


Chapter 7. Computational Study

7.1.4 Technical Information

We conduct tests to check how software settings and sets and parameters affect the
computational time and gap. The most important findings are as follows:

• Depth first cutting strategy :
By applying this cutting strategy in the branch and bound procedure in Xpress
the computational time is reduced and feasible solutions are found more quickly.
This is a more aggressive cutting strategy, generating a greater number of cuts,
and results in fewer nodes being branched due to pruning.

• The number of trucks:
If the number of available trucks equals the number of necessary trucks in the
model, the computational time in the transporter model is higher than if the
number of available trucks is slightly bigger. However, if the available number of
trucks is much higher than necessary, the computational time also increases due
to the enlargement in the number of variables. Therefore, we choose to keep a
fleet of 15 trucks. This can be explained as the model look primarily for feasible
solutions with a limited number of available trucks. While the procedure goes
easier if there is some slack.

By implementing these components, the remaining number of variables and constraint
after Xpress’ presolve procedure can be seen in Table 7.1. It is clear that the trans-
porter model is more complex and larger computational problem than the wholesaler.
This is first and foremost due to the binary variables in the transporter model. Addi-
tionally, the wholesaler model can choose between 23 routes, which are non-overlapping
with one exception. The transporter model, on the other hand, can choose from the
same 23 routes as the wholesaler model, in addition to 199 supplementary routes. The
latter includes many overlapping routes. The different instances increase the size of
the problems relative to the base instance and combined is the largest. This is due to
having the most flexibility and thereby more combinations to go through.

Table 7.1: Number of variables and constraints for the different instances

Instance
Wholesaler Model Transporter Model

Variables Constraints Variables Constraints

Base 56 35 4410 494

Shifting 109 48 4574 501

Time-Independent Routes 56 35 6004 604

Combined 152 53 8572 849

The computational time for each of the information sharing cases in the base instance
is seen in Table 7.2. This is the aggregated total time for all iterations and for the
situations of daily iterations see Appendix D. The wholesaler model is solved to op-
timality within seconds due to the low degree of freedom. The selection of routes is
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limited due to routes being fixed to time periods and no overlapping (with one excep-
tion). Therefore, the wholesaler model has no other choice but to place the demand
on the relative few available routes in the set of tactical routes. At the same time,
since there are no capacity restrictions on the routes, the model finds for each retailer,
the route with the lowest pallet cost. The computational time in DD is longer than in
WD for the wholesaler model. The problem is solved to optimality relatively fast and
the computational time includes the necessary time to generate the problem. Hence,
since DD is computed from seven days, while WD is computed in one iteration for the
whole week.

Table 7.2: Aggregated computational time [s] to reach optimality in the base instance for
every information sharing case

DD WD WW

Wholesaler Transporter Wholesaler Transporter Wholesaler Transporter

Time 1.301 13.710 0.297 14.014 0.228 7204.54

The transporter model needs 7204.54 seconds to reach a gap of 0 % and conclude
optimality for the WW in the base instance. This is higher than for the wholesaler
because the number of variables and constraints are much higher for the transporter
model. A longer planning horizon is the main reason for the relatively high computa-
tional time. However, the optimal solution was found after 4.4 seconds. By looking
at the process of reaching optimality, the transporter model finds the optimal solution
relatively fast, but the gap does not reduce and did not change in 48 hours. Gap
performance was improved by using a depth first algorithm due to achieving a better
lower bound, rather than searching for a better solution. This is because the nature
of the problem implies multiple optima and the lower bound is the best indication if
it is optimal or not. See Appendix E for the gap development.

The trend of the different information sharing cases is seen in the other instances as
well. For the other instances, we see the same trend with an increase in the computa-
tional time with weekly information. It is the transporter model’s computational time
in the WW information sharing case that is predominant compared to the rest. For
all instances, we accept a gap of 0.01 %, since the problem at this point is probably
closing the gap, rather than finding the optimal solution.

7.2 The Base Instance

In this section, we study the effect of information sharing with no added flexibility. We
aim to find out whether increased information sharing is beneficial without allowing
any type of extra flexibility, meaning each retailer must be served in accordance with
actual demand and at the scheduled time. This is what we refer to as the base instance.
The base instance has a more detailed description of the analysis than the other
instances. This gives an insight into the extent of the data and the algorithm, but
only the performance parameters are discussed in the other instances.
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Table 7.3 shows the performance parameters for the base instance. All the three
information sharing cases show that the maximum number of necessary trucks is 12 and
the total number of departures is 28. By only looking at the performance indicators,
the three information sharing cases are identical and show no cost benefits of increased
information sharing.

Table 7.3: Performance parameters for the time-independent route selection

Instance
Wholesaler Cost Number of Number of Filling

[Base=100 %] Necessary Trucks Departures Rate

DD 100 % 12 28 64.4 %

WD 100 % 12 28 64.4 %

WW 100 % 12 28 64.4 %

7.2.1 Trucks in Use, Departures and Returns

Figure 7.3 shows the daily number of necessary trucks. Here the number of departures
and returns are the aggregated number of all the four time periods in the day. This
means that if a truck returns one day, it does not necessarily entail that the same truck
can be deployed on a new route the same day. This depends on which time period the
truck returns and the next departure time (if any) the same day.

Figure 7.3: Number of trucks that leave and return within the day, as well as the maximum
number of trucks in use each day

The number of trucks in use represents the number of trucks assigned to routes and
used during the day. From the figure, we see that this varies through the whole week.
Wednesday has high demand compared to the rest of the week and therefore have the
highest number of necessary trucks. Due to the highest truck usage on Wednesday,
also Thursday has equally high truck usage. We can see on Thursday that there are
more than twice as many trucks in use than there are departures. This is caused by
the long travel times combines with daily demand. The number of daily departures
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reflects the number of trucks needed for that day as all the routes use at least 4 time
periods to return and therefore could not be used within the same day.

7.2.2 Route Selection

The routes chosen by each model are identical for all the information sharing cases in
the base instance. However, the tactical and the operational routes are not the same.
Table 7.4 provides an overview over routes chosen in the base instance for both the
wholesaler model and the transporter model during each day of the week. ”S” refers to
supplementary route, WW indicates when information sharing case WW differs from
DD and WD. ∗ implies that number of pallets exceed truck capacity on a route.

