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Problem Description

The purpose of this thesis is to further develop a path flow model for a fleet deployment

problem within maritime transportation. The model should include voyage separation

requirements, as well as speed optimization. The aim is to be able to solve larger problem

instances within a reasonable amount of time. It will be implemented and tested on real-

istic test instances. This path flow model will then form the basis for heuristic approach,

to try to solve even larger instances within reasonable time.
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Abstract

This thesis studies the fleet deployment problem within the liner shipping segment of

the shipping industry. A shipping company has a predefined set of intercontinental trade

routes, and serves numerous voyages on each trade route within a given planning horizon.

These voyages are operated by a heterogeneous fleet of ships where each ship has a prede-

fined speed range within which it can sail. The fuel consumption, hence the fuel costs, is

a function of speed. Thus, optimizing the sailing speed has a great impact of the sailing

costs. The shipping companies enter Contracts of Affreightment with the cargo owners,

regarding the handling of cargo. One of the things that these states is that voyages on

a given trade route should be fairly even spread between them. These two factors lead

to the maritime fleet deployment problem with speed optimization and voyage separation

requirements.

Two models are proposed to solve the problem at hand, an arc flow and a path flow formu-

lation. The fuel consumption function is a non-linear function of speed and is linearized

by choosing discrete speed points and linear combinations of these. The voyage separa-

tion requirements are formulated as hard constraints, setting a lower limit for the required

spread between voyages. The path flow model is in itself one of the main contributions

from this thesis, as it has, to the authors’ knowledge, never before been combined with

speed optimization and the voyage separation requirement as presented in this thesis.

The path flow model is based on a decomposition approach. A subproblem for each ship

handles the generation of all possible paths a priori to solving the model. The master

problem selects one path per ship, as well as deciding the speed along each sailing leg, in

order to maximize profit. Further, path reduction heuristics are introduced. This enables

the path flow model to handle larger problem instances and obtain better solutions faster.

Computational results show that the path flow model outperforms the arc flow model,

both with regard to solution time and objective value. Thus, further analyses are con-

ducted on the path flow model only. Results from analyzing the speed optimization part

of the problem shows that implementing speed optimization provide higher profits, though

uses longer time to find the solution. In total, the path flow model performs well, but
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it struggles to handle problem instances with too many paths, and the number of paths

increase vastly when problem size increases. Path reduction heuristics are used to solve

larger instances, that are not possible to solve within reasonable time. The path flow

model with the heuristics provide a better solution quality in a much shorter amount of

time. When utilizing these heuristics, problem instances with 18 ships and a planning

horizon up to 150 days are solved. The effects of combining the voyage separation re-

quirement and speed optimization are analyzed. It is discovered that including speed

optimization, intensifies the need for the voyage separation requirement.
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Sammendrag

Denne masteroppgaven undersøker fl̊ateplanleggingsproblemet innen linjeshippingsegmentet

av shippingindustrien. Et shippingselskap har et forh̊andsdefinert sett av interkontinen-

tale handelsruter, og i løpet av en gitt planleggingshorisont skal det gjennomføres et

gitt antall seilinger p̊a hver handelsrute. Skipssammensetningen i fl̊aten er heterogen, og

hvert skip har ett gitt hastighetsintervall det kan operere innenfor. Drivstofforbruket, og

dermed drivstoffkostnadene, er en funksjon av hastighet. Dette gjør at å optimere seiling-

shastighetene vil ha en stor p̊avirkning p̊a seilingskostnadene. Shippingselskapene inng̊ar

fraktkontrakter (”CoAs”) for å utføre frakttjenester for andre selskap. En av tingene som

er spesifisert i disse kontraktene er at seilinger p̊a en gitt handelsrute skal være noks̊a jevnt

fordelt utover i tid. Herav f̊ar vi fl̊ateplanleggingsproblemet med hastighetsoptimering og

krav om separerte seilinger.

To modeller for å løse problemet er foresl̊att, en arc flow og en path flow formulering.

Drivstofforbruket er en ikke-lineær funksjon av hastighet og er linearisert ved å velge

ut diskret hastighetspunkt og lage lineærkombinasjoner av disse. Kravet om separerte

seilinger er formulert som ett absolutt krav, ved å sette en nedre grense for minimum

separasjon mellom seilinger. Path flow modellen er i seg selv ett av hovedbidragene fra

denne masteroppgaven, siden den, etter det forfatterne kjenner til, aldri før har blitt brukt

i kombinasjonen med b̊ade hastighetsoptimering og krav om separerte seilinger. Path flow

modellen er basert p̊a en dekomponeringsmetode. Ett subproblem for hvert skip h̊andterer

genereringen av alle mulige paths før modellen løses. Masterproblemet velger ut en path

per skip, i tillegg til å bestemme hastigheten langs hver del av seilingen, med den hensikt å

maksimere profitt. Videre introduseres heuristikker for å redusere mengden paths som blir

generert. Dette gjør det mulig for path flow-modellen å h̊andtere større probleminstanser

og f̊a bedre løsninger raskere.

Resultatene fra beregningsstudien viser at path flow-modellen utkonkurrerte arc flow-

modellen, b̊ade med hensyn p̊a løsningstid og objektivverdi. Derfor er kun path flow-

modellen brukt og analysert videre i studien. I analysen av hastighetsoptimering ser man

at løsningstiden g̊ar opp, men at målfunksjonsverdiene forbedres n̊ar hastighetsoptimering
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er implementert. Totalt sett fungerer path flow-modellen godt, men den f̊ar problemer

n̊ar det blir for mange paths i probleminstansene, og antall paths i problemene øker

enormt n̊ar problemstørrelsen øker. Heuristikker som reduserer antall paths i problemet,

brukers for å løse større instanser som man ellers ikke ville f̊att løst innen rimelig tid.

N̊ar heuristikkene er anvendt for path flow-modellen oppn̊as bedre løsningskvalitet innen

vesentlig kortere tid, enn uten. Ved å anvende slike heuristikker, har problemer p̊a opptil

18 skip og med en planleggingshorisont p̊a 150 dager blitt løst. Effekten av å kombinere

hastighetsoptimering sammen med kravene til separerte seilinger er videre undersøkt.

Dette viste at behovet for å innføre krav til separasjon av seilinger er enda viktigere n̊ar

hastighetsoptimering er en del av problemet.
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Chapter 1

Introduction

Maritime transport is the main distribution network for international trade and plays a key

role in today’s globalized world. According to the International Maritime Organization

(IMO), 90% of all goods transported across borders worldwide is transported by the

shipping industry. This corresponds to approximately 10 billion tons in 2015 (Asariotis

et al., 2016), and the global demand has been steadily increasing over the last decades

(except during the financial crisis around 2009). The shipping industry is highly connected

to the macroeconomic conditions of the world. This industry is among the first to be

affected in times of political and economic turmoil, by mechanisms as oil price, decrease

in international trade, regulations etc. Hence, the demand may change rapidly. On the

supply side, the supply of ships for the industry has a long time horizon, and is not very

adaptable (Asariotis et al., 2016). Even though the growth of the world fleet has been

decelerating each year for the last five years in a row, there is a tendency of overcapacity in

the global fleet (Asariotis et al., 2016). In 2015, the shipping industry (with the exception

of tankers) suffered from historic low levels of freight rates and weak earnings. In 2016, the

container shipping segment alone reported a collective operating loss of 3.5 billion dollars

(Asariotis et al., 2017). As a result, the margins are pushed down. For an industry that

has high investment costs and very high daily cost rates related to operating ships, the

quest for profitable operations is of higher importance than ever. One of the main targets

in order to achieve this is to utilize the whole fleet capacity at all times and reduce ballast

sailing and port time to a minimum. Ballast sailing, sailing without payload, is obviously
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very unprofitable. With this in mind, it should be possible to understand why proper

planning and scheduling of maritime transportation is of high importance.

Lawrence (1972) introduced the concept of three segments of maritime transportation;

industrial, tramp and liner shipping. Ronen (1983) gave a good description of each of

these segments. In industrial shipping, the owners of the goods also own their own ships,

and it can be compared to having your own car. Tramp shipping serves spot cargoes

and follow available goods around the globe, like a taxi service. For liner shipping, the

shipping companies have a set of predefined, published itineraries, and transport goods

along the routes, like a bus service. For industrial shipping the goal is to minimize costs,

for the other two the goal is to maximize profit. Further, planning issues in maritime

transportation are categorized into strategic, tactical and operational levels (Christiansen

et al., 2013). The strategic level includes decisions based on a planning horizon of years.

Within shipping, this typically includes fleet composition and design, decisions regarding

markets and types of cargo to transport and design of trade routes. The tactical level

includes decisions with a planning horizon of months, such as ship routing and scheduling,

which may be referred to as the fleet deployment problem. This is part of the problem

that is studied in detail in this thesis. On an operational level, ship specific ship decisions

are made, with a horizon of days or weeks.

Even though the fleet deployment problem has been researched and solved with optimiza-

tion methods, most shipping companies solve their scheduling by manual planning. In

these terms, manual planning means to schedule the fleet without the use any optimiza-

tion based decision support systems. What the shipping companies do instead, is to use

the scheduler’s experience to set up a schedule with a simple spreadsheet (Fagerholt et al.,

2010). Their planning is usually done by simplifying the problem, for example by isolating

some trade routes and/or ships. This will of course have the drawback of compromising

the solution quality in exchange for a problem that is easier to solve. Manual scheduling

obtains feasible solutions, but are not able to utilize the fleet at the utmost or push the

margins in order to maximize the profits. Today, the computational power of computers

is increasing at a fierce pace, and will provide even better solutions and solve larger prob-

lems in the future. Hence, the value of implementing optimization based decision support
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systems will increase in the future.

This thesis concerns the fleet deployment problem within the liner shipping segment. The

main task is to assign available ships to voyages on different trade routes, and aims to

utilize the fleet in an optimal manner. A trade route is a predefined route from a loading

region to a discharging region, while a voyage is an explicit journey on a given trade route.

Trade routes are typically intercontinental, and has several port calls in the loading and

discharging region of the trade route, respectively. An illustration of some intercontinental

trade routes is shown in Figure 1.1. Note that a trade route does not necessarily go both

ways.

Figure 1.1: Illustration of intercontinental trade routes.

Charterers are cargo owners that enter contracts with a shipping company for the trans-

portation of their cargo. These contracts are referred to as Contracts of Affreightment, or

CoAs. The most important parts of these contracts are where the cargo is heading, the

amount to be transported, at what time and the freight rate. The CoAs are long term

contracts. A commonly used phrase in these CoAs, regarding the frequency of voyages

on a trade route, is ”fairly evenly spread”. Think of a trade route that has three voyages

per month. One could have predetermined a specific frequency (e.g. every tenth day)

and departure dates 1st, 10th and 20th, which are perfectly spread. Instead, an alter-

native schedule with departure dates 3rd, 10th and 22nd, could be an acceptable fairly
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even schedule, and might even be more profitable. Being able to alter the dates slightly

gives the shipping company some flexibility and open for a better fleet utilization, as well

as lower dependency on spot ships. Spot ships are ships that are possible to charter in

to serve a voyage. The use of spot ships is decided during the decision making of the

fleet deployment. There may be optional voyages available as well. That is voyages the

company may agree to service, in order to utilize existing overcapacity of the fleet and

increase profits. The fleet deployment problem with voyage separation has been studied

to some extent. Norstad et al. (2015) solved the fleet deployment problem with voyage

separation for real sized problems by two approaches; an arc flow model and an a priori

path generation model. Further, Vilhelmsen et al. (2017) developed a branch-and-price

method as an extent to the Norstad et al. (2015) formulation. However, the problem with

the addition of speed optimization is not yet investigated.

Speed has always been a crucial factor in shipping. For decades, the main target was

to build faster ships to reduce sailing time and associated sailing costs. Today, the main

target when reducing sailing costs is to minimize the fuel 21costs, hence the fuel consump-

tion, which is a function of speed. Sailing speed is often assumed given within maritime

optimization. The fuel consumption of a ship is also load dependent, i.e. a loaded ship

on a voyage will use more fuel than when sailing ballast. For the shipping industry, fuel

costs are of enormous magnitude, hence to include speed optimization opens for new and

better solutions. For example, it could be profitable to speed up one voyage, in order to

catch another, and thereby achieve a better, more profitable, overall solution. In practice,

the captains on board already performs a sort of speed optimization. They adjust the

speed to abide with the schedule and start their voyages within the time windows, and

at the same time use as little fuel as possible. However, this cannot change any routing

decisions, only make the best out of a given schedule. By implementing the speed opti-

mization in the scheduling, speed optimization increases the solution space, which open

up for brand new, even better overall solutions. When combining speed optimization

and voyage separation, new challenges arise. Usually, when speed optimization has been

implemented, the speed optimization is performed for each ship locally. Both Norstad

et al. (2011) and Andersson et al. (2015), among others, handles speed optimization this

way. However, the voyage separation requirements imply that the starting time of each
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voyage is set according to the starting times of other voyages, performed by other ships.

Where the starting time of voyages and chosen speeds are highly related. Hence, there is

an interdependency among the ships and their sailing speeds.

In addition to the economic effects of speed optimization, fuel consumption has a great

impact on the emissions of Greenhouse Gas (GHG) as well. Transport & Environment

(nd) has calculated that a reduction in speed by 10 % will reduce the total GHG emis-

sions from the shipping industry by 19 % in total. Based on data from 2007 to 2012, the

annual average emissions from the shipping industry was 1,038 billion tons CO2 equiva-

lents (Smith et al., 2014). This corresponds to 2,8 % of the total annual GHG emissions

in the world. Cames et al. (2015) estimates that the emissions will increase to 17 % of

the global GHG emissions in 2050 if no actions are taken. Smith et al. (2014) has in-

vestigated several possible scenarios regarding the future GHG emissions, where most of

them are far more pessimistic. For now, there are few regulations of the emissions from

the international shipping industry. However, the increased awareness of global warming

and environmental changes in the global society has started to change this. Today, the

emissions and environmental impact from the shipping industry are on the IMO’s agenda.

For example, as of January 1st 2013, new-built ships must comply with the EEDI, The

Energy Efficiency Design Index (IMO, nd). The IMO’s Marine Environment Protection

Committee are also collecting data and working on a GHG strategy for the industry, due

in 2023. In order to achieve a more environmentally friendly industry, speed optimization

could be an efficient and useful tool.

This thesis investigates and compares two different approaches of solving the fleet deploy-

ment problem with voyage separation and speed optimization. Both voyage separation

and speed optimization has been researched to some extent separately, whereas this thesis

takes both into account. As mentioned above, incorporating both speed optimization and

voyage separation at the same time causes interdependencies between ship routes, which

generates a new, more complicated problem that has not been explored in any extent.

The project assignment (Borander et al., 2017) looked into an arc flow formulation, and

this formulation is continued in this thesis. The second approach developed in this thesis

is a path flow model. Norstad et al. (2015) compared the performance of arc flow and
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path flow models, but without speed optimization. The addition of speed optimization

is the main contribution of our thesis. Both models also take into account the different

fuel consumption of laden vs. ballast sailing, and sailing speed along all sailing legs (both

ballast and voyage sailing) are considered individually. The performance of the two mod-

els are compared to each other. Further, the effects of speed optimization and voyage

separation are tested. This thesis also examines some heuristics rules for the path flow

model, which reduces the total number of paths in the problem, hence aims to enable

solving even larger problems. A number of test instances, based on data from a shipping

company, are used to test the performance of the models.

The remainder of this thesis starts with a detailed problem description in Chapter 2,

and Chapter 3 provides a literature review. The mathematical models are presented in

Chapter 4, followed by a detailed description of the path generation for the path flow

model in Chapter 5. Chapter 6 presents the instances used in the computational study in

Chapter 7. In Chapter 8 concluding remarks are presented and possible further research

is discussed in Chapter 9.
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Chapter 2

Problem Description

This chapter gives a detailed description of the fleet deployment problem with voyage

separation and speed optimization. Section 2.1 describes the general fleet deployment

problem without voyage separation and speed optimization. Section 2.2 describes the

speed optimization part of the problem in detail. In Section 2.3 the voyage separation

requirement is described. Section 2.4 gives an example to better understand the fleet

deployment problem and speed optimization. Finally, the problem is summarized in

Section 2.5.

2.1 General Description

The fleet deployment problem can generally be described as the process of assigning ships

to voyages on different trade routes, where the goal is to do this in a cost efficient way.

The ships pick up cargo from different charterers in the origin region and unload the cargo

in the destination region. The trade routes are typically intercontinental, as illustrated

in Figure 2.1. Both the origin and destination region of the trade route may have several

port calls. A voyage is a specific sailing along a given trade route. The trade routes in

Figure 2.1, are the same ones that are used in the computational study in Chapter 7.

The number of voyages on each trade route varies, and is set prior to the next planning

period. The time windows for each voyage are also given.
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Figure 2.1: The intercontinental trade routes used in this thesis.

In general, a shipping company has a heterogeneous fleet. This means that the ships

in the fleet have different properties, such as load capacities, sailing speeds, operating

cost, draft restrictions etc. Due to these properties there might be restrictions on which

ships that can serve the different trade routes. I.e. the ships and trade routes have to

be compatible. The ships will also be accessible at different times and positions at the

beginning of the planning period. Some ships are vacant at the beginning and some have

to fulfill ongoing voyages, and the ships are located all around the globe. Some ships

might be in dry dock or undergoing maintenance as well. Based on these arguments, all

ships have to be treated individually.

