and long-
term contracts for the different risk weights through a clustered bar chart and clearly 
illustrates the discussed trends. The results show a gradual shift towards long-term 
contracts with longer maturities. This gradual shift is observed for prices in P2 and P3 as 
well. The same behaviour is also observed for other CVaR criteria. A more detailed analysis 
of the effect of CVaR is conducted later in this economic analysis.  
 
 

 
 

Figure 6.11  Clustered bar chart representation of the portfolio composition 
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Different CVaR percentiles 
 

The following analysis investigates the effect of different CVaR percentiles (i.e. confidence 
levels, 𝛼) on the solution. When comparing the solution for two CVaR percentiles (see 
Table 6.6), namely 90 % and 95 %, it is clear that the chosen CVaR percentile also affects 
the hedging decisions. In general, the higher the CVaR percentile, the less risk-averse HRM 
needs to be before moving purchase volume from the spot market to long-term contracting. 
The percentage purchased in long-term contracts increases by 0.4 - 1.7 % depending on the 
level of risk aversion. Figure 6.12 illustrates the difference between 90% and 95% CVaR 
for the P1 test case.   
 
 

Table 6.6  Percentage of long-term contracts for different CVaR percentiles 

 

Test Case Risk Weight 𝜆 
Price 𝛼 0 0.2 0.4 0.6 0.8 1 
P1 0.90 45.57 46.31 46.75 46.64 46.51 98.64 
P1 0.95 45.57 46.93 47.16 47.44 47.90 89.46 

 

 
 

Figure 6.12  Percentage of long-term contracts entered versus risk weight 

 
The increase in long-term contract purchases when increasing the confidence level is 
expected. With a higher confidence level, the decision maker becomes more risk averse. 
This is because the CVaR value of the objective will increase and the solver will to a greater 
extent try to reduce this value through hedging. To better explain, CVaR incorporates the 
(1 - 𝛼) % worst case scenarios. That is, for a 95 % CVaR percentile, 5 % of the worst-case 
scenarios are considered in the objective. In a practical context, CVaR measures the 
probability that the procurement portfolio will incur very large costs. If we compare the 5 
and 10 % largest losses of a loss distribution, the value of CVaR will be higher for the 5 % 
case. The solver will then to a greater extent attempt to reduce CVaR (i.e. through long-
term contracting).  
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The only clear exception from the notable tendency in Table 6.6 and Figure 6.12 is for a 
risk weight of 0 and 1 respectively. That is, for the extreme case of risk neutrality and 
when the decision maker is 100 % risk averse. For risk neutrality, it is clear that the CVaR 
value has no effect, as CVaR is no longer valued in the objective. For 𝜆 = 1, the level of 
long-term contracts entered are in general high at 98.6 % and 89.5 % for 90% and 95 % 
CVaR respectively. A more detailed analysis is presented in Table 6.7 to illustrate the 
maturities of contracts entered for this extremity. At 90 % CVaR, 10.53 % of the 
procurement consists of contracts with a maturity of 3 months, and the rest of the long-
term contracts have a maturity of 6 months. Only 1.36 % of the procurement portfolio is 
spot purchases. At 95 % CVaR, all long-term contracts have a maturity of 6 months, and 
10.54 % of the total procurement consists of spot purchases. The total percentage of long-
term contracts is therefore bigger for the 90 % percentile than for the 95 % percentile. 
However, the percentage purchase in long-term contracts with a maturity of 6 months is 
89.46 %, which is 1.13 % more than for the 90 % CVaR test case. It can therefore be argued 
that the degree of hedging is higher for the 95 % CVaR test case.  
 
 
 

Table 6.7  Procurement portfolio composition for 90 % and 95 % CVaR with 𝜆 = 1 

 

 Maturity of contract 
𝛼 M2 M3 M4 M5 M6 Spot 

0.90 - 10.53 - - 88.11 1.36 
0.95 - - - - 89.46 10.54 

 

 
However, it is evident that the increase in Figure 6.12 is not even, though there is a clear 
increasing trend for higher values of 𝜆. The explanation for the irregularities can primarily 
be explained due to the large category defined as long-term contracts. This category 
includes contracts with maturity of 2-6 month. Contracts with maturity of 2 months could 
largely be considered closer to a spot contract as the hedging effect from its usage is much 
less than for contracts with longer maturities. So even though the total amount purchased 
through long term contracts does not increase, there can be a shift in the contract 
assortment towards contracts with longer maturities (see Table 6.7). An analysis of the 
procurement portfolio in terms of maturities can be viewed later in this economic study. 
The irregular increase can further be explained by the acceptance of solutions with gaps 
up to 1 %. If we compare the solution for 90 % CVaR at a risk weight of 0.4 and 0.5 (i.e. 
the largest decline), the drop is at 0.074 %. This is a small number that could easily be 
effected by the acceptance of non-optimal solutions. It should also be noted that for some 
irregular results, a re-run over one day has been made, producing noticeable changes in the 
results. However, due to the limited time available for this analysis, a one day run for each 
point in the graph was not possible.  
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Objective cost versus risk weight 
 

In risk management, mathematically equivalent solutions are differentiated based on the 
decision makers degree of risk aversion. By varying a risk weight factor 𝜆, the decision 
makers can construct an objective plot and thus choose the optimal objective function 
value corresponding to their subjective risk preferences. The plot for test case P1 is 
displayed in Figure 6.13, clearly showing the reduction in cost while the degree of risk 
aversion increases. The graph is showing total expected costs on the y-axis (i.e. objective 
value), versus the risk weight on the x-axis. This relationship is clearly visible for all test 
instances and is a fundamental feature of the model. The discounted cost reduces as the 
relative importance of risk becomes high. Thus, there is a clear relationship between the 
risk measure (CVaR) and the expected cost. The plot also represents a set of optimal 
procurement portfolios that offers the lowest expected cost for a defined level of risk or the 
lowest risk for a given expected cost.  
 