From Table 7.4 we can see that all the 23 routes in the set of tactical routes are chosen
in the wholesaler model. Hence, the wholesaler model must choose every route in
order to satisfy transport requirements as there is no flexibility related to choosing
routes. Furthermore, since the wholesaler model chooses all the tactical routes, then
all the operational routes are available for the transporter model. This includes the
tactical routes and their supplementary routes. This entails that the transporter model
has some more flexibility related to route selection as the available number of routes
increase from 23 in the wholesaler model to 222 in the transporter model.

If the number of pallets placed on a tactical route in the wholesaler model is less than
the truck capacity of 60 pallets and there are no overlapping operational routes, the
operational route chosen in the transporter model equals the tactical route chosen in
the wholesaler model. This is reasonable as every retailer that can be served on a tac-
tical route has demand the same time period that route can be chosen. Furthermore,
the cost of one tactical route is always cheaper than two corresponding supplemen-
tary routes. The only exception is for route 17 and this is due to overlap of some
retailers with route 20. Route 20 or any supplementary routes are not chosen by the
transporter model. This is because route 20 is the only one with overlap to the other
routes available on the same day. Route 17 receives additional pallets and apply a
cheaper supplementary route to cover all the demand at retailer 20. In other words,
when there are no overlapping routes, supplementary routes will only be chosen if the
demand for a route exceeds the capacity of one truck.

If the number of pallets on a tactical route exceeds the truck capacity of 60 (marked
with * and bold in Table 7.4), the corresponding operational routes either consist of two
supplementary routes or one tactical and one supplementary route. Which alternative
the transporter model chooses depends on the cost of the supplementary route relative
to the tactical route as well as which retailers are included in which supplementary
route and the retailers’ demand. The route cost is identical for chosen supplementary
routes where WW is different from the two other information sharing cases. Hence, the
solutions suggest multiple optima. Differences are caused by algorithmic differences
between the iterative and non-iterative model run procedures.

65



Chapter 7. Computational Study

Table 7.4: Pallets on routes for the base instance

Departure Day

Wholesaler Model Transporter Model

Route Nr of Pallets Route Nr of Pallets

Mon 1 53 1 53

Tue

2 46 2 46

3 51 3 51

4 36 4 36

5 65∗
S5.1 21

S5.2 44

Wed

6 63∗
6 57, 60WW

S6.1 6, 3WW

7 57 7 57

8 68∗
S8.1 36

S8.2 32

9 61∗
9 56

S9.1 5

Thu

10 25 10 25

11 15 11 15

12 47 12 47

13 30 13 30

14 19 14 19

Fri 15 25 15 25

Sat

16 65∗ S16.1 36, 39WW

17 34
17 60, 58WW

S17.1 60, 59WW

18 46 18 46

19 56 19 56

20 57 - -

Sun

21 55 21 55

22 44 22 44

23 64∗
S23.1 30

S23.2 34
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7.2.3 Filling Rates

For all the information sharing cases in the base instance, the average daily filling rate
is 64.4 %. Furthermore, the common, minimum and maximum filling rates are listed
as 8.33 % and 100 %, respectively. The number of pallets on each operational route in
Table 7.4 also indicates the filling rate on each truck when assigned to a given route.
We see that DD and WD have identical filling rates, while WW deviates on a few
routes.

WW differs from DD and WD in two time periods. In both cases, the wholesaler
model chooses to deliver more pallets on a shorter route than a long one which can
serve the same retailers since the travel time is decisive to cost. However, pallet cost
is only a cost component in the wholesaler model, which for the three information
sharing cases give the same results.

As there is no such thing as pallet cost in the transporter model, the assembling of
truck compartments will be indifferent to an optimal solution in this model. And
as the iteration process in the transporter model differs in the WW this, the results
are two different multiple optima. Therefore, the differences between WW and the
two other information cases are rooted in how daily and weekly information in the
transporter model affects the algorithm.

7.2.4 What-If Analysis

In this section we see how the change of either demand scenario or the cost of trucks
affect the model.

Demand Week

The analysis above is conducted for demand week three. There are four demand
weeks available for input. By running the base instance on them we could not find
any indication that there are any differences between the information sharing cases.
The number of departures, returns and trucks in use for the four different weeks could
be found in Appendix F.

Rented Trucks

Here we test two situations where the number of own trucks are 8. There were no
differences with rented trucks compared to the base instance. The increase in cost
is solely connected to the additional truck cost related to rent of trucks. The routes
chosen are identical to the base instance for all the information sharing cases. Hence,
base with rented trucks require the same number of trucks in order to fulfill demand.
The placement of pallets and filling rates are similar as in the base case, but there are
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some differences. And again, as filling rates are not represented as a cost incentive
in the transporter model. Hence, different filling rates reflect multiple optima. This
imply that truck cost is indifferent to the selection of routes and necessary number of
trucks. This was also the case when we tested for the other demand scenarios.

7.2.5 Evaluating the Base Instance

The different information sharing cases in the base instance provide the same results.
Any differences are caused by multiple optima combined and algorithmic differences
between the iterative procedure for the respective information sharing case. These
findings suggest that only sharing information in itself is not sufficient to reduce the
costs or be beneficial for neither actor.

Many factors might impact the results. Firstly, the truck use and route selection
might be affected by previous and future weeks. Nevertheless, the necessary number
of trucks during the week is not likely affected. This is because Wednesday is the
day that defines the maximum number of trucks in the week due to peak demand
and routes for Saturday and Sunday all return no later than Tuesday. Additionally,
the findings in this section suggest that if the results would be affected by input from
other weeks, then all information sharing cases would be affected the same way.

