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Problem description
How do decision-dependent changes to a firm’s stochastic environment affect op-
timal investment strategies and the role of uncertainty?

Paper 1: What is the optimal entry strategy for a firm that can alter the growth
rate of a potential project through investment, when the project is subject to a
stochastic environment? How is the strategy affected if this revenue-enhancing
investment is undertaken prior to committing to launching the project?

Paper 2: What is the optimal investment strategy of a firm in switching from an
established product to bringing a new product on the market, if this switch changes
both the growth and volatility of the firm’s profits? What is the role of the pre-
and post-investment uncertainty on the optimal strategy?
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Summary
This thesis investigates the optimal investment decisions of a firm, when the char-
acteristics of the firm’s stochastic environment are dependent on these decisions.
We model situations where the market the firm operates in responds to the in-
vestment conducted by the firm, and therewith affects the characteristics of the
firm’s stochastic profit flow. The thesis is comprised of two papers, which focus
on different specifications of such investment problems.
The first paper considers the case where a firm has the opportunity to enter a

novel market. Prior to that it has the possibility to undertake a revenue-enhancing
pre-investment. We find that there is an incentive for the firm to invest in two
discrete steps, undertaking the revenue-enhancement before the investment to en-
ter the market. We find that the relationship between uncertainty and investment
timing can be ambiguous. Increased uncertainty can both delay or accelerate the
investment decision for the revenue-enhancing activity. This is due to two coun-
teracting effects of uncertainty. On the one hand, higher uncertainty increases the
value of waiting to invest, which delays investment. On the other hand, it increases
the value of the embedded option, which accelerates the investment. Which effect
dominates is dependent on the cost parameters, the parameters for the economic
environment, and the degree to which the firm can affect the stochastic environ-
ment through its revenue-enhancing activity.
The second paper considers a firm who is currently operating in a market with

an established product. It has a one-time opportunity to introduce a novel prod-
uct, and therewith switch to a new product market. The profits of the new product
have a different growth rate and are exposed to a different volatility than that of
the initial product. Thus, investing to bring the new product to market changes
the characteristics of the firm’s stochastic environment. We find that the existence
of a finite optimal investment threshold is dependent on the interplay of the rela-
tive change in growth and volatility for the two products. Further, the effect of the
uncertainty of the initial product on the optimal investment strategy is ambigu-
ous, and depending on two contradicting effects. Increasing the pre-investment
volatility increases the option value of waiting, which delays investment. However,
this also increases the relative attractiveness of the second product compared to
the first product, which therefore accelerates investment. Lastly, we show that the
problem of a one-time investment opportunity with changing characteristics of the
stochastic environment and constant profit function, is equivalent to a problem of
changing profit function and constant characteristics of the environment.
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Sammendrag
I denne oppgaven studerer vi den optimale investeringsstrategien for et firma, når
disse investeringene påvirker firmaets usikre omgivelser. Vi modellerer situasjoner
hvor et firmas marked responderer på de investeringene firmaet gjennomfører, og
at dette påvirker firmaets inntjening i markedet. Oppgaven består av to forskn-
ingsartikler, som fokuserer på ulike spesifikasjoner av et slikt investeringsproblem.
I den første artikkelen tar vi for oss et firma som har muligheten til å gå inn

i et nytt marked. I forkant av dette har firmaet mulighet til å gjennomføre en
inntektsøkende førinvestering. Vi ser at det er et insentiv for firmaet å investere
i to steg, hvor det investerer i å påvirke de potensielle inntektene før det fak-
tisk investerer for å gå inn i markedet. Vi finner at forholdet mellom usikkerhet
og optimalt investeringstidspunkt kan være tvetydig. Økt usikkerhet kan både
utsette eller fremskynde investeringsbeslutningen. Dette stammer fra to motstri-
dende effekter av usikkerhet. Høyere usikkerhet øker verdien av å vente, som
utsetter investering, mens det også øker verdien av den underliggende opsjonen
til å investere i neste steg, som fremskynder investeringen. Hvilken av disse effek-
tene som dominerer er avhengig av kostnadsstrukturen, parameterne for firmaets
usikre økonomiske omgivelser, og i hvilken grad firmaet kan påvirke omgivelsene
med sine inntektsøkende aktiviteter.
I den andre artikkelen studerer vi et firma som er aktivt i et marked med et

etablert produkt. Firmaet har muligheten til å introdusere et nytt produkt, og
dermed bytte sitt produkttilbud i markedet. Inntektene fra det nye produktet
har annen forventet vekst og er eksponert for en annen volatilitet en inntektene
fra det gamle produktet. Investering i å introdusere dette produktet vil derfor
endre firmaets usikre omgivelser. Vi viser at eksistensen av en optimal invester-
ingsterskel er avhengig av samspillet mellom endringene i forventet vekst og en-
dringen i volatilitet for produktene. Videre er forholdet mellom usikkerhet og den
optimale investeringsstrategien tvetydig. Økt volatilitet i det gamle markedet øker
opsjonsverdien av å vente, som utsetter investering, men øker også den relative
attraktiviteten til det nye markedet, som fremskynder investering. Vi viser at
en investeringsmulighet hvor beslutningen påvirker firmaets omgivelser, men ikke
inntektsstrukturen, er ekvivalent med muligheten til å påvirke inntektsstrukturen
gjennom investering, men ikke påvirke omgivelsene.
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1 Introduction
Most models that consider investment under uncertainty make the assumption
that the stochastic environment of the firm is exogenously given, and that the
characteristics of the environment do not change (see Dixit and Pindyck (1994)
for a survey of the field). These studies view the firm as a passive actor with
respect to its stochastic environment, subject to some given process that drives
its profits. However, firms are heterogeneous and have idiosyncratic capabilities
and opportunities to actively affect their success in their own markets. Firms
adapt their strategies and product portfolios in face of changing market conditions
and possibilities. A firm can undertake strategic steps to boost its demand and
growth by exploiting its idiosyncratic competitive advantages (McGrath et al.,
2004). Hence, a firm’s strategic decisions and the market within which it operates,
may not be independent. We argue that investment models should take this into
consideration.
In this thesis, we strive to account for endogenous effects of a firm’s actions on its

prospective revenues, through decision-dependent changes to the characteristics
of its stochastic environment. The thesis presents two papers which deal with the
overarching theme in different contexts. The investment opportunity and decision-
logic considered are particular to each paper. Specific motivational examples
are given in each of the two papers, in relation to the problem setup considered
within. From a modelling point of view, including such endogenous effects on a
firm’s stochastic environment allows for studying a wider set of realistic problem
settings, relative to the case where such dependencies are omitted.
The first paper studies the case of a firm with the possibility of entering a new

market. Here we consider that the firm can affect the characteristics of its profits
in the market through some revenue-enhancing pre-investment, before actually
committing to enter the market. This investment allows the firm to boost the ex-
pected growth of the firm’s profits in the market, but does not affect the volatility
of the profits. Such an effect on the market can, e.g., be achieved through ac-
tivities like marketing, lobbyism, joint venture investments, bundling-contracts,
etc. The paper looks at two cases for the change in the market characteristics.
One where the change in drift is fixed, and one where the firm can choose the
intensity of the revenue-enhancing activity they undertake, in effect optimizing
the change induced in its market. This paper builds on the work undertaken
in TIØ4550 Financial Engineering, Specialization Project during Fall 2017. We
extend this work with important results regarding the optimal strategies for the
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Introduction

case of controlled intensity of revenue-enhancement. Furthermore, extensive ro-
bustness tests are performed, where we consider different specifications of how
the revenue-enhancing activities of the firm affect the market characteristics, and
different cost specifications for those activities.
The second paper studies the optimal investment strategy for a firm that is

currently active in the market with an initial product, but has the opportunity to
introduce a new product. We assume that this introduction will change both the
growth and volatility of the firm’s profits. This paper represents an early effort to
include decision-dependent changes to both growth and volatility. This expands
earlier work wherein only the volatility is affected (Alvarez and Stenbacka, 2003),
or when only the drift is altered (Kwon, 2010; Hagspiel et al., 2016).
Both papers in this thesis consider endogenous changes to a firm’s stochastic

environment resulting from the firm’s actions. This allows us to study cases where
the impact of the firm on its own market is endogenous, rather than the charac-
teristics of the profits being independent of the firm’s actions. The results from
including these decision-dependent changes to the characteristics of the stochas-
tic environment suggest that the connection between uncertainty and investment
timing is more complex than the investment logic from traditional modelling ap-
proaches indicates.
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2 Revenue-enhancing pre-investment
under uncertainty

Abstract:
Models of investment under uncertainty mostly concern the firm’s
stochastic environment as exogenously given and subject to con-
stant characteristics. We consider a firm that can sequentially
invest to alter the growth rate of a project through a revenue-
enhancing pre-investment activity prior to entering a new market,
both when the change is fixed and when the magnitude of the
change can be optimally chosen by the firm. We find that this in-
centivises the firm to invest early in revenue-enhancing activities,
and then wait to invest to enter the market. There is both an op-
tion value of waiting that delays investment in revenue-enhancing
activities, as well as an accelerating effect from the change in
growth rate. The overall effect on the investment thresholds from
increased uncertainty is ambiguous. Which effect dominates is
dependent on both the cost parameters and the magnitude of the
change in the rate of growth. When the firm can optimally choose
the amount of the revenue-enhancing activity, we find that the
firm invests more in these activities when uncertainty is higher,
but the effect of uncertainty can still be ambiguous. When the
marginal cost of the activity increases, the firm both delays the in-
vestment and undertakes less revenue-enhancement, but the over-
all amount spent increases. We conclude that increasing the drift
through revenue-enhancing pre-investments is very attractive for
the firm, and that this affects the firm’s optimal investment strat-
egy.

2.1 Introduction
In 2014, The Panasonic Corporation entered into a joint-venture with Tesla Motors
Inc. on the Tesla Gigafactory project. The venture is a strategic alliance and R&D
effort between the two firms in order to position Panasonic for higher long-term
growth in a novel market. The president of Panasonic, K. Tsuga, has stated
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that they "see the rechargeable battery business as the biggest growth driver. So
we are aggressively making an upfront and strategic investment here"1. Through
the alliance with Tesla, Panasonic has invested to obtain a favorable position
for capturing higher profits in the potential future of high-volume production of
lithium-ion batteries for electric vehicles (EVs) and household electricity storage.
Therewith, Panasonic has taken an upfront and proactive stake in the development
of the EV-market, possibly obtaining a larger profit growth in the future than they
would have by waiting passively for the market to develop and only supply EV-
producers with battery-cells.
Strategic alliances, marketing campaigns, lobbyism, standard-captures, and

other pre-launch activities may influence the growth potential of a project. Thus,
a firm can effectively be proactive in its existing and potential markets, influencing
the expected growth of new projects before they are installed. The idea that a
firm can enhance the potential revenue of a project by undertaking some strategic
pre-investment actions, models what McGrath (1997) refers to as amplifying pre-
investments. Such actions could be aimed at affecting the revenue potential of the
product, the adoption rate, or the likelihood of imitation or competing products
taking shares of the market.
In this paper, we focus on actions that increase the revenue potential through

active investments, changing the firm’s future environment favourably. We study
two different scenarios: one where the revenue-potential is subject to a fixed change
after the firm undertakes a pre-amplifying investment, and one where the firm
can choose the intensity of this investment optimally, effectively deciding to what
degree it should boost the revenue-potential in the market.
This paper contributes to the strategy literature by formally modelling revenue-

enhancing pre-investment opportunities, and investigating their effects. Further-
more, we add to the modelling literature by including such dependencies of the
stochastic environment on the firm actions. Regarding the second strand of lit-
erature, investment problems under uncertainty are widely studied using the real
options approach. However, most models consider the underlying process driving
the uncertainty as exogenously given. Dixit and Pindyck (1994) present many of
the early models, while Trigeorgis (1996) presents models for portfolios comprised
of different options on the same real asset, i.e. embedded options. In the strategy
literature, real options reasoning has been used in decision-heuristics. Examples
are the score-based questionnaire in McGrath and MacMillan (2000) of mapping a
project’s possibilities and threats, or the mixed decision-tree analysis and scoring
of MacMillan et al. (2006). The field of real options analysis was initiated by Myers
(1977), who noted that the presence of uncertainty in cash-flows affects corporate
expenditure decisions. A common assumption of the uncertainty in real option

1Teslarati.com, 11.01.2016. The CEO of Panasonic comments on updated forecasts for projects
in an earnings briefing to shareholders. https://www.teslarati.com/panasonic-tesla-battery-
gigafactory-investment-growth-driver/, accessed 01.06.2018
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2.1 Introduction

models is that the underlying price or demand is following an exogenous stochas-
tic process, often a geometric Brownian motion. Thus, the resulting resolution of
uncertainty is purely a function of time, and beyond the control of the firm. Work
on endogenous uncertainty is limited to problems of learning-type investments.
In this strand of work, Pindyck (1993) regards projects with cost uncertainty and
time-to-build, where the technical uncertainty can only be resolved through actu-
ally undertaking the project. Such uncertainty relates to the physical difficulty of
completing a project, affecting, for example, the final amount of an input factor.
Hence, technical uncertainty represents endogenous resolution of the uncertainty,
dependent of the firm’s action, where the uncertainty is not only resolved through
time, but also through investment. Another approach in the literature to model
endogenous actions of the firm is to allow the exogenous stochastic process to be
partly unobservable. The firm must then undertake costly learning activities to
assess the true state of the market. Kwon and Lippman (2011), for example, con-
sider a firm that undertakes a small-scale pilot project to infer the full project’s
profitability. The firm observes a noisy profit flow from the pilot and from this
updates the belief of the market state in a Bayesian fashion. The firm must then
consider the decision to expand the pilot project or exit. Thijssen et al. (2004)
consider a similar situation, where the firm at random times receives imperfect
signals from the market and uses these signals in updating its beliefs. The trade-
off for the firm is therefore between waiting longer to reduce the uncertainty of the
market state, and investing immediately to reap potential profits. This approach
is further investigated in a model by Harrison and Sunar (2015), where the firm
can adopt different learning modes that affect the quality of the obtained market
signals, incurring cost at different rates, dependent on the choice of learning mode.
The papers presented above represent examples of earlier models and extensions
for including endogenous actions of the firm w.r.t. the stochastic environment.
The aforementioned models are all characterized by endogenous revelation of an

exogenous uncertainty process. The firm takes an active role in learning about the
uncertainty, but has no means of actually affecting its own environment. There
is a clear gap in the literature of real options modelling in studying endogenous
influence on the stochastic environment, which is already noted by Adner and
Levinthal (2004). Adner and Levinthal (2004) argue that firms take steps to af-
fect the attractiveness of possibilities, either by changing the technical agenda of
the project or altering the target market. They further argue that the assumption
of exogeneity can be seen as a "wait-and-see" approach to the investment problem.
This critique is also valid for the endogenous uncertainty resolution approaches
mentioned above, as the firm has no means to change the market state or adapt
to it should the market belief turn out unfavourable. In a response to Adner and
Levinthal (2004), McGrath et al. (2004) argue that the real options heuristics
utilized in the strategy literature can give insights into how upside potential can
be enhanced by strategic actions or redirecting projects. Nevertheless, the au-
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thors concur with Adner and Levinthal (2004) that further work on endogenous
uncertainty resolution and influence is important for advancing the real options
approach to investment analysis. We translate this to our modelling approach to
allowing for the decision-maker to affect the stochastic process the firm is subject
to, through undertaking some specified investments.
In this paper, we aim to address the aforementioned shortcomings of dealing

with endogeneity in a real options approach. We analyze how the opportunity for
a firm to undertake strategic pre-investment actions to alter a project’s growth
potential affects the investment behaviour and profits of the firm. This repre-
sents a shift from seeing the firm as a passive actor, subject to an exogenous
market process, to allowing the firm to proactive and effectively shape its own
growth potential through strategic investments. The work on real options subject
to stochastic processes with changing parameters is generally very limited, and
to the best of our knowledge restricted to one exogenously specified fixed change
after an investment. Kwon (2010) studies a firm producing an aging product sub-
ject to a downward trending demand, with the possibility to innovate once. The
uncertainty is modelled as an arithmetic Brownian motion, with a fixed change
in drift if the firm innovates. It might be optimal for the firm to cease operations
and exit, or to innovate once to boost the profits. The new product would obtain
a higher, but still negative, drift rate if undertaken, thus making an eventual exit
of the market inevitable. The effect of uncertainty on the optimal strategy of the
firm is found to be non-monotonic, which contradicts the standard result of in-
vestment under uncertainty, that higher uncertainty delays investment. Matomäki
(2013, Article 1) extends Kwon (2010) for more general stochastic processes, as
well as including changes to the volatility of the process, and the results regarding
the effect of uncertainty are in line with Kwon (2010). Further, Hagspiel et al.
(2016b) expands the setting of Kwon (2010) to allow for capacity choice for the
new product, while still holding the change in drift rate for the stochastic demand
process as exogenously given. Including capacity choice yields a monotonic effect
of uncertainty on the optimal investment timing. The firm invests in larger ca-
pacity when uncertainty increases, which then gives an incentive to invest later.
Another approach taken in the literature is wherein the volatility of the stochas-
tic process is changed after a certain investment. Herein, Alvarez and Stenbacka
(2003) consider a setting where the investment changes the volatility of the firm’s
environment, while keeping the drift unchanged. They find a non-monotonic ef-
fect of uncertainty on the investment threshold. However, allowing for change in
the volatility of the process necessitates the use of more advanced mathematical
tools. This is left for future work for our problem, as we study a sequential in-
vestment problem, with embedded options. This is a complication relative to the
single-investment case studied in Alvarez and Stenbacka (2003).
In this paper, the market is characterized by an uncertain price. The price

follows a geometric Brownian motion, with a change of drift at the time the
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2.2 Investment under fixed change in drift

firm undertakes the revenue-enhancing investment. We introduce two models:
(1) where the change in drift is fixed, meaning that the drift rate is boosted
to a specified level when the firm invests in the revenue-enhancing activity. (2)
where the change is dependent on the amount of the revenue-enhancing activity
the firm undertakes, where the intensity of the activity determines the degree to
which the drift is boosted. The first model presents an optimal stopping problem
subject to a changing stochastic process, while the second model is a joint optimal
stopping and impulse problem, where the change in drift is controlled by the
firm (Vollert, 2012). The problem concerns the optimal investment strategy of
sequential investment under uncertainty, as the firm can invest in the revenue-
enhancing activity and in entering the market at two separated points in time.
We find that a fixed change in drift incentivises the firm to invest sequentially,
i.e. to invest in revenue-enhancing activities initially and then wait and hold the
option to actually finish the project. This is in contrast to the similar two-stage
sequential model in Dixit and Pindyck (1994) with constant drift, who find that the
firm will never invest sequentially when there is no time-to-build. The incentive
is increasing with the magnitude of the boost in drift. We show that the effect
of uncertainty is not straightforward. Increasing uncertainty can both delay or
accelerate the investment in revenue-enhancing activities. In the case where the
firm can optimally choose the magnitude of the change in drift, we find that the
firm invests more in revenue-enhancement when uncertainty increases. Further,
when the marginal cost of this activity increases, the firm undertakes less revenue-
enhancement, while the total amount spent on boosting the drift increases. We
check the robustness of these results, considering a more general specification of
the effect of the revenue-enhancing activity on the drift rate, and both concave
and convex cost function for the activity. Extensive numerical analysis confirms
the robustness of the results of uncertainty on investment.
The rest of the paper is organized as follows. An investment model with a fixed

change in the drift of the price process is presented in Section 2.2. In Section 2.3,
we extend this approach by letting the firm control the change of drift through
the size of the investment. In Section 2.4 we perform a robustness analysis of
the impulse function and the cost of the revenue-enhancing activity. Section 2.5
summarizes the results. Additional derivations are presented in Appendix 2.A,
while Appendix 2.B presents proofs of all propositions and corollaries.

