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Problem Description

The topic of this master thesis derives from the specialization project titled Improve-
ments on inventory management of perishables through information sharing that focused
in assessing and investigating the value of a specific information in the replenishment
decision making of perishable products in a retail context. The established background
including the acquired knowledge and experience was intended to be used to investigate
improvements within online decision support in a retail context of perishable products fo-
cused in handling data uncertainty through application of maximum likelihood estimation
and the expectation-maximization algorithm. The background and these tools are used in
this master thesis in an inventory model within a stochastic context with complete upwards
and downwards substitution regarding the remaining shelf-life of products focusing in the
estimation of customer’s preferences over freshness of a demanded product.
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Summary

This master thesis aims at the estimation of customers’ preferences regarding the remain-
ing shelf-life of products available on shelves of a store in a retail context. The research
questions focused on how such preferences can be modeled within a stochastic inventory
system, how parameters of the demand of such model can be estimated and what is the
impact on profit, fill-rate and waste of this model in relation to other similar models.

Therefore, an inventory model considering stochastic demand both on quantity and
whether the demand is satisfied by the newest items and the oldest items was developed.
Perfect downwards and upwards substitution was considered in the inventory model. In
this master thesis, upward substitution means that the excess demand for new items can
be satisfied by old items and downward substitution means that the excess demand for
old items can be satisfied by new items. In addition, the demand was considered to be
censored by stock-level.

The inventory model developed with a basic base stock replenishment policy generated
the data that were used for the estimations of referred preferences which were performed
by the adoption of the expectation-maximization algorithm with the support of the maxi-
mum likelihood estimation method. To calculate the impact of the estimations on profits,
fill-rates and waste; the inventory model with a stock-age dependent replenishment pol-
icy was adopted in a design of experiment to compare the use of the estimations acquired
from different scenarios. The different scenarios corresponded to variation on mean to-
tal demand and how the demand was distributed over the remaining shelf-life of products
available including the considered most relevant distribution found in the literature.

Among other results, the outcomes showed mainly that in a scenario with both delivery
time and ordering frequency equals to 1 period, the estimations resulted in accurate results.
The use of estimation did not show any outstanding general results in relation to other
depletion policies. However, the application of the estimations with a stock-age dependent
replenishment policy indicated that it has potential to achieve higher improvements on the
replenishment of inventory upon the correct calibration and most probably considering
higher delivery time and ordering frequency.
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Preface

This master thesis is the closure of a two year master’s degree program in Global Manufac-
turing Management with specialization in purchasing hosted in the Norwegian University
of Science and Technology (NTNU). It was inspired by a specialization project which also
had its foundations grounded in inventory management of perishable products in a retail
context.

In the specialization project, I felt simultaneously keen and challenged. Coming from
an engineering background and a specialization in computational fluid dynamics, the word
simulation was not just familiar but it enticed me at the moment that I had to decide the
scope of this project. Knowing that I could immerse myself in such topic from a man-
agement perspective really excited me since my management experience over my pro-
fessional career also captivated my professional passions toward administrative improve-
ments through organization, planning, execution, etc. However once I started working
on the project, I realized that the level of complexity was higher than the expected. It
had been more than five years since I published my last paper on simulation of turbo-
machinery. Moreover, the modeling and simulation of physical phenomena of fluid flow
did not share a lot of their methods, concepts, practicalities, interests and evidently authors
with inventory modeling and simulation. There was a lot to learn, to research and to work.

The challenge did not scare me even though the time seemed short and the workload
seemed heavy. The result was presented as an outcome of an attempt to balance the plan-
ning, learning and execution to the schedule and requirements. Moreover, I had presented
it still eager to do a lot more on the theme.

Later after Christmas of 2017 passed, it was time to choose the theme for the master
thesis and my eagerness drove as much naturally as it could drive my initiatives towards
the same inventory management of perishable products in a retail context theme. As a
result of a series of meetings that counted with the input of my supervisors and Relex
Solutions AS, it was decided that I would investigate the possibility to estimate customers’
preferences regarding the remaining shelf-life of products available on shelves at retail
stores, a proposal with a fascinating relevance but full of intricacies. The quality of the
specialization project gave me the ambition to do more on the theme and the confidence
that more could be done. Nevertheless, the complexity of the proposal nourished the
respect and humbleness required by the research of such intricacies.

Rapidly, it was perceived that a lot more should be learned. In addition to the inven-
tory simulations and all statistical theory associated with it, more statistical theory had to
be revised now on the estimation of censored data in a dynamic and stochastic process.
Once again, the challenge was accepted. The result is presented as an outcome of a lot of
learning, working and satisfaction of watching the results of such complex modeling and
programming turning into a coherent and enlightening outcome. Withal, another interest-
ing outcome also derived from all this work. Furthermore, my eagerness and enticement
to do more within this field is even more vibrant.
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Chapter 1
Introduction

This master thesis is focused on inventory management of perishable items in the retail
industry environment considering uncertainties in both demand and the customer prefer-
ences with regard to remaining shelf-life of the same perishable products. It basically
addresses the challenge of estimating of how products are purchased in relation to their
remaining shelf-life.

This chapter discusses the motivations for this assessment along with the background
that can be used to justify the relevance of the study. Research questions are identified
to provide a clear focus. Then, a path to the resolution of these questions is given in an
framework designed for this project.

1.1 Motivation
The motivation to study the problem and research questions proposed in this master thesis
originated from cooperation efforts between the industrial economics and technology man-
agement department from the Norwegian University of Science and Technology (NTNU)
and a company called Relex Solutions AS. Relex is a company dedicated to support cus-
tomers in retail businesses with SaaS (Software as a service) solutions for unified retail
planning, enabling cross-functional optimization of retails core processes: merchandising,
supply chain and store operations. Among other services, Relex provide solutions to issues
related to forecasting and replenishment optimization.

In addition, Montojos (2017) which focused on researching improvements on inven-
tory management of perishables through information sharing mainly assessing the value
of information of the remaining shelf-life of perishable products to the customers prior
to purchasing also inspired this master thesis. This work modeled part of the theoretical
background and structure used hereby and it was also used as a starting point for the col-
laboration aforementioned. Once the technical background was formed and the study was
concluded, a natural next step towards the formulation of this master thesis was to question
what could be done in the field that had not been extensively investigated. The outcome
of the work was shared with Relex which presented some of their aspirations that were
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Chapter 1. Introduction

pertinent to the formed theoretical background. Consequently, the need for investigating
customer preferences regarding remaining shelf-life of perishable products was elected the
most relevant and promising object of study given the context.

A meeting log with a summary of each meeting held to discuss about this thesis is
presented at Appendix A at the end of this document. This meeting log reports from ini-
tial discussions about the potential topics to discussions about the methodology adopted
hereby. The main proposal was first to search in the literature different methods that mod-
els customer preferences with regards to the remaining shelf-life of products and assess
them against real data. However, the complications expected for the data acquaintance
and quality checking of data were considered hindrance which could require much wait-
ing resulting in a potential long delay on the delivery of this master thesis. That is how
the research took the turn towards a more fundamental research on the estimation of such
preferences.

Besides Relex’s aspirations and the challenges for the data acquaintance, the fact that
no literature aiming at the estimation of such preferences was the main driven of this
master thesis. As a rule, customers’ preferences regarding the remaining shelf-life of the
demanded products are set up following a FIFO (First in first out) policy in the inventory
model when inventory of perishable products in a retail environment are simulated. It
happens because the stores use different strategies to sell the oldest products first and
avoid waste. However, some authors use LIFO or random policies as an extension of their
researches such as Ferguson and Ketzenberg (2006) who assessed the value of information
of the age of products in a retail context considering FIFO, LIFO and a pre-established
random issuing policy. Lowalekar et al. (2016) modeled an order-up-to-level policy with
random issuing of the items from inventory for the blood supply in the case of blood
banks. Although it allegedly didn’t provid proofs of the randomness of the issuing of the
items, it provided some empirical support for it. However, it didn’t study the veracity
of the random issuing policy that was elected for the model which was a trivial uniform
distribution (Units of all ages were equally likely to be issued).

On the other hand, some other concerns that stimulate optimization of inventory man-
agement of perishable products in general have also naturally motivated this research.
As cited in Montojos (2017), these concerns emerge from numerous contexts. Economic
concerns such as to increase profitability; environmental, social and political concerns em-
bodied in the matter of waste reduction; commercial concerns associated with stock-outs;
which are discussed and illustrated in a more extensive reach in Montojos (2017); are some
of the motivators of this research.

To sum up, about 88 million tons of food are wasted annually in the EU and the costs
associated with it are estimated in 143 billion euros (Stenmarck et al., 2016). A relatively
recent article from the news agency The Guardian claimed that Americans throw away
almost as much food as they eat (Goldenberg, 2016). Meanwhile, it is claimed in a report
from the United States Department of Agriculture (USDA) that an estimated 12.3 percent
of American households were food insecure at least some time during the year in 2016,
meaning they lacked access to enough food for an active, healthy life for all household
members (Coleman-Jensen et al., 2017). By performing just few mental calculations, it is
not difficult to realize that most probably by using part of the rough 50 % of food waste in
America, it would be enough to alleviate the struggle for food in it. Even the costs with
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1.2 Background

food distribution could be possibly covered by the savings resulted from waste reduction.
This analysis could be extended by studying the data from the Global Hunger Indexes

(http://ghi.ifpri.org/#) provided periodically by the International Food Policy
Research Institute (IFPRI). Although this index shows most alarming scores for Africa
and South Asia, which just by itself provides ground for the ethical issues on food waste,
even in Europe which has some of the highest IDHs on the globe there is food insecurity.

On the environment impact of waste, the Natural Resources Management and Envi-
ronment Department of the Food and Agriculture Organization (FAO) from the United
Nations sponsored a report called Food Wastaged Footprint Impacts on Natural Resources
(Jan et al., 2013). This report points out negative environmental impacts on land use, wa-
ter footprint, biodiversity and carbon footprint, widespread issues strongly indicated to be
connected to the greenhouse effect and global warming.

On the commercial issues related to stock-outs, besides the direct economic impact
that sock-outs cause, there are other impacts related to customer loyalty. According to
Emmelhainz et al. (1991), retailers may lose 14 % of consumers of the missing products
depending on the interests from customers that are not fulfilled. In other words, stock-outs
may represent not just non-realized sales of the not satisfied demand but also non-realized
sales of future demand that could be realized and could even reduce waste rate.

1.2 Background

In addition to the motives that propel this master thesis to seek the estimation of cus-
tomers’ preferences with regards to the remaining shelf-life of perishable products, this
investigation finds ground in the technology developments that enables the assessment of
the efficacy of this estimation. First of all, the developments on information system tech-
nologies have allowed a gradually tighter coupling of information about the overall process
and the actual process status itself (Decker et al., 2008). Figure 1.1 illustrates well how
this happens over different technologies.

Figure 1.1: Bridging the gap between the real world and information systems Fleisch et al. (2005).

3
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Chapter 1. Introduction

At first, the manual accumulation of information and filling systems comprise a long
distance between the real world and the information stored. Then the barcode, which
was considered the state-of-art for electronic identification of goods in supply chains in
(Decker et al., 2008), shortens this distance. A barcode is usually attached to the good,
it contains a limited amount of information, and must be scanned through a line-of-sight
close to the bars in order to pass the information further (Ramanathan et al., 2014).

The RFID technology shortened the distance even more since this is a radio-based
identification technology which does not require line-of-sight to be scanned and allows
identification of single items within a box of items. Location tracking and tracing are
possible as far as the infrastructure of RFID readers is deployed (Decker et al., 2003). In
addition, RFID tags carry large data capabilities increasing the quantity of information that
can be stored.

The wireless sensor networks is an upcoming technology which uses embedded sen-
sors aiming at achieving collaborative features that can be tailored to the requirements of
the industrial environment in which it operates. It is still under development and it is not
adopted in the logistics of perishable goods from the retail industry in a large scale as the
barcodes. But this is also a reality and may soon be enabling a even more coupled and
interconnected supply chain (Decker et al., 2008).

In association to the data capacity and information coupling, other technologies may
add to the reach of the supporting on the estimation of customer preferences such as the
increasing capabilities of retail video analytics. Video analytics can now provide people
counting data with a quite high degree of precision and accuracy in challenging envi-
ronments such as crowded places for example due to all technological advancement as
indicated in Merad et al. (2010); Ryan et al. (2010); Hou and Pang (2011); and aid the un-
covering of customer behavior by for example recognizing buying events as in Popa et al.
(2011). This kind of business intelligence information provides retailers with valuable
insight that allows them to optimize merchandising/marketing and improve the customer
experience thereby hopefully boosting profits (Connell et al., 2013).

Extrapolating these deliberations about information coupling and other technological
advancements to the potential applications that they may have in the support to estimation
of customers’ preferences, it is possible to infer that there is a technological background
that indeed enables the assessment of the efficacy of such estimations. Moreover, these
technologies are becoming more and more available. They have been applied in different
supply chains increasingly (Bhattacharya et al., 2008) and their benefits have been treated
as a widespread truth both in the academia and industry.

For example, compared to barcode experiences the usability of RFID technology in-
fluences positively the adoption of this technology (Ramanathan et al., 2014) since it has
the potential to provide process freedom by reducing labor requirements and real-time vis-
ibility across the supply chain especially in retailing and logistics (Angeles, 2005). Fur-
thermore, the benefits of RFID lead to increased supply chain efficiency for short shelf
life products (Krkkinen, 2003). RFID may allow new level of inter-connectivity among
businesses by improving supply chain data flow through mass serialization and granularity
of data Schuster et al. (2004). Moreover in relation to video analytics, there are already a
number of commercial deployments of computer vision systems in the retail environment
(Connell et al., 2013).
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1.3 Problem statement and research questions

A fast screening of available literature or a brief search after the state-of-art information
system technologies that have been applied to the retail industry shows that the industry
has been encountering multiple utilities for these technologies and is in fact adopting them
as reported in Martinez et al. (2004) and Nath et al. (2006). These technologies are a reality
in the retail industry and there is a clear tendency that they will be continuously improved
and will be adopted even more. Therefore, any research that seeks improvements that
may be captured by these applications are relevant from the usability perspective and has
ground to be worked out.

1.3 Problem statement and research questions
Based on the motivation and background, the following problem statement supported by
three research questions in the the retail context of fresh products with fixed shelf-lives is
proposed.

How can customer preferences with regards to the freshness of demanded products
available on the shelves be estimated in an inventory model with complete upwards and
downwards substitution in a retail context?

1. How can customer preferences of products’ freshness be modeled within a
stochastic inventory system?

2. How can the parameters of the demand of such a model be estimated?

3. What is the impact on profit, fill-rate and waste of this model in relation to sim-
ilar models which consider differently the preferences of products’ freshness?

In the context in which the inventory studied hereby is modeled, upward substitution
means that the excess demand for new items can be satisfied by old items and downward
substitution means that the excess demand for old items can be satisfied by new items. The
customers’ preferences mentioned in the research question are related to their preference
for the oldest or newest items which guide the demand for respectively oldest and newest
items available to be purchased.

The problem statement and the supporting research questions are the backbone of this
specialization project which is used to guide the blueprint of this document. Following, a
project framework is provided with the intent to indicate the path which this master thesis
trailed to address the problem statement and answer the research questions.

1.4 Thesis framework
After the presentation of the motivation, background the problem statement and the re-
search equations in addition to this framework in chapter 2, a literature review is provided
and structured in two sections. The first one, section 2.1, has an extensive review of rele-
vant literature that was used to acquire domain of the subject and to understand the extent
of the ramifications from inventory management research. This review is a general review
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and provide many references as examples of the subtopics with the intent to illustrate the
aspects that are considered in the inventory management research and mainly in inventory
modeling. The second section, section 2.2, is more detailed and presents the base litera-
ture about random depletion policies used in this research. At last, section 2.3 presents a
brief historical review of how censored demand has been estimated according to available
literature.

Later in chapter 3 the main methods and theories used in this master thesis are pre-
sented, reviewed and discussed. Some theoretical considerations that are the theoretical
foundation of this thesis are presented in section 3.1. A brief explanation about the the-
oretical approach of the literature review is outlined in section 3.2. At last, a general
overview of specific theories and methods used throughout this master thesis to address
the problem statement and answer the research questions are presented in further sections
of this chapter. Section 3.4 contains an overview of the main concepts within probability
theory; section 3.5 reviews and presents the maximum likelihood method; section 3.6 also
reviews and presents the Expectation-Maximization algorithm, section 3.7 presents the
Monte Carlo method and 3.8 provides fundamental theory about replenishment policies
in inventory management and presents the replenishment policies utilized throughout the
master thesis.

Chapter 4 provides all main considerations of the modeling applied to answer the prob-
lem statements and research questions. This chapter supported by chapter 5 was structured
to systematically answer in a sequence each research question. The objective of the thesis
focuses on the estimation of customer preferences with regard to the remaining shelf-life
of available inventory in a retail context. The first research question is related to how these
preferences can be modeled. Therefore, section 4.1 presents the model used to represent
this preferences in a stochastic inventory system in a retail context. The second research
question aims at the estimation of the parameters associated with such preferences. Then,
section 4.2 shows how the parameters of the demand model which portrays the customer
preferences are estimated. Finally, the research question three focuses on the impact of
the estimations in the inventory system with regard to profit, fill-rate and waste. Section
4.3 outlines the design of experiment and modeling used to answer this research question.
It basically presents the framework with some supplements that are used to perform the
analysis required to answer the third research question.

The third research question is then answered in chapter 5. Section 5.1 indicates the
main findings on the estimation of the parameters and section 5.2 presents the outcomes of
a series of experiment which adopted the estimated parameters associated with stock-age
dependent replenishment policies to evaluate their impact in the inventory system.

Then, a discussion chapter provides a summary of the main findings. It also indicates
how and to what extent the problem statement and the research questions were answered.
Furthermore, it provides the limitations of this project in addition to suggestions for further
research. At last, a conclusion chapter provides a more straightforward answer to the
problem statement giving a closure to the project.
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Chapter 2
Literature Review

This chapter focuses on the review of the literature also used as the background of this mas-
ter thesis. The literature used was revised for two purposes: Acquiring enough knowledge
of inventory management, control and modeling; find the most relevant findings consider-
ing random depletion policy considering the remaining shelf-life of the depleted products
for inventory management of perishables; and acquire enough knowledge of estimation of
censored demand in similar contexts as the one adopted in this master thesis in addition to
present the most relevant work developed about it present in available literature.

Therefore, this chapter is structured in three sections. Section 2.1 presents an extensive
review of relevant literature that was used to acquire the knowledge necessary to under-
stand the extent of the ramifications from inventory management research. Section 2.2
presents the base literature used in this thesis considering random depletion policies that
was used as supporting tool in the analysis. Finally, section 2.3 outlines the considered
most relevant literature related to the estimation of censored demand.

2.1 Inventory management
Inventory management has been extensively studied in management science and its re-
lated fields such as economics, business and engineering over the years, decades and even
a century considering the publication from Harris (1913) dated in 1913 and its outstanding
contribution on inventory control. Harris (1913), which is one of the cornerstones of inven-
tory control research, used deterministic modeling and some approximations with regard
to periodic quantity in stock to calculate the ordering quantity which minimizes inven-
tory holding costs and ordering costs. Erlenkotter (1990) provided an interesting review
of the early literature on this model and its evolution over the years until the 90s. Arrow
and Harris (1951) also developed a fundamental work on inventory control considering
uncertainty models with stochastic demand.

Among the researches in the field, it is possible to find different approaches taking into
consideration different aspects and aiming usually at the same objectives: Increasing prof-
itability, reducing stock-outs and reducing waste; as already mentioned in the introduction,
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in section 1.1. These variations happen mainly due to the dynamic environment of the in-
dustry and complexity of the mathematical models. In order to estimate better ordering
policies on the modeling of an inventory problem, one must for example answer questions
such as: Is the model handling one or multiple items? Do the items perish or not over
time? How long does it take to perish? How are these items issued from stock (the oldest
ones first or the newest first)? Does it even perish? How can the demand be estimated?
These and other questions make the pool of knowledge oriented towards decision making
just in inventory control an intertwined set of ramifications that makes the task to have an
overview of it complex and tedious.

In an attempt to shed light on it, the following equations are presented as starting point
for these ramifications. Later, terms and concepts associated to these equations are used
to categorize the subject and review the literature in a structured organization which is
detailed in figures Fig. 2.1 and Fig. 2.2. Different approaches, equations, notations and
methods are used to model and solve problems related to inventory management. The
approach used in this first section of the literature review has an illustrative objective to
present the considered most relevant concepts to understand how inventory management
of perishables is handled by academic literature. Some of these concepts were simplified
to fit to the goal, but they may be treated from a more flexible and complex perspective
depending on the application.

The inventory balance equation or the one period transfer equation, which is given by

xt+1 = xt + qt − st − wt, (2.1)

reproduces the progression of the inventory over time in terms of quantity of items in stock.
This equation has conservative characteristics and stipulates that the total quantity of a
specific item in inventory (or on hand inventory) at a period t+ 1, xt+1, is in balance with
the on hand inventory, xt, the quantity of purchased or produced items, qt, plus the quantity
of sold items, st, and the lost inventory, due to perishability or other characteristics that
limit the shelf life of a product, wt, at the previous period t. Any replenishment policy
or any inventory model is subjected to this or a similar balance equation. The argument t
describes the evolution of the system, usually discretely, over time.

The quantity of sold items which depends on the demand, dt, and the items available
to fulfill it is given by

st = min[dt, qt + xt]. (2.2)

When the demand is higher than the quantity in stock and items received from pro-
duction or purchasing, then the realized sales is the total number of items available at the
respective period and there is non-realized sales. On the other hand, the remaining stock
carried over to the next period if qt + xt is higher than dt. The number of items at re-
maining stock that comes to be perished, obsolete or that receive any kind of differentiated
pricing due to advanced age at period t add up to wt.

At last, the profit for each period, given by

πt = csst − cuqt − chxt −Ot + cwwt, (2.3)

corresponds to the profits associated with the inventory at period t. Hereby, this equation
is separated in three components:
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1. The realized revenue - It corresponds to the term csst, where cs is the selling price
of each unit of product and st is still the total sales at period t.

2. The realized expenses - These are the costs incurred to maintain the inventory op-
erational. It corresponds to the terms cuqt, chxt and Ot. cu is the unit cost for each
item purchased or produced. It can be the direct price charged by the supplier or the
production costs associated to each unit produced such as material and labor costs
which multiplied by the quantity of items purchased or produced, qt, results in the
total unit cost incurred at period t. Usually called holding cost, ch is the sum of
all costs associated to the storing of each unit in the inventory such as maintenance,
inventory labor, insurance, among others. The unit holding cost multiplied by the
on hand inventory, xt, provides the total storage cost of these items. Finally, the
Ot corresponds to the fixed costs associated to the ordering of the batch quantity of
items to be purchased or produced in the period t. It can be the sum of costs related
to transportation, administration, among others.

3. The salvage value or disposal expenses - The term cwwt corresponds to the costs
related to the lost of inventory. Here, wt is the quantity of units which was not sold
in the period t when it could be sold by its full price, m. cw can be either a positive
lower than m, making the term a salvage value and therefore a realized revenue, or
negative, making it a disposal expense and thus a realized expense. This term is
related to the perishability, seasonality or even obsolescence of the items that must
be either completely discharged, for example food, blood, obsolete components and
some chemicals after expiration dates, incurring a variety of expenses depending on
the item in question; or it can be sold by a lower price than its full intended price,
for example clothing after its design season and perishables close to the expiration
dates. w can also be disregarded (equal to 0) for cases such as plane seats after plane
departure and hotel rooms after midnight for instance.

The main objectives presented in literature as discussed in chapter 1; increasing the
profitability, reducing stock-outs and reducing lost inventory or perished items; can be
achieved by maximizing πt in equation (2.3) and reducing wt, identified in equations (2.1)
and (2.3). These objectives are usually pursued by settling the decision making on the
variable order quantity, qt, and how and when exactly the items should be ordered to de-
termine the ordering policy. In the literature, these objects are evaluated and the ordering
policies are stipulated depending on how the other parameters from the presented equa-
tions are modeled and estimated. Furthermore, these parameters are modeled according to
different aspects considered in the industry and according to mathematical simplifications
to make the analyses feasible.

The following sections present an overview of the relevant industrial aspects and math-
ematical simplifications among other features that are presented in the literature. At first,
an overview of the concepts connected to inventory balance equation, (2.1), is presented
following the structure illustrated in Fig. 2.1. Later, an overview of the concepts associated
with the profit equation, (2.3), is presented as structured in Fig. 2.2.
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Figure 2.1: Literature review structure for the inventory balance equation.
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2.1.1 Sales and demand modelling

The aspects elected to be discussed first in this literature review are the ones related to
the sales, term st. As it was indicated in equation (2.3), this term is the only term that
certainly adds positively to the profitability of the model and, as expected, the more items
sold the higher profits are incurred. Furthermore, equation (2.2) shows a direct relation to
the demand, dt or the items in stock plus the purchased or produced items, qt + xt, with a
conditional on whether the sales or the term qt + xt is lower.

Demand is uncertain and usually must be anticipated (Silver et al., 2016). It can also
be separated into four different patterns considering period path: Trend, Seasonality, Ran-
dom Variation and Cyclic (Arnold et al., 2008). These patterns may be determined and
influenced by uncountable different aspects in a complex correlated relationship such as
weather, holiday seasons, marketing characteristics, etc. There are several papers that fo-
cuses on determining and analyzing just the demand determinants of specific markets and
products such as Dean and Meyer (1996) for new venture formations in manufacturing
industries, Lanfranchi et al. (2014b) for high qualy food products and Lanfranchi et al.
(2014a) for fish products in Messina for example.

Considering the anticipation of demand, although the field organizational forecasting
was formally born only in the 1950s (Makridakis et al., 1998, p. III), this was a concern
even before that. For instance, Macy (1945) discussed and reviewed in general terms se-
lected problems encountered in procurement planning in the U.S. army during the second
world war and indicated how the use of field research aided the solution of some of those
problems by applying qualitative forecasting methods.

Later with the advancement of mathematical and statistical tools and methods, mathe-
matical demand models started to be developed and analyzed. Fortuin (1980), for exam-
ple, made a comparison of five popular probability functions in the field of stock-control
models. Schultz (1987), studied variants of the Poisson model in forecasting for inven-
tory control model. Petrovi and Petrovi (1992) worked with non-extrapolative approaches,
such as reliability theory and expert systems in the development of models for advising on
stocks of spare parts. Hedenstierna et al. (2017) developed an analytic approach for esti-
mating total demand considering sales and footfall data aiming also at the demand that is
not captured in historical review of pure sales data due to stock-outs. Syntetos et al. (2009)
presented an extensive review of forecasting research focused on inventory management
over the 50 years up to the date the paper was published. Among other conclusions, the
paper states that Poisson distribution is a natural candidate for representing low demands.
In fact, this is the main reason why Poisson distribution was also used to model demand in
this thesis.

On the mathematical modeling of demand, two approaches are considered in inventory
control modeling: Deterministic and Stochastic.

Deterministic

The deterministic approach, when demand distribution is considered known and certain,
can be described as mathematically simpler than the stochastic approach since it does not
require statistical modelling (Silver et al., 2016). For perishable items for instance, under
fairly general conditions an optimal policy always orders in such a way that items never
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perish Nahmias (1982). A similar trivial conclusion such as this cannot be stated about
stochastic demand. On the other hand, the deterministic approach does not capture the
uncertainties associated with the demand (Porteus, 2002).