Second, the transport area entails long travel times and a relatively few number of
retailers and tactical routes. Generating and including more overlapping tactical routes
could possibly change the outcome of information sharing as it provides more freedom
and room for making changes. For that reason, a transport area located closer to
the wholesaler could possibly show a higher effect of information sharing as this would
suggest a higher possibility of combination of routes and consequently trucks on routes.
The same argument applies to why the use of rented trucks does not show any effects
on route choices. The retailers must be chosen no matter what and so the routes must
be driven, independently on the cost of the truck. In the case of shorter travel times
and a higher route selection, then renting may show different results. However, we
assume the result here is also highly dependent on the cost structure of rental trucks
with respect to route cost and own trucks.

Our models have used a cost structure that favors the reduction of the necessary total
number of trucks. However, whether the transport company prefers to use as few
trucks or routes as possible differ between situations and company preferences. The
transport company may want to have an additional truck in order to handle demand
and supply uncertainties. Additionally, if the unused trucks can be assigned to other
jobs then it is more important to reduce the number of departures than minimizing
the size of the fleet of trucks.

As the results from the base instance indicate that information sharing alone cannot
affect cost reduction, we will further see if added flexibility has an impact in the effect
of information sharing.
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7.3 Shifting

In this section, we study the effect of information sharing when shifting is applied. By
this we mean that the wholesaler may shift pallets to an earlier time in the WD and
WW information sharing case, and the transporter model may shift to a later time
in WW. For thorough explanations regarding route selection, use of trucks, etc., the
reader is referred to the previous section. As shifting only is possible in WD and WW,
DD is not affected and will therefore be the same as in the base instance.

The shifting done by the wholesaler and transporter model are described in Section
7.3.1 and Section 7.3.2, respectively. Section 7.3.3 describes the interactions the models
have in the different information sharing cases and what consequences these have for
the transporter model. Lastly, a what-if analysis is conducted in Section 7.3.4.

7.3.1 The Wholesaler Model

In the wholesaler model, SP pallets can have early shifting up to 7 days in both the
WD and the WW information sharing case. Since the input and parameters are the
same for the wholesaler model in the WD and WW case, results are identical for both
the information sharing cases. To specify, in this subsection the WD case is presented
and shifting refers to early shifting of SP pallets only and shifting is only added to the
wholesaler model. The finding additionally apply to the wholesaler model in the WW
case. The wholesaler model achieves a 7.7 % cost reduction when allowing shifting.
All the 23 tactical routes are chosen. The cost reduction is caused by how pallets are
placed on each tactical route, as well as achieving a higher degree of leveling.

Figure 7.4 shows the daily, scheduled number of pallets for the different pallet cate-
gories (gray) and the aggregated change due to shifting (blue). Due to leveling cost
incentives, the model chooses to shift pallets from a day with high demand to a day
with low demand. The dashed line represents the target demand and all days with
demand that exceed this value have the incentive to shift pallets to a different day.
There is, however, one exception on Thursday. This is the day which originally devi-
ates the least from the target value. The piece-wise linear leveling cost function leads
to the increment of pallets on Thursday. Therefore, the model gets a lower total cost
by adding additional deviation pallets on Thursday than keeping them on Saturday
and Sunday.

In total 52 pallets were shifted, meaning the model shifted 75 % of the pallets that
could be shifted (see Table 6.2). A reason for not shifting more is that an order can
only be shifted if there exists a route on a day earlier in the week that contains the
given retailer. The day that is the most affected by the shifting is Monday that increase
demand with 60.4 %. As Monday has scheduled demand lower than leveling target,
the pallets are shifted to this day if possible. Monday may receive shifted pallets from
all the other days given that the retailers have demand on Monday. Only 4 retailers are
served on Monday, but all these experience shifting this day. The shifting to Monday
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Figure 7.4: Number of scheduled pallets
(gray) and aggregated change of pallets due
to shifting (blue)

Figure 7.5: Shifted (solid bars) and non-
shifted SP-pallets(striped bars) in WD and
WW with early shifting

is also restricted by the inventory constraint and this prevents an even higher number
of shifting.

Figure 7.5 illustrates the distribution of SP pallets over the week, indicating which
days a pallet is shifted to and from. The striped bars indicate SP pallets that are not
shifted and the color represent the day of the week. The solid bars are the shifted
pallets and the color indicate which day they are shifted from. Thursday and Tuesday
both shift to another day, but additionally receives pallets from another day. This
has to do with the arrangement of retailers on different days. The SP pallets shifted
to Thursday are weekend orders with retailer demand on Thursday and no other day
with lower scheduled demand. On Wednesday the demand decrease with 5.2 % and
is the largest reduction of the days. Nothing is shifted to Friday because the retailers
served on Friday do not have demand of SP pallets other days of the week exceeding
one pallet, and therefore have no potential pallets to shift.

The effect of shifting is influenced by how the pallet category share is divided among
the different retailers and routes. Retailers with a low share of shiftable orders are
less likely to be affected by shifting than retailers with high shares. Correspondingly,
a route with a high share of shiftable orders has a higher probability to be altered for
than the ones with a low share. Additionally, the shifting of pallets on a route directly
affect the truck filling to trucks assigned on that route.

7.3.2 The Transporter Model

In the transporter model, SO pallets can have late shifting up to 2 days. Shifting in the
transporter model is only available in the WW information sharing case and done after
the shifting of the wholesaler model. In the transporter model 23 pallets are shifted,
i.e. 35 % of possible shiftable SO pallets. The transporter model has the incentive to
shift pallets only if this will affect selection of routes and thereby route costs and use
of trucks. The transporter model shifts less than the wholesaler model. This is due
to the different incentives and that the number of pallets deviating from the leveling
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target in the wholesaler model is higher than the number of pallets exceeding truck
capacity in the transporter model.

Figure 7.6 shows the daily, scheduled number of pallets for the different pallet cate-
gories (gray), aggregated change due to early shifting in the wholesaler model (blue)
and late shifting in the transporter model (orange). The transporter model chooses to
shift opposite of the wholesaler model on Monday, Wednesday and Sunday. Contrary,
on Tuesday, Thursday and Saturday the shifting is in the same direction. This implies
that the cost incentives in the two models are contradicting some days while amplify-
ing other days. This is mostly dependent on the truck utility for a given day. All the
days, exception for Friday and Sunday, shift and postpone SO pallets. See Appendix
G to see which days shift to/from each other for the transporter model.