2.2 Investment under fixed change in drift
We consider the investment decision of a monopolist firm with an opportunity
to enter a novel market. The market is characterized by a stochastic price pro-
cess, with a fixed change in market growth triggered by the firm’s investment in
revenue-enhancing activities. The firm is currently not active, but has the option
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to irreversibly invest in order to enter the market. The uncertainty of the invest-
ment opportunity is characterized by a pair of price processes following geometric
Brownian motion, as given by Eq. (2.1).

dP1 = α1P1dt+ σP1dz, (2.1a)
dP2 = α2P2dt+ σP2dz. (2.1b)

In Eq. (2.1), dz denotes the increment of a standard Wiener process and σ the
volatility, equal for both geometric Brownian motions. α1 and α2 are the drift
parameters for the first and second process, respectively. The second price process,
P2(t), starts at the moment of a specified investment action of the firm at time τ ,
with initial value equal to P1(τ), i.e. P2(0) = P1(τ). A sample path of the price
process is illustrated in Fig. 2.1. After the change in drift has occurred, P1(t) is
irrelevant. Further, we assume an appropriate discount rate, ρ, for the project
and assume that α1 ≤ α2 < ρ. This assumption allows us to disregard the trivial
situation where it would never be optimal for the firm to enter the market, as
the expected growth is larger than the discount factor and therefore postponing
the investment decision would always be optimal. Our model is similar to that
presented by Kwon (2010) and Hagspiel et al. (2016b), where a producing firm
is subject to a declining market, with the possibility to innovate once and boost
the drift. However, in the mentioned works the boost in drift only postpones
the inevitable exit of the market. Conversely, our problem is concerned with
the decision of entry rather than exit, and not restricted to a declining market.
Further, the two-stage sequential investment model of Dixit and Pindyck (1994,
Chapter 10) is a special case of the problem studied here, with α1 = α2 in Eq. (2.1).
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Figure 2.1: One sample path of P1(t) and P2(t), with α1 = 0.01, α2 = 0.02,
σ = 0.01. Change of processes at t = 5.
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In Section 2.2.1, we first outline a two-stage sequential investment problem,
where the firm completes the project in two discrete steps. This describes a situa-
tion where the firm undertakes some initial investment, e.g. marketing or lobbyism,
prior to actually completing the project. After that, the firm decides when to un-
dergo the second investment to enter the market. Under certain assumptions, this
model reduces to a single-investment problem, as outlined in Section 2.2.2, which
represents a simplified case where all revenue-enhancing activities must be con-
ducted at the same time as entering the market. We present this simplification as
it helps to build intuition for the controlled single-stage investment problem pre-
sented in Section 2.3. In Section 2.2.3, results for the comparative statics analysis
for both models are presented.

2.2.1 Two-stage investment with fixed change of drift
In a two-stage sequential investment model, the firm may first undertake an initial
investment at a fixed cost I1. The first-stage investment has the effect of increasing
the drift from α1 to α2 by switching the price process in Eq. (2.1) from P1(t) to
P2(t). The firm then obtains the option to invest in the second stage to complete
the project at a fixed cost I2. After the second investment is undertaken, the
project is assumed to generate one unit of output per time period, at price P2(t), in
perpetuity. Without loss of generality, we assume zero operating costs. Then the
discounted value of a fixed operating cost can be incorporated into the investment
cost, I2. Thus, the per period profit is given by π(P2(t)) = P2(t). The value of the
firm can then be found as the solution to the following optimal stopping problem

F (P1) = sup
τ1

EP1

[
− I1e

−ρτ1 + sup
τ21{τ2>τ1}

{

+ e−ρτ2 × EP2

[∫ ∞
τ2

e−ρ(t−τ2)π(P2(t− τ1))dt
]
− I2e

−ρτ2

}]
.

(2.2)

In Eq. (2.2), τ1 denotes the optimal stopping time of undertaking the first-
stage investment to improve the drift of the price process. τ2 denotes the optimal
stopping time of the second-stage investment, at which the firm enters the market.
Thenceforth, the firm earns the per period profit flow, π(P2(t)). Further, the
expectation operators denote that the expectations are conditional on the defined
starting values, i.e. that EP1 ≡ E[·|P1(0) = P1] and EP2 ≡ E[·|P2(0) = P1(τ1)].
The solution to the optimal stopping problem in Eq. (2.2) is characterized by
the investment thresholds P1(τ1) = P ∗1 and P2(τ2 − τ1) = P ∗2 of the stochastic
price process. The starting point for P2(t) is given by the value of the geometric
Brownian motion P1(t) at the time of the first investment, τ1, i.e. P2(0) = P1(τ1) =

11



Revenue-enhancing pre-investment under uncertainty

P ∗1 . The three regions of the two-stage investment problem are illustrated in
Fig. 2.2. The optimal stopping problem given by Eq. 2.2 can be split into three
elements: the expected discounted value of the completed project at the time of
completion, denoted by V (P2(t)); the value of the option to undertake the second-
stage investment, denoted by F2(P2(t)); and the value of the opportunity to invest
in the project’s first stage, denoted by F1(P1(t)).

0 tτ1 τ2

P1(τ1), −I1 P2(τ2 − τ1), −I2

P1(t) P2(t) P2(t), π(P2(t))

Figure 2.2: Regions for the two-stage sequential investment.

To find the value of the investment opportunity, F1(·), we work backwards; first
we derive the value of the completed project, V (·), and the option to invest in
the second stage, F2(·). Using conditions of continuity and smoothness of the
value functions at their joint threshold, we obtain the second price threshold,
P2(τ2 − τ1) = P ∗2 . Next, we find the value function of the first option, F1(P1),
and can therewith derive the optimal investment threshold of the first-stage in-
vestment, P1(τ1) = P ∗1 . The complete derivations of the value of the project are
given in Appendix 2.A, while the option values, F1(·) and F2(·), are derived in
Appendix 2.B.
The expected present value of the cash flows generated by the project, at the

time of the second-stage investment, is given by

V (P2) = E
[∫ ∞

0
e−ρtP2(t)dt | P2(0) = P2

]
= P2

ρ− α2
, (2.3)

where P2 is the value of the price process at the time of investment. Thus, the
completed project becomes more valuable if the drift-rate or the price at the time
of investment increases. Proposition 2.2.1 presents the expression for the value of
the option to invest in the second project stage.

Proposition 2.2.1. The value of the option to undertake the second-stage invest-
ment, F2(P2), is given by

F2(P2) =
{
D2P

β12
2 if P2 < P ∗2 ,

V (P2)− I2 if P2 ≥ P ∗2 ,
(2.4)

12



2.2 Investment under fixed change in drift

where

β12 = 1
2 −

α2

σ2 +

√(
α2

σ2 −
1
2

)2
+ 2ρ
σ2 , (2.5)

and

D2 = 1
(ρ− α2)β12

[
β12

β12 − 1(ρ− α2)I2

]1−β12

. (2.6)

The optimal threshold for investing in the second project stage is given by

P ∗2 = β12

β12 − 1(ρ− α2)I2. (2.7)

Proposition 2.2.1 shows that the value of the second-stage option is dependent
on the price, P2. If the price is lower than the threshold, the value stems from
the option to invest in the second project stage at a later time, i.e. the firm
is in the continuation region of the second option. If the price is higher than
the threshold, the second project stage is undertaken, and the firm obtains the
expected discounted value of the project, net investment cost. This represents the
stopping region of the second-stage option.
Proposition 2.2.2 below presents the value of the option to invest in the first

project stage. Here we have to distinguish between two cases. If the first in-
vestment threshold, P ∗1 , is smaller than the second, P ∗2 , the firm obtains the
second-stage option to invest in the completed project if it exercises the first-stage
option. However, if the first investment threshold is the largest, the firm would
undertake both stages concurrently, and the firm receives the expected present
value of the cash flows from exercising the first-stage option.

Proposition 2.2.2. If the first investment threshold is lower than the second,
i.e. P ∗1 < P ∗2 , where P ∗2 is given in Eq. (2.7), the value of the firm, F1(P1), is
equal to

F1(P1) =
{
D1P

β11
1 if P1 < P ∗1 ,

D2P
β12
1 − I1 if P1 ≥ P ∗1 ,

(2.8)

13
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where β12 and D2 is given by Eq. (2.5) and Eq. (2.6), respectively, and

β11 = 1
2 −

α1

σ2 +

√(
α1

σ2 −
1
2

)2
+ 2ρ
σ2 , (2.9)

D1 = β12

β11
D2

[
I1

(1− β12
β11

)D2

]1− β11
β12

. (2.10)

The first-stage investment threshold is then given by

P ∗1 =
[

I1

(1− β12
β11

)D2

] 1
β12

. (2.11)

If P ∗1 ≥ P ∗2 , the value of the firm is given by

F1(P1) =
{
D1P

β11
1 if P1 < P ∗1 ,

V (P1)− I1 − I2 if P1 ≥ P ∗1 ,
(2.12)

where β11 and V (·) is given by Eq. (2.9) and Eq. (2.3), respectively, and

D1 = 1
(ρ− α2)β11

[
β11

β11 − 1(ρ− α2) (I1 + I2)
]1−β11

. (2.13)

Then, the first investment threshold is given by

P ∗1 = β11

β11 − 1(ρ− α2) (I1 + I2) . (2.14)

The ordering of the investment threshold in Proposition 2.2.2 is dependent on
all underlying parameters. The following corollary shows that the ordering of
the thresholds is unique, which implies that only one of the cases P ∗1 < P ∗2 and
P ∗1 ≥ P ∗2 holds true for the stated expressions in Eq. (2.11) and Eq. (2.14), when
compared to the expression of the second threshold in Eq. (2.7).

Corollary 2.2.3. In the sequential investment problem in Proposition 2.3.3, only
one of the cases for the ordering of the threshold give an admissible solution.
Further, if it holds that

I1 <
β12

β12 − 1 ×
(

1
β12
− 1
β11

)
× I2, (2.15)

then P ∗1 < P ∗2 .
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2.2 Investment under fixed change in drift

If the first threshold is the lowest, the firm will invest in the initial project
stage as soon as the price process, P1(t), is larger than P ∗1 , increasing the drift of
the project. After this it is optimal to wait until the second price process, P2(t),
reaches the second threshold, P ∗2 , before investing in the last stage to complete the
project. If the other case holds true, the firm will undertake both project stages at
the same time as soon as the first price threshold is reached. Note that we assume
no time-to-build, and that the investment is instantaneous. Corollary 2.2.4 show
the dependence of the solution to the values of the drift parameters.

Corollary 2.2.4.

i) If α2 > α1, then β12 < β11, and Eq. (2.11) and Eq. (2.10) are well-behaved.

ii) If α1 = α2, then β11 = β12, and P ∗1 > P ∗2 always holds.

Corollary 2.2.4 states that the expressions for the value function and the first
threshold price are well-behaved for the cases considered in this paper, and take on
positive and real values. Further, in the case of constant drift, the model reduces
to the sequential investment problem presented by Dixit and Pindyck (1994, Ch.
10.1), albeit without suspension and operational costs. As Dixit and Pindyck
(1994) find, under the assumption of no time-to-build, there is never an incentive
to invest in two stages when the drift rate before and after revenue-enhancing
investment does not change. We show that when the firm has the opportunity to
boost the drift, there is an incentive to invest in two separate stages for certain
parameter ranges.

2.2.2 Single-investment problem reduction
Note that if the second-stage investment cost is set to zero, the two-stage se-
quential investment problem reduces to that of a single-investment opportunity.
We present this model simplifaction here as it will serve as a comparison for the
single-investment problem with controlled increase in the drift, presented in Sec-
tion 2.3.1. Let I denoting the total cost of both revenue-enhancement and market
entry. Then, the reduced model can be represented by the following optimal
stopping problem

F (P1) = sup
τ

EP1

[
−Ieρτ + e−ρτ × EP2

[∫ ∞
τ

e−ρ(t−τ)π(P2(t− τ))dt
]]
. (2.16)

The solution to the reduced optimal stopping problem in Eq. (2.16) is also of a
threshold-type, characterized by the investment threshold P ∗1 (τ), where τ is the
time of the investment. Now the increase in drift and the onset of the profit flow
occur at the same time. The solution to this problem is given by Eq. (2.12)–(2.14)
in Proposition 2.2.2, with I1 = I and I2 = 0. The reduction of the problem is
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evident in Eq. (2.7) and Eq. (2.14): if I2 = 0, then P ∗2 = 0 and P ∗1 can never
be smaller than P ∗2 . This is intuitive. If the second-stage investment has zero
cost, the project will be completed as soon as the threshold for the first-stage
investment is reached.

2.2.3 Comparative statics results
In this section, we present the results of a comparative statics analysis for the
optimal investment thresholds P ∗1 and P ∗2 .

Proposition 2.2.5. The optimal threshold of the option to invest in the second
project stage, P ∗2 , is increasing in σ. The first price threshold, P ∗1 , is increasing
in σ if P ∗1 ≥ P ∗2 . If P ∗1 < P ∗2 , then P ∗1 is increasing in σ if the following condition
holds,

I2

I1
<
β11(β12 − 1)
β11 − β12

exp
[

β11

β11 − β12

( ( 1
2σ

2(2β12 − 1) + α2)(β11 − 1)
( 1

2σ
2(2β11 − 1) + α1)(β12 − 1)

− 1
)]

.

(2.17)

Otherwise, P ∗1 is decreasing in σ.

Proposition 2.2.5 shows that the standard result in real options theory of the
effect of increased uncertainty might not be true for the initial investment, if the
condition in Eq. (2.17) does not hold. When it holds, the firm demands a higher
price to invest in both stages when the uncertainty increases, which is the standard
result of investment under uncertainty. We refer to this as the real options effect
of uncertainty.
If the condition in Eq. (2.17) does not hold, a higher uncertainty accelerates the

investment in the initial project stage. This is contradictory to the standard real
options results (Dixit and Pindyck, 1994). Due to the complexity of the condition
in Eq. (2.17), the impact of the different problem parameters cannot be determined
easily. The condition is a function of the volatility, σ, both directly and via the
dependence in β11 and β12. We see from numerical studies that when the first
investment cost is very small compared to the cost of the second project stage, the
effect of increased uncertainty on the first threshold is ambiguous. Further, this
ambiguity seems only to be present when the difference in drift is smaller than
some level. Fig. 2.3 presents two different cases: one for a relatively small change in
drift, and one for a relatively large boost in drift. Hence, there are two opposing
effects of uncertainty on the first threshold. The real options effect yields that
higher uncertainty gives a higher value of waiting, and delays investment, while
the change in drift incentivises the firm to invest the first project stage to boost
the drift. The effect of uncertainty is dependent on which effect dominates.
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Figure 2.3: Sensitivity of first price threshold, P ∗1 , w.r.t. uncertainty, when the
first investment cost is small compared to the second, for two levels of the boosted
drift. (Parameters: I1 = 10, I2 = 1000, ρ = 0.1, α1 = 0.01.)

An explanation for this non-monotonic effect of uncertainty is that the option
to invest in the second project stage becomes more valuable with increased un-
certainty. This is a standard real options result. Thus, when the first investment
is relatively inexpensive, this increased option value of the subsequent investment
stage outweighs the increased value of the insurance embedded in the first-stage
option. A higher uncertainty makes the insurance arising from the optionality of
the first project stage more valuable, which the firm forfeits if it invests. The ef-
fects of changing the level of the initial drift on the optimal investment thresholds
are presented in Proposition 2.2.6.

Proposition 2.2.6. The optimal threshold to invest in the first project stage, P ∗1 ,
is increasing in initial drift, α1, while the second threshold, P ∗2 , is unaffected by
α1.

The threshold for investing in the second project stage is independent of the
initial drift level. This is intuitive, as the first investment has already been under-
taken, and therefore the first price process, P1(t), is irrelevant at the time of the
decision to undertake the second investment. The drift has already been boosted,
so the initial level is not relevant for the firm’s decision. The first investment
threshold is increasing in α1. If the level of the boosted drift is kept constant, an
increase in the initial drift is effectively decreasing the magnitude of the change.
Thus, the firm has less incentive to invest in the first project stage, and demands
a higher price to undertake the revenue-enhancing activities. Proposition 2.2.7
presents the effect of changing the level of the boosted drift on the optimal invest-
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Revenue-enhancing pre-investment under uncertainty

ment thresholds.

Proposition 2.2.7. The optimal threshold to invest in the second project stage,
P ∗2 , is decreasing in the boosted drift, α2, if the following condition holds:

σ >

√
ρ− α1β12

(β12 − 1)(β12 − 1
2 )
. (2.18)

The first investment threshold, P ∗1 , is decreasing in α2 when P ∗1 ≥ P ∗2 .

The threshold for investing to enter the market is decreasing in the boosted drift,
α2. The firm invests in the market at the threshold P ∗2 if P ∗1 < P ∗2 , while investing
at the threshold P ∗1 if P ∗1 ≥ P ∗2 . Increasing the boosted drift thus incentivises the
firm to enter the market earlier, as the expected discounted value of the project
increases.
When the threshold for the first project stage is lower than the second, i.e. P ∗1 <

P ∗2 , we refrain to numerical results in order to analyze the effect of increasing the
boosted drift on P ∗1 . Remark 2.2.8 presents the effect, while a numerical example
is presented in Table 2.1.

Remark 2.2.8. The optimal threshold to invest in the first project stage, P ∗1 , is
decreasing in the boosted drift, α2, when P ∗1 < P ∗2 .

Our numerical analysis suggests that the effect of the boosted drift on the first-
stage investment threshold when P ∗1 < P ∗2 is equal to that presented in Propo-
sition 2.2.7. This is as expected, as increasing the boosted drift increases the
expected discounted value of the project, which increases the value of the option
to invest in the final stage. When P ∗1 < P ∗2 , investing in the first project stage
represents exchanging the option to invest in the initial stage with the option to
invest in the second stage. Upon investing, the firm forgoes the option to invest
in the first project stage at a later time, but receives option to invest in the last
stage at a later time. Thus, when the value of the underlying project increases,
the option to complete the project becomes more valuable, which motivates the
firm to invest earlier to obtain this second-stage option.

