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Abstract
The purpose of this thesis is twofold. Firstly, we want to predict shipping freight rates in the
liquid crude oil tanker market, applying a machine learning technique suitable for processing
time-series (sequential) data, such as Long Short-Term Memory (LSTM) Neural Networks
(NN). Secondly, an important objective of this thesis is to investigate the predictive ability of
satellite Automatic Identification System (AIS) data. AIS potentially provides real-time data
on for example the current position, past routing and headed destination of ships world-wide.
We examine whether this type of data adds valuable information, on top of other fundamental
and financial data, with respect to the prediction of freight rate movements in the tanker
shipping market. A total of 17 explanatory variables are included in the study, selected based
on a thorough literature review of tanker freight rate determinants; eleven of the variables are
derived from AIS data, and the other six are fundamental and financial variables gathered from
Thomson Reuters Eikon. The applied data set contains time series of these 17 variables in the
sample period 4 January 2012 to 24 December 2015.

Specifically, a type of recurrent neural networks, an LSTM NN model developed based
on TensorFlow, is utilised to predict future price fluctuations on the major tanker route
between the Arabian Gulf (AG) and Singapore, over the following short-term horizons: one
day-, five days- and ten days ahead. This route is defined as TD2 by the Baltic Exchange.
Furthermore, this model is applied to determine whether it achieves better prediction (or
classification) accuracy by adding AIS data as input variables. A three-dimensional solution
space is examined: Numerous experiments are performed, investigating the use of various
subsets of explanatory variables (combinations of the 17 selected variables), over three different
forecasting horizons, using two degrees of model complexity. Moreover, a multivariate linear
regression model is utilised to provide benchmark results.

The findings of this thesis indicate that the LSTM NN model provides promising results
when forecasting ten days ahead; the LSTM NN model outperforms the benchmark model in
all six experiments carried out. However, on the shorter forecasting horizons (one day- and
five days ahead), the benchmark model competes well with the LSTM NN model. The results
further indicate that the LSTM NN model does not achieve significantly better prediction (or
classification) accuracy by adding AIS data as model input. However, the quality of the applied
AIS data is questionable. Thus, by sampling new and more recent AIS data, the forecasting
results could be improved. Moreover, certain measures and techniques can be applied to
attempt to enhance the LSTM NN model performance.
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Sammendrag

Form̊alet med denne oppgaven er todelt. For det første ønsker vi å predikere fraktrate-
endringer i det likvide oljetanker-markedet ved anvendelse av en maskinlæringsteknikk egnet
for prosessering av tidsseriedata, som for eksempel Long Short-Term Memory (LSTM) Neural
Networks (NN). For det andre, et viktig form̊al med denne oppgaven er å undersøke den
prediktive evnen til satellitt-data for skipstrafikk (automatisk identifikasjonssystem (AIS)-
data). AIS gir potensielt sanntidsdata p̊a for eksempel den n̊aværende posisjonen, tidligere
ruter og forventet destinasjon for alle sjøg̊aende skip verden over. Vi undersøker om denne
typen data gir verdifull informasjon, i tillegg til andre fundamentale og finansielle data, n̊ar
det kommer til prediksjon av fraktrater i oljetanker-markedet. I alt 17 forklarende variabler
er inkludert i dette studiet, valgt ut basert p̊a en grundig litteraturgjennomgang av typiske
fraktratedeterminanter i tankmarkedet; elleve av variablene er hentet fra AIS data, og de andre
seks er fundamentale og finansielle variabler innhentet fra Thomson Reuters Eikons database.
Det anvendte datasettet inneholder tidsserier av disse 17 variablene i perioden 4. januar 2012
til 24. desember 2015.

Mer spesifikt, s̊a bruker vi en type rekurrent nevralt nettverk, en LSTM NN-modell
utviklet basert p̊a TensorFlow, til prediksjon av fremtidige prisendringer p̊a den viktige
oljetanker-ruten mellom Persiabukten og Singapore, over følgende tidshorisonter: en dag-,
fem dager- og ti dager frem i tid. Denne ruten er definert som TD2 av The Baltic Exchange.
Modellen blir deretter brukt til å avgjøre om det oppn̊as bedre prediksjonsnøyaktighet (eller
klassifikasjonsnøyaktighet) ved å inkludere AIS-data som inputvariabler. Et tredimensjonalt
løsningsrom blir dermed undersøkt: mange eksperimenter utføres, med flere sett inputvariabler
(ulike kombinasjoner av de 17 utvalgte variablene), over tre forskjellige tidshorisonter, med to
grader av modellkompleksitet. Til slutt anvendes en multivariabel lineær regresjonsmodell til å
gi referanseverdier som LSTM NN-modellresultatene kan sammenlignes med.

Resultatene i denne masteroppgaven indikerer at LSTM NN-modellen gir lovende resultater ved
fraktrateprediksjon ti dager frem i tid. LSTM NN-modellen overg̊ar benchmarkmodellen i alle
seks utførte eksperimenter p̊a denne prediksjonshorisonten. P̊a de kortere horisontene (en dag
og fem dager frem i tid) konkurrerer referansemodellen godt med LSTM NN-modellen. Videre
viser resultatene at LSTM NN-modellen ikke oppn̊ar signifikant bedre prediksjonsnøyaktighet
ved å inkludere AIS-data som inputvariabler til modellen. Kvaliteten p̊a AIS-dataen anvendt i
dette studiet er imidlertid tvilsom. Ved å samle inn og anvende oppdatert, samt nyere AIS-data,
kan det hende at prediksjonsresultatene blir bedre. I tillegg kan visse tiltak og teknikker brukes
for å forsøke å heve ytelsen til LSTM NN-modellen.
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1

Introduction

Shipping market participants, like actors in any indus-
try, make decisions based on their expectations about
the future. For shipowners and charterers, two important
commercial decisions are whether and when to operate in
the spot market (spot charter), where the daily freight rate
can vary significantly, or to fix a ship on a period contract
(time charter) for a lump sum (Stopford, 2009). Reducing
the uncertainty linked to such decision-problems makes it
easier for shipowners and charterers to predict future cash
flows and profitability. This can be done through forecast-
ing and risk management. To achieve as good forecasts as
possible, it is necessary to obtain and analyse the right
information about the present. As for any free market, the
prediction of shipping freight rates is all about predicting
the supply-demand balance. However, considering the bad
reputation of maritime forecasting, this does not seem to
be an easy task (Stopford, 2009). Explanations for this
could be that prediction models developed until now either
are too simple or too sophisticated, or that the right
information is hard to discover.

1.1

Background

Regulations adopted by the International Maritime Or-
ganization (IMO) in late 2004 require all international
voyaging vessels with above 300 Gross Tonnage (GT)
and all passenger ships to carry an Automatic Identifi-
cation System (AIS) transmitter. Ship-to-ship and ship-
to-shore positions are now frequently reported through
AIS messages, within time intervals of only a few seconds.
Moreover, AIS messages include static information, such
as ship identity, ship type, and physical appearance, like
draught, destination and estimated time of arrival. They
also contain dynamic data, such as ship speed, course and
rate of turn. The AIS signals are transmitted using very-
high-frequency (VHF) radio waves, and can be captured
by terrestrial land-based antennas (T-AIS) and Low Earth
Orbit satellites (S-AIS). In theory, this provides real-time
data on the past routings, current positions and expected
destinations of all ocean-going vessels. Automated pro-
cessing of AIS data combined with expert knowledge, and
perhaps other data sources on the type and size of cargo
onboard the vessels, could thus potentially enable the gen-
eration of accurate and up-to-date trade flows data (such
as true sailing distance and better estimates of individual
vessel cargo sizes) (Adland et al., 2017).

According to classical maritime economic literature, freight
rate levels in shipping are determined by the interplay
between supply and demand. When it comes to supply, the
overall cargo-carrying capacity and operational efficiency
(or productivity) of the fleet are important factors. Oper-
ational efficiency is often considered constant in shipping
market analysis, because reliable data on such dynamics

are usually not available as empirical time series (Olsen
and da Fonseca, 2017). On the demand side, the volume
of cargo transported by sea and the sailing distance over
which the cargo is transported are decisive factors. The
true demand is thus measured on a tonne-mile basis 1 .
A problem in terms of shipping market analysis have been
the lack of accessible disaggregate data for ship demand on
a tonne-mile basis. Having to rely on infrequently updated
customs trade data or ship movement data, gathered and
structured by shipbroking firms, maritime researchers and
analysts have until recently been forced to take a simplified
view of demand dynamics (Adland et al., 2017, 2016).

The introduction of satellite AIS data (S-AIS data, here-
after referred to as AIS data) has changed this situation.
With the ability to aggregate data by the ship type or
ship size group, this enables in theory the estimation of
shipping demand on a tonne-mile basis with much greater
accuracy than before. According to Adland et al. (2017),
any maritime research dealing with market fundamentals,
could benefit from AIS-derived tonne-mile demand data,
as long as the cargo is observable and homogenous. This
is typically the case with cargoes that are loaded from
single-use terminals, like in the case of commodities such
as crude oil, coal and iron ore. Furthermore, information on
ship specifications, ship capacity utilisation and dynamic
data like ship speed, which can be derived from AIS data,
makes it possible to measure and account for operational
efficiency on a per-shipment basis. This may lead to more
accurate predictions of supply (Olsen and da Fonseca,
2017). Therefore, AIS-derived data could be beneficial to
use as input in a maritime forecasting model.

1.2

Motivation and Problem Description

Using unconventional machine learning techniques, such
as Long Short-Term Memory (LSTM) Neural Networks to
exploit the potential in AIS-derived data for maritime fore-
casting, is the motivation behind this thesis. Moreover, the
highly liquid crude oil tanker market will be investigated
because it provides a lot of data and, as mentioned above,
is suitable when it comes to the estimation of AIS-based
trade volumes. The purpose of the thesis is twofold:

‚ Use neural networks to predict future price fluctua-
tions in shipping freight rates. Specifically, develop a
model that decides the future price-change outcome
for a freight rate F , on a specific route SF , over a
time horizon t.

‚ Investigate the predictive ability of AIS data: Ex-
amine whether the neural network model achieves
better prediction accuracy by adding AIS data as
input variables, in addition to other fundamental and
financial data.

1 Tonne mile “ Metric tonnes shipped multiplied by the shipped
distance (measured in miles).
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1.3

Contribution to the Literature

This thesis contributes to the existing body of literature
with research that combines the use of machine learning,
specifically LSTM Neural Networks, and AIS-derived data
to forecast freight rate movements in shipping. According
to the literature review presented in Chapter 2, i.e. as far
as the authors are concerned, this has not been attempted
before.

1.4

Limitations

The freight rate in question will be the price for transport-
ing crude oil on the major tanker route between Ras Ta-
nura, the largest oil port in Saudi Arabia, and Singapore.
Saudi Arabia is the third largest oil producing country in
the world behind the U.S. and Russia. It is located in the
Arabian Gulf (AG) in the Middle East, which is by far the
largest oil producing and oil exporting region in the world
(see Section 4.2). This specific route between Saudi Arabia
and Singapore, named TD2 by the Baltic Exchange 2 , is
thus one of the world's most traded tanker routes (see e.g.
Γoλας (2012)).

Concerning the forecasting time horizons, the current
thesis is limited by the availability of historical AIS data
(four years of data). Thus, forecasts will be done on an
operational level, using three different horizons: one day
ahead, five days ahead and ten days ahead. These time
frames are relevant for a fundamental shipping decision:
whether to spot-charter a ship, for example tomorrow or
several days or weeks ahead. According to Stopford (2009),
this decision problem requires a short-term view of the
market and conventional forecasting techniques are not
much helpful. Usually, little reliable data is available on
such short time frames; traditionally, decision-makers have
relied on the gut feeling of shipbrokers working the market
and their own intuitive models. However, modelling is not
entirely out of the question for companies or pools with a
strong information base (Stopford, 2009).

When applying a suitable machine learning technique in-
stead of conventional forecasting techniques, the availabil-
ity of AIS data is expected to compose a strong enough
information base to provide good forecasts on these short
time frames. Additionally, if the developed approach turns
out to be promising, the length of the forecast could
perhaps be extended in the future, to for instance a few
months ahead, because the quantity and quality of AIS-
data is expected to increase with time (See Chapter 3).
Longer time frames are relevant for another fundamental
shipping decision: whether and when to time-charter a
ship. This decision-problem focuses on the probable fu-
ture level of spot earnings over the time-charter period,
compared with available time charter rate and the residual
value of the ship at the end of the charter (Stopford, 2009).

2 The Baltic Exchange provides a dirty tanker base index on the
TD2 route for the settlement of freight derivatives agreements.

1.5

Thesis Structure

Inspired by the widely used IMRAD (Introduction, Method-
ology, Results and Discussion) style, the rest of the thesis
is structured as follows: Chapter 2 reviews relevant lit-
erature, Chapter 3 introduces the reader further to AIS
data and Chapter 4 provides insight to the world of tanker
shipping and maritime economics. Chapter 5 then presents
a summary of academic discussions and conclusions re-
garding tanker freight rate determinants, before Chapter
6 describes the selection, preparation and handling of data,
in addition to descriptive statistics. In respective manner,
Chapter 7 and 8 presents machine learning theory and
the applied methodology. In Chapter 9, the results are
presented and discussed, before a conclusion is drawn and
potential further work is discussed in Chapter 10.
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Literature Review

This thesis encompasses a wide range of disciplines, includ-
ing shipping, maritime economics, empirical and quanti-
tative methods in finance, big data handling and machine
learning. The following literature review starts with a re-
view of previous research on tanker freight rate prediction,
continuing with research on the application of machine
learning as a forecasting tool in shipping markets and ends
with relevant applications of AIS data 3 .

2.1

Freight Rate Modelling Techniques

The development of modelling techniques, or modelling
approaches, researchers in the past have applied to forecast
or indicate tanker freight rates will be discussed in this
section 4 . The academic reviews by Ringheim and Stenslet
(2017) and Molvik and Stafseng (2018) reveal that early
research generally focussed on structural models with a
manifold of variables (see e.g. Koopmans (1939); Zannetos
(1966); Strandenes (1984)). According to Ringheim and
Stenslet (2017), the research by Beenstock and Vergottis
(1993) together with development in econometrics in the
1990s, made researchers shift focus towards advanced time
series models.

Several studies have examined the time-series properties
of freight rates, such as their dependence on past values
(Alizadeh and Talley, 2011). They have utilised univariate
or multivariate time-series models, built on aggregate data
and macroeconomic variables, to attempt to capture the
dynamics and fluctuations of shipping freight rates and ac-
cordingly use the models for forecasting purposes (see e.g.
Veenstra and Franses (1997); Alizadeh and Kavussanos
(2002); Kavussanos (2003); Adland and Cullinane (2005,
2006); Batchelor et al. (2007)).