The voyages are categorized into two segments, contractual and optional voyages. The

shipping company is obliged to carry all contracted voyages. If the company’s own fleet is

not able to carry out all the contractual voyages by itself, additional spot ships can be hired

to serve contractual voyages. It is assumed that the ballast sailing costs associated with

chartering a spot ship is included in the charter costs. An important reason for allowing

the use of spot ships is to ensure feasible solutions to the problem. Which optional

voyages that are to be taken, is decided as an integrated part of the scheduling process.

Each voyage has a predefined time window within which the voyage must start, instead

of a fixed start-up time, which provide some flexibility for the shipping company. The

contractual trade routes consist of only contractual voyages and the optional trade route
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consist of only optional voyages. Both optional and contractual voyages are illustrated

in Figure 2.1. For longer planning horizons, the ships serve several voyages in a sequence

within the planning horizon. In order to start the next voyage, a ship might have to sail

ballast to re-position to the start of the next voyage.

Figure 2.2: Example of sequence of sailing for a given ship.

Figure 2.2 illustrates how the sailing for a given ship may look like during a planning

horizon. Here, the initial position of the ship is somewhere in the south of the Atlantic

Ocean. From this location, the ship sails ballast in to South America, the origin region of

the first voyage. The ship performs several port calls here, before it heads for Europe and

the execution of its first voyage. The next voyage to execute has its origin in the South

of the U.S., hence, the ships has to sail ballast from its current position in Europe to the

south of the U.S. From here, the ship starts its second voyage, from the US and eastwards

to South America, where it performs several port calls in the destination region. Please
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note that Figure 2.2 is an illustrative figure to showcase a possible sequence of sailing and

the concepts of ballast sailing, several post calls and voyages. In reality, very long ballast

sailing, as across the Atlantic Ocean, is quite undesirable and rarely used.

2.2 Fuel Consumption and Speed Optimization

The operational costs of a fleet depend heavily on fuel consumption. Therefore, a major

part of optimizing the operational costs should be to optimize sailing speeds. Fuel con-

sumption per time is approximately proportional to the cubic of the service speed. This

means that the fuel consumption function is both quadratic and convex. Fuel consumption

is typically a function of speed per time or distance, as shown in Figure 2.3.

Figure 2.3: Different fuel consumption curves for different loads.

Speed optimization implies that the scheduling and fleet deployment is carried out with

the possibility to adapt the operating speed for each ship on each sailing leg in the

problem, instead of a fixed, preset operating speed. The aim of the speed optimization

is to gain higher profits. An example where it may be beneficial to speed up is if it will

reduce hiring of costly spot ships. Chartering in spot ships will incur additional costs,

and it might be cheaper to increase the speed of your own ships. On the contrary, if the

speed is too high, the additional cost of higher sailing speeds may be higher than the

cost of chartering ships to sail those voyages. Another reason to increase sailing speed
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could be to take some optional voyages, given that the additional profit exceeds the added

cost from increasing sailing speed. Taking optional voyages could reduce the amount of

ballast sailing. If the long ballast sailing across the Atlantic Ocean in Figure 2.2 were an

optional trade, instead of being quite long and costly ballast sailing, the route would be

very desirable. One might also decrease the speed if a ship is well within its time window,

and have no possibility of taking another voyage. With this in mind, one can understand

that it is not straightforward to find the optimal sailing speed for all sailings that a ship

performs during the planning horizon. The fuel consumption depends on what kind of

sailing is performed, as shown by Figure 2.3, the fuel consumption is lower when sailing

half-loaded or ballast. Thus, speed decisions are load dependent. Hence, all sailing legs

and all ships have to be treated individually regarding speed optimization.

2.3 Voyage Separation Requirement

A common term used in the CoAs is fairly evenly spread, which refer to the frequency and

timing of voyages on the same trade. The voyage separation requirement is highly related

to this term. A voyage separation requirement state that voyages on the same trade route

should be ”fairly evenly spread” in time. This means that there is no absolute frequency

or number of days in between two consecutive voyages on the same trade. However,

the voyages on the trade should be serviced in reasonable intervals that are fairly evenly

spread in time. If the term had been ”evenly spread”, the voyages would have to be

serviced at the same intervals throughout the trade route. As this requirement is a part

of the CoAs, it must be considered when deploying the fleet. Norstad et al. (2015) found

that adding voyage separation requirements had minor impact on the objective value for

the problem, but had great impact on the spread of the voyages, and thus, satisfying the

terms in the CoAs. One way of ensuring that the fairly evenly spread term is satisfied is

to utilize trade specific limits for separation between voyages. Such a limit would set the

minimum acceptable time between two consecutive voyages on the same trade.
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2.4 Example of Fleet Deployment and Speed Opti-

mization

To better understand the problem at hand, the fleet deployment problem is illustrated by

a small, numerical example. Consider a problem that consists of two trade routes, with

two contractual voyages each. Each voyage has a specified time window, and the start

of the voyage has to be within these time limits. The specifications for each voyage on a

trade route are presented in Table 2.1. The problem is depicted in Figure 2.4 below.

Table 2.1: Specifications for the voyages in the example.

Trade Voyage Length (nm) Time window (days)

1 1 7000 [5,15]
1 2 7000 [35,45]
2 1 9000 [15,30]
2 2 9000 [45,60]

Figure 2.4: Illustration of the voyages and possible ballast legs in the example.

These four voyages are to be served by two ships from the fleet, no spot ships are avail-

able to charter in. The two ships have different origins and are available at different

12



times, hence, they have to be treated independently. The specifications for each ship are

presented in Table 2.2. The column ”Available day” represents the day in the planning

horizon the ship is ready to start sailing. The columns ”Dist. to trade 1/2” represents

the distance (in nautical miles) from a ships initial position to start region of the trade.

The last column, ”Speed range” represents the range of speeds that a ship can sail with.

Table 2.2: Specifications for the ships in the example.

Ship Available day Dist. to trade 1 Dist. to trade 2 Speed range

A 0 4000 4000 [14,20]
B 7 1500 4500 [14,20]

This problem is solved in two ways: by using the average speed as operating speed (17

knots) and by applying speed optimization, i.e. variable speed. Figure 2.5 displays all

possible options for each ship from its initial position, with respect to the time windows of

each voyage, when variable speed is allowed. When calculating the options using average

speed, none of the ships are able to sail the combination (2, 1) −→ (1, 2), and only ship

A can sail (2, 1) −→ (2, 2). Since there are no spot ships, and each ship cannot make

more than two voyages, it is clear that each ship has to sail two voyages each to solve the

problem.

Figure 2.5: All possible sequence of sailing for each ship in the example.

13



When using average speed, this problem has only one feasible solution to cover all voyages:

Ship A sails (2, 1) −→ (2, 2) and ship B sails (1, 1) −→ (1, 2). By taking the total

revenue for these voyages, and subtracting the sailing costs for ballast and voyage sailing,

the net profit for this solution is found to be 2,855 million USD. When applying speed

optimization, this problem has four different feasible solutions, which all are within the

time windows, as displayed in Table 2.3.

Table 2.3: All solutions when applying speed optimization in the example.

Solution Ship A Ship B Profit

1 (1, 1) −→ (1, 2) (2, 1) −→ (2, 2) 2,862
2 (1, 1) −→ (2, 2) (2, 1) −→ (1, 2) 2,884
3 (2, 1) −→ (1, 2) (1, 1) −→ (2, 2) 2,944
4 (2, 1) −→ (2, 2) (1, 1) −→ (1, 2) 2,867

The profit for all these combinations are calculated in the same way as above. Solution 3

yields the best overall profits, found to be 2,944 million USD. Here, the implementation

of speed optimization yields a net extra profit of 89,000 USD, a percentage increase of

3.12 %, and a new allocation of the ships of which voyages to serve.

2.5 Problem summary

The objective of the fleet deployment problem with voyage separation and speed opti-

mization is to maximize profits, i.e. freight income minus operational costs of ships in the

fleet and the chartering costs of spot ships.

There are quite a few decisions in this problem. First, one must decide what voyages

a ship should sail, and in what sequence. Second, the speed on all sailing legs must be

decided. Correspondingly, the start time for each voyage is decided. Lastly, one must

decide which voyages (if any) are taken by spot ships.

All these decisions must comply with some constraints. All voyages must be serviced

within their given time window, either by a ship in the fleet or by a spot ship. All

consecutive voyages along the same trade route must be evenly spread in time.
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Chapter 3

Literature Review

The literature review chapter has been divided in four parts, starting with a review of the

general fleet deployment problem in Section 3.1. Section 3.2 looks into existing literature

on the voyage separation requirement and other time dependencies. Literature on speed

optimization in maritime transportation is reviewed in Section 3.3. The final section, Sec-

tion 3.4, concerns various decomposition methods used in maritime transportation. The

literature review was performed using Google Scholar and suggestions from the supervi-

sors. Google Scholar was used by searching for keywords, for example ”voyage separation”

or ”maritime speed optimization”. These searches were assessed by reading the abstracts

of the most relevant results and based on that deciding which articles to look further into.

In many cases Google Scholar gave the same articles as the supervisors suggested.

3.1 Fleet Deployment in Maritime Transportation

As explained in depth in the problem description, the planning problem faced in this

thesis is a fleet deployment problem. This problem has been researched to quite some

extent in previous literature.

The maritime fleet deployment was concisely described by Christiansen et al. (2013) as

”the tactical planning problem of assigning ships to liner routes. The planning horizon

is typically a shipping season or up to 6 months.” In these terms, ”a shipping season”
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typically means a few months. However, the planning horizon can also be up to one year

(Fagerholt et al., 2009).

Some of the first to propose a model to solve the fleet deployment problem were Nicholson

and Pullen (1971). Their problem considers how to downscale a fleet of cargo ships. They

determined the sequence in which the owned ships should be sold and to what degree

the spot market for charter ships should be used. The problem was solved by using a

two-stage dynamic programming model. It is divided in two stages as it would be too

comprehensive to solve the entire problem with dynamic programming. Their work may

be considered as the pioneering work for modelling a long-term fleet deployment problem

(Gelareh and Meng, 2010).

Gelareh and Meng (2010) described the fleet deployment problem in maritime transporta-

tion as a problem which has a wide scope of applications. This means that each real-world

application has its own specific features and constraints. To take care of this complica-

tion, they propose a generalized approach which most real-life applications can be derived

from. This model is supposed to work as a basis for fleet deployment problems with a

short planning horizon. This model has been modified by Wang et al. (2011) to eliminate

combinatorial behavior in the original model.

The shipping sector that utilize models for the fleet deployment problem most, are liner

and tramp shipping. These two distinct kinds of shipping cannot use the same models.

Over the years there has been considerably more research on liner shipping than tramp

shipping, Ronen (1983) proposed that the reason may be that the market for tramp

shipping mainly consisted of small operators and the large shipping companies see the

tramp market as a secondary market.

Two of the major segments within liner shipping is Ro-Ro (Roll-on Roll-off) shipping and

container shipping. Hence, the most research on the fleet deployment problem has been

done within these segments. In order to showcase different solution methods of the fleet

deployment problem, literature regarding these segments is of interest as well. Here, lit-

erature from Ro-Ro shipping is reviewed the most. Ro-Ro shipping is the major mode for

long distance intercontinental transportation of rolling equipment such as cars. Fagerholt

et al. (2009) presented a new mixed integer model that avoids typical simplifications in
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scheduling, and allows for more flexibility than the earlier literature. They also formulated

a multi-start local search heuristic to solve the problem. This heuristic was implemented

in a prototype decision support system (DSS) and tested at Höegh Autoliners, a major

player in the global ro-ro shipping industry. These tests showed improvements between

2% and 10% compared to manual planning. This model was extended by Andersson et al.

(2015) by including speed as a variable. Andersson et al. (2015) tested their model on

a case for another major company in the Ro-Ro shipping industry, Wallenius Wilhelm-

sen Logistics. It is fairly rare in the literature to deal with a combination of the fleet

deployment problem and the inventory management problem for Ro-Ro shipping. This

is exactly what Dong et al. (2017) does. This means that the problem not only handles

the planning problem that a Ro-Ro company faces, but also integrates logistical services

into the problem. Their results are promising, however, this is a very complex problem,

and more realistic test instances could prove to be hard or impossible to solve. Fleet

deployment is to some degree affected by disruptions and uncertainties. Fischer et al.

(2016) propose a model with a set of robust planning strategies to handle these obstacles.

Examples of such strategies are to add slack and rewarding early arrivals at ports.

3.2 Voyage Separation Requirement in Transporta-

tion

The voyage separation requirement can be modeled as either hard or soft constraints.

Hard constraints set conditions for variables that are required to be satisfied. Soft con-

straints have some variable values that are penalized in the objective function for not

being satisfied.

One way that the voyage separation requirement has been modeled is by using time win-

dows directly. Norstad et al. (2015) used data from the Norwegian shipping company Saga

Forrest Carriers to model the voyage separation requirements both as hard constraints

and as soft constraints. They do this by using a parameter that determines the minimum

accepted time between two consecutive voyages on a trade route. They present two mod-

els for solving a fleet deployment problem with the voyage separation requirement, an arc
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flow model and a path flow model with a priori path generation. The path flow model

performs best when it comes to solution time, especially for large problem sizes. The a

priori path generation relates to decomposition and is discussed in more detail in Section

3.4. Bakkehaug et al. (2016) use the same data as Norstad et al. (2015). However, the

fleet has been expanded from 25 to 32 ships. They propose an adaptive large neighbor-

hood search heuristic for a fleet deployment problem with voyage separation requirements.

The voyage separation requirement is modeled as the minimum time elapsed between two

consecutive sailings on a trade, and yields solutions with voyages fairly evenly spread over

the planning horizon. This model uses a heuristic approach. Vilhelmsen et al. (2017)

base their article on the same data as Bakkehaug et al. (2016) and Norstad et al. (2015).

However, their method is a Branch-and-Price procedure and uses a dynamic programming

algorithm to generate columns. This method is an exact method. The voyage separa-

tion requirements are relaxed in the master problem. They use a time window branching

scheme to enforce these restrictions. Comparing their results with Norstad et al. (2015)

they state that their model is significantly faster than Norstad et al. (2015)’s a priori path

generation method, except for one instance.

Another way that modelling voyage separation has been done, is by using predefined pat-

terns. Sigurd et al. (2005) include time separation requirements on recurring visits to the

same port in their general pickup and delivery problem. They are doing this by generat-

ing predefined patterns which include time separation requirements. The mathematical

model is restricted to only choose one of these patterns for each customer. Halvorsen-

Weare et al. (2012) include spread of departures by the same principle as Sigurd et al.

(2005) in their ship planning problem for supply ships in the offshore segment. In their

model they generate all possible patterns of voyages including departure times from the

supply depot before solving the model. Both these examples with evenly spread restric-

tions require that the number of ports to visit during the planning horizon is known in

advance.

Within other modes of transportation and scheduling there can be found several exam-

ples of a voyage separation requirement, or some other different time dependency. In

air transportation the voyage separation requirement has been enforced by using time
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windows directly by Bélanger et al. (2006) and penalizing short spacing between consec-

utive flights that serve the same origin-destination pair of airports. Anticipated profits

depend on the schedule and the selection of aircraft types. In other modes of transporta-

tion and scheduling, there may be a need to synchronize events rather than to separate

them. Even though synchronization and separation are opposites, the basic optimiza-

tion idea for achieving synchronization and separation are similar, as they both connect

the timing of events in some manner. Separation methods may require minimal changes

to apply to separation and vice versa. Thus, articles on synchronization should also be

considered when researching voyage separation. Optimization of schedules in the health

sector is a problem that often has to consider synchronization requirements. Redjem et al.

(2012) consider the problem of coordinating health visits at patients’ homes. They solve

this, in the same way as the separation problems described earlier, by utilization of time

window constraints. They solve the problem as a bi-criteria problem where the time is

considered in one of the objective functions. Borsani et al. (2006) also consider the prob-

lem of synchronizing resources for health care to patients at home. They solve it as a

multi-objective model utilizing penalties if for example outsourcing is necessary or visits

is necessary a time when it is not preferred. In the vehicle routing problem with time

windows (VRPTW), synchronization and precedence constraints has been considered by

Dohn et al. (2011). They presented two Dantzig–Wolfe reformulations of two compact

formulations and proposed four master problem formulations.

3.3 Speed Optimization in Maritime Transportation

Most of the models found in the maritime transportation literature assume fixed and

known speeds for the ships, either as implicit or explicit input (Psaraftis and Kontovas,

2014). As mentioned in the Section 2.2, the fuel consumption is a non-linear relation of

speed. Many papers, among others Ronen (1982), assume that daily fuel consumption is

a cubic function of ship speed (Non-linear, quadratic convex, cubic convex). This section

intends to review the different takes on the relationship between fuel consumption and

speed.
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Andersson et al. (2015) use a linear combination of predefined discrete speed alternatives

and interpolation in order to provide the desired fuel consumption as a piece-wise linear

function of speed. They propose a new linearized modeling approach for integrating a

speed optimization when planning ship routes. They also set different speeds for ballast

and laden sailing, as the fuel consumption is different. Fagerholt et al. (2015) use the

linearization method described by Andersson et al. (2015) to determine which speed to

set on routes between predefined ports. Their main focus regard the regulations set

by the Emission Control Areas (ECAs). To comply with these regulations, they set a

different fuel price whether a route is inside or outside these areas. The model used

by Andersson et al. (2015) is an arc flow model, like the model used by Norstad et al.

(2015), but includes speed optimization and does not consider voyage separation. As

mentioned, Norstad et al. (2015) also presented a path flow model. Wen et al. (2016) also

use a path flow model to solve the fleet deployment problem, but in addition they also

integrate speed optimization in the problem. They consider a different fuel consumption

for different loads and set different speed for the legs of a route. They linearize the speed

in a similar fashion to Andersson et al. (2015). Although they integrate speed in the

model, they consider it to contribute a severe negative development to the solution time,

and therefore only solve the model using a heuristic.