 

 

 
 

Figure 6.13  Objective plot of the Expected Cost/Risk spectrum 

 
When increasing the weight on CVaR, by increasing 𝜆, the model gives more conservative 
solutions, reducing the expected costs of the problem. When risk aversion is high, the model 
recommends what is referred to as a static hedging strategy (see Section 4.5) and the 
expected cost of the problem becomes lower. This is because the risk part of the objective 
focuses on the worst-case scenarios of the possible outcomes. By avoiding the worst-case 
outcomes, the expected cost will drop. Contrary, with a lower level of risk aversion, the 
model will not put as much weight on unfavourable scenarios, and favour the extra gain 
from the more favourable scenarios. In other words, the natural hedge gives a strategy with 
highest uncertainty in future cost and the highest possible target shortfalls, but also the 
highest upside potential. With a natural hedge (i.e. risk neutrality), one desires to handle 
a greater standard deviation in costs, in the hope of utilising advantageous scenario 
outcomes. However, this comes at a greater expected cost.  
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Moreover, Figure 6.14 illustrates the reduction of CVaR in the objective as the level of risk 
aversion increases. The decrease is gradual, in line with the reduction of the objective value. 
The complete reduction between a risk weight of 0.1 and 1 is 9.46 %. For the extreme state 
of risk neutrality, the value of CVaR becomes distinctly high, as the value is no longer 
weighted in the objective. The CVaR cost for 𝜆 = 1 is 769 million USD, a value 19 times 
higher than for 𝜆 = 0.05.  
 
 

 
 

Figure 6.14  CVaR versus risk weight for P1 with a 95 % CVaR percentile  

 
It should also be remarked that the model benefits from the concept of diversification. 
Diversification is a risk management technique that mixes a wide variety of contracts 
within a contract collection. A composition constructed of different contracts (i.e. different 
maturity, quantity, pricing) will, on average, produce lower costs and pose a lower risk 
than any individual contract found within the procurement portfolio. Optimal portfolios 
that comprise the objective plot tend to have a higher degree of diversification than the 
sub-optimal ones, which are typically less diversified. Based on the results for the test 
cases, the degree of diversification through spot and long-term contracts is clearly present.  
 
 
Reducing the inventory cost 
 

The effect of reducing the inventory cost is also investigated. While varying the inventory 
cost from 3000 to 800 and 200 USD/mt respectively, the change in procurement portfolio 
composition is analysed. The evaluation can be conducted by comparing Table 6.8, Table 
6.9 and Table 6.11. The tables display the average procurement portfolio composition for 
all scenarios for values of 90% and 95% and a selection of weight values (i.e. 0.1, 0.4 and 
0.9). The weights show the percentage amount of material that should be purchased 
through the selection of long term contracts for the planning horizon, differentiated by 
maturity and spot contracts. For instance, for the test case with risk weight λ = 0.9 and 
confidence level α = 0.95, in column M4, the data given is the percentage (i.e. average over 
all scenarios) of the material purchased through contracts with a maturity of 4 months for 
the whole planning horizon. 
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Table 6.8  Procurement portfolio composition: IC = 200 USD/mt 

Test Case Maturity of contract 
𝜆 𝛼 M2 M3 M4 M5 M6 Spot 

0.1 0.90 - 0.18 0.48 2.91 55.00 41.43 
0.4 0.90 - - - 1.29 56.73 41.97 
0.9 0.90 - - - 0.85 58.32 40.83 
0.1 0.95 - - - 0.94 58.78 40.27 
0.4 0.95 - - - 1.02 58.82 40.16 
0.9 0.95 - - 0.37 3.25 56.91 39.47 

 
 

Table 6.9  Procurement portfolio composition: IC = 800 USD/mt 

Test Case Maturity of contract 
𝜆 𝛼 M2 M3 M4 M5 M6 Spot 

0.1 0.90 0.11 - - 2.91 51.57 45.41 
0.4 0.90 0.28 - - 0.28 54.61 44.48 
0.9 0.90 0.06 0.09 - 0.85 56.22 42.79 
0.1 0.95 - - - 0.62 54.33 45.05 
0.4 0.95 0.63 - - 0.29 55.26 43.81 
0.9 0.95 0.34 - - 0.29 56.08 43.29 

 
 

Table 6.10  Procurement portfolio composition: IC = 3000 USD/mt 

Test Case Maturity of contract 
𝜆 𝛼 M2 M3 M4 M5 M6 Spot 

0.1 0.90 - - - - 46.21 53.79 
0.4 0.90 - - - - 46.75 53.25 
0.9 0.90 - - - - 47.65 52.35 
0.1 0.95 - - - - 46.86 53.14 
0.4 0.95 0.20 - - 0.16 46.90 52.73 
0.9 0.95 0.59 - - - 47.45 51.96 

 
 