As opposed to structural models, which were used in much
of the early research, recent studies have devoted more
attention to the co-integration relationships of variables.
Some recent studies have also used time-series models
to investigate the time-varying structure and non-linear
dynamics of freight rates (see e.g. Adland and Cullinane
(2005, 2006) and Alizadeh and Talley (2011)). Further-
more, recent econometrics time-series models include e.g.
Vector Autoregressive models (VAR) (Kavussanos and
Alizadeh-M, 2001; Veenstra and Franses, 1997), varieties
of Autoregressive Conditional Heteroskedasticity models
(ARCH) (Kavussanos, 1996; Kavussanos and Alizadeh-
M, 2002), as well as other stochastic time-series models
(see e.g. Benth et al. (2014) and Askari and Montazerin
(2015)). Two even more recent and relevant studies, pre-
dicting freight rates in the tanker market, are the mas-

3 Chapter 3 introduces the reader further to AIS data.
4 A thorough review of freight rate modelling factors or freight rate
determinants can be found in Chapter 5.

ters theses by Ringheim and Stenslet (2017) and Molvik
and Stafseng (2018). In consensus with the conclusions
of Kavussanos and Alizadeh-M (2001) and Kavussanos
and Alizadeh-M (2002), Ringheim and Stenslet (2017)
discovered that the best out-of-sample result in terms of
predictive accuracy was achieved using a univariate sea-
sonal model. Molvik and Stafseng (2018) found inspiration
in research fields such as oil and electricity price modelling.
This led them to explore a combination of Markov regime-
switching and multiple regression applied to specific crude
oil and oil products tanker routes, with some promising
results.

According to Alizadeh and Talley (2011), the abovemen-
tioned freight rate prediction models (in studies published
before 2011) have underperformed. They suggest that the
underperformance may be attributed to the utilisation
of aggregate and macroeconomic data. They also argue
that such macro-forecasts could be useful for medium
to long-term investment purposes, while shipowners and
charterers need micro-forecasts, e.g. of freight rates for
specific routes, for making operational decisions, cash flow
analyses, and budgeting. Therefore, Alizadeh and Talley
(2011) investigated the importance of vessel and contract
specific factors in the determination of tanker freight rates
and laycan periods in shipping contracts using a system of
simultaneous equations.

Kavussanos and Visvikis (2006) reveal that much of the
existing literature on freight rate forecasting is concerned
with the relationship between forward rates and future
spot rates. According to Olsen and da Fonseca (2017),
such studies find theoretical support in the unbiasedness
hypothesis, in which forward rates are expected to be
an unbiased predictor of future spot rates in markets for
non-storable commodities. For example, Kavussanos et al.
(1999) used a Vector Error Correction Model (VECM) to
examine the lead-lag relationship between spot rates and
the former BIFFEX futures contracts. They found VECM
to perform relatively better than univariate ARIMA and
random walk in forecasting spot freight rates, which in-
dicate that such contracts fulfil their unbiased role. In
line with Kavussanos et al. (1999), Batchelor et al. (2007)
found evidence in favour of the unbiasedness hypothesis
when investigating whether Freight Forward Agreements
(FFAs) contain information about future spot rates.

2.2

Machine Learning and Maritime Forecasting

Previous research papers providing insight in using artifi-
cial intelligence (AI) or, more specific, machine learning
(ML) as a forecasting tool in shipping markets are for
example Lyridis et al. (2004), Leonov and Nikolov (2012)
and Fan et al. (2013).

Lyridis et al. (2004) used monthly data in the period Octo-
ber 1979 to December 2002 and artificial neural networks
(ANNs) to attempt to forecast Very Large Crude Carrier
(VLCC) spot freight rates. Specifically, they analysed this
period to detect possible causes of fluctuations and de-
termine the independent variables, and then use them to
construct reliable ANNs. They aimed to reduce error while
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allowing the model to maintain a stable error variance
during high volatility periods, and found that “ANNs can,
with the appropriate architecture and training, constitute
valuable decision-making tools especially when the tanker
market is volatile; the use of variables in differential form
enhances the ANN performance in high volatility periods
while variables in normal form demonstrated better perfor-
mance in median periods; ANN demonstrated mean errors
comparable to the naive model for 1-month forecasts but
significantly outperformed it in the 3-, 6-, 9- and 12-month
cases; finally, the use of informative variables such as
the arbitrage between types of crude oil as well as Cape-
size rates can improve ANN performance (Lyridis et al.,
2004)”.

Leonov and Nikolov (2012) used a wavelet neural network
(WWN) model to study fluctuations in the freight rates of
the Baltic Panamax route 2A and 3A. They argue that us-
ing wavelet transformations, trends such as clustering and
rupture effects can be captured in the data, which gives
valuable insight in the freight rates volatility dynamics.
They further argue that their model can be used as a spot
price discovery tool, if applied to the implied volatility and
derivative contracts.

Fan et al. (2013) also used WWN in their study, but
here applied on the Baltic Dirty Tanker Index (BDTI).
Fan et al. (2013) used six input time-series, including
AMEX Oil index and Dow Jones Industry Average In-
dex as inputs in a WNN model to predict the BDTI
index. They compared the forecasts by the WNN with
ARIMA forecasts and found that there is no significant
difference in the performance between the ARIMA and
the WNN model. Regarding longer periods, however, the
WNN model showed some superiority.

When it comes to previous research on LSTM Neural
Networks applied to maritime forecasting, none directly
relevant papers have been found. However, books such
as Deep Learning by Goodfellow et al. (2016) and Deep
Learning with R by Chollet and Allaire (2018) are useful
with respect to the objectives of the current thesis.

2.3

Relevant Applications of AIS Data

Since the use of satellites to receive AIS data is a relatively
recent development, the amount of literature on relevant
applications of AIS data is limited. However, with more
AIS satellites being launched, both the quality and avail-
ability of AIS data will be improved. Thus, an increasing
number of maritime researchers, shipping market analysts,
port authorities, to mention a few, are now directing their
attention towards the possibilities offered by AIS data.
Most AIS based research thus far have focussed on safety
and environmental issues. Examples of application areas
are utilisation of AIS data to mitigate accidents at sea
and operate ships more efficiently to save fuel costs and re-
duce emissions (Leonhardsen, 2017; Smestad, 2015). Two
important studies on the latter issue are the Third IMO
Greenhouse Gas Study 2014 by Smith et al. (2015) and
the Assessment of Shippings Efficiency Using Satellite AIS
data published by Smith et al. (2013).

With respect to the objectives of the current study, the
masters thesis by Olsen and da Fonseca (2017) is highly
relevant. In the case of crude oil tanker rates on the TD3
route from the Arabian Gulf (AG) to Chiba in Japan, they
investigated the predictability of AIS data using VAR and
ARIMA models. Their results suggest that multivariate
models perform relatively better than univariate models
in forecasting freight rates. Moreover, they found weak
evidence in favour of including information about tonne-
mile demand and operational efficiency, derived from AIS
data, in the forecasting models.

Besides Olsen and da Fonseca (2017), the relevant liter-
ature on the application of AIS data is focused on ship
movements based on arrival and departure records for each
ship (Kaluza et al., 2010), aggregation and visualisation of
real-time seaborne trade flows on the individual ship level
(Jia et al., 2017), the reliability of AIS-based trade volume
estimates (Adland et al., 2017), operational issues like ship
speeds (Adland and Jia, 2016, 2018; Leonhardsen, 2017),
ship capacity utilisation (Adland et al., 2016) and onboard
cargo sizes (Jia et al., 2015).

On trade flows, the current literature is generally con-
cerned with either ship routing and network analysis at
the micro level (see e.g. Kaluza et al. (2010)) or theoretical
models of international seaborne trade at the macro level
(Adland et al., 2017). According to Adland et al. (2017),
there is a gap in the literature between the macro-level and
micro-level studies, and a clear need to employ bottom-up
analysis in studies of international seaborne trade. In this
respect, the study by Adland et al. (2017) contributes to
the literature as the first comparison of aggregate AIS-
derived trade volumes with official export statistics based
on customs data. They also show how the use of AIS data
allows for the construction of a richer data set on seaborne
trade, and argue that this is beneficial for the estimation of
shipping demand, as the distribution of vessel sizes by load
country and across time can be properly accounted for.
Researchers must often take a simplified view of demand
dynamics due to the lack of accessible disaggregate data
for tonne-mile ship demand, and any research that deals
with market fundamentals could in general benefit from
AIS-derived tonne-mile demand data Adland et al. (2017).

As mentioned in the introduction, operational efficiency
(or fleet productivity) affects supply and depends on for
example ship speed and utilised cargo-carrying capacity.
In this thesis, the tanker fleet's utilised capacity may be
measured by the aggregation of a capacity utilisation ratio
(load factor) multiplied by the onboard cargo-carrying
capacity (dead weight tonnage, dwt) for each ship. Re-
spectively, the studies by Smith et al. (2013) and Jia
et al. (2015) propose models for the estimation of capacity
utilisation and the cargo size onboard a ship primarily
based on the ship's draught 5 . The draught models by
Jia et al. (2015) are based on a large sample of dry bulk
cargoes from port agent reports, and predict cargo sizes
with a standard deviation of 7-9%. Smith et al. (2013) used
AIS-reported draughts, and found the capacity utilisation
to be approximately 80% or less in the case of crude

5 A ship's draught may be defined as the vertical distance between
the ship's waterline and the bottom of the ship's outer hull (keel)
(Magnussen et al., 2014)
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oil tankers. Such models may be useful in the absence
of data on cargo size and capacity utilisation, because a
ships draught is directly observable in the AIS data. A
drawback with this approach is that it relies heavily on
the accuracy of the manual draught reports by the ships
crew. The quality of the AIS data also depends largely on
the geographical coverage of the AIS data (Adland et al.,
2017; Jia et al., 2015). It may be less accurate in congested
or highly trafficked areas, such as important ports, straits
and canals, due to interference of AIS signals (Smestad,
2015).
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3

AIS Data

As mentioned in the introduction, IMO adopted new reg-
ulations in 2004, forcing all international voyaging vessels
with above 300 Gross Tonnage (GT) and all passenger
ships to carry an Automatic Identification System (AIS)
transmitter for the reporting of ship positions to other
ships and coastal authorities (Smestad, 2015). In this
chapter, we briefly present the AIS technology and the
content of AIS messages.

AIS is a ship-to-ship and ship-to-shore reporting system,
i.e. an automatic ship tracking system, intended to in-
crease safety of life at sea by improving the monitoring
and control of maritime traffic (Skauen et al., 2013). AIS
signals are transmitted as very high frequency (VHF) radio
waves and captured by terrestrial land-based antennas (T-
AIS) and Low Earth Orbit satellites (S-AIS). The intro-
duction of S-AIS around 2010 enabled the reception of
global AIS messages. The messages include static infor-
mation like ship type and the ships identity number (e.g.
MMSI), voyage-related data such as draught, heading,
cargo and estimated time of arrival, and dynamic data
like speed, course and rate of turn (Adland et al., 2017).
This information is broadcasted to ships and shore stations
within range of the VHF transmission. AIS messages reach
about 70 kilometres (km) horizontally at sea level. In
vertical direction, the signals can reach AIS receivers on
satellites up to 400 km (Skauen et al., 2013).

The International Telecommunication Union (ITU) has
defined 27 different types of AIS messages (ITU, 2014).
The five most common ones are listed in Table 1, where ID
in the leftmost column refers to the message type number.
Additionally, in respective manner, Table 2 and 3 present
the contents of message type 1 and 5. According to Smes-
tad (2015), 72.5% of all AIS messages are of message type
1. Detailed information on the content of the different AIS
message types is provided by the International Maritime
Organisation (IMO, 2004).

Furthermore, the ship type reported in message type 5
is a double-digit number between ten and 99. As shown
in Table 4, the first digit represents the ship type, while
the second digit may state whether a cargo is dangerous,
hazardous or a marine pollutant (USCG, 2018). More-
over, the transmitting frequency of AIS messages vary.
Regarding dynamic data, the frequency depends on the
ship's operational status. The different time intervals are
shown in Table 5. When it comes to static and voyage-
related data, messages are sent every sixth minute or upon
request.

Table 1. The five most common AIS message types.

ID Name Description

1 Position report Scheduled position report
2 Position report Assigned scheduled position

report
3 Position report Special position report
4 Base station report Position, UTC, date and cur-

rent slot number of base sta-
tion

5 Static and voyage report Scheduled static and voyage-
related ship data report

Table 2. The content of AIS message type 1.

Information Description

Unixtime Number of seconds elapsed since 1 January 1970
Position Coordinates, longitude and latitude
Speed Speed over ground (SOG), measured in knots
Course Course over ground (COG)
MMSI Maritime Mobile Service Identity (Ship ID)

Table 3. The content of AIS message type 5.

Information Description

Unixtime Number of seconds elapsed since 1 January
1970

Ship specifications Length and breadth, measured in meters
Draught Current draught, measured in meters
IMO number International Maritime Organisation num-

ber (Ship ID)
Origin Origin of current voyage
Destination Destination of current voyage
ETA Estimated time of arrival, measured in

Unixtime
MMSI Maritime Mobile Service Identity (Ship ID)
Ship type Ship type category

Table 4. Ship types reported in AIS message type 5.

First digit Ship type

1 Reserved for future use
2 Wing in ground (WIG)
3 Other vessels
4 High-speed carrier or vessels ă 100 Gross Tonnes
5 Special craft
6 Passenger ships ą 100 GT
7 Cargo ships
8 Tankers
9 Other types of ships

Table 5. AIS reporting interval.

Operational status General reporting interval

At anchor 3 min
0-14 knots sailing speed 12 sec
0-14 knots sailing speed
and changing course 4 sec
14-23 knots sailing speed 6 sec
14-23 knots sailing speed
and changing course 2 sec
ą 23 knots sailing speed 3 sec
ą 23 knots sailing speed
and changing course 2 sec
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4

The World of Tanker Shipping

and Maritime Economics

This chapter aims to provide a fundamental understanding
of the economics of the shipping industry, with a focus
on the supply-demand dynamics of the tanker market.
Gaining this insight is a natural step in the process of
identifying relevant freight rate determinants.

4.1

The Shipping Market Model

Figure 1 illustrates the classic maritime supply-demand
model on a macroeconomic level. It is known as the
shipping market model (Stopford, 2009). A more detailed
version of the model can be found in Appendix A.

Fig. 1. Inspired by Stopford (2009) The shipping market
model adapted to the tanker market.

As the above model illustrates: the tanker freight market
is characterised by the interplay between supply and de-
mand for tanker shipping services. Tanker shipping com-
panies make a living by transporting liquid bulk from one
terminal to another, whereas the income from seaborne
transportation, determined by the freight rate, is the main

driver in shipowners positive cash flow 6 . Freight rates thus
constitute the link between supply and demand (Koop-
mans, 1939; Zannetos, 1966; Stopford, 2009).

4.2

Global Oil Production and -Tanker Trade

“Maritime economics is a practical discipline, and there
is not much point in being an expert on the economics
if we cannot find the ports on a map! (Stopford, 2009)”.
This statement implies that it is important to be aware of
the worlds largest producers, exporters and importers of
oil, and their geographical distribution, when investigating
supply-demand dynamics of the tanker market; these
actors have significant impact on the global seaborne trade
volume and trade dynamics.

4.2.1

The World's Oil Production

Respectively, Figure 2 and 3 show the top five OPEC 7 and
non-OPEC oil-producing countries during March 2018.
The measurements are in million barrels per day (mbpd)
and in percentage of total OPEC and non-OPEC produc-
tion. The numbers in Figure 2 and 3 reveal that the U.S.,
Russia and Saudi Arabia are the three dominating coun-
tries in the world in terms of oil production. Saudi Arabia
is a part of the AG and the Middle East, together with four
other major crude oil-producing OPEC countries: Iraq,
Iran, United Arab Emirates (UAE) 8 and Kuwait. Thus,
according to the numbers in Figure 2, the AG is by far the
largest oil-producing region in the world with a production
of 24 mbpd.

Fig. 2. Thomson Reuters Eikon (2018) Top five oil-
producing OPEC countries during March 2018.