When a certain problem is proposed in the literature, this problem is usually ap-
proached by the application of deterministic demand modeling and then its research is
expanded for the stochastic modeling. Pierskalla and Roach (1972), for example, utilized
the deterministic demand to study optimal issuing policies for blood and then extended
the analyses to a stochastic approach. Veinott (1960) utilized the deterministic demand to
work on three main problems: Determining an optimal ordering policy considering that
the disposal and issuing policies are given, determining optimal ordering and disposal poli-
cies concerning the issuing policy is given, and determining optimal issuing and disposal
policies considering the ordering policy is given. Later, all these problems were studied
regarding stochastic demand from many different mathematical perspectives.

Stochastic

Opposing to the deterministic approach, the inventory control problems with stochastic
modeling becomes quite complex leading to non-trivial solutions. For inventory control
of perishable items for example, there are optimal solutions just for problems modeled
with items having shelf life up to 2 periods after delivery. The well known newsvendor
problem described by Arrow et al. (1958) covers the problem for a planning horizon and
shelf life reduced to 1 period. Bulinskaya (1964) covered the same problem considering
a probability for the case which the items perish upon delivery and the rest for the case
which the items perish in 1 period.

Van Zyl (1963) and Nahmias and Pierskalla (1973) developed optimal policies for 2 pe-
riods shelf life items. The former considering non-age-dependent quantity of perishables
charging ordering and stock-out costs and the last including out-dating costs. Fries (1975)
analyzed optimal policies for items with shelf life over than 2 periods and as described
by Nahmias (1982): Owing to the multidimensional state variable, the computation time
using these models is quite long for shelf life over than 3 periods, making computation
of an optimal policy impractical for a real problem. Therefore, many researchers turned
to the more practical question of seeking effective heuristic policies that would be easy to
define, easy to implement and close to optima Karaesmen et al. (2011).

Cohen (1976); Chazan and Gal (1977) and Nahmias (1977a) considered base stock
policies that keep a constant order-up-to-level for total items in system, summed over all
ages or, as in Brodheim et al. (1975), only new items in the system. Chazan and Gal
(1977) treated the age distribution as a finite Markov chain and showed that expected out-
dating was convex in the inventory level. Cohen (1976) used a transfer equation and an
objective function of expected cost per period. Nahmias (1977a) used a similar model but
also considered shelf life random.

Other heuristic analysis considering stochastic demand were performed by Nahmias
(1977b) utilizing higher-order approximations, Nandakumar and Morton (1993) utilizing
heuristic based on a periodic inventory problem in the framework of a newsboy problem
and attempted to bound the various newsboy parameters. Williams and Patuwo (1999)
Williams and Eddy Patuwo (2004) computed the optimal order quantity using the New-
tonRaphson method which is known to converge quadratically in the neighborhood of a
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root.
In the stochastic approach, demand is typically discretely modeled as independent

identically distributed non-negative random variables, ξi, with distribution function, Φ(s)
having a density function, φ(s) > 0 for s > 0 and with finite mathematical expectation
E[ξi] = µ as described by Bulinskaya (1964).

Excess demand

Excess demand happens when demand is higher than the on hand inventory and the re-
ceived items (dt > qt + xt). In this case, the non-covered demand, dt − (qt + xt), can be
either backlogged (the customer will wait to purchase the item once it becomes available)
or lost (the customer decides not to purchase the item or purchase it somewhere else).

As described by Nahmias (1982), when the inventory control is modeled considering
backlogging, the system permits carrying of negative inventory. Then, the sales can be
realized in future periods when new products arrive. Equation (2.2) describes the system
considering lost sales. Both the order quantity, qt, and the on hand inventory xt may in-
fluence the variable sold items, st. Lost sales happens when dt > qt + xt. Regarding
backlogging, the system should be modeled replacing equation (2.2) following the respec-
tive conditionals from equation (2.4). In this case when dt > qt+xt, the sold items, st, are
equivalent to dt and the on hand inventory at t+1, xt+1, become negative. This means that
the non-realized sales are carried to the future periods when they can be realized. These
relations are given by

st =

{
min[dt, qt + xt], if sales is lost,
dt if sales is backlogged.

(2.4)

Morton (1969) did a very preliminary work on lagged optimal inventory not consid-
ering backlogging. On inventory management of perishable products, lost sales are also
usually considered for blood bank inventories modeling as in Kaspi and Perry (1983).
Kalpakam and Shanthi (2001) also studied a perishable inventory system with modified
base stock policy and arbitrary processing times considering lost sales.

Backlogging is usually considered in inventory control in retailing such as in Joseph
(1987). Aull-Hyde (1996) studied a backlog inventory model during restricted sale periods
assuming that the sale price is not available.

In some cases, partial backlogging is considered in order to develop the model as most
real as possible. One of the first papers considering partial backlogging was Mak (1987)
by determining optimal production-inventory control policies for an inventory system with
partial backlogging. For perishable items, Chang and Dye (2001) analyzed an inventory
model with partial backlogging and permissible delay in payments.

Some researchers use a model for lost sales first and then extend the studies to a back-
logging model due to trivial results or to compare the outcomes. Graves (1982) utilized
a model considering lost sales to study the application of queuing theory to continuous
perishable inventory systems and later also considered backlogging case since it was a
simple extension. Liu and Cheung (1997) analyzed service constrained inventory models
with random shelf lives and lead times considering partial backlogging, full backlogging
and lost sales; and later compared the multiple cases.
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2.1.2 Order quantity and on hand inventory

Both the order quantity, qt and the on hand inventory, xt, have a multiplicative direct
relationship and may have an additive inverse relationship (it can either be positive or
negative) to the profitability. In addition, these variables may also influence the number
of sold items according to equation (2.2). In these regards, three main considerations are
usually made in the modelling of inventory control problems: What is the planning horizon
for the ordering policies and inventory control (the extension of the index t), if the system
covers the modelling for single or multiple items and if the system covers the modelling
for one or multiple inventory.

Planning horizon

The modelling of the planning horizon is related to the extension of the index t (the quan-
tity of periods considered in the analysis). This has high relevance in the generalization of
the policies analyzed and for obsolescence modelling. Obsolescence is usually modeled
by assuming that the length of the planning horizon is random and is fundamentally dif-
ferent from perishability in that since once items become obsolete they are not reordered.
This was the case in Brown et al. (1964) using a class of models for optimizing inventory
costs considering stochastic obsolescence. David et al. (1997) using a deterministic de-
mand model in a dynamic programming approach to analyze continuous-review versions
of the classical obsolescence problem.

The newsvendor problem (see Arrow et al. (1958)), considers only one period as the
horizon planning. Nahmias (1975, 1977b, 1978); Williams and Patuwo (1999); Williams
and Eddy Patuwo (2004) already cited considered finite horizon. Nahmias and Pierskalla
(1973); Fries (1975), also already cited, developed the optimal solution for the 2 period
shelf life regarding first finite horizon and then generalized it for the infinite horizon case.
Brodheim et al. (1975) which applied stock policies that keep a constant order-up-to-level
for total items in system, summed over all ages with only new items in the system consid-
ering infinite horizon. Kalpakam and Shanthi (2000); Lian et al. (2005) also considered
infinite horizon. The former analyzed an inventory system with Poisson demands stocking
perishable items having constant hazard rates and the last used a discrete-time inventory
with (s,S) policy model in which the stored items have a random common shelf life with a
discrete phase-type distribution.

Single and multiple items

Inventory models for a system with multiple products can be extremely complex, even
more when one or some of them have a fixed life time (Nahmias, 1982). Therefore, the
typical problems not directly related to excess demand are modelled considering a single
product inventory. In this case, only one variable such as the xt is necessary to represent
the on hand inventory in the period t. When excess demand is taken into consideration,
substitution may become an interesting alternative to cover a larger share of the demand
enabling higher profitability and less waste. Thence, more variables are necessary to cover
the on hand inventory quantities for all products.

There is a broad field of study in inventory theory only on the matter of substitutability
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of products and the inventory management of these products. According to Van Woensel
et al. (2007), perishable products have for example a considerable high substitution rate.
Kamakura and Russell (1989) found that substitution does not necessarily follow a sym-
metric pattern by inspecting the retail scanner data for one product category in the food
sector over a determined period. Gruen et al. (2002) studied the distribution of out-of-
stock responses over a large number of product categories. According to this work 45% of
customers facing stock-out are willing to buy an substitute product and approximately 9%
do not purchase anything to cover their demand. The remainders do seek other alternatives
to complete their purchase such as purchasing in other stores. These results show some
critical commercial aspect of stock-outs as discussed in the introduction, section 1.1.

Shin et al. (2015) worked on a comprehensive overview of substitution problems in
operations management from three different perspectives assortment planning, inventory
decision and capacity planning. On inventory management, Veinott (1965) did a fun-
damental contribution aiming at an optimal ordering policy that minimizes the expected
discounted costs over an infinite time horizon for a multi-Product, dynamic, non-stationary
inventory problem. This work was later generalized by Ignall and Veinott (1969).

Afterwards, further development of these works were performed for the most simple
case considering two products such as McGillivray and Silver (1978) investigating the
effects of substitutable demand on stocking control rules and the associated inventory and
shortage costs, and such as Bitran and Dasu (1992) modeling the problem with stochastic
assumptions to compare two approximation procedures. Bassok et al. (1999) considered
up to three products in a single period inventory problem with proportional costs and
revenues and full downward substitution.

On inventory management of perishables, inventory control of blood considering sub-
stitution was initially the main concern. Nahmias (1976) generalized the analyses of op-
timal ordering policies for a single-product inventory model from Nahmias (1975) to an-
alyze a realistic blood bank case with a system consisting of one fixed life perishable
product and one nonperishable, where the nonperishable may be substituted for the per-
ishable. Later, (Deuermeyer, 1979, 1980) studied the one period problem for two products
with finite shelf life. They also accounted production planning to the papers taking into
consideration that one of the products was manufactured by one production process and
the second product was manufactured by the same production process and an extra one.
The optimal order policy was characterized by four regions in the space of two vectors rep-
resenting the on hand inventory of the two products for different shelf lives and indicated
four combinations of using the two processes or neither of them.

Single and multiple locations

The typical researches that are not focused on issues related to distribution of goods in a net
of suppliers and inventory locations have their inventory systems modeled regarding the
simpler scenario of single location and single supplier (product is delivered from one sup-
plier to one inventory) as the problem has been presented so far. Although this modeling
is simpler, it is not very realistic. Usually, in both blood banking and food management,
goods are produced at a central facility and subsequently shipped to regional centers for
distribution (Karaesmen et al., 2011). These systems which address distribution challenges
are called multi-echelon or multi-location systems.

15



Chapter 2. Literature Review

Similarly to the multiple items case, the multi-location or multi-echelon systems have
to resort to more variables to represent the on hand inventory and the cost related to the
introduction of different locations to the problem. Furthermore, the allocation decision
becomes an objective of study in addition to the replenishment decisions as in Prastacos
(1981) and Ferguson et al. (2006).

Clark and Scarf (1960), which was one of the first relevant papers covering the subject,
modeled the a serial system (considering only one supplier) of two sequential installation.
The on hand inventory at installation 1 was denoted by x1; the stock to be delivered one
period in the future by w1; and the stock on hand at installation 1, plus on hand at installa-
tion 2, plus in transit from 2 to 1, by x2 (i.e., x2 is echelon 2 stock). The one-period costs
at installation 1 was denoted by L(x1), and those at echelon 2 by L(x2). In addition, the
unit shipping cost from 2 to 1 had to be accounted and was denoted by c1.

Later the multi-echelon and location systems were considered to model systems of
perishable items. Cohen and Pierskalla (1979) for example focused in obtaining optimal
target inventory levels for a community blood center with multiple locations. In this pa-
per, a two-echelon system with a central facility, 0, supplies two other facilities, 1 and 2.
External demand occurs only at facilities 1 and 2. Inventory control must be modeled in
all three locations and the on hand inventory variables have to account with the shelf life
of the items.

Chen (1998) investigated the costs of restrictions related to stationary replenishment
activities in multi-echeleton inventory. Van der Vorst et al. (2000) developed a discrete-
event simulation model to analyze a fresh product supply chain with three echelons.

Another case that is also grounded in realistic aspects and increases the complexity for
its modeling compered to the single-location cases is the multi-supplier system. On the
problems considering multi-suppliers, Minner (2003) performed a comprehensive review
of the theme. He describes the modelling challenge of it by listing the additional variables
resulted from the multiple supplier scenario. Basically, there are multiple suppliers with
different respective lead times, different also respective unit prices and an additional fixed
setup cost for each order placement.

2.1.3 Lost inventory
The shelf life of a product can be either infinite or finite. Hereby, four types of products
with finite shelf life are recognized: The ones which perish as in the blood bank inventories
and food industry; the ones which can get obsolete as typically in the market for electronic
components; the ones which can get out of fashion as in the clothing industry; and the ones
that just don’t fulfill their occupancy for hotel rooms and seats in airplanes in the tourism
market.

When the items on hold in inventory have a finite shelf life, accounting the variable
wt in equation (2.3) is no longer necessary since the product can be stored infinitely with-
out loosing its value and the problem becomes more trivial to work with. For products
with finite shelf lives, besides the need to account the variable wt in equation (2.3), other
concerns that make the systems modeling more complex gain relevance. One important
concern related to finite shelf life problems is how the shelf life is modeled and affects
the parameters of the inventory system. Another concern is how the items are issued (or
depleted) in relation to the shelf life of items on hand.
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Shelf life

Nahmias (1982) considered two classification of perishability with regard to the shelf life:
fixed shelf life and random shelf life. The former category includes those cases where the
shelf life is known a priori. Shelf life is specified as a number of periods or a length of time
independent of all other parameters of the system. In the later category, the shelf life is not
fixed and follows a decay function or it is a random variable with a specified probability
distribution. Van Zyl (1963) also called fixed shelf life products as age dependent and
random shelf life products as age independent.

For fixed shelf life and in the discrete time single inventory model, the on hand inven-
tory is represented by a vector x of on-hand inventories varying in age from 1 to n − 1
periods of a commodity with a shelf life of n periods (Nahmias, 1975). Doing this, all the
non-consumed items from inventory with a specific age at period t (quantity xt,j , t repre-
senting the time period and m; with m = 0, ..., n; the remaining shelf life of the item) will
be added to the virtual inventory for the items with shelf life of one period less at t + 1.
Hence, the system that is modeled by equations (2.1), (2.2) and (2.3) can be modeled by
the following equations once fixed shelf life and discrete time are considered:

xt+1,m = xt,m+1 + qt,m+1 − st,m+1 − wt, (2.5)

πt =

n∑
m=0

(csst,j − cuqt,m − chxt,m −Ot,m) + cwwt (2.6)

st,j = min[dt,m, qt,m + xt,m] (2.7)

wt = max[0, dt,0 − xt,0] (2.8)

The demand for items with specific ages will depend on the issuing policy. Another
important point on this model is the fact that in many real cases there is no control of the
age of items in stock. These two points will be addressed later. Note that this is a system
with two dimensions, this makes that the problem becomes naturally much more complex
than the models which consider infinite shelf life.

For the continuous time single item inventory models, inventory quantity is defined as
a function of the time t. In Graves (1982) for example, the inventory system is character-
ized as a Markov process with state variable A(t) corresponding to the age of the oldest
unit in inventory at time t and the replenishment process is considered constant; that is,
new inventory is continuously produced at a constant rate of c units per time unit. There-
fore, cA(t) represents the amount of present inventory and the inventory control modeling
becomes even more complex.

An example of random shelf life is described by Nahmias (1982). Suppose the shelf
life of individual units is a random variable with a negative exponential distribution having
parameter θ. I(t) is the number of units surviving to time t exclusive of demand. Since
each unit has probability of e−θs of surviving an additional s units of time, it follows that
the number of units surviving to time t+ s is a binomial random variable with parameters
n = I(t) and p = e−θs. It follows that the expected number of units surviving until time
t+ s is np or I(t)exp−ds. Hence, we obtain the well known exponential decay process.
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Depletion management

Another relevant matter that plays an important role in inventory modeling for perishable
products is how the items leave the inventory to fulfill demand in relation to their remaining
shelf-life. The depletion of the items may be done under the control of the inventory
manager which may adopt a policy, often called issuing policy, that will most benefit the
inventory management. The same depletion may also be done without full control of the
inventory manager. Usually in grocery stores, the same perishable items with different
remaining shelf life are often displayed for the customers. Even though the stores use
different strategies to incentive the customers to pick up the items following the stores
interests, the customers choice may still differ from these interests. For example, the
stores may organize the milk cartons placing the items with the oldest remaining shelf-
lives in front of the shelves and the newest items in the back of the shelves attempting
to incentive the customers to pick up the oldest items. Opposing to this incentive, some
customers may use some time to seek the available items with longest remaining shelf-life
and pick up the items from the back of the shelf since in most of the cases such items have
a higher utilization to customers. Others may not have time or even the interest to seek for
the newest items and will pick up the first item available

The two most used depletion policies in inventory modeling are the FIFO (First-in-
first-out) and LIFO (Last-in-first-out) policy. The FIFO policy is referred to the policy
which the oldest item in stock is always issued first and the LIFO means that the newest
item in stock is always issued first. Changing the depletion policy will change the whole
dynamics of the inventory model, and as a consequence, the outcomes of the model will
also vary.

The choice of the depletion policy will directly impact the calculations on the realized
sales variable determined by equation (2.7), and as a consequence by the equations (2.5)
and (2.6). For the FIFO policy for example and considering that all items are delivered with
the same shelf life, the demand for the oldest items and for each period, represented hereby
by dt,0, should be set equal to the total demand in the beginning of the inventory control
calculations. Afterwards, the inventory balance for the items with the same remaining shelf
life should be calculated. If there is a remaining demand not covered by the oldest items in
stock, the realized sales, equation (2.7), and the inventory balance, equation (2.5), will be
calculated for the next shelf life level, represented hereby by dt,1. The same calculations
should be performed for all remaining shelf life levels, fromm = 0 tom = M considering
that M is the maximum shelf life, so the complete inventory level for each age category
can be figured out. Considering LIFO as depletion policy, similar calculation should be
performed, but the starting point should be m = M and ending point m = 0.

This inventory depletion management problem was first formally studied by Derman
and Klein (1958). In this study, different conditions were given under which either LIFO
or FIFO was an optimal issue policy. Later, Pierskalla and Roach (1972) concluded that for
most of the objective functions considered in their work, the optimal depletion policy was
FIFO. They considered three objective functions: To maximize the total current utility of
the system, defined as the value of all demands satisfied in the past plus the value of items
in stock at present; to minimize the total number of units backlogged at any given time or
to minimize the total number of lost demands in the lost demand cases; and to minimize
the total number of items reaching the last age category. Their results have shown that
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FIFO was optimal for the last two objective functions, and it maximizes the utility of the
system provided all excess demand is backlogged for the first objective function, although
not optimal.

In the early 1990’s, Keilson and Seidmann (1990) have performed a more extensive
comparison of FIFO and LIFO policy considering stochastic demand. They used spoilage
rate, mean age at delivery, expected time between stock-outs, service level, and mean on
hand inventory level as performances characteristics to be evaluated. The FIFO policy
showed to assure higher service level and longer times between stock-outs; lowering of
mean age at delivery with lowering of demand rate; and whenever the sales price is age
independent, FIFO can bring higher profits with lower supply rates. On the other hand,
LIFO policy leads to lower age of items delivered and on hand inventories and a probable
mode economical solution when the utility, and the sales price, of new items are higher
than for older ones. But these two last conditions do not often happen in real cases.

Although, FIFO, is the policy which generally results in better performance and it
is the most applied in inventory control research, it is often not realistic from a practical
perspective that inventory depletion is not always controllable by a retailer as already men-
tioned. When control is left to customers, they are apt to select the freshest products first,
even though that retailers often use systems to guide customers decisions towards FIFO
policy, such as load-from-the-back shelving systems commonly used for dairy products
(Ferguson and Ketzenberg, 2006).

Therefore, research on inventory management considering LIFO also has large rele-
vance. Cohen (1976) analyzed evolution over time of the LIFO inventory stock age dis-
tribution in an environment of stochastic demand. Prastacos (1979) and Haijema (2011)
examined the regional distribution problem for a perishable product considering LIFO de-
pletion policy to satisfy the demand. Slightly out of inventory control problems, Cherkesly
et al. (2015) have used the LIFO policy as a conditional to solve the classical pickup and
delivery problem with time windows with population-base and meta-heuristic procedures.

Obviously, the depletion policies are not restricted to the LIFO and FIFO approaches
since products may be issued at any age. Haijema (2011) was one of the first studying
optimal depletion policy extending the analysis to policies other than the FIFO and LIFO
duo. Using simulation combined with Markov Decision Processes, it was shown that the
optimal dynamic depletion policy for short shelf-life products like platelets results in the
same out-dates but lower shortage as compared to FIFO.

In the literature search of this master thesis, few studies considering the SIRO (service-
in-random-order) policy were found and they are classified hereby according to how the
randomness of the depletion policy was modeled. Pegels and Jelmert (1970) have used a
hypothetical probability approach in which hypothetical transition probabilities were used
in a Markovian approach to study a blood bank related problem. The probabilities were
not based upom real case scenarios. Sapountzis (1985) and Lowalekar et al. (2016) have
used an uniform distribution approach. The depletion policy applied considered that the
items are issued randomly following a uniform distribution i.e. items from all ages have
the same probability to be issued. Finally and in a more sophisticated approach, Vaughan
(1994) and Ferguson and Ketzenberg (2006) have considered that the probability of an
item in each age category being issued is equivalent to the proportion of total quantity of
inventory represented by the quantity of items of the given age category. For example, if
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20% of the units in inventory have a remaining shelf-life of three days, then a particular
unit of demand has a probability of 0.20 of being satised with a unit of inventory with a
remaining lifetime of three days. These studies constitute the base literature to this master
thesis and are further reviewed in the second section of this chapter.

2.1.4 Costs and revenue

In equation 2.3, 5 variables related to costs or revenue are presented. Each term has more,
less or no relevance depending on what it is the object of study and the goals intended with
the inventory modelling.

Figure 2.2: Literature review structure for costs and revenue.

Ordering costs

Represented hereby by the variable c, the unit ordering cost is present in most of the in-
ventory control models such as in Fries (1975); Nahmias (1975); Cohen (1976); Nahmias
(1977a); Williams and Eddy Patuwo (2004); Kalpakam and Shanthi (2001), already cited.
This is a debt that is typically linearly withdrawn from the profit equation for each of the
items that are ordered and received through purchasing or production when x ≥ 0 unit,
where c > 0. There are exceptions in which the unit cost is not considered in the inventory
model. For example, Nahmias and Pierskalla (1973) studied the optimal policies for per-
ishables which perished in two periods considering only costs for unsatisfied demand and
deterioration. Lian et al. (2005) considered the discrete review model with fixed ordering
cost, holding cost per unit per period, shortage costs per unit, and out-dating costs per unit.

The fixed ordering cost, r, can be related to the fixed set up costs for production nec-
essary for the ordered products and/or the transportation, administrative matters, among
other expenses incurred when the items are purchased. The presence of this cost also
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changes completely the dynamics of how the profitability of the model will develop with
the ordering sizes and replenishment policies since it makes the system nonlinear.

Nahmias (1978) was the first to analyze the perishable inventory problem with positive
fixed ordering cost in addition to the standard unit cost described. In this paper, for the
one-period problem, it was established that the structure of the optimal policy is the (s,S)
only when the shelf life of the object is two; shelf lives of more than two periods have a
more complex structure. Lian and Liu (1999) followed by Lian et al. (2005), already cited,
have also performed the research considering fixed ordering cost.

Inventory holding cost

Inventory carrying cost or inventory holding cost, h, includes all expenses incurred by
the firm derived from the volume of inventory carried. As inventory increases, so do
these costs. They can be broken down into three categories: Capital costs invested in
inventory; storage costs to cover the space, workers, and equipment necessary to maintain
the inventory; and risk costs such as damage while inventory is held or moved and pilferage
(Arnold et al., 2008, p. 354). This cost is usually included in the inventory modelling
influencing linearly the profitability.

Some authors have given a different focus on inventory holding costs taking into con-
sideration a more realistic approach and its impact on the inventory control model. For
example, Muhlemann and Valtis-Spanopoulos (1980) considered in their inventory model
that the average value of the inventory increases the cost of financing it, expressed as a
percentage of its average value i.e. the cost represented by a percentage of the average
value of the stock held is such that the percentage is a function of the average value of
the stock held. They did it to realistically represent the opportunity cost of not having the
capital available for other purposes or the interest payable on the loan that had to be raised
at their inventory system.

Weiss (1982) considered an inventory model with constant demand rate, taking the
holding cost as a nonlinear function of inventory and the length of time for which the item
was held in stock respectively in a generalization of the economic order quantity model.
San-Jos et al. (2015) performed a similar work but considering partial backlogging. At
last, Giri and Chaudhuri (1998) performed the same work considering a deterioration rate
per period.

Sales price

Hereby, m represents the unit price of the items on inventory, that means how much rev-
enue will be generated for each item sold. When the literature focuses on investigating
issues of inventory control systems not related to pricing such as optimal or improved
replenishment policies, depletion policies, allocation challenges for multiple location sys-
tems, among others already mentioned; the sales price is modeled as a constant given by a
fixed sales price or a margin on top of the unit cost.

Often, the sales price is not even considered since the goal of the inventory modeling
investigation is set in minimizing the actual costs as in Nahmias (1976); Giri and Chaud-
huri (1998) and Lian et al. (2005), already cited. However, pricing marketing actions such
as pricing manipulation can drive consumer demand, phenomenon called price elasticity
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of demand, which significantly influences operations management decisions in areas such
as capacity planning and inventory control (Maddah et al., 2011).

Pricing has become one of the most widely studied topics in the operations manage-
ment literature in the last decade (Karaesmen et al., 2011). Anyhow, some decades ago
this issue was already considered in inventory modeling. Smith (1975) investigated opti-
mal ordering and price policies regarding demand as deterministic and a function of price.
Cohen (1977) also considered deterministic demand rates as a known function of the price
of a unit to minimize the cost function production levels, but for an exponentially decaying
product. Even earlier, other authors had already investigated decisions related to pricing
policies considering deterministic demand as Thomas (1970) not considering backlogging
in his model, and Kunreuther and Schrage (1973) aiming at determining pricing and or-
dering decisions, but considering price constant over the periods.

Later, the effect of selling prices started to be investigated with stochastic considera-
tions. Adachi et al. (1999) investigated a perishable product inventory model with con-
sideration to different selling prices of perishable commodities under stochastic demand
discriminating selling prices by different shelf lives. Ferguson and Koenigsberg (2007)
modeled a two period inventory system with stochastic demand and price discrimination
of unsold aged items and investigated the competition between the cheaper aged items
and the new products with higher prices but perceived better quality. Basically, this work
showed that the second selling opportunity overcame the effect of cannibalizing sales of
the second period new product. Elmaghraby and Keskinocak (2003) provided an extensive
review and practices in dynamic pricing.

Salvage value

Salvage value is another term that is often included in the cost or profit equation in inven-
tory modelling of perishable products. It is basically revenue that is incurred for each item
that has passed its shelf life. The salvage value is small and should not exceed the short-
age cost, otherwise the system tends to hold excess sub-products to obtain revenue from
salvage (Fujiwara et al., 1997). Some researches consider salvage value due to realistic
approximations and to investigate its impact.