Another approach to speed optimization can be found in Wang and Meng (2012). They

use an outer-bound approximation to linearize the fuel consumption function, adds linear

constraints to bound the fuel consumption and thereby getting a linear optimization

problem that is solved by a commercial solver (CPLEX). This method underestimates

the fuel consumption. However, the linearization algorithm used by Wang and Meng

(2012), ensures a linearization at least as good as the actual consumption within a given

margin of error. With this linearization, they then proceed to investigate the optimal

sailing speed of container ships on each leg of each ship route in a liner shipping network,

while considering transshipment and container routing. Reinhardt et al. (2016) also solve

the speed optimization problem for container shipping with transshipment, but consider

the transit time of containers in addition. They solve speed optimization of an existing

liner shipping network by adjusting the port berthing times. The changes of port berth

times are only accepted if they lead to savings above a threshold value, which is set by
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a penalty parameter. The fuel consumption function is linearized by using tangent lines

along the function. In contradiction to Wang and Meng (2012) the number of tangents is

an input to the model. This model is essentially rescheduling existing port reservations.

The model is called The Liner Shipping Berth Scheduling with Transit Times Problem

(BTRSP). They model the fuel consumption as a cubic function. The advantage of this

model is that it can be applied to large instances and solved within a fairly small amount

of time.

The fuel consumption function can also be linearized more directly through discretization.

Fagerholt et al. (2010) solve the speed optimization problem by discretizing arrival times

and solving it as a shortest path problem on a directed acyclic graph. The speeds that are

optimized are from an existing network of trades. Norstad et al. (2011) solve the problem

of speed optimization in tramp shipping, and continue the work of Fagerholt et al. (2010)

by using the same method of approximating fuel consumption. In addition, they introduce

the speed on each sailing leg as a variable and using a multi-start local search heuristic

to solve the problem. This gives a non-linear factor in the objective function as well as

in time-related restrictions. They also present another algorithm to linearize the speed,

utilizing the fact that it makes sense for a ship to have the same speed on consecutive

voyages. In order to ensure that this is possible they disregard the time windows. They

call this algorithm a recursive smoothing algorithm (RSA) and has zero gap. However,

this is achieved by assuming that each ship has the same fuel consumption for both laden

and ballast sailing. Hvattum et al. (2013) present proofs of this algorithm. They prove

that the algorithm provides optimal solutions, that it gives exact solutions and that it

has a worst case running time of O(n2). The speed can also be discretized by splitting

the fuel consumption function in small intervals where the cost is nearly unchanged. This

method is what Gelareh and Meng (2010) used when they linearized the speed. This

means that every time interval is assigned one cost corresponding to the start of the

interval. They use this linearization as part of a fleet deployment problem. Alvarez et al.

(2010) consider, like Reinhardt et al. (2016), the problem of berthing in ports, but they

look at it from the viewpoint of the ports. This means that their problem is to optimize

which ship is assigned at a berth, ensuring that all land-side equipment(LSE) is available

and optimizing speed such that a berth is available when the ship arrive. For solving the
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problem, they utilize an approach which is a hybrid of simulation and optimization. The

model does not linearize the fuel cost function, but does rather use discretization through

simulation.

All articles presented in this section consider speed optimization, but only a small portion

of them integrate the speed optimization in the fleet deployment model.

3.4 Decomposition Methods in Maritime Transporta-

tion

A common solution procedure when dealing with a large problem is to decompose the

problem into a master problem and subproblems. This is in most cases easier than solv-

ing the original problem. This idea is what resulted in the column generation method. A

good example of when one would use column generation is a scheduling problem where

one has to schedule events for a multiple of participants. Examples of this kind of prob-

lem is the nurse scheduling problem and the multi-vehicle routing problem. These are

problems where the main problem can be easily decomposed in to subproblems for each

participant that are fairly easy to solve. The subproblem finds the most promising so-

lutions. Thereafter the master problem finds the optimal solution among the schedules

found by the subproblem. The subproblems can be solved heuristically, while the master

problem is solved exactly.

Decomposition approaches has been used in maritime routing and scheduling. Chris-

tiansen et al. (2004) stated in their review of ship scheduling routes for industrial ship-

ping that as much as 40 per cent of the reviewed problems had been solved by utilizing

set partitioning. The major reason for decomposition approaches being successful in

maritime transportation is that the problems are often tightly constrained and thus it

is possible to generate all cargo combinations for all ships a priori (Christiansen et al.,

2007). Maritime transportation problems that are solved with a decomposition approach

are typically solved in a similar fashion to what Fisher and Rosenwein (1989) did. They

faced the problem of efficiently scheduling pickup and delivery of bulk cargo. They solved
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the problem by generating a menu of all feasible schedules to find the optimal solution.

They also introduce limitations to the generation through heuristically limiting the menu

to the most likely schedules. As mentioned previously, Norstad et al. (2015) and Vil-

helmsen et al. (2017) also utilized a decomposition approach to solve the fleet deployment

problem. Norstad et al. (2011) discovered, as expected, that the method that utilized a

decomposition approach was superior to when the problem was solved straightforward.

Even though there are many examples of decomposition approaches being used to solve

the fleet deployment problem, there are very few articles which also include speed opti-

mization. Wen et al. (2016) is the only article that the authors were able to find that

utilize a combination of set partitioning and speed optimization to solve the fleet de-

ployment problem. As mentioned earlier they do not solve the problem exact, as they

consider the inclusion of speed optimization to be a severe negative contribution to the

solution time as the problem size is already quite large. They instead develop a heuristic

branch-and-price algorithm to solve the problem.
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Chapter 4

Mathematical Models

In this section, the mathematical formulations for the fleet deployment problem with speed

optimization are given. First, a presentation of the linearization of the fuel consumption

function is given in Section 4.1, before the arc flow and path flow models are presented in

Sections 4.2 and 4.3, respectively. Some aspects regarding modelling choices are presented

in section 4.4.

4.1 Linearization of Fuel Consumption

In order to perform speed optimization, it is necessary to look into the non-linear rela-

tionship between sailing speed and fuel consumption. The fact that the fuel consumption

function for a ship is a non-linear function of speed leads to non-linearities in the ob-

jective function, in the terms related to sailing cost. The fuel consumption function is

typically estimated as a cubic function of speed in tons per time. When considering the

fuel consumption as a function of speed in tons per distance, it is a quadratic function. As

mentioned in Section 3.3, one approach to approximate these non-linearities is to linearize

the fuel consumption function. This section presents one such approach for linearizing

the fuel consumption. In the project assignment, two additional approaches for lineariz-

ing the fuel consumption function were tested. The linearization approach presented in

this section is the same as the one used by, among others, Andersson et al. (2015) and
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Fagerholt et al. (2015). The way the non-linearities is handled by this approach, is by

using discrete speed alternatives and interpolations between these. This is done by using

selected speed points from the nonlinear function and allocating weights to these speed

points. When analyzing different linearization approaches in the project assignment, this

linearization worked best.

The linearization is performed with two and three discrete speed points, respectively.

The exact number of speed points will be chosen and explained in further detail in the

computational study. Figure 4.1 illustrates a fuel consumption curve, along with the two

linearizations. In order to see the difference between the three curves, the illustration

is exaggerated. Within the relevant speed range, the fuel consumption function is a

convex curve. Therefore, the piece-wise linearization causes an overestimation of the fuel

consumption compared to the original curve. This is caused by the fact that any linear

combination of two points will always be strictly above the convex function between these

two points, as shown in Figure 4.1.

Figure 4.1: Linearizations of the fuel consumption function.

Solving the model with only one speed point is the same as solving the model without

speed optimization, and the speed is fixed when the routing decisions are taken. In regular

fleet deployment (without speed optimization) the operating speed is usually set as the

average speed. Norstad et al. (2011) showed that using the maximum speed as operating
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speed during the scheduling gave better solutions than using the average. Another advan-

tage of using the maximum speed with only one speed point, is to get the same solutions

space as for two and three speed points, respectively. However, it is crucial to apply a

posteriori speed optimization, to obtain a fair comparison between the models. To do a

posteriori speed optimization means that the problem has to be re-optimized with respect

to speed. This is done by taking the fleet deployment given by the optimal solution, and

then optimize the sailing speeds along all sailing legs, without changing any routing de-

cisions and still abide the time windows. A posteriori speed optimization is performed

with a high number of discrete speed points for the fuel consumption linearization. This

ensures a very close linearization of the fuel consumption function compared to the real

curve, which gives negligible deviations. Hence, the profit obtained by the a posteriori

speed optimization gives a virtually real profit.

4.2 Arc Flow Model

This model is an altered version from the project assignment. The model is based on

the arc flow model formulated by Andersson et al. (2015). The speed optimization in

our model is somewhat more advanced. This model is similar to the ones presented by

Norstad et al. (2015) and Vilhelmsen et al. (2017), but the addition of speed optimization

makes it more complex. This model gives a full description of the optimization problem.

A compact summary of the notation and model may be found in appendix A.

4.2.1 Notation

Let V be the set of all ships in the fleet of the shipping company, indexed by v. The ships

have individual starting positions and maintenance schedules, and are therefore treated

individually, as treating them as a group could lead to infeasible solutions.

The set R denotes the set of all trade routes operated by the company, indexed by r. Rv

is a subset of R for which trade routes ship v can carry out. Let the set Ir={1,2,3, ... nr}

be the set of voyages on trade route r, where nr is the number of voyages on trade route r

27



that has to be performed during the planning period. The set of voyages is indexed by i.

The given problem can be formulated on a directed graph G = (N ,A), where N contains

all nodes, and A is the set of arcs. N consists of four different kinds of nodes: Origin

nodes, destination nodes, voyage nodes and maintenance nodes.

Each voyage is identified by its trade route, r, and the voyage number, i, on that trade

route, (r,i). For each ship v in the set V , the origin node o(v) in set N represents the

initial starting position that the ship is available from. The destination node d(v) in set

N corresponds to an artificial ending position. The artificial destination does not exist

physically, but is in the same position as the final port of the last voyage sailed, i.e. the

distance from any node to the destination node is zero. The set NC is a subset of N and

represents all the contracted voyages that the company is required to service. The set

NO is also a subset of N and represents all the optional voyages. The set Nv,, a subset

of N , consists of all nodes that ship v is compatible with, in other words, the nodes that

ship v can service. The set NM
v is the set of required maintenance nodes for ship v. For

all, but the ships that are due for maintenance, the set NM
v will be empty. If ship v is

due for maintenance, the ship has to visit one, and only one, maintenance node during

the planning period. It is also necessary to define a set of speed alternatives, this set is

called S. The speeds in this set are ordered from lowest to highest speed.

The set A represents all arcs. The arc ((r,i),(q,j )) corresponds to sailing ballast directly

from the end of voyage node (r,i) to the start of voyage node (q,j ). The arcs from

the origin nodes to voyage nodes, ((o(v)),(r,i)), and the arcs from voyage nodes to the

destination nodes, ((r,i),(d(v))), are also included in A. If maintenance is required, the

maintenance nodes are treated in the same way as the voyage nodes, as described above.

The set Av consists of all arcs that ship v can service, that is, the set of arcs such that the

ship v can sail directly from node (r,i) to node (q,j ). If a ship services the arc (o(v),d(v))

it sails directly from the starting node to the ending node, thus the ship is idle and is not

used at all.

Let TB
vriqjs be the time it takes to sail ballast from the last discharge port of voyage (r,i)

to the first loading port of voyage (q,j ), in other words sailing the arc ((r,i),(q,j )), with

speed alternative s. The corresponding cost to this parameter is CB
vriqjs. The time it takes
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to sail ballast from the starting position to start of voyage (r,i) with speed alternative s is

TB
vo(v)ris, and the corresponding cost is Cvo(v)ris. The time it takes to sail voyage (r,i) with

speed alternative s is denoted by Tvris, which corresponds to sail a voyage, including the

service time of all ports. The corresponding cost is Cvris. The estimated freight income

minus the port costs, for sailing voyage (r,i) is Rri. CS
ri is the cost of chartering a ship

from the spot market to service voyage (r,i). Each voyage has to start at its first port

within a given time window, [Eri, Lri]. The parameter Eri is the earliest time for starting

voyage i on trade r, while Lri is the latest time for starting the voyage. Let Eo(v) be the

earliest time ship v can start from its initial position. Let Br be the minimum acceptable

time between two consecutive voyages on trade r.

Let xvriqj be a variable, which is 1 if ship v travels directly from node (r,i) to node (q,j ),

otherwise it is 0. The variable xvo(v)ri is 1 if ship v travels from it starting position to node

(r,i), otherwise it is 0. Let xrid(v) equal 1 for ship v if (r,i) is the last node it services, and

0 otherwise. Similarly, xo(v)d(v) is 1 if ship v is idle, and 0 otherwise. Let uS
ri be 1 if voyage

i on trade r is serviced by a chartered ship, and 0 otherwise. All x- and u-variables are

binary. The time for start of voyage i on trade r is defined by the variable tri. Variables

for determining the weight of speed alternatives for a voyage and the ballast sailing to the

next voyage is also necessary. Let wB
vriqjs be the weight of speed alternative s for sailing

ballast to the starting port of the voyage (q,j ) from the end of voyage (r,i) for ship v. Let

wvris be the weight of speed alternative s for sailing voyage (r,i) for ship v. Let wB
vo(v)ris

be the weight of speed alternative s for sailing ballast to the starting port of the voyage

(q,j ) from the origin node o(v) for ship v.
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4.2.2 The Model

Objective function

max
∑
v∈V

∑
r∈Rv

∑
i∈Ir

∑
s∈S

(Rri − Cvris)wvris

−
∑
v∈V

∑
r∈Rv

∑
i∈Ir

∑
s∈S

CB
vo(v)riswvo(v)ris

−
∑
v∈V

∑
r∈Rv

∑
i∈Ir

∑
q∈Rv

∑
j∈Iq

∑
s∈S

CB
vriqjsw

B
vriqjs +

∑
r∈R

∑
i∈Ir

(Rri − CS
ri)u

S
ri

(4.1)

The objective function (4.1) maximizes profit by summing the combination of the most

profitable voyages for the fleet and the most favorable spot ship options.

Service constraints

∑
v∈Vr

[ ∑
q∈Rv

∑
j∈Iq

xvriqj + xvrid(v)

]
+ uS

ri = 1, (r, i) ∈ NC (4.2)

∑
v∈Vr

[ ∑
q∈Rv

∑
j∈Iq

xvriqj + xvrid(v)

]
≤ 1, (r, i) ∈ NO (4.3)

∑
q∈Rv

∑
j∈Iq

xvriqj + xvrid(v) = 1, v ∈ V , (r, i) ∈ NM
v (4.4)

Constraints (4.2) state that each contracted voyage must be serviced by either a ship in

the fleet or a spot ship. Constraints (4.3) state that each optional voyage can be serviced

at most once by a ship within the fleet. Constraints (4.4) ensure that all maintenance

operations are performed.

Network flow constraints

xvo(v)d(v) +
∑
r∈Rv

∑
i∈Ir

xvo(v)ri = 1, v ∈ V (4.5)
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xvrid(v) +
∑
q∈Rv

∑
j∈Iq

xvriqj −
∑
q∈Rv

∑
j∈Iq

xvqjri − xo(v)ri = 0,

v ∈ V , r ∈ Rv, i ∈ Ir

(4.6)

xvo(v)d(v) +
∑
r∈Rv

∑
i∈Ir

xrid(v) = 1, v ∈ V (4.7)

xvo(v)ri −
∑
s∈S

wo(v)ris = 0, v ∈ V , r ∈ Rv, i ∈ Ir (4.8)

xvriqj −
∑
s∈S

wvriqjs = 0, v ∈ V , ((r, i), (q, j)) ∈ Av (4.9)

xvrid(v) +
∑
q∈Rv

∑
j∈Iq

xvriqj −
∑
s∈S

wvris = 0, v ∈ V , r ∈ Rv, i ∈ Ir (4.10)

Constraints (4.5)-(4.7) ensure network flow for each ship. Constraints (4.5) state that a

ship must either be idle or leave its starting position to a node (r,i), while constraints

(4.7) state that a ship must either be idle or arrive at its ending position from a node (r,i).

Constraints (4.6) ensure that each voyage starts in an origin node, that every node entered

into is also exited, and that each voyage ends up in a destination node. Constraints (4.8)-

(4.10) describe the relation between the flow variables and the variables for weighting

speed alternatives for initial sailing, ballast sailing and voyage sailing respectively. The

weights of the speed alternatives should sum up to 1 if a voyage is serviced by that ship.

If the voyage is not serviced by that ship, the weights should add up to 0.

Time constraints

xvo(v)ri(Eo(v) +
∑
s∈S

TB
vo(v)riswvo(v)ris − tri) ≤ 0,

v ∈ V , r ∈ Rv, i ∈ Ir

(4.11)

xvriqj(tri +
∑
s∈S

(Tvriswvris + TB
vriqjs)wvriqjs − tqj) ≤ 0,

v ∈ V , ((r, i), (q, j)) ∈ Av

(4.12)

Eri ≤ tri ≤ Lri, r ∈ R, i ∈ Ir (4.13)

Constraints (4.11) ensure that time spent sailing from the initial position to the first

31



voyage (r,i) does not exceed the last start time for voyage i. Constraints (4.12) state that

the time spent on voyage (r,i) and ballast sailing to the start of voyage (q,j ) does not

exceed the latest starting time of voyage (r,i). Note that, constraints (4.11) and (4.12)

are non-linear and has to be linearized in order to solve the problem. Constraints (4.13)

secure that the time window for each voyage is not violated.