It can be observed that when the inventory cost is reduced, a greater amount is invested 
in long-term contracts. In general, values increase from about 46-48 % to 53-57 % and 58-
61 % for 800 and 200 USD/mt respectively. To exemplify, for a risk weight of 90 % and a 
confidence level of 95 %, the procurement through long term contracts increases from 
48.04% to 56.71 % and 60.53 % when the inventory is reduced from 3000 to 800 and 200 
USD/mt respectively. This result is intuitive, as long-term contracts to a larger degree will 
utilise storage (i.e. all contracts include a fixed amount per delivery). By reducing the 



 58 

storage cost, more long-term contracts will be entered. For all degrees of risk the model 
results also indicate the longest maturity of contracts (i.e. 6 months), with few exceptions. 
However, it can be observed that more contracts with a maturity of 5 months are entered 
(i.e. additional purchase through M5 contracts) when reducing the inventory cost. This 
transition to enter shorter long-term contracts for certain scenario outcomes can also be 
explained by the reduced storage cost. Essentially, when storage is cheaper, the M6 
contracts are in some scenarios combined with contracts of lower maturities. With that, 
the model is trying to exploit price developments to a greater extent by entering a more 
varied contract assortment. However, the increase of long-term contracts with lower 
maturity is marginal and the percentage is very low compared to the percentage share of 
M6 contracts. Upon that, it should also be observed that only one contract per material 
can be entered at each decision node in the scenario tree due to the SOS1 implementation. 
With this restriction in mind, it is clear that in most scenarios the M6 contract is necessary 
to cover the material demand, leaving the solver with no option to enter additional long-
term contracts with lower maturities. Consequently, M6 contract are largely selected.  
 
It should be noted that when the inventory cost is reduced closer to 0, the solver struggles 
to reduce the gap between the upper and lower bound. Solutions in Table 6.8 are presented 
with gaps considerably higher than 1 %, some up to 35 % (i.e. after running the model for 
3 days, the best and last solution is found after 2.5 hours. For the rest of the time, the 
solver attempts to reduce the gap). This increase in gap can be explained due to the 
increased complexity of the problem. When storing material becomes a cheaper option, it 
is clear that is it optimal to use more combinations of contract maturities. Smaller 
percentages of long-term contracts with lower maturities can clearly be observed for lower 
inventory values (i.e percentages up to 3.25 %). That is, contracts with maturities 2 to 5 
months are utilised for specific scenario outcomes. The following analysis incorporates a 
scenario analysis where particular outcomes are investigated with a focus on material 
delivery.   
 
 
Material Delivery - Scenario specific analysis 
 

A detailed investigation on the material delivery plan and shortage is conducted in this 
analysis. The test case comprises a risk weight of 90 % and a confidence level of 95 %. We 
present the planned material delivery for three specific scenario outcomes with different 
characteristics. The scenario outcomes are named S1, S2 and S3 respectively and are 
presented in Figure 6.15. While prices in S1 demonstrate a clear peak in time period 4, the 
prices in S2 increase during the course of the planning horizon. Prices in P3 also display 
an increasing tendency and is the scenario with the highest average prices. An overview of 
the delivery plan is shown for the three scenarios in Figure 6.16, Figure 6.17 and Figure 
6.18 respectively and is represented for each month of the planning horizon. It should be 
noted that the schedule does not illustrate inventory values, only the material delivery plan 
based on entered contracts. Initial contracts entered before the planning horizon, are also 
included. We should also point out that since this is a stochastic model, the solution for 
one scenario outcome partly has the same solution as other outcomes. That is, due to the 
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structure of the model, there exist equality of solution variables across different scenarios 
when they share the same history, or equivalently, are associated with the same nodes in 
the event tree. All solutions but the ones in stage 6 (i.e. decision variables in stages 1-5) 
are therefore determined while considering multiple scenarios. This should be kept in mind 
when analysing the outcome of specific scenario outcomes. 
 
 

 

 
 

Figure 6.15  Prices for the scenario specific analysis 

 
On average 14.34 contracts are entered for the planning period, where, on average, 60,5 % 
of the contracted material is through long-term contracts and 39.5 % is spot purchases. It 
is clear that the model favours spot purchases for the first two time periods and purchase 
through a mix of long-term and spot contracts in time period 3 to 5. With that, a contract 
entered through long-term contract has the first delivery the nest time period. For instance, 
the material with scheduled delivered in time period 4 is contracted in time period 3. 
Contrary, the spot purchases are contracted in the same time period. For the rest of the 
planning horizon (i.e. time period 6 to 12), only long-term contracts can be used to cover 
the material demand.  
 
When comparing the delivery plan for the three scenario outcomes, it is apparent that 
more spot purchases are made for Mix1 in scenario S3. Based on the shortage graph in 
Figure 6.20, this scenario is the only one not short of Mix1 in time period 3. Following this 
purchase is a drop in the securing of long-term Mix1 contracts for periods 5-12, justified 
by the considerable increase in LME High Grade for periods 3-6. Contrary, most long-term 
purchases are made for S1, entered in time period 3, where the prices are the lowest and 
will increase considerably the following time period. An additional spot purchase is made 
of Mix1 in time period 5, S2. Following, is a lack of long-term Mix1 purchases detected in 
time period 11. This can be linked to the rising price development after time period 3 for 
LME High Grade. It should be noted that making an analysis based on price development 
alone is challenging as inventory and varying material used for production also affects the 
model solution, making this a complex study. To enrich this analysis, the next part 
concentrates on an inventory and shortage study for the same three scenario outcomes.  
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Figure 6.16  Material delivery plan for scenario outcome S1 