6 This may vary based on the market situation. E.g. if a shipowner
in a period sells a ship in the second-hand market or scraps a ship
in the demolition market, this can dominate the positive cash flow.
7 OPEC is the abbreviation of the Organization of the Petroleum
Exporting Countries (http://www.opec.org/opecweb/en/).
8 UAE is a federation of seven emirates, including Dubai and the
capital of the federation, Abu Dhabi.
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Fig. 3. Thomson Reuters Eikon (2018) Top five oil-
producing non-OPEC countries during March 2018.

4.2.2

The World's Oil Export and -Import

Table 6 and 7 re-present data provided by Clarkson Re-
search Services Limited, originally collected and presented
by Molvik and Stafseng (2018). According to Table 6,
the Arabian Gulf (AG) 9 is by far the largest crude oil
exporting region in the world measured by tonne-miles.
Regarding crude oil imports, also measured by tonne-miles,
Table 7 shows that China is almost twice as important as
North America and almost twice as important as Japan
and India combined.

Table 6. Molvik and Stafseng (2018) Seaborne crude-
oil trade in 2017, measured in billion tonne-miles.

Region Export Region Import

AG 5,178 China 3,030
Caribs. 1,399 N. America 1,721
WAF 1,320 Japan 1,000
U.S. 242 India 732
UK/Cont. 217 UK/Cont. 577

Table 7. Molvik and Stafseng (2018) Seaborne oil-
products trade in 2017, measured in billion tonne-miles.

Region Export Region Import

Far East 203 China 216
USG 190 N. America 136
UK/Cont. 149 Japan 94
AG 137 India 90
Baltic 101 UK/Cont. 89

4.2.3

Global Tanker Trade

When it comes to seaborne crude oil trade, there literally
has been an enormous development in terms of vessel sizes
and technicalities, since the first seaborne transportation
of oil found place in 1861 to the first Very Large Crude

9 The Arabian Gulf is also commonly referred to as the Persian Gulf.

Carrier (VLCC) sat sail in 1966 (Molvik and Stafseng,
2018). The first tankers carrying oil in bulk, using the
outer ship-hull as part of tank compartments, were not
seaborne before 1886. After the Suez Canal opened for
tanker trade in 1892, voyage distances were significantly
shortened. Since then, the Suez Canal has contributed
to a cyclical tanker market through several shut downs,
re-openings and enlargements. In the mid-1900s, tonne-
miles demand and average haul grew rapidly, especially
due to an increased oil trade flow from the Middle East
to Western Europe through the Suez Canal. At the time,
oil majors were shipowners as well. They faced high costs
by building supertankers such as VLCCs in the mid-1960s,
exploiting the economies-of-scale principle.

Onwards from the mid-1960s, there was a rapid growth in
the tanker fleet, until a decline in oil trade led the tanker
market into recession and eventually a crash in the late
1970s. The average haul was reduced by the introduction
of short-haul trade in e.g. the North Sea, openings of
Middle East refineries and pipelines, increased domestic
production in importing regions such as North-America,
and the re-opening of the Suez Canal in 1975 following
the closure in 1967. This was advantageous for the smaller
ship classes. However, the freight market improved again
in 1986, as low oil prices supported oil demand from the
Middle East. From 1990 up until today, seaborne oil trade
has grown significantly despite some cyclical downturns.
Regarding oil products trade, which is related but different
from crude oil trade, the interested reader is referred to the
master's thesis by Molvik and Stafseng (2018).

Today, seaborne oil trade is more speculative than in the
early days; it is subject to a highly volatile and market-
regulated industry, influenced by a manifold of different
stakeholders all over the world. Trading patterns are
affected by the geographical distribution and availability
of natural resources, which have resulted in an extensive
network of both crude oil and oil products trade routes.
The most traded routes in the world are commonly referred
to by route codes, presented by the Baltic Exchange
indices (see Ch. 4.6 and Appendix B for more information
and an overview of the routes). Respectively, the TD and
TC codes refer to the major tanker routes listed under the
Baltic Exchange Dirty Tanker Index (BDTI) and Baltic
Exchange Clean Tanker Index (BCTI).

4.3

Tanker Demand

4.3.1

Tanker Demand in Numbers

The tanker shipping market is by far the largest ship-
ping sector of the world in terms of trading volume and
weight. During 2008, the tanker fleet transported 2795
million metric tonnes (mmt) of liquid bulk commodities
worldwide, out of which 2043 mmt was crude oil and 752
mmt was petroleum products (Alizadeh and Talley, 2011).
In 2016, these figures were 1942 mmt and 1069 mmt,
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corresponding to 24.6% and 13.5% of the total bulk trade
that year, respectively (Ringheim and Stenslet, 2017) 10 .

To properly quantify the demand for seaborne transporta-
tion, one must account for the distance over which the
cargo has been transported (commonly referred to as the
haul). This is done by multiplying the average haul of the
trade by the amount of respective cargo traded, resulting
in the transport demand being measured in tonne-miles.
The so-called distance effect on demand is revealed by the
Table 8, which presents an overview of annual tonne and
tonne-mile demand in 2016 for the most important bulk
cargoes. For example, crude oil's share of total volume is
larger than its share of tonne-miles, implying that crude
oil tankers' average haul is shorter than the average for
total bulk cargo (Ringheim and Stenslet, 2017).

Table 8. Ringheim and Stenslet (2017) 2016 annual
seaborne bulk trades in tonnes and tonne-miles.

Cargo Million Share Billion Share
tonnes tonne-miles

Crude oil 1,942 24.6% 9,399 23.7%
Iron ore 1,418 18.0% 8,035 20.3%
Coal 1,130 14.3% 4,903 12.4%
Grain 471 6.0% 3,376 8.5%
Minor bulk 1,860 23.6% 10,819 27.3%
Oil products 1,069 13.5% 3,104 7.8%

Total bulk trade 7,890 100% 39,636 100%
Total seaborne trade 11,101 13.5% 54,936

4.3.2

Demand Dynamics

On a macro level, the demand for tanker shipping services
is derived from the international oil trade, which in turn
is dependent on world economic activity and imports and
consumption of energy commodities (Alizadeh and Talley,
2011; Stopford, 2009). Stopford (2009) points out Gross
Domestic Product (GDP) as the single most important
indicator for future ship demand, but he also argues that
development in seaborne commodity routes and trades are
principal indicators. In addition, Stopford (2009) states
that the following three factors have significant influence
on ship demand: average haul, political events and trans-
port costs (Jugović et al., 2015; Stopford, 2009). Regarding
tanker demand, Stopford (2009) comments on the rela-
tionship between tanker freight rates and the oil price. He
states that an increase in the oil price tends to alter the
global energy mix, which reduces demand in the tanker
market because coal to a certain extent substitutes oil.
Moreover, the global economic growth usually fluctuates
in periodic movements referred to as business cycles, and
thus seaborne trade should approximately follow the same
pattern. The interaction between consumption and in-
vestment, time-lags between economic decisions and im-
plementation, and build-up of inventories are among the
causes of business cycles (Jugović et al., 2015; Ringheim
and Stenslet, 2017; Stopford, 2009).

10These statistics as well as the numbers in Table 8, are originally
provided by Clarkson Research Services Limited and collected by
Ringheim and Stenslet (2017), for tankers with more than 10k dwt
capacity.

4.4

Tanker Supply

4.4.1

The Tanker Fleet

Early 2018, the cargo-carrying capacity of the world tanker
fleet was 561 million tonnes (million dwt) and the number
of tankers exceeded 6100. This accounts for approximately
40% of the total world shipping fleet. As Table 9 reveals,
the tanker fleet consists of different size segments, some
named after the canals the tankers are able to transit. For
example, Panamax ships can transit the Panama Canal.
VLCCs 11 are the largest tankers with a capacity of more
than 200,000 dwt. Furthermore, crude oil is the most
important liquid bulk cargo with more than 2200 ships
and a cargo-carrying capacity of more than 400 million
dwt. This equals approximately 30% of the total world
shipping fleet. Crude oil is transported in tankers from
production facilities to refineries, where it is refined into
gasoline and other petroleum products. These products
are then transported in smaller tankers, called product
or clean tankers, to their destinations (Ringheim and
Stenslet, 2017).

Table 9. Thomson Reuters Eikon (2018) The world's
tanker fleet by January 2018.

Tanker No. Tanker Fleet Main cargo
type tankers size size

(k.dwt) (mill.dwt)

VLCC 720 200` 216 Crude oil
Suezmax 559 120´200 136 Crude oil
Aframax 955 80´120 94 Crude oil,

oil products
Panamax 433 60´80 90 Oil products
Handysize 3439 10´60 89 Oil products

Tanker fleet 6106 561

4.4.2

Supply Dynamics

As illustrated in Figure 4, the shipping industry deals
with four closely related and dynamic markets in which
shipping companies can participate: the freight market,
the newbuilding market, the second-hand market and
the demolition market. Together these markets form the
supply characteristics of shipping (Stopford, 2009).

Shipowners are the primary decision-makers in the four
shipping markets. They order new ships from the shipyard,
buy and sell used ships with other shipowners in the
second-hand market, trade ship services with charterers in
the freight market, and sell old ships to scrapyards in the
demolition market (Stopford, 2009). It is well recognised in
the literature that shipping cycles, as illustrated in Figure
5, are driven by the way shipowners trade in these four

11Ultra Large Crude Carriers (ULCCs) are included in this segment.
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Fig. 4. Stopford (2009) The four shipping markets.

markets (Lun et al., 2010; Randers and Göluke, 2007;
Stopford, 2009). The lag between investment decisions and
market impact intensify the shipping cycles, and each cycle
is different in terms of nature, circumstances, magnitude
and length. There are no general rules about the timing
and length of the cycle periods. Therefore, it is difficult
for shipping market participants to determine cyclical
turning points (Hawdon, 1978; Randers and Göluke, 2007;
Stopford, 2009).

Fig. 5. The four shipping cycle stages.

According to Stopford (2009), short-term 12 shipping cy-
cles range from four to 12 years, averaging eight years,
and have the following four stages: through (when supply-
demand ratio is at a maximum level and freight rates are at
a minimum level), recovery (when the market adjusts to-
wards supply-demand balance and freight rates increase),
peak (when demand-supply ratio is at a maximum level
and freight rates are at a maximum level) and collapse
(excess supply and falling freight rates). At the recovery
stage in the shipping cycle, market optimism starts to
grow after a period of low freight rates, because the future
appears brighter in terms of higher demand and higher
freight rates. In this case, shipowners are stimulated to
provide more transport. Consequently, second-hand prices
and newbuilding orderbooks tend to increase. Eventually,
when the newbuilds enter the market (in the order of 2-3
years), the peak of the shipping market is usually reached,

12Stopford (2009) also defines seasonal cycles and long-term cycles.
This is discussed in Section 4.5.4.

and supply begins to offset demand. This puts downwards
pressure on freight rates, making returns less profitable.
Furthermore, the market moves into recession and eventu-
ally collapses, resulting in a through with longer periods of
low freight rates. This results in a distressed environment,
where some shipowners may be threatened by bankruptcy.
Shipowners then sell ships cheaply in the second-hand
market or scrap them, to become more profitable and
to increase liquidity. The through continues until enough
ships have exited the market and supply falls to the levels
of demand, or until demand surges and reaches the levels
of supply (Ringheim and Stenslet, 2017; Stopford, 2009).

Ringheim and Stenslet (2017) argue that the second-hand
market plays a vital economic role in the shipping industry,
because it allows direct entry and exit to the freight
market. This means that ships quickly can shift owners in
this market, as opposed to the newbuilding market where
it can take up to three years to build a new ship. Thus, by
inspecting second-hand prices relative to newbuild prices,
inferences about future market expectations can be done.
For example, if the freight rates are low, the market can
still expect the freight rates to be profitable enough the
next few years, to justify the buy of a second-hand ship
even though its life expectancy is relatively shorter than a
newbuild.

Shipowners are not the only decision-makers that influence
the supply in shipping. Three other groups are also im-
portant: charterers can influence shipowners by becoming
shipowners themselves, like oil companies that ship their
own crude oil; banks and investors finance the shipping in-
dustry and to a large extent determine shipowners leeway
by their willingness to lend or invest; and finally, regulators
can affect the industry by introducing new legislation
and regulatory frameworks. Additionally, shipyards and
shipbrokers are influential stakeholders in this industry. In
conclusion, supply in shipping is behavioural and depen-
dent on a small group of players. This latter fact makes
shipping supply very prone to changes (Jugović et al.,
2015; Ringheim and Stenslet, 2017).

4.5

Freight Rates

This section delves into the tanker freight market, and
aims to explain the freight rate process, which is the
mechanism that links shipping cycle theory with supply-
demand theory.

4.5.1

Freight Market Participants

The freight market is one of the four shipping markets
and normally the main driver in shipowners positive cash
flow. In this market, shipowners receive payments from
charterers, and charterers receive payments from shippers,
in return for shipping services. The shipowner obviously
owns the ship, the charterer is an individual or a company
hiring the ship to transport the cargo, and the shipper is
an individual or a company that needs the cargo shipped.

10



The contract agreement that sets out the terms on which
the shippers get the cargo shipped, or the terms on which
the charterer hires a ship, is called the charter-party. The
way it works is perfectly simple: The two parties negotiate
contractual terms (the charter-party), maybe through a
shipbroker acting as a link between them, to determine the
freight rate. When the charter-party is agreed upon, the
ship is said to be “fixed” (Furset and Hordnes, 2013). In
theory, the agreed freight rate should reflect the balance of
ships (supply) and cargo (demand) currently available in
the market. However, many types of freight agreements,
different ship sizes, various cargo types and numerous
trading routes, et cetera, complicate the picture.

4.5.2

Freight Contract Agreements

There are four main types of charter-parties between
shipping companies and charterers, all different in the way
they distribute responsibilities and costs (Stopford, 2009).

The voyage charter (VC) contract provides transport for
a specific shipload of cargo from a load port to a dis-
charge port. A VC contract thus covers a single, route-
specific voyage, and is therefore often referred to as a “spot
contract”. Furthermore, the shipper pays a price for the
shipment to the charterer, who in turn pays the shipowner
a pre-agreed freight rate on a per-tonne or a lump-sum
basis. The contractual terms of the transport include, for
example, the freight rate, load port, discharge port, cargo
type, cargo quantity, speed, laytime 13 and demurrage 14 .
A deviation from the charter-party may result in a claim.
Regarding trade-related costs, the shipowner is fully re-
sponsible. For tankers, including VLCCs, VC contracts are
the most common arrangement (Furset and Hordnes, 2013;
Gilleshammer and Hansen, 2010).

Contract of Affreightment (CoA) is another type of con-
tract agreement. CoA is a bit more complex than voyage
charter, but very similar. With CoA, a series of cargo, for
example one shipload each month over a few months ahead
in time, are transported for a fixed price per tonne. Again,
the shipowner pays all costs.

The third charter-party type, time charter (TC) contracts,
are most common in the dry-bulk segment (Gilleshammer
and Hansen, 2010). With TCs, the charterer pays the
shipowner an agreed day-rate over a certain period and
gets full operational control of the ship. The shipowner
pays for most of the operational costs (OPEX), while the
charterer pays the voyage costs (VOYEX) including port
fees and bunker costs. TC contracts can be divided into
two different contract types, namely spot and term (or
period) contracts. The difference lies in the duration of the
contracts, where spot contracts usually have some duration
less than three months. They are normally written only a
few days before the start of operations, and re-negotiated

13Laytime is the time window where the charterer load and discharge
the cargo, without incurring extra costs.
14Demurrage is the daily amount paid to the shipowner by the
charterer if the number of port days exceed the agreed laytime.
Correspondingly, if the laytime exceeds the number of port days,
the shipowner pays a despatch to the charterer.

frequently. Thus, spot freight rates (or spot rates) typically
vary from one day to the next (Molvik and Stafseng, 2018).