Evenly spread constraints

tr,i+1 − tri ≥ Br, r ∈ R, i ∈ Ir\{nr} (4.14)

Constraints (4.14) are hard, evenly spread constraints of consecutive voyages on the same

trade. These constraints ensure a minimum time spread between consecutive voyages in

accordance to the voyage separation requirement.

Binary and Non-negativity Constraints

xvo(v)d(v) ∈ {0, 1}, v ∈ V (4.15)

xvo(v)ri ∈ {0, 1}, v ∈ V , r ∈ Rv, i ∈ Ir (4.16)

xvrid(v) ∈ {0, 1}, v ∈ V , r ∈ Rv, i ∈ Ir (4.17)

xvriqj ∈ {0, 1}, v ∈ V , ((r, i), (q, j)) ∈ Av (4.18)

wvo(v)ris ∈ [0, 1], v ∈ V , r ∈ Rv, i ∈ Ir, s ∈ S (4.19)

wvris ∈ [0, 1], v ∈ V , r ∈ Rv, i ∈ Ir, s ∈ S (4.20)

wvriqjs ∈ [0, 1], v ∈ V , ((r, i), (q, j)) ∈ Av, s ∈ S (4.21)

tri > 0, r ∈ Rv, i ∈ Ir (4.22)

uS
ri,∈ {0, 1} r ∈ Rv, i ∈ Ir (4.23)

Constraints (4.15)-(4.23) define all variables as either binary, weighing or continuous vari-

ables.
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4.2.3 Linearization of Non-linear constraints

As mentioned above, the time constraints (4.11) and (4.12) need to be linearized. This is

done by the well know big-M method. The big-M parameters are calculated as follows:

Mvri = Eo(v), v ∈ V , r ∈ Rv, i ∈ Ir (4.24)

Mvriqj = Lri, v ∈ V , ((r, i), (q, j)) ∈ Av (4.25)

Constraints (4.11) and (4.12) are linearized using the big-M parameters. As the big-M

parameters only consist of one parameter, these parameters are used directly to achieve

the following new constraints:

Eo(v) +
∑
s∈S

TB
vo(v)riswvo(v)ris − tri − Eo(v)(1− xvo(v)ri) ≤ 0,

v ∈ V , r ∈ Rv, i ∈ Ir

(4.26)

tri +
∑
s∈S

(Tvriswvris + TB
vriqjs)wvriqjs − tqj − Lri(1− xvriqj) ≤ 0,

v ∈ V , ((r, i), (q, j)) ∈ Av

(4.27)

Constraints (4.26) and (4.27) replaces constraints (4.11) and (4.12) in the model.

4.3 Path Flow Model

The arc flow model was based on a model presented by Andersson et al. (2015). The path

flow model can be seen as a reformulation of the arc flow model. A compact summary of

the notation and model may be found in appendix B.

For the path flow model, the flow variables are replaced by path variables, that describe
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paths through the network of possible voyages (r,i). However, the speed weighting vari-

ables still has to be associated with each sailing leg, both voyage and ballast. In order to

solve the problem, paths have to be generated a priori to solving the model. The path

generation is discussed in further detail in Chapter 5. As discussed in Chapter 3.4, de-

composition is a common solution method for solving large fleet deployment problems. In

this case, the path flow model presented below can be considered as the master problem,

and the a priori path generation for all ships can be considered as the subproblems. In

this problem all ships have different properties, and thus no subproblems are identical

and are thereby solved separately for each ship.

4.3.1 Additional notation for the Path Flow Model

Notation presented for the arc flow model is still valid for the path flow model. Therefore,

only new notation for the path flow model is presented here. First of all, the paths need to

be defined. Let Pv be a set of all feasible paths for ship v. Pvriqj is a subset of Pv, which

contains all paths where voyage j on trade route q directly follows voyage i on route r

for ship v. Pvri is another subset of Pv. This subset contains all paths where ship v sails

voyage i on route r. The last subset of Pv that need to be defined is Pvo(v)ri, containing

all paths where voyage i on route r is the first voyage ship v performs from its origin.

Let Evpri be a parameter that describes the earliest service start for ship v on voyage i on

trade route r for a given path p.

Let zvp be a binary variable, which equals 1 if ship v sail path p, and 0 otherwise. Let

tvri be a variable that sets the start time of voyage i on route r for ship v. The variable

tSri describes when a spot ship starts sailing voyage i on route r.
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4.3.2 The Model

Objective function

max
∑
v∈V

∑
r∈Rv

∑
i∈Ir

∑
s∈S

(Rri − Cvris)wvris

−
∑
v∈V

∑
r∈Rv

∑
i∈Ir

∑
s∈S

CB
vo(v)riswvo(v)ris

−
∑
v∈V

∑
r∈Rv

∑
i∈Ir

∑
q∈Rv

∑
j∈Iq

∑
s∈S

CB
vriqjsw

B
vriqjs +

∑
r∈R

∑
i∈Ir

(Rri − CS
ri)u

S
ri

(4.28)

The objective function, (4.28), in the path flow model aims to maximize profit, by sum-

ming the most profitable combination of paths for the fleet and the most favorable spot

ship options. This objective function is actually the same as for the arc flow model.

Service constraints

∑
v∈Vr

∑
p∈Pvri

zvp + uS
ri = 1, (r, i) ∈ NC (4.29)

∑
v∈Vr

∑
p∈Pvri

zvp ≤ 1, (r, i) ∈ NO (4.30)

∑
p∈Pv

zvp = 1, v ∈ V (4.31)

Constraints (4.29) ensure that all contractual voyages are carried out exactly once, either

by a ship within the fleet or by a spot ship. Constraints (4.30) ensure that the optional

voyages may be carried out at most once and only by a ship within the fleet. All ships

have to be assigned to exactly one path, constraints (4.31) make sure of that.
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Network flow constraints

∑
s∈S

wvris =
∑

p∈Pvri

zvp, v ∈ V , r ∈ Rv, i ∈ Ir (4.32)

∑
s∈S

wB
vo(v)ris =

∑
p∈Pvo(v)ri

zvp, v ∈ V , r ∈ Rv, i ∈ Ir (4.33)

∑
s∈S

wB
vriqjs =

∑
p∈Pvriqj

zvp, v ∈ V , r ∈ Rv, i ∈ Ir, q ∈ Rv, j ∈ Iq (4.34)

The network flow constraints from the arc flow model has already been handled by the path

generation. However, the speed weighting variables for each voyage must be connected to

the paths. In other words, one must ensure that the speed weighting variables for a ship

on a path can only take non-zero values if the ship sails that given path. This must be

taken care of for each of the different sailing types. Constraints (4.32), (4.33) and (4.34)

take care of the sailing of voyages, initial ballast sailing and ballast sailing, respectively.

Time constraints

∑
p∈Pvri

Evprizvp ≤ tvri ≤
∑

p∈Pvri

Lrizvp, v ∈ V , r ∈ Rv, i ∈ Ir (4.35)

Eriu
S
ri ≤ tSri ≤ Lriu

S
ri, r ∈ R, i ∈ Ir (4.36)∑

s∈S

(
TB
vo(v)ris + Eo(v)

)
wB

vo(v)ris ≤ tvri, v ∈ V , r ∈ Rv, i ∈ Ir (4.37)

tvri +
∑
s∈S

(
Tvriswvris + TB

vriqjsw
B
vriqjs + (Lri + Tvri,1)w

B
vriqjs

)
− Lri − Tvri,1 − tvqj ≤ 0, v ∈ V , r ∈ Rv, i ∈ Ir, q ∈ Rv, j ∈ Iq

(4.38)

Constraints (4.35) state that the starting time for a voyage has to be within the time

window for that given voyage, and at the same time ensure that the variable equals zero

if the given ship does not serve that voyage. The same goes for the starting time of

spot ships in constraints (4.36). Constraints (4.37) ensure that a ship cannot start a

voyage before it has sailed ballast from its origin position to the starting point of the

voyage. Likewise, constraints (4.38) ensure that a ship cannot start a voyage before it
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has completed the previous voyage and sailed ballast to the start of the next voyage. The

parameter Tvri,1 in constraints (4.38) is the longest possible time ship v can sail voyage

(r, i). This is due to the fact that the set of speed points is an ordered set from the lowest

speed to the highest speed, and thus sailing with speed point 1 is the longest time that

ship v can sail voyage (r, i).

Evenly spread constraints

Br +
∑
v∈V

tvri + tSri −
∑
v∈V

tvr,i+1 − tSr,i+1 ≤ 0, r ∈ R, i ∈ Ir\{nr} (4.39)

Constraints (4.39) are evenly spread constraints of consecutive voyages on the same trade.

These constraints are slightly altered compared to the arc flow model, as the starting time

variables in the path flow model are ship dependent.

Binary and Non-negativity Constraints

zvp ∈ {0, 1}, v ∈ V , p ∈ Pv (4.40)

uS
ri ∈ {0, 1}, r ∈ R, i ∈ Ir (4.41)

wvris ∈ [0, 1], v ∈ V , r ∈ Rv, i ∈ Ir, s ∈ S (4.42)

wB
vriqjs ∈ [0, 1], v ∈ V , r ∈ Rv, i ∈ Ir, q ∈ Rv, j ∈ Iq, s ∈ S (4.43)

wB
vo(v)ris ∈ [0, 1], v ∈ V , r ∈ Rv, i ∈ Ir, s ∈ S (4.44)

tSri > 0, r ∈ Rv, i ∈ Ir (4.45)

tvri > 0, v ∈ V , r ∈ Rv, i ∈ Ir (4.46)

Constraints (4.40)-(4.46) define all variables as either binary, weighing or continuous.
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4.4 Modelling Choices

This section intends to discuss the choices that were made when formulating the mathe-

matical models. The section mostly concerns the path flow model, as the arc flow model

originates from the project assignment and only has minor changes. The choices that

were made when formulating the model were done to achieve an accurate, tight and at

the same time efficient formulation.

The use of subsets is an important element in the path flow formulation, to ensure that

the correct paths are summed over in the constraints. By introducing the subsets of

the set of paths, Pv, there is also a very favourable side effect which limits the number

of necessary variables that is generated. Introducing Pvriqj, Pvri and Pvo(v)ri is a smart

way to handle all the paths, and to ensure that the correct share of paths is used in the

respective constraints. An alternative approach would be to use logical matrices to state

which paths can take a specific ballast sailing, a specific voyage or a specific initial ballast

sailing, However, these matrices would be huge, which would be inefficient in the solution

process.

The notation of voyages on a trade route is handled in the same way for both models. An

alternative approach in the path flow model could be to use a formulation where every

path is divided into sailing legs, indexed by l. This means that some indices (r, i) would be

replaced by (p, l). For example, the speed weighting variables wvo(v)ris, wvris and wvriqjs

could be transcribed into the variable wvpls. The major disadvantage of this approach

is that the model would have several constraints defined for all possible combinations of

paths and legs (v ∈ V , p ∈ Pv, l ∈ Lp). This would cause a vast increase in the number

of constraints compared to having constraints for all combinations of trade routes and

voyages, (v ∈ V , r ∈ Rv, i ∈ Ir). This is caused by the fact that the number of trade

routes and voyages are limited to a relatively small number, whereas the number of paths

is vastly increasing when more trade routes and voyages are added (this is described

in more detail in Chapter 5). In addition, there would be an increase in the number

of variables generated, as the indices give a good indication of the number of variables

generated. The product of (p · l) is much larger than (r · i).
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One of the major drawbacks with integrating voyage separation into the path flow model

regards how it makes interdependencies between paths. This is because the starting times

for a voyage not only depend on its time window, but also on the starting times for the

previous and next voyages on the trade. This is required to fulfill the voyage separation

requirements. Thus, the starting times have to be set in the master problem. Since the

starting times are highly affected by the chosen speeds, the speed weighting variables have

to be handled in the master problem as well. If there had not been any voyage separation

requirements, only speed optimization, the speed optimization could have been performed

individually on each path in the subproblems. In that case, the time windows would be

taken into account when generating the paths, and the starting times and speed weighting

variables would be set based on the sailing sequence of each path. This would make the

master problem into a general set partitioning problem over the set of paths. The decisions

to make would be which path to cover each voyage, where all voyages have to be served.

However, the voyage separation in the problem at hand forces all variables concerning

speed and time up to the master problem. This means that the master problem of the

path flow model with speed optimization and voyage separation contains more variables

and is much more complex than a path flow model without speed optimization. This

necessary modelling choice suggests that the improvement in solution quality in the path

flow model compared to the arc flow model is lower, than it would have been without

speed optimization.
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Chapter 5

Path Generation

This chapter concerns the description of the a priori path generation that was introduced

in Chapter 4.3. Section 5.1 gives an in-depth description of the path generation and

section 5.2 introduces path reduction heuristics and presents some heuristic rules.

5.1 Path Generation in General

For the path flow model, all feasible paths are enumerated a priori and then sent to the

master problem. The path generation can be seen as a subproblem for each of the ships

in the fleet, and all of the ships has to be treated individually as all ships have different

properties. Each subproblem for each ship has to take time windows, compatibility and

routing sequence into account. The ship starts at its initial position and seeks to find its

first voyage to serve. The voyage has to be within reach, i.e. the ship has to arrive at

the origin of the voyage within the time window (or earlier and wait until the window

opens). Further, the ship has to be compatible with the trade the voyage is sailing,

that is, the trade has to be a member of the set Rv. All voyages that complies with

these requirements will then be a possible first voyage and basis for the following path

extensions. All possible initial voyages are further explored in the same way; in order to

take on a consecutive voyage, the ship has to fulfill its ongoing voyage and sail ballast to

the starting point of the new voyage. Here, it has to arrive within the time window (or

41



earlier) and fulfill the compatibility requirements. An alternative to take on a new voyage

is to end the path after the ongoing voyage. The ship has the possibility of staying idle

through the planning period, as well. In the path generation process, maximum sailing

speed is used when calculating the sailing duration on each leg (both ballast and voyage

sailing). Using the maximum speed ensures that all feasible solutions are included in the

solutions space of the problem, as proven by Norstad et al. (2011). This ensures that the

path flow model has the same solution space as the arc flow model, which makes the two

models comparable.

For each ship, this subproblem can be solved similar to a ”breadth first” search tree

algorithm. The search tree consists of nodes and arcs, where the voyages are represented as

nodes and ballast sailing as arcs, respectively. The possible paths for one ship represented

as a search tree is illustrated in Figure 5.1. The number of each node corresponds to the

order of when the nodes are explored. This Figure corresponds to the path generation of

all possible paths in the example in Section 2.4.

Figure 5.1: Breath first search tree

The root node in the search tree represents the origin node (o(v)), the initial position of

the ship. All suitable initial voyages become child nodes of the root node, and the initial
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ballast sailing is represented as the initial arcs. All child nodes may then be explored,

until all nodes have been branched and no more feasible voyages are possible to add to

any path. The ship may end after any voyage, and all paths have to end at the artificial

ending d(v). This means that all nodes have to branch directly to d(v), including directly

from the root node. All the d(v) nodes represents the leaves of the tree algorithm. Each

path is characterized by a path number. The voyages on each path is not enumerated,

but the parameter Evpri, ensures that the voyages are carried out in the right order. Evpri

is a parameter that states the earliest starting time of voyage i on trade route r for ship v,

on the given path p. The Evpri is set as the latest time out of two options. Either, as the

minimum time to execute all previous sailing legs on the path, including initial, voyage

and ballast sailing, or the earliest time of the time window for the given voyage. This

ensures that a subsequent voyage always has a higher Evpri than the preceding voyages,

which controls that all voyages are performed in the right order for each path. The path

generator does not explicitly exclude the possibility that a voyage is included twice in the

same path. However, there is assumed that no time windows are wide enough to allow

a ship to sail the voyage, the ballast sailing back again, and start the same voyage for

the second time within the time limits. Below, a pseudo code for the path generator is

presented in Algorithm 1.
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Algorithm 1 Pseudo code for the path generator

1: procedure Path Generator
2: for v ∈ V do
3: Branch directly from o(v) to d(v)
4: for r ∈ Rv, i ∈ Nr do
5: if Eo(v) + TB

vo(v)ris ≤ Lri then

6: Add (r, i) as a child to the root node, generate path p
7: if Eo(v) + TB

vo(v)ris ≤ Eri then
8: Epvri = Eri

9: else Epvri = Eo(v) + TB
vo(v)ris

10: Develop tree from each node (r, i), given that (r, i) is a undeveloped child
node

11: Branch directly from (r, i) to d(v)
12: for r ∈ Rv, i ∈ Nr do
13: for q ∈ Rv, j ∈ Nr do
14: if Epvri + Tvris + TB

vriqjs ≤ Lri then
15: Add (q, j) as a child to the node (r,i), generate a new

path p
16: if Epvri + Tvris + TB

vriqjs ≤ Eqj then
17: Epvqj = Eqj

18: else Epvqj = Epvri + Tvris + TB
vriqjs

19: Branch directly to d(v)

20: goto top

In path generation, there would be favourable to use a labeling algorithm and seek dom-

inance criteria between paths, in order to reduce the total number of paths sent in to

the master problem from the subproblems. This will in turn reduce both the generation

time and the solution time for the solver. A path dominates another if it is at least as

good or better on all criteria. However, due to the voyage separation requirements, which

are handled in the master problem, not the subproblems, there is not possible to use

dominance, and all suitable paths has to be included.