 

 
 

Figure 6.17  Material delivery plan for scenario outcome S2 

 

 
 

Figure 6.18  Material delivery plan for scenario outcome S3 

 
Figure 6.19 displays the inventory level for the scenario outcomes (i.e. clustered as S1, S2 
and S3 respectively) and each material (i.e. stacked). It can be observed that the inventory 
level for the three selected scenario outcomes are, overall, very similar. For time periods 1 
and 2, the inventory level and deliveries are in fact identical for the three scenario 
outcomes. This is expected, as the presented scenario outcomes share the same stochastic 
data for these time periods (see Figure 6.15). Due to the information structure of the 
problem, the complete solution will be identical for all scenario outcomes in time period 1, 
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while the solution in time period 2 can vary slightly (see Figure 6.20). For time period 3, 
the total inventory level is also similar for the scenario outcomes. However, the delivery 
and quantity for production vary (i.e see the martial delivery plan and shortage), while the 
total inventory is kept stable. Looking onward, some differences can be noted. For instance, 
S1 has the highest inventory for the five last time periods. It is clear from the delivery 
schedule that S1 also has largest deliveries for time period 8 to 12, so this is expected. 
Another example is the difference in inventory value in time period 5. In time period 5, the 
delivery scheduled for S2 is highest, and consequently S2 also has the highest inventory. 
In general, it is easy to see a relationship between the material delivery plan and the 
inventory levels.  
 
 

 
 

Figure 6.19  Inventory for the scenario outcomes S1, S2 and S3 (clustered respectively) 

 
Figure 6.20 displays the shortage for the specific scenario outcomes. It is clear that the 
optimal solution includes shortage in all of the scenario outcomes. Numerous explanations 
can support this result. Firstly, the observed shortage in time periods 10, 11 and 12 for 
scenarios S1, S1 and S2 respectively, can be explained due to the limited flexibility given 
for later time periods. As a long-term contract must be entered in time period 6 or earlier 
to cover the second half of the horizon. With a fixed-delivery for all time periods after this 
point in time, an expensive oversupply of material would be necessary to cover all demand. 
It can therefore be more cost effective to accept some shortage. It is therefore clear that 
the model relies on the initial contracted volume and inventory to a large degree, and 
undertakes some shortages. The shortage cost for time period 7-12 is set lower than the 
shortage cost for time period 1-6 precisely for this reason.  
 
Furthermore, due to the large variety in quantities included in the contract selection (i.e. 
multiples of hundreds), it can be cheaper to purchase less than the required material 
demand rather than purchasing too much. Accordingly, the use of alternative primary 
material and alloying elements are used. In our results, this is a likely explanation for all 
shortages below 100 mt (e.g. all shortage for Mix2). A model with more contracting options 
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(i.e. higher distribution of quantities and more contract nodes) could possibly produce 
solutions with less cost and less shortage, however, this would also affect the complexity 
of the problem and the solution time would likely increase considerably. Heuristics might 
then be required to solve the problem within reasonable time. Nevertheless, all material at 
HRM today is contracted in larger quantities (i.e. 50-100 mt) and smaller contract 
purchases are not common practice in the industry due to transaction and transport costs. 
These types of shortages are therefore expected.   
 
 

 
 

Figure 6.20  Shortage for the scenario outcomes S1, S2 and S3 (clustered respectively) 

 
Some major shortages are also present. Most of these shortages are observed in time period 
3, 4 and 5 for Old and Mix1. If we look at the material demand for the planning horizon, 
presented in Figure 6.6, it is clear that the highest demand occurs in time period 3, with a 
continuing high demand for time period 4. The solver therefore decides to utilise alternative 
material for Old in time period 3 for all the presented scenario outcomes and combines 
different shortages for Mix1 in the scenario outcomes in time period 2, 3, 4 and 5. Upon 
that, time period 3 has an unusual high material demand of both Old and Mix1 and the 
available material contracts do not support such large quantities (see Appendix B). A 
larger selection of contracts with higher contract volumes could reduce these peak shortages 
but would again increase the complexity of the problem. However, the contract assortment 
has been created in agreement with historical purchasing quantities made by HRM and it 
could be argued that the shortage is in line with current practice.  
 
Today, HRM relies on primary material and alloying elements to a large degree even though 
scrap is a cheaper alternative in terms of purchasing cost. This is because the usage of 
primary material and alloying elements gives more security in terms of product quality (see 
Section 2.2). Currently HRM’s has a practice of using more than 50 % of primary 
aluminium and alloying elements in the remelting process depending on final product. The 
rest constitutes scrap. Further, when there is not enough scrap material in stock, up to 100 
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% of their production can be based on alternative material. The results of this analysis 
show a significant improvement to such outcomes as none of the scenario outcomes 
comprise a shortage higher than 49 %. This shortage occurs in a time period with unusually 
high demand (i.e. Old in time period 3). In order to remove shortage completely, a larger 
selection of contracts must be constructed with a higher distribution of quantities available. 
As discussed above, this will result in a more complex problem that is likely to be difficult 
to solve to optimality within reasonable time. If larger scrap contract agreements were 
utilised, the consideration of scrap availability would also have to be included. 
 