α2 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
P ∗1 49.09 43.63 32.20 23.32 16.29 10.73 6.45 3.32 1.21
P ∗2 45.00 43.42 42.00 40.75 39.65 38.70 37.87 37.16 36.54

Table 2.1: Effect of increasing the boosted drift on the optimal investment thresh-
olds. (Parameter values: ρ = 0.1, α1 = 0.0, I1 = 50, I2 = 300.)
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2.3 Investment under controlled change in drift

2.3 Investment under controlled change in drift
We now consider a situation where the firm can optimally choose the drift of the
second price process by incurring some additional cost at the time of the first-
stage investment. The problem constitutes a joint optimal stopping and optimal
impulse problem (Vollert, 2012). In this case the firm has both discretion over the
stopping times, as well as direct influence over the parameters of the stochastic
diffusion process that characterizes the market environment. This represents an
extension of the model presented in Section 2.2.1 to make the firm active in its
own potential market, endogenously affecting the stochastic environment.
The drift term of the second price process is now modelled as dependent on

the amount K, i.e. α2 = α2(K) in Eq. (2.1). We denote α2(K) as the impulse
function, and K the control. Note that the impulse function must be specified so
that α1 ≤ α2 < ρ still hold. The control K represents the amount invested by the
firm in order to boost the growth of the project by e.g. marketing or lobbyism. We
assume that the firm does not obtain any boost in the drift without investing in
revenue-enhancing activities and incurring some extra cost, i.e. α2(K = 0) = α1.
Further, we do not allow disinvestment in revenue-enhancement, where K < 0
and α2 < α1. We model the impulse function, α2(K), by

α2(K) = ρ− ε− ρ− ε− α1

1 +K
, (2.19)

where ε > 0 is an offset-value that ensures that the drift rate, α2(K), can never
approach the discount rate, ρ. This parameter is introduced in order to avoid that
the expected discounted value of the cash flows from the project can approach
infinity. Practically, this implies that there is a maximum obtainable value of
α2 that the firm can approach, but never attain, by investing more in revenue-
enhancing activities. An example plot of Eq. (2.19) is illustrated in Fig. 2.4.
The choice of function for α2 is adopted to model diminishing marginal effects on
the drift from increasing the amount of revenue-enhancing actions, in line with
practical reasoning that increasing the intensity of an investment cannot increase
the rate of profit indefinitely. In Section 2.4 we present an alternative impulse
function, and perform a robustness check of our results w.r.t. this choice.
As the firm can now optimally decide the intensity of the revenue-enhancing

activity, the cost of the first investment stage is given as a function of the control.
We model the first investment stage as having both a fixed and variable part,
denoted by IK(K) = I1 + ξK. Here I1 > 0 is a constant fixed cost, and ξ the
constant marginal cost of the activity. The fixed part represents, for example, the
minimum required marketing that needs to be done prior to launching a product,
for which the firm does not obtain any boost in the market. For the second project
stage, similar to Section 2.2, there is a fixed investment cost I2 > 0.
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Figure 2.4: The assumed impulse function: the second drift-rate α2 plotted as a
function of K for parameters: ρ = 0.04, ε = 0.03, α1 = 0.

In order to build intuition, we first consider a controlled single-investment prob-
lem in Section 2.3.1, where the firm undertakes the revenue-enhancing activities at
the same time as committing to the project. This simplified problem will serve as
a benchmark to understand how control over the change of drift affects threshold
prices and values. Section 2.3.2 expands to the two-stage sequential investment
with control over the drift at the time of the first project stage, i.e. the firm un-
dertakes revenue-enhancing activities in the first project stage, but receives a flow
of profits only after the second-stage investment. In Section 2.3.3, we present the
comparative static analysis of the models.

2.3.1 Single-stage investment, controlled change of drift
We now consider a single-investment case, where the firm can choose the control
K optimally at the time of investment in order to boost the drift α2. The problem
can be seen as a joint optimal stopping and control (impulse) problem, where the
firm must decide when to invest and enter the market, and choose the amount of
revenue-enhancing activities at the time of investment. The problem can then be

20



2.3 Investment under controlled change in drift

0 tτ

P1(τ),−IK(K∗)

P1(t) P2(t,K∗), π(P2(t,K∗))

Figure 2.5: Regions for the single investment problem with controlled boost in
drift.

written as

F (P1) = sup
τ

EP1

[
− Ie−ρτ

+ eρτ ×max
K≥0

{
EP2

[ ∫ ∞
τ

e−ρ(t−τ)π(P2(t− τ,K))dt− ξK
]}]

,

(2.20)

where the expectation operators are defined as EP1 ≡ E[·|P1(0) = P1] and EP2 ≡
E[·|P2(0) = P1(τ)].
Fig. 2.5 illustrates the continuation and stopping regions of the investment

problem. The problem is similar to the single investment problem presented in
Section 2.2.2, with the difference that the firm can now decide on the optimal
amount of the revenue-enhancing investment (the control variable), hereafter de-
noted by K∗. The solution procedure is as follows: we find the value function for
a given K, then maximize the net project value with respect to K, for any given
price P2. Using the equation for the optimal value K∗(P2), we find the option
value F (P1) and the threshold price P ∗1 .
The expected value of the completed project, V (P2,K), is similar to before (see

Eq. (2.3)), with the difference that the value function now becomes a function
of K. Thus, the expected discounted value of the cash-flows generated by the
project, at the time of investment, is given by

V (P2,K) = 1
ρ− α2(K)P2. (2.21)

At the time of the investment, the firm chooses the amount of the revenue-
enhancing actions through the control K. Upon investment, the firm must pay
the full investment cost of revenue-enhancement and market entry, i.e. IK(K) =
I + ξK. Here I = I1 + I2 represent the fixed cost of both activities, and ξ > 0 the
marginal cost of the revenue-enhancing activity. Thus, we want to find the value
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of K that maximizes the value of the firm at the time of investment, given by

V (P2,K)− I − ξK = 1
ρ− α2(K)P2 − I − ξK. (2.22)

We find the optimal control K̂∗ by the first-order optimality condition, and con-
trolling that the second-order derivative is negative. Solving this maximization
problem yields the value of the optimal revenue-enhancement and the resulting
drift function, as functions of the price, P2, presented in Proposition 2.3.1.

Proposition 2.3.1. The optimal value of the control variable and the resulting
optimal drift rate, as functions of the price P2, are given by

K∗(P2) = max{0, K̂∗} = max

{
0,
ξ(α1 − ρ) +

√
P2ξ(ρ− ε− α1)
ξε

}
, (2.23)

α∗
2(P2) = α2(K∗(P2)) = max

{
0,

(ε− ρ)
√
P2ξ(ρ− ε− α1) + ρξ(ρ− ε− α1)

ξ(ρ− ε− α1)−
√
P2ξ(ρ− ε− α1)

}
.

(2.24)

The optimal control is given as the maximum of zero and K̂∗, as we assume
that the control is bounded from below at zero. Thus, the resulting drift rate is
the maximum of α∗2(P2) and α1, i.e. α2(0) = α1 in Eq. (2.24). Corollary 2.3.2
presents the condition for which the optimal control is positive.

Corollary 2.3.2. The optimal control value K∗ is greater than zero if

P2 >
ξ(ρ− α1)2

ρ− ε− α1
. (2.25)

Thus, the smaller the potential increase in the drift, the higher the price at
the time of investment needs to be for the firm to undergo revenue-enhancing
activities. We can now use the optimal control and drift as functions of the price,
presented in Proposition 2.3.1, to find the value of the investment opportunity.
The value of the firm is then presented in Proposition 2.3.3.

Proposition 2.3.3. The optimal value of the firm, F (P1), is given by

F (P1) =
{
AP β11

1 if P1 < P ∗1 ,
P1

ρ−α∗2(P1) − I − ξK
∗(P1) if P1 ≥ P ∗1 ,

(2.26)

with K∗(P1) and α∗2(P1) as given in Proposition 2.3.1. If the condition in Corol-
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lary 2.3.2 holds, so that K∗ > 0, then

β11 = 1
2 −

α1

σ2 +

√(
α1

σ2 −
1
2

)2
+ 2ρ
σ2 , (2.27)

A =

(
(ε+ α1 − ρ)ξ +

√
P ∗1 ξ(ρ− ε− α1)

)
P ∗1−β11

1

εβ11
√
P ∗1 ξ(ρ− ε− α1)

. (2.28)

Furthermore, the optimal investment threshold is given by

P ∗1 = 1
2

(
2β11 − 1
β11 − 1

)2
ξ(ρ− ε− α1) + β11

β11 − 1(Iε− ξ(ρ− α1))

+ 1
2

(
2β11 − 1
β11 − 1

)√
ξ(ρ− ε− α1)

(
β11

β11 − 1(Iε− ξ(ρ− α1) + ξ(ρ− ε− α1)
)
,

(2.29)

if the following condition holds,

I

ξ
≥ ρ− α1

ε
. (2.30)

If K∗ = 0, then

A = 1
β11(ρ− α1) (P ∗1 )1−β11 , (2.31)

and the optimal investment threshold is given by

P ∗1 = β11

β11 − 1(ρ− α2)I. (2.32)

Similar to the model in Section 2.2, the value of the option to invest is depen-
dent on the current price level, P1. If the current price is below the investment
threshold, the firm holds the option to invest, with a value equal to the first case
in Eq. (2.26). If the currently observed price is above the threshold, it is op-
timal to invest immediately, paying the investment cost I(K∗) = I + ξK∗(P1),
and therewith undertaking the amount of revenue-enhancing activities that max-
imizes the value of the project at the given price, P1. The condition in Eq. (2.30)
is necessary for the existence of a unique investment threshold2. We assume this

2Extensive numerical analysis shows that even if this condition does not hold, there is only one
unique threshold P ∗

1 that is admissible w.r.t. the assumption that P ∗
1 ≥ P ∗

2 . We therefore
disregard this for the rest of the section.
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Figure 2.6: Regions for the sequential investment problem with controlled boost
in drift.

condition to always hold, as the opposite case would imply an unrealistically high
marginal cost of the activity compared to the fixed investment cost. The following
corollary presents conditions for the existence of a real-valued threshold.

Corollary 2.3.4. In Proposition 2.3.3, there exists a real-valued investment
threshold, P ∗1 , if the following condition holds

Iε ≥ ξ(ρ− α1)− ξ(ρ− ε− α1)β11 − 1
β11

. (2.33)

2.3.2 Two-stage investment, controlled change of drift
We now consider the situation where the firm can affect the expected growth of the
price process before launching the project. This represents a two-stage sequential
investment, where the increase in drift rate occurs after the initial investment.
We assume that the firm incurs both a fixed and variable cost from the first-stage
investment. Thus, we define the first-stage investment cost by IK(K) = I1 + ξK.
The joint optimal stopping and impulse control problem is then given by Eq. (2.34)
with the corresponding regions illustrated in Fig. 2.6.

F (P1) = sup
τ1

EP1

[
− I1e

−ρτ1 + max
K≥0

EP2

{
− ξKe−ρτ1

+ sup
τ21{τ2>τ1}

{
e−ρτ2

[ ∫ ∞
τ2

e−ρ(t−τ2)π(P2(t− τ2,K))dt
]
− I2e

−ρτ2
}}]

.

(2.34)

The solution approach is similar to that in Section 2.3.1, taking the control
variable as given for any time t > τ1. Hence, the value function after investment
is given by Eq. (2.21). The value of the option to invest in the second project
stage is now a function of the control. The value function is given by the following
proposition.
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2.3 Investment under controlled change in drift

Proposition 2.3.5. The value of the second-stage option, F2(P2,K), is given by

F2(P2,K) =
{
D2(K)P β12(K)

2 if P2 < P ∗2 (K),
P2

ρ−α2(K) − I2 if P2 ≥ P ∗2 (K),
(2.35)

where

β12(K) = 1
2 −

α2(K)
σ2 +

√(
α2(K)
σ2 − 1

2

)2
+ 2ρ
σ2 , (2.36)

P ∗2 (K) = β12(K)
β12(K)− 1(ρ− α2(K))I2, (2.37)

D2(K) = 1
(ρ− α2(K))β12(K)P

∗1−β12(K)
2 . (2.38)

The option value of the first project stage is, similar to the case presented
in Section 2.2.1, dependent on the ordering of the first and second investment
thresholds. The maximization with respect to K is different for the two cases,
dependent on whether exercise of the first-stage option represents entering the
continuation or the stopping region of the second-stage option. Note that the
boosted drift is a function of the investment K (see Eq. (2.19)). Proposition 2.3.6
presents the value of the firm and the price thresholds for the two cases.

Proposition 2.3.6. If P ∗1 < P ∗2 , the value of the firm, F1(P1), is given by

F1(P1) =
{
D1P

β11
1 if P1 < P ∗1 (K∗)

D2(K∗)P β12(K∗)
1 − I1 − ξK∗ if P1 ≥ P ∗1 (K∗)

(2.39)

where

β11 = 1
2 −

α1

σ2 +

√(
α1

σ2 −
1
2

)2
+ 2ρ
σ2 , (2.40)

K∗ = K∗(P1) = arg max
K≥0

{
D2(K)P β12(K)

1 − I1 − ξK
}
, (2.41)

D1 = β12(K∗)
β11

D2(K∗)P ∗β12(K∗)−β11
1 , (2.42)

and P ∗1 is implicitly given as the solution to the following equation

(β12(K∗)− β11)D2(K∗)P ∗β12(K∗)
1 + (I1 + ξK∗)β11 = 0. (2.43)

If P ∗1 ≥ P ∗2 , the solution is the same as presented in Proposition 2.3.1 and
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Revenue-enhancing pre-investment under uncertainty

σ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
P ∗1 18.20 19.95 21.76 23.66 25.66 27.81 30.14 32.67
P ∗2 30.77 32.88 35.99 39.88 44.46 49.69 55.54 62.03
K∗ 14.25 15.15 16.01 16.87 17.74 18.64 19.57 20.54
α∗2 0.0474 0.0475 0.0476 0.0478 0.0479 0.0480 0.0481 0.0481

Table 2.2: Effect of increasing uncertainty on the optimal investment thresholds,
the optimal amount of revenue-enhancing investment, and the resulting boosted
drift. (Parameter values: ρ = 0.1, ε = 0.05, α1 = 0.01, ξ = 1, I1 = 50, I2 = 300.)

Proposition 2.3.3, with I = I1 + I2.

In Proposition 2.3.6, the first threshold price must be found implicitly by solving
Eq. (2.43) numerically. Unlike to the sequential investment problem with fixed
change in drift, presented in Proposition 2.2.2, we cannot ex-ante determine the
admissible threshold. Therefore, both cases of the threshold ordering must be
considered, and the case that is admissible is adopted.

2.3.3 Comparative statics result
In this section, we present the comparative statics results for the optimal invest-
ment strategy when the firm has control over the change in drift. An extensive
numerical analysis is conducted to examine how the investment thresholds and op-
timal drift rate change with the model parameters when analytic results are not
obtainable. The effect of σ on the initial investment threshold for a single-stage
problem reduction is presented in Proposition 2.3.7.

Proposition 2.3.7. The optimal threshold for the first stage investment, P ∗1 ,
increases in σ, if P ∗1 ≥ P ∗2 .

From Proposition 2.3.7, we see that the result from the investment problem
under fixed change in drift is still valid under controlled change. If the threshold for
the initial investment is larger than the second threshold, the investment decision
reduces to a single-stage investment, undertaken when the price becomes larger
than P ∗1 . Increased uncertainty would then delay the investment, consistent with
the results from Section 2.2. The effects of σ on the thresholds for the other
cases are presented in Remark 2.3.8. Numerical results are given in Table 2.2 and
Table 2.3.

Remark 2.3.8. The optimal threshold for the second stage investment, P ∗2 , in-
creases in σ. The effect of σ on the first-stage threshold, P ∗1 , is ambiguous if
P ∗1 < P ∗2 and depends on the cost-parameters in relation to the potential increase
in drift. The optimal control value, K∗(P ∗1 ), increases in σ, yielding an increase
in the optimal drift rate, α∗2(P ∗1 ).
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2.3 Investment under controlled change in drift

σ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85
P ∗1 21.40 19.70 17.60 16.30 15.80 15.90 16.40 17.40 18.70
P ∗2 103.00 122.13 151.71 189.62 235.83 290.62 354.34 427.23 509.49
K∗ 784.01 837.28 876.32 916.26 961.11 1010.3 1061.3 1120.5 1182.5
α∗2 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400

(a) Low variable cost, ξ = 0.0001

σ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85
P ∗1 32.60 32.10 31.00 31.10 32.40 35.00 38.70 43.60 49.90
P ∗2 103.20 122.93 152.84 190.91 237.19 292.01 355.70 428.55 510.76
K∗ 9.57 10.50 11.23 12.08 13.04 14.14 15.36 16.71 18.23
α∗2 0.0372 0.0374 0.0375 0.0377 0.0379 0.0380 0.0382 0.0383 0.0384

(b) Medium variable cost, ξ = 1

σ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85
P ∗1 53.20 58.50 64.20 72.50 84.20 100.10 121.20 148.60 183.50
P ∗2 103.47 123.87 154.05 192.18 238.43 293.16 356.75 429.48 511.58
K∗ 3.87 4.46 5.03 5.68 6.43 7.31 8.31 9.45 10.73
α∗2 0.0338 0.0345 0.0350 0.0355 0.0360 0.0364 0.0368 0.0371 0.0374

(c) High variable cost, ξ = 10

Table 2.3: Effect of increasing uncertainty on the optimal investment thresholds,
the optimal amount of revenue-enhancing investment, and the resulting boosted
drift, for three different levels of the variable cost parameter, ξ. (Parameter values:
ρ = 0.1, ε = 0.06, α1 = 0.01, I1 = 10, I2 = 1000.)
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Revenue-enhancing pre-investment under uncertainty

Table 2.2 shows that the firm invests at a higher threshold price for the second
project stage when the uncertainty is higher. However, the effect of increasing
uncertainty on P ∗1 when P ∗1 < P ∗2 is ambiguous, as shown in Table 2.3. This
is similar to the case of fixed change in drift, presented in Section 2.2.3, where
uncertainty has an ambiguous effect on the initial investment threshold, dependent
on the problem parameters. However, now there is an additional cost-parameter
for the first-stage investment: the marginal cost of the control, ξ. From our
numerical analysis, we see that in case where the fixed portion of the cost, I1,
is low, and the potential boost in drift is small, the first threshold can decrease
in σ. This is however dependent on the value of ξ, as presented in Table 2.3. If
the variable part of the cost is high, it mitigates the effect of the low fixed cost,
such that the threshold is increasing in the uncertainty (see Table 2.3c). Since
the variable cost is high, the first stage investment becomes more costly for the
firm for a given level of the control. The firm chooses the optimal amount of
revenue-enhancing activities, which results in the total cost of the first project
stage to become large enough for the option value of waiting to dominate under
increased uncertainty. However, the other way around is not observed, i.e. that
very small values of ξ reverse the effect of a high value of I1. This can be seen
as it is optimal for the firm to invest in revenue-enhancing activities, even when ξ
is large, to obtain a valuable boost in drift. Thus, the extra cost the firm incurs
from boosting the drift, mitigates the low fixed cost I1, and the value of waiting
dominates the effect of uncertainty on the threshold. In the case where ξ is small,
the solution approaches the model with a fixed-change in drift in Section 2.2.1, as
seen in Table 2.3a. For the cases when the first investment threshold decreases, the
same reasoning as in Section 2.2.3 could hold. As the non-monotonic behaviour
of the optimal strategy persists under controlled change in drift, more analysis of
this ambiguous effect is warranted in future research.
Nonetheless, the amount of investment in revenue-enhancing activities always

increases in σ (for all values of the cost parameters), increasing the resulting
boosted drift. We also find that the firm generally waits longer to invest in the
market when the product market is more uncertain, i.e. P ∗2 increases in σ, but
on the other hand conducts more revenue-enhancing activities to attain higher
growth. Remark 2.3.9 presents how the cost of the control affect the optimal
strategy for the firm.