Finally, the fourth and last type of charter-party is the
bare boat charter (BBC). Here, the charterer gets full
operational control of the ship, and the contract generally
stretches over several years (Stopford, 2009).

4.5.3

Freight Costs

The costs of shipping normally determine the so-called
refusal rate 15 and, accordingly, the ships'assumed lay-up
point. The total costs consist of capital costs (CAPEX),
operation costs (OPEX), voyage costs (VOYEX) and
cargo-handling costs. However, these costs vary by the
type of charter-party, as illustrated in Figure 6.

Fig. 6. Alizadeh and Nomikos (2009) Shipping cost allo-
cation from a shipowner perspective under different
charter-parties.

According to Alizadeh and Nomikos (2009), CAPEX in-
cludes interest and capital repayments on a ship, which
are affected by the current market situation, the financial
structure of the purchase, and future market expectations.
OPEX is fixed, although the ship is inactive, and involves
crew wages, maintenance, insurance, inspections and re-
newal of certificates. VOYEX incur for a specific voyage,
and is mainly determined by fuel costs, canal dues, pilotage
and port charges. Cargo-handling costs cover loading,
stowage, lightering and discharging of the shipped cargo.

4.5.4

Freight Rate Dynamics

Stopford (2009) argues that freight rates are a mix of
current and future expectations, thus it is important to
be precise about which time-frame that is used when
explaining freight rate dynamics. Three time-periods may
be considered: momentary, short-term and long-term. Mo-
mentary (hours, days or weeks) is the time-scale of char-
terers, shipbrokers and traders, where a decision problem

15The refusal rate is the freight rate, subtracted the lay-up costs,
where the shipowner is assumed to lay up the ship, because otherwise
the ship operates with a loss. Thus, this is also known as the lay-up
point.
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can be whether to fix a ship on a period contract (in the
order of months) or to operate in the spot market (in the
order of days or weeks). In the short-term (up to a few
months or few years), owners and charterers have time to
respond to changes in the market by sending ships in or
out of lay-up. In the long-term (several years), the fleet
size can be adjusted by the ordering or scrapping of ships.
According to Stopford (2009), these time frames constitute
three markets with considerably different dynamics, and
long-term is the only time frame that adequately can be
explained by fundamental variables.

According to shipping cycle theory, the framework for
the shipping cycle is set by the combination of a volatile
demand and a significant time-lag for the supply to adjust
accordingly. Stopford (2009) distinguishes between three
shipping cycle periods: long-term, short-term and seasonal.
Shipping cycles are periodic and not symmetric, implying
that they last for various lengths of time and each cycle can
be very different from the previous cycle. There will always
be fluctuations in the balance between supply and demand,
thus cycles are deemed to occur. Especially the short-term
cycle, which can last three to 12 years, has the function
of coordinating the supply-demand balance. Therefore,
short-term cycles are noticeable and often subject to
analysis. Long-term cycles on the other hand, can last from
decades to entire centuries, driven by secular trends such
as technical innovations (e.g. the steam engine invention,
diesel engines replacing steam engines, containerization
and the bulk shipping revolution). It is hard to identify
exactly when freight rates are affected by long-term cycles.
Seasonal cycles are seasonal changes in the freight rate
within a year, mainly determined by the seasonal demand;
supply does not change much within a year.

The freight rate process is the mechanism that links ship-
ping cycle theory with supply-demand theory. From a
microeconomic point of view, the freight rate process can
be analysed using three key economic concepts: supply
function, demand function and equilibrium price (Stop-
ford, 2009). The supply function defines the shape of the
supply curve and the demand function likewise shapes
the demand curve. These two curves intersect at the
equilibrium price, the theoretical freight rate equilibrium,
where supply and demand is perfectly balanced. This is
illustrated in Figure 7, where it also is shown how the
demand curve shifts when supply changes.

In a perfectly competitive spot freight market, the theoret-
ical freight rate equilibrium is normally determined by the
marginal cost of the marginal ship required to satisfy the
demand for seaborne transportation(Koekebakker et al.,
2006). The J-shaped supply curve in Figure 7 is composed
of each ship's individual supply curve and thus indicates
the amount of transportation, measured in tonne-miles,
the fleet is willing to supply at a given freight rate (Al-
izadeh and Nomikos, 2011). Classical maritime economic
literature, as first introduced by Koopmans (1939) among
others, characterizes the short-term supply curve by two
distinct regimes: whether the fleet is fully employed or not.

When the available supply exceeds demand, i.e. when the
fleet is not fully employed, the most cost-efficient ships will
contribute to the lower left part of the supply curve. This
is because freight rates are relatively low at this point. If

Fig. 7. Alizadeh and Nomikos (2011) Supply-demand
framework in shipping freight-rate determination.

the freight rate drops below the acceptable level for a given
ship, previously referred to as the ship's refusal rate and
lay-up point, a decision must be made whether the ship in
the short-term should be laid-up or operated with a loss.
In this decision, switching costs related to laying up the
ship should be considered too (Dixit, 1989; Koekebakker
et al., 2006; Mossin, 1968). In a bit longer time-frame, say
between one and three years, the shipowner may consider
scrapping or selling the ship, if the freight rate stays below
the lay-up point.

Conversely, if demand for transportation and hence freight
rates increase, less cost-efficient ships enter the market.
This leads to less ship unemployment and a series of
perfectly elastic steps in the short-term supply function.
The supply curve is price elastic up to the point where
the fleet sails at close to maximum capacity. Here, the
curve becomes inelastic, because the fleet cannot react
to a short-term increase in demand. At maximum fleet
capacity, where the fleet is fully employed, the only way to
increase the supply of seaborne transportation is through
higher utilisation of the existing ships (Koekebakker et al.,
2006). This can be achieved by, for example, increasing
ship speed, delaying regular maintenance, reducing port-
time, shortening ballast legs and fully utilising the ship's
cargo-carrying capacity; as shown in Figure 8, Adland
et al. (2016) discovered that there is a positive correlation
between a ship's capacity utilisation 16 and freight rates.
Technical constraints and higher marginal operation cost,
due to increased fuel consumption and more wear and tear,
does however put a ceiling on this additional increase in
supply (Adland et al., 2016; Koekebakker et al., 2006).

Furthermore, the demand curves in Figure 7 describe the
required amount of supply from the operator at a given
freight rate. As the figure illustrates, the demand curve is
inelastic all the way, and demand can shift quite exten-
sively compared to supply in the short-run. The reason for
this is that operators are dependent on continuous delivery
of supplies, because delay in operations (downtime) is very
costly in terms of lost income. Moreover, it is not always
in the interest of the shipping industry to operate at the

16Adland et al. (2016) defined a ship's capacity utilisation as the
ratio of cargo size divided by dead weight tonnes (dwt).
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Fig. 8. Adland et al. (2016) The relationship between
shipping freight rates and capacity utilisation.

theoretical freight rate equilibrium. Operating companies
may have incentives to take on some of the risk in times of
tough market conditions, and hence does not always ben-
efit from negotiating the lowest possible freight rate. Over
time it is beneficial for both shipowners and operators to
keep supply at a certain level (Molvik and Stafseng, 2018).

Adland et al. (2016) discuss microeconomic analysis of
freight rate formation for individual voyages, where the
concern is about the immediate equilibrium between the
number of cargoes and ships in a specific loading area.
Cargoes need to be shipped within a certain time window
(laycan), and hence supply is determined by whether ships
are commercially available and physically able to meet the
laycan. Subject to capacity constraints, cargoes are then
matched with ships in either an auction-like process or a
perfectly competitive micro-market, depending on whether
there is excess demand or excess supply in the loading
area, respectively. Furthermore, if we ignore speed changes
and inter-temporal substitution, it follows that available
supply (dwt capacity) is fixed in the short run (in the
order of days). Thus, an increase in short-run demand and,
consequently, a higher freight rate, will result in a higher
contemporaneous capacity (dwt) utilisation. In the longer
run (in the order of weeks) supply is not fixed; high freight
rates in one region of the world would attract more ships;
a scenario which could push freight rates and capacity
utilisation down.

4.6

The Freight Derivatives Market

According to Alizadeh and Kavussanos (2002), spot and
period rates (TC rates) are related through the term
structure expectation hypothesis. Based on this argument,
Alizadeh and Nomikos (2011) argue that period rates are a
form of forward freight rates 17 , and that forward freight

17“A forward contract is an agreement to buy or sell an asset at
a certain future point in time at a certain price. Forward contracts
are traded in the OTC-market, usually between two financial institu-
tions, or a financial institution and a client. At maturity the buyer
of the forward contract receives the underlying asset (Gilleshammer
and Hansen, 2010)”.

curves thus can be constructed at any point in time by
comparing spot and period rates with different durations.

Depending on the shape of the forward curve, which can
change over time, the shipping market may be charac-
terised as being normal, in contango or in backwarda-
tion. In contango, the spot rate is below long-term period
earnings, while in backwardation the spot earnings are
higher than period earnings. The forward curve is normally
backwardated in commodity markets when there is a high
temporal demand for shipping services (inelastic supply
curve). Correspondingly, a contango forward curve can
be associated with low temporal shipping demand (elastic
supply curve).

The freight derivatives market, which is a part of the
freight market, allows charterers and shipowners to hedge
their freight risk or speculate by making Freight forward
agreements (FFAs). FFAs are financial contracts settled
against the value of a base index on the date specified
in the agreement and traded in over-the-counter (OTC)
markets. In the tanker market, a tanker FFA contract is
an agreement between two parties to fix a freight rate
in Worldscale units, over a period, on a predetermined
tanker route. The fixed forward price is settled at the end
of each month against the value of a tanker base index
(e.g. the TD2 index for the route between the Arabian
Gulf and Singapore). Tanker base indexes are published
by the Baltic Exchange and classified under the Baltic
Dirty Tanker Index (BDTI) routes (see Appendix B) or the
Baltic Clean Tanker Index (BCTI) routes (see Appendix
B) (Kavussanos and Visvikis, 2006).

Besides the OTC forward (FFA) contracts, shipping mar-
ket agents can use freight futures, which are traded in
organized exchanges such as the International Maritime
Exchange (IMAREX) and New York Mercantile Exchange
(NYMEX). According to Kavussanos and Visvikis (2006):
“IMAREX is a professional freight derivatives exchange
for the maritime industry, founded in spring 2000. It pro-
vides a marketplace for freight derivatives (freight futures
and FFAs) and in partnership with the Norwegian Op-
tions and Futures Clearing-House (NOS) offers clearing
services for these derivatives”. The Oslo-based IMAREX
utilises mostly the indices built by the Baltic Exchange,
in addition to some indices from Platts, to write freight
rate derivatives upon. IMAREX is accepted by the US
Commodity Futures Trading Commission to operate an
electronic facility as an Exempted Commercial Market
(ECM) (Γoλας, 2012). For contract details of IMAREX
tanker derivatives, see Appendix B.

A third available derivatives tool for risk management
and investment purposes, in addition to FFAs and freight
futures, is the option contract, offered by the same bro-
kers that trade FFA contracts. The first cleared tanker
IMAREX Freight Option (IFO) contract, cleared through
NOS, was launched in 2005 on route TD3 (VLCCs sailing
on the trade lane between the Arabian Gulf and Japan).
The IFOs are settled against the Baltic Exchange quotes,
structured as monthly call and put Asian style options
and available for trading and clearing for all IMAREX
and NOS members. For the tanker routes, the settlement
prices (measured in Worldscale points) are calculated as
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the arithmetic average across all trading days in a calendar
month (Kavussanos and Visvikis, 2006).

4.7

Market Efficiency in the Freight Market

Adland and Strandenes (2006) argue that the traditional
form of the efficient market hypothesis (EMH) does not
apply to the freight rate process, because the freight rate
is the price of a transportation service that cannot be
traded or stored. However, they argue that the notion of
market efficiency still applies to the freight market: Under
the hypothesis that the freight market is semi-strong-form
efficient, i.e. the current price of an asset in this market
incorporates all publicly available information, it should
not be possible to earn excess profit by taking chartering
positions based on public information. Such information
could be past levels of the spot freight rate or the shape of
the term structure of freight rates. Adland and Strandenes
(2006) further discuss that the current spot tanker freight
rate does not necessarily reflect all public information like,
for instance, OPEC revealing today that the they will
reduce the oil output in three months time. This is because
spot freight rates are a result of the near-term (in the order
of weeks) effective supply-demand balance in each loading
area.

Based on the arguments above, Adland and Strandenes
(2006) argue that the analysis of past price patterns,
referred to as technical analysis, may contain useful infor-
mation about future freight rate changes. To test market
efficiency in the bulk freight market, Adland and Stran-
denes (2006) utilise technical analysis based on the his-
tory of spot freight rates and examine the profitability of
chartering strategies for a tanker operator. Their empirical
results suggest that a large tanker operator, with a pool
of tankers, could have earned significant profits without
investing in ships by trading on relevant public information
(like past levels of the spot freight rate or the shape of the
term structure of freight rates).

In line with the abovementioned findings, Stopford (2009)
states that shipping markets operate under conditions of
nearly perfect competition, meaning that shipping markets
are close-to efficient. According to Investopedia (2018), five
characteristics must be apparent for a market to have a
perfect competition structure. These have been translated
into the tanker market by Molvik and Stafseng (2018):
Firstly, shipowners offer almost identical products, since
tankers within the various classes are almost perfectly
interchangeable. Secondly, all shipowners are price takers,
since the freight mechanism determine the price. Thirdly,
the tanker market is fragmented to a large extent, with
no single shipowner owning more than 2.5% of the total
tanker fleet capacity. Fourthly, freight rate manipulation
is difficult, because the market is highly transparent.
Charterers are fully informed about the tankers available
for chartering and about the Worldscale rates charged on
the various routes. Lasty, with the necessary financing
in place, the tanker market is both easy to enter and
exit. When it comes to freight rate prediction based on
empirical data, these five market characteristics may serve

as theoretical support and motivation, as they possibly
indicate predictability of tanker market dynamics over
time (Molvik and Stafseng, 2018).
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5

Review of Tanker Freight Rate

Determinants

As described in Chapter 4, the evolution of freight rates is
determined by the interplay between supply and demand,
both on a macroeconomic and microeconomic level. Ad-
ditionally, financial and other non-fundamental determi-
nants may impact the level of freight rates. A decisive step
in the process of forecasting tanker freight rates is to iden-
tify key freight rate determinants. This section therefore
provides a recap of academic discussions and conclusions
regarding supply, demand, microeconomic, financial and
other non-fundamental determinants.

5.1

Supply- and Demand-driven Determinants

Koopmans (1939), among others, lay the foundation for
the dynamic supply theory of shipping. Several empir-
ical models are built upon this theory, describing the
dynamic relationship between freight rates and the sup-
ply of seaborne transportation (See e.g. Zannetos (1966),
Hawdon (1978), Strandenes (1984), Hampton (1990),
Beenstock and Vergottis (1989), Beenstock and Ver-
gottis (1993), Engelen et al. (2006) and Randers and
Göluke (2007)). These studies discovered, for example,
that shipping freight rates are dependent on factors such
as world economic activity, growth in industrial produc-
tion, seaborne commodities trade, oil prices, availability
of ship tonnage, newbuilds on order, newbuild deliveries
and scrapping rates. In other words, these findings imply
that freight rates are determined by the balance between
demand and the active fleet size. Moreover, Beenstock and
Vergottis (1989) published an econometric model for the
tanker market, which was developed using theory from the
model of expected second-hand ship prices presented by
Beenstock (1985). Here, supply was modelled as a function
of freight rates, fleet size, operational costs and costs of
lay-up, while demand was modelled as exogenous.