Fujiwara et al. (1997) consider a specific inventory control problem for finite-shelf life
fresh-meat-carcass in supermarkets including salvage value to establish optimal ordering
and depletion policies aiming at profit maximization. Pareek et al. (2009) solved analyt-
ically a deterministic inventory model for time dependent deteriorating items accounting
salvage value aiming at the minimization of total inventory cost.

2.2 Random Depletion Policies
The focus of this master thesis is the estimation of how perishable products are depleted
in relation to their shelf-lives i.e. how the products that are sold at grocery stores are
picked by customers considering remaining shelf-life. In the industry as claimed by Relex,
inventory projections are calculated assuming FIFO depletion policy. However, this is
not how customers choose their groceries in reality. Instead, customers typically prefer
fresher products as much as stores build up their selling strategies to sell the oldest items
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first. Hence, a realistic depletion policy of perishable products in a retail context takes
place somewhere in between LIFO and FIFO policies in a random ordered. This type of
depletion policy is called in some papers, such as in Ferguson and Ketzenberg (2006),
SIRO (service-in-random-order) policy.

As point of departure for this work, a review of available literature focusing on how the
academia and industry have contemplated the SIRO policy was performed. All relevant
references found in this review comprise the base literature that was used to inspire and
support the analysis of this thesis. The main objectives, features and findings for each ref-
erence are compiled in the table 2.1. In the following lines, these references are presented
and discussed.

In the base literature, the references were divided into three categories related to how
the randomness of the depletion policy is modeled which are listed and described below.

• Hypothetical probability - In this case the depletion policy was considered to
follow hypothetical transition probabilities with no scientific background such as in
Pegels and Jelmert (1970).

• Uniform distribution - The depletion policy considers that the items are issued ran-
domly following a uniform distribution i.e. items from all ages have the same prob-
ability to be issued. This approach was applied by Sapountzis (1985) and Lowalekar
et al. (2016).

• Proportional distribution - The probability of an item in each age category being
issued is equivalent to the proportion of inventory of each age category in relation to
the total inventory. For example, if 20% of the units in inventory have a remaining
shelf-life of three days, then a particular unit of demand has a probability of 0.20
of being satised with a unit of inventory with a remaining lifetime of three days.
Both Vaughan (1994) and Ferguson and Ketzenberg (2006) have implemented this
approach in their work.

In Pegels and Jelmert (1970) which is the oldest reference found that included random-
ness in the issuing policy in its model, hypothetical transition probabilities of depleting the
items were used in a Markovian approach to study a blood bank related problem. The ob-
jective of the model applications was to determine the effects of the issuing policies on
average inventory levels, which determine blood shortage probabilities, and on the aver-
age age of blood at the time of transfusion. Depletion policies that issue fresher items with
a higher probability than older ones are defined as modified LIFO policies, and depletion
policies that issue older items with a higher probability than fresher ones are defined as
modified FIFO policies. The probabilities used were not based upon real case scenarios.

Sapountzis (1985) studied the demand of a characteristic curve of a blood bank for a
particular blood group, which expresses the probability of a unit of blood out-date as a
function of the age of blood entering the blood bank. It was assumed a random issuing, or
depletion, policy following a uniform distribution. The application of the model developed
used a hospital context as a background. Using the collected data, a different set of prob-
abilities were applied for the demand of different blood types and their parameters were
estimated. Two probabilities distributions were used: A negative exponential distribution
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which had its parameter estimated by application of the method of moments and the Er-
langian distribution which had its parameter estimated by maximum likelihood estimator.
The fitting of the curves were tested by applying the Kolmogorov-Smirnov criterion and
the results were considered satisfactory for all blood types.

In this work, the characteristic curve was considered the best means to judge the per-
formance of a blood bank due to the provision of expiry rates for every age of blood in the
bank. Furthermore, the comparison of the efficiency between two blood banks, comparing
the characteristic curves of the two banks for a specific blood group, was another applica-
tion mentioned for the characteristic curve. At last, with the use of the model policies that
were investigated for reducing the expires at a blood bank. It was shown that reduction of
the first unreserved period by 30% has a low effect on the expires at the blood bank and
consequently this policy was considered not worth to be implemented due to the high cost.

Lowalekar et al. (2016) also used random issuing policy of perishables in a blood bank
context to model an inventory driven by an order-up-to-level replenishment policy under
a periodic review setting. This paper aimed at optimum policy parameters for the model
through the application of a gradient search-based heuristic. A real life application of the
model was shown in the search of the optimum frequency and order-up-to-level.

Each unit had a xed lifetime. All the units which were not used during their xed useful
life were discarded at the end of its shelf-life. A xed cost for every unit that was discarded
was charged. A xed cost was charged for every review. A fixed ordering cost was charged
for every receivable. All units received had maximum remaining shelf-life, that is, they
arrived fresh. No back-order was considered. A xed cost of shortage was charged for every
unsatisfied demand unit. A xed holding cost for each unit was also charged.

The approximate model and heuristic was considered capable to be used together to
determine the optimal collection quantity and the optimal frequency of setting blood. The
model conrmed the idea that the blood should not be collected beyond a certain level
during donation periods. This is because the expected wastage increases rapidly beyond
a certain point while the average shortage does not reduce signicantly, indicating that any
additional unit beyond a certain level of collection will most likely be wasted. In addition,
the model indicated that collecting blood frequently instead of in large quantities is the key
to reduce the wastage. It was also noted that high values of the delivery cost would prompt
the hospitals to order less frequently and in large sizes leading to wastage increase.

Vaughan (1994) worked out a model for determination of inventory ordering and out-
date policy for a perishable item with random shelf-life considering of consumer-realized
product expiration. It means that in the model, a base stock of a order-up-to-level policy
and in which remaining shelf-life the items are out-dated were the decision variables. De-
mand was considered to be Poisson distributed and no backordering was considered. The
depletion policy was considered to be random following the proportion of the quantity on
stock respective to each shelf-life category. For example, if 20% of the units in inventory
have a remaining shelf-life of three days, then a particular unit of demand has a probability
of 0.20 of being satised with a unit of inventory with a remaining shelf-life of three days.

The main contribution of this research was to show the outdating policy decision under
the conditions modeled is significantly impacted by the value of the base stock policy
applied. Therefore, it was considered inappropriate to assign at first a value to the outdating
dates priorly to determine the base stock which minimizes only the costs of carrying,
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shortage and outdates considering the product has random useful shelf-life. In addition,
the fixed-shelf-life perishable inventory model showed to have its most relevant application
only when the product had truly a deterministic shelf-life, and it was less effective when
the deterministic shelf-life was imposed as a policy upon a product with shelf-life that was
actually random.

Ferguson and Ketzenberg (2006) considered a discrete infinite horizon inventory model
for single product and single echelon to study the value of information of the age of prod-
ucts to be delivered prior to ordering for FIFO and LIFO depletion policies. A special
analysis was also performed for a random depletion policy. In this case depletion of the
items also happened following the proportion of the quantity on stock respective to each
shelf-life category. Both demand and shelf-life of products to be delivered were stochas-
tic. The costs used in the model; unit purchasing cost, inventory holding cost and revenue;
were all linear and related to the quantities of items. All demand that was not fulfilled
was lost, the order quantities were modeled as multiple of a fixed batch quantity and the
lead-time for them was one period.

A periodic review and heuristics myopic replenishment policies which the order deci-
sion rested on whether sufficient stock existed in the current period that could carry over
and minimize expected cost only in the next period was used and verified against optimal
policies. Two scenarios were used for each depletion policy, the base-no-information-
scenario considering that the information about the shelf-life of the items to be delivered
were not known prior to the ordering and the information-scenario when this information
was known and used on the ordering decisions.

The results showed that value of information was largely a function of the level of
uncertainty the retailer experiences and the sensitivity of its costs to uncertainty. It was also
shown the information sharing was generally more beneficial when demand was satisfied
with a FIFO depletion policy than with a LIFO depletion policy. In addition, information
sharing resulted in a net decrease in retailer replenishment orders due to a reduction in
the amount of retailer out-dating and an increase in out-dating at the suppliers facility.
At last, the value of information did demonstrate no sensitivity with respect to the order
batch size. However, it was considered that such conclusion could be partially misled due
to a restricted analysis on the evaluation of scenarios where the order batch size did not
significantly exceed the mean demand rate.
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2.3 Estimation of censored demand

2.3 Estimation of censored demand
In the literature, there are several works that address estimation of demand using point of
sales data that is usually censored due to limited availability of products on stock. Early
studies have focused on the research of Bayesian inventory models assuming that non re-
alized demand was back-ordered. Such problems consider the whole demand observable
and therefore uncensored as in Scarf (1959) which applies maximum likelihood estimator
considering a Bayes estimate to study the problem conserning demand distributions un-
known and known, restricting his attention to exponential family of demand distribution.
In an extension of the same study, Iglehart (1964) considers a dynamic inventory problem
in which demand distribution possesses a density belonging to exponential or range fam-
ily of densities. Azoury (1985) worked with the same problem but with the prior demand
distribution chosen from the natural conjugate family.

Considering demand uncensored simplifies the problem. However when actual de-
mand is unknown because of censoring form the limited quantity in stock, the problem
becomes difficult to solve. Conrad (1976) which studied the estimation of censored sales
applying maximum likelihood estimates (MLE) using historical sales data under assump-
tions of a Poisson distribution shed light on this issue and highlighted that when obser-
vations are censored, inventory levels in the current period affects the demand estimate
for the next period as well. Nahmias (1994) also applied the MLE method on the same
problem under the assumption of normal distribution.

TAN and Karabati (2004) indicated that the MLE procedures work well only when
a small fraction of lost sales is present. Hence, there are other methods for demand es-
timation from observable sales information which comprehends censored demand. For
example, some papers proposed data-driven approaches with non parametric modeling to
solve the problem of inventory optimization with demand estimation. Burnetas and Smith
(2000); Godfrey and Powell (2001); Huh and Rusmevichientong (2009) and Huh et al.
(2011) developed adaptive inventory policies based on historical observations and Bes-
bes and Muharremoglu (2013) analyzed the effect–measured in terms of decision makers
”regret”–of demand censoring through a non-parametric exploration-exploitation method
that used over-ordering to explore the demand distribution, and find exploration to be es-
pecially important for integer demand.

Other papers addresses the correction of censoring-induced errors on demand estima-
tion via procedures to uncensor or unconstrain demand data. Wecker (1978), for example,
illustrated effects of stock-outs on accuracy of demand forecast in the context of inventory
management. Queenan et al. (2007) developed an unconstraining method that employed
double exponential smoothing to estimate lost sales. Lau and Lau (1996) worked out a
procedure for obtaining the demand distribution from censored data that combines a non-
parametric product limit method with extrapolation of hourly sales. Agrawal and Smith
(1996) analyze the problem of uncensoring normal and negative binomial demand, respec-
tively.

However, this master thesis sticks to the MLE method in order to also evaluate the
statement from TAN and Karabati (2004). Still on the MLE method as pointed out by
Vulcano et al. (2010), the data incompleteness derived from the censored demand makes
that the estimation of demand distribution parameter(s) becomes too complex to be solved
through the standard form of the MLE procedure. The standard form of MLE procedure
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requires the calculation of the argument of the maxima of a log-likelihood function. Often
when demand is censored by different boundaries as it will be shown throughout this
master thesis, this log-likelihood function becomes too complex to be solved analytically
or numerically. Moreover, ignoring this censoring can cause a severe bias in estimation.

Thence, several papers have considered the problem of estimating demand or a con-
sumer choice model using the expectation-maximization (EM) algorithm, which is out-
lined in Dempster et al. (1977) at various levels of generality, to find the maximum likeli-
hood estimator. Anupindi et al. (1998) applied the EM algorithm with POS data to estimate
demand rates and substitution probabilities considering demands censored by stock-outs.
Talluri and Van Ryzin (2004) developed an estimation procedure based on EM algorithm
on the estimation of general choice models from POS data when no-purchase outcomes are
unobservable. Kök and Fisher (2007) used the EM method to estimate substitution proba-
bilities along with demands of products in each store within a retail context. Vulcano et al.
(2012) combined a multinomial logit choice, nonhomogeneous Poisson and multiperiods
model to the EM algorithm to estimate demand and general substitution also in a retail
context. Conlon and Mortimer (2013) also did use the EM algorithm to estimate substitu-
tion probabilities in a retail context. van Ryzin and Vulcano (2017) used the EM algorithm
to estimate demand and substitution considering a rank-based choice model of demand. In
a quite original work, Stefanescu (2009) developed an approach for estimating the param-
eters of the demand models from censored sales data using the EM algorithm considering
inter-demand correlation that comprise not just product substitution in an airline industry
context.

No research focused on the attempt to estimate the customer behavior regarding pref-
erences of remaining shelf-life of the items was found, either without or with upwards and
downwards substitution. That is one among many reasons that make this topic of interest
of this master thesis.
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Method and basic theory

This chapter focuses on the methods and theories and why they were considered important
and relevant to this thesis. In order to achieve an acceptable level of academic rigour and
to facilitate the comprehension of readers and assessors with common and trusted research
methods, theories and structures; the guidelines from the supporting portal provided by
NTNU for academic writing https://innsida.ntnu.no/oppgaveskriving and
the book Bryman (2016) were used in the formulation of this document and reported in
this chapter.

At first, some theoretical considerations are presented in section 3.1. A brief expla-
nation about the theoretical approach of the literature review is outlined in section 3.2.
At last, a general overview of specific theories and methods used throughout this master
thesis to address the problem statement and answer the research questions are presented
in the further sections of this chapter. Section 3.4 contains an overview of the main con-
cepts within probability theory; section 3.5 reviews and presents the maximum likelihood
method; section 3.6 also reviews and presents the Expectation-Maximization algorithm,
section 3.7 presents the Monte Carlo method and section 3.8 provides fundamental the-
ory about replenishment policies in inventory management theory and the replenishment
policies utilized in this thesis.

3.1 Theoretical considerations and concepts
Theory is a malleable term with a complex definition (Bryman, 2016, p. 18). However,
two forms of theory stand out as a good attempt to characterize it: Grand theory, term
coined in Mills (1959), which refers to the form of highly abstract and general theorizing
in which concepts and the formulation of these concepts are prioritized over understanding
the social world and the events subjected to it; and the middle range theory from Merton
(1968), which operates in a more limited domain more integrated to empirical research
(Bryman, 2016, p. 19). Therefore, the middle range theory was naturally the theory form
utilized in the research reported in this document due to its empirical nature of modeling
and simulate realistic events of inventory management.
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Once the type of theory is established, another concern that deserves careful attention
in order to fulfill the desired level of academic rigor is how theory is connected to the
research in question. Following the same concepts from middle range theory, Bryman
(2016) points out two forms of this theory-research-link: Deductive and inductive strate-
gies. In the first, the research is drawn based on what is known about a particular domain
and on relevant proven theoretical concepts. In the last, the implication of the findings is
used to support the theory formulation.

The relevance of this matter is supported not by whether one chooses the deductive
or inductive approach for his or her research. These two approaches are often comple-
mentary. A research is usually planned and grounded to a theory, following a deductive
approach, and consecutively its findings follow an inductive approach to fulfill a construc-
tive contribution to the respective theory domain. Indeed, the importance of bringing it
to light lies on how the research is structured to effectively achieve the inductive goal of
providing a reliable contribution to the relevant theory.

In the deductive approach, theory relates to research adopting usually the following
common path: 1. Theory, 2. Hypothesis, 3. Data collection, 4. Findings, 5. Hypothesis
confirmed or rejected and 6. Revision of theory (Bryman, 2016, p. 21). Three highlights
about this path should be mentioned.

Although, the inductive approach can be identified in this path (in the link from point
5 to 6), this approach is considered by Bryman (2016) as purely deductive. Hereby, this
path is also considered as deductive approach to facilitate the comprehension and maintain
the methodology in line with the main reference.

In addition, when this approach, which is usually associated to quantitative research,
is applied, often it does not follow the sequence presented above. For instance, data may
need to be collected in order to support the hypothesis which are validated by the find-
ings resulted from more data collection. The deductive approach does not follow a linear
pattern although it looks like that it does. Often, previous steps must be revisited during
the performance of the successive steps in order to adapt the research to the unforeseen
instances later observed.

The research documented in this master thesis follows a similar path as the common
one presented above. A pre-established theory in inventory management and a set of
statistical methods which are the foundation of the research comprise the theory step.
The coupling of this methods to the inventory management context and its pre-established
theoretical background in an attempt to answer the elected problem statement and research
questions are used for data collection. The findings from an analysis of the data collection
are then used to support the conclusion that derives from the analysis.

As also argued by Crowther and Lancaster (2008) deductive approach is intrinsically
related to the positivism. In an epidemiological reach i.e. what is regarded as acceptable
knowledge in a discipline (Bryman, 2016, p. 24) opposing the interpretivist, the positivist
approach advocates the application of the methods of the natural science to the study of
social reality and beyond. Frequently in the literature, this term stretches beyond this
description. However, positivism can entail the following principles: Only knowledge
confirmed by specific set of phenomena serve as basis to theory used in the research; the
purpose of the theory is to develop hypothesis that can be tested and used to complement
theory; science is value-free and research is focused on facts instead of meaning. Therefore
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from an epidemiological perspective, this master thesis has adopted a positivist approach.
From the ontological point of view, i.e. the set of assumptions one holds about the

nature of reality (Blaikie, 1993, p. 6), this theses is embraced by the objectivist position.
There are two main ontological positions in social science (Bryman, 2016, p. 29 ). In the
construcionism, social entities such as organization and culture are constructions built up
from the perceptions and actions of social actors. In contrast, the objectvist position sees
the social entities as objective entities that have reality external to social actors. The social
actors have no influence on the social entities in the objectivism.

Another theoretical aspect that was considered in the planning and strategizing of this
project, although it can be considered conspicuous, is whether quantitative or qualitative
methods should be used. The point of departure was the mathematical modelling of an
inventory system which consists of uncertainty variables that require statistical theory and
simulations to generate random sampling and analyze the generated data. Thus naturally,
the work for the formulation of this master thesis was carried out utilizing a quantitative
approach. Moreover, the deductive, positivism and objectivism approaches are fundamen-
tally related to the quantitative strategy as displayed in the table 3.1.

Table 3.1: Fundamental differences between quantitative and qualitative research strategies (Bry-
man, 2016, pp. 32)

Quantitative Qualitative

Principal orientation to the role
of theory in relation to research

Deductive, testing of theory Inductive, generation of theory

Epistemological orientation Natural science model,
in particular positivism

Interpretivism

Ontological orientation Objectivism Construcionism

The choice of research strategy is not arbitrary, as it depends on the problem being
researched. In this dissertation, the problem statement is related to how customer pref-
erences with regards to the freshness of demanded products available on the shelves can
be estimated in an inventory model with complete upwards and downwards substitution
in a retail context. Pre-existent theory of inventory modelling and numerical methods to
estimate parameters of a censored distribution within a stochastic system is adopted in an
original setting. Therefore, a blending between quantitative and qualitative approach is
adopted aiming at the best outcome through an efficient process. However the choice for
the quantitative, positivist and objectivist approach as the basis for the research presented
in this dissertation is considered to be a natural choice.

3.2 Theoretical approach of literature review
The review of literature was planned to be initially extended to a thorough reach of in-
ventory management for perishable products in supply chain and operations management
research, the elected theme for this specialization project. This was done with the intent to

31



Chapter 3. Method and basic theory

gather enough information about how inventory management of perishable items had been
researched until the development of this work and what were the possible approaches to the
theme that would provide academic relevance to the results. Thence, a reliable foundation
for the formulation of the problem statement and research question could be established
and used as supporting tool for the complete research. This review is included in this doc-
ument since it provides a comprehensive overview of the theme to the reader and it shows
why the problem statement was considered relevant from an academic perspective.

Once the gathered information was considered to be enough for the formulation of
the problem statement and research questions, a more focused literature review was per-
formed, now aiming at specific theories and methods considered relevant to answer the
problem statement and research questions. In addition, part of the literature studied was
used as a literature base that was used in the design of experiment developed hereby.

The searching for relevant literature was performed primarily using web based search
engines and data basis. At first, the searches for relevant literature were performed in Sco-
pus, Web of Knowledge and Google Scholar using combination of more general keywords
related to the theme for the first broad literature review. The relevant literature was clas-
sified following a systematic review as described in Bryman (2016), and structured using
the fundamental mathematical formulation commonly used in inventory control modeling
of perishable items as a starting point. The considered main ramifications from the fun-
damental mathematical formulation was covered in the literature review. This formed a
basis for the problem statement and the model. The same was done for the more specific
literature review about depletion policies adopted in relevant literature associated with in-
ventory theory and the review about estimation of censored data.

3.3 Mathematical formulation

The mathematical model used in this project followed a similar formulation as the one
presented in the equations introduced in the literature review, section 2. In this type of
formulation, a state vector xt describes the state of the system with respect to t. The
future state of this system is a function of the state xt and other state variables.

A function is a relation from a set of variables, the domain, to another set of variables,
the co-domain, that satisfies two properties: (1) Every element in the domain is related
to some element in the co-domain , and (2) No element in the domain is related to more
than one element in the co-domain. This formulation can be mathematically generalized
by f : X → Y where f is the function, X the domain and Y the co-domain. In other
words, f(x) is the output of f for the input x where f = {y ∈ Y | y = f(x), for some
x ∈ X . (Epp, 2010, p. 384)

Depending on the model, the state can change continuously in t where t ∈ R or, as
in the current case, in discrete time increments, t where t ∈ Z. An example of a function
which describes the evolution of the system in a discrete time is

xt+1 = f(xt, qt, st, wt), (3.1)

which is the representation of the transfer equation represented by the equation 2.1.
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3.4 Probability theory
It is a challenge to explain concepts of a vast field such as probability theory succinctly.
There are numerous different approaches to similar concepts and the definition of some
concepts may need multiple other definitions. Therefore in the further lines, only the main
concepts utilized in this master thesis are defined.

Maybe the most extensive cornerstone of probability theory necessary for this master
thesis is the definition of the probability space which is a triplet (Ω,H,P) where Ω is a
set, H is the a σ-algebra on Ω, and P is a probability measure on (Ω,H). A probability
space, (Ω,H,P), is basically a mathematical model of a random experiment from which
an exact outcome cannot be told in advance. The set Ω also called sample space, stands
for the collection of all possible outcomes of the experiment. A subset or event H is said
to occur if some outcome or outcomes of the experiment happens to belong to H . The σ-
algebraH is the collection of all such subsets. The elements ofH are called event. Finally
for each possible event H contained in all subsets ofH contained in Ω, the chance that H
occurs is defined by P(H) which is the probability that H occurs. (Cinlar, 2011, p. 48)

The inventory model used hereby is subjected to two independent and identically dis-
tributed (iid.) random variables, representing the demand for the oldest items and the
demand for the newest items. This type of variables represents a set of values which have
the same probability distribution and are mutually independent from each other. For ex-
ample, following the formulation used by Bulinskaya (1964) described in the literature
review, in section 2.1.1, considering two random variables d1 and d2, they are identically
distributed iff P [D ≥ d1] = P [D ≥ d2], ∀D ∈ I; and they are independent iff
P [D ≥ d2] = P [D ≥ d2|D ≥ d1] and P [D ≥ d1] = P [D ≥ d1|D ≥ d2] , ∀D ∈ I.
(Ross, 2010, p. 48)

The two iid. variables followed a Poisson distribution, which is a discrete distribution,
and were therefore subjected to the same probability mass functions and cumulative distri-
bution functions. In general, a probability mass function (PMF) gives the probability that
a discrete random variable is exactly equal to a specific value. Different from a probability
density function (PDF) which is related to a continuous representation of a system, the
PMF is the probability distribution of a discrete random variable (Biggs, 2009, p. 382).
For instance, considering that D : Ω → A(A ⊆ R) is a discrete iid. random variable de-
fined on a sample space Ω. Then the PMF function ϕ : A→ [0, 1] for D can be generally
defined as

ϕ(d) = P (D = d) = P ({ω ∈ Ω : D(s) = d}) (3.2)
where ∑

d∈A

ϕ(d1) = 1. (3.3)

A cumulative distribution function (CDF) represents the probability of the value of a
random variableD being less than or equal to a value d. The CDF of a discrete distribution
can be represented by

Φ(d) = P (D ≤ d) =
∑
di≤d

ϕ(di) (3.4)
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3.4.1 Expected values
Due to the random iid. variables, the outcomes of the model studied hereby are subjected to
uncertainties and it is not possible to determine the exact output of the system. Therefore,
it is necessary to base the analysis with respect to expected values given the statistical
inputs of the system. In addition, the method utilized in the relevant estimations uses the
expectation of certain values in some of its steps. The expected value of a random variable
D for example, E(D), can be generally defined by

E(D) =
∑
d1∈Ω

d1f(d1), (3.5)

which is the average value of a series of realizations of this random variable, provided this
sum converges absolutely. If the sum does not converge absolutely, then D does not have
an expected value (Grinstead and Snell, 1997, p. 226).

3.4.2 Conditional probability
Another concept that is used in the method adopted in the relevant estimations throughout
this master thesis is the conditional probability and conditional distributions. Conditional
probabilities can be used to describe dependencies between two events A, B ∈ H with
respect to a probability measure P on H. For such case considering P (B) > 0, the
conditional probability can be defined as

P (A|B) =
P (A ∩B)

P (B)
, (3.6)

which is called the conditional probability of A given B with respect to P. (Steyer and
Werner, 2017, p. 138)

The conditional probability can also be defined by the Bayes’ Theorem, or Bayes-Price
rule, as

P (A|B) =
P (B|A)P (A)

P (B)
, (3.7)

which was also used throughout this master thesis. The Bayes’ theorem relates the proba-
bility of an event to prior knowledge of conditions that might be related to the event. It is
derived from Bayes and Price (1763), and it is efficiently revised and explained by Stigler
(1982). It also provides the basis for the Bayesian inference methodology which is one
approach of statistical inference methodology.

3.4.3 Statistical inference
Statistical inference is one subdivision within the branch statistics which uses sample of
data to draw inferences about some aspect of the population (real or hypothetical) from
which the data were taken (Garthwaite et al., 2002, p. 1). For example, the use of proba-
bility distribution to model an inventory system seeking estimates of the behavior of this
system from a sample data set, as carried out in this master thesis, constitutes a statistical
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inference analysis. There are two main schools within statistical inference, the Bayesian
inference and the Frequentist inference. As already explained, the Bayesian inference
methodology uses prior knowledge of conditions that may be related to an event to make
predictive inferences about the respective event. The Frequentist inference on the other
hand is based on hypothetical repetitions of the underlying sampling experiment (Held
and Bov, 2014, p. 51).

The most relevant difference between the Bayesian and Frequentist inferences, at least
for this master thesis, is that the parameters to be estimated have fixed values and the pre-
dictive inference are performed in terms of frequency of these values over real or hypothet-
ical repetitions of an experiment in the Frequentist approach. In the Bayesian approach,
the same parameters are associated to probabilities that compose the prior knowledge to
be used in the predictive inferences.

3.5 Maximum likelihood estimation method
The estimates performed hereby used concepts derived from the maximum likelihood es-
timation (MLE) method which is basically a method that aims at the estimation of the
parameters of a statistical model from observed data. With its modern version created
by Fisher (1922b,a), see Hald et al. (1999) for a revision of the historical routes of the
MLE method, and proven by Wilks (1938), the maximum likelihood method fits to the
Frequentist inference paradigms since it does not use prior distributions in its estimates.