Remark 2.3.9. The investment threshold for the first project stage, P ∗1 , increases
in ξ. The second threshold, P ∗2 , also increases, but at a lower rate than P ∗1 . The
optimal control K∗ and the resulting drift rate α∗2 decreases in ξ.

Increasing the cost of the revenue-enhancing activities may lead to the threshold
of the first project stage becoming larger than the second threshold, as seen in
Table 2.4. The firm has a lower incentive to invest early in boosting the drift
when such investments are more expensive, as the firm forgoes the opportunity to
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2.3 Investment under controlled change in drift

ξ 1 10 20 30 40 50 60 70
P ∗1 23.70 35.70 41.54 44.06 46.06 47.72 49.12 50.32
P ∗2 39.88 40.29 40.52 40.73 40.92 41.09 41.25 41.41
K∗ 16.89 5.70 3.96 3.05 2.49 2.11 1.82 1.59
α∗2 0.0478 0.0440 0.0419 0.0401 0.0385 0.0371 0.0358 0.0346

Table 2.4: Effect of increased variable cost of revenue-enhancement on the optimal
investment thresholds, the optimal amount of revenue-enhancing investment, and
the resulting boosted drift. (Parameter values: ρ = 0.1, ε = 0.05, α1 = 0.01,
σ = 0.2, I1 = 50, I2 = 300.)

α1 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
P ∗1 21.65 22.54 23.66 25.07 26.91 29.41 32.95 38.42 41.58
P ∗2 39.93 39.91 39.88 39.86 39.83 39.81 39.78 39.75 39.73
K∗ 17.75 17.32 16.87 16.40 15.89 15.32 14.67 13.86 11.70
α∗2 0.0473 0.0475 0.0478 0.0480 0.0482 0.0485 0.0487 0.0490 0.0492

Table 2.5: Effect of increased initial drift rate on the optimal investment thresh-
olds, the optimal amount of revenue-enhancing investment, and the resulting
boosted drift. (Parameter values: ρ = 0.1, ε = 0.05, σ = 0.2, ξ = 1, I1 = 50,
I2 = 300.)

invest later. Also, the firm invests less in revenue-enhancing activities, obtaining a
lower drift for the project. However, the overall amount paid in revenue-enhancing
activities is greater. The firm is willing to pay more overall to obtain the boosted
drift, even when it is more expensive per unit of change, as can be seen from
multiplying ξ and K∗ in Table 2.4. Since an increased marginal cost of the activity
leads to a delay in investment, the firm also to pays more overall in revenue-
enhancing activities at this time. Remark 2.3.10 presents the effect of changing
the initial drift, α1, while numerical results are given in Table 2.5.

Remark 2.3.10. The investment threshold for the first project stage, P ∗1 , in-
creases in α1, while the second threshold, P ∗2 , decreases (albeit at a low rate). The
optimal control, K∗, decreases in α1, while the resulting drift rate, α∗2, increases
in α1.

The level of the initial drift, α1, must be seen in relation to the maximum
obtainable drift, given as ρ − ε, which is assumed constant when changing α1.
Increasing α1 thus makes the region of α2(K) smaller, as α2(0) = α1 and α2(∞) =
ρ−ε, and we assumeK ≥ 0. Remark 2.3.10 notes that the first threshold increases,
while the second threshold decreases slightly. When the initial drift is greater,
the firm demands a higher price before investing. When the difference in drift,
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Figure 2.7: The effect of increasing α1 on α2(K). (Parameters: ρ = 0.04, ε = 0.03.)

ρ−ε−α1, is small enough, we see that the ordering of the thresholds changes, and
the incentive to invest in two stages diminishes. The firm undertakes less revenue-
enhancing activities when the initial drift increases, but the resulting boosted drift
rate, α2(K), increases. However, the change in drift decreases when α1 increases,
as seen in Table 2.5 by α∗2 − α1.
Since only the lower bound of the range of α2(K) increases with higher α1,

the firm can obtain the same boosted drift with less effort. This observation
can be explained by the example plot in Figure 2.7. As the initial drift, α1, is
increased, the firm can obtain the same boosted drift, α2(K), at a lower value of
the control, K. This effect is evident from comparing K1 and K2 in Figure 2.7.
Thus, the firm can obtain a higher boosted drift from an increase in the initial drift,
even though the firm undertakes less revenue-enhancing activities. This effect
arises since increasing α1 represents making the initial market conditions more
favourable, while keeping the maximum obtainable drift for the firm constant. The
effect of increasing ε on the optimal investment strategy of the firm is presented
in Remark 2.3.11, with numerical results given in Table 2.6.

Remark 2.3.11. The first-stage investment threshold P ∗1 increases in ε. The
second threshold P ∗2 also increases, but at a lower rate than P ∗1 . The optimal
control K∗ and the resulting drift rate α∗2 decrease in ε.

Increasing ε is effectively lowering the upper bound of α2(K), i.e. the maximum
obtainable drift rate, as the upper bound is defined as ρ−ε. We see from Table 2.6
that the firm invests at a higher threshold price when the upper bound is lowered,
and that the ordering of the thresholds depends on the range of obtainable drift,
similar to increasing the initial drift, α1. The resulting boosted drift rate is now
lowered. Thus, when the maximum obtainable drift is lowered, the firm invests
later and undertakes less revenue-enhancing activities. Since an increase in εmakes
the available magnitude of the boost lower, there is less incentive for the firm
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2.4 Robustness testing

ε 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
P ∗1 2.80 6.16 10.66 16.42 23.66 32.82 43.16 48.37
P ∗2 36.66 37.32 38.07 38.92 39.88 40.97 42.21 43.59
K∗ 37.44 27.13 22.41 19.30 16.87 14.68 11.99 7.57
α∗2 0.0879 0.0775 0.0674 0.0575 0.0478 0.0381 0.0285 0.0188

Table 2.6: Effect of decreasing the maximum obtainable drift on the optimal in-
vestment thresholds, the optimal amount of revenue-enhancing investment, and
the resulting boosted drift. (Parameter values: ρ = 0.1, α1 = 0.01, σ = 0.2, ξ = 1,
I1 = 50, I2 = 300.)

to invest in the revenue-enhancing activity, which increases the first investment
threshold. Further, the smaller obtainable boost makes the expected present value
of the project’s cash flow after revenue-enhancement lower, which decreases the
attractiveness of the project, and increases the second investment threshold.

2.4 Robustness testing
In this section, we perform a robustness test of the results of the combined optimal
stopping and impulse problem presented in Section 2.3.3. We derive the results
assuming an alternate specification of the impulse function in Section 2.4.1, and
introduce a non-linear cost function for the control in Section 2.4.2. We perform
a comparative static analysis of uncertainty for both cases, and compare to the
earlier findings presented in Section 2.3.3.

2.4.1 Impulse function
We now introduce a more flexible specification of the impulse function. Nonethe-
less, the basic assumptions made in Section 2.3 are upheld. I.e. we assume di-
minishing marginal returns of the value-enhancing activity and assuring that the
resulting drift rate is lower than the discount rate. We utilize an inverse exponen-
tial function as given by Eq. (2.44), with example plots of the impulse function
given in Fig. 2.8. Varying λ changes the slope of the impulse, yielding a more re-
fined specification of how the value-enhancing investment affects the drift rate of
the stochastic process. However, the downside is that under this impulse function
there exists no closed form solutions for the optimal control value and investment
thresholds, in any of the cases. These values can easily be computed numerically.

α2(K) = ρ− ε− (ρ− ε− α1)e−λK (2.44)

The optimal stopping problem is the same as presented in Eq. (2.34). The value

31



Revenue-enhancing pre-investment under uncertainty

0 5 10 15 200

0.002

0.004

0.006

0.008

0.01

0.012

ρ− ε

K

α
2(
K

)

λ = 0.1
λ = 0.2
λ = 0.5
λ = 1.0

Figure 2.8: Inverse exponential impulse function as given by Eq. (2.44). The second
drift-rate is plotted as a function of the control. (Parameters: ρ = 0.04, ε =
0.03, α1 = 0).

of the options to invest in the first and second stage is equal to that given by
Eq. (2.35)-(2.43). However, if P ∗1 ≥ P ∗2 , there is no closed-form solution available,
and the value of the option to invest is given by the following proposition.

Proposition 2.4.1. If P ∗1 ≥ P ∗2 , the value of the investment opportunity is given
by

F (P1) =
{
D1P

β11
1 if P1 < P ∗1 ,
P1

ρ−α2(K∗) − I1 − I2 − ξK∗(P1) if P1 ≥ P ∗1 ,
(2.45)

where

β11 = 1
2 −

α1

σ2 +

√(
α1

σ2 −
1
2

)2
+ 2ρ
σ2 , (2.46)

K∗ = K∗(P1) = arg max
K≥0

{
P1

ρ− α2(K) − I1 − I2 − ξK∗(P1)
}
, (2.47)

D1 = (P ∗1 )1−β11

(ρ− α2(K∗))β11
, (2.48)
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2.4 Robustness testing

and P ∗1 is implicitly given as the solution to the following equation

(β11 − 1) P ∗1
ρ− α2(K∗(P ∗1 )) − β11(I1 + I2 + ξK∗(P ∗1 )) = 0. (2.49)

Conducting a numerical comparative statics analysis of the investment thresh-
olds, we compare the results to those obtained in Section 2.3.3. The effect of
volatility on the optimal investment thresholds, optimal control value, and result-
ing drift rate, under the new impulse function are given in Table 2.7. We see in
Table 2.7a and Table 2.7b that under a steep impulse function, which resembles
the specification in Section 2.3.3, the initial investment threshold can be both
increasing and decreasing in volatility. Similar to before, when the cost of the
initial investment is significantly lower than that of the second investment, we
observe a non-monotonic effect of uncertainty on the initial investment threshold.
In Table 2.7c and Table 2.7d, the impulse function is less steep, with λ = 0.1.
The effect of uncertainty can also be non-monotonic here, but this necessitates
the marginal cost of the impulse, ξ, to be low. Thus, there is an interplay between
the effect of the value-enhancing activity on the drift rate, and the marginal cost
of the activity, in whether there is a non-monotonic effect of uncertainty. This is
in line with Table 2.3 in Section 2.3.3, wherein a high marginal cost of the control
makes the effect of uncertainty monotonic. Thus, we can confirm that our earlier
results are robust to the specification of the impulse function, providing that the
underlying assumptions of the firm’s effect on the drift rate is upheld.

2.4.2 Non-linear cost of impulse
We now investigate the role of the specification of the cost for the value-enhancing
activity. We introduce a more general, non-linear, investment cost function for
the impulse, so that the cost structure can be either convex or concave, depending
on parameter values. This is similar to the studies performed in capacity choice
models under uncertainty, like Dangl (1999) and Hagspiel et al. (2016a). A concave
cost function indicates a decreasing marginal cost of investment, in line with a
situation of economies of scale for the investment, while a convex cost function
represent diseconomies of scale. Here we assume that the impulse function is given
as in Eq. (2.19), to investigate the case of changed investment cost compared to
the base case controlled model with linear cost. The cost of the value-enhancing
activity undertaken at the first investment stage is a function of the control K,
and defined as

IK(K) = I1 + ξKη, (2.50)
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Revenue-enhancing pre-investment under uncertainty

σ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
P ∗1 15.50 16.83 18.16 19.49 20.88 22.34 23.84 25.50
P ∗2 30.74 32.77 35.82 39.67 44.21 49.41 55.25 61.73
K∗ 5.34 5.45 5.54 5.62 5.71 5.79 5.86 5.94
α∗2 0.0498 0.0498 0.0498 0.0499 0.0499 0.0499 0.0499 0.0499

(a) ξ = 1, I1 = 50, I2 = 300, λ = 1.

σ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75
P ∗1 14.34 14.11 13.25 12.79 12.81 13.25 14.05 15.19
P ∗2 102.46 119.45 147.44 184.24 229.62 283.78 346.99 419.47
K∗ 4.57 4.72 4.82 4.93 5.03 5.14 5.26 5.38
α∗2 0.0496 0.0496 0.0497 0.0497 0.0497 0.0498 0.0498 0.0498

(b) ξ = 1, I1 = 10, I2 = 1000, λ = 1.

σ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
P ∗1 19.88 21.93 24.15 26.50 28.98 31.62 34.49 37.56
P ∗2 30.75 32.82 35.90 39.76 44.31 49.51 55.35 61.83
K∗ 33.20 34.37 35.47 36.51 37.51 38.47 39.42 40.36
α∗2 0.0486 0.0487 0.0488 0.0490 0.0491 0.0491 0.0492 0.0493

(c) ξ = 1, I1 = 50, I2 = 300, λ = 0.1.

σ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75
P ∗1 11.96 11.51 10.52 9.90 9.70 9.86 10.30 10.98
P ∗2 102.44 119.37 147.33 184.11 229.48 283.64 346.86 419.35
K∗ 66.03 67.48 68.41 69.34 70.30 71.32 72.38 73.46
α∗2 0.0499 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500

(d) ξ = 0.01, I1 = 10, I2 = 1000, λ = 0.1.

Table 2.7: Effect of increasing uncertainty on the optimal investment thresholds,
the optimal amount of revenue-enhancing investment, and the resulting boosted
drift under an inverse exponential impulse function as given by Eq. (2.44). (Gen-
eral parameters: ρ = 0.1, ε = 0.05, α1 = 0.01.)
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2.4 Robustness testing

where the constant I1, ξ, and η are larger than zero. η = 1 represents the case of
linear cost studied in Section 2.3.1 and Section 2.3.2, while η ∈ (0, 1) represents a
concave and η > 1 a convex cost function. The value of the second-stage option is
given by Eq. (2.35)-(2.38). Similar to before, there are two cases for the first-stage
investment option which must be considered. The value of the first investment
option is given in the following proposition.

Proposition 2.4.2. If the first threshold is lower than the second, i.e. P ∗1 < P ∗2 ,
the value of the first investment option is given by

F1(P1) =
{
D1P

β11
1 if P1 < P ∗1 (K∗),

D2(K∗)P β12(K∗)
1 − I1 − ξ(K∗)η, if P1 ≥ P ∗1 (K∗),

(2.51)

where β11 is given by Eq. (2.9), D1 by Eq. (2.42), and D2(K) by Eq. (2.38). The
optimal control is given by the maximization

K∗ = K∗(P1) = arg max
K≥0

{
D2(K)P β12(K)

1 − I1 − ξKη
}
, (2.52)

and P ∗1 is implicitly given as the solution to the following equation

(β12(K∗)− β11)D2(K∗)P ∗β12(K∗)
1 + β11(I1 + ξ(K∗)η) = 0. (2.53)

If P ∗1 ≥ P ∗2 , the value of the first investment option is given by

F (P1) =
{
D1P

β11
1 if P1 < P ∗1 ,
P1

ρ−α2(K∗) − I1 − I2 − ξ(K∗(P1))η if P1 ≥ P ∗1 ,
(2.54)

with D1 given by Eq. (2.48) and the optimal control as the maximization

K∗ = K∗(P1) = arg max
K≥0

{
P1

ρ− α2(K) − I1 − I2 − ξK∗(P1)
}
. (2.55)

The first investment threshold, P ∗1 , is implicitly given as the solution to the equa-
tion given by

(β11 − 1) P ∗1
ρ− α2(K∗(P ∗1 )) − β11(I1 + I2 + ξ(K∗(P ∗1 ))η) = 0. (2.56)

Conducting a numerical comparative static analysis of the effect of uncertainty,
the results under both concave and convex cost functions are given in Table 2.8.
In Table 2.8a and Table 2.8b, we see that the earlier result of non-monotonicity
w.r.t. uncertainty hold under a concave cost structure for the control. A relatively
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low initial investment cost may yield a non-monotonic effect of uncertainty on the
investment cost. In Table 2.8c and Table 2.8d we see the same holds for a convex
cost function. Thus, our previous results are robust under various specifications of
the cost function. In a capacity choice model, Hagspiel et al. (2016a) investigate
the case of both a concave and convex investment cost, and find that the firm
invests significantly later under a convex than a concave cost function. Comparing
the concave and convex cases in Table 2.8, we see that in our impulse problem,
a convex investment cost also delays the initial investment decision relative to
the concave case. The firm also invest in less value-enhancement when there are
diseconomies of scale, as would be expected.