Furthermore, the recent studies by Dikos et al. (2006) and
Randers and Göluke (2007) apply macroeconomic vari-
ables in a system dynamic setting to model and forecast
tanker freight rates. Like Beenstock and Vergottis (1993)
and Engelen et al. (2006), Randers and Göluke (2007)
treated demand as exogenous, while freight rates, newbuild
orders, average building time, average lifetime of ships,
fleet productivity, utilisation changes and scrapping rate
were included on the supply side. Moreover, Randers and
Göluke (2007) explain that supply (measured by tonne-
miles) is flexible and affected by the way shipowners oper-
ate their ships; when there is excess demand, shipowners
can improve profitability by, for example, speeding up
their fleet, utilising more of their ships capacity, postpone
regular maintenance and shorten port time. Thus, supply
measured in tonne-miles is not constant, but rather dy-
namic and continuously adjusting to market conditions.

As shown in Table 10, Stopford (2009) explains the ship-
ping market model by ten variables in total, five supply
variables and five demand variables. Regarding fleet pro-
ductivity on the supply side, Stopford (2009) argues in line
with Randers and Göluke (2007) that it mainly depends on
the following factors: speed, port time, fleet utilisation and
loaded days at sea. Additionally, Stopford (2009) explains
that supply in the long-run is determined by the fleet size,
driven by scrapping and newbuild deliveries.

Table 10. Stopford (2009) Ten variables in the Ship-
ping Market Model.

Demand Supply

1. The world economy 1. The world fleet
2. Seaborne commodity trades 2. Fleet productivity
3. Average haul 3. Shipbuilding production
4. Political events 4. Scrapping and losses
5. Transport costs 5. Freight rates

When it comes to the tanker market, Lyridis et al. (2004)
forecasted VLLC spot freight rates using Artificial Neural
Networks (ANNs). In their study, they considered the
following variables to be the most important factors:
demand for oil transportation (measured in tonne-miles),
active fleet, crude oil production, crude oil price, surplus
as a percentage of active fleet, TC rates, newbuild prices,
second-hand prices, bunker oil prices, scrap prices and oil
stock building. Much in line with Lyridis et al. (2004),
Alizadeh and Talley (2011) found that supply depends on,
for example, the tanker fleet size, the tonnage available for
trading, tanker shipbuilding activities, the scrapping rate
of the fleet, bunker prices, and the tanker fleet productivity
at any point in time.

Ringheim and Stenslet (2017) predict monthly dry bulk
(BDI) and tanker (BDTI) freight rates, by applying a
general-to-specific methodology as outlined by Campos
et al. (2005), and using a total of 44 dry bulk and 37 tanker
variables. Consistent with the findings of Poulakidas and
Joutz (2009), Ringheim and Stenslet (2017) conclude that
the single most significant tanker predictor is the oil price.
The oil price being an important indicator for tanker
demand is also pointed out by Stopford (2009).

Molvik and Stafseng (2018) forecast tanker freight rates
on four major dirty tanker routes (TD1, TD3, TD7 and
TD12) and on two major clean tanker routes (TC1 and
TC2). These routes are explained in Appendix B. Fur-
thermore, they included seven groups of supply-driven
variables: five related to fleet size, one to fleet age and
one to vessel prices. Six groups of demand-driven vari-
ables were included: oil demand, oil import and export,
vessel fixtures, crude oil production, refinery output and
refinery utilisation. Additionally, they included ten groups
of economic and non-fundamental variables: GDP, TC
rate, exchange rate, CPI and money supply, interest rate,
industrial production, crude oil and oil products price,
bunker price, shipping index and stock index. In total, this
amounts to 169 variables.

Olsen and da Fonseca (2017) applied two sets of variables
to their forecasting models (see Chapter 2): one set in-
cluded what they refer to as “publicly available data”, and
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the other set included both “publicly available data” and
AIS data. The “publicly available data” set consisted of
seven variables:

‚ Average production volume of crude oil in the Middle-
East (local demand)

‚ VLCC fleet development (global supply)
‚ VLCC tonnage available for chartering in the Arabian

Gulf (local supply)
‚ Gasoline price in Singapore (local supply/demand)
‚ A variable called “diffussing” (probably accounting

for changes in the US dollar´Singapore dollar ex-
change rate) 18

‚ Refinery margin in Asia (local demand)
‚ Brent-Dubai crude oil price spread (local demand)

The AIS data set contained information supposed to
capture the effects of operational efficiency and tonne-mile
demand (both globally and locally). The following three
determinants accounted for operational efficiency:

‚ Fleet speed
‚ Voyage speed
‚ Load factor

Furthermore, the following four AIS-derived determinants
accounted for tonne-mile demand:

‚ The number of VLCCs in the Arabian Gulf (local
tonne-mile demand)

‚ The number of tankers other than VLCCs in the
Arabian Gulf (local tonne-mile demand)

‚ The number of VLCCs in other parts of the world
(global tonne-mile demand)

‚ The number of tankers other than VLCCs in the rest
of the world (global tonne-mile demand)

The latter four variables were included to attempt to
accurately account for the distance-effect on demand,
which in theory is possible using AIS data (Adland et al.,
2017). As mentioned in Chapter 2, they found weak
evidence in favour of including AIS-derived information
about tonne-mile demand and operational efficiency in
their forecasting models.

As opposed to Olsen and da Fonseca (2017), Tham (2008)
applied Bayesian selection methods to identify leading
predictors of TD3 front month swaps without using AIS
data, resulting in the following significant price drivers:
refining margin in Asia, crude oil production in the Middle
East, capacity utilisation and Brent-Dubai crude oil price
spread.

5.2

Microeconomic Determinants

The literature on microeconomic determinants of shipping
freight rates is limited to the studies by Tamvakis (1995)
Tamvakis and Thanopoulou (2000) and Alizadeh and Tal-
ley (2011). Tamvakis (1995) found no significant empirical

18This variable is not explained by Olsen and da Fonseca (2017).
However, we assume that it accounts for the difference or ratio be-
tween US dollars and Singapore dollars and, thus, currency exchange
rate effects.

results to support the hypothesis that the construction and
employment of double-hull tankers, as mandated by the
Oil Pollution Act 1990 (OPA), would create an additional
freight rate premium for the hiring of double-hull tankers,
relatively to the hiring of single-hull tankers. Tamvakis and
Thanopoulou (2000) investigated the existence of a two-
tier dry-bulk ship charter market, reflecting the ship age.
This was based on the period 1989-1996, which covered
different shipping cycle stages. However, their empirical
results revealed no significant difference between freight
rates paid for newer versus older ships.

Alizadeh and Talley (2011) investigated specific vessel and
voyage determinants of shipping freight rates, as well as
the timing of charter contracts (i.e. laycan periods) in the
tanker freight market. Their estimation results indicate
that the duration of the laycan period is a significant
determinant of the shipping freight rate and vice versa.
Other freight rate determinants include the ships hull type,
fixture deadweight utilisation ratio, age of the ship, and
voyage routes. For the laycan period, determinants include
the former determinants in addition to the Baltic Dirty
Tanker Index (BDTI) and its volatility.

5.3

Financial and Other Non-fundamental
Determinants

The literature study by Ringheim and Stenslet (2017)
reveals several relationships between shipping freight rates
and factors that are not directly linked with the sup-
ply or demand of seaborne transportation. Ringheim and
Stenslet (2017) define these factors as either financial
determinants or non-fundamental determinants: Financial
determinants are prices and measures that are determined
by or traded in financial markets, and non-fundamental
variables can for instance be political events, enforcement
of new regulations, or wars taking place. Furthermore,
Stopford (2009) highlights the importance of behavioural
aspects and other shipping market participants like banks
and regulators. Shipowners' and charterers' decisions are
often influenced by the behaviour of these participants
and, thus, both financial and non-fundamental determi-
nants could impact the shipping market's expectations
about future supply and demand.

The two studies by Alizadeh and Talley (2011) and Bakshi
et al. (2011) both reveal a link between real and financial
markets, by showing that the Baltic Dry Index (BDI)
have predictive power in both markets. They both found
that the BDI was an indicator for stock market returns,
while Bakshi et al. (2011) also showed that the BDI could
predict global economic growth and commodity indices.
Moreover, Bakshi et al. (2011) discovered that their model
was applicable across international stock indices.

Some recent studies have revealed that financial markets
could lead shipping freight rates (Ringheim and Stenslet,
2017). As indicated in Chapter 2 and in Section 4.6,
futures and forward contracts might contain information
about future spot freight rates. Kavussanos and Alizadeh-
M (2001) discovered for instance a bidirectional lead-
lag relationship in daily returns and volatilities between
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spot freight rates and FFAs. Moreover, Kavussanos and
Visvikis (2006) call for awareness regarding currency risk,
as many shipowners have income in US dollars while their
payments often are in a local currency.

Finally, the study by Fan et al. (2013) investigated the
possibility of using the following variables to predict the
BDTI: the oil price, the CBOE SPX Volatility Index, and
the SP Global 1200 Index. Ringheim and Stenslet (2017)
on the other hand, included a total of 19 financial and
non-fundamental variables in their models to forecast the
BDI and the BDTI.
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6

Data

In this section, the input data and freight rate determi-
nants are presented and reasoned. The process of gather-
ing, filtering and transforming raw data from AIS data
to proper time-series data is also briefly described. Fi-
nally, descriptive statistics of the explanatory variables are
presented and discussed before their correlation with the
dependent variable is studied.

6.1

Data Selection

The selected determinants, which may influence the tanker
freight rate on the TD2 route, are summarised in Table 11.
Eleven of these explanatory variables are derived from AIS
data, while six of them are not. The time-series data for the
latter variables are gathered from Thomson Reuters Eikon.
Moreover, the freight rate in question, the dependent
variable in this study, is a rate calculated by Thomson
Reuters and reflects the price level on the TD2 route (for
more information about this tanker route, see Chapter 1).
Based on the review of freight rate determinants presented
in Chapter 5, the arrows in the rightmost column of
Table 11 indicate the impact a positive change in the
respective explanatory variable is expected to have on the
freight rate. Furthermore, several data sets of explanatory
variables will be investigated in this study. This will be
further explained in Chapter 8 and 9.

6.2

AIS-derived Data

6.2.1

Fleet Productivity (Supply)

Stopford (2009) lists fleet productivity as the second-
most important supply determinant. Fleet productivity is
also influential for tanker supply (Alizadeh and Talley,
2011). The fleet productivity, or operational efficiency,
is assumed to be largely dependent on the sailing speed
and the utilisation of cargo-carrying capacity (dwt). The
average speed of the global VLCC fleet (Speed global)
and the local VLCC fleet (Speed local) are therefore
included as two separate supply-determinants to capture
the effects of global and local speed changes. Additionally,
two load factor determinants are included to account for
capacity utilisation of the VLCC fleet globally (LF global)
and locally (LF local). Here, local refers to the VLCCs
currently located in the areas around and between the
origin and destination ports and global refers to the VLCC
world fleet, i.e. we account for all existing VLCC ships.
The rationale for including global variables is simply that

global market conditions are suspected to potentially have
ripple effects on local market conditions.

Both Koekebakker et al. (2006) and Randers and Göluke
(2007) explain that supply is affected by the way ships are
operated; when there is excess demand, the fleet is fully
employed and freight rates are high, profitability can be
improved up to a certain point 19 by, for example, speeding
up the fleet and utilising more of the cargo-carrying
capacity. These arguments indicate that freight rates lead
factors such as sailing speed and capacity utilisation, but
not necessarily the other way around. However, maritime
economic theory states that higher sailing speed increases
productivity and, thus, supply. Eventually, more supply
should in theory result in lower freight rates. This does
not necessarily mean that there is a negative correlation
between fleet speed and the freight rate, it might just
as well be positive, because in shipping there is often a
lag between decisions and market impact. Furthermore,
regarding the load factor determinants, Adland et al.
(2016) found a positive relationship between capacity
utilisation and the freight rate, which confirmed their
hypothesis that poor market conditions with low freight
rates force ships to compete for lower-than-optimal stem
sizes. Again, this indicates that freight rate movements
lead changes in capacity utilisation, but not necessarily
vice versa. From a microeconomic perspective, Olsen and
da Fonseca (2017) argue that the relationship between
the load factor and the freight rate is inverse, because
the marginal transport cost and, thus, the freight rate
decreases when the load factor increases. On the other
hand, a higher average load factor for the overall tanker
fleet at any point in time, could imply a lower immediate
availability of supply, which in turn gives rise to a higher
freight rate. Thus, there are some uncertainties regarding
which way the load factor determinants impact the freight
rate.

To calculate average speed for each time step using the AIS
dataset, (1) is applied. For simplicity it is assumed that the
ship has moved in a straight line from the previous position
to the current position, although this not necessarily is the
case. The AIS position is given in longitude and latitude,
so basic mathematics (Pythagoras' equation) is applied
to calculate the distance of the straight line (hypotenuse)
between the positions. The sailing time between the posi-
tions are directly derived from the AIS data set. The unit
of this factor is measured in kilometres (km) per day.

Average speed “

ř

n PN

Distance sailed
Sailing time

N tankers
(1)

The load factor is simply calculated as the ratio of the ships
current draught and the ships maximum draught 20 . The
average load factor for the global and local VLCC fleet, is

19There is an upper boundary, because higher speed leads to higher
fuel cost, which, depending on demand levels and ship specifications,
eventually will cancel out the additional income due to increased
utilisation.
20Maximum draught within the time-frame of the AIS data set
(2012-2015).
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Table 11. Overview of selected freight rate determinants - input variables in the neural network model.

Variable Unit Description Expected impact

Dependent Variable:

Rate $/tonne Tanker spot freight rate on the BDTI TD2 route
(the major tanker route between the Arabian Gulf
and Singapore)

Ù

AIS-derived data:

Fleet productivity (Supply)
Speed global km/day Average speed of the global VLCC fleet Ù

Speed local km/day Average speed of VLCCs in the area around and
between origin (Arabian Gulf, AG) and destina-
tion (Singapore, SIN) ports

Ó

LF global [ ´ ] Average load factor (cargo-carrying capacity (dwt)
utilisation) of the global VLCC fleet

Ù

LF local [ ´ ] Average load factor of the local VLCC fleet Ù

Tanker fleet activity (Supply)
N tankers op [Integer] Number of (No.) VLCCs in origin port area (AG) Ó

N tankers heading op [Integer] No. VLCCs heading to origin port area (AG) Ó

N tankers dp [Integer] No. VLCCs in destination port area (SIN) Ù

N tankers heading dp [Integer] No. VLCCs heading to destination port area (SIN) Ó

N tankers bp [Integer] No. VLCCs in the area between ports (AG - SIN) Ù

Tonne-mile Demand
TMD dp [tonne ¨ km] Aggregation of tonne-mile demand for all VLCCs

heading to destination port area (SIN)
Ò

TMD omp [tonne ¨ km] Aggregation of tonne-mile demand for all VLCCs
heading to other major ports: AG, China, Japan,
USA and West Africa

Ù

Non-AIS-derived data:

Supply determinants
Bunker price $/tonne Bunker oil price in Singapore Ù

Demand determinants
Refinery margin $/bbl Approximation of refinery profitability in Asia; the

difference between petrol price in Singapore and
crude oil price in Dubai; a proxy for crude oil
demand in Asia

Ò

Financial determinants
Oil spread $/bbl The spread between Dubai crude oil front month

(1-month) futures and 3-month futures
Ù

FX USD SR USD/SR U.S. dollar-Saudi Riyal exchange rate Ù

FX USD SD USD/SD U.S. dollar-Singapore dollar exchange rate Ù

BDTI [ ´ ] Baltic Exchange Dirty Tanker Index (BDTI) Ò
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thus calculated using (2). A weakness with this approach
is that it relies heavily on the accuracy of the manual
draught reports by the ships' crew. Another issue is that
ships commonly carry ballast water when sailing ballast
legs, i.e. when they transit without carrying payload 21 ,
and the AIS data does not directly capture whether a
tanker is filled with oil or ballast water. However, tankers
are typically carrying less weight when sailing ballast
legs, which constitutes a difference that may justify the
inclusion of the load factor variables.