 

Comparing the Price Instances 
 

The following analysis focuses on comparing model results for the different price instances: 
P1, P2 and P3. Through an analysis testing for different confidence levels and risk weights, 
it is clear that the solution does not change considerably for the three price instances. For 
the presented analysis, a confidence level of 95 % is used with a risk weight factor of 0.9, 
as a higher level of risk aversion evidently gives more variation in the solution between the 
three price instances. The expected price development for the cases is given in Table 6.1, 
and is illustrated in Figure 6.2, Figure 6.3 and Figure 6.4. Testing the model using three 
problem instances with different price data is completed to illustrate procurement strategy 
variation. Results are presented in Table 6.11, showing the average number of signed 
contracts for the same risk weight and percentile. Table 6.12 shows how the entered 
contracts differ in terms of contracted tonnage in long-term and spot contracts given in 
percent. 

 
Table 6.11  Average number of signed contracts for P1, P2 and P3 (𝜆 = 0.9, 𝛼 = 0.95) 

 

                     Time Period  
Test Case 1 2 3 4 5 6 Total 

P1 
Long-term - - - 0.15 2.01 - 

14.84 
Spot 3.00 3.00 3.00 2.82 0.85 0.01 

P2 
Long-term - - 0.11 0.63 1.96 - 

   13.94 
Spot 3.00 3.00 2.78 2.00 0.46 - 

P3 
Long-term - - - 0.11 2.03 - 

   14.43 
Spot 3.00 3.00 3.00 2.52 0.77 0.02 

 
 

 
Table 6.12  Percentage of the material contracted in spot and long-term contracts 

 

Test Case P1 P2 P3 
Long-term 56.9 % 61.3 % 56.2 % 

Spot 43.1 % 38.7 % 43.8 % 

 



 64 

From the results in Table 6.11, a shift can be observed in time period 3 where we sign 2.78 
spot contracts against 0.11 long term contracts for test case P2. This differs from the other 
price instances, where 3 spot contracts are entered. This modification can be explained by 
the observation that both spot values clearly increase during the planning horizon in P2. 
When Secondary LME is increasing, it cheaper to cover material demand through fixed 
price long-term contracts. Contrary, P1 and P3 have decreasing spot prices. Another 
explanation supporting the extra purchase at stage 3 is the registered standard deviation 
for the sample prices. For test case P2 the standard deviation is considerably higher for 
both spot prices: 78.4 and 81.9 USD (see Section 6.2). With a higher standard deviation, 
it is expected that we see a shift towards long-term contracts. This is also confirmed in 
Table 6.12, where it is clear that the results of test case P2 have the highest procurement 
through long-term contracts of 61.3 %, which is 4.4 % and 5.1 % higher than for P1 and 
P3 respectively. Further, for P1, a total amount of 8803 mt is contracted, for P2, 8592 mt 
is contracted and for P3, 8795 mt is contracted. Following, 14.8, 13.9 and 14.4 contracts 
are entered for the three test cases. That is, most material is purchased for P1. This is 
expected, as P1 has the lowest average price of the three price scenarios with a 33.3 % and 
14.0 % lower average price of long-term and spot respectively compared to P2, and a 15.7 
% and 15.3 % lower average price of long-term and spot respectively compared to P3.  
 
 
Budget and storage sensitivity analysis 
 

The model is also tested for budget and storage sensitivity respectively, by conducting 
several runs on the P1 instance with a confidence level 95 % and a risk weight of 80 %. 
Figure 6.21 displays a comparison of objective function values after tightening the budget 
capacity constraints stepwise.  
 
 
 

 
 

Figure 6.21  Variation in objective value when tightening the budget constraints 

 
For all of the test instances, the budget is set to a value of 25 million USD. However, the 
constraint is not binding and the budget must be reduced below 10 million USD for the 
objective value to increase significantly (see Figure 6.21). Figure 6.22 presents a comparison 
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of objective function values when tightening the storage capacity constraints stepwise. It 
is clear that significant reduction in the objective value can be achieved while increasing 
the storage up to 1,800 tonnes. With a storage of less than 1000 mt, the problem becomes 
infeasible due to the fixed initial inventory and contracts entered before the planning 
horizon. It should be noted that the storage is measured in weight and not volume for this 
analysis (see Table 6.4). In a further investigation, a 13 % increase in the objective value 
is observed when reducing the budget by a factor of 50 (i.e. from 10,000 to 200 USD). 
Likewise, we observe a 33 % increase in the objective when the storage capacity is reduced 
with a factor of 1.64 (i.e. from 1800 to 1100 mt). This indicates that the storage capacity 
is a bottleneck in the value chain to a greater degree than the budget capacity. 