2.5 Conclusions
In this paper, we study the investment problem of a firm with an option to irre-
versibly invest to enter a novel market. The firm has the opportunity to undertake
some amplifying pre-investments to boost the expected value of the profits from
the project, e.g. through marketing or lobbyism. The stochastic market price is
modelled as a geometric Brownian motion, subject to a change in drift follow-
ing from the revenue-enhancing pre-investment. We consider a case with a fixed
change in drift, and a situation where the magnitude of the change is influenced by
the amount of revenue-enhancing activities undertaken by the firm. This makes
the stochastic environment of the firm endogenous, as the firm can influence its
potential profits through its actions.
We find that when a firm can change the drift rate of the cash flows from a

project, it has an incentive to invest sequentially, and to boost the drift before
committing to launching the project. This result is not dependent on including
other complicating factors such as time-to-build, contrarily to what is shown by
Dixit and Pindyck (1994), but is a pure effect of the change in the stochastic envi-
ronment. The effect of uncertainty on the investment triggers is ambiguous. For
the revenue-enhancing investment, increasing the uncertainty can both delay or
accelerate the investment w.r.t. the threshold price, depending on the parameter
values. The effect of the option value of waiting and the incentive to invest early
to boost the drift are conflicting. Which effect dominates is dependent on the
cost parameters, the magnitude of the change in drift, as well as the level of the
uncertainty.
In the situation where the firm can optimally choose the magnitude of the boost

in drift through the intensity of revenue-enhancing activities, we find that higher
uncertainty leads to more investment. The firm invests more to boost the drift
when the market is characterized by a higher volatility. Increasing the marginal
cost of the revenue-enhancing activities decreases the intensity of the activity, but
increases the total amount spent on boosting the drift. As a higher marginal cost
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σ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
P ∗1 14.96 16.18 17.31 18.43 19.58 20.78 22.11 23.53
P ∗2 30.74 32.80 35.86 39.72 44.27 49.48 55.32 61.81
K∗ 60.18 64.52 68.36 72.13 76.00 79.98 84.22 88.62
α∗2 0.0492 0.0492 0.0493 0.0493 0.0494 0.0494 0.0494 0.0494

(a) Concave cost function: ξ = 1, I1 = 50, I2 = 300, η = 0.5.

σ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75
P ∗1 14.70 14.26 13.22 12.62 12.56 12.97 13.77 14.91
P ∗2 102.50 119.67 147.79 184.66 230.08 284.26 347.46 419.94
K∗ 36.25 40.20 42.93 45.94 49.42 53.46 58.00 63.10
α∗2 0.0487 0.0488 0.0489 0.0489 0.0490 0.0491 0.0492 0.0492

(b) Concave cost function: ξ = 1, I1 = 10, I2 = 1000, η = 0.5.

σ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
P ∗1 19.43 21.24 23.06 25.01 27.07 29.31 31.74 34.49
P ∗2 30.83 33.04 36.25 40.22 44.86 50.12 56.01 62.52
K∗ 7.23 7.61 7.95 8.31 8.67 9.04 9.42 9.83
α∗2 0.0439 0.0442 0.0444 0.0446 0.0448 0.0450 0.0452 0.0454

(c) Convex cost function: ξ = 1, I1 = 50, I2 = 300, η = 1.5.

σ 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75
P ∗1 24.71 24.51 23.72 23.86 25.20 27.65 31.41 36.62
P ∗2 102.82 121.17 150.08 187.40 233.05 287.32 350.52 422.91
K∗ 5.87 6.38 6.77 7.23 7.77 8.39 9.12 9.95
α∗2 0.0427 0.0432 0.0436 0.0439 0.0443 0.0447 0.0451 0.0454

(d) Convex cost function: ξ = 1, I1 = 10, I2 = 1000, η = 1.5.

Table 2.8: Effect of increasing uncertainty on the optimal investment thresholds,
the optimal amount of revenue-enhancing investment, and the resulting boosted
drift under a generalized investment cost function as given by Eq. (2.50). (General
parameters: ρ = 0.1, ε = 0.05, α1 = 0.0.)
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delays the investment, the firm optimally incurs a larger total cost of this activity,
even though the resulting effect on the drift is smaller.
This paper represents an early effort in including endogeneity in real options

modelling, bridging the gap to the use of option reasoning in the decision-heuristic
oriented strategy literature. The functional form of how the firm can affect the
drift of the market, and the structure of the cost of this influence, is generally
motivated, but not made to fit any specific practical actions. However, we see
that the results are robust w.r.t. these specifications, suggesting that the results
hold more generally for activities of this kind that a firm can undertake. Future
research could investigate specific activities that a firm can undertake, basing the
specification of the influence on literature on the type of activities considered, like
marketing or standard-captures. This could also allow for empirical testing for the
results. Further, considering changes in volatility could broaden the connection to
practical investment problems, as the degree of risk-taking may be an important
decision for a firm introducing a new product, like the case motivated in Alvarez
and Stenbacka (2003). Lastly, future studies could compare the value added from
the opportunity to boost the drift, to the case where the firm has no such affect
on the market. This could give further insight into the nature of including such
dependencies of the market characteristics on decisions of the firm.
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2.A Additional derivations

2.A Additional derivations
This section presents derivations of the value of the expected discounted cash flows
of the project.

2.A.1 The value of the project
Assume that the profit flow per unit time period after the project is launched is
given as π(P2, t) = P2(t), where P2(t) follows Eq. (2.1b), and that the appropriate
discount rate for the project is ρ. Then the value of the project V (P2) for a
price P2 at investment is found using a dynamic programming approach (Dixit
and Pindyck, 1994). The per time period value of the installed project should be
given by the profit flow, plus the change in project value (capital gains), so we
have

ρV (P2)dt = π(P2)dt+ E[dV (P2)]

= π(P2)dt+
[
α2P2

∂V (P2)
∂P2

+ 1
2σ

2P 2
2
∂2V (P2)
∂P 2

2

]
dt

(2.57)

Thus, the value of the completed project, V (P2), must satisfy the differential
equation

α2P2
∂V (P2)
∂P2

+ 1
2σ

2P 2
2
∂2V (P2)
∂P 2

2
− ρV (P2) + π(P2) = 0. (2.58)

The last term leads to a particular solution, since π(P2) = P2. The value function
V (P2) is given by the combination of a homogeneous and particular solution, and
equal to

V (P2) = B1P
β12
2 +B2P

β22
2 + P2

ρ− α2
. (2.59)

In Eq. (2.59), β12 and β22 are the positive and negative solutions, respectively, of
the fundamental quadratic

Q ≡ 1
2σ

2β2(β2 − 1) + α2β2 − ρ = 0, (2.60)

giving β12 > 1 and β22 < 0 (Dixit and Pindyck, 1994). The boundary condition
limP2→0 V (P2) = 0, gives that B2 = 0 must hold, since β22 < 0. Further, assuming
no speculative bubbles as in Dixit and Pindyck (1994), we have B1 = 0 as well,
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and the project value is given its the fundamental value only:

V (P2) = P2

ρ− α2
. (2.61)

2.B Proofs
This section presents proofs of all propositions and corollaries.

2.B.1 Proof of Proposition 2.2.1
The discounted change in value of the option to undertake the second-stage in-
vestment, F2(P2), for a given value P2 of the price process is equal to the capital
gains of the option, as there is no profit flow from holding the option. The value
function must satisfy the Bellman equation

ρF2(P2)dt = E[dF2(P2)] =
[
α2P2

∂F2(P2)
∂P2

+ 1
2σ

2P 2 ∂
2F2(P2)
∂P 2

2

]
dt, (2.62)

where the right-hand-side follows from Itô’s Lemma. This gives the differential
equation

α2P2
∂F2(P2)
∂P2

+ 1
2σ

2P 2
2
∂2F2(P2)
∂P 2

2
− ρF2(P2) = 0. (2.63)

From the boundary condition F (0) = 0, we obtain the solution form F2(P2) =
D2P

β12
2 , where β12 is the positive root of the characteristic quadratic equation

1
2σ

2β2(β2 − 1) + α2β2 − ρ = 0. (2.64)

The remaining boundary conditions for the value function are

F2(P ∗2 ) = V (P ∗2 )− I2,

F ′2(P ∗2 ) = V ′(P ∗2 ).
(2.65)

Eq. (2.65) represent the value-matching and smooth-pasting conditions at the
optimal threshold price for investing in the second project stage, with the value
of the completed project V (P2) given by Eq. (2.61). At the investment threshold,
the value of the option and the completed project must be continuous and smooth
(Dixit and Pindyck, 1994). From these conditions the threshold price, P ∗2 , and
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the constant, D2, are given by

P ∗2 = β12

β12 − 1(ρ− α2)I2, (2.66)

D2 = 1
(ρ− α2)β12

[
β12

β12 − 1(ρ− α2)I2

]1−β12

. (2.67)

Hence, the value of the option to invest in the second-stage is given by

F2(P2) =
{
D2P

β12
2 if P2 < P ∗2 ,

V (P2)− I2 if P2 ≥ P ∗2 ,
(2.68)

where V (P2) is given in Eq. (2.61).

2.B.2 Proof of Proposition 2.2.2
The value of the option to invest in the first stage, F1(P1), and thus the value of
the firm, for a given price P1, is given by the Bellman equation and Itô’s Lemma
as

ρF1(P1)dt = E[dF1(P1)] =
[
α1P1

∂F1(P1)
∂P1

+ 1
2σ

2P 2
1
∂2F1(P1)
∂P 2

1

]
dt, (2.69)

which gives the differential equation

α1P1
∂F1(P1)
∂P1

+ 1
2σ

2P1
∂2F1(P1)
∂P 2

1
− ρF1(P1) = 0. (2.70)

With the boundary condition F1(0) = 0, we obtain the value function F1(P1) =
D1P

β11
1 where β11 is the positive solution to the characteristic equation

1
2σ

2β1(β1 − 1) + α1β1 − ρ = 0. (2.71)

Similar to Section 2.B.1, the option value should satisfy the value-matching and
smooth-pasting boundary conditions at the investment threshold P ∗1 . However, we
must check for both cases of P ∗1 < P ∗2 and P ∗1 ≥ P ∗2 , as the value of P ∗1 determines
if we enter the continuation region or stopping region of F2(P ) in Eq. (2.68).

If P∗1 < P∗2 the boundary conditions become

D1P
∗β11
1 = D2P

∗β12
1 − I1,

β11D1P
∗β11−1
1 = β12D2P

∗β12−1
1 ,

(2.72)
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where D2 is given by Eq. (2.67). This gives the solutions of D1 and P ∗1 ,

D1 = β12

β11
D2

[
I1

(1− β12
β11

)D2

]1− β11
β12

, (2.73)

P ∗1 =
[

I1

(1− β12
β11

)D2

] 1
β12

, (2.74)

and we have the value of the firm given by

F1(P1) =
{
D1P

β11
1 if P1 < P ∗1 ,

D2P
β12
1 − I1 if P1 ≥ P ∗1 .

(2.75)

If P∗1 ≥ P∗2 the boundary conditions become

D1P
∗β11
1 = P ∗1

ρ− α2
− I2 − I1,

β11D1P
∗β11−1
1 = 1

ρ− α2
,

(2.76)

which gives the expressions for D1 and P ∗1

P ∗1 = β11

β11 − 1(ρ− α2) (I1 + I2) , (2.77)

D1 = 1
(ρ− α2)β11

[
β11

β11 − 1(ρ− α2) (I1 + I2)
]1−β11

, (2.78)

and the value of the firm becomes

F1(P1) =
{
D1P

β11
1 if P1 < P ∗1 ,

V (P1)− I1 − I2 if P1 ≥ P ∗1 ,
(2.79)

where V (P1) is given in Eq. (2.61).

2.B.3 Proof of Corollary 2.2.3
Taking the inequality P ∗1 ≥ P ∗2 , with P ∗1 and P ∗2 being given by Eq. (2.14) and
Eq. (2.7), respectively. Reordering the terms give that P ∗1 ≥ P ∗2 if the following
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inequality holds

I1 ≥
β12

β12 − 1

(
1
β12
− 1
β11

)
× I2, (2.80)

where the right-hand side is positive, since 1 < β12 < β11 if α2 > α1 from
Corollary 2.2.4. Now evaluating the inequality P ∗1 < P ∗2 , where P ∗1 is given by
Eq. (2.14) and P ∗2 by Eq. (2.7). Then the inequality becomes I1(

1− β12
β11

D2

)
 1
β12

<
β12

β12 − 1(ρ− α2)I2, (2.81)

where D2 is given in Proposition 2.2.1. Inserting the expression for D2, we obtain
by direct rearrangement that P ∗1 < P ∗2 yields the inequality

I1 <
β12

β12 − 1

(
1
β12
− 1
β11

)
× I2. (2.82)

Thus, the ordering of the thresholds is unique, and whether the inequality in
Eq. (2.82) holds determines if P ∗1 < P ∗2 .

2.B.4 Proof of Corollary 2.2.4
2.B.4.1 Part i)

Define the characteristic equation as Q(x, ρ, σ, α) = 1
2σ

2x(x − 1) + αx − ρ = 0,
and let β12 and β11 represent the positive roots of the characteristic equations
Q(β2, ρ, σ, α2) and Q(β1, ρ, σ, α1), respectively. Then β12 < β11 gives

1
2 −

α2

σ2 +

√(
α2

σ2 −
1
2

)2
+ 2ρ
σ2 <

1
2 −

α1

σ2 +

√(
α1

σ2 −
1
2

)2
+ 2ρ
σ2

⇒ α2 − α1 > σ2

√(α2

σ2 −
1
2

)2
+ 2ρ
σ2 −

√(
α1

σ2 −
1
2

)2
+ 2ρ
σ2


If we assume that α2 − α1 > 0, then we obtain that√(

α2

σ2 −
1
2

)2
+ 2ρ
σ2 −

√(
α1

σ2 −
1
2

)2
+ 2ρ
σ2 > 0,

and since this inequality holds, we know that α2 > α2 implies that β12 < β11.
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2.B.4.2 Part ii)

If the drift rate is constant for the two price processes P1(t) and P2(t), i.e. α1 = α2,
then β12 = β11. From this, the value-matching and smooth-pasting boundary
conditions when P ∗1 < P ∗2 , given by Eq. (2.72), are contradictory. Thus, P ∗1 ≥ P ∗2
always holds when α1 = α2.

2.B.5 Proof of Proposition 2.2.5
To prove Proposition 2.2.5–2.2.7, we first present an auxiliary result outlining the
sign of the partial derivatives of β12 and β11, where β12 and β11 denote the positive
roots of the quadratic equations in Eq. (2.64) and Eq. (2.71), respectively. We
know that β12, β11 > 1 (Dixit and Pindyck, 1994).

Lemma 2.B.1. The sign of the partial derivatives of β12 are given as

∂β12

∂σ
< 0, ∂β12

∂α2
< 0. (2.83)

From this, the sign of the partial derivatives of the fraction β12
β12−1 are given as

∂

∂σ

β12

β12 − 1 > 0, ∂

∂α2

β12

β12 − 1 > 0. (2.84)

The same holds for the partial derivatives of β11 and the fraction β11
β11−1 w.r.t. σ

and α1.

Proof of Lemma 2.B.1. Evaluate the total derivative of the quadratic equation,
Q, in Eq. (2.64) w.r.t. σ and α2 at the positive root β12:

∂Q
∂β12

∂β12

∂σ
+ ∂Q
∂σ

= 0, ∂Q
∂β12

∂β12

∂α2
+ ∂Q
∂α2

= 0. (2.85)

Thus we have that the partial derivatives given by

∂β12

∂σ
= − ∂Q/∂σ

∂Q/∂β12
,

∂β12

∂α2
= − ∂Q/∂α2

∂Q/∂β12
. (2.86)

The partial derivative of the quadratic w.r.t. β12 is given as ∂Q/∂β12 = 1
2σ

2(2β12−
1) + α2. Since we know β12 > 1, and σ, α2 > 0, we have ∂Q/∂β12 > 0. Further
we have the partial derivatives

∂Q
∂σ

= σβ12(β12 − 1) > 0, ∂Q
∂α2

= β12 > 0. (2.87)
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From this we have that Eq. (2.85) holds. Further, have the derivative of the
fraction given as

∂

∂β12

β12

β12 − 1 = −1
(β12 − 1)2 < 0 (2.88)

and the related derivatives of the fraction in Eq. (2.84) are true. The same can
be shown for β11.

From Proposition 2.2.1 we have that the second investment threshold given by

P2(τ2) = P ∗2 = β12

β12 − 1(ρ− α2)I2. (2.89)

Trivially, we see that P ∗2 is unaffected by α1 and I1, as well as increasing in I2.
Using Lemma 2.B.1 and noting that β12 > 1, the partial derivative of P ∗2 w.r.t. σ
give

∂

∂σ
P ∗2 = (ρ− α2)I2

∂

∂σ

β12

β12 − 1 > 0 (2.90)

with the assumption that ρ > α2. For the first investment threshold, it is given
by Proposition 2.2.2 as

P ∗1 =


β11
β11−1 (ρ− α2)(I1 + I2) if P ∗1 ≥ P ∗2[

I1(
1− β12

β11

)
D2

] 1
β12

if P ∗1 < P ∗2
(2.91)

where D2 is given in Proposition 2.2.1. For the case when P ∗1 ≥ P ∗2 , using
Lemma 2.B.1, the sign of the partial derivative w.r.t. σ is given by

∂

∂σ
P ∗1 = (ρ− α2)(I1 + I2) ∂

∂σ

β11

β11 − 1 > 0 (2.92)

For the case when P ∗1 < P ∗2 , the partial derivative w.r.t. σ becomes

∂

∂σ
P ∗1 =

[
I1

(1− β12
β11

)D2

] 1
β12

︸ ︷︷ ︸
>0

(
1
β12

(
I1

(1− β12
β11

)D2

)−1
∂

∂σ

I1

(1− β12
β11

)D2

+ ln
[

I1

(1− β12
β11

)D2

]
∂

∂σ

1
β12

)
.

(2.93)
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Using the partial derivatives of D2, and β12
β11

as given by

∂

∂σ
P ∗2 = (ρ− α2)I2

σβ12(β12 − 1)
0.5σ2(2β12 − 1) + α2

1
(β12 − 1)2 (2.94)

∂

∂σ
D2 = (P ∗2 )−β12

(ρ− α2)β2
12

[
−P ∗2

(
∂

∂σ
β12

)
(β12 ln(P ∗2 ) + 1)− (β12 − 1)β12

(
∂

∂σ
P ∗2

)]
= (P ∗2 )−β12

(ρ− α2)β2
12
× σβ12(β12 − 1)

0.5σ2(2β12 − 1) + α2
× P ∗2 × β12 ln(P ∗2 )

(2.95)

∂

∂σ

β12

β11
= 1
β2

11

[
β12

σβ11(β11 − 1)
0.5σ2(2β11 − 1) + α1

− β11
σβ12(β12 − 1)

0.5σ2(2β12 − 1) + α2

]
(2.96)

we obtain that

∂

∂σ
P ∗1 = P ∗1

β1(β11 − β12)

[
(1 + (β11 − β12) ln

(
P ∗2
P ∗1

)
d

dσ
β12 −

β12

β11

d

dσ
β11

]
. (2.97)

Thus, ∂P
∗
1

∂σ > 0 implies that the following inequality must hold:

(1 + (β11 − β12) ln (P
∗
2
P ∗1

) d
dσ
β12 −

β12

β11

d

dσ
β11 > 0.

Rearranging, and using the fact that

ln
(
P ∗2
P ∗1

)
= ln

(
(β11 − β12)I2

β11(β12 − 1)I1

) 1
β12
,

we obtain that d
dσP

∗
1 > 0 if the following condition holds

I2 <
β11(β12 − 1)
β11 − β12

× exp
{

β12

β11 − β12

(
β12

β11

dβ11/dσ

dβ12/dσ
− 1
)}
× I1

Inserting the expressions for dβ11/dσ
dβ12/dσ

from Lemma 2.85, we obtain the stated con-
dition.