In order to estimate the distribution parameter(s) of a statistical model, the MLE
method departs from a likelihood function that depends on the distribution parameters
value and the set of observations that compose the statistical model. A likelihood function
is basically a function that provides the probability that certain distribution generates a
determined sequence of observations S = (s1, s2, ..., sN ). It is the product of the PMFs,
considering discrete distributions and evaluated for this sequence of observations which is
given by

L(S|θ) = P (S) =

N∏
t=1

ϕc(st|θ), (3.8)

where ϕc is the PMF which hereby denotes a distribution which represent a set of censored
observations.

For convenience, the likelihood function is in general substituted by a log-likelihood
function. Applying this measure in equation (3.10), its respective log-likelihood is given
by

l(S|θ) = logL(S|θ) = log

N∏
t=1

ϕc(st|θ) =

N∑
t=1

logϕc(st|θ). (3.9)

Therefore, instead of having the product of a series of probabilities, the likelihood is de-
picted by the summation of a series of probabilities.

Once the censored distribution is established, the estimation of the parameter θ can be
performed by finding the parameter θ which maximizes the likelihood. To maximize the
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likelihood, the likelihood function shall be differentiated with regards to θ, set to zero, and
solved for θ. Hence when the maximum exists, the maximum likelihood estimate is given
by

θ̂ = arg maxθ
N∑
t=1

ϕc(st|θ). (3.10)

Several papers have analyzed the consistence and the asymptotic behavior of the MLE
such as Wald (1949); Huber et al. (1967); Banker (1993) and Wang and Flournoy (2015);
and there are many properties that can be reviewed and analyzed. The most important
is the consistency in relation to the size of the sample analyzed since the ML estimator
only converges to the its true value only when the number of observations of the sample
analyzed goes to infinity. Basically, the more the numbers of observations in the sample
analyzed the more consistent and accurate the estimated parameters are. Another consis-
tency property of the MLE is related to the shape of the likelihood function. In multimodal
curves for example, there may be more than one maximum. Each maximum is called local
maximum which is limited locally within the extension of the domain of the likelihood
function, and it may or may not be the global maximum of the function.

Often the calculation the set of parameter(s) that maximizes the likelihood function
through a purely analytic approach is not feasible. Hence in this case, one must use nu-
merical methods to estimate the set of parameter(s).

3.6 Expectation-Maximization algorithm
Although not formally entitled and expounded as in its modern version, the expectation-
maximization algorithm was explicitly introduced by Hartley (1958) as a procedure for
calculating maximum likelihood estimates of discrete and incomplete data sets. In a simi-
lar application to the method as the one adopted hereby, the data sets from Hartley’s work
were considered to follow a discrete statistical model and the observable information was
also censored. The censoring applied was rather simpler in contrast to how the data is
censored in this master thesis and some examples with different probability distributions
such as Poisson and Binomial distributions were studied. Later, Dempster et al. (1977)
outlined the EM-algorithm at various levels of generality. Among other outcomes, this
work presented a theoretical background for the relation between the monotone behavior
of the log likelihood function and the convergence of the algorithm.

As the name suggests, the Expectation-Maximization algorithm (EM-Algorithm) is an
iterative method which alternates between an expectation step, the E-step, and a maxi-
mization step, the M-step, to find the maximum likelihood estimate of a specific statistical
model of a system with censored data. The EM-algorithim starts by the E-step. In the
E-step at first, the statistical model with its probability distribution for the censored data is
used with a pre-estimated parameter or a set of parameters to calculate the expected value
or values for the non-censored data given the conditions in which the data is censored.

Let’s consider the sequence of observations presented in section 3.5, the observed data
set S = (s1, s2, ..., sN ), and that the observed data lacks information that was censored
by any reason. Data can be censored by limitations on the acquaintance of the data, due to
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contamination or simply due to loss of data. In addition, let’s also consider that the unob-
served uncensored data, which are often called latent data, is given by D = (d1, d2, ..., dN )
and that D is a random variable which is generated by a parameterized probability distri-
bution dependent on the unknown set of parameters θ. In the E-step, the expected value of
the log-likelihood function with respect to the conditional distribution of the uncensored
demand given S and under the pre-estimate of θ is calculated and given by

ED|S,θ̂

[
l
(
Z,X, θ̂

)]
= E [logP (D|S)] , (3.11)

where logP (S) =
∑N
t=1 ϕc(st|θ) and logP (D) = ϕ(dt|θ). Note that both P (S) and

P (D) depend on the set of parameters θ. Consequently, logP (D|S) also depends on θ.
Basically and in a rough explanation, the expectation of the uncensored data calculated

under the conditions of the censored data in the E-step fills the gaps of the information that
was not captured by the observed data. Then once the expectation, or expectations as in
this master thesis, are calculated in the E-step, a new parameter that uses the information
of the observed uncensored data and the expectation of the non-observed uncensored data
that were hidden by the censoring can be estimated. This estimation is conveniently elected
as the parameter that maximizes the expectation from equation (3.11), given by

θ̂i+1 = arg max EZ|X,θ̂i

[
l(Z,X, θ̂i)

]
, (3.12)

where θ̂i+1 is the estimated set of parameters at iteration i + 1 and θ̂i is its previous
estimation.

Both the E-steps and M-steps are iterated until satisfactory convergence is reached.
The estimations for the set θ of the M-step from the previous iteration is always used
in the E-step of the current iteration. If the algorithm converges, the algorithm should
monotonically approach a local maximum of the respective l(·) function.

There are several properties related to the convergence of the EM-algorithm and they
are reviewed in detail by McLachlan and Krishnan (2008). Therefore in the following
lines, the general convergence of the algorithm is briefly discussed. Since for each iteration
of the EM-algorithm the estimated set of parameters θ is the estimation which maximizes
the expectation generalized in equation (3.11) which is established under the estimated
set of parameters from the previous iteration, for each iteration the respective expectation
of function l(·) increases monotonically to a local maximum when the estimation of θ
reaches a stationary point. However, this stationary point may not be a local maximum. It
is possible for the algorithm to converge to local minima or saddle points in unusual cases
as illustrated in McLachlan and Krishnan (2008).

The term local maximum is used above because although an EM iteration does increase
the likelihood function of the observed data, it is not assured that the algorithm converges
to a global maximum likelihood estimator. To which local maximum the EM-algorithm
converges depends basically on the initial pre-estimated values of θ.
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3.7 Monte Carlo method
A Monte Carlo simulation was used to determine the expected values of the system studied
in this master thesis. A Monte Carlo simulation method estimates values by building
discrete models and substitutes a range of values probability distribution for any factor
that has inherent uncertainty. It then calculates the output of the model over and over,
each time using a different set of respective random inputs from the probability functions.
Depending on the number of uncertainties and the ranges specified for the model, a Monte
Carlo Simulation could involve thousands or tens of thousands of recalculations before it
is complete. Monte Carlo simulation produces distributions of possible outcome values.

In the Monte Carlo method, values are sampled randomly from the input probability
distributions. Each set of samples is called an iteration, and the resulting outcome from
that sample is recorded. Monte Carlo simulation does it iteratively, and the result is a prob-
ability distribution of possible outcomes. In this way, Monte Carlo simulation provides a
much more comprehensive view of what may happen. It tells you not only what could
happen, but how likely it is to happen. By using probability distributions, variables can
have different probabilities of different outcomes occurring (Kalos and Whitlock, 2008,
pp.77–101).

3.8 Replenishment policies
The considered most relevant concepts related to inventory modeling for this project were
introduced in the literature review chapter, section 2.1. Anyhow, some specific concepts
about replenishment decision are formally presented in this section since they play an
important role in this master thesis.

The replenishment policies utilized in the inventory modeling of this project are based
on periodic reviewing. It means that instead of monitoring the inventory continuously to
evaluate if the inventory is low or not, such as in the continuous review, the inventory is
modeled considering the position only at certain given points in time (Axster, 2006, p.47).
A typical periodic review largely used in the industry and studied by the academia is the
(R,Q) policy. In this policy, when the inventory state declines to or below the reorder
point R, a batch quantity of order Q is ordered.

Haijema and Minner (2018) which investigated the value of stock-age, or freshness
as referred in this master thesis, in different replenishment policies, has presented a com-
prehensive review of replenishment policies which suits well to this master thesis. The
replenishment policies reviewed were divided into three groups: Stock level dependent
ordering, stock age dependent ordering and policies that track the time elapsed since the
last order. The last group of policy has its ordering control on a determined period of non-
purchase and it does not play an important role in this master thesis. However,the other
two group of policies do play an important role in this master thesis.

As the name suggests, stock level dependent ordering are policies which set the re-
plenishment decision exclusively on the level of stock at the ordering period. The most
fundamental policy of this category is the base stock policy (BSP). In this policy which was
extensively investigated by Cohen (1976), a base stock level usually denoted by the term
S is used as basis for the ordering quantity. At the ordering period, the ordering quantity
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is defined as the quantity necessary to increase the inventory level up to S. If the inventory
level is equal or higher than S no new items are ordered. Cohen (1976) analytically stud-
ied this policy for a two-period shelf-life with FIFO depletion policy. The optimal value
of S requires numerical calculations to be acquired through a pre-established search range
considering all possibilities.

An extension of the BSP policy is the SQmax which adds a parameter to the BSP
policy. In addition to the base stock level, a maximum order quantity is used to limit the
quantity to be ordered even though it may not be sufficient to reach the base stock level.
This policy aims at reducing waste resulted from large orders. The optimal values of S
and the maximum ordering quantity can be calculated similarly to the calculation of the
optimal S in the BSP. Two search domains for each parameter are established and their
optimal value are the outcome of the application of a numerical search method as reported
in Haijema and Minner (2016).

There are other stock level dependent ordering policies also based on the BSP policy
such as the BSP-low which uses three parameter, two base stock levels and one break-
point, and aims for example at waste reduction and increase service level. In this case if
the stock level is lower than the break-point, a base stock level is used for ordering. If the
stock level is higher than the break-point, the other base stock level is used for ordering.
However, this goes beyond the scope of this master thesis since for the data generation,
as it is going to be explained further, a simple base stock policy is used in an inventory
simulation.

The stock-age dependent ordering policies use not just the quantity of inventory at the
ordering period but also the remaining shelf-life of each item in stock to determine the
ordering quantity. An example of this policy is a base stock policy referred by Karaesmen
et al. (2011) as the TIS-NIS policy. In this policy, the inventory items are divided in be-
tween old products and new products. Three parameters are used, one to define until which
remaining shelf-life the items are considered new, one base stock level for all items and
one base stock level for the new items. The ordering quantity is defined as the maximum
between zero, the difference between total stock level and base stock level for all items and
difference between the quantity of new items in stock and the base stock level for the new
items. Again, the search of optimal parameters are performed by using established search
range for each parameter and utilizing numerical methods considering all possibilities.

In addition, a stochastic dynamic programming (SDP) methodology may be used as in
Fries (1975), Nahmias (1975) and Haijema et al. (2007) to calculate the optimal ordering
quantity. In this case, for each possible state, an optimal ordering quantity is determined
using value iteration through the adoption of a recursive equation which aims at minimiz-
ing costs or maximize profits considering the expected costs or profits for a determined
ordering quantity and the future optimal expected cost or profit considering the state at the
current period. As mentioned in Haijema and Minner (2018), the practical application of
such policy is hampered by the calculation complexity and computational cost of the SDP
policy considering that the expected values mentioned must be calculated for all possible
states at each ordering period. For problems with many states, approximately heuristics
may be utilized.

In this master thesis for the calculations of the impact of the estimated demand in rela-
tion to the remaining-shelf life of the items, an heuristic policy using a similar approach to
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the SDP methodology is adopted by using the inventory level to assess how much should
be ordered to fulfill the expected demand until the delivery of the next potential order in
order to maximize profitability. This was performed by adopting a look-ahead sparse sam-
pling tree search policy. As described in Powell (2011, pp. 200-202 ), the look-ahead
policies make a decision at ordering period by solving an approximation of the problem
over some horizon. In the sparse sampling approach, statistical sample of outcomes calcu-
lated for limited horizon using for example the Monte Carlo online simulation is adopted
to stipulate the best policy decision.
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Chapter 4
Model development

This chapter presents the modeling adopted in this master thesis and how the methods out-
lined in chapter 3 were applied to address the problem statements and answer the research
questions. The chapter is systematically organized to answer each research question and it
is therefore divided in three sections: Inventory model, demand estimation and design of
experiment.

Section 4.1 describes how the inventory was mathematically modeled. The most rele-
vant conceptual traits of the inventory model are presented with emphasis on the explana-
tion of how the preference of customers in relation to the remaining shelf-life of available
products were modeled. Thereafter in section 4.2, it is described how the estimation meth-
ods reviewed from literature, presented at chapter 3, are applied to the specific case and
context studied hereby. This section aims at the second research question. Finally, sec-
tion 4.3 provides a design of a factorial experiment built up to answer the third research
question. This design of experiment is divided in three phases.

The first phase from the DOE is designed to generate relevant data from which the
estimations were performed. These data were generated through the simulation of the
inventory model that is already presented in section 4.1. Therefore, section 4.3.1 presents
specifically the replenishment policy and the parameters that were used in the inventory
simulations for the data generation. In addition, the fixed and factorized parameters of the
simulations that were used in the factorial experiment are presented.

The second phase focuses on the estimate of the demand parameters, which models
the customers preferences related to the remaining shelf-life, from the data generated in
the first phase considering the demand distributions from the inventory model. Section
4.3.2, presents a convergence test for the EM-Algorithm used to estimate these demand
parameters as described in section 4.2. The results and conclusions of the convergence
test are presented in addition to the parameters of the EM-Algorithm that are used in the
third phase of the design of experiment.

In the third phase, inventory was simulated also adopting the same inventory model,
but a stock-age dependent policy was used in this case. The stock-age dependent policy
was used to capture the influence of the estimation performed in the second phase. In
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this phase, different set of parameters for the distribution of the shelf-life of items on
stock were used in addition to the estimated parameters in different experiments and an
extra experiment was performed with the replenishment of the first phase for the sake
of comparison. It was done for each experiment from the first phase. Therefore, the
variants of the first phase jointly to the variants of phase three comprehend the full factorial
design of experiment. At the end of section 4.3, the fixed and factorized parameters of the
simulations from the third phase are presented. These factorized parameters represent the
full factorial experiment designed hereby.

4.1 Inventory Model

This thesis focuses on a realistic setting of a retailer that sells perishable products and
receives replenishment from a large supplier. For this, an inventory model which can
realistically simulate the inventory of perishables in a retail context was developed. This
model was intended to be used to generate similar observed data that can be captured by
a modern POS system at grocery stores, for instance. It is assumed a periodic review of a
discrete inventory state since this is the most common system used in the grocery industry
(Ferguson and Ketzenberg, 2006).

The inventory system from the model developed hereby covers the control of one per-
ishable product stored at a single location that is provided by a single supplier (Single-
echelon). It was considered that the available supply was sufficient to cover all orders
quantities at the same unit cost.

The items’ maximum remaining shelf life is an arbitrary fixed integer M in periods.
All ordered items are delivered with the same remaining shelf life M . Once in stock, the
remaining shelf life of each item is reduced by one unit each period and once the item
reaches a remaining shelf life of 0, the item perishes and cannot be sold anymore.

The demand is discrete, stochastic and stationary following a Poisson distribution with
a probability mass function (PMF)

ϕP (dt|Λ) =
eΛΛdt

dt!
, (4.1)

and cumulative distribution function (CDF)

ΦP (dt|Λ) =
Γ(dt + 1,Λ)

dt!
, (4.2)

where Λ is the mean demand, Dt is an idd. random variable denoting total demand at
period t, dt is its realization at period t and Γ(·) is the gamma function.

Each customer has a probability p of picking up the oldest item on the shelf (through a
Bernoulli trial) following a FIFO depletion policy. Therefore for a known total demand, the
demand for the oldest items follows a binomial distribution Da,t|Dt ∼ Binomial(dt, p).
Then, the demand for the oldest products follows a Poisson distribution with mean demand
λa = Λp,
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Da,t ∼ ϕa(da,t|Λ, p) =

∞∑
n=0

ϕP (n|Λ)ϕB(1|n, p) =
eΛp(Λp)dt

dt!
=
eλaλdta
dt!

, (4.3)

where ϕa is the PMF of the demand for the oldest items and ϕB is the Binomial PMF.
Analogously considering that each customer has a probability (1 − p) of selecting the
newest item on the shelf (through a Bernoulli trial) following a LIFO depletion policy,
the demand for the newest products follows a Poisson distribution with parameter λb =
Λ(1− p),

Db,t ∼ ϕb(db,t|Λ, 1− p) =

∞∑
n=0

ϕP (n|Λ)ϕB(1|n, p) =
eΛ(1−p)[Λ(1− p)]dt

dt!
=
eλbλdta
dt!

,

(4.4)
where ϕb is the PMF of the demand for the newest items. Hence, Da,t and Db,t are two
independent identically distributed (iid.) random variables denoting demand at period t
for the oldest and youngest items respectively which follow each a Poisson distribution
with mean demands λa and λb also respectively. Their realization in period t are denoted
by dt,a and dt,b. Since the demand for the inventory system modeled in this dissertation
is comparatively low, the choice for Poisson distribution in the modeling of demand is
based on the recommendations from Syntetos et al. (2009) i.e. modeling of demand with
Poisson distribution for low demand cases, as it was explained in the literature review,
section 2.1.1.

Each order is periodically placed with an ordering frequency of τ periods. The delivery
happens L periods after ordering date. It means that the replenishment quantity, qt, is
ordered at period t− L and delivered at period t.

Items depleted are not returned and there is no backlogging of excess demand.
The unit cost, cu is constant and does not vary over the periods by any circumstances.

The sales price is denoted by cs and the utility of each product remains constant over its
whole life time. Hence, sales price is also constant, and it is not altered by the perishable
nature of the product. No fixed ordering cost is accounted in the profits calculation due to
transport costs are usually distributed over many stock keeping units (SKUs) in a re-tail
context. A linear holding cost, ch, per unit of inventory stored is charged. The holding
cost is also constant, and it is not altered by the perishable nature of the product. No
salvage value and no disposal costs are accounted in the profits calculations. The loss due
to perishability is accounted in the items purchased and perished that do not have their
sales income added to the profits.

For the inventory balance and profits calculations, the order of events in each period
follows the sequence: (1) Review inventory and place replenishment order (2) receive
delivery, (3) satisfy demand, (4) out-date inventory (5) calculate profits, waste and stock-
outs. Since the orders must always be placed τ periods after the previous ordering period,
let establish the following relation:

qt =

{
0 t 6= ατ

γ t = ατ
, where α ∈ Z+, γ ∈ Z∗ . (4.5)
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Considering (y)+ = max(y, 0), the inventory balance equations for FIFO depletion
policy and LIFO depletion policy are respectively:

FIFO

xm,t+1 =



qt+1−L m = M

xm+1,t −

(
dt+1 −

m∑
z=1

xz,t

)+
+

m < M

(4.6)

LIFO

xm,t+1 =



qt+1−L m = M

=

xm+1,t

(
dt+1 −

M∑
z=m+2

xz,t

)+
+

m < M

(4.7)

where the vector of ending inventory in the period t, xt = {xt,1, xt,2, ...xt,M} at pe-
riod t, represents the inventory state i.e. the vector which contains the inventory held for
each remaining shelf life until the maximum shelf life, M . The demand in period t is dt,
qt+1−L denotes the quantity of products ordered at period t+1−L. Since in the inven-
tory model used in this thesis it is considered demand for both FIFO and LIFO depletion
policies, a combined version of the balance equation, ξ(xt, da,t+1, db,t+1, qt+1−L) where
ξ(xt, da,t+1, db,t+1, qt+1−L) = xt+1, shows necessary. This balance equation is given by

FIFO and LIFO combined

xm,t+1 =

qt+1−L m = M

xm+1,t −

(
db,t+1 −

M∑
z=m+2

xz,t

)+

−

(
da,t+1 −

m∑
z=1

xz,t

)+
+

m < M

(4.8)
where dt+1,a represents the demand for the oldest item,FIFO depletion policy, and dt+1,a

represents the demand for the youngest item,LIFO depletion policy; both at period t + 1.
The total demand for each period t is the sum of both a and b demands, dt = dt,a + dt,b
respectively.

The equation for the expected profit incurred in each period is

πt(Xt, qt) = cs

Xt∑
dt=0

dt ϕP (dt|Λ)− ch
Xt∑
dt=0

(Xt − dt)ϕP (dt|Λ)− cuqt, (4.9)
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whereXt =
∑M
i=0 xt,i is the total quantity of items in inventory considering all remaining

shelf-life categories. The first term of equation (4.9) represents the income due to sold
items predicated only on ϕP (·). The second term represents the holding cost of current
inventory also predicated on ϕP (·). At last, the third term represents the ordering cost
which depends on the unit cost and the quantity ordered in each period.

The setting analyzed in this master thesis comprehends the inventory system of a prod-
uct with maximum remaining shelf life of two periods in a finite horizon of T periods. Both
delivery time and ordering frequency are equal to one period. Therefore, all equations pre-
sented in the further sections are modeled for the specific scenario in which L = 1, τ = 1,
M = 2 and with a finite value of T .

4.2 Demand estimation
The demand parameters are estimated from POS observed data available. Thence consid-
ering that the retail store has the control over the quantities of items and their remaining
shelf-life in stock, the quantity of sold products per remaining shelf-life is the main ob-
served data that can be used for estimation. This realized sales depicts the demand which
is censored by the available quantities of items in stock which are also observed.

The quantity of items with remaining shelf-life equals to one period and remaining
shelf-life equals to two periods are given by equations (4.8) and can be simplified to

x1,t+1 =
(
x2,t − db,t − (da,t − x1,t)

+
)+

(4.10)

and

x2,t+1 = qt (4.11)

when M=2 and L=1.
The realized sales or censored demand for the product a, the oldest product available

correspondent to the items with remaining shelf-life equals to 1 period and for the product
b, the newest product available correspondent to items with remaining shelf-life equals to
2 periods are respectively censored and given by

r1,t = x1,t −
(

(x1,t − da,t)+ − (db,t − x2,t)
+
)+

(4.12)

and

r2,t = x2,t −
(

(x2,t − db,t)+ − (da,t − x1,t)
+
)+

. (4.13)

which can be rewritten as

r1,t =


x1,t da,t + db,t ≥ x1,t + x2,t

x1,t da,t ≥ x1,t and db,t < x2,t and da,t + db,t < x1,t + x2,t

da,t + db,t − x2,t da,t < x1,t and db,t ≥ x2,t and da,t + db,t < x1,t + x2,t

da,t da,t < xa,t and db,t < x2,t

(4.14)
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and

r2,2 =


x2,t da,t + db,t ≥ x1,t + x2,t

x2,t da,t < x1,t and db,t ≥ x2,t and da,t + db,t < x1,t + x2,t

da,t + db,t − x1,t da,t ≥ x1,t and db,t < x2,t and da,t + db,t < x1,t + x2,t

db,t da,t < x1,t and db,t < x2,t

(4.15)
Do note that there is upwards and downwards substitution with relation to the remaining
shelf-life. It means that when there is stock-out for the oldest item, any remaining stock
of the newest item, after the complete demand for the newest item is satisfied, is used to
satisfy the demand for the oldest item and vice versa.

In the current setting, there are two censored distributions which are the object of study:
distribution of censored demand for the product a and distribution of censored demand for
the product b which are respectively the distributions for the realized sales presented by
equations (4.14) and (4.15). The parameters Λ and p are unknown and the objects of
interest i.e. the parameters to be estimated. In addition as it was already indicated, these
parameters are correlated with λa and λb as follows:

Λ = λa + λb, (4.16)

λa = Λp, (4.17)

λb = Λp(1− p). (4.18)

Therefore by estimating λa and λb, Λ and p are also estimated.
The estimation of λa and λb from the observed data can be done using the maxi-

mum likelihood method as outlined in section 3.5, which is a method that applies a log-
likelihood function related to the distribution of censored observations to find the parame-
ters of the uncensored distributions. The likelihood functions for the observed data of the
model presented in this section are given by

L(r|λm) =

T∑
t=1

logϕc(rt|λm), (4.19)

where r denotes the set {r1, r2, ...rt, rt + 1, ...rT}, ϕc is the vector of the PMFs of
the censored observations which depend on the censored observations denoted by rt =
{r1,t, r2,t} and the mean demand vector λm.

Once the censored distribution is established, the estimation of the set of parameters
λm can be done by finding the set of parameter λm which maximizes the likelihoods
from equation (4.19). To maximize these likelihoods, the log-likelihood functions shall
be differentiated with regards to λm, set to zero, and solved for λm. Therefore when the
maximum exists, the maximum likelihood estimate is given by

λ̂m = arg maxλ
T∑
t=1

logϕc(rt|λm), (4.20)
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where λm = {λa, λb}.
Hereby, the demands da,t and db,t are censored by x1,t and x2,t, and the censored

observations are represented by the realized sales r1,t and r2,t respectively. In order to fa-
cilitate the formulation and understanding of the problem, the observed censored demands
are divided over four events that are classified with regard to how the demand is censored
by the inventory quantities. These events follow the conditions displayed in equations
(4.14) and (4.15). For each event, one censored distribution for product a, ϕca, and one
censored distribution for product b, ϕcb, is given. Both of them constitute the set ϕc which
is then equal to {ϕca, ϕcb} as outlined in equation (4.19). The events, its conditions and
the respective censored distributions are presented and explained below.

Event AB - Fully censored demand:
The condition which characterizes this event is da,t + db,t ≥ x1,t + x2,t. It means that
in this event the sum of the demands are equal or higher than the sum of the inventory
quantities and both demands are censored at a specific period t. Thence, the realized sales
for the oldest and newest items are respectively equal to the quantity in stock of the oldest
and newest items, r1,t = x1,t and r2,t = x2,t. The only valuable information in terms of
probability is that the probability of both censored demands (or realized sales) to achieve
this specific state has the same probability as for the sum of the demands being equal to the
sum of order quantities. Therefore, both the censored distribution for the censored demand
of the oldest items, ϕca, and the censored distribution of the demand for the newest items,
ϕcb, are the cumulative distribution function for P (da,t + db,t ≥ x1,t + x2,t) which are
given by

ϕca(r1,t, x1,t, x2,t, λa, λb) = 1− Φp(x1,t + x2,t|λa + λb) (4.21)

ϕcb(r2,t, x1,t, x2,t|λa, λb) = 1− Φp(x1,t + x2,t|λa + λb). (4.22)

Event ĀB - Partially censored demand with contamination from A to B:
The conditions which characterize this event are da,t ≥ x1,t and da,t + db,t < x1,t + x2,t.
It means that in this event the demand for the oldest items is equal or higher than the
quantity of the oldest items in stock and the sum of both demands is lower than the total
quantity of all items in stock. That also means that the demand for the newest items is
lower than the quantity of the newest items in stock which shall also be sustained for this
event to happen, but this condition is implicit in the condition established for the sum of
demands and for the demand of the oldest items. Therefore for a specific period t, the
demand for product a is censored and the demand from product b is partially censored
since it has contamination from the excess of demand from product a (excess of da,t in
relation to x1,t). The realized sales for the oldest items is equal to the quantity in stock
of the oldest items and the realized sales for the newest items is less than the quantity in
stock of the newest items, r1,t = x1,t and r2,t < x2,t.