 
 

 
 

Figure 6.22  Variation in objective value when tightening the storage constraints 

 

 
Comparing the results with current practice 
 

Today, long-term contracts constitute about 20 percent of the procured scrap at HRM, 
while the rest is purchased on the spot market through fixed price contracts. Historically, 
HRM only entered spot contracts, with a few exceptions. If we compare the purchase 
through long-term contracts for the different inventory cost values, it is clear that this 
value influences the solution greatly. If we further compare the solution with historical 
practice at HRM, it is clear that the choice of a higher inventory cost reflects their wishes 
to limit inventory. The restricted purchase through long-term contracts can be explained 
through the relatively high inventory cost of 3000 USD/mt per month. With high storage 
costs, it is expensive to store the surplus material resulting from long-term contracting. It 
can also be observed that when inventory cost is reduced, the model recommends a much 
higher procurement through long-term contracts. Especially, if HRM can increase their 
storage and allow for higher inventories, costs can be reduced. It is also clear from the 
storage sensitivity analysis that the storage capacity is central in optimal scrap 
procurement and inventory management.   
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7 Concluding Remarks 
 
We present in this thesis a multistage stochastic programming model for determining the 
optimal hedging decisions of an aluminium remelter. We have used the model to propose 
contracting strategies with different risk characteristics. In general, the results in this thesis 
confirm what intuition suggests; hedging with the use of forward contracts significantly 
reduces the risk in terms of CVaR. That is, when increasing the producer’s level of risk 
aversion, the amount procured though spot purchases decrease and a larger share of the 
procurement goes towards the lower risk alternative of fixed price long-term contracts. 
 
Hedging decisions are complex, requiring a decision on both when to enter into a contract, 
for how long and the volume traded. The model presented in this thesis can provide 
valuable decision support to the choice of an optimal hedging strategy according to the 
company’s risk preferences. That is, deriving static hedging positions. The model can also 
be used for scenario and sensitivity analysis where risk preferences are assessed. This can 
also help the decision maker determine a suitable risk level. 
 
Results in this thesis demonstrate that HRM should consider a fairly diversified 
procurement portfolio from a low degree of risk aversion. As the degree of risk aversion 
increases, HRM should reduce its exposure in the spot market and enter more forward 
contracts. Overall, the percentage procurement through forward contracts increases by 
43.89 % when the risk level goes from risk neutrality to 100 % risk averse (at 95 % CVaR). 
The degree of risk aversion also influences the maturity of the chosen long-term contracts: 
the higher the degree of risk aversion, the longer the maturity of the forward contracts.  
 
The percentage procurement through spot purchases vary between 39.47 % and 53.79 % 
depending on the test case, showing a clear benefit from diversification and hedging. The 
model also demonstrates procurement strategy for different price data by shifting towards 
long-term contracts for increased variation in the prices and schedule more material 
purchase when the average prices are lower. Furthermore, storage capacity has been 
detected as a bottleneck in the problem and the model solution is significantly affected by 
inventory cost. Essentially, when storage is cheaper, the model is trying to exploit price 
developments to a greater extent by entering a more varied contract assortment and 
increasing the total amount invested in long-term contracts. 
 
The presented evaluation is static, whereas HRM in reality would make hedging decisions 
continuously. A natural extension to this work is therefore to utilise the model in a more 
dynamic setting. This could be done by evaluating the model in a rolling horizon 
environment, and study how such a dynamic setting might affect the hedging strategies. 
Another path for future research is to investigate price forecasting and scenario generation, 
as this is an important prerequisite for this model to be purposefully utilised. Conducting 
an analysis with longer runs, and having a stricter acceptance level for the gap, would also 
be useful in analysing the efficiency and ability of the model.    
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Appendix A: Mathematical Model 
 

Sets 

𝐶 𝑛  Set of children nodes (successors) of node 𝑛, 𝑛 ∈ 𝑁 . 
𝐾 Set of representative contracts 𝑘 considered during the planning horizon. 
𝐾U  Set of fixed price contracts 𝑘 based on Secondary LME, 𝐾U ⊂ 𝐾 . 
𝐾W  Set of initial contracts 𝑘 entered before the planning horizon. 
𝐾X  Set of variable price contracts 𝑘 based on LME High Grade, 𝐾X ⊂ 𝐾 . 
𝑀  Set of materials 𝑚.  
𝑁  Set of event nodes 𝑛 of the scenario tree.  
𝑁Z Set of event nodes at stage 𝑖 in the scenario tree.  
𝑁 [ Set of event nodes 𝑛 of the scenario tree where contracts are offered.  
𝑁 𝑠  Set of nodes belonging to the path forming scenario 𝑠, 𝑁 𝑠 ⊆ 𝑁 .  
𝑆 Set of scenarios 𝑠 representing the stochastic outcomes. 
𝑆 𝑛  Set of scenarios passing through event node 𝑛 of the scenario tree, 𝑆 𝑛 ⊆ 𝑆.  
𝑇  Set of time periods 𝑡 of the planning horizon. 
𝑇Q

] Set of delivery time periods associated with initial contract 𝑘. 
𝑇Q5

]  Set of delivery time periods associated with contract 𝑘 entered at node 𝑛. 
 

 
Indices 

𝑖 Stage of the scenario tree, 𝑖 = 1 ... I. 
𝑘 Contract index, 𝑘 ∈ 𝐾 . 
𝑚 Material index, 𝑚 ∈ 𝑀 . 
𝑛 Event node index for the scenario tree, 𝑛 ∈ 𝑁 . 
𝑠 Scenario index, 𝑠 ∈ 𝑆. 
𝑡 Time period index, 𝑡 ∈ 𝑇 . 

 
 
 

Parameters, constants and coefficients 

𝐴^
U  Fixed percent of LME High Grade for material 𝑚 for fixed price contracts. 

𝐴^
X  Fixed percent of Secondary LME for material 𝑚 for variable price contracts. 

𝐵 Total budget for material purchase for the entire planning horizon. 
𝐶^&

L  Cost per mt of being short of material 𝑚 in time period 𝑡.  
𝐶Q

(  Total transportation cost in contract 𝑘. 
𝐷^&    Required scrap quantity of material 𝑚 in time period 𝑡.  
𝐻^ Inventory holding cost per mt of material 𝑚. 
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𝐼^ 
0  Initial inventory level of material 𝑚. 