5.2 Path Reduction Heuristics

A major issue with the a priori path generation is the high number of paths that are

generated compared to the number of ships, especially for the larger instances. Paths

causes a large number of variables in the problem for the solver, which in turn impacts
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both solution time and quality. As a consequence, the solver struggles to handle the

instances and obtains poorer solutions with a relatively high gap. For the path flow

model, the optimal solution found by the solver uses one path per ship only. This means

that if 100,000 paths are created, and there are 18 ships in the problem, only 18 paths

out of 100,000 are used in the optimal solution. Thus, there are 99,982 paths that are

generated, but not needed. Out of all paths that are not to be used, a significant share is

unfavourable and likely not to ever be part of any optimal solution. The aim of heuristic

rules is to reduce as many paths as possible, while keeping the loss in the profit to a

minimum. For some problems, applying heuristics may achieve even better solutions

than without. This happens if the problem is too large to solve to optimality, i.e. the

original solution has a gap. The reduction in problem size makes the solution process

easier for the solver, and a better solution is obtained. By applying heuristic rules, there

is also a possibility to get solutions for problems of huge magnitude that are unsolvable

otherwise. To eliminate paths that are most likely not included in the optimal solution,

heuristic rules are implemented in the a priori path generation. These rules have some kind

of acceptance criteria, and different levels of acceptance are tested in the computational

study in Chapter 7. It is important to remember that when using heuristics, there is no

guarantee of finding the actual optimal solution for the original problem. The trade-off

between lack of optimality and reduced solution times are discussed in the computational

study.

Four different kinds of a priori path generation heuristics have been implemented: Maxi-

mum percentage ballast sailing, maximum length of ballast sailing, maximum consecutive

waiting days and minimum number of voyages per path. Each one is described in detail

in the following sections. These rules may be applied separately or in combinations. The

desired effect from combining heuristics is an even higher reduction in number of paths,

and at the same time keeps the loss in profits to a minimum.

5.2.1 Maximum Percentage Ballast Sailing

As mentioned earlier, ballast sailing is highly undesirable for a shipping company due to

high costs, and should be reduced to a minimum, even though some ballast sailing is a
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virtue of necessity. Thus, paths that contain a lot of ballast sailing are not desirable. This

heuristic eliminates paths that contain more than a predetermined percentage of ballast

sailing. For example, if the acceptance level is set to 35%, only paths that contain less

than 35% ballast sailing are generated. The percentage is taken as total distance ballast

sailing versus total sailing distance for the given path.

5.2.2 Maximum Length of Ballast Sailing

Another way of limiting the amount of ballast sailing is to eliminate all paths that contain

legs with very long ballast sailing. The heuristic makes it impossible to sail ballast between

two voyages where the ballast sailing distance exceeds the desired acceptance limit. For

example, if the acceptance level is set to 10,000 nautical miles, the ability to sail ballast

between voyages that have a higher ballast sailing distance is removed, thereby eliminating

all paths with longer ballast sailing than 10,000 nautical miles. Again, one should be

careful when exercising this heuristic, as long distance ballast sailing can be a part of an

otherwise highly desirable path. It may also affect the solution space quite severe if the

acceptance criteria is set too tight, and by that influence the solvability of the problem.

5.2.3 Maximum Consecutive Waiting Days

Waiting typically occurs when a ship arrives at the starting point of a voyage before the

start of the time window, and has to wait before the voyage can be serviced. As speed

optimization is considered, the amount of waiting on a path varies significantly from

generation based on maximum speed, to the actual fleet deployment when speed has been

adjusted. Thus, it is not easy to create a heuristic that consider waiting. However, one

can use a heuristic rule that cuts all paths that have more than a certain amount of days

of consecutive waiting. This ensures that paths with minor waiting, which most likely

will be eliminated by speed optimization, passes through, while paths with long waiting

periods are eliminated. Keep in mind that what looks like shorter waiting periods in the

path generation, would most of the time not exist in the final solution. To remove all of

these ”waiting gaps” would reduce the possibility of speed reduction, i.e. the profit would
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decrease. Therefore, the acceptance criteria should not be fixed too low. This heuristic

rule works as follows; an acceptance levels is set, and the path is disregarded if the waiting

time exceeds this level during any point of the generation of the path. For example, if

the acceptance level is set to 30 days, any path with waiting time higher than 30 days

before starting a voyage is not created. The path generator is created in a way that any

ballast sailing between two voyages is carried out straight after the first voyage. Hence, all

potential waiting time between two voyages will accumulate ahead of the second voyage.

As the waiting time that is eliminated is based on the highest speed it will also have the

highest possible waiting time. Thus, this heuristic could be somewhat aggressive in the

way it cuts paths, and the acceptance levels should be set fairly high and chosen with

caution.

5.2.4 Minimum Number of Voyages per Path

In general, high fleet utilization is favorable for the shipping companies. Especially for

longer planning horizons, this means that each ship has to execute several voyages in

sequence within the period. In other words, paths with few voyages are undesirable for

long planning horizons. Thus, another heuristic rule is to remove all paths that contain

less than a given number of voyages. For example, if the acceptance level is set to three

voyages, all paths that contain only one or two voyages are removed. Please note that

this rule will only be used for large instances with long planning horizons (150 and 180

days), as instances with shorter planning horizons might need less voyages on a path to

achieve a desirable solution.
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Chapter 6

Test Instances

The purpose of this chapter is to present an overview of the data and test instances that

are used to perform computational testing of the models presented in Chapter 4.

All tests in the computational studies are based on the same instances. The instances

are based on data from Saga Forrest Carriers, the predecessor of the Norwegian shipping

company Saga Welco AS. The instances are set up such that there is a well spread range

of ships, trade routes, voyages and planning horizons. The size of each instance is most of

all a function of the total number of voyages to execute. The number of voyages can be

increased in two ways; increase the number of trade routes or the length of the planning

horizon. Each trade route has an average frequency of voyages per month, which varies

from one voyage per month up to four voyages per month. Hence, the number of voyages

for an instance is a function of trade routes (and their respective frequencies) and length

of the planning horizon.

The length of the planning horizon resembles how many voyages are to be executed in

series. Whereas, the number of trade routes resembles how many voyages are to be

executed in parallel. Hence, the number of ships required are dependent on the number

of trade routes for an instance, not the planning horizon. The number of ships in each

instance should be decided carefully. Not only the number of trade routes, but also the

frequency per trade and the distance per voyage determines the required fleet size to serve

the instance. This has been considered when creating instances. The instances are divided
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in four sets, one large set, one small and two in between. The instances have either six

ships and three trade routes, ten ships and five trade routes, fourteen ships and seven

trade routes or eighteen ships and nine trade routes. For each set, there are 3 planning

horizons, 60, 90 or 120 days. The first three instance sets are all reduced variants of the

fourth instance set, where some trade routes and ships have been removed.

Fuel costs have been set to 388 $/ton. This value was the global average for the 20

largest ports in the world for the first quarter of 2018 (Ship & Bunker, nd). However, one

should keep in mind that fuel price may vary a lot with time, and it may change rapidly.

As described in 4.1, the fuel consumption function is typically a convex function. The

instances use a second order polynomial (in terms of tons per nautical mile) to calculate

the fuel consumption. This polynomial is: Q(h) = A ·h2 +B ·h+C . The fuel coefficients

were not provided in the data from Saga Forrest Carriers, but reasonable values were

provided separately by the supervisors. The same fuel coefficients, and thereby the same

fuel consumption curve, is applied for all ships and voyages. The coefficients used are

A = 0.0006, B = −0.0111 and C = 0.1411. This fuel consumption function is applied

when the ships are fully loaded. In order to adjust the fuel consumption of ballast sailing,

the fuel consumption is multiplied by a factor of 0.8. Minimum and maximum speed for

each ship are provided by the Saga Forrest Carriers data. In this study, all ships have the

same speed range.

Table 6.1 describes the instances used in the computational study in detail. The ”In-

stance” column names all test instances used, from 1 to 12. Later on, this number is

refereed to when identifying the instance of interest. The ”Set” column divide the in-

stances into sets based on the number of ships in the instance. The ”Voyages” column

describes how many voyages that should be carried out for each instance. The numbers

represent the contractual voyages out of the total number of contractual and optional

voyages. As mentioned in Section 2.1, Figure 2.1 illustrates the trade routes used in the

test instances. The trade routes are numbered according to appearance. For example,

the instances with 3 trade routes consist of trade routes 1-3, instances with 5 trade routes

consist of 1-5, and so on. In this study, the optional voyages are organized as one trade

that consists of optional voyages only. As Figure 2.1 illustrates, trade route 5 represents
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the optional voyages.

Table 6.1: Overview of test instance specifications

Set Instance Ships Trades Voyages Horizon

1 6 3 11/11 60
1 2 6 3 15/15 90

3 6 3 20/20 120

4 10 5 13/15 60
2 5 10 5 18/21 90

6 10 5 24/28 120

7 14 7 24/26 60
3 8 14 7 34/37 90

9 14 7 46/50 120

10 18 9 30/32 60
4 11 18 9 44/47 90

12 18 9 59/63 120

For the instances in Table 6.1, all feasible paths are calculated a priori, and the total

number of paths for each instance are shown in Table 6.2 below. The path generation

is performed separately from the optimization solver. The calculation time of path gen-

eration is not included in the run times of the path flow model (shown in Table 7.1).

Relative to the running times of the path flow model itself, the path generation times

are quite small, and are therefore neglected. The generation time may be pushed further

down by perfecting the code of the path generator and use a more adequate software

and programming language, e.g. C++. This is however beside the scope of this thesis.

The number of paths increase vastly when the instance size increases. Within each set

(1-4), the increase in number of paths has an exponential trend, as the time horizons are

extended. This is due to the fact that longer time horizons increase the options for paths

with several voyages in sequence.
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Table 6.2: Number of paths per instance

Instance Paths

1 159
2 299
3 985
4 364
5 823
6 3,277
7 1,886
8 8,711
9 69,776
10 3,073
11 16,199
12 138,292

Table 6.3 presents the perfect spread and the minimum number of spread (Br) per trade

route. All values are in number of days. Perfect spread is the ideal number of days between

two consecutive voyages on a given trade. Note that trades with the same frequency, i.e.

number of days between voyages with perfect separation, does not necessarily have the

same values for minimum spread.

Table 6.3: Minimum spread of days between consecutive voyages per trade

Trade Perfect spread (days) Min. spread (days)

1 30 20
2 30 15
3 30 15
4 7 5
5 10 5
6 30 10
7 30 15
8 14 8
9 30 0

All instances of our mathematical programming model have been solved with a Windows

10 computer with an i7-7700 quad-core 3.60 GHz CPU, 32 GB DDR4 RAM and a 512

GB PCIe SSD drive. The software used is Fico Xpress IVE 64-bit with optimizer version

31.01.09. The path generation algorithm has been implemented in MATLAB R2017a.
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Chapter 7

Computational Study

In this chapter, the results of the computational study are presented. First, a comparison

of the arc flow and path flow models are discussed in Section 7.1, followed by an analysis

of different number of speed points, and the effect of speed optimization in Section 7.2.

After that, results of applying heuristic rules are presented in Section 7.3. The results

when combinations of the heuristic rules are applied on larger instances are presented in

Section 7.4. Section 7.5 presents a study of the effect of voyage separation. The chapter

is rounded up with a discussion of the results in Section 7.6.

7.1 Comparison of the Arc Flow and Path Flow Mod-

els

This section compares the performance of the arc flow and path flow models, with respect

to objective value and solution time. All instances presented in Table 6.1 have been run for

both the arc flow and path flow models. Both models have been run with 3 speed points

(minimum, average and maximum), which gives an estimation of the fuel consumption

similar to the one illustrated in Figure 4.1. All profits and objective values described in

this thesis are in USD. If an instance is solved to optimality, it is proven that no other

fleet deployment can increase the profit further. If an instance is not solved to optimality

within the time limit, the objective value presented is the current best solution. The
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best solution found represent a lower bound for the optimal solution, i.e. the optimal

solution is at least as good, or better than the current solution. The gap between the

lower and upper bound, is called the optimality gap, and is presented in percent. Figure

7.1 illustrates the relations between the current solution, optimal solution, best bound

and LP relaxation of the problem. The values are in increasing order, as the models in

this thesis are formulated as maximization problems.

Figure 7.1: Relation between current IP solution, optimal IP solution, best bound and
LP relaxation.

The results of the tests are compared in Table 7.1. The ”Time” columns indicate the

computational times in seconds. The models have all been run with an upper time limit

of 3600 seconds (1 hour). The ”Obj val.” columns report the best objective value, the

profit, obtained by the current best fleet deployment. The optimality gap is shown in the

”Gap” columns. The solution of the LP relaxations of the problems are shown in the ”LP

Rel.” columns.

Table 7.1: Comparison of arc flow and path flow models for 3 speed points.

Arc Flow Model Path Flow Model

Instance Time LP Rel. Gap Obj val. Time LP Rel. Gap Obj. val.

1 0.6 14,742’ 0.00% 13,837’ 0.1 13,949’ 0.00% 13,837’
2 1.7 19,874’ 0.00% 17,350’ 1.2 17,965’ 0.00% 17,350’
3 80.6 26,123’ 0.00% 22,223’ 10.6 23,308’ 0.00% 22,223’
4 1.3 18,035’ 0.00% 17,456’ 0.3 17,555’ 0.00% 17,456’
5 1857.1 24,485’ 0.00% 22,949’ 13.0 23,845’ 0.00% 22,949’
6 3600.0 32,018’ 11.77% 28,141’ 3600.0 31,090’ 3.99% 28,795’
7 3600.0 26,186’ 4.72% 24,995’ 1704.3 25,835’ 0.00% 25,339’
8 3600.0 37,752’ 18.62% 31,579’ 3600.0 35,967’ 4.56% 33,934’
9 3600.0 50,587’ 23.10% 40,751’ 3600.0 47,621’ 12.62% 42,227’
10 3600.0 31,610’ 5.20% 29,435’ 3600.0 30,621’ 0.14% 30,288’
11 3600.0 44,466’ 28.61% 34,419’ 3600.0 43,465’ 6.43% 40,755’
12 3600.0 59,340’ 114.99% 27,510’ 3600.0 58,223’ 13.76% 51,161’

Average 2261.8 32,101’ 17.25% 25,887’ 1944.1 30,787’ 3.46% 28,860’
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The results in Table 7.1 show that the small instances (1,2 and 4) are solved to optimality

by both models, and there are marginal differences in solution time. However, for the

larger instances there are significant differences between the two models, in favor of the

path flow model. The difference is especially noticeable for instance 7, where the path

flow model finds the optimal solution in less than half the time the arc flow model. The

arc flow model does not obtain optimality, the solution has a 4.72% gap. The fact that

the path flow model indeed has an overall, better performance than the arc flow model,

becomes clear when comparing the average values. The path flow models achieve solutions

with objective values 11.46% better than the arc flow model on average. With regards to

the solution times, the path flow model is on average 14.04% better. A major reason for

the better performance of the path flow model is the results of the LP relaxations, which

are considerable tighter for the path flow model than for the arc flow model. This gives

a lower initial upper bound, and the optimality gap are confined faster. The path flow

model achieves LP relaxations that are on average 4.08% better than the arc flow model.

On average the arc flow model and path flow model achieve gaps of 17.25% and 3.46%,

respectively. As a consequence of these results, only the path flow model is evaluated

further.

7.2 Comparison of Different Speed Points

This section contains a comparison of the effect of speed optimization, and how the number

of speed points affects solution quality. To perform such a comparison, the path flow model

has been run for one, two and three speed points, respectively. The instances used are

the ones with a planning horizon of 120 days (see Table 6.1). The results from these

comparisons are shown in Table 7.2. The profits in the ”Profit” columns are a posteriori

values. The a posteriori speed optimization has been solved by using ten discrete speed

points, which gives negligible deviations from true fuel consumption function for this case.

The a posteriori optimization ensures that profit for all instances are compared on the

same basis. As a consequence of the a posteriori values, the values in the ”Profit” column

for three speed points deviate slightly from the ”Obj val.”-values in Table 7.1. The ”Gap”
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columns indicate the optimality gaps obtained before the a posteriori optimization. The

”Time” columns report the computational times in seconds.

Table 7.2: Comparison of different number of speed points.

1 speed point
(max)

2 speed points
(max/min)

3 speed points
(max/avg/min)

Instance Time Gap Profit Time Gap Profit Time Gap Profit

3 0.1 0.00% 20,175’ 11.1 0.00% 22,246’ 10.6 0.00% 23,308’
6 0.2 0.00% 27,666’ 3600.0 5.56% 28,555’ 3600.0 3.99% 28,852’
9 211.4 0.00% 41,207’ 3600.0 13.61% 42,367’ 3600.0 12.62% 42,359’
12 994.3 0.00% 51,173’ 3600.0 16.16% 50,781’ 3600.0 13.76% 51,553’

Average 301.5 0.00% 35,055’ 2702.8 8.83% 35,987’ 2702.7 7.59% 36,518’

When reviewing Table 7.2, the instances with one speed point are all solved to optimality

within the maximum time limit. For both two and three speed points, three of four

instances are run for 3600 seconds, the maximum time. However, the profits are lower

than for the instances with speed optimization. Two and three speed points achieve

profits that are 2.66% and 4.17% better than without speed optimization, respectively.