2.B.6 Proof of Proposition 2.2.6
The second investment threshold, P ∗2 , is given in Proposition 2.2.1, while the first
threshold is given by Proposition 2.2.2. For the sensitivity to the initial drift rate,
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α1, the partial derivative of the second investment threshold is trivially zero, as
all terms are independent of α1.
For the case when P ∗1 ≥ P ∗2 , the sign of the partial derivative of P ∗1 w.r.t. α1 is
given by

∂

∂α1
P ∗1 = (ρ− α2)(I1 + I2) ∂

∂α1

β11

β11 − 1 > 0, (2.98)

where the sign is given by Lemma 2.B.1 and the assumptions that ρ > α2, I1, I2 >
0. For the case when P ∗1 < P ∗2 , we have that

∂

∂α1
P ∗1 =

[
I1

D2

] 1
β12 ∂

∂α1

[
1

1− β12
β11

] 1
β12

=
[
I1

D2

] 1
β12 1

β12

[
1

1− β12
β11

] 1
β12
−1

∂

∂α1

1
1− β12

β11

.

(2.99)

Since we know that β12 < β11 from Corollary 2.2.4, and that D2 > 0, and assume
that I1 > 0, the sign of the derivative is dependent on the last term. Using the
fact that

∂

∂α1

(
1− β12

β11

)−1
= −β12

β2
11

(
1− β12

β11

)2
∂

∂α1
β11, (2.100)

we know that ∂P∗1
∂α1

> 0, since Lemma 2.B.1 states that ∂β11
∂α1

< 0.

2.B.7 Proof of Proposition 2.2.7
The expressions for the second investment threshold, P ∗2 , and the first thresh-
old, P ∗1 , are given by Proposition 2.2.1 and Proposition 2.2.2, respectively. The
sensitivity to the boosted drift rate, α2, is then given for P ∗2 as

∂

∂α2
P ∗2 = I2

∂

∂α2
(ρ− α2) β12

β12 − 1 = I2

[
−β12

β12 − 1 + (ρ− α2) ∂

∂α2

β12

β12 − 1

]
.

(2.101)

From Lemma 2.B.1, we have that the last term in the bracket is positive, meaning
that the overall effect is ambiguous. The last term is given as

∂

∂α2

β12

β12 − 1 = −∂β12/∂α2

(β12 − 1)2 = β12
1
2σ

2(2β12 − 1) + α2

1
(β12 − 1)2 (2.102)
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Thus, the derivative of the threshold becomes

1
I2

∂

∂α2
P ∗2 =

[
−1 + (ρ− α2) 1

1
2σ

2(2β12 − 1) + α2

1
β12 − 1

]
β12

β12 − 1 . (2.103)

Noting that the last term is always positive, the sign of the derivative is dependent
on the term in the brackets. Finding the negative region as

−1 + (ρ− α2) 1
1
2σ

2(2β12 − 1) + α2

1
β12 − 1 < 0, (2.104)

which implies

σ2 >
ρ− α1β12

(β12 − 1)(β12 − 1
2 )
. (2.105)

Thus, ∂P ∗2 /∂α2 is negative as long as Eq (2.105) holds.

2.B.8 Proof of Proposition 2.3.1
The firm maximizes the expected net present value function at the time of invest-
ment, given by

V (P2,K)− I − ξK = P2

ρ− α2(K) − I − ξK, (2.106)

where α2(K) is given by Eq. (2.19). The first- and second-order derivatives of this
value function are given by

∂

∂K
[V (P2,K)− ξK] =

P2
∂
∂Kα2(K)

(ρ− α2(K))2 − ξ, (2.107)

and

∂2

∂K2 [V (P2,K)− ξK] =
P2

[
(ρ− α2(K)) ∂2

∂K2α2(K) + 2
(
∂
∂Kα2(K)

)2]
(ρ− α2(K))3 . (2.108)

Setting the first-order derivative to zero, and rearranging, give the positive solution

K̂∗(P2) =
ξ(α1 − ρ) +

√
P2ξ(ρ− ε− α1)
ξε

, (2.109)
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and K∗(P ∗2 ) = max{0, K̂∗(P2)}. Further the second-order derivative is given by

∂2

∂K2V (P2,K)− ξK = −2ε(ρ− ε− α1)
(Kε+ ρ− α1)3 P2. (2.110)

This is always negative, as we assume that ρ− ε− α1 > 0, and K is bounded by
below by zero. The price process P2(t) is following a geometric Brownian Motion,
so it will never be negative. Hence, K∗(P2) is the global maximum. The resulting
optimal drift rate α∗2(P2) is given by

α∗2(P2) = α∗2(K∗(P2)) = ρ− ε− ρ− ε− α1

1 +K∗(P2)

= ρ− ε− ξε(ρ− ε− α1)
ξ(−ρ+ ε+ α1) +

√
P2ξ(ρ− ε− α1)

=
(ε− ρ)

√
P2ξ(ρ− ε− α1) + ρξ(ρ− ε− α1)

ξ(ρ− ε− α1)−
√
P2ξ(ρ− ε− α1)

(2.111)

2.B.9 Proof of Corollary 2.3.2
Using the equation for K̂∗(P2) in Proposition 2.3.1, and finding the inequality
K̂∗(P2) > 0, we obtain

ξ(α1 − ρ) +
√
P2ξ(ρ− ε− α1)
ξε

> 0, (2.112)

which after rearranging yields the inequality

P2 >
ξ(ρ− α1)2

ρ− ε− α1
, (2.113)

where we have used the assumptions that ρ− ε− α1 > 0, ε > 0, and ξ > 0.

2.B.10 Proof of Proposition 2.3.3
Before investment, the value of the opportunity to invest follows from a Bellman
equation similar to Proposition 2.2.2. Solving the resulting ordinary differen-
tial equation, and letting β11 be the positive solution to the quadratic equation
Q = 1

2σ
2β1(β1 − 1) + α1β1 − ρ = 0, the value of the firm is then given as in

Eq. (2.26). The the value-matching and smooth-pasting boundary conditions at
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the investment threshold P ∗1 are given by,

AP ∗β11
1 = P ∗1

ρ− α∗2(P ∗1 ) − I − ξK
∗(P ∗1 )

β11AP
∗β11−1
1 = d

dP1

[
P1

ρ− α2(K∗1 (P1)) − I − ξK
∗(P1)

]
P1=P∗1

.
(2.114)

Defining the term in brackets as f(P1,K(P1)), we obtain that the total deriva-
tive is given as

AP ∗β11
1

β11

P ∗1
= ∂

∂P1
f(P1,K(P1)) + ∂f(P1,K(P1))

∂K

∂K(P1)
∂P1

(2.115)

However, by the construction of the first-order maximization of K, we have that
∂f(·)/∂K = 0, and we obtain

AP ∗β11
1 = P ∗1

β11

1
ρ− α2(K∗1 (P ∗1 )) (2.116)

Subtracting the equations from the conditions of continuity and smoothness, we
obtain

β11 − 1
β11

P ∗1
ρ− α2(K∗(P ∗1 )) − I − ξK

∗(P ∗1 ) = 0. (2.117)

Using the equations for K∗1 (P1) and α∗2(P1), this becomes the second-order poly-
nomial for

√
P ∗1 given by

P ∗1 −
(

β11

β11 − 1 + 1
)√

ξ(ρ− ε− α1)
√
P ∗1 + β11

β11 − 1(ξ(ρ−α1)−Iε) = 0. (2.118)

Solving for
√
P ∗1 , we obtain

√
P ∗1 = 1

2

(
β11

β11 − 1 + 1
)√

ξ(ρ− ε− α1)

±

√
1
4

(
β11

β11 − 1 + 1
)2

ξ(ρ− ε− α1) + β11

β11 − 1(Iε− ξ(ρ− α1)).
(2.119)
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Squaring this and rearranging, we obtain the solution for P ∗1 , as given by

P ∗1 = 1
2

(
2β11 − 1
β11 − 1

)2
ξ(ρ− ε− α1) + β11

β11 − 1(Iε− ξ(ρ− α1))

± 1
2

(
2β11 − 1
β11 − 1

)√
ξ(ρ− ε− α1)

(
β11

β11 − 1(Iε− ξ(ρ− α1) + ξ(ρ− ε− α1))
)
.

(2.120)

Taking the minus part of Eq. (2.119), we derive when this is smaller than zero.
This yields a non-admissible solution, as the square root of the threshold cannot
be negative. Setting

√
P ∗1 < 0, we obtain

β11

β11 − 1(Iε− ξ(ρ− α1)) > 0. (2.121)

We know the fraction is greater than zero, since β11 > 1. Thus, there is only
one non-negative root for the investment threshold, i.e.

√
P ∗1 > 0, if the following

condition holds

Iε > ξ(ρ− α1). (2.122)

2.B.11 Proof of Corollary 2.3.4
For Eq. (2.120) to have real-valued solutions, the term in the square root must
be greater than or equal to zero. When rearranging this term, we obtain the
condition

Iε ≥ ξ(ρ− α1)− ξ(ρ− ε− α1)β11 − 1
β11

. (2.123)

2.B.12 Proof of Proposition 2.3.5
As seen in Section 2.B.1, the value of the second-stage option is dependent on
the value of the drift, and therefore becomes a function of the control K in the
controlled case. However, the choice of K is undertaken before the second-stage
option exists, and K can therefore be considered a constant in this region. Thus,
the proof follows analogously the proof in Section 2.B.1, with the terms being
functions of K through the dependence of α2(K) on K.
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2.B.13 Proof of Proposition 2.3.6
For the case with controlled change in drift, the value of the option to invest
in the first-stage is, similarly to the fixed case presented in Proposition 2.2.2,
dependent on the ordering of the threshold. The value of the option to invest in
the first stage, F1(P1), for a given price P1, is given by the Bellman equation in
Appendix 2.B.2. The value function is therefore given as F1(P1) = D1P

β11
1 , where

D1 is a parameter to be decided and β11 the positive solution to the fundamental
equation in Eq. (2.71). At the investment threshold, the firm must chose optimal
value of K, and pay the investment cost. The value-matching and boundary
conditions is dependent on the ordering of the thresholds.

If P∗1 ≥ P∗2 the value of the option to invest is given by

F (P1) =
{
D1P

β11
1 if P1 < P ∗1

maxK
{

P1
ρ−α2(K) − I1 − I2 − ξK

}
if P1 ≥ P ∗1

(2.124)

This is the same situation as in Proposition 2.3.3, with I = I1 + I2, proven in
Appendix 2.B.10

If P∗1 < P∗2 the value of the option to invest is given by

F (P1) =
{
D1P

β11
1 if P1 < P ∗1

maxK
{
D2(K)P β12(K)

1 − I1 − ξK
}

if P1 ≥ P ∗1
(2.125)

where D2(K) is given by Eq. 2.6. Defining K∗ as the maximizing argument, the
value-matching and smooth-pasting boundary conditions at the threshold becomes

D1P
∗β11
1 = D2(K∗)P ∗β12(K∗)

1 − I1 − ξK∗,

β11D1P
∗β11−1
1 = β12(K∗)D2(K∗)P ∗β12(K∗)−1

1 ,
(2.126)

Multiplying the second equation by P∗1
β11

, and subtracting the left- and right-hand-
sides of the equations yields that P ∗1 must satisfy the equation given by

(β12(K∗)− β11)D2(K∗)P ∗β12(K∗)
1 + (I1 + ξK∗)β11 = 0. (2.127)
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2.B.14 Proof of Proposition 2.3.7
Taking the value of the first investment threshold, P ∗1 , given by Eq. (2.120), we
compute the derivative dP∗1

dσ . We obtain that

dP ∗1
dσ

= 1
2ξ(ρ− ε− α1) d

dσ

(
2β11 − 1
β11 − 1

)2
+ (Iε− ξ(ρ− α1)) d

dσ

β11

β11 − 1

+ d

dσ

[
1
2

2β11 − 1
β11 − 1

√
ξ(ρ− ε− α1)(ξ(ρ− ε− α1) + β11

β11 − 1(Iε− ξ(ρ− α1)))
]

(2.128)

The sign of the first term is given as

d

dσ

(
2β11 − 1
β11 − 1

)2
= 4β11 − 2

β11 − 1 ×
−dβ11/dσ

(β11 − 1)2 > 0. (2.129)

This is larger than zero, since we know from Lemma 2.B.1 that dβ11/dσ < 0. The
sign of the second term in Eq. (2.128) is given by d

dσ
β11
β11−1 , which we know from

Lemma 2.B.1 is larger than zero. The sign of the last term in Eq. (2.128) is given
by

d

dσ
[· · · ] =

√
· · · × d

dσ

[
1
2

2β11 − 1
β11 − 1

]
+ 1

2
2β11 − 1
β11 − 1 ×

d

dσ

√
· · ·. (2.130)

In this equation, we know from earlier that the first term is positive, as long as
the square-root is well-defined. For the second term, the sign is determined by
the derivative of the square-root, which is given by

d

dσ

√
· · · = 1

2
√
· · ·
× (Iε− ξ(ρ− α1))× d

dσ

β11

β11 − 1 . (2.131)

We know that d
dσ

β11
β11−1 > 0. Therefore, if Iε − ξ(ρ − α1) > 0, the overall term

is positive. This is exactly the necessary condition for a unique threshold, given
in Section 2.B.10. Since all the evaluated derivatives are postive, we know that
dP ∗1 /dσ > 0.

2.B.15 Proof of Proposition 2.4.1
This result is similar to the case proved in Section 2.B.10, with a different impulse
function. However, now the maximization does not yield an analytical result for
K∗. Thus, the value of the optimal control is given implicitly as the maximizing
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argument. Further, using conditions of continuity and smoothness of the value
function at the investment threshold, similar to Section (2.B.2), it is straightfor-
ward to see that the investment threshold, P ∗1 , must satisfy the expression given
in Eq. (2.49).

2.B.16 Proof of Proposition 2.4.2
This result follows the case proved in Section 2.B.10, with the investment cost for
the first project stage given as IK(K) = I1+ξKη. The value of the optimal control
is given implicitly as the maximizing argument for each case of the ordering of the
thresholds P ∗1 and P ∗2 . Further, using conditions of continuity and smoothness
of the value function at the investment threshold, similar to Section (2.B.2), P ∗1 ,
must satisfy the expression given in Eq. (2.56).

56



3 Optimal switching between
projects with different profitability
and uncertainty characteristics

Abstract:

We consider a firm that is currently producing an established
product subject to a stochastic environment. The firm has the
one-time opportunity to undertake an irreversible investment to
switch to a new product, which changes the drift and volatility of
the firm’s underlying stochastic profit flow. We show that it is op-
timal to invest in the new product if an increase in the expected
growth outweighs the increase in risk from switching. We find
that the effect of uncertainty on the optimal investment strategy
is not straightforward. The overall effect of uncertainty is de-
termined by the interplay between the value of waiting and the
effect of Jensen’s inequality. Contrary to the standard real op-
tions result, that higher uncertainty delays investment, we show
that an increase in volatility in the old market can both acceler-
ate or delay the investment. We perform an analysis of the an-
tecedents of this non-monotonic effect of uncertainty, and provide
extensive economical reasoning for the results. Further, we show
that an investment opportunity with changing characteristics of
the stochastic environment and constant profit function, can be
transformed to a case of changing profit function and constant
parameters of the stochastic process.

3.1 Introduction
For a firm currently active in an established product market, switching to a new
product is characterized by a change in the firm’s stochastic environment. In
deciding when to invest in the new product, the firm should take into account
how the decision will affect the development of its expected profits, and the related
uncertainty from changing the product market within which it operates. Highly
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innovative products might have the potential to become blockbusters, but also
come with additional uncertainty stemming from risks related to how consumers
respond to the new product. In the automotive industry, a pressing issue for
traditional automobile manufacturers has been whether to enter the novel market
for electric vehicles (EVs), and if so, when to enter. The industry incumbents
have well-defined markets for their traditional products, but might be missing out
on the growing profits from green transportation1. The EV market is growing
faster than the market for traditional cars2,3. However, the younger EV market
is exposed to higher uncertainty due to demanding technological challenges4 and
uncertain adoption rates of consumers5. Therefore, entering the EV market might
change both the expected growth and uncertainty of the firm’s profits.
This paper studies the investment problem of a monopolistic firm that has the

one-time opportunity to switch from one stochastic profit flow to another. Such
investment problems under uncertainty can be characterized as real options (Dixit
and Pindyck, 1994; Trigeorgis, 1996), recognizing that the firm has discretion of
the investment timing. However, a common assumption in modelling real op-
tions problems is that the uncertainty faced by the firm is both independent of
the firm’s actions and constant. In that, the fundamental uncertainty is mod-
elled by an exogenous stochastic process, often a geometric Brownian motion with
constant drift and volatility parameters. Acknowledging that the investment de-
cisions of the firm can alter the characteristics of its uncertain profits, we need
to account for the fact that the parameters of the stochastic process can be en-
dogenously changed by the decision of the firm. We model the switch in products
as a change from one stochastic regime to another. We model the underlying
stochastic process as a geometric Brownian motion, but with different drift and
volatility coefficients for each regime. Thus, the firm changes the characteristics
of its stochastic environment from investing in the new product.
Most earlier work on investment decisions under uncertainty is limited to models

where, upon investment, the functional form of the profit function change, but not
the parameters of the underlying stochastic process (Dixit and Pindyck, 1994).
One of the contributions here is Alvarez and Stenbacka (2001), who studies a

1The traditional German car manufacturers see a stagnation in their traditional markets, and
set lofty goals for their EV portfolio. https://www.economist.com/news/business/21737534-
coddled-successive-governments-industry-dogged-dieselgate-lagging-electric

2Boston Consulting Groups predictions on the EV market going forward:
https://www.bloomberg.com/news/articles/2017-11-02/battery-powered-cars-to-be-half-
of-global-auto-market-by-2030

3Statistics on the sales volumes of EVs: http://www.ev-volumes.com/
4How the technological uncertainty of the EV market affects the forecasts for the market:
https://www.bcg.com/publications/2018/electric-car-tipping-point.aspx