Figure 7.6: Number of scheduled pallets (gray) and aggregated change of pallets due to
early shifting (blue) and late shifting (orange)

7.3.3 Evaluating the Differences in Information Sharing Cases

The performance parameters for the shifting instance can be seen in Table 7.5. We see
that the wholesaler benefit from the shifting by 7.7 % decrease in cost and that the
shifting leads to one less truck necessary. The filling rate and number of departures,
on the other hand, does not change.

Table 7.5: Performance parameters for the shifting instance

Instance
Wholesaler Cost Number of Number of Filling

[DD=100 %] Necessary Trucks Departures Rate

DD 100 % 12 28 64.4 %

WD 92.3 % 11 28 64.4 %

WW 92.3 % 11 28 64.4 %

Figure 7.7 illustrates the daily number of necessary trucks with and without shift-
ing. Due to the leveling in the wholesaler model, the transporter model must assign
one additional truck on Monday in WD and WW compared to DD. The additional
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truck usage on Monday also necessitates an additional truck on Tuesday. However,
the wholesaler leveling of demand reduce the number of pallets on Wednesday enough
to save one truck in the transporter model. As Wednesday is the day which demand
is decisive for the necessary number of trucks in the week means that the overall truck
need is reduced from 12 to 11 trucks. This implies that even though the wholesaler
model does not consider truck usage or capacity, the leveling incentive has a direct im-
pact on the weekly truck need. This also means that the transporter model gains from
the leveling incentive in the wholesaler model. The results of the models imply that
with shifting, the average number of necessary trucks decrease, but not the number of
departures.

Figure 7.7: Comparing daily number of necessary trucks with and without shifting

Going from WD to WW information sharing case, the change in routes chosen and pal-
lets placed could be explained by three factors. Firstly, the added flexibility together
might modify the algorithm to choose a different composition of pallets than in the
WD case due to the multiple optima. Secondly, shifting enables the transporter model
to choose different, i.e. cheaper, combinations of routes compared to without shifting.
This is the situation on Saturday, where two pallets are shifted to Sunday in order to
use a better supplementary route. Thirdly, shifting enables to save departures from
the wholesaler and thereby the necessary number of trucks. However, the results did
not show this, but this is probably due to the end of horizon time frame. To specify,
there are 2 supplementary routes on Sunday pallets that correspond to one tactical
route in the wholesaler model, which trucks together carry 61 pallets. By shifting one
pallet to a later day, i.e. next week, it would be possible to only use one truck instead
of two on Sunday. However, we do not allow shifting between different weeks. There-
fore, without an end of horizon time frame, there is a high probability that the pallet
would be shifted and the WW case would have saved one more departure compared
to the WD case.

In the demand scenario of week 3, there are no differences between the information
sharing cases WD and WW. Daily truck use and the number of departures are the
same. This implies that benefits from information sharing with added flexibility is not
caused by information sharing between the two models, but is limited to the added
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flexibility of early shifting in the wholesaler model. In other words, it is the fact that
the wholesaler makes use of the available information earlier, not that when it shares
this information with the transport company that is decisive.

7.3.4 What-If Analysis

Choice of parameters and sets for the models may be crucial for the results. Therefore,
we want to validate the results for the information sharing cases with added flexibility.
We look at the effect of changes in three different parameters: demand input, shifting
ratio and the number of shifting periods. The renting of trucks does not affect the
transporter model and the results are the same in terms of routes and number of
trucks and the total cost change due to the extra cost of renting. Therefore, we do
not analyze this further.

Demand Week

In Section 7.3.2 we found that improved results when allowing shifting originated from
the wholesaler’s ability to plan demand distribution. Improvements were not made
due to transport company’s ability plan better due to increased information sharing.
However, we want to check the 3 other weeks from the input data to see if information
sharing and late shifting has a decisive impact when the daily demand is different.
Figure 7.8 provides an overview of daily truck usage for all the 4 demand weeks for
DD and aggregated changes from early shifting in WD (blue) and late shifting in WW
(orange).

There are no changes in truck usage between the information sharing cases in week 1
(Figure 7.8a). This implies that for this week, early shifting nor late shifting have any
impact in terms of the number of necessary trucks. It should be noted that week 1
is the week with the lowest total demand. Week 2 (Figure 7.8b) is the week with the
highest weekly truck usage reduction, but also the only week where late shifting in the
transporter model contributes to changes. Due to wholesaler leveling, the transporter
model needs additional trucks on Monday and Tuesday in the WD case. However,
when late shifting is allowed in WW, the transporter model is able to reduce the truck
usage. Additionally, the model changes a tactical route into two supplementary routes
on Saturday in order to return in time to reduce the number of trucks on Sunday.
This way, the late shifting in WW reduces the maximum necessary number of trucks
in the truck fleet. Week 4 (Figure 7.8d) has the greatest changes due to the leveling
in the WD case.

From this, we can conclude that the potential of information sharing is highly depen-
dent on the daily variations from each week. When we see such substantial differences
between 4 consecutive weeks, we assume the differences are even higher within a year.
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(a) Week 1 (b) Week 2

(c) Week 3 (d) Week 4

Figure 7.8: The number of necessary trucks for each of the four demand weeks when shifting
is allowed

Increasing the Shifting Ratio

The shifting of SP pallets is first and foremost influenced by the share of promotional
products. The applied data contain a lower share of SP pallets compared to other
months of the year. A higher share of SP pallets implies a higher potential for shifting
for the wholesaler model, which again influences the transporter model. In this section
we analyze what happens to the transporter model when we allow for a higher ratio of
the SO pallets to be shifted. This is primarily because the effects of late shifting proved
to be insignificant with respect to truck usage. The shifting ratio directly affects the
number of pallets that potentially can be shifted and consequently, the number of
shifted pallets.
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Figure 7.9 shows the number of necessary trucks for three different shifting ratios. We
can see that in general, a shifting ratio of 100% has a bigger impact on daily truck
usage than a shifting ratio of 30 %. However, the weekly, necessary number of trucks
are the same for the two higher shifting ratios. Compared to a shifting ratio of 20%,
the increased shifting ratio result in needing one truck less. This might imply that the
effect of increasing the shifting ratio is positive but diminishing.