This means that there is a trade-off between solution time and the obtained profit, when

discussing which model performs best. Based on the fact that the solution time is within

an hour, whereas profit is in terms of million dollars, the models with integrated speed

optimization is considered to have a higher utility value. When comparing the results

for two and three speed points, the average solution times are essentially the same, but

the profit obtained is somewhat better when using three speed points. Therefore, all

further model evaluations are performed with three speed points. When comparing the a

posteriori profit values in table 7.2, and the objective value of the path flow formulation

in Table 7.1, there are fairly small differences. This in turn shows that a linearization

based on linear combinations of three speed points gives a good approximation of the real

profit. Bear in mind that the a posteriori profit will always be at least as good as the

obtained objective value. For convenience, the word ”profit” will throughout this thesis

be used to describe the profit obtained as objective value, but without a posteriori speed

optimization.

Another observation from running the models for different number of speed points, is the
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number of voyages performed by spot ships. The use of spot ships per instance is shown

in Table 7.3.

Table 7.3: The use of spot ships for the models with different number of speed points.

Instance 1 speed point 2 speed points 3 speed points

3 3 3 3
6 1 3 2
9 0 7 6
12 0 1 3

Average 1 4 4

The number of voyages carried out by spots ships are higher when integrating speed

optimization into the model. The model with one speed point charter in spot ship only

to serve one voyage (on average). Both of the models with two and three speed points

charter in spot ships to serve four voyages (on average). All values are average number

of voyages. Especially instance 9 raises the average, where seven and six voyages are

served by spot ships for two and three speed points, respectively. A likely reason for this

could be that instance 9 is a bit unbalanced regarding the amount of sailing to carry

out, and the number of ships. Nonetheless, none of the instances uses an unreasonable

number of spot ships. It should also be pointed out that all the instances are solved to

optimality for the model with one speed point, where as there are optimality gaps for

the instances for the models with two and three speed points (except the smallest one).

A proven optimal solution may use fewer spot ships. The use of some spot ships gives

more planning flexibility and may be profitable to use, hence the use of spot ships is not

necessarily negative.

7.3 Path Reduction Heuristics

This section regards a study of the path reduction heuristics presented in Chapter 5.2. In

this section, the effectiveness of each heuristic rule is tested. The main goal when imple-

menting heuristics is to achieve fairly good solutions faster, or to be able to solve larger

instances that are unsolvable (within reasonable time) without any heuristics. Therefore,
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the largest instance within each set 2-4 (instance 6, 9, 12) are used during the testing of

the heuristics. All of these instances have obtained fairly good solutions within the solu-

tion time of 3600 seconds, as shown in Table 7.1, but not optimal. The profits without

heuristics are used as reference values throughout this section, in order to measure the

performance of the heuristic rules. When considering path reduction heuristics, there are

two effects that influence the solution quality and they work in the opposite directions.

When removing paths, there is a risk that some good, or even optimal, paths are elimi-

nated from the problem. That does in turn cause the heuristics to yield poorer solutions

since good paths are removed from the solution space. At the same time, the reduction in

paths results in a smaller, less complicated problem for the solver, and thus the solver is

able to get closer to the true optimal solution of the (reduced) problem and obtain a better

solution. Hence, as long as the original solution is not the optimal solution, a heuristic

may obtain solutions with either increasing or decreasing objective values compared to

the original solution. If the original problem has been solved to optimality, the solutions

obtained with heuristics applied, can never surpass the original solution.

7.3.1 Maximum Percentage Ballast Sailing

Results for running instances with the maximum percentage ballast sailing heuristic rule

is given in Table 7.4. The heuristic is tested for four carefully selected acceptance levels,

45%, 40%, 35% and 30%. These values represent the maximum percentage ballast sailing

compared to total distance sailed in each path. The values of the acceptance levels are

selected based on the case data and preliminary testing, and ensures a fair variation in

number of paths removed, without compromising the profit too much.
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Table 7.4: Results for the maximum percentage ballast heuristic.

Instance
% Max.
Ballast

Paths
% Paths
Eliminated

Time Profit % Impr,

6

- 3,277 0% 3600.0 28,795’ -
45% 2,076 36% 3600.0 28,821’ 0.09%
40% 1,729 46% 3600.0 28,816’ 0.07%
35% 1,160 64% 31.2 28,531’ -0.92%
30% 833 74% 8.8 27,506’ -4.47%

9

- 69,776 0% 3600.0 42,227’ -
45% 35,002 50% 3600.0 42,290’ 0.15%
40% 22,006 68% 3600.0 43,053’ 1.95%
35% 10,840 84% 3600.0 43,480’ 2.97%
30% 6,623 91% 3600.0 43,732’ 3.56%

12

- 138,292 0% 3600.0 51,161’ -
45% 75,604 45% 3600.0 48,826’ -4.56%
40% 50,989 63% 3600.0 51,457’ 0.58%
35% 33,160 76% 3600.0 51,154’ -0.01%
30% 19,396 86% 3600.0 51,906’ 1.46%

When analyzing the results in Table 7.4, there are several interesting findings. First of all,

the enormous reduction in run time for instance 6 for acceptance level 35% 30% should

be noted. These instances have a reduction in run time above 99%, 99,13% and 99,76%

to be exact. The test with acceptance level of 35 % yield a very good solution quality,

whereas the one with 30 % acceptance level has a severe decrease. Throughout these

results, 8 of the 12 tests achieve an even higher profit within the same run time, as the

original instance did without the heuristic rule. Another interesting result here is for the

30% acceptance level. The heuristic cuts as much as 74%, 91% and 86% of all paths

(average of 84%), while upholding a good profit. Based on the results it is evident that

this heuristic rule is quite effective. They yield the desired effects of reduction in run time

or increase in the solution quality, and at the same time reduces the number of paths

drastically.
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7.3.2 Maximum Length of Ballast Sailing

The results of running instances with the maximum length of ballast sailing heuristic

rule are provided in Table 7.5. The heuristic is tested for two acceptance levels, 10,000

and 10,500 nautical miles. These values have been chosen based on the mean plus the

standard deviation of ballast distance. The mean and standard deviation is calculated

out of the set of the distances of all ballast sailing legs for each instance. On average, the

sum of the mean and the standard deviation is between 10,000 and 10,500 nautical miles.

The threshold values for this heuristic has therefore been rounded to these two values.

Table 7.5: Results for the maximum length of ballast sailing heuristic.

Instance
Max. Ballast
Distance

Paths
% Paths
Eliminated

Time Profit % Impr.

6
- 3,227 0% 3600.0 28,795’ -

10,500 2,395 26% 51.2 28,451’ -1.20%
10,000 1,659 49% 32.7 27,920’ -3.04%

9
- 69,776 0% 3600.0 42,227’ -

10,500 46,618 33% 3600.0 42,274’ 0.11%
10,000 37,774 46% 3600.0 42,511’ 0.67%

12
- 138,292 0% 3600.0 51,161’ -

10,500 93,022 33% 3600.0 49,205’ -3.82%
10,000 78,359 43% 3600.0 50,599’ -1.10%

The results of the maximum length of ballast sailing heuristics shows a greater impact

on the solution quality, compared to the maximum percentage ballast sailing heuristics.

Here, both instance 6 and 12 have a reduction in profit when applying the heuristics,

where instance 9 has marginally better solutions. As for the previous heuristic, instance

6 has a vast reduction in run time, here as well. In the trade-off between solution time

and quality, these values for instance 6 are promising. Even though this heuristic removes

quite few paths, in the range 26 % - 49 %, the effect on the profit is more severe, compared

to the previous one. This indicates that the acceptance criteria for this heuristic should

be chosen with utmost care. The huge advantage by using this heuristic is that it excludes

some ballast legs completely, both in the subproblems and in the master problem. This

causes fewer variables, and less input data to handle, which is favourable.
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7.3.3 Maximum Consecutive Waiting Days

Finally, for the individual testing of the heuristic rules, results for the maximum consec-

utive waiting days heuristic rule is given in Table 7.6. The heuristic is tested for three

carefully selected acceptance levels, 30, 20, and 10 days. These levels are chosen based on

preliminary testing of the instances.

Table 7.6: Results for the maximum consecutive waiting days heuristic.

Instance
Max. Wa-
iting Days

Paths
% Paths
Eliminated

Time Profit % Impr.

6

- 3,227 0% 3600.0 28,795’ -
30 2,554 21% 3600.0 28,857’ 0.21%
20 2,077 36% 3600.0 28,957’ 0.56%
10 1,365 58% 3600.0 28,964’ 0.59%

9

- 69,776 0% 3600.0 42,227’ -
30 59,273 15% 3600.0 42,603’ 0.89%
20 46,681 33% 3600.0 42,693’ 1.10%
10 29,383 58% 3600.0 42,443’ 0.51%

12

- 138,292 0% 3600.0 51,161’ -
30 120,876 13% 3600.0 49,502’ -3.34%
20 97,648 29% 3600.0 50,943’ -0.43%
10 63,545 54% 3600.0 49,879’ -2.51%

The results of the maximum consecutive waiting days heuristic are quite stable. For

instance 6, this is the only heuristics that consequently achieve better solutions. These

are good results regarding the fact that instance 6 has a low optimality gap without

heuristics (only 3,99 %). Instance 9 gets promising results as well, whereas instance

12 has a small decrease. Relatively to the other instances, instance 12 has the lowest

reduction in number of paths (in percent). The percentage of paths removed varies from

13% up to 58%.

7.4 Combinatorial Heuristic Study

This section shows the results from the combinatorial heuristic study. The study of

combining the different heuristics is based on the results from running the heuristics
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isolated. The combinations are formed by combining the various heuristic rules from the

previous section for different acceptance levels.

7.4.1 Testing of Heuristics Combinations

As shown in the previous subsection, the chosen values for each heuristic rule have pro-

vided various objective values by themselves without extreme cuts in number of paths.

Now, the aim is to maintain relatively good solution quality, but to remove a much higher

number of paths. Since the different heuristic rules has different functioning mode, they

are likely to remove different paths from the path set. All heuristic combinations are pre-

sented in Table C.1. Each combination has been named by a letter from A to X. These

letters will be refereed to later on, when a specific combination is in mind. All possible

combinations of heuristics have been tested and evaluated for instance 6, 9 and 12. By

running the heuristic combinations on instances that are already solved, the solutions are

comparable and gives information on the solution quality. Complete results are to be

found in Table C.2. Table 7.7 shows the specifics of the combinations that are further

analyzed throughout this section. Out of all the 24 combinations, combinations E, G and

J performed best on average. In addition to the three highest performing combinations,

combination X is also included. This combination is the most aggressive one and removes

most paths.

Table 7.7: Heuristic combinations

Comb.
Max Length

Ballast Sailing
Max. Consecutive

Waiting Days
Max. % Ballast

Sailing

E 10,500 20 45 %
G 10,500 20 35 %
J 10,500 10 40 %
X 10,000 10 30 %
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The results of running the heuristic combinations from Table 7.7 are shown in Table 7.8.

Table 7.8: Results of heuristic combinations.

Instance 6 Instance 9 Instance 12 Average

Comb. Paths Profit % Impr Paths Profit % Impr. Paths Profit % Impr. Profit % Impr.

None 3,277 28,926’ - 69,776 42,227’ - 138,392 51,161’ - 40,771’ -
E 970 28,327’ -1.63% 19,603 42,716’ 1.16% 42,338 51,841’ 1.33% 40,961’ 0.29%
G 596 27,946’ -2.95% 8,127 43,075’ 2.01% 20,431 52,098’ 1.83% 41,040’ 0.30%
J 487 28,240’ -1.93% 7,542 43,208’ 2.32% 18,294 52,305’ 2.24% 41,251’ 0.88%
X 268 26,659’ -7.42% 2,365 42,113’ -0.27% 6,956 52,740’ 3.09% 40,504’ -1.53%

Combinations E, G and J have a positive, average improvement, especially for the larger

instances (8 and 12). Combination X performs exceptionally well for the largest instance

(12). Combination X removes 95% of all paths, and still manages to get an improvement

of 3,09%. The results for Instance 6 may seem quite poor as they all have a negative

improvement, but the solutions are achieved much faster than without heuristics.

7.4.2 Results of Larger Instances

An important feature of heuristics is to solve instances that does not achieve any solutions

within a reasonable amount of time by the original model. In order to test this effect,

a new set of instances are used. These instances are based on instance 6, 9 and 12,

respectively, but the time horizon have been extended up from 120, to 150 and 180 days.

Due to the magnitude of the problem, instance 12 has only been extended to 150 days,

not 180. An overview of these new instances is displayed in Table 7.9.

Table 7.9: Overview of specifications for larger test instance.

Instance Ships Trades Voyages Horizon

13 10 5 31/36 150
14 10 5 37/43 180
15 14 7 58/63 150
16 14 7 69/75 180
17 18 9 74/79 150

These new instances have been run without applying any heuristics or combinations of

these. This is done out of two reasons, first, to see how they perform by themselves.
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Second, to obtain a reference value for the heuristics, in order to say something about

the solution quality and path reduction when heuristics are applied. The results of this

testing are displayed in Table 7.10 below.

Table 7.10: Results of larger instances without heuristics.

Instance Paths Time Gap Profit

13 20,817 3600.0 9.77% 35,275’
14 83,491 3600.0 14.39% 40,318’
15 642,487 86400.0 14.15% 50,830’
16 6,220,0001 - - -
17 1,395,830 86400.0 18.70% 61,787’

1 Estimated number of paths

Table 7.10 shows that Instance 13 and 14 actually obtain fairly good solutions within

3600 seconds without any heuristics applied, even though the planning horizon has been

extended. Instance 15 obtained its first integer solution after 6431 seconds, of 49,971’ and

an gap of 19,43 %. However, due to this relatively large gap, the instance was run for 24

hours in order to obtain a better solution. This to ensure a fair basis for comparison and

measurement of the performance of the heuristics. As for Instance 17, it has been run for

24 hours as well. However, compared to Instance 15, the first solution was found much

later, after 78209 seconds, and this solution were the only one obtained. For Instance

16, the instance is far too large for the path generator and the solver to handle, and no

solution has been obtained at all. However, an estimation of total number of paths, based

on the number of paths for some ships within the instance are presented.

When solving these larger instances, the heuristic combinations presented in Table 7.7

are utilized. Results from running Instance 15-17 are shown in Tables 7.11, 7.12 and 7.13,

respectively.
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Table 7.11: Results of instance 15

Comb. Paths Time Profit % Impr.

None 642,487 86400.0 50,830’ -
E 149,659 3600.0 51,043’ 0.42%
G 52,939 3600.0 52,396’ 3.08%
J 48,839 3600.0 51,766’ 1.84%
X 12,261 3600.0 51,992’ 2.29%

For instance 15, with 14 ships and 150 days horizon, the results with heuristic rules

applied are quite good compared to the result without heuristics. The solutions obtained

are consistently better than the original solution, and the solutions are obtained within

3600 seconds, which is a massive improvement from the original solution time.

Table 7.12: Results of instance 16

Comb. Paths Time Gap Profit

None 6,220,000 - - -
J 232,073 3600.0 22.01% 57,041’
X 48,024 3600.0 12.99% 59,035’

For instance 16, where the time horizon has been prolonged up to 180 days, the model

does not achieve the desired outcomes. The ”Gap” column here represents the gap of

the problem with heuristics applied. The true optimality gap is at least as large as the

gaps presented here, likely much larger. Within the third instance set (Instance 7-9),

which instance 15 and 16 are extensions of, there is a trend of the profit increasing by

approximately 8,500’ USD per 30 days that are added to the planning horizon. This trend

seems to be slightly increasing per 30 days that are added. Based on this, the profits for

a planning horizon of 180 days should approximately be at least 60,000’ USD. This is

another indication that the obtained solutions are quite poor. Hence, the problem is of a

magnitude where the path flow model with heuristics does not work well.

For instance 17, based on preliminary testing and lack of solutions within 3600 seconds,

the maximum solution time has been increased up to 14400 seconds. In addition, the

heuristic rule that require a minimum number of voyages per path is also tested. Results

are displayed in Table 7.13, both with and without the minimum number of voyages
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per path heuristic rule. The limit for minimum number of voyages per path is set to

four voyages. This last heuristic rule is only applied in combination with the heuristic

combinations earlier presented, and not alone.

Table 7.13: Results of instance 17

Instance 17 Instance 17 min. 4 voy/ship

Comb. Paths Time Profits % Impr. Paths Time Profits % Impr.

None 1,395,830 86400.0 61,737’ - - - - -
E 343,809 14400.0 62,737’ 1.54 % 311,596 14400.0 60,446’ -2.17 %
G 141,834 17347.01 62,840’ 1.70 % 125,945 14400.0 62,566’ 1.26 %
J 126,319 14400.0 62,202’ 0.67 % 115,972 14400.0 62,579’ 1.28 %
X 38,354 14400.0 63,270’ 2.40 % 34,299 14400.0 63,491’ 2.76 %

Average 162,579 15136.8 62,762’ 1.58 % 146,953 14400.0 62,271’ 0.78 %

1 First solution found

Table 7.13 show that Instance 17, an instance that barely achieved one solution within 24

hours, obtain reasonably good solutions within four hours when heuristic rules applied.

With the exception of combination E with minimum 4 voyages, all combinations obtain

higher profits. This may be explained by the fact that the relatively large number of

paths, and that all ships have a minimum number of voyages that they need to sail,

makes the problem relatively hard to solve. An outstanding result for this instance, is

the result of the fiercest heuristic combination, Combination X with minimum 4 voyages.

This heuristic obtains the highest profit of all combinations. The combination eliminates

98 % of all possible paths, and the solution has an improvement of 2,76 %. Compared

to the best bound of the original run of instance 17, the optimality gap of Combination

X with minimum four voyages is 15,51 %. Solutions of good quality for an instance that

originally had almost 1.4 million paths are obtained within four hours. The effect of path

reduction heuristics is here proven to be an effective tool in order to solve larger problem

instances within reasonable time and with good solution quality.