The demand for the product a is again fully censored and its distribution also consists
of a cumulative distribution. In this case, the censored distribution of product a must follow
the two conditions established and the probability of r1,t being equal to x1,t is therefore
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equals to P (da,t ≥ x1,t ∩ da,t + db,t < x1,t + x2,t). On the other hand, the demand of
product b is partially censored i.e. a portion of its value corresponds to the total demand of
product b and the rest corresponds to the excess of demand that was not fulfilled by x1,t.
In this case, the censored distribution of product b is equal to P (da,t ≥ x1,t∩da,t+db,t <
x1,t + x2,t ∩ da,t + db,t < x1,t + r2,t). The censored demand distributions are given by

ϕca(r1,t, x1,t, x2,t, λa, λb) =

x1,t+x2,t−1∑
i=x1,t

x1,t+x2,t−i−1∑
j=0

ω(i, j) (4.23)

ϕcb(r2,t, x1,t, x2,t|λa, λb) =

x1,t+x2,t−1∑
i=x1,t

x1,t+x2,t−i−1∑
j=0

κb(i, j)ω(i, j) (4.24)

where κa(i, j) = δ(i + j − r1,t − x2,t), κb(i, j) = δ(i + j − r2,t − x1,t), ω(i, j) =
ϕp(i|λa)ϕb(j|λb) and δ(·) is the Kronecker delta.

Event AB̄ - Partially censored demand with contamination from B to A:
This event is symmetric to the event AB̄. The conditions which characterize it are db,t ≥
x2,t and da,t + db,t < x1,t + x2,t. It means that in this event the demand for the newest
items is equal or higher than the quantity of the newest items in stock and the sum of
both demands is lower than the total quantity of all items in stock. That also means that
the demand for the oldest items is lower than the quantity of the oldest items in stock
which shall also be sustained for this event to happen, but this condition is implicit in
the condition established for the sum of demands and for the demand of the oldest items.
Therefore for a specific period t, the demand for product b is censored and the demand
from product a is partially censored since it has contamination from the excess of demand
from product b (excess of db,t in relation to x2,t). The realized sales for the oldest items
is less than the quantity in stock of the oldest items and the realized sales for the newest
items is equal to the quantity in stock of the newest items, r1,t < x1,t and r2,t = x2,t.

The demand for the product b is fully censored and its distribution also consists of a
cumulative distribution. In this case, the censored distribution of product b must follow
the two conditions established and the probability of r2,t being equal to x2,t is therefore
equals to P (db,t ≥ x2,t ∩ da,t + db,t < x1,t + x2,t). On the other hand, the demand of
product a is partially censored i.e. a portion of its value corresponds to the total demand
of product a and the rest corresponds to the excess of demand that was not fulfilled by
x2,t. The censored distribution of product a is equal to P (db,t ≥ x2,t ∩ da,t + db,t <
x1,t + x2,t ∩ da,t + db,t < r1,t + x2,t). The censored demand distributions are given by

ϕca(r1,t, x1,t, x2,t, λa, λb) =

x1,t+x2,t−1∑
j=x2,t

x1,t+x2,t−j−1∑
i=0

κa(i, j)ω(i, j) (4.25)

ϕcb(r2,t, x1,t, x2,t|λa, λb) =

x1,t+x2,t−1∑
j=x2,t

x1,t+x2,t−j−1∑
i=0

ω(i, j). (4.26)
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Event AB - Fully uncensored demand:
The conditions which characterize this event are da,t < x1,t and da,t < x2,t. It means that
in this event the demand for the oldest items is lower than the quantity of the oldest items
in stock and that the demand for the newest items is less than the quantity of the newest
items in stock and both demands are fully uncensored at a specific period t. Thence, the
realized sales for the oldest and newest items are respectively less than the quantity of
the oldest and newest items. With both demands lower than their respective inventory
quantities, both censored observations, the realized sales, for the oldest and newest items
are respectively equal to the demands for the oldest and newest items, r1,t = da,t and
r2,t = db,t. The censored distribution for product a in this case is the probability of the
demand for product a being equal to the realized sales of product a at the same time that
the demand for product b is less than its quantity in stock, P (da,t = r1,t ∩ db,t < x2,t).
Analogously, the censored distribution for product b in this case is the probability of the
demand for product b being equal to the realized sales of product b at the same time that
the demand for product a is less than its quantity in stock, P (db,t = r2,t ∩ da,t < x1,t).
The censored demand distributions are given by

ϕca(r1,t, x1,t, x2,t, λa, λb) = ϕp(r1,t|λa)Φp(x2,t − 1|λb) (4.27)

ϕcb(r2,t, x1,t, x2,t|λa, λb) = Φp(x1,t − 1|λa)ϕp(r2,t|λb) (4.28)

The distribution of each censored demand for each product is given as the union of the
probability distributions of their respective censored demand for each event as outlined
below:

ϕca(r1,t, x1,t, x2,t, λa, λb) =

1− Φ(x1,t + x2,t|λa + λb) r1,t = x1,t and r2,t = x2,t

x1,t+x2,t−1∑
i=x1,t

x1,t+x2,t−i−1∑
j=0

ε(i, j) r1,t = x1,t and r2,t < x2,t

x1,t+x2,t−1∑
j=x2,t

x1,t+x2,t−j−1∑
i=0

κa(i, j)ε(i, j) r1,t < x1,t and r2,t = x2,t

ϕp(r1,t|λa)Φp(x2,t − 1|λb) r1,t < x1,t and r2,t < x2,t

(4.29)

and
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ϕcb(r2,t, x1,t, x2,t|λa, λb) =

1− Φ(x1,t + x2,t|λa + λb) r1,t = x1,t and r2,t = x2,t

x1,t+x2,t−1∑
i=x1,t

x1,t+x2,t−i−1∑
j=0

κb(i, j)ε(i, j) r1,t = x1,t and r2,t < x2,t

x1,t+x2,t−1∑
j=x2,t

x1,t+x2,t−j−1∑
i=0

ε(i, j) r1,t < x1,t and r2,t = x2,t

ϕp(r1,t|λa)Φp(x2,t − 1|λb) r1,t < x1,t and r2,t < x2,t

(4.30)

With the censored distributions available, the estimation of λa and λb can be per-
formed by finding the set of parameters which maximizes the log-likelihood functions of
l(r1,x1,x2|λ̂a, λ̂b) and l(r2,x1,x2|λ̂a, λ̂b) as outlined in section 3.5. For the current
setting, these likelihood functions are respectively given by

l(r1,x1,x2|λ̂a, λ̂b) =

T∑
t=1

logϕca(r1,t, x1,t, x2,t|λ̂a, λ̂b) (4.31)

and

l(r2,x1,x2|λ̂a, λ̂b) =

T∑
t=1

logϕcb(r2,t, x1,t, x2,t|λ̂a, λ̂b), (4.32)

where r1 = (r1,1, r1,2, ..., r1,T ), r2 = (r2,1, r2,2, ..., rr,T ), x1 = (x1,1, x1,2, ..., x1,T )
and x2 = (x2,1, x2,2, ..., x2,T ) are respectively the vectors for the observed demand a,
observed demand b, inventory quantity for the product with remaining shelf-life equals
to one and inventory quantity for the product with remaining shelf-life equals to two. In
addition, λ̂a and λ̂b are the maximum likelihood estimators for the mean demands a and
b. These maximum likelihood estimators are then given by the values which satisfy the
multivariate system formed by equations 4.31 and 4.32.

Due to the presence of some peculiarities in both censored distributions such as the
Gamma functions for example, but mainly because the system formed by equations (4.31)
and (4.32) have Markovian property i.e. each observation from vectors x1 and x1 depend
on the state of the previous observation, it shows necessary the use of numerical methods
to find the solution of this system. Hereby, the maximum likelihood estimators are pursued
by using the expectation-maximization algorithm (EM-Algorithm) which was outlined in
section 3.6.

To estimate the λa and λb through the EM-algorithm, the following four steps were
applied:

1. Initializing - All non-censored observations are used to estimate λa and λb by calcu-
lating MLE of non-censored data points available for Poisson which is basically the
average of non-censored observations of the censored demand. The non-censored
observations are all set of observable data points of the censored demand {r1,t, r2,t}
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correspondent to the event AB. The first estimated mean demands are then given
by λ̂a = {r̄1,t|r1,t ∈ ΘAB} and λ̂b = {r̄2,t|r2,t ∈ ΘAB} where ΘAB is the state
space of the set {r1,t, r2,t} correspondent to the event AB.

2. E-Step - The conditional expectations of non-censored demand given each event
where the demand is censored under the respective lambda estimates, λ̂a and λ̂b, are
calculated. Among the events that depict how the demand is censored by the inven-
tory quantities, there are three in which demand is censored differently (events AB,
ĀB and AB̄). New conditional expectations of non-censored demand for both de-
mands, da,t and db,t, are calculated for each set of censored observation {r1,t, r2,t}
correspondent to these events.

3. M-Step - Each set of censored observation {r1,t, r2,t} correspondent to their respec-
tive events are replaced by their respective conditional expectations i.e. following
the conditions that characterize each event. The new λ̂a and λ̂b are obtained by
using the MLE for Poisson without censoring on the whole data-set (non-censored
values, combined with conditional expectations).

4. Convergence evaluation - Steps 2 and 3 are iteratively repeated until satisfactory
convergence is achieved.

Figure 4.1 displays a basic schematics showing how the EM-algorithm was imple-
mented. At first, a fixed number of inventory simulations, I , were run and their output
were stored in different data-sets, one for each simulation. As it was already indicated
throughout this master thesis, the main data-sets that are used from the simulation on the
studied estimations are the inventory quantity for the items for each shelf-life available in
stock per period, x = {{x1,1, x2,1}, {x1,2, x2,2}, ..., {x1,T , x2,T }}; which of these items
that were sold per period, r = {{r1,1, r2,1}, {r1,2, r2,2}, ..., {r1,T , r2,T }}; and the first es-
timate of λa and λb. Each of these data-sets, of each inventory simulation, are then applied
to the EM-Algorithm.

For each period t of each inventory simulation, the censored observations and the
conditions which censure these observations have specific values. Therefore, the observed
censored data for each period is evaluated whether it constitutes censored demand or not.
If it constitutes censored demand, the E-step to calculate the expected values for the non-
censored demand given the respective conditions for the censored data according to each
event among the events AB, ĀB and AB̄ is run. Thereafter, part of the M-step is run
replacing the censored observation for the respective period with the respective expected
values calculated in the E-step. Once all periods have passed through this process, the
MLEs for the λa and λb are calculated considering the complete set of censored data for
each shelf-life, now replaced by the expected values, is not censored anymore. Since
the non-censored data in the current case (the demands a and b) are Poisson distributed,
the MLE for The estimations is the average of the considered non-censored data. The
estimates for λa and λb are then used again in a new loop for the EM-Algorithm until
satisfactory convergence is reached.

The EM-Algorithm implemented achieved satisfactory converge when the differences
between both estimates of one loop and the respective estimations of the previous loop was
equal or less than 0.005, or if the EM-algorithm had run for 100 loops. The final estimates
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Figure 4.1: Flow chart for the implementation of EM-Algorithm.

are then given by the expected value of the estimate over all inventory simulations run. It
means that the final estimation of λa is the average of all λ̂a over all simulations and the
final estimation of λb is the average of all λ̂b over all simulations.

As indicated before; the conditions for each event depend on both demands and both
inventory states correspondent to the items categorized as a and b, the oldest and newest
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respectively. Therefore, the conditional expectations for da,t and db,t in each event are cal-
culated using conditional joint probability distribution for both da,t and db,t correspondent
to each event as presented below.

Event AB:
In event AB, the conditional expectations of non-censored demand are E(da,t|da,t +

db,t ≥ x1,t +x2,t) and E(db,t|da,t + db,t ≥ x1,t +x2,t). The conditional joint probability
distribution in this case can be analytically calculated, since da,t and db,t are two indepen-
dent variables and by using the Bayers’ theorem P (A|B) = P (A)P (B|A)

P (B) , as follows:

ϕAB(d1,t, d2,t) = P (d1,t, d2,t|da,t + db,t ≥ x1,t + x2,t) =

P (da,t|da,t + db,t ≥ x1,t + x2,t)P (db,t|da,t + db,t ≥ x1,t + x2,t) =

P (db,t ≥ x1,t + x2,t − da,t)P (da,t)

da,t + db,t ≥ x1,t + x2,t

P (da,t ≥ x1,t + x2,t − db,t)P (db,t)

P (da,t + db,t ≥ x1,t + x2,t)
=

P (db,t ≥ x1,t + x2,t − da,t)P (da,t)P (da,t ≥ x1,t + x2,t − db,t)P (db,t)

[P (da,t + db,t ≥ x1,t + x2,t)]2
=

Ψ(da,t, λb)ϕP (da,t|λa)Ψ(db,t, λa)ϕP (db,t|λb)
Ψ(0, λa + λb)2

(4.33)

where Ψ(z, α) = 1− ΦP (x1,t + x2,t − z − 1|α).
Hence, the conditional expectations for the non-censored demands from the data-set

which falls into the conditions from the event AB are given by

E(da,t|da,t + db,t ≥ x1,t + x2,t) =

∞∑
da,t=0

∞∑
db,t=0

[ϕAB(da,t, db,t)da,t] (4.34)

and

E(db,t|da,t + db,t ≥ x1,t + x2,t) =

∞∑
da,t=0

∞∑
db,t=0

[ϕAB(da,t, db,t)db,t] . (4.35)

Event ĀB:
In event ĀB the conditional expectations of the non-censored demands are given by

E(da,t|da,t ≥ x1,t, db,t < x2,t, da,t + db,t < x1,t + x2,t) and E(db,t|da,t ≥ x1,t, db,t <
x2,t, da,t + db,t < x1,t + x2,t). The conditional joint probability distribution in this case
is calculated as follows:
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ϕĀB(d1,t, d2,t) =

P (da,t, db,t|da,t ≥ x1,t, db,t < x2,t, da,t + db,t < x1,t + x2,t) =

E(da,t, db,t)∑x1,t+x2,t−1
i=x1,t

∑x1,t+x2,t−i−1
j=0 ε(i, j)

.
(4.36)

Hence, the conditional expectations for the non-censored demands from the data-set
which falls into the conditions from the event ĀB are given by

E(da,t|da,t ≥ x1,t, db,t < x2,t, da,t + db,t < x1,t + x2,t) =

x1,t+x2,t−1∑
i=x1,t

x1,t+x2,t−i−1∑
j=0

[ϕĀB(da,t, db,t)da,t]
(4.37)

and

E(db,t|da,t ≥ x1,t, db,t < x2,t, da,t + db,t < x1,t + x2,t) =

x1,t+x2,t−1∑
i=x1,t

x1,t+x2,t−i−1∑
j=0

[ϕĀB(da,t, db,t)db,t] .
(4.38)

Event AB̄:
Symmetrically to event ĀB in event AB̄, the conditional expectations of the non-

censored demands are given by E(da,t|da,t < x1,t, db,t ≥ x2,t, da,t + db,t < x1,t + x2,t)
and E(db,t|da,t < x1,t, db,t ≥ x2,t, da,t + db,t < x1,t + x2,t). The conditional joint
probability distribution in this case is calculated as follows:

ϕAB̄(d1,t, d2,t) =

P (da,t, db,t|da,t < x1,t, db,t ≥ x2,t, da,t + db,t < x1,t + x2,t) =

E(da,t, db,t)∑x1,t+x2,t−1
j=x2,t

∑x1,t+x2,t−j−1
i=0 ε(i, j)

.
(4.39)

Finally, the conditional expectations for the non-censored demands from the data-set
which falls into the conditions from the event ĀB are given by

E(da,t|da,t < x1,t, db,t ≥ x2,t, da,t + db,t < x1,t + x2,t) =

x1,t+x2,t−1∑
j=x2,t

x1,t+x2,t−j−1∑
i=0

[ϕAB̄(da,t, db,t)da,t]
(4.40)

and
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E(db,t|da,t < x1,t, db,t ≥ x2,t, da,t + db,t < x1,t + x2,t) =

x1,t+x2,t−1∑
j=x2,t

x1,t+x2,t−j−1∑
i=0

[ϕAB̄(da,t, db,t)db,t] .
(4.41)

4.3 Design of experiment
In order to answer the research question number three and evaluate the impact of the model
presented hereby a full factorized design of experiment (DOE) is applied. The DOE is
divided in three phases as presented below:

1. Inventory is simulated following a standard stock level dependent heuristic replen-
ishment policy to generate the data for demand estimation. Two main cases are
simulated:

• Demand following a Poisson distribution with determined mean demand λ,
and a probability p of customers picking up the oldest item which leads to the
two different demands, λa, demand for the oldest items, and λb,demand for
the newest items.

• Inventory following a Poisson distribution with determined mean demand λ
and demand distribution over remaining-shelf life is proportional to the quan-
tity of items correspondent to each remaining-shelf life available in stock as
implemented in Vaughan (1994) and Ferguson and Ketzenberg (2006).

2. Demand is estimated for each inventory simulation from both cases described in the
first phase.

3. The estimated demand is used in new inventory simulations with a stock-age de-
pendent replenishment policy to evaluate the estimations considering the following
depletion policies:

• Full LIFO

• Full FIFO

• p = 50 %

• Estimated parameters for demand a and demand b in the second phase.

• Proportional depletion policy from Vaughan (1994) and Ferguson and Ketzen-
berg (2006).

In addition, inventory simulations using the same parameters, but instead of using
any estimated value for the demand in a stock age dependent replenishment policy,
it uses the BSP with the same base stock as the one adopted in the first phase run.

From the base literature, only the proportional depletion policy from Vaughan (1994)
and Ferguson and Ketzenberg (2006). Due to schedule constraints for the completion
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of the master thesis, the other two approaches from base literature, considering uniform
distribution and hypothetical probability from Pegels and Jelmert (1970), were not applied.
The proportional depletion policy was considered the most relevant in terms of efficiency
and realistic traits. However, it is acknowledged in this thesis that the use of two policies
in further research may improve the scientific quality of the research and the reliability of
the results.

All inventory models and estimation algorithms adopted to execute the design of ex-
periments were implemented in Mathematica 11.1.1.0. The results were analyzed with the
support of Microsoft Excel 2016.

4.3.1 Observed data generation

At the first phase, the observed data that are used for the estimation of the demand and cus-
tomer preferences parameters are generated from the standard inventory model described
in section 4.1 applied jointly with a standard base stock replenishment policy, the BSP,
with a base stock. In this policy the order quantity, qt, depends on the total quantity of
items available in stock, Xt =

∑M
i=1 xi, as follows:

qt = (S −Xt)
+ (4.42)

where S is the order up-to level or the base stock. This is the target level of inventory. In
this replenishment policy, items are ordered at each reviewing period to fulfill the gap be-
tween current inventory and the base stock. Cohen (1976) analytically studied this policy
for a two-period shelf-life with FIFO depletion policy. The optimal value of S requires
numerical calculations to be acquired. Since the generation of the observed data is per-
formed for the sake of estimation of some parameters, an arbitrary value of S based on the
newsvendor model is then used in the simulations adopted for the estimation of targeted
parameters. The newsvendor model identifies a profit-maximizing order quantity consid-
ering that the probability of ending the day with positive stock should equal the profit
margin (Churchman et al., 1957). Since the items purchased arrive in stock with a remain-
ing shelf-life of 2 periods in the model for data generation differing from the newsvendor
model, the calculation of S is adapted as follows:

Pr(dt + dt+1 ≤ S∗) = 2mu → S∗ ≈ Φ−1
P (2um|2λ) (4.43)

where dt and dt+1 represent the demand for two consecutive periods and are two inde-
pendent variables following a Poisson distribution with the same total mean demand λ. In
addition, mu, which is equal to cs−cu−ch

cs
, is the unit sales margin accounted from the unit

sales price. In equation (4.43), the targeted S∗ is the inventory quantity which results in
the probability of ending the next day with positive stock approximately equals to twice
the profit margin.

The parameters used in the inventory simulation from the first phase are presented
in table 4.1. At the second phase for each set of simulations considering the factorized
parameters presented in the table, the demand of the oldest items and the demand of the
newest items are estimated by applying the EM-Algorithm as outlined in section 3.6.
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Table 4.1: Parameters used in the data generation for the simulations from the first phase of the
DOE.

Parameter Value Unit

Fixed parameters
Maximum shelf-life (M ) 2 days
Ordering frequency (τ) 1 days
Delivery time (L) 1 days
Inventory horizon (T ) 500 days
Number of simulations (I) 20 Simulations

Factorized parameters
Mean demand (λ) {3, 20, 50} units
FIFO probability (p) {0.3, 0.7, P rop∗} units

*Demand distribution over remaining-shelf life is proportional to the quantity of items correspondent is proportional to
the quantity of items correspondent to each remaining-shelf life available in stock.

4.3.2 Convergence test for EM-Algorithm

The goal of this convergence test is to evaluate the behavior of the model and to heuristi-
cally stipulate the most recommended parameters from the EM-Algorithm that should be
used in the second phase. Hence, a convergence and estimation accuracy evaluation was
performed for the implementation of the EM-Algorithm to estimate λa and λb. A detailed
evaluation of the properties of the model developed hereby was not performed since this
goes beyond the scope of this master thesis.

The consistency of the estimations provided by the EM-Algorithm depends on basi-
cally four key factors as explained in sections 3.5 and 3.6: How much of the observed
data-set is censored, the number of observations which are analyzed, the initializing esti-
mated parameters and the number of loops in which the EM-Algorithm is run.

The first one is especially important because the errors from the estimates derive from
the expected values that substitute the censored data among the observations i.e. the more
censored data among the observations, the less accurate the results from the EM-Algorithm
are. The second one is related to the MLE method. The MLE consistency depends on the
number of observations used in the estimation. Since the EM-Algorithm converges to the
MLE estimator, the number of samples has to be high enough to provide valid results
i.e. the higher the number observations, the closest to the actual value the maximum
likelihood estimator becomes. The importance of the initializing estimator is related to the
shape of the curve of the likelihood function. If the curve has more than one maximum,
the estimator converges to the one which is closer to the initializing estimator this may not
be the global maximum of the likelihood function.

This convergence evaluation was performed through a design of experiment which
consisted in varying some key parameters. The inventory model used in this convergence
analysis followed the description from section 4.1 and the replenishment policy of the in-
ventory simulations used was the base stock policy explained in section 4.3.1. The main
parameters of the inventory model used in the experiments convergence analysis are dis-
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played at table 4.2

Table 4.2: Parameters used in the inventory model for the convergence test.

Parameter Value Unit

Fixed parameters
Mean demand (λ) 20 units
FIFO probability (p) 0.7 ——
Maximum shelf-life (M ) 2 days
Ordering frequency (τ) 1 days
Delivery time (L) 1 days

Factorized parameters
Base stock (S) {35, 40, S∗ = 45, 50, 60, 70} units
Inventory Horizon (T ) {50, 100, 500} units

The two parameter from the inventory model that varied in the experiments from the
convergence testing was the base stock S and the inventory horizon T that denoted the
highest period which the inventory simulation reached. The base stock was elected to be
factorized because it is related to the proportion of the data-set which denotes the demand
that was censored. The less the quantity of the base stock, the less expected available
stock the inventory simulations are expected to generate. This should lead to more cen-
sored demand making the estimates less accurate. The inventory horizon was elected to
be factorized because this value is related to the quantity of observations. Each single
data-set comprised of the realized sales for each period are the observable data-points that
are used in the EM-Algorithm to the estimation of λa and λb. Therefore, the more periods
are used in the inventory simulation, the more observable data-points are available for the
estimation improving the accuracy of the estimations. In addition, one parameter to be set
directly at the EM-Algorithm was elected to vary in the convergence test experiments. The
number of simulations performed in each experiment, I .

The algorithm implemented in the experiments followed the flowchart presented in
figure 4.1 and the results are presented in table 4.3. Due to limitations on time, a full fac-
torized design of experiment was not performed. The EM-Algorithm for the experiments
from the convergence analysis took between approximately 7 and 78 hours of running
time. Therefore, eight fully registered experiments were considered enough to reach a
conclusion about the EM-Algorithm behavior for the current model and to heuristically
estimate the satisfactory parameters of the EM-Algorithm that should be applied to the
analysis.

The first column of the table presents the value of the three factorized parameters re-
spective for each experiment in a series. The series correspond to the variables S-T -I
which are respectively the base stock, the inventory horizon and the number of simula-
tions. Then in the second column, the table displays the estimated value of λ̂a in units
followed by the percentage error in relation to the original value of demand a, λa = 14
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units, in the third column. The fourth and fifth columns, contain the same results as the
second and third respectively but for the demand b, λb = 6. The sixth, seventh and eighth
columns contain respectively the quantity of censored data-sets, the quantity of partially
censored data-sets and fully uncensored data-sets. These terms are related to the events
AB, ĀB and AB̄ as outlined in section 4.2. These values depict the quantity of data-
sets correspondent to each event normalized by the total number of periods and the total
number of simulation. Therefore, they can be considered to be the proportion of quantity
of data-sets correspondent to each event over the total number EM-Iterations or periods
within all inventory simulation of each experiment. The last three columns are respec-
tively the expected lost sales of the oldest items (item a), expected lost sales of the newest
items (item b) and the expected waste over all periods and over all simulations in units.

Table 4.3: Results of convergence analysis.

S-T-I λ̂a PE λ̂a λ̂b PE λ̂b Cen. Part. Cens. Uncen. LS a LS b Waste

70-500-20 13.99 0.15 6.01 0.06 0.00 0.28 0.72 0.01 0.04 5.72
60-500-20 13.99 0.08 5.98 0.19 0.01 0.48 0.51 0.01 0.04 2.78
50-500-20 13.98 0.25 6.03 0.16 0.08 0.74 0.19 0.01 0.19 0.74
45-500-20 14.13 0.93 5.94 1.00 0.21 0.72 0.07 0.01 0.62 0.24
45-50-100 14.01 0.07 5.89 1.83 0.22 0.71 0.07 0.13 0.88 0.35
40-500-20 13.92 0.57 6.07 1.17 0.42 0.56 0.02 0.02 1.52 0.05
40-50-100 13.89 0.79 6.14 2.33 0.43 0.55 0.02 0.15 1.76 0.10
35-100-100 14.31 2.21 5.76 4.00 0.67 0.32 0.00 0.10 3.17 0.01

At first, two experiments were run considering the base stock equal to 45 units. In one
of them 20 inventory simulations were run over an inventory horizon of 500 periods and
in the other 100 inventory simulations were run over an inventory horizon of 50 periods.
Then, two experiments were run considering base stock equals to 40 units. In one of them
20 inventory simulations were also run over an inventory horizon of 500 periods and the
other were run with 100 inventory simulations were run over an inventory horizon of 50
periods in the other one. Thereafter, 100 inventory simulations were run over an inventory
horizon of 100 periods an experiment considering base stock equals to 35 units. At this
point the experiment took too long time to run, the results were considered satisfactory
enough for a heuristic evaluation and as an outcome of the evaluation the values of T and
I considered the most appropriate for the data generation were elected. At last, three extra
experiments with higher base stock than the S∗ were run in order to evaluate effect of
increasing the base stock and potentially increasing the uncensored data over the observa-
tions. The experiments adopted I = 20 inventory simulations and T = 500 periods. The
base stock values evaluated in these three last experiments were 50, 60 and 70 units.

With regards to the running time, two factors are expected to be pivotal. How many
times the EM-Algorithm is iterated and what are the operations run for each EM-iteration.
The EM-algorithm is iterated for each set of observations respective to each period in our
current problem. These iterations are called hereby EM-iterations. These EM-iterations
over all periods simulated are run for all EM-Loops necessary to achieve the convergence
criteria elected, denoted by the variable l, and this is done for all simulations. Therefore,
the total number of EM-iterations run over one single experiment is equal to T × l×I . The
number of necessary loops to achieve the convergence criteria depends on the outcome
of the simulations. The necessary EM-loops and its influence in the running time and
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consistency of results are also a consequence of available data generated by the inventory
simulations. Thence, the controllable parameters of the algorithm presented hereby that
has influence in the running time and possibly in the consistency of the outcomes are T
and I .