Figure 7.9: Daily truck usage for WW with
different shifting ratios

Figure 7.10: Daily late shifting of SO pal-
lets for WW with different shifting ratios

Figure 7.10 shows the daily shifted number of SO pallets with different shifting ratios.
The higher the ratio, the more pallets are shifted. Monday and Tuesday are the days
where the highest number of pallets are shifted from, while Thursday is the day the
most pallets are shifted to. Nevertheless, the number of shifted pallets are significantly
higher for a 100% shifting ratio. This leads to one departure saved on Monday (see
Figure 7.9).

Currently, the wholesaler allows the transport company to shift a limited number of
pallets. However, our model suggests that alternating the shifting ratio does change
the impact of late shifting and can be beneficial as it might reduce the number of
necessary trucks.

Increasing the Number of Days SO can be Shifted

The transporter model has the possibility to postpone and shift SO pallets up until
two days. In this section, we study what happens if they could postpone a delivery
with 7 days, i.e. the same number of periods the wholesaler model is allowed to shift
earlier in time. Figure 7.11 and 7.12 compare the daily truck usage and number of
shifted SO pallets, respectively.

We see that the necessary number of trucks is reduced by one truck when allowing
7 day postponed shifting instead of just 2. More days to shift onto indicates greater
shifting potential. More pallets are shifted to the second half of the week. This saves
the use of one truck since Wednesday is the decisive part for maximal truck usage
during the week.
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Figure 7.11: Daily truck usage for WW
Figure 7.12: Daily late shifted number of SO
pallets for WW

7.4 Time-Independent Route Selection

In this section, we study the effect of information sharing when allowing a more flexible
route selection. We keep the set of tactical and operational routes but remove the
restriction regarding which routes can be chosen which day. In other words, we look at
time-independent route selection for both models.This is an alternative to making more
routes, and consequently giving the models more freedom. It should be noted that
by this relaxation of the models will no longer ensure retailer delivery requirements.
Section 7.4.1 and Section 7.4.2 go through the effect the time-independent routes have
on the wholesaler and transporter model, respectively before and evaluation of the
differences in the information cases in Section 7.4.3. Lastly in Section 7.4.4, a what-
if analysis, where the operational routes are unconditional of the tactical routes is
conducted.

7.4.1 The Wholesaler Model

Time-independent route selection in the wholesaler model implies that the wholesaler
model for each time period can choose from all the 23 tactical routes. All the infor-
mation sharing cases show identical results with a time-independent route selection.
This is because retailer demand is fixed to time periods, and the wholesaler model
must select routes for the same pallets regardless of when information is available.

The wholesaler model uses 12 time-independent routes with 47 departures altogether
during the week. As demand is fixed, the only cost incentive is pallet cost minimization.
This means that the model will place pallets on routes that give the cheapest pallet
costs, implying cheap routes. This result in the model choosing the least expensive
routes, i.e. the cheapest to serve each retailer, instead of routes that serve more
retailers. By comparing with the base instance, we see that instead of choosing one
route that serves every retailer with demand on Monday, the wholesaler model chooses
three different routes to serve the same retailers.
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7.4.2 The Transporter Model

The results in the transporter model are dependent on the route selection in the
wholesaler model as the route selection is conditional time-independent. E.g. on
Monday the transporter model for DD and WD can only choose between the three
tactical routes chosen by the wholesaler and the supplementary routes for these three
tactical routes. For WW the transporter model can choose among all the tactical
routes chosen by the wholesaler and the supplementary routes every day.

Daily information, i.e. DD and WD, in the transporter model gives identical results
as the output from the wholesaler model are identical for all the information sharing
cases. However, WW separates from DD and WD. Figure 7.13 illustrates the daily
truck usage for the information sharing cases with time-independent route selection
and the base instance.

Figure 7.13: Daily truck usage for DD/WD and WW with time-independent route selection
compared to the base instance

We see in Figure 7.13 that the transporter model must assign three trucks on Monday
instead of one as the retailers can no longer be served with one but three routes as a
consequence of the route selection in the wholesaler model. This is the case for 3 of the
days. This causes an increased number of necessary trucks during the week compared
to the basic instance since the same routes are no longer available. This is because the
selection of tactical route in the weekend is poor in terms of truck utilization since the
wholesaler place pallets on the cheapest available route for the retailer. This causes
Sunday to be the new, decisive day of necessary number trucks during the week instead
of Wednesday for the other instances.

7.4.3 Evaluating the Differences in Information Sharing Cases

The performance parameters for the time-independent routes instance can be seen in
Table 7.6. The wholesaler model has the same amount of flexibility for all the cases
and does thereby not change. The transporter model saves one necessary truck going
from WD to WW.
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Table 7.6: Performance parameters for the time-independent route selection

Instance
Wholesaler Cost Number of Number of Filling

[DD=100 %] Necessary Trucks Departures Rate

DD 100 % 14 35 51.5 %

WD 100 % 14 35 51.5 %

WW 100 % 13 36 50.1 %

The reason for the reduction is that the transporter model chose two shorter supple-
mentary routes on Saturday in the WW compared to the DD and WD. By distributing
pallets on one route into two instead, the traveling time was reduced enough to have
the trucks return to the departure on Sunday. Thereby the use of an additional truck
was avoided and the number of necessary trucks was decreased.

The chosen routes with reduced the traveling time were also available in the DD
case. This means that it was not the higher selection of routes in the WW case that
manifested the change, but rather the opportunity to plan to return for the next
day departures. The number of departure increase and consequently, the filling rate
becomes worse, but the model ends up saving compared to the DD case due to saving
the maximum number of trucks necessary.

There is a trade-off between the number of departures and the number of necessary
trucks. Due to the transporter model cost structure, the number of necessary trucks
is favorized.

7.4.4 What-If Analysis

In this section of what-if analysis of the time-independent route selection is conducted.
Similar to the other instances, the renting of trucks did not change the result.