66



7.5 Voyage Separation Requirement

This section regards a study of the effect of the voyage separation requirement. In the

first part of this section, a study that considers the relationship between the objective

value and the level of voyage separation is performed. The second part looks into the

effect of the combination of voyage separation and speed optimization, where a specific

trade is used as an example.

7.5.1 Relation Between Objective and Voyage Separation

It is interesting to see what effect the voyage separation requirement has on the objective

value of the model. One way of analyzing this effect would be to test different relaxations

and restrictions of the voyage separation requirement. In other words, one would like to

scale the separation parameter (Br), and observe how the objective value is affected by

different values of Br. Figure 7.2 shows how the voyage separation affects the objective

value based on Instance 8. In the figure, Br is scaled in a range from 0 to 1.75, where 1

equals the initial Br-values, and 0 is the equivalent of none voyage separation requirements

at all. This range ensures that all possible objective values are estimated, as a scaling of

1.75 makes the problem infeasible. This is due to the combination a very high Br-value

and the time windows. The value of Br when the problem turns infeasible varies from

instance to instance.
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Figure 7.2: Profit as a function of the voyage separation parameter, Br

Figure 7.2 shows that a higher relaxation of the voyage separation requirement gives a

marginally better objective value. This behaviour is as expected. However, the solutions

with low values for Br are most likely undesirable as they probably would breach the

”fairly evenly spread” term of the CoAs. The level of the voyage separation requirement

does not seem to have a very high impact on the solution value, as it is only for very high

values of Br that there is a significant drop in objective value. This proves that adding

the voyage separation requirement to the model causes a very low reduction in objective

value, and increases the delivered service quality to the charterers. The terms of the CoAs

are adhered to.

7.5.2 Relation Between Voyage Separation and Speed Optimiza-

tion

As this thesis concerns both the voyage separation requirement and speed optimization,

it is interesting to see how these two components behave in relation to each other. The

way that this is done is by checking how the voyage separation on one specific trade

route is affected by turning on and off the voyage separation and speed optimization.
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The possible combinations of voyage separation and speed optimization are: with both

speed optimization and voyage separation, with speed optimization and without voyage

separation, without speed optimization and with voyage separation and without both

speed optimization and voyage separation.

The voyage separation is compared by calculating the standard deviation of the intervals

between the actual starting times, compared to the perfect spread between voyages. The

trade route that is checked is the one with the most voyages. This trade route has a

perfect spread of 7 days, as the average frequency is 7 days (the number of days between

two following time windows are opened). The time windows for each voyage spans over 10

days. Thus, the time windows for the voyages on this given trade route are overlapping.

The results from comparing combinations of speed optimization and voyage separation for

this given trade are presented in Table 7.14. In order to make the results more reliable,

the standard deviations presented are average standard deviations, based on the actual

starting time for the voyages on the given trade, from several instances.

Table 7.14: Effects of voyage separation and speed optimization combined

Without Voyage Separation With Voyage Separation

With Speed Optimization
Standard deviation in days 4.65 2.69
Standard deviation in % 66% 38%

Without Speed Optimization
Standard deviation in days 3.87 2.81
Standard deviation in % 55% 40%

At first glance, Table 7.14 shows, as expected, that the separation of voyages is signifi-

cantly better when the voyage separation requirement is applied. In addition, there are

a couple more takeaways from this table that are important to point. When comparing

the separation with and without speed optimization it is evident that the improvement

in separation is higher when speed optimization is applied. This is an indication that it

should be of even higher importance to include the voyage separation requirement when

speed optimization is applied. Implementing speed optimization gives a higher probabil-

ity of utilizing broader parts of the time windows. Hence, a greater variation in selected
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starting times for the voyages, and thus a worse separation when voyage separation is

not considered. This is further substantiated by the fact that the worst separation is

not achieved when neither of the two are applied, but when speed optimization alone is

applied.

In order to illustrate the improved separation when the voyage separation requirement is

applied, the starting times of one trade route has been illustrated in Figure 7.3 with and

without voyage separation. The illustration is purely meant as an example of how the

spread of voyages on a trade route can be affected by the voyage separation requirement.

Figure 7.3: Starting times for voyages of a trade route.

Figure 7.3 shows that the spread of voyages is clearly better when the voyage separation

requirement is applied. Without voyage separation there are several voyages that are

clustered together on the time line, which in turn creates large gaps between voyages.

This effect is undesired. Keep in mind that the time windows for each voyage are still in

place, and will always ensure a minimum of spread of voyages throughout the planning

horizon. Both with and without speed optimization have some intervals that are fairly

long, as may be seen in Figure 7.3. The longest interval between two consecutive voyages

for each approach are 16 and 17 days, respectively. 17 days are the longest possible

interval for this given trade. Based om this, a possible addition to the given model could

be to introduce an upper limit of separation. However, there is a narrow line between

restricting the problem in order to make it more optimal, and making it infeasible.

70



7.6 Discussion of the Results

Up to this point, this chapter has mainly focused on the results achieved through the

mathematical models. But there may be more that lies behind the results than what

it may seem like from a comparison of results alone. This section aims to discuss some

underlying considerations that could be important to understand the results. These con-

siderations can be divided in two categories: managerial considerations and assumptions

and limitations with the models.

7.6.1 Managerial Considerations

The results presented in this chapter show promising aspects of integrating speed opti-

mization, however, it is not straightforward to apply these results in the real world. First

of all, a schedule maker in a shipping company has numerous aspects to consider, when

making ship schedules, not only the fleet deployment, even though it is the most impor-

tant part. There are rules and regulations to abide, crew schedules, perhaps seasonality

to account for and so on. Hence, the results in this thesis are based on a model for a part

of the real challenges that a schedule maker faces. It is important to remember the overall

picture. However, this thesis shows that optimization-based scheduling with integrated

speed optimization may be a very useful tool.

One of the useful aspects of optimization-based scheduling is the fact that it achieves the

best overall solution and consider all ships and routes at the same time. As shown in the

results presented above, the computational complexity is vastly increasing as the instance

size increases, especially when the time horizons are extended. The largest instances

solved in this study has 18 ships. Out in the real world, this would be a fairly small

fleet. The shipping market is difficult to enter, and there are several large players in

the market. The computational study is based on data from the shipping company Saga

Forrest Carriers. Since this data was collected, Saga Forrest Carriers has formed a joint

shipping pool operation with Westfal-Larsen Shipping, administrated under the company

Saga Welco (Holm, 2014). This means that the fleet composition that our data is based
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on does not exist anymore and the results achieved cannot directly be applied to a real-

world case. However, the computational study is an exemplification of the general models,

which in principle can be applied to any fleet size.

As shown in Section 7.4.2 the longest planning horizon that has been solved is 180 days,

for instances with 10 ships only. Beyond this point, the instances became far too large

and contain a huge amount of paths. The number of paths in Instance 16 and 17 give an

indication of the enormous growth in number of paths. An obvious benefit of being able

to use a longer planning horizon would have been to be able to make longer sailing sched-

ules. Most shipping companies do not use that long schedules in their planning. What

schedules with a longer planning horizon is actually useful for, is as basis in budgeting and

forecasting for the company. Therefore, from a managerial point of view, longer planning

horizons would be favourable.

In reality, the shipping industry and the global market are much more dynamic and

nuanced, than what has been taken account for in this study. None of the models presented

in this report consider uncertainty, even though there are numerous sources of uncertainty

in the problem . Uncertainties that might be considered are related to, among others,

weather conditions, fuel prices and the global economy with its regulations and sanctions.

Of these, weather conditions and fuel prices can be considered short-term, whereas the

global economy is a long-term uncertainty and less volatile. One should mostly consider

the short-term uncertainties when reviewing the results. In a real-world situation, the

models would be run several times within a planning horizon and data would be updated

regularly and minimizing uncertainties. Updating the data does especially reduce the

importance of long-term uncertainty in the model.

Another difference that need to be pointed out, is the difference in profit achieved with and

without the heuristics shown in Section 7.3 and 7.4. If a shipping company would utilize

optimization in their planning, they are interested in obtaining better fleet deployments

than they can achieve through manual planning. An optimization-based solution would be

far less interesting if it takes a long time to calculate the desired solution. In other words,

a shipping company would prefer to have a good solution fast, rather than a marginally

better solution in a and spending far more time on the schedule. This is exactly what
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implementing heuristics in the solution process does. As mentioned in Section 3.1, Höegh

Autoliners applied an optimization-based model with heuristics, with good improvements

compared to manual planning. However, it is not straightforward to implement heuristics

into commercial software. In this computational study, the acceptance levels for each

heuristic rule has been selected with care and based on extensive preliminary testing. In

addition, this study has obtained results both with and without heuristics, and thus been

able to compare and ensure the quality of the obtained results. The acceptance levels

used in this study are customized for this specific data set, and not necessarily suitable

for other cases. Thus, to achieve general, applicable heuristics as those presented in this

study is not straightforward.

From a managerial point of view, the utilization of each ship is highly interesting. The

profit is related to the utilization and net gross sailing of each ship. This thesis does not

go into detail regarding utility specifically, but indirectly. The path reduction heuristics

described in Section 5.2 removes paths that are undesirable, and thereby the heuristic

rules indirectly remove paths with low utility. When these are put into combinations, all

remaining paths results in reasonably well utilized ships. Hence, a side effect of applying

heuristics is that a minimum of ship utility is achieved. However, there is not obtained

any results to say something about actual utility of the ships.

The models in this thesis have an overall objective of maximizing profit from the shipping

company’s point of view. From a managerial perspective, not only is the profit important,

but also the performance of the delivery is of high importance as well. If the shipping

company does not deliver a service which satisfies the charterers, they will run out of

business. An example where service performance is put up against profits, is when voyage

separation is discussed in Section 7.5.1. Here, it is discussed that a lower profit with a

better voyage separation should be regarded as a better solution, than one with higher

profit and no guarantee of voyage separation. The trade-off between profit, which is

concrete and easy to measure, and voyage separation, which is ”soft” and hard to measure,

is difficult. The most important part of the solution obtained by this thesis’s models, is

not the profit, but rather the actual fleet deployment. In the models presented above,

voyage separation requirements are modelled as hard constraints, without flexibility. By
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relaxing the separation constraints in the problem, one gives more flexibility to the solver,

and it may be able to find a fleet deployment that for various reasons may be preferable. A

fleet deployment with minor breaches of the fairly evenly spread requirements, may yield

good solutions. From a managerial standpoint, the interpretation of the fairly evenly

spread term is challenging to put into strict constraints and threshold values.

7.6.2 Assumptions and Limitations

There are some assumptions and limitations in this study that should be mentioned. As

described in Section 6, the fuel consumption function is assumed to be a second order

polynomial function of speed. This polynomial has three ship specific coefficients which

in reality varies from ship to ship. In this study, general estimates of reasonable value for

an average ship in this kind of shipping are used for these coefficients. The same values

are applied to all ships. As for the scaling factor used to calculate the reduced ballast fuel

consumption, this is the same for all ships as well. In addition, the fuel consumption is

dependent of other factors than speed as well. Such factors may be weather conditions,

the amount of fouling on the hull, maintenance of the motor etc. Hence, it is impossible

to have an exact fuel consumption function, and it will always be a source of inaccuracies,

both in the linearization and in the function itself. In addition, each ship has a sailing

speed interval, and can in theory sail with any speed in the interval. However, in practice

the theoretical maximum speed can only be achieved in good weather conditions. Thus,

in the execution of voyages, currents and weather conditions have an impact on service

speed and hence fuel consumption. It is important to keep in mind that the intention of

the analysis in this thesis is not to give exact data for a specific case, as mentioned earlier.

The data of the instances that the computational study is based on, are somewhat sim-

plified. The data consider several parameters to be identical for all ships, although this is

not necessarily true. All ships are assigned the same maximum and minimum speeds and

all ships are compatible with all trades. As the ships are designed differently and have

different engines they will in reality not have the same maximum and minimum speed.

Some ships may be too big for a port, and thus all ships cannot be compatible with all

trades. In addition, all ships have the same service time in ports for all voyage on a given
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trade route. When the ships have identical data, it will result in some symmetrical solu-

tions. These assumptions and limitations are obvious sources of error in the calculations.

However, as mentioned, the concepts of this thesis are universal, and all calculations are

based on realistic data, which provides reasonable results and analyses.
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Chapter 8

Concluding Remarks

In this thesis, an arc flow and a path flow formulation of the fleet deployment problem

within the liner shipping segment have been presented. Solving the fleet deployment

problem means to find the optimal deployment schedule for a fleet of ships. Both models

integrate speed optimization and voyage separation requirements. The two models are

implemented in the commercial solver Xpress IVE. The path flow model consists of a

decomposition, into a master problem and ship specific subproblems. The subproblems

are solved through a priori path generation of all feasible paths, using Matlab. The results

presented show that the path flow model outperforms the arc flow model with regard to

both solution time and profit.

To evaluate the speed optimization part of the problem, a posteriori speed optimization is

performed on the fleet deployment solutions, both with and without speed optimization.

Based on the results, the model was solved considerably faster when speed optimization

was not applied. However, integrating speed optimization achieves higher profits. When

the a posteriori speed optimization results in different profit, the underlying fleet deploy-

ment decisions have to be altered, thus the models with and without speed optimization

obtains different schedules. There is a trade-off between solution time and profit that

should be considered.

The number of paths in the path flow model increases with an exponential trend as the

problem size are increased, which in turn increases the problem complexity and makes the
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problem harder to solve. To obtain good solutions faster, heuristic rules in the a priori path

generation are implemented to reduce the total amount of paths. These heuristic rules

are tested both individually and in combination for different acceptance levels, i.e. how

strict the rules are enforced. Testing of these heuristics show that it is possible to reduce

the number of paths drastically and still obtain solutions of high quality. Especially larger

test instances, which are not solved to optimality without these heuristic rules, performs

exceptionally well when the combinatorial heuristic rules are applied and obtains increased

profits. For the largest instances up to 98 % of paths are removed, and improved results

are still obtained. The largest instance that is solvable, and achieves a reasonable profit,

with heuristics contains 18 ship, 9 trade routes, 79 voyages and a planning horizon of 150

days.

The voyage separation requirement is enforced to secure a fairly evenly spread in time

between voyages. The effects of applying varying degrees of the voyage separation require-

ment are tested. Results show that applying the constraint causes a marginal reduction

in profit with the benefit of a better separation between voyages. The combination of the

voyage separation requirement and speed optimization is also tested. These tests show

that the best separation is achieved when both speed optimization and voyage separa-

tion is applied, and the worst separation when only the speed optimization is applied.

This shows that applying the voyage separation requirement should be of even higher

importance when speed optimization is integrated with the problem.

The findings of the computational study prove that the path flow model with speed

optimization and voyage separation should be considered a useful tool when solving the

fleet deployment problem. As time moves on, the amount of available computational

power will increase continuously, and so will the importance of utilizing optimization

based scheduling within the shipping industry.
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Chapter 9

Future Research

The field of maritime fleet deployment has been researched to some extent. However,

there are still many interesting approaches to investigate further. The integrated problem

with speed optimization and voyage separation requirements tend to become very large,

and more sophisticated models and solution methods should be explored. A suggestion

would be to use a branch-and-price algorithm, i.e. a dynamic column generation approach

instead of generating the paths a priori. By using dynamic column generation, where

only the most promising paths are generated and sent to the master problem. Such an

approach may offer great advantages, especially for larger, real-world cases. Different

approaches that solve the problem by using more advanced heuristics or other non-exact

methods, such as metaheuristics, could also be interesting to look into. An example

of a heuristic approach is the rolling horizon heuristic. In reality, the scheduling for a

shipping company is a more or less continuous process, where the schedule is reoptimized

and prolonged before the planning horizon is carried out. This resembles the way that

the rolling horizon heuristic work, where the decisions for the entire planning horizon is

divided into shorter time periods. First, the decisions for the first time period are taken,

then the decisions for the next period is done based on the previous decisions, and so on.

The shipping industry is under constant uncertainty and influenced by several factors, as

discussed in section 7.6. To implement uncertainty as a factor in the scheduling process

may yield additional value of the solutions for the decision maker. A way to do this may
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be a robust optimization approach.

As for the models presented in this thesis, there are limitations and assumptions, as

discussed in 7.6, that could be explored further in detail, in order to utilize the fleet

capacity to the most and make the models even more realistic. The basis for the models

is to serve a given number of voyages on a given set of trades. The models do not

distinguish between ships when it comes to load capacities or the requested demand per

voyage. Two different approaches to accommodate these limitations are suggested. First,

a model that implements that each voyage has a given demand, where demand covering

restrictions may be added. By including this, the model ensures that a suitable sized

ship serves each voyage, and hence less overcapacity. Second, if demands are introduced,

stochastic analysis and forecasting could make the basis for the decision making stronger,

and more adaptable to a rapidly changing market.
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Appendix A

Arc Flow Formulation

A.1 Notation

Sets

V Set of ships treated individually.

R Set of trade routes.

Rv Set of trade routes that ship v can sail.

N Set of four types of nodes: Origin nodes, destination nodes,

voyage nodes and maintenance nodes.

A Set of arcs.

Av Set of arcs that ship v can service.

NC Set of contracted (compulsory) voyage nodes.

NO Set of spot (optional) voyage nodes.

NM
v Set of nodes that correspond to required ship yard

maintenance for ship v.

Nv Set of all nodes in N that correspond to voyages that ship

v can service.

Ir Set of voyages on trade route r.