𝐿Q Number of deliveries in contract 𝑘. 
𝑀Q Material included in contract 𝑘. 
𝑃 5 Conditional probability of reaching node 𝑛 from its predecessor. 
𝑄Q Tonnage per delivery in contract 𝑘.  
𝑄L Total available storage space for the scrap material.  
𝑅& Discount rate in time period 𝑡. 
𝑇  The last time period of the planning horizon. 
𝑇 𝑛  The time period of node 𝑛. 
𝑉^ Density parameter [m3/mt] for scrap material 𝑚. 
𝑊  Weight factor for the residual scrap value at the end of the time horizon. 
𝛼 Confidence level (percentile) for VaR and CVaR. 
𝜆 Weight for HRM’s risk preference, 𝜆 ∈ 0,1 . 

 
 
Stochastic Data 

𝐶&J
U  Spot value of in LME High Grade time period 𝑡 and scenario 𝑠.  

𝐶&J
X  Spot value of Secondary LME in time period 𝑡 and scenario 𝑠.  

 
 
Decision variables  

𝑐Q5J     Cost generated from entering contract 𝑘 at node 𝑛 in scenario 𝑠. 
𝑖^&J    Inventory level of material 𝑚 at the beginning of period 𝑡 in scenario 𝑠. 
𝑜Z5 Objective function value at stage 𝑖 and node 𝑛 of the scenario tree. 
𝑞^&J Quantity of material 𝑚 used for production in time period 𝑡 and scenario 𝑠. 
𝑥^Q5&   Quantity purchased of material 𝑚 through contract 𝑘 at node 𝑛 for delivery 

in time period 𝑡.  
𝑥Q^&

W  Quantity purchased of material 𝑚 through initial contract 𝑘 for delivery in 
time period 𝑡. 

𝑦Z5 Cost exceedance with respect to CVaR at stage 𝑖 and node 𝑛 of the scenario 
tree. 

𝑧Z5 Auxiliary variable for modelling CVaR, also representing VaR. 
𝛿Q5 Binary variable, 1 if a contract 𝑘 is entered at node 𝑛, 0 otherwise. 
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Objective Function 

min               1 − λ
1
𝑆

  𝑐Q5J
5∈m1Q∈[

+ 𝐻^𝑖^,1,J +
^∈p

𝐶^,1
L 𝐷^,1 − 𝑞^,1,J

^∈pJ∈L

+ 𝑃 5𝑜2,5
5∈m2

+  λ 𝑧2,1 + 
1

1 − 𝛼
 𝑃 5𝑦2,5

5∈m2

   

 

Nested CVaR Constraints 

𝑦Z+1,5  ≥  𝑜Z+1,5 −  𝑧Z+1,5      𝑖 = 1 … 𝐼 − 1, 𝑛 ∈ 𝑁Z, 𝑛 ∈ 𝐶 𝑛  

 

𝑜Z5 =  1 − λ  
1

𝑆 𝑛
𝑅( (5) 𝑐Q5J

Q∈[
+ 𝐻^𝑖^( (5)J

^∈pJ∈L 5

+ 𝐶^( (5)
L 𝐷^( (5) − 𝑞^( (5)J

^∈p
+ 𝑃 5𝑜Z+1,5

5∈u 5
 

+  λ 𝑧Z+1,5 + 
1

1 − 𝛼
 𝑃 5𝑦Z+1,5

5∈u 5
      𝑖 = 2 … 𝐼 − 1, 𝑛 ∈ 𝑁Z 

 

𝑜W5 = 𝑅( 𝑐Q5L(5)
Q∈[

+ 𝐻^𝑖^( L(5)
^∈p

+ 𝐶^(
L 𝐷^( − 𝑞^( L(5)

^∈p

−  𝑊 𝐶( L(5)
X (𝑖^( L 5 −  𝑞^( L 5 )

^∈p
      𝑛 ∈ 𝑁W   

 

Contract Fulfilment 

𝑥Q5^& = 𝑄Q𝛿Q5     𝑘 ∈ 𝐾 , 𝑛 ∈ 𝑁 [ , 𝑚 ∈ 𝑀Q, 𝑡 ∈ 𝑇Q5
]   

 
𝑥Q^&

W =  𝑄Q     𝑘 ∈ 𝐾W , 𝑚 ∈ 𝑀Q, 𝑡 ∈ 𝑇Q
] 

 
 

Contract Expenditures 

𝑐Q5J = 𝛿Q5(𝐿Q𝑄Q𝐴pv
U 𝐶( 5 J

U + 𝐶Q
( )     𝑛 ∈ 𝑁 [ , 𝑘 ∈ 𝐾U , 𝑠 ∈ 𝑆 𝑛  

 
𝑐Q5J = 𝛿Q5(𝑄Q𝐴pv

X 𝐶&J
X

&K(vw
x

+ 𝐶Q
( )     𝑛 ∈ 𝑁 [ , 𝑘 ∈ 𝐾X , 𝑠 ∈ 𝑆 𝑛   
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Inventory Balance 
 