The Transporter Model With Unconditional Route Selection

Here we include an additional flexibility to the transporter model where the model
disregards the route selection output from the wholesaler model. In other words, the
route selection in the transporter model is unconditional and the operational set of
routes include the all the tactical and the supplementary routes. From now on the
unconditional routes refer to time-independent operational routes that a independent
of the tactical routes.

Unconditional route selection results in identical output for the three information
sharing cases. This is because all the routes can be chosen at all times. Table 7.7
shows the performance parameters.
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Table 7.7: Performance parameters for the unconditional route selection

Instance
Wholesaler Cost Number of Number of Filling

[DD=100 %] Necessary Trucks Departures Rate

Unconditional
100 % 9 24 75.3 %

Routes

Unconditional route selection leads to additional opportunities for the arrangement of
pallets on routes and trucks. The transporter model chooses more shorter routes with
unconditional route selection. Shorter routes imply that trucks are available earlier,
and hence that less number of trucks are necessary to serve the same demand. With
unconditional route selection, only 9 trucks are needed compared to 13 trucks in the
WW for the time-independent routes instance. The number of departures decreases by
33.3 %. This implies that the more options of routes, the higher the average filling rate,
the better the arrangement of routes and the fewer number of trucks and departures
are necessary. In other words, the transporter model benefits from added flexibility in
terms of route selection, rather than receiving more information earlier.

7.5 Combined Flexibility

In this section, we increase the level of added flexibility. Section 7.5.1 combines the
flexibility of route selection and shifting. Section 7.5.2 conducts a what-if analysis for
the combined instance.

7.5.1 Shifting & Time-Independent Route Selection

Here we combine time-independent route selection with the opportunity of shifting,
i.e. the combined flexibility instance. Here both the routes and demand from the
wholesaler model change and consequently change the input for the transporter model.
Table 7.8 shows the performance parameters for the combined instances.

Table 7.8: Performance parameters for the combined flexibility

Instance
Wholesaler Cost Number of Number of Filling

[DD=100 %] Necessary Trucks Departures Rate

DD 100 % 14 35 51.5 %

WD 85.2 % 16 42 42.9 %

WW 85.2 % 15 40 45.1 %

From the table, we see that the wholesaler cost have decreased 14.8 % from DD to
WD/WW. This is the highest reduction of cost out of all the instances. On the
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other hand, both the number of necessary trucks and number of departures have
increased as well. From the combined DD to the WD the number of necessary tuck
have increased by two and departures have increased by 20 %. This implies that
the improved information and flexibility in the wholesaler model actually worsen the
result of the transporter model. When this information is shared in the WW and
the transporter model has combined flexibility the result improve, but is still worse
than the DD. This is because the wholesaler model only places pallets on the cheapest
route no matter which day and thereby does not take the average demand pattern
into account.

Figure 7.14 illustrates the causes for the increased number of departures. The number
of trucks in use seems to be more leveled over the days in the WD and WW compared
to the DD except for the increase at the end of the week. This may imply that the
wholesaler model’s leveling does level the trucks in use as well, but at the expense of
more departures. Figure 7.15 shows the shifting by both models for the WW. The de-
mand on Friday increases with 76 % after the wholesaler model shift and consequently,
the departures increase from one departure on Friday in DD to five departures in the
WD and WW. The increase in the necessary number of trucks comes from the in-
creased number of departures on Friday which again increase the number of trucks in
use on Saturday.

Figure 7.14: Daily truck usage for the
combined flexibility

Figure 7.15: Shifting of pallets in the com-
bined instance

These findings imply that added information and added flexibility may actually worsen
the results for the transporter model in both regards to number of departure and
number of necessary trucks. This shows that the incentives between the models are
not aligned, and the leveling in the wholesaler model is at the expense of truck use in
the transporter model.

7.5.2 What-If Analysis

We do two what-if analysis for the combined instance; one testing the restrictions of
routes and one where the transporter model is the only one allowed to shift.

80



7.5 Combined Flexibility

Unconditional Routes

Here the combined flexibility instance is tested with the added flexibility of uncondi-
tional operational routes in the transporter model. Table 7.9 shows the performance
parameters. The results for the transporter model improve significantly, decreasing
the number of departures with 25 % and the necessary number of trucks with 33 %
compared to the WW case of the combined instance. Hence, the additional oppor-
tunities of route selection disregarding the wholesaler model improve the transporter
model cost largely.

Table 7.9: Performance parameters for the combined instance with unconditional opera-
tional routes

Wholesaler Cost Number of Number of Filling

[DD=100 %] Necessary Trucks Departures Rate

Unconditional
85.2 % 10 30 60.3 %

Combined

It should additionally be noted that the number of necessary trucks increases by one
in the combined instance with unconditional routes, than with only unconditional
routes and no shifting (see Table 7.7). On the other hand, the combined instance with
unconditional routes lowers the number of necessary trucks compared to with shifting.
From this, we conclude the shifting in the wholesaler model worsen the result of the
transporter model in the combined instance.

Shifting Exclusively for the Transporter Model

Here we look at the combined flexibility of unconditional route selection and shifting,
but the wholesaler model is not allowed to shift. In other words, the transporter model
has unconditional time-independent route selection with shifting while the wholesaler
has only time-independent route selection as a flexibility. Performance indicators are
seen in Table 7.10.

Table 7.10: Performance indicators where shifting is exclusively for the transporter model

Wholesaler Cost Number of Number of Filling

[DD=100 %] Necessary Trucks Departures Rate

Exclusive 100 % 9 24 75.3 %

The performance indicators above are identical with the situation of unconditional
operational routes in Table 7.7. The chosen routes, however, are not identical. Com-
pared to solely the unconditional routes, the combined flexibility better the objective
value in the transporter model by 0.2 %. This is because the added shifting allows
the transporter model to chose combinations of routes that are less expensive. This,
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as well as the identical performance parameters indicate that the transporter model
has no synergy effects with added flexibility. Additionally we conclude that the im-
proved results of the combined instance compared to the base instance comes from the
extended route selection rather than the shifting.

The objective value in the wholesaler model worsen in this what-if analyses compared
to the model performances in the original combined instance. In fact, we do not
find any instances where both models perform the best. Either the wholesaler model
leveling worsen the transporter model’s conditions or the wholesaler model is denied a
flexibility and therefore worsen the result. This shows the need of aligning incentives.