In addition, each EM-Iteration can correspond to one of four different operations as
illustrated by figure 4.1. The operations depend on the status of the censored demand
and the quantity of stock available for each period. As it was already outlined in the case
AB, when the censored demand for the item with remaining shelf-life equals to one and
two are less than the quantity of items in stock with the same remaining shelf-life, one
and two, no operation is run in the EM-Algorithm i.e. no operation is run in the E-step
and M-step. Therefore, the AB is expected to be the fastest case. The E-step and M-
step are applied only when the data-set for the observed data rt is censored. Moreover,
the calculation for the conditional expectation of non-censored demand for censored data
from event AB takes longer time than the same calculations for censored data from event
ĀB and AB̄. This happens because the conditional expectations for elements from ĀB
and AB̄ result from a double summation with limited indexes, both up to x1,t +xx2,t− 1,
and the conditional expectations for elements from AB result from a double summation
with unlimited indexes, both up to∞. Consequently, the AB is expected to be the slowest
and the cases AB̄ and ĀB are expected to be equally the second fastest cases.

The running time for the experiments that had T × I equals to 1000 EM-Iterations
were indeed higher than the running time for the experiments with T × I equal to 500
EM-Iterations. In the experiments which used S = 45 units, the one with 1000 EM-
Iterations took about 52 hours to be completed and the one with 500 EM-iterations took
approximately 25 hours of running time. In the experiments with S = 40 units, the one
with 1000 EM-Iterations took approximately 64 hours to run and the one with 500 EM-
Iterations took about 29 hours of running time. The last one with S = 35 units and 1000
EM-Iterations almost reached 78 hours, over than three days, of running time.

These numbers also indicates that indeed the running speed for the EM-Algorithm is
related to quantity of censored, partially censored and uncensored data-sets among the ob-
served data-sets. The quantity of fully censored data for the experiments with S = 45
units was about 21 % of the total data-sets for each experiment. The quantity of partially
censored data-sets was about 72 % and the quantity for the uncensored data-sets was about
7 %. With an increase of about 100 %, the fully censored data-sets for the experiments
with S = 40 units was equals to approximately 42 %, that led to a decrease on the quan-
tity of partially censored and uncensored data-sets, about 56 and 2 % respectively. The
experiment with S = 35 units had an increase of 300 % on the quantity of fully censored
data-sets in relation to the experiments with S = 45 units. It had a total of about 67 %
of censored data-sets. The quantity of partially censored and uncensored data-sets were
approximately 32 % and 0 % in this experiment.

The three last experiments simulated with base stock equals to 50, 60 and 70 units
resulted in between 7 and 12 hours of running time. Much less than the other experiments.
The proportion of non-censored demand were significantly higher as well. In the experi-
ment with S = 50 units, the non-censored observations corresponded to 19 % of the total
of observations. In the experiment with S = 60 units, the non-censored observations cor-
responded to 51 % of the total of observations. In the experiment with S = 70 units, the
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non-censored observations corresponded to 72 % of total observations.

Figure 4.2: Convergence evaluation for estimation of mean demand a.

Figure 4.3: Convergence evaluation for estimation of mean demand b.
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As expected these results show that the more censored data-sets over the periods of
the inventory simulations the longer the EM-Algorithm takes to run. An increase from
about 21 % of fully censored data-sets to approximately 42 % between the experiments
with S = 45 and S = 40 units led to an increase of approximately 20 % on the running
time. Then the increase to 67 % of the fully censored data-sets on the experiment with
S = 35 units led to an increase of approximately 50 % on the running time in relation to
the running time of the experiment with S = 45 hours. The experiments with base stock
higher than 45 units with significantly higher number of non-censored observations ran
much faster than the others.

With regards to the consistency of the estimations, all simulations provided satisfactory
results with a small exception of the experiment with S = 35 units. The percentage error
for λa was less than 1 % for all simulations but the one with S = 35 units which had a
percentage error for λa equals to 2.21 % considered substantially high. The percentage
error for λb presented values between 1 and 2.5 % in all experiments with the exception of
the experiment with S = 35 units which had a percentage error of 4 %. Considering that
the experiment with S = 35 units had a substantial high percentage error in relation to the
others experiments and that the running time was also much higher, it was decided that
any extra simulation with S = 35 units or less were unnecessary regarding the objective
of this convergence analysis. In addition, this led to an indication that indeed the more
censored data-set the inventory simulations present the poorer results for the estimations
the EM-Algorithm provides.

A more carefully comparison with regards to the base stock for the experiments with
S = 40 and S = 45 units, led to the same conclusion. Here, it was more confusing.
Because the experiments with S = 45 units and 1000 EM-iterations presented a poorer
result for λ̂a, 0.93 % of percentage error, than both experiments with S = 40 units, 0.57
% and 0.79 %, and the opposite happened in relation to the experiment with S = 45
units and 500 EM-iterations and the experiments with S = 40 units. The experiment with
S = 45 units and 500 EM-iterations presented better result for λ̂a, 0.07 % of percentage
error, than the experiments with S = 40 units. In contrast, the experiment with S = 45
units and 1000 EM-iterations presented better result for λ̂b than both the experiments with
S = 40 units and the experiment with S = 45 units and 500 EM-iterations. This may
have happened due to the randomness present in the experiments and due to the number
of simulations run. These results derived from expectations and although they converge to
the expected values which correspond to demand a and demand b, there are still variations
present over the simulations. However, the results of both experiments with S = 45 units
combined provided better results for both λ̂a λ̂b than the results of both experiments with
S = 40 units. The expected percentage error combined was lower for both λ̂a λ̂b and this
gives a more solid indication that indeed by reducing S, the algorithm results in poorer
convergence.

The impact of the randomness mentioned above can be clearly seen in figures 4.2 and
4.3. These figures show the expected estimations of λa and λb over the simulations, or
number of simulations, with 5 lines of reference: The center line for the actual value of the
mean demand, two lines for the 1 % boundary (upper and lower) in relation to the actual
mean demand and two lines for the 5 % boundary in relation to the actual mean demand.
For example in figure 4.2, the value of λ̂a for the experiment with S = 45 units and 500
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EM-iterations is the closest to the center line and it has a percentage error of 0.07 % as
shown in table 4.3. Considering 100 simulations, this experiment gives the most accurate
result for λ̂a. However considering the values of λ̂a correspondent to 73 simulations, the
experiment with S = 40 units and 500 EM-iterations presented the lowest percent error.
This could also happen if more simulations were used for each simulation changing the
perception that one may have analyzing the results presented in table 4.3. The results are
too close from each other and the randomness may impact the perceptions for the results of
each isolated experiment. However by taking the expected value of λ̂a and λ̂b considering
all experiments when S = 45 units and S = 40 units, the results confirm the conjecture
that reducing S the algorithm results in poorer convergence.

Figures 4.2 and 4.3 also show the general behavior of the algorithm in relation to the
settings of the inventory horizon and the number of iteration considered. For higher T , the
outcomes of the EM-Algorithm is closer to the actual values of the mean demand a and
mean demand b in the cases where T is lower. Both figures 4.2 and 4.3 show that its respec-
tive estimated mean demand is closest to the actual values when only few first simulations
are considered in the experiments with T = 500. In addition, the curves of these exper-
iments vary much less over the simulations. The experiments with lower T needs more
simulations to reach more trustworthy values. This happens because the EM-Algorithm
generates the estimation of the expected values of the mean demands. Therefore if the
inventory horizon is short, the expected values are less accurate. This can be compensated
by running the EM-Algorithm to a higher number of simulations. This indicates that high
variances on the outcomes are not expected when instead of using long inventory horizon
and few simulations in the experiment, it is used short inventory horizon and high number
of simulations.

The results of the experiments with base stock higher than S∗, presented general more
consistent results than the one with S∗. All percentage errors in these cases were less than
0.25. However, the waste rate was significantly higher what makes them not feasible from
the perspective of a realistic retail context which aims at high profitability and low waste.

With regards to the initializing estimated parameters, a more detailed analysis of the
likelihood function and its shape is necessary for a more precise conclusion. But the choice
of calculating the expected value of mean demand considering the available observations
that were not censored, the realized sales, showed to be adequate.

Table 4.4: Elected parameters for the estimations of the experiments from phase 2 of the DOE.

Parameter Value Unit

Periods (t) 500 days
Number of simulations (I) 20 Simulations

As a conclusion, running the simulations used in the estimation of the parameters
with the replenishment policy outlined in section 4.3.1, with base stock equals to S∗,
was considered enough to provide adequate estimations. The expected percentage error
is expected to be less than 1 % in this case considering all experiments analyzed hereby.
Therefore due to the long running time, the simulations to generate the data for the analysis
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are run considering S correspondent to the base stock replenishment policy, t = 500
periods and I = 20 simulations as presented in table 4.4.

4.3.3 Estimations evaluation
The replenishment heuristic policy adopted in the third phase of the design of experiment
is the same as the one used in Montojos (2017), a stock-age dependent look-ahead sparse
sampling tree policy which uses online simulations at each reviewing period to estimate
the most profitable replenishment quantity considering a determined demand distribution.
This replenishment policy is applied in this thesis because it is well balanced considering
its computational efficiency over its near optimal performance. This replenishment policy
was based on the ones validated in Ferguson and Ketzenberg (2006). Their heuristics rep-
resented myopic policies modeled for an inventory problem which a retailer could place
an order each period and the lead-time was one day. The order decisions were based on
whether sufficient stock existed each period that would carry over and minimize expected
cost in the next period only. If sufficient stock existed, then the decision would be post-
poned to the next day.

These policies were validated by comparing their results with optimal results for vari-
ous scenarios. Although they were not designed considering the same context utilized in
the inventory model of this project, as for example addressing the fixed ordering costs, it
was assumed that this validation was sufficient for the purpose of this project. In addi-
tion, a convergence evaluation for the same heuristics evaluated hereby were performed in
Montojos (2017) which enabled its utilization without further convergence evaluations.

Figure 4.4: Overview of replenishment decision review in the look-ahead replenishment policy.

Another difference of the context in which the replenishment policies were used in
Ferguson and Ketzenberg (2006) is the fact that in this thesis look-ahead sparse sampling
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tree search policies were used adopting arbitrary delivery time and ordering frequencies.
The order decisions were based whether sufficient stock existed in each ordering period to
be carried over and maximize expected profit until the delivery for the next ordering period
(τ+L periods after the period which ordering decision had to be made). If sufficient stock
existed, the ordering would be postponed and a reevaluation would be performed in the
next ordering period.

Figure 4.4 outlines the reviewing period used in the replenishment decision of the
heuristic used in this project. The ordering periods are represented by the letterO followed
by its respective number inside the series of orders (O1 represents the first ordering period,
O2 the second ordering period and so forth). The delivery periods are represented by DL
also followed by its respective number inside the series of deliveries and linked to its
respective order (DL1 represents the delivery from orderO1, DL2 represents the delivery
for order O2 and so forth). Considering the figure, if the stock level at O1 is sufficient
to be carried over and maximize the profits until DL2, the decision is set to no ordering
at O1 and the next review happens at O2. Otherwise, the order is placed with a nt that
maximizes the profits until delivery period of next ordering period.

Let g(xt) denote the total estimated future profit associated with the inventory xt,
from period t until t+ τ +L, exclusive. The total estimated cost from period t+ τ +L is
excluded from g(xt) since the stock received at t+ τ +L is used to realize the sales and is
accounted in the profit calculation at this period. Thence, the recursion for the maximum
total profit of this heuristics is given by

g(xt) = maxqt≥0

{
π(xt, qt) +

xt∑
da,t=0

xt−da,t∑
db,t=0

g(ξ(xt, da,t+1, da,t+1, qt+1−L))ϕP (da,t+1|λa)ϕP (db,t+1|λb)

}
,

(4.44)

where in the right hand side the total expected profit that comprises the expected profit in
period t and the future expected profit is calculated. Both terms are predicated on ϕP (·)
and depend on the replenishment decision depicted by the qt among the other variables.

When the decision space for qt is a set of positive integer values, the state and decision
spaces are discrete and finite, and the cost is bounded; there is an optimal policy that does
not randomize (pp. 102-111, Puterman, 1994, cited by Ferguson and Ketzenberg, 2006).
However, the implementation of this optimal policy is impractical for many realistically
sized problems given that the size of the state space expands exponentially with the age
dependent vector of inventory (Nahmias, 1982; Ferguson and Ketzenberg, 2006). The
complexity of such optimal policy leads to high computational costs. It is why that a more
conceivable heuristic look-ahead replenishment policy is used hereby.

Still on the third phase, the data collection to answer the research question 3 was
performed through the application of a Monte Carlo simulation implemented. A basic
schematics of the algorithm flow chart is outlined in figure 4.5. This schematic does not
represent the complete flow chart of the algorithm, but instead it does intend to show the
most relevant features of it in a sketch. Each main simulation was run for 1100 periods.
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But the calculation of the expected outputs was performed setting aside the first 100 peri-
ods. These 100 periods were set aside as warm up interval so the results could capture only
the steady state of the system in each iteration. Hundred periods are more than enough to
capture the steady state behavior. Furthermore for each ordering period, another simula-
tion, called hereby online simulation, was run for the look-ahead replenishment policy in
the ordering decision as represented by equation (4.44).

The simulations are marked in the orange process boxes in figure 4.5. The number of
iterations set for the main simulations were determined as the same number of iterations
adopted in the online simulations. Thence, the number of iterations for the simulations
had a great impact on the computational cost. This is better understood by calculating the
number of iterations of the online simulation for each main simulation, IO, considering
the total number of iterations of main simulation, IM , the ordering frequency and the total
number of periods, which is given by approximately

IO = IM T
IM
τ

= T
I2
M

τ
. (4.45)

Equation 4.45 shows that the computational cost increases quadractically with the
number of iterations elected for the simulations. The number of iterations for each simu-
lations was assigned as 1100 in figure 4.5 just for illustration purpose. As it was already
mentioned, a convergence evaluation for convergence evaluation for the same heuristics
evaluated hereby was performed in Montojos (2017). This evaluation showed quite scat-
tered results until the iteration number 50, approximately. Close to this point, the results
were inside the interval of confidence at 50% considering a simulation performed over
1500 iterations. This interval of confidence depicted deviations of approximately ±0.1%
in relation to the total expected profit over all iterations.

Other similar analysis was performed in Montojos (2017) taking into consideration
other outputs and other experiments. All of them presented similar outcomes consider-
ing the intervals of confidence and their respective results. Therefore, 50 iterations were
considered enough for the simulations performed hereby and considering the intent of this
master thesis. Furthermore, any difference between results of two different experiments
below ±0.1% is either disregarded in the analysis or presented with proper notification
about the uncertainty.

The simulations are run considering the demand parameters from the first phase in
the main simulation and the estimated parameters from the second phase in the online
simulations. Five different set of parameters are used in the online simulations from the
third phase: Considering full FIFO demand (p = 100%) as usually applied by the industry,
full LIFO (p = 0), half demand FIFO and half LIFO (p = 50%), parameters estimated in
the second phase and considering the proportional depletion policy from Vaughan (1994)
and Ferguson and Ketzenberg (2006).

It is the third phase that provides the results that are used in the comparison of the per-
formance of the model which uses the estimated parameters and the other models proposed
in the same phase. In addition, a sixth set of results in the factorized design of experiment
is used to serve as a basis for the comparison. The sixth set considers the base stock policy
used in the generation of data from the first phase.

The parameters used in the simulations from the third phase are presented in table
4.5. In table 4.5 at the replenishment policy line, the letters LA stand for look-ahead and
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Figure 4.5: Sketch of the flow chart for the inventory simulations with the look-ahead replenishment
policy.
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refer to the policies which uses the look-ahead sparse sampling tree policy and the prefix
which follows these two letters indicates the demand distribution adopted. The prefix LIFO
indicates that the demand was satisfied with a full LIFO depletion policy in the look-ahead
replenishment policy; the prefix FIFO indicates that the demand was satisfied with a full
FIFO depletion policy; the number 50 indicates that p was equal to 50 %, the prefix EST
stands for estimated and refers to the look-ahead policy which considers the estimated
value of p from the data generation; the prefix PROP stands for proportional and refers
to the look-ahead policy which considers the proportional demand from Vaughan (1994)
and Ferguson and Ketzenberg (2006). At last, the acronym BSP stands for base stock
policy and refers to the simulations which used this replenishment policy.

Hence, the set of experiments performed for the analysis comprise all combinations of
the factorized parameters presented in table 4.1 and 4.5. The experiments are differentiated
by 3 variants of the mean demand of the main simulation, 3 variants distributions of the
FIFO probability and a total of 6 variants of the replenishment policy. This leads to 54
experiments.

Three main outcomes of each experiment are used in the analysis as performance mea-
surements for comparison: Waste, Fill-rate and Profit.

The profit per period is given by equation (4.9) and the overall profit used in the anal-
ysis for each experiment is given by its expected value over all periods excluded the first
100 and over all iterations. The waste is given by

wt =
(
x1,t − da,t − (db,t − x2,t)

+
)+

, (4.46)

and its overall value used in the analysis for each experiment is given by its expected value
over all periods excluded the first 100 and over all iterations. At last, the fill-rate is given
by

ζ =


(da,t + db,t − x1,t − x2,t)

+

da,t + db,t
da,t + db,t > 0

1 da,t + db,t = 0

, (4.47)

and its overall value used in the analysis for each experiment is also given by its expected
value over all periods excluded the first 100 and over all iterations.
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Table 4.5: Parameters used in the estimations evaluations simulations from the third phase of the
DOE.

Parameter Value Unit

Fixed parameters
Maximum shelf-life (M ) 2 days
Ordering frequency (τ) 1 days
Delivery time (L) 1 days
Inventory horizon (T ) 1100 days
Number of simulations (I) 100 Simulations
Sales price (cs) 25 NOK

Unit cost (cu) 15 NOK

Holding cost (ch) 0.15 NOK

Factorized parameters
Mean demand of main simulation (λ) {3, 20, 50} units
FIFO probability of main simulation (p) {0.3, 0.7, P rop∗.} units
Replenishment policy {LA LIFO, LA FIFO, ——

LA 50, LA EST,
LA PROP, BSP}

*Demand distribution over remaining-shelf life is proportional to the quantity of items correspondent is proportional to
the quantity of items correspondent to each remaining-shelf life available in stock.
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Chapter 5
Analysis

The third research question about the impact of the estimations derived of the model pro-
vided hereby on profit, fill-rate and waste is addressed in this chapter. This is performed by
using the estimations in a stock-age dependent replenishment policy, called hereby look-
ahead policy, which uses a look-ahead spare sampling tree method to calculate in each
ordering period the expected non-satisfied demand until the next ordering period. The or-
dering quantity is stipulated to satisfy this non-satisfied expected demand aiming at profit
maximization. Therefore, this chapter basically presents the analysis of the outcomes of
the experiments performed following the factorized DOE outlined in section 4.3.

Primarily in section 5.1, the estimations of the factorized experiments from the first
phase of the DOE are displayed and evaluated. Thereafter in section 5.2, the values for
the performance measurements resulted from the experiments from the third phase which
used these estimations as input are analyzed. At first, general considerations about the
results are presented at section 5.2.1. Then, a more detailed analysis only considering the
variations of the demand distributions applied to the main simulation of each experiment
is performed in section 5.2.2. At last, a more detailed analysis only considering the varia-
tions of the replenishment policies applied to the online simulation of each experiment is
performed in section 5.2.3.

5.1 Estimations
Table 5.1 displays the estimated values of the demands (λ̂a, λ̂b and λ̂) and their percentage
errors in relation to their respective real values (λa, λb and λ) of all experiments per-
formed in the first phase from the DOE as indicated in section 4.3. Each experiment can
be identified by a number followed by a trace and a distribution description displayed in
the first column of the table. The number depicts the mean demand which was used in
the experiment and the distribution description indicates either the value of p adopted in
the simulations or if the simulations of the experiment followed the proportional distribu-
tion from Vaughan (1994) and Ferguson and Ketzenberg (2006). The estimated value of
the total mean demand, λ̂ is the sum of λ̂a and λ̂b. The experiments which adopted the
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proportional distribution of demands in relation to the remaining shelf-life, called hereby
proportional-distributed, did not present values of the percentage error of λ̂a and λ̂b since
the simulations were not modeled with Poisson distributed demand for the FIFO and LIFO
detached.

Table 5.1: Results of estimations of the experiments from the first phase of the DOE.

λ-Dist. λ̂a PE λ̂a λ̂b PE λ̂b λ PE λ̂

3-p=0.3 0.98 2.00 2.00 0.00 2.98 0.67
3-p=0.7 1.99 0.50 1.00 0.00 2.99 0.33
3-Prop. 1.30 —– 1.62 —– 2.92 2.67
20-p=0.3 5.99 0.17 14.00 0.00 19.99 0.05
20-p=0.7 14.13 0.91 5.94 1.00 20.07 0.35
20-Prop. 5.31 —– 14.27 —– 19.58 2.10
50-p=0.3 14.92 0.53 34.84 0.46 49.76 0.48
50-p=0.7 34.75 0.71 14.85 1.00 49.60 0.80
50-Prop. 9.41 —– 39.99 —– 49.41 1.18

The estimates of demand a and demand b of the experiments which used the factor p
in the distribution of demand over the remaining shelf-lives of the items available, called
hereby p-distributed, presented small percentage errors as expected considering the results
from the convergence analysis from section 4.3.2. All percentage errors of λ̂a and λ̂b were
equal or lower than 1 % with the exception of λ̂a of experiment 3-p=0.3 which presented
a percentage error equals to 2 %. The value of λ̂a in this case was 0.98 and the value of
λa was 1.00.

The estimates of λ for the experiments which were p-distributed also showed accurate
values. All values of λ̂ presented percentage error lower than 1 %. In contrast, the exper-
iments which were proportional-distributed presented values of λ̂ with higher percentage
error. All percentage errors were over 1 % in this case. The experiment with mean demand
equals to 3 units presented a percentage error of 2.67 %, the one with mean demand equals
to 20 units presented a percentage error equals to 2.10 % and the one with mean demand
equals to 50 units presented a percentage error of 1.18 %.

When the demand was distributed over the remaining-shelf life available following
a Binomial distribution i.e. each demand a and demand b followed a Poisson-Binomial
distribution as a consequence of the use of the adoption of the probability p, the EM-
Algorithm provided, in general, accurate estimations for both λa and λb, the parameters
for demand a and demand b, and for λ, the parameter for the total demand. However
when demand was not distributed over the remaining-shelf life available, the use of the
same EM-Algorithm in the application adopted hereby, estimating demand a and demand
b separately, provided less accurate estimations of λ. It is expected that applying the
EM-Algorithm to estimate only the value of λ would provide more precise estimations.
In addition, this indicates that the adoption of the Poisson distribution for the demand
distribution when demand is not Poisson distributed does not model properly the behavior
of the demand in an inventory system.

72



5.2 Comparison

5.2 Comparison

Three main factors varied over the experiments in the third phase of the DOE which iden-
tify the experiments from which the results analyzed hereby derived. Two of them varied
in the experiments from the first phase from the DOE which were the mean demand and
how the demand was distributed in relation to the remaining shelf-life of the items. In
addition to these two factors, the replenishment policy adopted in the experiment varied
only in the third phase of the DOE.

As it was already explained, three mean demands were adopted. One with lower mag-
nitude, equals to 3 units, one with medium magnitude, equals to 20 units, and the last with
higher magnitude, equals to 50 units. Each of these demands were used with three different
distributions considering the remaining shelf-life of the items in stock. Two distributions
had a fixed probability p of customers picking up the oldest item and a probability p−1 of
customers picking up the newest item considering perfect substitution between these two
different demands. The two values of p elected to be part of experiments were 0.3 and
0.7. The third distribution implemented the proportional depletion policies also applied
to Vaughan (1994) and Ferguson and Ketzenberg (2006), with the inventory following a
Poisson distribution with determined mean demand λ and with a demand distribution over
remaining-shelf life proportional to the quantity of items correspondent to each remaining-
shelf life available in stock.

Six different replenishment policies were used in the experiments. Five of them con-
sisted of a stock-age-dependent policy: The look-ahead policy considering demand distri-
bution in relation to the remaining shelf-life correspondent to the FIFO depletion policy;
correspondent to the LIFO depletion policy; correspondent to a depletion policy with 50
% of LIFO demand and the other 50 % of FIFO demand; considering p equivalent to the
estimated values outlined in section 5.1; and the proportional distribution from Vaughan
(1994) and Ferguson and Ketzenberg (2006). All input parameters from the look-ahead
policies, i.e. the mean demands, utilized in the third phase of the DOE corresponded the
estimated values displayed in table 5.1. The last replenishment policy applied was the BSP
utilizing the same base stock as the one adopted in the inventory simulations for the data
generation from the first phase of the DOE.

5.2.1 General results

Figure 5.1 presents the expected profit in NOK over all periods and all simulations from
each experiment. Each chart of the figure contains the results of the experiments corre-
spondent to one of the three mean demands adopted as identified above each of them. The
units of the mean demands presented above each chart are units of items. Each curve
in each chart indicated by a color and a symbol corresponds to the experiments which
adopted one specific replenishment policy identified in the legend of the figure. At last,
the horizontal axis of each chart contains three variables which identify how the actual
demand was distributed over the items for each remaining shelf-life group available in the
inventory simulations. The values of the profits for all experiments used to build up the
charts from figure 5.1 are presented in table 5.2. The decimals of these values were not
considered hereby due to the uncertainties derived from the simulations.
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Figure 5.1: Expected profits vs. actual demand distribution for each mean demand applied.

The general results presented in each of the three charts from figure 5.1, provide clear
evidences that the higher the demand, the higher is the expected profit per period. This
result is expected since the higher the demand, the more items may be sold. Because each
unit sold generates profits; each unit purchased, not sold and wasted generates loss; and all
replenishment policies adopted hereby aimed at the profit maximization; the more items
available to be sold, the higher is consequently be the profit generation. This also gives
an indication that indeed the policies adopted succeed in maximizing the profitability in
terms of the demand available although none of them were optimal policies.

In relation to the fill-rate results, higher demands led to higher fill-rates in all cases as
it can be seen in figure 5.2 and the table 5.6. The differences between the values of the
cases for λ = 3 units and λ = 20 units were higher than the difference between the values
of the cases for λ = 20 units and λ = 50 units. The maximum value for the fill-rate within
the experiments that considered λ = 3 units was about 0.86. The maximum value for the
fill-rate within the experiments that considered λ = 3 units was virtually under 0.98 and
the same maximum value for the experiments that considered λ = 50 units was virtually
above 0.98 although both of them can be considered 0.98 due to the uncertainties derived
from the simulations.

The general results of the waste expectations, displayed in figure 5.3 and table 5.7,
showed similar behavior to the values for the profit and the fill-rate in relation to perfor-
mance. The values for the experiments that considered λ = 3 units were lower than the
values of the equivalent experiments considering λ = 20 and λ = 50 units. However the
values for equivalent experiments considering λ = 20 and λ = 50 units are very proximate
and therefore were in general considered the same.