Average load factor “

ř

n PN

Current draught
Maximum draught

N tankers
(2)

6.2.2

Tanker Fleet Activity (Supply)

Five different variables accounting for VLCC supply are
included, in terms of the VLCCs' current position and
headed destination. Our hypothesis is that a high number
of VLCCs headed to or located in or around the origin
port (Ras Tanura, Saudi Arabia) and destination port
(Singapore), will lead to a high level of VLCC supply
in these areas. We also believe that a higher number of
VLCCs located between the ports can increase supply. In
theory, more supply should put downwards pressure on the
freight rate.

6.2.3

Tonne-mile Demand

As mentioned in Section 4.3, tanker demand is calculated
on a tonne-mile or, in this case, tonne-km basis to account
for the distance-effect on demand. According to Adland
et al. (2017), the estimation of tonne-mile demand on a
per-shipment basis is an application area where it can
be beneficial to use AIS data. Thus, demand on a per-
shipment basis is first calculated per time step for all
VLCCs that, according to the AIS data, are heading to
a specific destination. As (3) shows, tonne-mile demand
is then calculated at each time step as the VLCC's load
factor multiplied by the VLCC's cargo-carrying capacity
(dwt) and the distance (km) from the VLCC's current
position to the destination port. Both the load factor and
the distance are derived from the AIS data, while the
cargo-carrying capacity (dwt) is retrieved from the Sea-
web online database 22 . A ship registry such as Sea-web
was used here, because the AIS data does not contain ship
size measured by dwt. From Sea-web a .csv file containing
IMO numbers was extracted. This was obtained after
specifying and matching the capacity interval for VLCCs
(see Table 9) with the IMO numbers in the AIS data.
Furthermore, when dealing with the formation of freight

21Ships carry sea-water when sailing ballast legs (not sailing with
cargo), to obtain adequate ship stability (mainly for safety reasons)
and a sailing speed closer to the design speed (for cost-efficiency).
22http://maritime.ihs.com/. The dwt capacity could also have been
roughly estimated using AIS data.

rates, the estimation of tonne-mile demand is only relevant
on an aggregate level. Therefore, tonne-mile demand for all
VLCCs heading to the specific destination for each time
step has been aggregated.

T.m. demand “
ÿ

n PN

load factor ¨ capacity ¨ distance (3)

Two variables are included when it comes to the above-
mentioned tonne-mile demand: TMD dp and TMD omp. The
former variable accounts for the tonne-mile demand, at
each time step, attached to all VLCCs heading for Singa-
pore. An increase in this variable is expected to result in a
higher freight rate on the TD2 route. The latter variable
accounts for the total tonne-mile demand, at each time
step, linked to all VLCCs heading for five other important
areas (the AG, the U.S., China, Japan, and West Africa),
to account for ripple effects. The relationship between this
variable and the freight rate is not obvious.

Again, a possible drawback with the applied approach
is the way the load factor is calculated. As previously
explained, it relies on the manual draught reports by
the ships' crew, which can be subject to human error.
However, these two variables are included because after
removal of erroneous data from the AIS dataset, the
remaining data is more available, up-to-date and, thus,
potentially richer than weekly or monthly data reports
from e.g. customs or shipbroking firms. Furthermore, since
the load factor appears on both sides of the freight rate
equation, this will affect both supply and demand. Thus,
the inaccuracy issue could to some extent be balanced out.

6.3

Non-AIS-derived Data

Regarding input data not derived from the AIS data set,
a total of six variables have been selected.

6.3.1

Supply Determinants

Only one supply-driven variable, not derived from AIS
data, is included besides the AIS-derived supply-driven
variables: Bunker price. The bunker price, or fuel price, is
assumed to make up most of the voyage costs (VOYEX) for
the VLCC operator; VOYEX is low when the fuel price is
low and vice versa. The fuel price indirectly affects supply
through a shipowner's or a shipping operator's wish to
maximise profit, because in shipping, profit maximisation
is closely related to the optimisation of fuel consumption.
For example, as discussed in Section 4.5.4, when demand
exceeds supply and the tanker fleet capacity is maximised,
profitability can be further improved by increasing supply
through speeding up the fleet, although this leads to a
higher fuel consumption. Unless demand is extremely high
in this case, the fuel price would, given all else equal,
determine the ceiling where it is no longer profitable to
increase the speed. Thus, the fuel price definitively impacts
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supply, but in which direction is not straightforward to tell:
A higher fuel price makes supply costlier due to higher
VOYEX, which could imply that supply decreases and,
in theory, pushes the freight rate upwards. At the same
time, the fuel price closely follows the fluctuations of the
oil price, which is the commodity that tankers transport.
Poulakidas and Joutz (2009) investigated the relationship
between weekly spot tanker rates and the oil market from
1998 to 2006. They concluded that the spot tanker market
is related to the crude oil prices in such a way that
higher oil prices put upwards pressure on spot tanker
rates. Contrarily, as mentioned in Section 4.3, Stopford
(2009) comments as follows on the relationship between
the oil price and tanker freight rates: An increase in the oil
price tends to alter the global energy mix, which reduces
demand in the tanker market because coal to a certain
extent substitutes oil. A reduction in tanker demand
would, in theory, put downwards pressure on the tanker
freight rate. Therefore, we argue that the Bunker price
variable could both have a positive and negative impact
on the tanker freight rate.

The active global VLCC fleet size at any point in time is
also a relevant supply determinant. However, only yearly
data from Thomson Reuters is available for this variable.
Since the time horizon of the forecast is on an operational
level and, thus, significantly shorter than one year, this
variable was not included. Additionally, the relevant and
active VLCC fleet size at any point in time is effectively
accounted for, by using the AIS dataset to count the
number of VLCCs located in or headed to the areas in,
around and between the origin ports in Saudi Arabia and
the destination port in Singapore.

6.3.2

Demand Determinants

Inspired by Tham (2008) and Olsen and da Fonseca (2017),
an approximation of the refinery margin in West Asia
(Refinery margin) is included as one of the demand de-
terminants. This variable is supposed to be a proxy for
crude oil demand in Asia, or Southeast Asia, and its value
is determined by taking the difference between the petrol
price in Singapore and the crude oil price in Dubai. The
rationale for including this variable is as follows: Refineries
are the only conventional buyers of crude oil and, therefore,
the volume of crude oil transported should be positively
and highly correlated with refinery profitability. For exam-
ple, when refinery margins are low, one would expect less
crude oil- and tanker demand, which in turn would impact
tanker freight rates negatively.

6.3.3

Financial Determinants

The rationale for including the (Oil spread) variable
is to capture potential effects from the futures curve;
when e.g. the futures curve is steep upwards, traders
would buy oil, sell forward or futures derivatives and
use tankers to store the oil meanwhile. Consequently, one
would expect tanker demand and, thus, freight rates to
increase following an increase in the futures spread level.

Furthermore, the BDTI is a tanker base index reflecting
the price levels on all the major tanker routes in the
world (see Appendix B for an overview of these routes).
Hence, a positive relationship between the BDTI and
the VLCC freight rate on the TD2 route from Saudi
Arabia to Singapore is expected. Finally, two variables
are included for the U.S. dollar-Singapore dollar and U.S.
dollar-Saudi Riyal exchange rates, because shipowners
have their revenues in U.S. dollars and could pay costs
in local currencies, such as the Singapore dollar or the
Saudi Riyal. A strengthening of the U.S. dollar relative to
the Singapore dollar or the Saudi Riyal, in this case, could
impact freight rates in the positive direction as it would
improve shipowners' profitability. On the other hand, it
could also lead to more newbuild contracting, higher
supply expectations and, thus, a downwards pressure on
freight rates (Ringheim and Stenslet, 2017).

6.4

AIS Data Handling

6.4.1

Collection, Preparation and Sampling of AIS Data

The AIS data used in this study is gathered from an
AIS database created by Bjørnar Brende Smestad, who
received raw data from the Norwegian Coastal Administra-
tion. The same database was used in the master's theses by
Smestad (2015) and by Leonhardsen (2017), both former
NTNU students at the Department of Marine Technol-
ogy. Additionally, a list with IMO numbers of ships with
certain specifications was downloaded from the Sea-web
online database; ships classified as oil tankers with a cargo-
carrying capacity larger than 200,000 dwt were searched
for. Then all messages of type 1 and 5 from the AIS
database were matched with the ships from the Sea-web
list by their IMO numbers. SQLite, a relational database
management system, was a vital tool here. Furthermore,
this resulted in a new database containing the location,
destination and draught for in total 446 VLCCs. Further,
necessary calculations were done and time series for all the
AIS-derived variables, described in Table 11, were created
using a self-developed Python script.

AIS data is sampled at different intervals, with only a few
seconds between each signal, as discussed in Chapter 3.
Since only short forecasting horizons are considered, daily
data is the most important. Arguably, a higher frequency
of the AIS data could have been used, but that is left
for another research problem. Thus, when it comes to the
sampling frequency of the AIS-messages, the last received
message of the day was included in our time series.

6.4.2

Uncertainty and Dealing with Missing Data

As mentioned in Section 6.1, the use of AIS data has a
few drawbacks. First, the AIS satellites are not always
able to cover all ocean areas simultaneously. Therefore,
there are instances with gaps, where the satellites do not
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receive any messages 23 . Second, in crowded areas like
major ports and heavily trafficked straits or canals, such as
the Strait of Malacca or the Suez Canal, the transmitted
AIS messages from the many ships may interfere with
each other. Interference results in more missing data,
because the AIS signals do not reach the satellites. A
third drawback, which was briefly mentioned in Section
6.2.1, is that the static data must be typed in manually by
the ships' crew. Static data include for example the IMO
number, ship type, and physical appearance like draught,
destination and estimated time of arrival. Thus, the static
data may be wrong, as the manual reporting can be subject
to human errors.

Together, the abovementioned drawbacks give rise to many
sources of uncertainty. Regarding current position of the
ships, where data is missing, interpolation of the value of
the previous day with the following day was done. When
it comes to draught and destination, the missing data was
filled using the previous day's data.

6.5

Descriptive Statistics

In this section, descriptive statistics, including correlation
matrices, are presented for the AIS-derived and the non-
AIS-derived input data summarised in Table 11 and de-
scribed in 6.1-6.3. This data consist of time series of daily
levels from the sample period 4 January 2012 to 24 Decem-
ber 2015 and originally contain 1450 data points. However,
most of the non-AIS-derived input data are only quoted at
trading days, not weekends et cetera. Consequently, there
is a lot of missing values in the sample period. This is also
the case with the AIS-derived data, for reasons explained
in Section 6.4.2. This issue was solved by simply removing
all observations on the days where one or more of the input
time-series contain(s) a missing value, reducing the data
sets to 913 observations.

6.5.1

AIS-derived Data

Descriptive statistics of the AIS-derived data and a cor-
relation matrix for the levels of the AIS-derived data, are
presented in Table 12 and Table 13, respectively. Addition-
ally, time-series plots and normality plots can be found in
Appendix C and D, respectively.

From Table 12 it can be observed that most of the explana-
tory variables derived from AIS data are quite volatile.
For the higher moments, excess kurtosis and skewness,
values different from zero indicate a non-normal distri-
bution of the sample data. High adjusted Jarque-Bera
(AJB) test results, which is observable in the second-right-
most column of Table 12, also indicate non-normality. In
this case, most of the AJB values are way above critical
values. Additionally, all except two p values are zero. The
null hypothesis that the data is normally distributed can
thus be rejected with 100% confidence, for the cases with

23See Smestad (2015) for further explanation on this phenomenon.

zero p values. Moreover, a higher positive excess kurtosis
implies that the distribution of a given time series has a
fatter tail, which in turn indicates a higher probability
of extreme events occurring more frequently. At the same
time, positively skewed distributions imply more frequent
small negative events and less frequent extreme positive
events. Opposite is true for negatively skewed distribu-
tions, which indicate frequent small positive events and
some few extreme negative events (Alexander, 2009).

From Table 13 it can be seen that all explanatory variables,
derived from AIS data, are positively correlated with the
freight rate. Not surprisingly, based on the discussion
in Section 6.2, the local speed variable (Speed local)
has the strongest correlation with the freight rate among
these variables. In comparison, the global speed vari-
able (Speed global) is significantly less positively cor-
related with the freight rate. This makes sense because
Speed local, as opposed to Speed global, is directly
linked to the trade lane between the AG and Singapore.
However, the fact that these correlations are positive,
instead of negative, could indicate that it is the freight
rate that leads changes in sailing speed and not vice versa.
When it comes to the load factor variables, LF global and
LF global, both are close to uncorrelated with the freight
rate. An explanation could be that the load factor calcu-
lations are inaccurate, perhaps because ships are sailing in
ballast condition when not carrying cargo (oil), resulting in
a too large load factor (when using the approach outlined
in Section 6.2.1). Another reason could be that the draught
reports by the ships' crew members sometimes are wrong
(as discussed in Section 6.2.1 and 6.4.2).

Furthermore, the N tankers heading op and N tankers
heading dp variables have relative strong correlations
with the freight rate; and stronger than the N tankers op
and N tankers dp variables. In other words, it seems that
the number of ships located in the areas surrounding the
ports in the AG and Singapore are less important than the
number of tankers heading to these destinations. Finally,
the tonne-mile demand variables are less correlated with
the freight rate than expected, again based on our discus-
sion in Section 6.2. Additionally, it is not clear why global
tonne-mile demand seems to be more important (in terms
of correlation numbers) than local tonne-mile demand.

6.5.2

Non-AIS-derived Data

Descriptive statistics and a correlation matrix for the data
(levels) not derived from AIS, are presented in Table 14
and Table 15, respectively. Additionally, time-series plots
and normality plots can be found in Appendix C and D,
respectively.

From Table 14 and the time-series plots in Appendix C
it can be observed that all non-AIS-derived variables are
quite volatile, except the two exchange rate variables. At
the same time, the U.S. dollar-Saudi Riyal exchange rate
stands out when it comes to the higher moments, excess
kurtosis and skewness. A higher positive excess kurtosis
implies that the distribution of a given time-series has a
fatter tail, which in turn indicates a higher probability of
extreme events occurring more frequently. The AJB values

22



are way above critical values and the p values are all zero;
the null hypothesis that the data is normally distributed
can be rejected with 100% confidence.