7.6 Overall Results Comparison & Discussion

Here we compare the presented instances; base, shifting, time-independent routes and
combined. Table 7.11 shows the overall performance of four instances. All the in-
stances in the table are here shown for the WW information sharing case to compare
the effect of full information.

Table 7.11: Performance parameters for four different instances with the WW case

Instance
Wholesaler Cost Number of Number of Filling

[Base=100 %] Necessary Trucks Departures Rate

Base 100 % 12 28 64.6 %

Shifting 92.8 % 11 27 67.0 %

Time-Independent
92.3 % 13 36 50.1 %

Route Selection

Combined 79.1 % 15 40 45.1 %

The wholesaler cost is almost the same when either shifting or time-independent routes
are added flexibility, but the combined effect performs the best. We can see from
the results that the combined effect is higher than adding the two effects separately
(92.8% · 92.3% > 79.1%). This could point to some synergy effects in the wholesaler
model when combining the different types of flexibility.

The number of departures as well as necessary trucks differs in all the instances. The
shifting is the one instance that preform best regarding the lowest number of neces-
sary trucks as well as number of departures. On the other hand, from the what if
analysis in Section 7.4.4 showed that with unconditional route selection the necessary
number of trucks where 9. The difference between unconditional route selection and
time-independent route selection is mainly the number of available routes. From this
we can conclude that a bigger selection of routes gives the transporter model better
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performance than with shifting. The combined effect worsen the results of the trans-
porter model. From Table 7.11 we see that the combined instance actually result in
the highest number of departures and thereby the lowest filling rate.

The combined instance have the lowest number of trucks in use on Wednesday and
Thursday which is the days with the highest usage of trucks for the other instances.
Hence, the leveling from the wholesaler model could give the transporter model a
better result in regard of reducing the number of trucks in use on the days of the
largest demand. The downside of the combined instance is the increase of departures.
This is because the wholesaler model will shift in order to level the pallets without
taking the truck capacities into account, and the combined instances amplify this
effect. This means the leveling in the wholesaler model might level the use of trucks,
but at the expense of adding additional departures, which worsen the filling rate.
Hence, increasing flexibility is not necessary beneficial if the incentives of the models
are not aligned.

Table 7.12 shows each of the instances improvement with the increased information
sharing. The base instance had no improvement. Both of the flexibility of route
selections and shifting showed improvement of information sharing by one truck. The
combined instance however, showed a worsening of the number of necessary trucks.
From this we conclude that information sharing between a wholesaler model and a
transporter model have potential benefits, but if the incentives differ too much from
each other, then flexibility combinations may actually amplify a negative effect for the
transporter model.

Table 7.12: Improvement from DD to WW in the reviewed instances

Instance
Improvement of

Necessary Trucks

Base 0

Shifting Decrease by 1

Time-Independent Routes Decrease by 1

Combined Increase by 1

Our findings throughout this chapter suggest that only the possibility of added flexi-
bility show some benefits of increased information sharing. In this section we provide
managerial insight and real life applications. We additionally critically review our
results and models.

Our results depend highly on the characteristics of the grocery industry. First, in the
grocery industry lead times are short. Information sharing is most beneficial when
lead times are long, demand variation is high and demand correlation over time is
high (Lee et al. (2000)). Even though the demand meet the criteria, all the decisions
for the transport company are on an operational level and the lead times for them
are less than 24 hours. The grocery industry the focus on high responsiveness and
high customer service level. This gives incentives to short lead times and consequently

83



Chapter 7. Computational Study

cause less benefits of information sharing. Therefore, applying the same models on a
different industry might show different effects of increased information sharing.
The computational time greatly increases from the DD to the WW information sharing
case due to the increased complexity. This could also be the reason why planning
happen in shorter time intervals in reality. Hence, the benefits of increased information
sharing would be difficult or even impossible to implement. This argument is also
supported by the fact that it is impossible to have full information for a week, together
with the real life challenges related to information sharing between actors in the supply
chain. Firstly, information sharing is usually used in different ways by different actors,
and thereby not structured correctly or lack crucial information for the part that
receives the information. Secondly, information almost always comes with noise when
shared. Therefore, to actually achieve benefits of information sharing in reality one
would have to implement a system to communicate the information efficiently.

Our results suggest that leveling initiated by the wholesaler improved resource uti-
lization in both models. Increased information sharing proved to be less important.
In other words, better planning of promotional products by the wholesaler lowers the
need for both (increased) information sharing and planning by the transport company.
Therefore, if the wholesaler could implement a new planning procedure for promotional
demand and level the demand better with shifting, then the transport company may
either decrease the number of trucks assigned to this transport area.

A classical supply chain strategy says that demand leveling will lead to more effective
resources utilization. Nevertheless, the benefits of leveling must be weighed against
the decreased service level to retailers and consequently consumers. Remember that
the current demand pattern illustrates the consumers’ buying behaviour. Additionally,
as the grocery retail market is highly competitive market, stock-outs are not desired.
Promotional products have the advantage of not causing stock outs. Instead, they are
used as inventory build-ups before the promotion start. Therefore, these products can
be used to level demand without compromising the service level of retailers nor con-
sumers. Therefore, also the transport company should be allowed to shift promotional
products as long as they are delivered before the promotion period.

We found that added flexibility for some instances made at least one of the models
worse off compared to the base instance. This implies that some sort of feedback
loop could have been included to improve the decision making. Therefore, a feedback
loop, alternatively a solution triggered feedback, could potentially serve to enhance
the cooperation and the alignment of each actor’s incentives both in the models and
in real life. Not only should feedback loops apply on a short term basis where the
wholesaler approves shifting suggestions by the transport company, but also on a
long term basis. The wholesaler’s planning of promotional products starts months
in advance of its distribution. Hence, by coordinating with the transport company
the risk of exceeding truck capacities, and consequently needing extra trucks, could be
reduced. By establishing a feedback loop, the entire supply chain may benefit, and this
may duel the well-known problem of functions working in “silos” where the function
optimizes their own incentives and thereby end up with a sub-optimized solution for
the supply chain (Fernie and Sparks (2014)).
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Concluding Remarks

In this thesis, we investigated the effect of information sharing between a wholesaler
and a transport company. We proposed two mathematical models, each representing
the respective actor’s requirements and incentives. Information sharing was evaluated
by comparing three different information sharing cases, that were distinguished based
on whether each model received information daily or weekly. We additionally tested
the effect of information sharing when adding different types of flexibility. It should be
noted that our conclusions reflect the applied input data on our models, hence other
models and other input data might yield other results.