5On the challenges in the EV market from consumer behaviour:
https://www.bloomberg.com/news/features/2017-12-19/the-near-future-of-electric-cars-
many-models-few-buyers
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setting where the profit function can be improved by adopting a new technology at
a later stage. Their model does however assume that the long-term growth and the
volatility driving the profits remain constant, and find that increased uncertainty
delays the decision to invest. In contrast, our paper allows the parameters of the
stochastic process driving the profits to be changed after investment. Under this
assumption, increased uncertainty might not delay investment, but accelerate it.
Another strand of the literature allows the stochastic process that the firm faces
to be subject to different regimes, and that the process alternates between these
regimes over time. Bensoussan et al. (2012) introduce a model where the firm
is exposed to exogenous and random switches of regimes, in which the regimes
differ in the growth and volatility of the underlying stochastic process. Thus,
the firm acknowledges that it might be facing different structures in its stochastic
environment, but has no way of influencing the switching process itself. Like other
studies on investment under uncertainty, Bensoussan et al. (2012) find that the
optimal strategy of the firm is characterized by an investment threshold, where the
firm invests as soon as it observes the exogenous process to reach the threshold.
In a similar vein, Bollen (1999) studies the life-cycle problem of products, where
the demand for a firm’s output is randomly switched from an increasing to a
decreasing regime. The author shows that the assumption of a constant regime
for the stochastic demand can yield significant errors in the value of an investment
opportunity. The aforementioned models allow the stochastic process to switch
regimes, but do not allow the firm to affect these switches endogenously. Thus,
they still assume that the firm is passive w.r.t. its stochastic environment. One
attempt on making the underlying stochastic dependent on the firms actions is
presented in Busch et al. (2013). They extend the setting of Bensoussan et al.
(2012), by allowing the firm to alter the probability of a switch taking place
through its investments. This represents an indirect influence of the firm on the
stochastic environment, while in our paper we aim to model this explicitly.
For models considering a firm’s possibility to directly influence the underlying

stochastic process, the available literature is sparse. Kwon (2010) is one of the
first to account for changing parameters of the underlying stochastic process in
the investment decision. Kwon (2010) studies a firm currently producing an aging
product, with the one-time opportunity to invest in a new product. He models the
firm’s initial profits by an arithmetic Brownian motion with negative drift. Invest-
ing in the new product increases the drift of the process. Assuming the resulting
drift to still be negative, the paper also considers an exit option after investment,
finding that increased uncertainty can both delay or speed up investment in the
new product. Matomäki (2013, Article 1) generalizes the problem of Kwon (2010)
by allowing for general specifications of the stochastic process, as well as includ-
ing changes in volatility. He confirms the results of Kwon (2010), that increased
uncertainty can both delay or expedite investment. However, both these papers
include an exit option in addition to the investment option. Thus, the reason
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for the non-monotonic effect of uncertainty in these studies is that increasing the
volatility increases the value of the exit option, which then makes it more attrac-
tive to invest sooner. Contrarily, the value of waiting from the option to invest
in the new product increases in uncertainty, which therefore induces a delay in
investment. Further, Hagspiel et al. (2016) extends Kwon (2010) by allowing for
capacity discretion for the new product, while keeping the volatility constant and
only switching the drift. This induces a monotonic effect of uncertainty, where
increasing the volatility leads to an increase of the investment threshold. In the
work of Kwon (2010), increased uncertainty makes it more likely that the exit
option will be used, as the firm has a fixed capacity of production of the second
product and cannot adjust to the increased uncertainty in the market. In Hagspiel
et al. (2016), the possibility of optimizing the capacity restores the monotonic ef-
fect of uncertainty, which suggests that the firm can adjust the capacity to the
change in volatility, and therefore making the increased value of the exit option
smaller than the increased value of the option to invest in the second product.
The aforementioned models with direct changes to the parameters of the stochas-
tic process all include an exit option, which we do not consider. Our work is in
line with Alvarez and Stenbacka (2003), as they look at a situation where the firm
can invest in a new product, with changing parameters of the stochastic environ-
ment, and not including other embedded options. Upon investment, they assume
that the volatility of the underlying stochastic process changes, while the drift
is not affected. They find that uncertainty can indeed both delay and accelerate
investment, under both concave and convex profit functions. This non-monotonic
behaviour is a pure effect of the change in parameters of the underlying stochastic
process, and does not arise from the presence of a compound option, like an option
to exit.
In solving our problem, we utilize the theoretical framework of stochastic op-

timal control (Pham, 2009), relying on a viscosity solution approach to solving
stochastic optimal control problems (Crandall et al., 1992). We apply the re-
sults of Ly Vath and Pham (2007) for a general switching problem, which permit
multiple switches between various regimes. Our problem is a special case of the
multidimensional problem studied therein. Thus, we employ well-defined mathe-
matical results to investigate a novel investment problem, in addition analyzing
how the optimal strategy depends on the underlying parameters. We show that it
is optimal to invest in the new product if an increase in the expected growth from
switching regimes outweighs the increase in risk. Our results confirm the findings
of Alvarez and Stenbacka (2003) under cases where the drift is not changed from
investment. Also allowing for a potential change in drift, we find that the effect
of uncertainty on the optimal strategy is more complex and multifaceted than
the results of Alvarez and Stenbacka (2003) imply. We show that increasing the
uncertainty in the profits from the initial product can both delay or accelerate the
investment. Further, we provide extensive economic reasoning for the determi-
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nants of this non-monotonic behaviour. Finally, we show that the posed problem
can be transformed to a problem of constant parameters of the stochastic process,
but with a change in the profit function after investment.
The rest of this paper is structured as follows. Section 2 presents the model,

using the mathematical results of Ly Vath and Pham (2007) of optimal switching.
Section 3 presents the comparative statics of the resulting investment threshold.
Section 4 presents how a problem of changed profit function but constant param-
eters of the stochastic process can be transformed to a problem of constant profit
function but changing process parameters. Section 5 provides some concluding
remarks and possibilities for future work, while Appendix A presents proofs of all
propositions.

3.2 Model
The firm currently operates in a market with an established product, denoted
as regime i = 1. It holds a one time opportunity to invest in a new product,
therewith switching to a regime i = 2. Switching incurs an irreversible investment
cost. The profitability of the firm is uncertain, and assumed to follow a stochastic
process given as a geometric Brownian motion with regime-dependent diffusion
parameters. We define a stochastic process θϑi taking values in R∗+ = (0,∞)
which satisfies the stochastic differential equation

dθi(t) = αiθi(t)dt+ σiθi(t)dWt, θi(0) = ϑ, i = 1, 2, (3.1)

where W is a Wiener process, and αi and σi are drift and volatility coefficients
of the process θ in regime i at time t, respectively. The drift parameter of each
regime represents the general drift of the market of the given product, while the
volatility parameter represents the uncertainty inherent in the given market. We
assume that the driving Wiener process W is the same in both regimes, and only
the growth and diffusion parameters change. This accounts for a case where the
firm changes its product offering when switching regime, but stays within the same
general market structure or consumer base for its products. The profit flow per
time period for the firm in regime i is given by π(θi(t)) = ηθγi (t), where η > 0
and γ ∈ (0, 1] are constants. We assume without loss of generality that there
are no variable or fixed cost for producing the product. The profit flow is Hölder
continuous and thus satisfy linear growth conditions with γ ∈ (0, 1], where γ = 1
implies Lipschitz continuity6. This condition on the value function is necessary

6Hölder continuity implies that a function f satisfies | f(x) − f(y) |α≤ C | x − y |α for some
finite constant C and α ∈ (0, 1). Lipschitz continuity arises when α = 1 in this expression.

This also assures that the expectation of the form E
[∫ T
t
f(θ(t), t)dt

]
is well defined (Pham,

2005), where θ(t) is a continuous-time stochastic process.
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to utilize the approach of Ly Vath and Pham (2007), and ensures that the profit
function is continuous and cannot explode in value.
The value function of the investment problem, given that the firm is currently

in regime i = 1, 2, is denoted by vi. These are the unique continuous viscos-
ity solutions with linear growth conditions on (0,∞) and boundary conditions
vi(0+) = (−gij)+, i 6= j to the system of variational inequalities (Ly Vath and
Pham, 2007, Thm. 3.4)

min{rv1 − L1v1 − π1, v1 − (v2 − g12)} = 0,
min{rv2 − L2v2 − π2, v2 − (v1 − g21)} = 0.

(3.2)

Here r is the discount rate, gij is the cost of switching from regime i to j, and
Li the second-order operator associated with the diffusion θ when the system is
in regime i, which for an arbitrary C2-function ϕ on (0,∞) is given as Liϕ =
1
2σ

2
i θ

2 ∂2

∂θ2ϕ+ αiθ
∂
∂θϕ. We assume that r > αi ∀i, so that the drift in each region

is not higher than the discount factor. This assures that investment might be
optimal for the firm. Otherwise, the optimal strategy would always be to wait,
as the profits would grow at a higher rate than the discount factor. The regions
of θ where it is optimal for the firm to switch from regime i to j are denoted by
Si = Sij and defined as

Si = {ϑ > 0: vi(ϑ) = vj(ϑ)− gij}, i, j = 1, 2, i 6= j. (3.3)

The firm would switch from regime i to j for any realizations of the diffusion
process for which the optimal value function in the regime equals the value of the
other regime, minus the switching cost. This is refereed to as the stopping regions
of the investment problem. We define an upper and lower threshold of θ where it
is optimal to switch from regime i as ϑ∗i = supSi ∈ [0,∞] and ϑ∗i = inf Si ∈ [0,∞],
where the convention inf ∅ =∞ ensures that ϑ∗i =∞ if Si = ∅. I.e., if the stopping
region is empty, it is never optimal to switch.
The first term of the maximization in the system of variational inequalities in

Eq. (3.2) denotes the value function for i = 1, 2 when the firm would optimally
stay in regime i and not switch, i.e. the continuation region. This term yields a
second-order ordinary differential equation for i = 1, 2 given by

rvi − Livi − πi = 0. (3.4)

Omitting the particular term stemming from the running profit function πi, this
ODE has the homogeneous solution given by

vi(ϑ) = Aϑβ
i
1 +Bϑβ

i
2 , (3.5)
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for some constants A and B, and

βi1 = −αi
σ2
i

+ 1
2 +

√(
−αi
σ2
i

+ 1
2

)2
+ 2r
σ2
i

, (3.6)

βi2 = −αi
σ2
i

+ 1
2 −

√(
−αi
σ2
i

+ 1
2

)2
+ 2r
σ2
i

. (3.7)

It can be shown that βi1 > 1 and βi2 < 0 (see e.g. Dixit and Pindyck (1994)).
Further denote the particular solution to the ODE in Eq. (3.4) as V̂i(ϑ), subject
to the boundary condition V̂i(0+) = π(0) = 0. V̂i is then defined as

V̂i(ϑ) = E
[∫ ∞

0
e−rtπ(θ̂ϑi (t))

]
= ηϑγ

r − αiγ + 1
2σ

2
i γ(1− γ)

= Kiηϑ
γ , (3.8)

where θ̂ϑi is the solution to the SDE dθ̂(t) = αiθ̂(t)dt+ σiθ̂(t)dWt, with θ̂(0) = ϑ,
and we define the perpetual multiplier Ki as

Ki = 1
r − αiγ + 1

2σ
2
i γ(1− γ)

> 0. (3.9)

The particular solution for each regime represents the value of never switching,
i.e. the value of the firm given that it produces product i = 1, 2 forever.

The model outlined above follows the work of Ly Vath and Pham (2007) and
would generally allow for multiple switches between the two regimes. However,
we focus on a single switch case from an initial regime i = 1 to a regime i = 2.
Switching is costly and irreversible, so that g12 > 0. Switching back is not possible
in our case. Using Theorem 4.1 in Ly Vath and Pham (2007), the existence of
a finite switching threshold ϑ∗1 depends on the difference of the value of staying
in the regimes in perpetuity, i.e. V̂2 − V̂1, given that there is no salvage value of
switching back. Formally, the result says that for i, j = 1, 2, i 6= j, assuming
gij > 0 and gji ≥ 0, if V̂i = V̂j , then Si = ∅ and ϑ∗1 = 1. However, if V̂j > V̂i,
then Si = [ϑ∗i ,∞) with ϑ∗i ∈ (0,∞) and Sj = ∅. This assures that after switching
from the initial regime i = 1, switching back is not optimal, as long as there is a
non-negative cost of switching back. The intuitive explanation of this is that if the
value of producing the two products forever are equal, the firm has no incentive
to pay a positive investment cost to switch products, and the switching threshold
is infinite. Conversely, if one of the products has a higher value of producing in
perpetuity, there is a finite threshold at which the firm should pay an investment
cost to obtain the more profitable profit stream. Given no salvage value there
is never an incentive to switch back to the less valuable regime. We can now
investigate the optimality of switching, for different combinations of the diffusion
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parameters. The following proposition presents the conditions on the diffusion
parameters for the existence of an optimal finite switching threshold.

Proposition 3.2.1.

(i) If α1 = α2 and σ1 = σ2, then K1 = K2 and S1 = ∅. Therefore, it is never
optimal to switch regime in this case.

(ii) If α1 6= α2 and σ1 = σ2, then it is optimal to switch for some threshold
ϑ∗i ∈ (0,∞) if α1 < α2, but never optimal otherwise.

(iii) If α1 = α2 and σ1 6= σ2, then it is optimal to switch for some finite threshold
if γ ∈ (0, 1) and σ1 > σ2, but never optimal if γ = 1 or if σ1 < σ2.

(iv) If α1 6= α2 and σ1 6= σ2, the existence of an optimal switching threshold
depends both on the difference in drift and volatility for the regimes. There
exists a finite investment threshold ϑ∗1 if K2 > K1, which is equivalent to the
condition

α2 − α1 + 1
2(1− γ)(σ2

1 − σ2
2) > 0. (3.10)

We see from Proposition 3.2.1 (iii) that the effect of uncertainty is dependent
on whether γ = 1 or γ ∈ (0, 1). If γ = 1, the profit functions become linear in the
diffusion process and the uncertainty of the regime does not affect the expected
present value of the perpetuity. Thus, the existence of a finite switching threshold
is solely dependent on the difference in drift, i.e. the sign of α2 − α1. However,
if γ ∈ (0, 1), the profit function becomes concave in the diffusion process, and a
change in volatility alone can induce switching. The intuition for why a concave
profit function leads to dependence on the volatility for the value of the perpetuity,
is that a downward shock has a larger negative effect on the firms profit than the
positive effect of an equal upward shock. Since the negative effect dominates, an
increase in the uncertainty yields a lower value of the perpetuity since shocks (both
negative and positive) are more likely with increased uncertainty of the diffusion
process. In the case of γ = 1, the effects of downward and upward shocks of equal
size on the profit are equal, so the net effect is zero, making the expected value
independent of uncertainty.
If both the drift and the volatility in the regimes are different, Proposition 3.2.1

(iv) indicates that the optimality of switching depends on the interplay between
the parameters of the two regimes. Even if the drift of the second regime is higher
than for the first, it is still not optimal to switch if σ2 is sufficiently high compared
to σ1. If α1 > α2, there is an upper bound on σ2 for switching to be optimal,
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Figure 3.1: Minimum required change in drift α2 −α1 for the existence of a finite
investment threshold ϑ∗1.
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given by

σ2
2 < σ2

1 −
2(α1 − α2)

1− γ . (3.11)

Indeed, if α1 > α2 and 0 < σ1 <
√

2(α1−α2)
1−γ , it can never be optimal for the firm

to switch, for any positive volatility σ2. Figure 3.1 shows the minimum required
change in drift from investing necessary for the existence of a finite threshold ϑ∗1,
as a function of σ1 and σ2. We see that the required change in drift increases
in σ2 and decreases in σ1, as a decrease in the change of volatility σ1 − σ2 from
investing makes switching less attractive. In this, the firm requires a higher boost
in drift from introducing the new product for switching to be optimal. Figure 3.1a
shows how the steepness of the threshold for the required boost in drift increases
when γ decreases. This is due to the fact that a lower γ yields a more concave
profit function, so that the asymmetric effect of shocks discussed in the last para-
graph is strengthened. Given that a finite optimal threshold exists, the following
proposition presents the optimal value function of the firm and the investment
threshold.

Proposition 3.2.2. Assuming that the conditions in Proposition 3.2.1 for the
existence of a finite switching threshold hold, i.e. K2 > K1, the value of the firm,
given that it is currently in regime i = 1, is given by

v(ϑ) = v1(ϑ) =
{
Aϑβ

1
1 + V̂1(ϑ), ϑ < ϑ∗1,

V̂2(ϑ)− g12, ϑ ≥ ϑ∗1,
(3.12)

where V̂1(ϑ) and V̂2(ϑ) are given by Eq. (3.8). The constant A and the threshold
ϑ∗1 are obtained from the value-matching and smooth-fit property of v1(ϑ∗1). These
boundary conditions give the explicit expressions

ϑ∗1 =
[

β1
1

β1
1 − γ

1
K2 −K1

g12

η

] 1
γ

, (3.13)

A = ηγ

β1
1

(K2 −K1)(ϑ∗1)γ−β
1
1 . (3.14)

Proposition 3.2.2 states that the optimal investment strategy of the firm is to
invest in the new product if the value of the stochastic process θ1(t) is higher than
a certain threshold, i.e. ϑ ≥ ϑ∗1. Otherwise, the firm continues to produce the
initial product, and holds on to the the option to invest at some later time, which
is done as soon as θ1(t) reaches ϑ∗1. For any current value ϑ of the stochastic
process θ(t), the value of the firm is given by Eq. (3.12). If ϑ < ϑ∗1, the firm’s
value is given as the value of producing in regime i = 1 forever, plus an option
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value from the opportunity to switch. If ϑ ≥ ϑ∗1, the firm switches to regime i = 2
immediately, and the value of the firm is given as the expected discounted cash
flows from producing in regime i = 2, minus the investment cost.

3.3 Comparative statics
This section presents a comparative static analysis on the optimal investment
threshold ϑ∗1 with respect to the drift and volatility of each regime. Throughout
this section we assume that the conditions in Proposition 3.2.1 for the existence
of a finite switching threshold hold.
Proposition 3.3.1. The optimal switching threshold ϑ∗1 is decreasing in α2 and
increasing in α1.
Intuitively, if the positive change in drift from switching product is increasing

(decreasing), the firm has more (less) incentive to switch, and thus the threshold
where the firm would optimally pay the investment cost to obtain a more valuable
profit flow decreases (increases). The following proposition presents the effect of
uncertainty on the optimal investment threshold.
Proposition 3.3.2.
(i) The optimal switching threshold ϑ∗1 is strictly increasing in σ2. It is increas-

ing in σ1 if the following condition holds,

β1
1 − 1
β1

1 − γ
× 1

1
2σ

2
1(2β1

1 − 1) + α1
− (1− γ) K2

1
K2 −K1

> 0, (3.15)

and decreasing otherwise.

(ii) If σ2 = σ1 = σ, then the optimal switching threshold ϑ∗1 is increasing in σ.
We find that the investment threshold is always increasing in the post-investment

volatility σ2. If the volatility in the new market increases, the firm has less in-
centive to switch. Therefore, the firm demands a higher expected profit to switch
to the new market and the threshold increases, which is a standard real options
result. This result is similar to that of Alvarez and Stenbacka (2003) for a con-
cave profit function. For the effect of uncertainty on investment timing, they
point to the interplay of two opposing effects: (1) the real options effect, and (2)
the Jensen’s inequality effect7. Since increased post-investment uncertainty will
decrease the expected cumulative profits after investment under a concave profit
function (from Jensen’s inequality), it will increase the value of waiting (the real
options effect), and hence delay investment.