Table 15 shows that all non-AIS-derived time-series are
correlated with the VLCC freight rate to a significant
extent, with correlations varying between -0.58 and 0.62.
Only one of the variables, the bunker oil price in Singapore,
is negatively correlated with the freight rate. In Section
6.3.1, it was argued that the Bunker price variable both
could have a positive and negative impact on the freight
rate. However, in the sample period, a positive change in
the bunker oil price seems to have a negative effect on
the freight rate, or vice versa. As expected, the BDTI and
Refinery margin variables are both positively correlated
with the freight rate. For the three remaining variables, the
Oil spread and the two currency exchange rate variables
(FX USD SR and FX USD SR), we were not sure what to ex-
pect. However, all three variables are positively correlated
with the freight rate.
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Table 12. Descriptive statistics of the AIS-derived data.

Mean Median Std. Dev. Min Max
Excess
kurtosis

Skewness Count AJB
AJB
p value

Rate 8,2 7,8 2,3 4,8 14,5 2,5 0,6 913 57,4 0,0
Speed global 330,5 313,9 51,0 224,1 537,9 4,0 1,2 913 250 0,0
Speed local 340,2 342,5 41,3 213,6 460,4 2,6 -0,1 913 6,5 0,0
LF global 0,8 0,8 0,018 0,7 0,8 3,8 0,4 913 49,1 0,0
LF local 0,7 0,7 0,042 0,6 0,9 3,5 -0,2 913 15,2 0,0
N tankers op 64,3 65,0 11,8 33,0 94,0 2,4 0,0 913 12,2 0,0
N tankers heading op 21,6 22,0 10,0 2,0 47,0 2,0 0,0 913 39,4 0,0
N tankers dp 55,5 55,0 9,0 30,0 89,0 3,4 0,2 913 12,1 0,0
N tankers heading dp 10,7 11,0 3,8 4,0 23,0 2,4 0,3 913 25,7 0,0
N tankers bp 128,3 128,0 12,0 96,0 164,0 2,8 0,1 913 2,1 0,3
TMD dp 1,59E+10 1,50E+10 7,39E+09 1,74E+09 3,94E+10 2,5 0,4 913 34,1 0,0
TMD omp 3,43E+10 3,42E+10 1,07E+10 4,34E+09 6,68E+10 2,8 0,1 913 3,3 0,2

Table 13. Correlation matrix for the AIS-derived data.

Rate
Speed

global

Speed

local

LF

global

LF

local

N t

op

N t

h op

N t

dp

N t

h dp

N t

h bp
TMD dp TMD omp

Rate 1,00 0,21 0,49 0,08 0,10 0,32 0,40 0,33 0,37 0,20 0,26 0,33
Speed global 0,21 1,00 0,39 0,03 0,04 0,11 0,16 0,05 0,14 -0,03 0,11 0,17
Speed local 0,49 0,39 1,00 -0,16 -0,09 0,39 0,56 0,15 0,43 0,03 0,35 0,48
LF global 0,08 0,03 -0,16 1,00 0,64 -0,21 -0,31 -0,08 -0,09 0,06 -0,10 -0,23
LF local 0,10 0,04 -0,09 0,64 1,00 -0,04 -0,21 0,02 0,01 0,17 -0,07 -0,11
N tankers op 0,32 0,11 0,39 -0,21 -0,04 1,00 0,71 0,49 0,60 0,43 0,51 0,54
N tankers heading op 0,40 0,16 0,56 -0,31 -0,21 0,71 1,00 0,44 0,64 0,28 0,59 0,67
N tankers dp 0,33 0,05 0,15 -0,08 0,02 0,49 0,44 1,00 0,44 0,54 0,40 0,38
N tankers heading dp 0,37 0,14 0,43 -0,09 0,01 0,60 0,64 0,44 1,00 0,31 0,83 0,58
NTBP 0,20 -0,03 0,03 0,06 0,17 0,43 0,28 0,54 0,31 1,00 0,33 0,24
TMD dp 0,26 0,11 0,35 -0,10 -0,07 0,51 0,59 0,40 0,83 0,33 1,00 0,50
TMD omp 0,33 0,17 0,48 -0,23 -0,11 0,54 0,67 0,38 0,58 0,24 0,50 1,00

Table 14. Descriptive statistics of the non-AIS-derived data.

Mean Median Std. Dev. Min Max Excess kurtosis Skewness Count AJB
AJB
p value

Rate 8,2 7,8 2,3 4,8 14,5 2,5 0,6 913 57,4 0
Bunker price 540,8 609 157,3 163 761 2,4 -0,9 913 125,1 0
Refinery margin 13,6 12,3 8,8 -11 42,3 2,9 0,4 913 20,1 0
Oil spread -0,3 -0,7 1,4 -3,5 3,4 2,5 0,5 913 46,9 0
FX USD SR 3,8 3,8 0 3,7 3,8 26,3 4 913 23554 0
FX USD SD 1,3 1,3 0,1 1,2 1,4 3 1,1 913 186,1 0
BDTI 740,2 711 120,4 577 1344 5,3 1,2 913 424,8 0

Table 15. Correlation matrix for the non-AIS-derived data.

Rate Bunker price Refinery margin Oil spread FX USD SR FX USD SD BDTI

Rate 1,00 -0,58 0,25 0,51 0,28 0,58 0,71
Bunker price -0,58 1,00 -0,46 -0,76 -0,29 -0,92 -0,34
Refinery margin 0,25 -0,46 1,00 0,41 0,34 0,34 0,20
Oil spread 0,51 -0,76 0,41 1,00 0,38 0,71 0,43
FX USD SR 0,28 -0,29 0,34 0,38 1,00 0,17 0,29
FX USD SD 0,58 -0,92 0,34 0,71 0,17 1,00 0,38
BDTI 0,71 -0,34 0,20 0,43 0,29 0,38 1,00
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7

Machine Learning Theory

The intention of this chapter is to provide a basic un-
derstanding of machine learning, with a focus on the
techniques applied in the current thesis: classification and
artificial neural networks. Readers familiar with machine
learning or artificial neural networks theory could skip this
chapter and go straight to the methodologies outlined in
Chapter 8. Others are advised to continue reading.

7.1

Machine Learning and Artificial Neural Networks

Machine learning has become a popular and powerful data-
processing tool in recent years due to its wide range of
usefulness: Machine learning algorithms can help compa-
nies across many industries by learning systems how to
operate or predict future outcomes based on patterns in
data. Mitchell et al. (1997) describes machine learning
with the following definition: “A computer program is said
to learn from experience E with respect to some class of
task T and performance measure P, if its performance at
tasks in T as measured by P, improves with experience E”.

Two tasks commonly solved by machine learning algo-
rithms are classification problems and regression problems.
Simply put, with classification problems a machine should
separate some input into some category or classes. With re-
gression problems, the machine should calculate a numeric
value given some input. Regarding classification problems
the performance can be measured in accuracy, i.e. the
amount of correct classified input, if given some label or
blueprint to follow. When it comes to regression problems,
performance usually is measured using some residual.

Furthermore, experience can be thought of as the amount
of data that is fed into the machine learning algorithm. For
example, when algorithms are trained to recognise hand-
written digits, they are typically fed some data set con-
taining several thousand examples of handwritten digits
ranging from zero to nine. The algorithms then experience
this data and this process of learning through experience
is called training in the domain of machine learning.

The development of Artificial Neural Networks (ANNs), a
type of machine learning or neural network algorithm, was
originally inspired by how learning occurs in a biological
system such as a human or animal brain. ANNs have
become increasingly powerful, as computational capacity
has dramatically improved since the 80s. ANNs, and neural
networks in general, consist of units often called neurons,
organised in layers, where the units in each layer are
connected to units in the neighbouring layers. Data is
received through the first layer (often placed on the left
side in illustrations), which contains the input units and
is called the input layer. Further, the data is sent and
processed through the network's centre layers, the hidden
layers, towards the final layer, the output layer. The units

in the network are connected with weights deciding the
amount of data that will be transferred from the previous
unit. In a classification problem, the output represents
the network's guess on which class the input (it was fed)
belongs to.

7.2

Sequence Modelling and Recurrent Neural
Networks

Recurrent Neural Networks (RNNs) are a type of ANN
suitable for sequential-data processing such as time-series
processing, because RNNs can store information; they
have memory. This is possible because their units are con-
nected in loops. As opposed to regular feed-forward net-
works, whereas the information flows one way through the
network, the information cycles back into the network in
RNNs. The basic idea of RNNs, how they can be designed
to perform different tasks, and why they are favourable
when doing sequence modelling, will be described in the
following section.

7.2.1

Unfolding Computations

A traditional neural network carries out a set of compu-
tations, such as mapping some target y, given some input
x, within some example or training set pxi, yiq. Whereas
traditional feed-forward networks cannot distinguish one
example from another along some time-frame, because
the sets are independent, RNNs have the ability to pro-
cess information from previous test examples and use it
to predict future outcomes along some time-frame. This
can be mathematically described as a recursive dynamic
system (see Goodfellow et al. (2016) for a more detailed
description):

hptq “ fphpt´1q,xptq, θq (4)

This is called a recurrent system because the definition of
the variable h is referred to the previous definition of itself,
where h is called the state of the system. RNNs are built
on these systems. Thus, (4) shows how RNNs not only
depend on the input at time t, but also on the previous
state at time t´ 1.

Figure 9 depicts a computational graph of a RNN that
produces some output ot, given some input xt at time t.
The illustration shows how the units at each time-step
not only get input from the current x values, but also
from the previous states. Mathematically this is described
by Equation (4), which is applied t - 1 times. Moreover,
Figure 9 illustrates how one can represent the cyclical
behaviour of recurrent systems by unfolding them. The
unfolded network can be thought of as many copies of
traditional feed-forward networks, but with inputs also
from the past, which connects the chain. Thus, each state
contains information from the whole past. This ability
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Fig. 9. Goodfellow et al. (2016) Unfolding computational graph illustrating the cyclical behaviour of recurrent neural
networks (RNNs). The output (ot) is mapped by the state- (W), input- (U) and output (V) connections (weights),
the input (xt) and the previous state (ht´1). The state output (o) is compared to the target (y). The performance
of the network is measured by the loss (L).

make RNNs suitable for processing sequence data like for
instance financial time-series.

7.2.2

Training Neural Networks

Each neural network unit is connected with an activation
function a. The input to this function is a weight w
multiplied by the input x it receives from its connected
unit, added to a bias number b, and σ is a transformation,
usually nonlinear such as the sigmoid or tanh function(see
Chapter 8 for definitions).

a “ σpxw` bq (5)

The weights make each neuron unique and they are tuned
so the network can output as accurate results as possible.
The weights are updated through a process called training.
Initially, the weights are random. This makes the network's
accuracy low, as a result of wrongly produced output. In
the training phase, the correct outcome is known. It is
important not to overfit the model on the training data,
or else the network will not generalise well on data sets
other than the training set. The training process is often
to minimise an optimisation function, often called a loss
or cost function. The loss function tells the network how
well it is performing with the output it produces, given the
input x and the weights w. The minimisation is commonly
performed by the back propagation algorithm: When the

data flows from the input units, through the hidden layers
and finally to the output layers (forward propagation),
one compares the output of the network with the correct
output, using the loss function. Thereafter, information is
sent back through the network, which allows the network
to update the weights. This results in more correct output
the next time the input is forward propagated, and so on.
This cycle of sending information back and forth internally
in the network is the core idea of the back propagation
algorithm.

When it comes to RNN and LSTM neural networks
(which will be described in the forthcoming sub-section), a
modified version of the back propagation algorithm must
be used: the back propagation algorithm trough time, which
is thoroughly explained by Goodfellow et al. (2016).

Furthermore, a typical way to optimise the loss function
is to apply gradient descent, a method that finds a way
to identify the minimum of a function: Given an arbitrary
loss function Lpxq, the derivative dL{dx can be used to
minimise the function by telling how x can be changed
to minimise L. By moving in small steps in the negative
direction of the sign of the gradient or derivative Lpx´λ ¨
signpdL{dxqq, the minimum will be located. Here, the step
size is called the learning rate. The lower the learning rate,
the slower the network trains. Correspondingly, the higher
the learning rate, the faster the network trains. However,
at this end of the scale, the network will be at risk of
not learning properly. Thus, there is a trade-off, as the
following example shows:
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Lets denote the learning rate λ, the loss function x2 and
the derivative 2x. Additionally, say x = 0.03 and λ= 0.001.
Then the loss is

L “ 0.032 “ 9 ¨ 10´4. (6)

By applying gradient descent, the new loss after taking
one step is

Lnew “ p0.03´ 0.001 ¨ signp2 ¨ 0.03qq2 “ 8.41 ¨ 10´4. (7)

The new loss is smaller than before. Moreover, using a
higher learning rate, say 0.1, the answer would have been
4.9 ¨ 10´3, which illustrates the importance of applying
a correct learning rate for the gradient descent optimiser.
The gradient descent method is the standard (loss function
minimisation) procedure to make the neural network train
and tune its weights. However, other more sophisticated
methods exist, which may be faster at learning, such as
the Adam optimiser discussed in Chapter 8 (Kingma and
Ba, 2014).
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(a) The repeating module in a standard RNN contains a single layer.

(b) The repeating module in an LSTM contains four interacting layers.

Fig. 10. Olah (2015). Yellow rectangular operators represent layers containing activation functions (sigmoid or
tanh functions). Pink circular operators represent pointwise operations, like vector addition (+ sign) or
multiplication(ˆ sign). Black lines denote content flow, separating lines denote copying content, and merging
lines mean concentrating content.
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7.2.3

Long Short-Term Memory

During network training, the error gradient tunes the
weights in the right direction and with the right magni-
tude. When the gradient is updated in training, sometimes
it can vanish or explode. This is a result of the recur-
rence relation working similarly to the power calculation,
where weights are multiplied together for each time step
(see Chapter 10 in Goodfellow et al. (2016) for further
explanation on this topic). The vanishing gradient problem
makes it difficult for RNNs to learn tasks where long-
term memory is required (Bengio et al., 1993, 1994). To
solve this problem, the long short-term memory (LSTM)
model was developed (Hochreiter and Schmidhuber, 1997).
This type of RNN allows the gradient to flow for a long
duration. Moreover, the similarities between a standard
RNN cell and LSTM cell is displayed in Figure 10.

Furthermore, whereas the regular RNNs only have one
neuron (unit) with a corresponding activation function,
LSTM cells (the green boxes in Figure 10b) have four
activation functions, also called the gates of the cells. In
addition to the input unit (the yellow unit second from the
right in Figure 10b), there are three other gates, called the
input gate (second from the left), forget gate (leftmost)
and the output gate (rightmost). The gated units of the
LSTM cells have sigmoid activation functions, while the
input unit usually has the tanh activation function.

The most important component of an LSTM cell is the
state unit, sometimes referred to as the cell state, or self
loop unit. The cell state allows the LSTM cell to store
information from the past states, with only minor inter-
actions. In Figure 10 this is illustrated as the horizontal
top line going straight through the cell to the next cells.
The forget gate decides what information is being kept and
what is disregarded by the non-linear activation expression
in (8). Similar to a regular RNN unit, the LSTM forget
gate is fed the input data xt and the previous state data
hpt´1q.

ft “ σpbf ` Ufxt `W
fhpt´1qq (8)

Here, ft is the output data of the forget gate at time t,
bf is a bias at the forget gate, Uf is the weights at the
forget gate corresponding to the input data xt at time t,
and W f is the weights at the forget gate corresponding to
the previous state data at time t ´ 1. The input unit is
activated with a sigmoid activation function (9), while the
input gate is usually activated with a tanh function (10).

gt “ σpbi ` U ixt `W
ihpt´1qq (9)

it “ tanhpbg ` Ugxt `W
ghpt´1qq (10)

In the above expressions, gt and it are the output data
of the input gate and the input unit at time t, bg and bi

are the biases, Ug and U i are the weights corresponding
to the input data xt at time t, and W g and W i are the
weights corresponding to the previous state data at time
t ´ 1. The input gate decides if the new input should be
allowed to enter the cell. At last, the output gate is similar
to the other gated units, as expressed by (11).