Our results showed that increased information sharing was only beneficial when adding
flexibility. Added flexibility reduced the costs in the wholesaler model by up to 14.8
% and made it possible to use one truck less during the week. However, we also found
that the added flexibility could be disadvantageous for the transporter company, and
thereby the supply chain as a whole. The increased information sharing and added
flexibility are therefore only beneficial if the wholesaler and transport company align
their incentives. Hence, the transition from a tactical route plan to the operational
execution of routes is critical in the implementation of this alignment. Leveling of
demand by shifting could potentially lead to cost reduction as long as truck capacities
are considered. Using promotional products to level the demand and decrease the
pressure on the transportation system on high demand days could reduce the necessary
number of trucks and still fulfill retailer requirements.

For future research, a more extensive model incorporating the way the wholesaler
replenishes demand while considering truck capacities could be used. The effect of
information sharing should additionally be studied for different demand scenarios
widespread over the year, possibly also including as a stochastic factor, to incorporate
the influence of varying demand. A model with rolling horizon time frame could addi-
tionally be used to better demonstrate the transition between weeks, and also expands
the possibility of shifting. Lastly, other industries have different demand patterns and
storability of products and could show other results.
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Desrosiers, J. and Lübbecke, M. E. (2005). A primer in column generation. In Column
generation, pages 1–32. Springer.

Dreyer, H. C., Kiil, K., Dukovska-Popovska, I., and Kaipia, R. (2018). Proposals for
enhancing tactical planning in grocery retailing with s&op. International Journal
of Physical Distribution & Logistics Management, 48(2):114–138.
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Appendix A:
The Wholesaler Model

min P
W

=
∑
d∈TW

∑
p∈P

CLp (σ+
dp + σ−dp) +

∑
i∈N

∑
r∈R

∑
t∈T P

CPr (yNSirt + ySOirt + ySPirt )

∑
r∈R|Air=1

yNSirt = DNS
it i ∈ N , t ∈ T P

∑
r∈R|Air=1

ySOirt = DSO
it i ∈ N , t ∈ T P

ρ∑
t=ρ−E

wiρt = DSP
iρ i ∈ N , ρ ∈ T P |t > 0

∑
r∈R|Air=1

ySPirt −
t+E∑
ρ=t

wiρt = 0 i ∈ N , t ∈ T P |ρ ≤ |T P |

wiρρ≥(1− α)DSP
iρ i ∈ N , ρ ∈ T P∑

t∈T P

(yNSirt + ySOirt + ySPirt ) ≤M1Air i ∈ N , r ∈ R

∑
i∈N

(yNSirt + ySOirt + ySPirt ) ≤M2Brt r ∈ R, t ∈ T P∑
r∈R|Air=1

(ySOirt + ySPirt )− γit + γi(t−1) = DSO
it−1 +DSP

it−1 i ∈ N , t ∈ T P

γit ≤ Ii i ∈ N , t ∈ T P

γi0 = I0i i ∈ N∑
i∈N

∑
r∈R

∑
t∈T D

d

(yNSirt + ySOirt + ySPirt ) +
∑
p∈P

(σ−dp − σ
+
dp) = D d ∈ T W

σ+
dp + σ−dp ≤ βp d ∈ T W , p ∈ P

σ+
dp, σ

−
dp ≥ 0 d ∈ T W , p ∈ P

wiρt ≥ 0 & integer i ∈ N , ρ ∈ T P , t ∈ T P

yNSirt , y
SO
irt , y

SP
irt ≥ 0 & integer i ∈ N , r ∈ R, t ∈ T P

γit ≥ 0 i ∈ N , t ∈ T P
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Appendix B:
The Transporter Model

min P
T
=
∑
r∈R̂

∑
t∈T P

∑
v∈V

CRr xrtv+ (
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ŷNSirt , ŷ
SO
irt , ŷ

SP
irt ≥ 0 & integer i ∈ N , r ∈ R̂, t ∈ T P

ŵiρt ≥ 0 & integer i ∈ N , ρ ∈ T P , t ∈ T P

xrtv ∈ {0, 1} r ∈ R̂, t ∈ T P , v ∈ V
δv ∈ {0, 1} v ∈ V
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Appendix C: Distribution of
Pallets on Routes and Days
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Figure A.1: Distribution of pallets on routes and days
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Appendix D: Computational
Time for the Base Instance

Table A.1: Aggregated computational time [s] to reach optimality in the base instance for
every information sharing case

DD WD WW

Wholesaler Transporter Wholesaler Transporter Wholesaler Transporter

Mon 0.318 1.510 1.439

Tue 0.164 1.879 2.030

Wed 0.163 2.600 2.637

Thu 0.164 1.448 1.539

Fri 0.162 1.197 1.304

Sat 0.165 3.353 3.315

Sun 0.165 1.723 1.752

Total 1.301 13.710 0.297 14.014 0.228 7204.54
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Appendix E: Development of
Gap in the Base Instance

Figure A.2: Development of gap in the base instance

Optimal solution is found within 10 seconds, but not verified before a total computa-
tional time of 7204.54 seconds. Figure shows a excerpt portraying the development of
the total gap development.
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Appendix F: The Base
Instance for all Four Weeks

(a) Week 1 (b) Week 2

(c) Week 3 (d) Week 4

Figure A.3: The number of departures, returns and trucks in use for each of the four
demand weeks when there is no added flexibility. These are identical for all the information
sharing cases.
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Appendix G: Shifting in the
Transporter Model

Figure A.4: Late shifting of SO pallets in the transporter model
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