7From Jacod and Protter (2004): Jensen’s inequality states that if X is a random variable and
φ is a convex (resp. concave) function, then φ(E(X)) ≤ (resp. ≥ ) E(φ(X))
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Figure 3.2: Effect of initial uncertainty σ1 on investment threshold ϑ∗1 for three dif-
ferent values of α2, capturing different levels of the change in drift from switching.
General parameter values: α1 = 0.02, r = 0.1, σ2 = 0.3, g12 = 100, γ = 0.9.

However, the effect of the initial volatility σ1 is ambiguous, and a higher volatil-
ity can both accelerate or delay investment. The condition in Eq. (3.15) is rather
involved, as it depends on most of the underlying parameters. Changing the ini-
tial volatility affects both the value of the option of switching and the value of
producing in the initial regime in perpetuity, relative to the new regime. We refer
to these two effects as the option effect and the perpetuity effect. An increase in
the initial volatility would through the option effect increase the value of waiting,
which increases the threshold. Reversely, it is also decreasing the attractiveness
of the initial regime relative to the second regime through the perpetuity effect,
which increases the incentive of switching and lowers the threshold. Figure 3.2
plots the threshold ϑ∗1 as a function of pre-investment volatility σ1 for three differ-
ent levels of α2, showing that for different values of α2 the effect of initial volatility
on the investment threshold can be various. In Figure 3.2c, we see that increasing
σ1 can delay investment if the change in drift is relatively large. Figure 3.2b shows
a non-monotonic behaviour for small levels of α2 relative to α1, so that marginally
increasing σ1 can delay investment for relative low levels of uncertainty, and accel-
erate investment for higher levels. In the case where the drift of the two regimes is
equal, Figure 3.2a shows that increased initial volatility decreases the investment
threshold monotonically, suggesting that the adverse change in value of staying in
the initial regime is larger than the increased option value of switching. However,
in Figure 3.2a we see that the investment threshold is very large when σ1 is close
to σ2. In this case, the benefit of switching to the new product is small. When
the change in volatility from switching becomes larger, the threshold drastically
decreases in value, as the firm would get a larger benefit from switching to the sec-
ond regime with lower volatility. In Alvarez and Stenbacka (2003), where the drift
is equal for the two regimes, they also find that the effect of the initial uncertainty
is unclear, but state that their numerical results suggest that the threshold should
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decrease in the initial uncertainty. Our analysis confirms the results of Alvarez
and Stenbacka (2003). We show that also accounting for a potential change in
drift leads to a more complex picture of the effect of uncertainty when the drift
are changed from investing as well.
Investigating the antecedents of the two opposing effects, that is, the real options

effect and the perpetuity effect, w.r.t. higher initial volatility, we look at how the
left-hand side of Eq. (3.15) varies in the underlying parameters, ceteris paribus.
In Figure 3.3, Eq. (3.15) is plotted as a function of the drift in each regime, the
volatilities, the discount rate, and the level of concavity in the profit function.
Note that we always assure that the conditions in Proposition 3.2.1 hold, so that
a finite switching threshold exists. From Figure 3.3a and Figure 3.3b we find that
the drift of the first and second regime have the opposite effect, as this represents
changing the difference in drift obtained by switching regime, in each direction. An
increase in the change of drift, i.e. α2−α1, makes the value of staying in the first
regime relatively lower than being in the second regime. From this, the perpetuity
effect is relatively weaker and the option effect is more dominant. In Figure 3.3c
we see that increased level of the initial uncertainty makes the marginal effect of
a further increase in volatility smaller. Increasing the initial volatility strengthens
both the option effect and the perpetuity effect. However, Figure 3.3c shows
that increasing initial volatility would make the perpetuity effect more dominant.
Economically, this suggests that for a higher level of uncertainty, a change in the
initial uncertainty has a larger effect on the value of continuing to produce the first
product, than on the value of waiting inherent in the option to invest in the new
product. This explains the non-monotonic behaviour observed in Figure 3.2b. For
the post-investment uncertainty, we see from Figure 3.3d that this also makes the
perpetuity effect more dominant. Increasing the uncertainty in the second regime
makes the attractiveness of the new product lower, and therefore weakens the
option effect. The initial regime is not affected by the post-investment volatility,
and therefore becomes relatively more attractive. Thus, increasing the initial
uncertainty has more effect from the impact it has on the value of producing the
initial product, the perpetuity effect, than on the value of waiting. In Figure 3.3e,
we see that increasing the discount rate makes the perpetuity effect relatively
more dominant compared to the options effect. A higher discount rate makes
future profits less significant than profits today. Thus, the options effect from
increased initial volatility is less dominant, as this represents the value of waiting
from the option to invest in the new product in the future. For γ, which represents
the degree of concavity of the profit function, Figure 3.3f shows that the perpetuity
effect is less dominant when γ increases. This is intuitive, as the initial uncertainty
has less effect on the value of producing the first product for a lower degree
of concavity, resulting from a higher γ, and therefore the option effect is more
dominant.
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Figure 3.3: Value of the left hand side of Eq. (3.15) as a function of the underlying
parameters. General parameter values: α1 = 0.01, α2 = 0.06, σ1 = 0.3, σ2 = 0.2,
r = 0.08, γ = 0.9. These plots show the dependence on the underlying parameters
for the condition that increased initial uncertainty will increase the investment
threshold. A value above (below) zero indicates that increased initial uncertainty
increases (decreases) the investment threshold for the given parameters.
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3.4 Improved profit flow and identical diffusion
Now assume that the initial profit flow is similar to before, but with different
multiplicative constants ηi so that πi(θ(t)) = ηiθ

γ(t) for the two regimes i = 1, 2.
The profit flow in the second regime has a structural improvement, so that η2 > η1
in this regime. This can be seen as an upward boost in the profit flow from
investing, as this yields that π1(ϑ) = η1ϑ

γ < π2(ϑ) = η2ϑ
γ . However, now we

assume that the diffusion parameters are identical in the two regimes, i.e. α1 = α2
and σ1 = σ2. Proposition 3.4.1 presents the optimal switching strategy for a firm,
given that the drift and volatility coefficients are constant and denoted by α1 and
σ1, respectively.

Proposition 3.4.1. Given identical diffusions for the two regimes, but a struc-
tural multiplicative improvement of the profit flow in regime i = 2 over regime
i = 1, the value of the firm is given as in Eq. (3.12) in Proposition 3.2.2, with
constant A and optimal switching threshold ϑ∗1 given by

ϑ∗1 =
[

β1
1

β1
1 − γ

g12

K1(η2 − η1)

] 1
γ

, (3.16)

A = (η2 − η1)γ
β1

1
K1(ϑ∗1)γ−β

1
1 . (3.17)

From Proposition 3.4.1, we can see that an investment problem of investing to
boost the profit function can be transformed to a problem of investing to change
the coefficients of the stochastic process. We refer to the former problem as a
profit switching problem, and to the latter as a regime switching problem. The
following corollary denotes how one problem can be transformed into the other.

Corollary 3.4.2. For a regime switching problem with πi(θ(t)) = η1θ
γ
i (t) and

θi(t) defined as in Eq. (3.1) with i = 1, 2, the equivalent profit switching problem
with πi(θ(t)) = ηiθ

γ
1 (t), with η2 > η1 and θ1(t) defined as in Eq. (3.1) with i = 1

is obtained by setting

η2

η1
= K2

K1
, (3.18)

where Ki is the perpetual multiplier in regime i = 1, 2 as defined by Eq. (3.9).

Corollary 3.4.2 implies that a firm is indifferent between the opportunity of in-
vesting to change the coefficients of the stochastic regime and keeping the profit
structure unchanged, and the opportunity to boost the profit structure without
the ability to affect the stochastic process, as long as the problem parameters
satisfy Eq. (3.18). This result shows that a problem of singular optimal switching
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with structurally identical profit flows and different diffusion parameters can be
transformed to a problem with changing profit structure but identical coefficients
of the stochastic process. Here structurally equal profit flows means that for any
realized value of the stochastic process the profit flow is equal, i.e. π1(ϑ) = π2(ϑ).
This suggests that one could specify the effect of an investment as either changing
the coefficients of the underlying stochastic process, or changing the form of the
profit functions, and obtain the same results, as long as the earlier assumptions
hold. These two different problem specifications have different reasoning. There-
fore, the fact that these problem statements are connected could give important
insight into similarities between different rationales of investing. More rigorous
investigation should be performed on this connection in future work.

3.5 Conclusions
This paper studies the investment problem of a monopolistic firm subject to a
concave profit function, for which the profits are dependent on a stochastic process,
specified by a geometric Brownian motion. The firm is currently active in the
market with an established product, with the opportunity to invest in a new
product. The two products represents different regimes for the firm’s stochastic
environment, which we model by different coefficients for the drift and volatility of
the geometric Brownian motion in each regime. We utilize the results of Ly Vath
and Pham (2007) to solve the problem, using as a viscosity solution approach.
We find that increased uncertainty in the second market always delays invest-

ment, but that increasing the uncertainty of the initial market can both delay or
speed up the investment, dependent on the change in the drift it obtains in the
new market relative to the current one. Further, the effect of initial uncertainty is
shown to be dependent on two effects: (1) the option effect and (2) the perpetuity
effect, which arises from the concave profit function of the firm. We study how the
drift and volatility in the two regimes, the discount rate, and the degree of concav-
ity in the profit function influence these two effects, and give economic reasoning
for which effect dominates in each case. We confirm the results of Alvarez and
Stenbacka (2003), while also showing that the dependence of the optimal invest-
ment strategy on the initial uncertainty is more multifaceted when we account for
a concurrent change in drift as well as in volatility. Alvarez and Stenbacka (2003)
remark that the non-monotonic effect of uncertainty might explain why empirical
studies that assume the drift and volatility to be constant have difficulties assess-
ing empirically if the relationship between uncertainty and investment is positive
or negative.
A possible extension of this work is to account for strategic interactions in

the investment problem. For an exogenous switching problem, Bensoussan et al.
(2017) study the case of a duopoly game of Stackelberg competition. In the
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endogenous switching option that we study in this paper, the decisions of the
firms in the game to invest might also affect the regime for the other firms in the
market.
This paper is an initial effort of extending the study of investment problems un-

der endogenous effects on the stochastic process, similar to the problems studied
in Kwon (2010), Hagspiel et al. (2016), and Matomäki (2013, Article 1). Includ-
ing decision-dependent changes in the stochastic process yields novel results that
partly contradict the well established results of earlier work on investment un-
der uncertainty, and give exciting new possibilities for future research. Especially
looking into the connection between changes in the stochastic process and changes
in the profit functions is promising. Our results indicate that these two classes of
problems for a singular investment decision can be transformed into one another.
If this result holds in general, it might give further insight into the reasoning for
investments under changing profit regimes.

73





Bibliography
L. H. Alvarez and R. Stenbacka. Adoption of uncertain multi-stage technology
projects: a real options approach. Journal of Mathematical Economics, 35(1):
71–97, 2001.

L. H. Alvarez and R. Stenbacka. Optimal risk adoption: a real options approach.
Economic Theory, 23(1):123–147, 2003.

A. Bensoussan, Z. Yan, and G. Yin. Threshold-type policies for real options using
regime-switching models. SIAM Journal on Financial Mathematics, 3(1):667–
689, 2012.

A. Bensoussan, S. Hoe, Z. Yan, and G. Yin. Real options with competition and
regime switching. Mathematical Finance, 27(1):224–250, 2017.

N. P. Bollen. Real options and product life cycles. Management Science, 45(5):
670–684, 1999.

M. Busch, R. Korn, and F. T. Seifried. Optimal consumption and investment for
a large investor: An intensity-based control framework. Mathematical Finance,
23(4):687–717, 2013.

M. G. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of sec-
ond order partial differential equations. Bulletin of the American mathematical
society, 27(1):1–67, 1992.

A. K. Dixit and R. S. Pindyck. Investment under uncertainty. Princeton university
press, 1994.

V. Hagspiel, K. J. Huisman, P. M. Kort, and C. Nunes. How to escape a de-
clining market: Capacity investment or exit? European Journal of Operational
Research, 254(1):40–50, 2016.

J. Jacod and P. Protter. Probability essentials. Springer Science & Business Media,
2004.

H. D. Kwon. Invest or exit? Optimal decisions in the face of a declining profit
stream. Operations Research, 58(3):638–649, 2010.

75



Bibliography

V. Ly Vath and H. Pham. Explicit solution to an optimal switching problem in the
two-regime case. SIAM Journal on Control and Optimization, 46(2):395–426,
2007.

P. Matomäki. On two-sided controls of a linear diffusion. PhD thesis, Turku
School of Economics, 2013.

H. Pham. On some recent aspects of stochastic control and their applications.
Probability Surveys, 2:506–549, 2005.

H. Pham. Continuous-time stochastic control and optimization with financial ap-
plications, volume 61. Springer Science & Business Media, 2009.

L. Trigeorgis. Real options: Managerial flexibility and strategy in resource alloca-
tion. MIT press, 1996.

76



3.A Proofs

3.A Proofs
3.A.1 Proof of Proposition 3.2.1
Defining the perpetual discount factor Ki as Eq. (3.9), Theorem 4.1 in Ly Vath
and Pham (2007) states that the condition for the existence of a finite investment
threshold in a two-regime case depends on the sign of K2 −K1, and the sign of
the switching costs. Part (i) follows from Theorem 4.1 (1) in Ly Vath and Pham
(2007) directly, while part (ii)–(iv) are found by solving for K2 > K1.

3.A.2 Proof of Proposition 3.2.2
Noting that the profit functions in each regime are structurally equal, i.e. π1(ϑ) =
π2(ϑ) = ηϑγ , and satisfying Hölder continuity and linear growth (γ ∈ (0, 1]), the
assumptions of Ly Vath and Pham (2007) are fulfilled. Thus, the value function
are directly found by Theorem 4.1 in Ly Vath and Pham (2007), as g12, g21 ≥ 0
(i.e. there is no salvage value). The constant A and threshold ϑ∗1 is found by
direct derivations of the continuity and smoothness of the value function at the
threshold.

3.A.3 Proof of Proposition 3.3.1
Given that the threshold ϑ∗1 is given by Eq. (3.13), the partial derivatives w.r.t.
α2 and α1 are given by

∂ϑ∗1
∂α2

= − (ϑ∗1)1−γg12

η
×
(

K1

K2 −K1

)2
× β1

1
β1

1 − γ
< 0, (3.19)

∂ϑ∗1
∂α1

= (ϑ∗1)1−γg12β
1
1

(K2 −K1)η ×
[

1
1
2σ

2
1(2β1

1 − 1) + α1
+ 1
β1

1 − γ
K2

1
K2 −K1

]
> 0,

(3.20)

which always hold as long as the conditions for existence in Proposition 3.2.1 are
fulfilled, i.e. K2 > K1 and g12 > 0.
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3.A.4 Proof of Proposition 3.3.2
(i) Given that the threshold ϑ∗1 is given by Eq. (3.13), the partial derivatives

w.r.t. σ2 and σ1 are given by

∂ϑ∗1
∂σ2

= (ϑ∗1)1−γg12(1− γ)σ2

η
×
(

K1

K2 −K1

)2
× β1

1
β1

1 − γ
> 0 (3.21)

∂ϑ∗1
∂σ1

= (ϑ∗1)1−γg12σ1β
1
1

(K2 −K1)η(β1
1 − γ)×

[
β1

1 − 1
β1

1 − γ
× 1

1
2σ

2
1(2β1

1 − 1) + α1
− (1− γ)K2

1
K2 −K1

]
.

(3.22)

Equation (3.15) arises from the bracketed term in Eq. (3.22), which deter-
mines the sign of the derivative.

(ii) Given that the threshold ϑ∗1 is given by Eq. (3.13), and σ1 = σ2 = σ the
partial derivative w.r.t. σ is given by

∂ϑ∗1
∂σ

= (ϑ∗1)1−γg12σβ
1
1

(K2 −K1)η(β1
1 − γ) ×

[
(1− γ)(K2 +K1)

+ β1
1 − 1
β1

1 − γ
× 1

1
2σ

2(2β1
1 − 1) + α1

]
> 0,

(3.23)

which always hold as long as the conditions for existence in Proposition 3.2.1
are fulfilled.

3.A.5 Proof of Proposition 3.4.1
Define the profit functions for each regime to be πi(θ(t)) = ηiθ(t), i = 1, 2, with
η2 > η1, and that the stochastic process following a geometric Brownian motion
has constant parameters, α and σ. Then the expected discounted value of pro-
ducing in perpetuity in a regime i, for any realized value ϑ of the process θ(t), is
given by Eq. (3.8) and given as V̂i(ϑ) = Kηiϑ

γ , with K defined as in Eq. (3.9).
In the stopping region, the value of the firm is given by V̂2(ϑ), while the value in
the continuation region is given by the Bellman equation

rV (ϑ)dt = η1ϑ
γdt+ E[dV (ϑ)]. (3.24)
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Expanding the expectation using Itô’s Lemma, we obtain the differential equation

1
2σ

2ϑ2 ∂
2V (ϑ)
∂ϑ2 + αϑ

∂V (ϑ)
∂ϑ

− rV (ϑ) + η1ϑ
γ = 0. (3.25)

The particular solution to this second-order differential equation is given by V P (ϑ) =
V̂1(ϑ), while the homogeneous part (excluding the last term) is given by V H(ϑ) =
A1ϑ

β1 + A2ϑ
β2 , where β1 and β2 are the positive and negative solution to the

quadratic equation 1
2σ

2β(β − 1) + αβ − r = 0. The boundary condition that
V H(ϑ→ 0+) = 0 dictates that A2 = 0. Given that the firm is currently in regime
i = 1 and there is a switching cost g12 to switch to regime i = 2, the value of
the firm is given as in Eq. (3.12). Noting that the value function v(ϑ) should be
continuous and smooth at the investment threshold ϑ = ϑ∗1 (Dixit and Pindyck,
1994; Alvarez and Stenbacka, 2003), we obtain the stated values of the constant
A1 and threshold ϑ∗1 by direct derivation.

3.A.6 Proof of Corollary 3.4.2
We compare the solution for the regime switching problem given in Proposi-
tion 3.2.2 and the solution for the profit switching problem given in Proposi-
tion 3.4.1. Equate the expressions for the investment threshold in each problem,
given for the regime switching problem by Eq. (3.13), with η = η1, and for the
profit switching problem by Eq. (3.16). By straightforward rearrangement, we find
that the stated condition in Eq. (3.18) makes the investment thresholds equal.
Next, comparing the constant term for the solution of each problem, given by
Eq. (3.14) and Eq. (3.17), we find directly by substitution that these are equal
when Eq. (3.18) holds.
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