S Set of speed alternatives.
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Parameters

TB
vriqjs The time it takes ship v to sail the arc ((r,i),(q,j )) with

speed alternative s.

CB
vriqjs The cost corresponding to sail the arc ((r,i),(q,j )) for

ship v with speed alterative s.

TB
vo(v)ris The time it takes ship v to sail from its origin o(v) to the

start of voyage(r,i) with speed alternative s.

CB
vo(v)ris The cost corresponding to sail with speed s from its origin o(v)

to the start of voyage(r,i) for ship v.

Tvris The time it takes ship v to sail the voyage (r,i) with speed

alternative s.

Cvris The cost corresponding to sail the voyage (r,i) with speed s for ship v.

Rri The revenue, freight income minus port costs for a given voyage (r,i)

CS
ri The cost of chartering a spot ship to service voyage (r,i) on

trade r.

Eri The earliest time for starting voyage i on trade r.

Eo(v) The earliest time ship v can leave its origin o(v).

Lri The latest time for starting voyage i on trade r.

Br The minimum accepted time between two consecutive

voyages on trade r.

Variables

xvriqj 1 if ship v travels directly from node (r,i) to node (q,j ),

0 otherwise

xvo(v)ri 1 if ship v travels from its origin node o(v) to node (r,i),

0 otherwise

xvrid(v) 1 if node (r,i) is the last node ship v visits before d(v),

xvo(v)d(v) 1 if ship v does not service any voyages at all, 0 otherwise

0 otherwise

wB
vriqjs The weight of sailing with speed alternative s for ship v
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on voyage (r,i).

from node (r,i) to node (q,j )

wvris The weight of sailing with speed alternative s for ship v

on voyage (r,i)

wB
vo(v)ris The weight of sailing with speed alternative s for ship v

from origin node o(v) to node (r,i),

uS
ri 1 if voyage i on trade r is serviced by a chartered

spot ship, 0 otherwise

tri The time for start of voyage i of trade r.

A.2 The model

max
∑
v∈V

∑
r∈Rv

∑
i∈Ir

∑
s∈S

(Rri − Cvris)wvris

−
∑
v∈V

∑
r∈Rv

∑
i∈Ir

∑
s∈S

CB
vo(v)riswvo(v)ris

−
∑
v∈V

∑
r∈Rv

∑
i∈Ir

∑
q∈Rv

∑
j∈Iq

∑
s∈S

CB
vriqjsw

B
vriqjs +

∑
r∈R

∑
i∈Ir

(Rri − CS
ri)u

S
ri

(A.1)

s.t.∑
v∈Vr

[ ∑
q∈Rv

∑
j∈Iq

xvriqj + xvrid(v)

]
+ uS

ri = 1, (r, i) ∈ NC (A.2)

∑
v∈Vr

[ ∑
q∈Rv

∑
j∈Iq

xvriqj + xvrid(v)

]
≤ 1, (r, i) ∈ NO (A.3)

∑
q∈Rv

∑
j∈Iq

xvriqj + xvrid(v) = 1, v ∈ V , (r, i) ∈ NM
v (A.4)

xvo(v)d(v) +
∑
r∈Rv

∑
i∈Ir

xvo(v)ri = 1, v ∈ V (A.5)

xvrid(v) +
∑
q∈Rv

∑
j∈Iq

xvriqj −
∑
q∈Rv

∑
j∈Iq

xvqjri − xo(v)ri = 0,

v ∈ V , r ∈ Rv, i ∈ Ir

(A.6)
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xvo(v)d(v) +
∑
r∈Rv

∑
i∈Ir

xrid(v) = 1, v ∈ V (A.7)

xvo(v)ri −
∑
s∈S

wo(v)ris = 0, v ∈ V , r ∈ Rv, i ∈ Ir (A.8)

xvriqj −
∑
s∈S

wvriqjs = 0, v ∈ V , ((r, i), (q, j)) ∈ Av (A.9)

xvrid(v) +
∑
q∈Rv

∑
j∈Iq

xvriqj −
∑
s∈S

wvris = 0, v ∈ V , r ∈ Rv, i ∈ Ir (A.10)

Eo(v) +
∑
s∈S

TB
vo(v)riswvo(v)ris − tri − Eo(v)(1− xvo(v)ri) ≤ 0,

v ∈ V , r ∈ Rv, i ∈ Ir

(A.11)

tri +
∑
s∈S

(Tvriswvris + TB
vriqjs)wvriqjs − tqj − Lri(1− xvriqj) ≤ 0,

v ∈ V , ((r, i), (q, j)) ∈ Av

(A.12)

Eri ≤ tri ≤ Lri, r ∈ R, i ∈ Ir (A.13)

tr,i+1 − tri ≥ Br, r ∈ R, i ∈ Ir\{nr} (A.14)

xvo(v)d(v) ∈ {0, 1}, v ∈ V (A.15)

xvo(v)ri ∈ {0, 1}, v ∈ V , r ∈ Rv, i ∈ Ir (A.16)

xvrid(v) ∈ {0, 1}, v ∈ V , r ∈ Rv, i ∈ Ir (A.17)

xvriqj ∈ {0, 1}, v ∈ V , ((r, i), (q, j)) ∈ Av (A.18)

wvo(v)ris ∈ [0, 1], v ∈ V , r ∈ Rv, i ∈ Ir, s ∈ S (A.19)

wvris ∈ [0, 1], v ∈ V , r ∈ Rv, i ∈ Ir, s ∈ S (A.20)

wvriqjs ∈ [0, 1], v ∈ V , ((r, i), (q, j)) ∈ Av, s ∈ S (A.21)

tri > 0, r ∈ Rv, i ∈ Ir (A.22)

uS
ri,∈ {0, 1} r ∈ Rv, i ∈ Ir (A.23)
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Appendix B

Path Flow Formulation

B.1 Notation

Sets

V Set of ships treated individually.

R Set of trade routes.

Rv Set of trade routes that ship v can sail.

N Set of four types of nodes: Origin nodes, destination nodes,

voyage nodes and maintenance nodes.

A Set of arcs.

Av Set of arcs that ship v can service.

NC Set of contracted (compulsory) voyage nodes.

NO Set of spot (optional) voyage nodes.

NM
v Set of nodes that correspond to required ship yard

maintenance for ship v.

Nv Set of all nodes in N that correspond to voyages that ship

v can service.

Ir Set of voyages on trade route r.

S Set of speed alternatives.

Pv Set of all feasible paths for ship v.
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Pvri Set of all paths where ship v sails voyage i on route r.

Pvo(v)ri Set of all paths where voyage i on route r is the first voyage

that ship v performs from its origin.

Pvriqj Set of all paths where voyage j on trade route q directly follows

voyage i on route r for ship v.

Parameters

TB
vriqjs The time it takes ship v to sail the arc ((r,i),(q,j )) with

speed alternative s.

CB
vriqjs The cost corresponding to sail the arc ((r,i),(q,j )) for

ship v with speed alterative s.

TB
vo(v)ris The time it takes ship v to sail from its origin o(v) to the

start of voyage(r,i) with speed alternative s.

CB
vo(v)ris The cost corresponding to sail with speed s from its origin o(v)

to the start of voyage(r,i) for ship v.

Tvris The time it takes ship v to sail the voyage (r,i) with speed

alternative s.

Cvris The cost corresponding to sail the voyage (r,i) with speed s

for ship v.

Rri The revenue, freight income minus port costs for a given

voyage (r,i)

CS
ri The cost of chartering a spot ship to service voyage (r,i) on

trade r.

Eri The earliest time for starting voyage i on trade r.

Evpri The earliest starting time for ship v on voyage i on trade route r

for a given path p.

Eo(v) The earliest time ship v can leave its origin o(v).

Lri The latest time for starting voyage i on trade r.

Br The minimum accepted time between two consecutive

voyages on trade r.
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Variables

zvp 1 if ship v sail path p, and 0 otherwise.

tvri The start time of voyage i on route r for ship v.

tSri The start time of a spot ship for sailing voyage i on route r.

wB
vriqjs The weight of sailing with speed alternative s for ship v

on voyage (r,i).

from node (r,i) to node (q,j )

wvris The weight of sailing with speed alternative s for ship v

on voyage (r,i)

wB
vo(v)ris The weight of sailing with speed alternative s for ship v

from origin node o(v) to node (r,i),

uS
ri 1 if voyage i on trade r is serviced by a chartered

spot ship, 0 otherwise

B.2 The model

max
∑
v∈V

∑
r∈Rv

∑
i∈Ir

[∑
s∈S

(Rri − Cvris)wvris −
∑
q∈Rv

∑
j∈Ir

∑
s∈S

CB
vriqjsw

B
vriqjs

−
∑
s∈S

CB
vo(v)risw

B
vo(v)ris

]
+
∑
r∈R

∑
i∈Ir

(Rri − CS
ri)u

S
ri

(B.1)

s.t.∑
v∈Vr

∑
p∈Pvri

zvp + uS
ri = 1, (r, i) ∈ NC (B.2)

∑
v∈Vr

∑
p∈Pvri

zvp ≤ 1, (r, i) ∈ NO (B.3)

∑
p∈Pv

zvp = 1, v ∈ V (B.4)

∑
s∈S

wvris =
∑

p∈Pvri

zvp, v ∈ V , r ∈ Rv, i ∈ Ir (B.5)

∑
s∈S

wB
vo(v)ris =

∑
p∈Pvo(v)ri

zvp, v ∈ V , r ∈ Rv, i ∈ Ir (B.6)
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∑
s∈S

wB
vriqjs =

∑
p∈Pvriqj

zvp, v ∈ V , r ∈ Rv, i ∈ Ir, q ∈ Rv, j ∈ Iq (B.7)

∑
p∈Pvri

Evprizvp ≤ tvri ≤
∑

p∈Pvri

Lrizvp, v ∈ V , r ∈ Rv, i ∈ Ir (B.8)

Eriu
S
ri ≤ tSri ≤ Lriu

S
ri, r ∈ R, i ∈ Ir (B.9)∑

s∈S

(
TB
vo(v)ris + Eo(v)

)
wB

vo(v)ris ≤ tvri, v ∈ V , r ∈ Rv, i ∈ Ir (B.10)

tvri +
∑
s∈S

(
Tvriswvris + TB

vriqjsw
B
vriqjs + (Lri + Tvri,1)w

B
vriqjs

)
− Lri − Tvri,1 − tvqj ≤ 0, v ∈ V , r ∈ Rv, i ∈ Ir, q ∈ Rv, j ∈ Iq

(B.11)

Br +
∑
v∈V

tvri + tSri −
∑
v∈V

tvr,i+1 − tSr,i+1 ≤ 0, r ∈ R, i ∈ Ir\{nr} (B.12)

zvp ∈ {0, 1}, v ∈ V , p ∈ Pv (B.13)

uS
ri ∈ {0, 1}, r ∈ R, i ∈ Ir (B.14)

wvris ∈ [0, 1], v ∈ V , r ∈ Rv, i ∈ Ir, s ∈ S (B.15)

wB
vriqjs ∈ [0, 1], v ∈ V , r ∈ Rv, i ∈ Ir, q ∈ Rv, j ∈ Iq, s ∈ S (B.16)

wB
vo(v)ris ∈ [0, 1], v ∈ V , r ∈ Rv, i ∈ Ir, s ∈ S (B.17)

tSri > 0, r ∈ Rv, i ∈ Ir (B.18)

tvri > 0, v ∈ V , r ∈ Rv, i ∈ Ir (B.19)
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Appendix C

Tables

95



Heuristic Combinations

Table C.1: Heuristic combinations with acceptance levels.

Comb.
Max. Length

Ballast Sailing
Max. Consecutive

Waiting Days
Max. % Ballast

Sailing

A 10,500 30 45 %
B 10,500 30 40 %
C 10,500 30 35 %
D 10,500 30 30 %
E 10,500 20 45 %
F 10,500 20 40 %
G 10,500 20 35 %
H 10,500 20 30 %
I 10,500 10 45 %
J 10,500 10 40 %
L 10,500 10 35 %
L 10,500 10 30 %
M 10,000 30 45 %
N 10,000 30 40 %
O 10,000 30 35 %
P 10,000 30 30 %
Q 10,000 20 45 %
R 10,000 20 40 %
S 10,000 20 35 %
T 10,000 20 30 %
U 10,000 10 45 %
V 10,000 10 40 %
W 10,000 10 35 %
X 10,000 10 30 %
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Results of Heuristic Combinations

Table C.2: Results of all heuristic combinations.

Instance 6 Instance 9 Instance 12 Average

Comb. Paths Profit % Impr Paths Profit % Impr. Paths Profit % Impr. Profit % Impr.

None 3,277 28,926’ - 69,776 42,227’ - 138,392 51,161’ - 40,771’ -
A 1,213 28,327’ -1.63% 24,737 42,655’ 1.01% 52,925 51,325’ 0.32% 40,769’ -0.10%
B 1,006 28,327’ -1.63% 16,463 42,653’ 1.01% 37,888 51,214’ 0.10% 40,731’ -0.17%
C 746 27,946’ -2.95% 10,424 43,349’ 2.66% 25,815 51,710’ 1.07% 41,001’ 0.26%
D 535 27,012’ -6.19% 5,074 42,845’ 1.46% 15,354 52,012’ 1.66% 40,623’ -1.02%
E 970 28,327’ -1.63% 19,603 42,716’ 1.16% 42,338 51,841’ 1.33% 40,961’ 0.29%
F 798 28,327’ -1.63% 12,721 43,180’ 2.26% 29,782 51,218’ 0.11% 40,908’ 0.25%
G 596 27,946’ -2.95% 8,127 43,075’ 2.01% 29,782 52,098’ 1.83% 41,040’ 0.30%
H 430 26,670’ -7.38% 3,944 42,700’ 1.12% 11,972 52,148’ 1.93% 40,506’ -1.44%
I 600 28,240’ -1.93% 11,884 43,121’ 2.12% 26,420 51,493’ 0.65% 40,951’ 0.28%
J 487 28,240’ -1.93% 7,542 43,208’ 2.32% 18,294 52,305’ 2.24% 41,251’ 0.88%
L 371 27,304’ -5.18% 4,765 43,567’ 3.17% 12,271 51,978’ 1.60% 40,950’ -0.14%
L 270 26,659’ -7.42% 2,408 42,713’ 1.15% 7,115 52,632’ 2.87% 40,668’ -1.13%
M 1,000 27,920’ -3.04% 22,065 42,830’ 1.43% 47,471 50,490’ -1.31% 40,413’ -0.97%
N 866 27,920’ -3.04% 15,335 42,772’ 1.29% 35,200 51,588’ 0.83% 40,760’ -0.30%
O 713 27,641’ -4.01% 10,013 42,905’ 1.61% 24,656 51,918’ 1.48% 40,821’ -0.31%
P 533 27,012’ -6.19% 5,003 42,888’ 1.56% 15,091 52,321’ 2.27% 40,740’ -0.79%
Q 801 26,937’ -6.45% 17,297 41,523’ -1.67% 37,601 51,684’ 1.02% 40,048’ -2.37%
R 688 26,937’ -6.45% 11,768 42,168’ -0.14% 27,473 51,919’ 1.48% 40,341’ -1.70%
S 565 26,670’ -7.38% 7,760 42,194’ -0.08% 19,433 51,981’ 1.60% 40,282’ -1.95%
T 428 26,670’ -7.38% 3,876 42,144’ -0.20% 11,738 52,921’ 3.44% 40,578’ -1.38%
U 510 26,914’ -6.53% 10,431 41,859’ -0.87% 23,210 52,083’ 1.80% 40,285’ -1.87%
V 435 26,914’ -6.53% 6,979 42,361’ 0.32% 16,759 51,965’ 1.57% 40,413’ -1.55%
W 357 26,659’ -7.42% 4,563 42,302’ 0.18% 11,639 52,103’ 1.84% 40,354’ -1.80%
X 268 26,659’ -7.42% 2,365 42,113’ -0.27% 6,956 52,740’ 3.09% 40,504’ -1.53%

97


	List of Tables
	List of Figures
	Introduction
	Problem Description
	General Description
	Fuel Consumption and Speed Optimization
	Voyage Separation Requirement
	Example of Fleet Deployment and Speed Optimization
	Problem summary

	Literature Review
	Fleet Deployment in Maritime Transportation
	Voyage Separation Requirement in Transportation
	Speed Optimization in Maritime Transportation
	Decomposition Methods in Maritime Transportation

	Mathematical Models
	Linearization of Fuel Consumption
	Arc Flow Model
	Notation
	The Model
	Linearization of Non-linear constraints

	Path Flow Model
	Additional notation for the Path Flow Model
	The Model

	Modelling Choices

	Path Generation
	Path Generation in General
	Path Reduction Heuristics
	Maximum Percentage Ballast Sailing
	Maximum Length of Ballast Sailing
	Maximum Consecutive Waiting Days
	Minimum Number of Voyages per Path


	Test Instances
	Computational Study
	Comparison of the Arc Flow and Path Flow Models
	Comparison of Different Speed Points
	Path Reduction Heuristics
	Maximum Percentage Ballast Sailing
	Maximum Length of Ballast Sailing
	Maximum Consecutive Waiting Days

	Combinatorial Heuristic Study
	Testing of Heuristics Combinations
	Results of Larger Instances

	Voyage Separation Requirement
	Relation Between Objective and Voyage Separation
	Relation Between Voyage Separation and Speed Optimization

	Discussion of the Results
	Managerial Considerations
	Assumptions and Limitations


	Concluding Remarks
	Future Research
	Bibliography
	Arc Flow Formulation
	Notation
	The model

	Path Flow Formulation
	Notation
	The model

	Tables