𝑖^&J = 𝐼^ 
0 + 𝑥Q5^&

5=1QK[
+ 𝑥Q^&

W

QK[z

     𝑚 ∈ 𝑀 , 𝑡 = 1, 𝑠 ∈ 𝑆 

 
𝑖^,&+1,J = 𝑖^&J −  𝑞^&J + 𝑥Q5^,&+1

5Km(J)QK[
+ 𝑥Q^,&+1

W

QK[z

    𝑚𝜖𝑀 , 𝑡 ∈ 𝑇 \ 𝑇 , 𝑠 ∈ 𝑆 

 
𝑞^&J ≤  𝑚𝑖𝑛(𝑖^&J, 𝐷^&)     𝑚 ∈ 𝑀 , 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆   
 

𝑉^𝑖^&J  ≤   𝑄L

^Kp
     𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 

 
𝑐Q5J

QK[5Km J
≤  𝐵       𝑠 ∈ 𝑆   

 
 

Non-anticipativity 

1
𝑆 𝑛

  (𝑖^&J′,, 𝑞^&J′  )
J′KL 5

= (𝑖^&J,, 𝑞^&J)     𝑚 ∈ 𝑀 , 𝑡 ∈ 𝑇 , 𝑛 ∈ 𝑁 , 𝑠 ∈ 𝑆 𝑛 , 

 
 
Variable Constraints  
 

 
𝑖^&J  ≥ 0    𝑚 ∈ 𝑀 , 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 

 
𝑞^&J ≥ 0    𝑚 ∈ 𝑀 , 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 

 
𝑥Q^5& ≥ 0    𝑘 ∈ 𝐾 , 𝑚 ∈ 𝑀 , 𝑛 ∈ 𝑁 [ , 𝑡 ∈ 𝑇Q5

]  
 

𝑥Q^&
W ≥ 0    𝑘 ∈ 𝐾W , 𝑚 ∈ 𝑀 , 𝑡 ∈ 𝑇Q

]     
 

𝑐Q5J ≥ 0     𝑘 ∈ 𝐾 , 𝑛 ∈ 𝑁 [ , 𝑠 ∈ 𝑆 𝑛  
 
𝑜Z+1,5 ≥ 0    𝑖 = 1 … 𝐼 − 1, 𝑛 ∈ 𝑁Z+1 

 
𝑦Z+1,5 ≥ 0    𝑖 = 1 … 𝐼 − 1, 𝑛 ∈ 𝑁Z+1 
 
𝑧Z+1,5 ≥ 0    𝑖 = 1 … 𝐼 − 1, 𝑛 ∈ 𝑁Z 
 
𝛿Q5 ∈ 0, 1     𝑘 ∈ 𝐾 , 𝑛 ∈ 𝑁 [  
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Appendix B: List of Offered Contracts 
 

Table B.1  List of Offered Contracts 
 

Contract Material Type Deliveries Volume 
1 Old 1 2 200 
2 Old 1 2 300 
3 Old 1 2 400 
4 Old 1 2 500 
5 Old 1 3 200 
6 Old 1 3 300 
7 Old 1 3 400 
8 Old 1 3 500 
9 Old 1 4 200 
10 Old 1 4 300 
11 Old 1 4 400 
12 Old 1 4 500 
13 Old 1 5 200 
14 Old 1 5 300 
15 Old 1 5 400 
16 Old 1 5 500 
17 Old 1 6 200 
18 Old 1 6 300 
19 Old 1 6 400 
20 Old 1 6 500 
21 Old 2 1 100 
22 Old 2 1 200 
23 Old 2 1 300 
24 Old 2 1 400 
25 Old 2 1 500 
26 Old 2 1 600 
27 Old 2 1 700 
28 Mix1 1 2 200 
29 Mix1 1 2 300 
30 Mix1 1 2 400 
31 Mix1 1 2 500 
32 Mix1 1 3 200 
33 Mix1 1 3 300 
34 Mix1 1 3 400 
35 Mix1 1 3 500 
36 Mix1 1 4 200 
37 Mix1 1 4 300 
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38 Mix1 1 4 400 
39 Mix1 1 4 500 
40 Mix1 1 5 200 
41 Mix1 1 5 300 
42 Mix1 1 5 400 
43 Mix1 1 5 500 
44 Mix1 1 6 200 
45 Mix1 1 6 300 
46 Mix1 1 6 400 
47 Mix1 1 6 500 
48 Mix1 2 1 100 
49 Mix1 2 1 200 
50 Mix1 2 1 300 
51 Mix1 2 1 400 
52 Mix1 2 1 500 
53 Mix1 2 1 600 
54 Mix1 2 1 700 
55 Mix2 1 2 200 
56 Mix2 1 2 300 
57 Mix2 1 2 400 
58 Mix2 1 2 500 
59 Mix2 1 3 200 
60 Mix2 1 3 300 
61 Mix2 1 3 400 
62 Mix2 1 3 500 
63 Mix2 1 4 200 
64 Mix2 1 4 300 
65 Mix2 1 4 400 
66 Mix2 1 4 500 
67 Mix2 1 5 200 
68 Mix2 1 5 300 
69 Mix2 1 5 400 
70 Mix2 1 5 500 
71 Mix2 1 6 200 
72 Mix2 1 6 300 
73 Mix2 1 6 400 
74 Mix2 1 6 500 
75 Mix2 2 1 100 
76 Mix2 2 1 200 
77 Mix2 2 1 300 
78 Mix2 2 1 400 
79 Mix2 2 1 500 

80 Mix2 2 1 600 
81 Mix2 2 1 700 
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