The relation between profit and fill-rate tends to be direct i.e. when profits increase
the fill-rate increases in an approximate proportion. This is true when the waste is not
simultaneously high. That because by increasing the fill-rate, the profits also increase until
the point that the loss on the profit due to waste becomes significant. Low fill-rate means
that a high portion of the demand was not satisfied and potential profit was not incurred.
In this case, the waste expectation tend to be low because a major part of the stock was
used to satisfy the demand. Also when the fill-rates are high, the level of stock tend to
exceed the demand and there is a higher occurrence of waste. The relation between profit
and waste tend then to be indirect until a certain limit which is when there is mostly excess
of stock in relation to the demand. When it happens, the higher the stock levels, the lower
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the profit expectation becomes. This relation brings the necessity to use a term that in this
master thesis is called hypothetical interval close to optima.

The hypothetical interval close to optima is considered to be the virtual interval close to
the turning point of the expected profit; when by increasing the expected ordering quantity
the expected waste increases, expected fill-rate increases and the expected profit starts to
decrease. Following this dynamic relation between the expected ordering quantity, the
expected profit, the expected fill-rate and the expected waste; five hypothetical points are
identified:

1. Low ordering quantity, lower profit, lower fill-rate, lower waste - At this point the
expected ordering quantity, the expected profit, the expected fill-rate and the ex-
pected waste are relatively low. The lower the expected ordering quantity becomes;
the lower the expected profit, the expected fill-rate and the expected waste become.

2. High profit, high fill-rate and low waste - At this point the expected ordering quantity
is higher than at the point number 1, the expected profit and expected fill-rate are
considered relatively high and the expected waste is considered relatively low.

3. Highest profit, high fill-rate, waste high - That is the turning point aforementioned.
The expected ordering quantity is higher than at the point number 2, the expected
profit is close to the highest that it can be, the optimal value, the expected fill-rate
is high and the expected waste becomes relatively high. By increasing the expected
ordering quantity after this point, the expected profits decreases.

4. High profit, high fill-rate and high waste - The expected ordering quantity is higher
than at the point 3, the expected profit, the expected fill-rate and the expected waste
are still high. But by increasing the expected ordering quantity, the expected profit
decreases.

5. Lower profit, higher fill-rate and higher waste - At this point the expected ordering
quantity, the the expected fill-rate and the expected waste are relatively high. The
expected profit is relatively low. The higher the expected ordering quantity becomes,
the lower the expected profit becomes and the higher the expected fill-rate and the
expected waste become.

The hypothetical interval close to optima is than the interval between the points 2
and 4. The designation hypothetical is used in this term because no deeper mathematical
and statistical analysis proving the existence of these points were provided hereby. This
hypothetical interval is defined by the set of results that are analyzed and by a subjec-
tive definition. Therefore, no concrete values are presented as the limits of this interval.
However, the results analyzed hereby as much as results from literature available provides
indications of the existence of these points.

5.2.2 Results considering variations on demand distribution
Considering the actual demand distribution over the items for each remaining shelf-life
group available, the results showed as one can expect that the profitability is higher when
p = 0.7 for all mean demands and replenishment policies adopted over the experiments.
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This result is expected because in the experiments with p = 0.7 the oldest items are de-
pleted in a higher proportion than the newest items what leads to less waste and therefore
more of the money spent on the ordered items are turned into profit. Indeed, the waste
results were lower for the experiments which considered p = 0.7 than for the other exper-
iments with the exception of one experiment that considered proportional distribution of
actual demand, λ = 3 units and look-ahead replenishment policy with p = 50 %. The fill-
rate values have indicated tendency to be higher when p = 0.7 however there were some
exceptions and have shown less variation over the actual demand distribution variations.

With regards to the proportional demand distribution, the results were less consistent
in relation to the general results of the experiments for each mean demand adopted. In
general, the experiments that adopted proportional distribution of demand presented poorer
results considering profitability. This is expected because all ordered items arrive with
the highest remaining shelf-life possible in the experiments analyzed hereby. Since all
replenishment policies aimed at maximization of profit meaning that they also aimed at
fulfilling the expected demand avoiding excess of stock and waste in this case, at each
period the quantity in stock of items with remaining shelf-life equals to 2 periods that
corresponds to the quantity of items ordered at the previous period should approximate the
quantity of total demand. Then once these items fulfill the demand, a little quantity or none
of them remain in stock and are carried over to the next period. Therefore in each period,
the quantity of items with remaining shelf-life equals to 2 periods in stock is much higher
than the quantity of items with remaining shelf-life equals to 1 period. Since the demand
for the oldest products and the demand for the newest products are proportional to their
respective quantity in stock, the demand for the newest products i.e. the products with the
highest remaining-shelf life tends to be much higher driving virtually the probability p to
lower levels.

This effect can be grasped in table 5.1 which has shown that the experiment that consid-
ered λ = 3 and proportional distribution of demand resulted in ˆλa = 1.30 and ˆλb = 1.62.
In this experiment the virtual estimation of p was approximately 0.45. This value was des-
ignated as a virtual value because in the cases that demand was considered proportionally
distributed there was no value of p attributed to the model. The experiment that considered
λ = 20 and proportional distribution of demand resulted in ˆλa = 5.31 and ˆλb = 14.27. In
this experiment the virtual estimation of p was approximately 0.27. The experiment that
considered λ = 50 and proportional distribution of demand resulted in ˆλa = 9.41 and

ˆλb = 39.99. In this experiment the virtual estimation of p was approximately 0.19. The
virtual value of p clearly decreased once the value of λ increased when the proportional
distribution was adopted in the inventory model.

The reason that these results were considered less consistent is that not all curves of the
three charts from figure 5.1 presented the expected behavior, poorer results for the propor-
tional distribution. This effect occurred in a more accentuated scale for higher demands.
For instance in the chart for λ = 50 units from figure 5.1, all curves presented clearly the
poorest results for the experiments that adopted proportional distribution demand. In the
chart for λ = 20 units, the curves which presented this effect presented it in a much less
accentuated scale of difference. In addition, four curves didn’t present this effect such as
the one which used the look-ahead replenishment policy considering full LIFO, full FIFO
and 50 % demand distribution; and the one which used the BSP replenishment policy. In
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Table 5.2: Expected profits results per actual demand distribution for each mean demand applied.

Mean Replenishment Demand Distribution
Demand Policy p=0.3 Prop. p=0.7

3

BSP 17 19 19
LA 50 19 15 20
LA EST 19 20 20
LA FIFO 19 20 20
LA LIFO 19 20 20
LA PROP 19 19 20

20

BSP 171 174 187
LA 50 172 173 177
LA EST 173 168 176
LA FIFO 172 173 176
LA LIFO 175 174 181
LA PROP 173 171 178

50

BSP 467 463 481
LA 50 458 455 460
LA EST 458 451 460
LA FIFO 458 450 460
LA LIFO 463 454 470
LA PROP 458 454 459

the chart for λ = 3 units, none of the curves presented this effect with the exception of
one experiment. In all experiments in this case the profits for when the actual demand
was proportional distributed were higher than when p was equal to 0.3 but the experiment
which considered look-ahead replenishment policy with p = 50 %.

The occurrence or non-occurrence of this effect can be clearly grasped through exam-
ination of table 5.2. The accentuated difference between the values for the experiments
with proportional demand distribution and the other two for the experiments with mean
demand equals to 50 units can be clearly observed. However, when the mean demand is
equal to 20 and 3 units the difference between the values for the profits for the experiments
with proportional demand distribution and demand distribution with p = 0.3 becomes less
accentuated and can be disregarded due to the uncertainties derived from the simulations.

Tables 5.3, 5.4 and 5.5 present the full set of outcomes besides profits, fill-rates and
waste data for all experiments that adopted respectively mean demand equals to 3, 20
and 50 units. All values presented in these tables present expected outcomes over all
periods and all simulations analyzed. The first column of these tables outline what were
the demand distribution and replenishment policy used in each experiment displayed. The
second and third column present the values correspondent to stock quantity for the items
with remaining shelf-life equals to 2 and 1 period respectively. The fourth column presents
the values correspondent to the order quantity. The fifth and sixth columns present the
values correspondent to the demand of the newest items and the oldest items respectively.
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The seventh and eighth columns present the values correspondent to satisfied demand for
the newest and oldest items available respectively. The ninth and tenth columns present the
correspondent values of sold items for the items with remaining shelf-life equals to 2 and
1 period respectively. Finally, the eleventh and twelfth columns present the correspondent
values of lost sales related to the demand for the newest and oldest items respectively.

The effect of the proportionality on the demand for the experiments that used the pro-
portional demand distribution can be seen in these tables. As mentioned, the objective
of maximizing profit of all replenishment policies adopted leads to little carry-over stock
from one period to the other. Indeed, the quantity of items with remaining shelf-life equals
to 1 period in stock is not significant if compared to the quantity of items with remaining
shelf-life equals to 2 periods in stock. Consequently since the demand in relation to the
remaining shelf-life of the items is proportional to the quantity of items in stock correspon-
dent to each remaining-shelf life, the values of the demand for the oldest items were much
lower than the demand for the newest items for the experiments that considered propor-
tional distribution of demand. In fact in all three tables, tables 5.3, 5.4 and 5.5, the demand
a for all experiments that used proportional distribution of demand were the lowest ones
for each replenishment policy considered.

When demand is high, the difference between the stock quantities is also high. This
difference is indeed higher than the same difference when demand is lower. For example
considering mean demand equals to 50 units, the ordering level will be about 48 units
and therefore the expected quantity of items with remaining shelf-life equals to 2 periods
in stock per period will be also equals to about 48 units. Considering the replenishment
policies used hereby aim at maximizing the profitability and therefore reducing excess on
the purchases, quantity of items that are carried over and remain in stock with a remaining
shelf-life equals to 1 period should be much lower than the stock of items with remaining
shelf-life equals to 2 periods. But they are not zero. The stochastic nature of the inventory
system which leads to demand uncertainty naturally generates positive stock of items with
remaining shelf-life equals to 1 period.

Figure 5.2: Expected fill-rate vs. actual demand distribution for each mean demand applied.

In the experiments that adopted mean demand equals to 50 units, the expected quantity
of items with remaining shelf-life equals to 1 period is equal to values between 2 and 5
units depending on the replenishment policy adopted with some exceptions that did not
surpass 10 units. These values are less than 20 % of the total demand. The experiments
with mean demand equals to 20 units, presented an expected quantity of items with re-
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maining shelf-life equals to 1 period equals to values between 1 and 3 units depending on
the replenishment policies with some exceptions that did not surpass 5 units. Although
these values were lower than the values for the experiments with mean demand equals to
50 units, they correspond to a proportion of up to 25 % of total demand, higher than the
20 % proportion of the experiments with mean demand equals to 50 units.

Following this tendency, the experiments with mean demand equals to 3 units, pre-
sented an expected quantity of items with remaining shelf-life equals to 1 period equals to
values between 0 and 1 units depending on the replenishment policies with some excep-
tions that did not surpass 2 units. These values correspond to a proportion of up to 66 %
of the expected quantity of the items with remaining shelf-life equals to 2 periods. Much
higher compared to the experiments that adopted mean demand equals to 20 and 50 units.
That indicates that the lower the mean demand, the more balanced the stock becomes in
terms of quantity per remaining shelf-life category. This leads to a more balanced de-
mand in terms of remaining shelf-life of items when the replenishment stock applied is a
stock-age dependent considering the proportional probability distribution.

The waste and fill-rate results follow this effect as well. For the experiments with
λ = 50 units, the waste values are higher and the fill-rate values are lower when the
demand is proportionally distributed in the major of the cases. For the experiments with
λ = 20 units, this effect is less apparent. For the experiments with λ = 3 units, the waste
values are lower and fill-rate values are higher in the major of the cases.

5.2.3 Results considering variations on replenishment policies
The general results considering the different replenishment policies adopted weren’t the
same over the experiments with different mean demands either. In the experiments with
mean demand equals to 3 units, the look-ahead policy considering FIFO, LIFO and the
estimated distributions presented best performances. The results for these policies in
this case are considered equivalent because the difference between them is virtually non-
existent due to the uncertainties derived from the simulations as one can see in table 5.3.
The experiments which adopted the look-ahead replenishment policy considering propor-
tional distribution and p = 50 % presented equivalent best performance results when the
actual demand was distributed considering p = 0.3 and p = 0.7 but an accentuated poorer
performance when the actual demand was proportional distributed. The experiment with
look-ahead policy considering proportional distribution presented a slightly poorer result,
considered equivalent to the result from the experiment which adopted BSP policy. But the
experiment with look-ahead policy considering p = 50 % presented an accentuated poorer
result. In this case one experiment presented lower profits than the BSP which presented
the poorest performances with the exception of this case. This accentuated poorer result
was perceived as a deviation since it does not follow the variations over the actual demand
distribution of the other experiments that considered other replenishment policies.

The deviation mentioned above is assumed to be originated from the estimation inac-
curacy. In this case, the expected ordering quantity, of 1, 71 units, was much lower than
the expected ordering quantity from the other experiments that adopted the look-ahead re-
plenishment policy with mean demand equals to 3 units, between 2.39 and 2.57 units, as
shown in table 5.3. This led to a much lower profit. Interestingly, the second worse perfor-
mance among the experiments that considered proportional distribution of actual demand
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was the BSP which presented an expected ordering quantity of 2.92 units, much higher
than the other ones. These results indicate that the BSP policy overestimated the neces-
sary ordering quantities and the look-ahead policy considering p = 50 % underestimated
the necessary ordering quantities in relation to close to optima ordering quantities, most
probably in between 2.39 and 2.57 units, or close to it.

In the experiments that used the look-ahead policies, the ordering quantities were stip-
ulated to fulfill expected demand that would not be fulfilled by the items in stock on the
ordering period until the next ordering period. The ordering quantities depended on the
estimations used in the look-ahead policy model. If the estimated parameters had adopted
in the look-ahead replenishment policies underestimated the demand in relation to the ac-
tual demand of the inventory system, the ordering quantities could also be underestimated.
Indeed, the estimation performed in the experiment with mean demand equals to 3 units
and proportional demand distribution from the first phase of the DOE underestimated the
actual demand. The actual mean demand was equal to 3 units and the estimation was
equal to 2.92 units as one can see in table 5.1. Although, this estimation was used in
all look-ahead policies for the experiments with λ = 3 units and demand proportionally
distributed, it had a significant impact only on the experiment which considered the look-
ahead replenishment policy with p = 50 %.

The fill-rate and the waste values for the experiments that considered λ = 3 units sup-
ported all indications mentioned above. In the experiments that considered the base stock
replenishment policy, the fill-rate and the waste values were the highest ones among the
other experiments that considered λ = 3 units. This indicates that the ordering quantities
for the experiments with the base stock policy were indeed overestimated in this case. On
the other hand in the experiment that adopted the look-ahead replenishment policy con-
sidering p = 50 %, both the fill-rate and waste values were much lower than the values
of the other experiments that considered λ = 3 units. This indicates that the ordering
quantities for the experiment with look-ahead replenishment policy considering p = 50 %
were indeed overestimated in this case. As expected, the fill-rates and waste values for the
other experiments lied in between these two boundaries showing no abnormality.

Further investigation is required for more explanatory conclusions. Anyway, these in-
dications show that the estimations may impact the inventory system even with a virtual
low deviation. Furthermore, this supports the indication mentioned in section 5.1 that the
adoption of the Poisson distribution for the demand distribution when demand is not Pois-
son does not model properly the behavior of the demand in an inventory system and this
may impact the performance of replenishment policy if applied to a stock-age dependent
replenishment policy.

In addition, the fact that all three look-ahead policies considering FIFO, LIFO and the
estimated distributions presented equivalently the best performances indicated that know-
ing the actual distribution of the demand over the remaining shelf-life does not provide
great advantages over standard LIFO and FIFO policies usually applied by industry, as
mentioned in chapter 1, at least for low demands. Even the look-ahead policies consid-
ering proportional demand distribution were in general also approximately equivalent to
the estimated case, with one exception that demands further investigation as it was already
mentioned.

In the experiments with mean demand equals to 20 units, the base stock policy pre-
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Table 5.6: Expected fill-rate results per actual demand distribution for each mean demand applied.

Mean Replenishment Demand Distribution
Demand Policy p=0.3 Prop. p=0.7

3

BSP 0.85 0.85 0.86
LA 50 0.81 0.63 0.81

LA EST 0.81 0.8 0.8
LA FIFO 0.79 0.81 0.8
LA LIFO 0.81 0.81 0.83
LA PROP 0.79 0.78 0.81

20

BSP 0.97 0.97 0.98
LA 50 0.91 0.92 0.92

LA EST 0.92 0.89 0.92
LA FIFO 0.91 0.92 0.92
LA LIFO 0.93 0.94 0.95
LA PROP 0.92 0.91 0.93

50

BSP 0.98 0.98 0.98
LA 50 0.94 0.94 0.94

LA EST 0.94 0.93 0.94
LA FIFO 0.94 0.93 0.94
LA LIFO 0.96 0.94 0.96
LA PROP 0.94 0.94 0.94

sented great variation on profit over the actual demand distribution considered. Regarding
the experiments with p = 0.3, the BSP policy presented the poorest profit. It presented in-
termediate result considering the experiments with proportional demand distribution and
presented the best performance considering the experiments with p = 0.7 in terms of
profit. The experiments with look-ahead replenishment policy considering full LIFO and
FIFO demand distributions and the case considering p = 50 % presented virtually the same
level of profits for the experiments with p = 0.3 and proportional demand distribution and
higher profits when p = 0.7. The experiments that considered look-ahead policy with pro-
portional and estimated demand distribution presented poorer results for the proportional
demand distributed case, intermediate results for p = 0.3 and the best results for p = 0.7.
The experiment with look-ahead replenishment policy considering LIFO demand distri-
bution presented the best results among the experiments with look-ahead replenishment
policy. The experiments that considered in their replenishment policies FIFO and pro-
portional distributions and p = 50 % presented virtually the same performance although
the one which considered proportional distribution presented slightly poorer performance
when the actual demand was proportionally distributed. The experiment with look-ahead
replenishment policy which considered the estimated demand distribution presented virtu-
ally the same performance as the one which considered FIFO demand distribution when p
was equal to 0.3 and 0.7. However, it presented a more accentuated poorer performance
when the actual demand was proportionally distributed.
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Figure 5.3: Expected waste vs. actual demand distribution for each mean demand applied.

Again, the look-ahead policy using the estimated distribution of demand didn’t present
any advantage in comparison to the other look-ahead policies. In fact, its results showed
to be the poorest for when the demand was proportionally distributed. I general, the
look-ahead policy using the estimated data impacted the inventory system differently in
comparison to the impact of the base-stock replenishment policy which didn’t use any
replenishment data. The policies that presented the best performance in terms of prof-
itability were the ones that presented the highest expected ordering quantities within the
hypothetical interval close to optima, as mentioned before, that limits the underestimated
ordering quantities, when the loss of potential sales impacts significantly the profitability,
and overestimated ordering quantities, when the loss due to excess of stock also impacts
significantly the profitability.

This conclusion is confirmed by the fill-rate and waste values as well. For example, the
base stock replenishment policy provided the worst results regarding profitability among
the experiments that considered p = 0.3 in the actual demand distribution. However, the
same experiment provided the highest fill-rate and waste values. This confirms that the
necessary ordering quantities in this case were overestimated. The waste values decreased
in the BSP experiment that considered actual demand proportionally distributed. The fill-
rate values increased but not so sharply as the profit values.

The difference between the waste and fill-rate values and the respective values from
the other experiments also decreased. That means that the ordering quantities were close
to the hypothetical close to optima interval and the profitability increased in relation to
the other experiments considering the actual demand proportionally distributed. But its
ordering quantities were still too high to overcome all the experiments with look-ahead
policy. At last, fill-rate increased, again less sharply than the profit, and the waste values
decreased when considering the actual demand distributed with p = 0.7. The difference
between these waste and fill-rate values and the respective values from the other experi-
ments decreased sharply. That led the profitability of the BSP experiment to become the
highest one and its ordering quantity was most probably and also the highest one within
the hypothetical close to optima interval.

In the experiments with mean demand equals to 50 units the results were more con-
sistent. The experiments with base-stock replenishment policy presented the best perfor-
mance. All experiments in this case presented the trend of the best performance when p is
equal to 0.7, intermediate performance when p is equal to 0.3 and the poorest performance
when the demand is proportionally distributed. This was expected considering the rela-
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tively high total demand as it was already explained. The experiment that used look-ahead
replenishment policy considering LIFO policy showed the best performance for all three
demand distributions followed by the experiments that adopted look-ahead replenishment
policies considering p = 50 % and the experiment that adopted look-ahead replenishment
policy with proportional demand distribution. These three experiments had equivalent
performance when actual demand was proportionally distributed. The experiments which
presented the worst performance in terms of profit were the ones which adopted the look-
ahead replenishment policy with FIFO demand distribution and estimated demand dis-
tributions. These two cases presented equivalent results as the experiments that adopted
look-ahead replenishment policy with p = 50 % and proportional demand distribution.

The fill-rate and waste values were coherent with the profit results considering all of
them were within the hypothetical close to optima interval as explained before. Most
probably the BSP experiment which considered actual demand proportionally distributed
resulted in a high peak for the waste value what shows that it probably overestimated
slightly the necessary ordering quantities. But the profit for this experiment is still the
highest among the equivalent experiments considering other replenishment policies. This
leads to the conclusion that the overestimation was not too far from the hypothetical close
to optima interval.

Once again, the look-ahead policy using the estimated demand distribution showed
the poorest results in terms of profit for when the demand was proportionally distributed.
In this case, the fill-rate and waste values showed that the look-ahead policy using the
estimated demand distribution underestimated the necessary ordering quantities to provide
the highest profits within the hypothetical close to optima interval.

The performance of the experiments which considered look-ahead replenishment pol-
icy with LIFO demand distribution also confirmed the effect of the higher ordering quan-
tities in the hypothetical close to optima interval. This policy over all variations of the
factorized parameters from the DOE in comparison to experiments adopting other replen-
ishment policies but the same λ and actual demand distribution always provided either
the best or the second best performance in terms of profit. A reason for this occurrence is
considered to be the fact that considering that the demand distribution in the replenishment
policy was LIFO. In the LIFO distribution, the newest items are picked first and the oldest
items remain in stock. When this occurs with the estimations from the look-ahead replen-
ishment policy, the estimated remaining demand until the next ordering period for each
ordering period tend to increase, this leads to a stipulation of higher ordering quantities
than the ones from the look-ahead policies considering other demand distributions. This
is confirmed by the ordering quantity values from tables 5.3, 5.4 and 5.5. The ordering
quantities from all experiments with look-ahead replenishment policy considering LIFO
demand distribution were always the second highest in comparison to experiments adopt-
ing other replenishment policies but the same λ and actual demand distribution always
provided either the best or the second best performance in terms of profit.

In general, the look-ahead policy using the estimated data impacted the inventory sys-
tem differently in comparison to the impact of the base-stock replenishment policy which
didn’t use any estimated data. Although the base-stock policy experiments presented better
performance in terms of profitability for higher actual demands, the look-ahead replenish-
ment policy experiments provided more stable performance over the different parameters
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and distributions of actual demand with the exception of one abnormality, the underesti-
mation of ordering quantities of the experiment with look-ahead replenishment policy with
p = 50 %, λ = 3 units and proportional demand distribution, as it was already mentioned.
The look-ahead replenishment policy showed to have a higher adaptability over different
demand factors since it didn’t underestimate or overestimate the necessary ordering quan-
tities within the hypothetical close to optima interval. But this conclusion may be changed
if the heuristics base-stock quantities are calibrated properly for each demand factor. At
the same time, the performance of the look-ahead policy may be improved by using a cor-
rection factor applied to each ordering quantity decision to increase slightly the ordering
quantities achieving higher values within the hypothetical close to optima interval.

Table 5.7: Expected waste results per actual demand distribution for each mean demand applied.

Mean Replenishment Demand Distribution
Demand Policy p=0.3 Prop. p=0.7

3

BSP 0.48 0.41 0.36
LA 50 0.23 0.05 0.15

LA EST 0.23 0.2 0.15
LA FIFO 0.2 0.23 0.14
LA LIFO 0.25 0.23 0.2
LA PROP 0.21 0.17 0.16

20

BSP 1.15 1.04 0.24
LA 50 0.23 0.24 0.02

LA EST 0.25 0.14 0.02
LA FIFO 0.23 0.23 0.02
LA LIFO 0.4 0.41 0.14
LA PROP 0.25 0.21 0.03

50

BSP 0.87 1.15 0.02
LA 50 0.13 0.27 0

LA EST 0.14 0.21 0
LA FIFO 0.13 0.19 0
LA LIFO 0.39 0.35 0.07
LA PROP 0.13 0.25 0
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Chapter 6
Discussion

This chapter presents a review of the outcomes of this master thesis relating them to the
problem statement and research questions with a critical discussion investigating whether
they were answered or not and how they were answered in section 6.1. Thereafter in
section 6.2, the features of this project, potential improvements and suggestions for future
research are discussed.

6.1 Review of outcomes

This master thesis was performed focusing on customers preferences with regards to the
freshness of demanded same products available on the shelves from a retail store. The
problem statement and main question is how customer preferences in relation to the re-
maining shelf-lives of demanded products can be estimated in an inventory model with
complete upwards and downwards substitution. To answer this problem statement the
planning to develop this thesis was dived in three research questions. These research ques-
tions did not just drive the actual work carried out but also the structure of this document.
Therefore, the structure of this chapter also follows this organization. The following lines
present the research questions and the main findings from the analysis relevant for each of
them.

1. How can customer preferences of products’ freshness be modeled within a stochas-
tic inventory system?

This question was answered in section 2.1. In the inventory system presented hereby, the
demand was modeled following a Poisson distribution and the preference of customers
with relation to the remaining shelf-life of items available was modeled through the adop-
tion of a Binomial distribution. Each unit of demand had a probability p of being satisfied
with the oldest items i.e. FIFO depletion. This led to the conception of two demands.
One demand for the oldest items and one demand for the newest items which were also
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Poisson distributed. Furthermore, another demand distribution with relation to the re-
maining shelf-life of items found in the relevant literature available, called proportionally
distributed, was also adopted in the developed inventory model in order to evaluate the
behavior of the inventory system in a scenario which the demand is not necessarily con-
strained to the Poisson-Binomial distribution as initially modeled. The model allowed
perfect substitution when the inventory system adopted both demand distributions.

The main difference between these two distributions is that the depletion of item in
relation to the remaining-shelf life depends on the quantity of items for each remaining
shelf-life category when the demand is proportionally distributed, and the demand does not
depend on stock level when demand follows the Poisson-Binomial distribution. It means
that no matter the replenishment policy, the depletion of items follows the pre-established
distribution according to the arbitrated parameters when the demand follows the Poisson-
Binomial distribution. On the other hand, how the demand is realized in relation to the
remaining shelf-life of items may change over the periods depending on the replenishment
policies adopted when the proportional distribution of demand is adopted.

Since all replenishment policies aimed successfully at profitability maximization, few
items were carried over to the next period in the experiments carried out hereby. There-
fore, the expected quantity of items with remaining-shelf life equals to 2 units were always
as low as possible considering the stochastic nature of the model. Since the demand for
the oldest products and the demand for the newest products are proportional to their re-
spective quantity in stock when the proportional distribution of demand is adopted, the
demand for the newest products i.e. the products with highest remaining-shelf life tend
to be much higher driving virtually the probability p to lower levels as identified in the
analysis, chapter 5.

The assessment whether either the proportional distribution or the Poisson-Binomial
distribution represents the customer preferences with relation to the remaining shelf-life of
the items more realistically require further research using a real case scenario. Even more
because the use of both of them seems plausible from a speculative point of view.

The retail stores adopt usually merchandising and displaying strategies that provide
incentives for customers to pick up the oldest items in order to avoid the losses incurred
from waste. On the other hand, the customers tend to prefer the newest items to avoid
the loss of waste at their premises. In this non-explicit tug-of-war between customers
and retail stores, there is most probably a portion of customers who are eager to pursue the
newest items in spite of the strategies from the stores and there is a portion which is usually
satisfied with the oldest items in light of the displaying strategies. At the same time that
these portions or probabilities may exist in an approximate distribution as the Binomial
one, these probabilities may be affected by different factors such as the day of the week
or, as adopted hereby, the quantity of items correspondent to each remaining-shelf life.

2. How can the parameters of the demand of such a model be estimated?

This research question was answered in section 4.2. Demand was estimated through the
application of the maximum likelihood estimator with the support of the Expectation-
Maximization algorithm. Among the methods available for such estimations, the setting
of methods applied hereby was considered the most effective in terms of the quality of
results in view of the complexity of the problem.
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Indeed, the estimations performed in the convergence evaluation, section 4.3.2, and
in the experiments from the design of experiment analyzed in section 5.1 presented sat-
isfactory results. Four factors in the convergence analysis were considered fundamental
for the consistency of the estimations and the running time of the algorithm: How much
of the observed data-set is censored, the number of observations which are analyzed, the
initializing estimated parameters and the number of loops in which the EM-Algorithm is
run.

All experiments from the convergence analysis provided satisfactory results, with one
exception, the experiment with S = 35 units which was the experiment that adopted the
lowest base stock quantity. This led to an indication that indeed the more censored data-
set in the inventory simulations the poorer results for the estimations the EM-Algorithm
is expected to provide. A confirmation on this indication requires a deeper and structured
analysis of the statistical and mathematical properties of the model.

With regards to the initializing estimated parameters, a more detailed analysis of the
likelihood function and its shape is considered necessary for a more precise conclusion.
But the choice of calculating the expected value of mean demand considering the available
observations that were not censored, the realized sales, showed to be adequate. Running
the simulations used in the estimation of the parameters with the heuristic replenishment
policy adopted in the data generation was considered enough to provide adequate estima-
tions. This includes the number of observations which were analyzed, about 500 periods
and the number of simulations, 20 simulations.

The running time was also considered practicable. Although the results showed that
the more censored data-sets over the periods of the inventory simulations the longer the
EM-Algorithm took to run. The simulations which used the heuristic policies for data
generation were taking in between 8 and 24 hours to run.

The experiments from the design of experiment which had their results analyzed in
section 5.1 showed that when the demand was distributed over the remaining-shelf life
available following a Binomial distribution i.e. each demand a and demand b followed a
Poisson-Binomial distribution as a consequence of the use of the adoption of the proba-
bility p, the EM-Algorithm provided, in general, accurate estimations for both λa and λb,
the parameters for demand a and demand b, and for λ, the parameter for the total demand.
However when demand was not distributed over the remaining-shelf life available, the use
of the same EM-Algorithm in the application adopted hereby, estimating demand a and de-
mand b separately, provided less accurate estimations of λ. It is expected that applying the
EM-Algorithm to estimate only the value of λ would provide more precise estimations.
This indicated that the adoption of the Poisson distribution for the demand distribution
when demand is not Poisson does not model properly the behavior of the demand in an
inventory system.

3. What is the impact on profit, fill-rate, availability and waste of this model in rela-
tion to similar models which consider differently the preferences of products’ fresh-
ness?

The starting point to answer this research question was the design of experiment presented
in section 4.3. The design of experiment was built up to provide results that could be used
to evaluate the impact on profit, fill-rate and waste of the model presented hereby, with the
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Poisson-Binomial demand distribution, and the same impact of the estimations comparing
it to different scenarios, including the proportional demand distribution.

Therefore in the design of experiment, a preliminary set of experiments were per-
formed in order to generate data so the demand parameters could be estimated. For this,
simulations with three demand distributions with a heuristic standard base stock replenish-
ment policy were used in this preliminary set of experiments: Two demand distributions
followed the Poisson-Binomial model proposed hereby and one of them followed the pro-
portionally distributed model from Vaughan (1994) and Ferguson and Ketzenberg (2006).
Afterwards, for each experiments the demand parameters were estimated considering that
all experiments were modeled with the Poisson-Binomial distribution, even the ones mod-
eled with the proportionally distributed demand. These estimations were used in a last set
of experiments which was designed to test these estimations. For this, two different replen-
ishment policies were used: One stock-age dependent policy, which depends on the level
of stock for each shelf-life category and could use the estimated data from the first set of
experiments executed, and the base stock policy used in the first set of experiments, which
does not depend on the stock level for each age category and didn’t use the estimated
data. In addition, the experiments which considered the stock-age dependent replenish-
ment policy were performed with five different variations of this replenishment policy:
One considering full FIFO depletion policy, one considering full LIFO depletion policy,
one considering p = 50 %, one considering the proportional distribution from Vaughan
(1994) and Ferguson and Ketzenberg (2006), and the last one considering the estimated
distribution.

The heuristic stock-age dependent policy used in the design of experiment called look-
ahead sparse sampling tree policy, was adopted with the intention to investigate how the
estimation would impact the inventory system. The investigation was performed through
a sensitivity analysis of the factors that varied in the design of experiment over the experi-
ments comparing the expected profits, fill-rate and waste resulted from the experiments.

The results presented clear evidences that the higher the demand, the higher the ex-
pected profit per period as expected is since the higher the demand the more items may be
sold. This also gave an indication that indeed the policies adopted succeed in maximiz-
ing the profitability in terms of the demand available although none of them were optimal
policies.

The term hypothetical interval close to optima was often used in the analysis chapter.
This term is associated to the relation between the profit, fill-rate, waste and the ordering
quantity. The results presented in the analysis indicated that that the relation between
expected profit and expected fill-rate tends to be direct i.e. when profits increase the fill-
rate increases in an approximate proportion. This was clearly true when the waste was
not simultaneously high. When the expected fill-rate increases, the expected profit also
increases until the point that the loss on the profit due to waste becomes significant. Low
fill-rate means that a high portion of the demand was not satisfied and potential profit was
not incurred. In this case, the waste expectation tend to be low because a major part of the
stock was used to satisfy the demand. Also when the fill-rates are high, the level of stock
tend to exceed the demand and there is a higher occurrence of waste. The relation between
profit and waste also follows then a direct relation until a certain limit which is when there
is mostly excess of stock in relation to the demand. When that happen, the higher the stock
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levels, the lower the profit expectation becomes due to the loss because of waste. These
levels of profit, fill-rate and waste depend on the ordering quantity which is derived from
the replenishment policy and drives the stock-level.

The designation hypothetical is used in this term because no deeper mathematical and
statistical analysis proving the existence of these points were provided hereby. This hy-
pothetical interval is defined by the set of results that are analyzed and by a subjective
definition. Therefore, no concrete values are presented as the limits of this interval. How-
ever, the analyzed results hereby as much as the results from literature available provide
indications of the existence of these points.

Considering the actual demand distribution over the items for each remaining shelf-
life group available, the results showed as one can expect that the profitability is higher
when p = 0.7 for all mean demands and replenishment policies adopted over the experi-
ments. This result is expected because in the experiments with p = 0.7 the oldest items
are depleted in a higher proportion than the newest items what leads to less waste and
therefore more of the money spent on the ordered items are turned into profit. The ex-
periments which adopted the proportional demand distribution, presented less consistent
results considering the general results of the experiments for each mean demand adopted.

In general, the experiments that adopted proportional distribution of demand presented
poorer results considering profitability. This is expected because all items ordered arrive
with the highest remaining shelf-life possible in the experiments analyzed hereby. Since
all replenishment policies aimed at maximization of profit meaning that they also aimed
at fulfilling the expected demand avoiding excess of stock and waste in this case, at each
period the quantity in stock of items with remaining shelf-life equals to 2 periods that
corresponds the quantity of items ordered at the previous period should approximate the
quantity of total demand. Then once these items fulfilled the demand, a little quantity or
none of them remained in stock and were carried over to the next period. Therefore in each
period, the quantity of items with remaining shelf-life equals to 2 periods in stock is much
higher than the quantity of items with remaining shelf-life equals to 1 period. Since the
demand for the oldest products and the demand for the newest products are proportional
to their respective quantity in stock, the demand for the newest products i.e. the products
with highest remaining-shelf life tend to be much higher driving virtually the probability
p to lower levels. This leads to the conclusion that the adoption of proportion demand dis-
tribution tend to increase the impact of the replenishment policy on the inventory system.

With regards to the replenishment policy, the look-ahead policy using the estimated
data impacted the inventory system differently in comparison to the impact of the base-
stock replenishment policy which didn’t use any estimated data. Although the base-stock
policy experiments presented better performance in terms of profitability for higher actual
demands, the look-ahead replenishment policy experiments provided more stable perfor-
mance over the different parameters and distributions of actual demand in general. There-
fore, the look-ahead replenishment policy showed to have a higher adaptability over differ-
ent demand factors since it didn’t underestimated or overestimated the necessary ordering
quantities within the hypothetical close to optima interval. But this conclusion may be
changed if the heuristics base-stock quantities are calibrated properly for each demand
factor most probably placing the outcome into the hypothetical close to optima interval.
At the same time, the performance of the look-ahead policy may be improved by using
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a correction factor applied in each ordering quantity decision to increase slightly the or-
dering quantities achieving higher values within the hypothetical close to optima interval.
The benefit of it is that a general correction factor that places the outcome of the inventory
system into the hypothetical close to optima interval over different demand parameters
without the need for calibration for each demand scenario. Any concrete conclusion about
it requires further research on this issue.

The look-ahead policy using the estimated distribution of demand didn’t present any
general advantage in comparison to the other look-ahead policies. Furthermore, the poli-
cies that presented best performance in terms of profitability were the ones that presented
the highest expected ordering quantities within an hypothetical interval close to optima,
for example the one adopting the LIFO distribution. This was related to how the replen-
ishment policy was estimating the potential non-satisfied demand until the next ordering
period for each ordering period. When LIFO distribution was considered in the replen-
ishment policy, more non-satisfied demand was estimated and the ordering quantity was
slightly higher than other demand distributions were considered, including the estimated
one. The efficacy of the adoption of the estimated distribution in the replenishment policy
in the inventory system hereby was considered low since it was considered that by using
the correction factor mentioned above in the look-ahead policy used with any of the distri-
bution considered hereby would improve their outcomes. However, further investigations
of this model in a similar system with other variations of the parameter of the inventory
system such as the ordering frequency, ordering quantity, incurred costs and delivery time
are considered necessary for a better conclusion about the efficacy of the adoption of the
estimated distributions as presented hereby in the inventory system.

Although the look-ahead policy using the estimated distribution has shown a higher
adaptability over different demand factors, one experiment provided a particularly poor
result, the experiment with λ = 3 units, proportional demand distribution and the look-
ahead policy considering p = 50 %. This particularly poor result was considered as a
deviation since it did not follow the pattern of variations over the actual demand distribu-
tion of the other experiments that considered other replenishment policies. This deviation
is assumed to be originated from the estimation inaccuracy since the performed estimation
in the experiment with mean demand equals to 3 units and proportional demand distribu-
tion from the first phase of the DOE underestimated the actual demand. The actual mean
demand was equal to 3 units and the estimation was equal to 2.92 units as one can see in
table 5.1. Although, this estimation was used in all look-ahead policies for the experiments
with λ = 3 units and demand proportionally distributed, it had a significant impact only
on the experiment which considered the look-ahead replenishment policy with p = 50 %.
Further investigation is required for more explanatory conclusions. Anyway, this gives
an indication that the estimations may impact the inventory system even with a virtual
low deviation. Furthermore, this also indicates that the adoption of the Poisson-Binomial
distribution for the demand distribution when demand is not Poisson-Binomial does not
model properly the behavior of the demand in an inventory system and this may impact
the performance of replenishment policy if applied in a stock-age dependent replenishment
policy.
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6.2 Limitations and research opportunities
Most of limitations presented in this section may become ingredients for further research.
Therefore at the same time that the limitations are presented as drawbacks, they are often
presented as suggestions for future investigation and research opportunities. That is the
main reason that both limitation and research opportunities were combined in this section.

The first important limitation, or set of limitations, that should be addressed in this
section are the limited range of factors in the design of experiment. These factors are
features usually present in realistic inventory systems and that impact the outcome and the
dynamics of the system. However, they also make the system more complex and difficult
to study. One of the main guideline found in any book that handles mathematical modeling
as a subject is, as Ingels (1985) puts, ”the overriding principle for developing models is to
start simple and develop to more complex forms” (Ingels, 1985, p. 32). Since no similar
study as the one presented in this master thesis was found in the literature, the following
limitations were conveniently employed in order to simplify the problem and assure the
consistency of the model’s results.

The most important factor that was limited in the design of experiment was the max-
imum shelf-life. As indicated in the literature review, chapter 2, most of the problems
within inventory management of perishable items that were worked out in the references
presented hereby considered first the simplified version of the problem with maximum
shelf-life equals to 1 period and 2 periods before they studied the general case with M
periods such as Van Zyl (1963) and Nahmias and Pierskalla (1973) for example. This
master thesis did the same with the inventory model studied hereby. The maximum shelf-
life of the items in the inventory was equal to 2 periods, not more nor less. Although this
limitation may be considered realistic to the perishable products that do not have a long
shelf-life, there are many products that may have their shelf-life modeled as more than
2 periods. Thence to study the same problem as the one studied hereby for an inventory
system that consider a generic limitation of the shelf-life of the items is also relevant.

Modeling an inventory system of perishables considering different demands that are
addressed to the depletion of items with different remaining shelf-life when the maximum
remaining shelf-life is a generic term M higher than 2 periods is not a trivial task. The
inventory model for such problem differs in a lot of aspects the inventory model which
considers the maximum remaining shelf-life equals to 2. It is suggested hereby two ap-
proaches for such problem. One that considers one specific demand designated by a de-
mand stochastic variable, considering the demand is stochastic, for each group of items
with a unique remaining shelf-life. In this approach the demand variable may be split
into M variables equivalent to the value of maximum remaining shelf-life. This may in-
crease the complexity of the problem. A simplest version may most probably the most
recommended approach for a next step in the research presented hereby. The approach
that considers the same two components of demand as in the model adopted in this master
thesis; demand a for the oldest items and a demand b for the newest items. Although the
modeling of demand is equivalent as the model of demand used hereby, the fact that now
the maximum remaining shelf-life is equal a generic variableM assumed to be higher than
2 periods increase the level of complexity of the problem in a lot of aspects.

First of all, opposing to the 2 periods system, in theM periods system it is not possible
to quantify the quantity in stock of the items assumed old and the quantity in stock of the
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items assumed new. Therefore, the events that may be observed in the inventory system
under the consideration of M periods of maximum shelf-life products have a different
characterization as the ones presented for the 2 periods case. Figure 6.1 shows a basic
schematics of what are the events that are expected to be seen when the inventory con-
sidering the maximum shelf-life of the items equal to M periods counts with one demand
for the oldest items and one demand for the newest items. In the figure, the demand for
the oldest items is represented by the customer a and the demand for the newest items is
represented by the customer b. The status for the inventory at period t can be seen at the
upper section. Each square with or without the red dots represent the shelf for items with
the same shelf-life. The shelves are designated with their respective shelf-life categories
which varies from 1 to M . All three possible events considering the status of the inven-
tory at period t+ 1 that are used in the suggested model are outlined in the lower section.
The events, further features and a sketch of the modeling for such inventory system are
presented in the Appendix B.

Figure 6.1: Schematic showing the possible events of the M-shelf-lives setting.

Another factor that was limited in the design of the experiment was the incurred costs
in the profit equation. The ordering cost is a cost that is often incurred in the retail industry
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and may result in a relevant impact to the decision making about replenishment and other
inventory strategies was disregarded in the modeling presented hereby. Another factor
related to the ordering of the items is the minimum ordering quantity or the batch quantity.
These two factors, or variables, may impact the system differently depending on their
values. Hence, a sensitivity analysis considering a range of values related to these variables
also has great relevance to the study presented hereby.

Other two factors that plays a similar role to the inventory system as the ordering quan-
tity and batch quantity concerning their impact to the system, are the ordering frequency
and delivery time. Hereby, both of them were considering two invariant variables in the
design of experiment. In addition, their value was as small as possible, equals to 1 pe-
riod. By increasing both the ordering frequency and delivery time, it is expected that the
impact of the uncertainties derived from the demand on the inventory also increase due
to the stochastic nature of the problem. This may impact directly the performance of the
replenishment policies and decisions what can result in different conclusions as the one
presented hereby. Any further conclusion about the impact of the ordering frequency and
delivery time on the inventory system considering the setting studied hereby requires also
a sensitivity analysis considering a range of values designated to these variables.

Still on the factors that could be extended in the design of experiment, different de-
mand distributions over the shelf-lives of the items in stock that was not considered hereby
may also be considered in further research. Section 2.2 presented basically what is called
hereby the base literature containing different references which used different approaches
to model the demand distribution over the shelf-lives of the items in stock. One of the de-
mand distributions was the proportional distribution associated to Vaughan (1994) and Fer-
guson and Ketzenberg (2006), exhaustively commented in this master thesis, and adopted
in the design of experiment. However, two other distributions that were presented in sec-
tion 2.2 were not adopted in the design of experiment: the uniform distribution associated
to Sapountzis (1985) and Lowalekar et al. (2016), and the hypothetical distribution as-
sociated to Pegels and Jelmert (1970). These distributions were not adopted due to the
resources limitations to perform the actual work for this master thesis, because the adop-
tion of only one extra distribution was considered of extreme relevance for the sake of
comparison and because the proportional distribution was considered the most relevant
and realistic distribution. However, it is acknowledged that the adoption of one or two
extra distributions may improve the scientific quality of the research and the reliability of
the results. In addition, the adoption of other distributions could provide opening for other
findings.

At last as explained in the literature review, pricing marketing actions such as pricing
manipulation can drive consumer demand, a phenomenon called price elasticity of de-
mand, which significantly influences operations management decisions in areas such as
capacity planning and inventory control (Maddah et al., 2011). Price elasticity may also
impact the choice of customer considering the remaining shelf-life of demanded items
available on shelf. In fact, such strategy is often used by retail stores in order to avoid
the wastege of items that are about to expire. Therefore, price elasticity is other feature
that was not modeled in the inventory system studied hereby and could improve the the
research on the preference of customers regarding remaining shelf-life.

Another limitation that also impacted the analysis of the results was the use of only
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heuristics policies. No experiments considering optimal ordering on the replenishment
policies adopted was used hereby. In an attempt to overcome this drawback, the hypo-
thetical interval close to optima, an interval which hypothetically surrounds the optimal
expected ordering quantity results, was identified. However, undoubtedly the use of opti-
mal ordering policies may enrich the analysis and the conclusions.

No deeper mathematical and statistical analysis of the properties of the model adopted
hereby was performed. Such analysis may also improve the scientific rigour of the results
by improving for example the evaluation of the consistence of the EM-Algorithm consider-
ing the setting adopted in thus master thesis. An evaluation of the curve may for instance
indicate if there is more than one local maximum, supporting the assessment about the
initializing estimator from the EM-Algorithm.

At last, the considered most promising limitation and research opportunity is the fact
that no real data was used in this thesis. A real case scenario data could be used to vali-
date the model for specific conditions and enrich the design of experiment extending the
factorized analysis. In addition, it may be used to improve the model adapting it to a more
realistic context. In the initial discussions about the topic to be covered in this research
was to find or develop a realistic model that captures the behavior of customer considering
their preferences against the freshness of demanded items in in inventory simulations. The
time consuming complications to access such real data within the time frame for submis-
sion of this work was the main reason for the non-acquaintance of the data. However, such
validations is a far-reaching step regarding the progress of this work.
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This chapter provides a proper closure for this master thesis by linking the introduction to
the discussion chapter. It starts by discussing what was the main contribution of the thesis.
It then presents a straightforward answer to the problem statement and research questions.

A primary ambition for the thesis was to validate an existent depletion policy found
in available literature or develop a new one that could capture the behavior of customer
considering their preferences against the freshness of demanded items in in inventory sim-
ulations. The relevance of such topic ascends from motivations from the industry inasmuch
as the technological development found in the retail environment that enables data collec-
tion and their use, and the statistical methods developed in the academia environment in
its majority.

Due to the time consuming complications to access the real data that would enable
such aspiration within the time frame for submission of this work, a step back was taken
and this aspiration was not directly pursued. A more fundamental work towards the de-
velopment of a model that may be used for the desired estimations and their investigations
was carried out. Hence, this thesis provided a considered insightful outcome in spite of the
limitations mentioned. The developed model frames a bedrock with its fruitful results for
verification and validation with real data, and for further research extensions. In addition,
the results and analysis presented a meaningful reasoning about the use of estimated val-
ues of demand considering an inventory system in the stochastic context presented hereby.
That is why it is considered that most of limitations presented within the conclusion may
become ingredients for further research.

The problem statement asked: How can customer preferences be estimated in an in-
ventory model with complete upwards and downwards substitution? Therefore, this master
thesis presented one alternative for the considered viable answer describing and evaluating
a setting of tools adopted for such estimation. Moreover, it provided the results of a series
of analysis to assess its impact in an inventory context.
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Appendix A

This meeting log is an adaptation of all minutes of the meetings that were held to discuss
this master thesis. Therefore, a summary of what happened in each meeting with the
main decisions are presented. The content and terms used in each minute of meeting were
maintained in order to secure the realistic historic overview about what was discussed and
decided. Hence, this appendix should be used just to support the comprehension of the
development of the thesis and not as part of the scientific content of it.

113



114



115



116



Appendix B

This appendix presents a sketch of the modeling that it is suggested for a similar inventory
model developed in this master thesis but with a general maximum remaining shelf-life
higher than 2 periods. In the M -shelf-lives setting similarly to the two-shelf-lives setting,
λa and λb are also be estimated from their respective observed censored demand which
is given by the realized sales. However, two differences between the settings adds two
complications to the problem.

The realized sales in the two-shelf-lives setting was censored by x1,t and x2,t. There
were only two categories of items considering the remaining shelf-lives in the system
which were related to these two ordering quantities and they could be compered directly
to da,t and db,t as shown by the equations (4.29) and (4.30). In the M -shelf-lives setting,
the realized sales is censored by the stock available to fulfill both demands. The stock
available have potentially more than two shelf-lives, fact that, in this case, adds the first
complication: With more than two shelf-lives, which of the items do compose the realized
sales a and which of the items do compose the realized sales b for the demand estimation?

Analogously to how was described to the two-shelf-lives setting, the figure presented in
this appendix shows all possible events that can happen in the M-shelf-lives setting. In this
figure, customer a and customer b represent hypothetically the demand for the items a and
items b respectively. The items a are the oldest items on the shelf and items b are the newest
items on the shelf. Also hypothetically and in order to facilitate the comprehension, the
items are distributed through the shelves which correspond respectively to their remaining
shelf-life. Hence, the demand a starts to be gradually satisfied by the oldest items following
a FIFO issuing policy and demand b starts to be gradually satisfied by the newest items
following a LIFO policy. Customer a starts picking up the items from the shelf with
lowest remaining shelf-life (far right). Once the shelf is empty and there is still remaining
demand, customer a starts picking up the items from the immediate next available shelf
correspondent to the less higher shelf-life items. Similarly, customer b starts picking up
the items from the shelf with highest remaining shelf-life (far left). Once the shelf is
empty and there is still remaining demand, customer b starts picking up the items from the
immediate next available shelf correspondent to the less lower shelf-life items.

Once again, the event AB corresponds to the event which the demand is fully cen-
sored. That means that in this event the total demand at period t + 1, da,t+1 + db,t+1 is
equal or higher than the total inventory at period t. In such event, there is no tangible in-
formation available about demand a and demand b that can be used to estimate them since
the magnitude of the demands were censored by the complete available stock.

The event AB corresponds to the fully non-censored demand similarly to the same
event in the one-period setting. In such event, both the demand a and demand b are tangible
and can be indicated by the realized sales at period t+1. The demand a corresponds to the
realized sales of the items with lower shelf-life than the lowest shelf-life of the unaltered
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inventory. In the figure, the unaltered stock is represented by the shelf M − 2 at period t
and shelfM−3 at period t+1. Do note that the quantity of items from shelfM−2 didn’t
change at period t+ 1 at shelf M − 3 when the stock was updated for the next period and
items from shelves m were transferred to the shelves m − 1. Equivalently, the demand b
corresponds to the realized sales of the items with higher shelf-life than the higher shelf-
life of the unaltered inventory. The unaltered inventory can consist of more than one
shelf-life and it always corresponds to the items within the unaltered inventory boundaries
i.e. all shelves that didn’t have their quantity altered after and before the shelves that were
altered on the inventory update from the period t to the period t+ 1.

At last, the event ĀB̄, which is analogous to the events ĀB and AB̄, corresponds
to a partially censored demand. In this case, there is no unaltered inventory, but there is
remaining stock correspondent to one shelf-life. This event gives an idea about what is
the demand a and the demand b, but there is no available information which supports the
identification of which demand the items correspondent to the shelf which still contains
items satisfied at the previous period. For example in the figure, there are still 2 units
at period t + 1, shelf M − 3 and event ĀB̄. These items were transferred from shelf
M − 2 at period t which contained 3 units. The system does not provide any information
to identify if this 1 unit of difference satisfied demand a or demand b. In order to overcome
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this lack of information an hypothetical new demand n is considered. This demand n is
used similarly to the demand a and demand b to model the demand for the items from the
unique remaining stock at event ĀB̄

The realized sales for demand a, demand b and demand n are given by the following
equations:

r1,t+1 =


0 for AB

x̄a,t+1 for ĀB̄

da,t+1 for AB

(7.1)

and

r2,t+1 =


0 for AB

x̄b,t+1 for ĀB̄

db,t+1 for AB

(7.2)

and

rn,t+1 =


x̄t for AB

dn,t+1 for ĀB̄

0 for AB

(7.3)

where the events AB, ĀB̄ and AB correspond to the following conditions:
AB → x̄t ≤ da,t+1 + db,t+1

ĀB̄ → x̄a,t + x̄b,t < da,t+1 + db,t+1 < x̄t

AB → da,t+1 + db,t+1 < x̄t ∩ da,t+1 ≤ x̄a,t ∩ db,t+1 ≤ x̄b,t
(7.4)

Having the realized sales for the items correspondent to the demand a, b and n, and the
inventory quantities from each side of the inventory, x̄a,t and x̄b,t; the censored demand
distributions can be acquired similarly to the ones given for the two-shelf-life setting. The
censored demand distributions can be used to estimate the parameters correspondent to the
demand distribution of product a, product b and product n, which is also an hypothetical
one that corresponds the items that are associated to the unique remaining stock at event
ĀB̄. At last, the demand n may be proportionally distributed between the demand a and
the demand b. For example if the demands are Poisson distributed, the final estimated
mean demand a can be set to be equal to the estimated mean demand a plus the quantity
of the estimated mean demand n proportional to the quantity of estimated mean demand
a in relation to the sum of the estimated mean demand a and the estimated mean demand
b. Analogously, the final estimated mean demand b can be set to be equal to the estimated
mean demand b plus the quantity of the estimated mean demand n proportional to the
quantity of estimated mean demand b in relation to the sum of the estimated mean demand
a and the estimated mean demand b.
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