Ot “ σpbo ` Uoxt `W
ohpt´1qq (11)

Here, the internal cell state (self loop state) is updated
using (12).

st “ ft ¨ spt´1q ` gt ¨ it (12)

The output of the entire cell, the hidden state, is calculated
using (13).

ht “ tanhpstq ¨Ot (13)

The LSTM cell avoids the exploding and vanishing gra-
dient problem because there is no activation function in
the recurrent aspect of the cell, because the self loop is
linear. Additionally, the self loop allows the LSTM cell
to remember information in the long-term and it auto-
matically decides what information to forget and what
information to let into or out of the cell. Finally, there
are also other variants of the LSTM model, in addition to
the version explained in this section, but they will not
be elaborated further as they are not relevant for this
thesis. Good reading material on LSTM is provided by,
for example, Olah (2015); Goodfellow et al. (2016).
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8

Methodology

This chapter outlines the methodologies used to predict or
classify freight rate movements on the TD2 tanker route
between the Arabian Gulf and Singapore. Specifically, an
attempt will be made to classify whether the freight rate
goes up or down with certain amounts or within specified
intervals (classes). Numerous experiments will be per-
formed, investigating several sets of explanatory variables
(as mentioned in Section 6.1), different forecasting time-
horizons and various degrees of model complexity. In other
words, a three-dimensional solution space is examined, as
illustrated in Figure 11. Furthermore, an 80/20 ratio is
applied when dividing the data into a training set and a
test set; the less recent 80% of the data constitutes the in-
sample period for the training set, while the most recent
20% of the data is earmarked for validation and makes up
the out-of-sample period for the test set (see Chapter 6 for
more information about the data).

Fig. 11. A three-dimensional solution space.

8.1

Benchmark Model: Multivariate Linear Regression

According to Domingos (2012) it could pay to try the sim-
plest classification techniques first. Therefore, the results
from a classic and relatively simple method, multivariate
linear regression, will be used as a baseline for the LSTM
NN model results.

As (14) reveals, the method is named multivariate linear
regression, because the general linear statistical model
includes more than one explanatory variable Alexander
(2009). As mentioned, this model will be run on two sets of
explanatory variables, one with six variables (not including
AIS-derived data) and the other with 17 variables (all
variables, including AIS-derived data).

Yt “ α` β1Xt1 ` ...` βkXtk ` εt, εt „ i.i.d.p0, σ2q (14)

for t = 1, ..., T. There are T equations in the k unknown
parameters (β1, ..., βk), one equation for each data vector.
Thus, the k index will either be equal to 6 or 17, depending
on the set of variables we fit the model to. The error, εt, is
assumed to be independent and identically distributed 24 .
Furthermore, model fitting or model estimation involves
solving these equations using a selected method, such as
ordinary least squares (OLS). Formulas for OLS estimators
are presented in, for example, Alexander (2009). The fitted
value of Yt can be expressed as

Ŷt “ α̂` β̂1Xt1 ` β̂2Xt1 ` ...` β̂kXtk, (15)

for t = 1, ..., T. The difference between the actual and
predicted value of Yt is the residual et. Thus, (15) can be
re-expressed as

Ŷt “ α̂` β̂1Xt1 ` β̂2Xt1 ` ...` β̂kXtk ` et, (16)

for t = 1, ..., T. When it comes to the input data, for
which descriptive statistics were presented and discussed
in Section 6.5, one important modification is done both
in the training set and in the test set: all data vectors,
including the freight rate time-series, are normalised using
(17).

Normalised value “
value´mean valuetraining set

σtraining set
(17)

The data vectors of the training set and the test set are
both normalised using the mean and standard deviation of
the training set's data vectors because, when running the
model on the test set, the future values are “unknown”.
This will be further explained in the forthcoming section,
as the same normalisation procedure is used for the LSTM
NN model. Furthermore, since predictions are performed
at different time horizons, time lags equal to the different
time horizons between the dependent variable (the freight
rate, Yt) and the explanatory variables are used both in the
training set and the test set. For example, when predicting
one-day ahead and 20-days ahead changes, (15) transforms
to (18) and (19), respectively:

Ŷt`1 “ α̂` β̂1Xt1 ` β̂2Xt1 ` ...` β̂kXtk, (18)

Ŷt`20 “ α̂` β̂1Xt1 ` β̂2Xt1 ` ...` β̂kXtk, (19)

24The independence assumption implies that there is no autocorre-
lation, and the identical distribution implies that homoscedasticity
is apparent. For a proper explanation of these statistical properties,
see Alexander (2009).
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for t = 1, ..., T-1 and t = 1, ..., T -20. When the values
of the test set are predicted, using the multivariate linear
regression model fitted to the training set's data, the rate
of return 25 of the predicted freight rate is calculated for
each time step by multiplying by the standard deviation
and adding back the mean of the freight rate's rates of
return in the training set.

Furthermore, to calculate the prediction or classification
accuracy, the abovementioned rates of return must be
compared with the actual rates of return from the test
set for each time step. The classification accuracy will
depend on the forecasting time-horizon and on the number
of classes used. In this study, different time horizons (in
the order of days or weeks) and two sets of classes are
investigated.

Say R denotes the rate of return, then the applied sets of
classes are as follows:

‚ 3 classes: (R = 0, R ą 0, or R ă 0)
‚ 5 classes: (R = 0, R = [0, 1σ], R = [0, -1σ], R = [1σ,
8], or R = [-1σ, -8])

Above, σ is the standard deviation of the freight rate
returns in the training set. The reason for using this
standard deviation as interval limits of the classes, instead
of a constant value measured in percentage (e.g. 5%,
10% and 20% change in return), will be explained in the
forthcoming section.

Finally, the classification accuracy is calculated for each
combination of time horizon and class set (e.g. 3 x 2 = 6
combinations in total if three different time horizons are
used). This is done by dividing the number of correct clas-
sifications (identified by comparing the prediction results
with the values of the test set for each time step) with the
total number of predictions (which is equal to the number
of days in the test set).

8.2

LSTM Neural Network Model

8.2.1

Model Overview

As discussed in Chapter 7, LSTM neural networks are suit-
able for processing sequential data. Therefore, an LSTM
NN model will be developed in this thesis, to read sequen-
tial data in the form of time-series data of the explanatory
variables summarised in Table 11. The goal of the LSTM
NN model, presented in this section, is to predict whether
the rate of return of the freight rate F at time t, RtF ,
will be positive or negative at some future time t ` τ . In
addition, the magnitude of the freight rate change will be
predicted. Furthermore, using the definition of a learning
algorithm provided by Mitchell et al. (1997), the model will

25Rate of return is in this study defined as the current price,
subtracted the original price, divided by the original price (this is
the arithmetic rate of return as defined by (20). Multiplying this by
100 yields the rate of return expressed in percentage, which may be
referred to as the percentage return.

“[...] learn from experience E with respect to some class of
task T and performance measure P, if its performance at
tasks in T as measured by P, improves with experience E”.
Moreover, a single output, an integer, will be produced
by the model. Such an output is commonly referred to
as a label in the domain of machine learning. In this

study, different outcomes (freight rate movements, R
tf
F )

will be assigned different labels. Thus, these labels can
for example represent a positive or negative freight rate
movement within a pre-defined interval of magnitude. This
interval is referred to as a class. The sets of classes used
in the rest of this study were defined in Section 8.1.

Specifically, the task of the model is to learn the label

yt
f

t0 |xtp,t0 , given some input vector xtp,t0 . The label yt
f

t0

refers to which class the rate of return, R
tf
F , belongs to at

a future time tf . Furthermore, xtp,t0 is a vector containing
all the explanatory variables (freight rate determinants)
in Table 11, within the time interval from a previous time
tp up to and including the present day t0. The class s, an
interval of possible rate of return values of the freight rate,
can be any one within a set S of classes: S P ts1, s2, ...snu.
The arithmetic rate of return R, at some future day tf , is
defined by (20).

Rptf q “
Rptf q ´Rpt0q

Rpt0q
(20)

The model's performance is measured by classification
accuracy. This is just the number of correct guesses divided
by the total number of guesses. For example, if 180 guesses
were correct in a test sample of 200 data points, the
classification accuracy would be 90%. When it comes to
model experience, this is simply the training set (80% of
the original data set) with the given labels.

When looking at different time horizons to train over, the
abovementioned labels may change with the horizon, as
exemplified in Table 16. Dependent on the horizon, label
“1” represents a positive change, label “2” represents a
negative change and “0” represents no change.

Table 16. An example showing how labels change with
the time horizon of the forecast.

Date Freight 1 day ahead 2 days ahead 3 days ahead
rate

04/1/12 6.46 1 1 1
05/1/12 6.47 1 1 1
06/1/12 7.11 1 1 2
09/1/12 7.36 0 2 0
10/1/12 7.36 2 0 0
11/1/12 6.80 1 1 1
12/1/12 7.36 0 1 1
13/1/12 7.36 1 1 -
16/1/12 7.50 1 - -
17/1/12 7.91 - - -
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8.2.2

Network Architecture

The architecture of the LSTM NN model, depicted in
Figure 12, is inspired by the works of Chevalier (2017).
The network has one input layer, two hidden LSTM layers
and one output layer. The layers are also referred to as
cells. Furthermore, at each time step the input layer of the
network receives the time-series data of the explanatory
variables (which were summarised in Table 11 in Chapter
6). The input layer is activated by the non-linear sigmoid
activation function, expressed by (21), with values ranging
between zero and one.

σ “
1

1` e´z
(21)

Above, z “ wx` b is the input at a given node, multiplied
by the weight w and added a bias b. From the input
layer, the data is passed through the hidden LSTM layers,
before the network produces the output: a guess on which
label and, thus, class the input belongs to. The number
of input nodes (units) in the input layer is the same as
the number of explanatory variables investigated. Thus,
the number of input nodes depends on which data set is
applied. The number of output nodes will depend on how
many classes that are used. The more classes, the higher
model “complexity”. For example, if three classes are used,
the model can classify whether the price moves up, down
or remains unchanged. To also predict how much the price
moves up or down, more classes must be added. Moreover,
the two hidden layers contain 15 hidden units each. The
number of hidden units in the these layers determine the
capacity of the network, i.e. how many previous states is
used to calculate the output. In other words, the short-
term memory in the LSTM is set to 15 days. Additionally,
all layers are fully connected.

Fig. 12. The architecture of the LSTM NN model.

The LSTM layers are built using TensorFlow basic LSTM
cells (for documentation, see TensorFlow (2015)). More-
over, the LSTM cells use the sigmoid activation function
at the gates and the tanh activation function expressed by
(22), ranging between -1 and 1, at the inner states.

tanh “
ez ´ e´z

ez ` e´z
(22)

Again, z “ wx` b takes in the input x at a given node in
the LSTM layer, multiplied by the weight w and added a
bias b. The final layer, the output layer, is a softmax layer,
which calculates the probability of how much the freight
rate will change, given some forecast horizon. The softmax
function, expressed by (23), represents the probability of
predicting one specific class in a set of different classes.

softmaxpzqi “
exppziq

Σni exppziq
(23)

Again, z “ wx` b.

8.3

Data Processing

Before the data is fed into the network, it must be handeled
in certain ways. Firstly, the whole data set has to be
divided into a training set and a test set. As mentioned in
the introduction to Chapter 8, an 80/20 ratio is applied,
which gives 731 training samples and 183 testing samples.
Secondly, the data sets must be normalised, using (24),
which is the same procedure as described in Section 8.1.
Here, xi is the value of the variable x at instance i, while
µx and σx represent the variables' mean and standard
deviation, respectively.

zi “
xi ´ µx
σx

(24)

As mentioned in Section 8.1, the test set is standardised
using the training samples' mean and standard deviation,
because if new sample points were to be tested on the
model, one would not possess a “test set”; one would only
know the data points up until today, future test points
are unknown. This normalisation procedure is commonly
applied on data fed into ANNs, because if not applied,
some data might have a much larger scale than other data,
which will negatively affect the tuning of the weights and
give poor results.

Thirdly, a rolling-window technique is applied when turn-
ing the normalised data set into input data for the network.
The input data consists of data points, where each data
point is a window (time series) of past data up until the
present day. This window, Twindow, of data corresponds
to a label, which denotes the known movement of the
freight rate. For example, one can choose to make the
network train on a data window of 30 days prior to today.
Furthermore, when evaluating the model on the test set,
the corresponding unknown labels are to be predicted.

Lastly, during training, the input data, often referred to
as the input examples, are fed into the network in so-
called batches. The reason being, to train on all the input
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examples simultaneously, each training cycle would be very
memory-costly and require a lot of computational power,
especially if the data set is large. One batch contains a
set of data points. As mentioned above, one data point
contains past data of the explanatory variables within
the chosen time window (Twindow), in addition to the
corresponding label. Moreover, the number of data points
in the batch is usually referred to as the batch size. A
typical number chosen is 64 data points per batch.

8.4

Network Training and Optimisation

During training, the weights in the LSTM network is tuned
using the Adaptive Moment Estimation (Adam) optimiser,
introduced by Kingma and Ba (2014). This optimiser
is regarded as being more advanced, but robust, and it
usually trains neural networks faster than the gradient
descent optimiser (which was described in Chapter 7).
Whereas the gradient descent optimiser only has one
learning rate, the Adam optimiser has one learning rate for
each weight in the network. Moreover, it is called adaptive,
because the learning rates of all model parameters are
adapted separately as the network-learning progresses.
The method uses estimates of the first and second moment
of the gradients of the loss function to compute the
adaptive individual-learning-rates in an iterative process.
Furthermore, the update-equations of the Adam optimiser
can be written as

gt “ ∇θftpθt´1q (25)

mt “ β1 ¨mt´1 ` p1´ β1q ¨ gt (26)

vt “ β2 ¨ vt´1 ` p1´ β2q ¨ g
2
t (27)

m̂t “ mt{p1´ β
t
1q (28)

v̂t “ vt{p1´ β
t
2q (29)

θ “ θt´1 ´ α ¨ m̂t{p
a

v̂t ` εq, (30)

where g is the gradient at iteration time step t of the
objective function fθ with parameters θ. Moreover, mt and
vt are the first and second raw moment biased estimations,
where β1 and β2 are decay rates for the estimates and
g2t indicates the element-wise square of gt. Further, m̂t

and v̂t are bias-corrected estimates of the first and second

moment of the gradients of the objective function. Finally,
the parameters are updated using (30). α is the step
size used in the iterations and ε is a small constant for
numerical stability. Kingma and Ba (2014) has shown that
the Adam optimiser is a robust stochastic optimisation
algorithm, which is why it is applied in this study.

The cross-entropy loss function in (31) is used to calculate
the prediction or classification error made by the network.
The output of this function is used to adjust the weights of
the network during the training phase. The cross-entropy
function for classification problems with i (and more than
two) classes is defined as

L “ ´
C
ÿ

i“1

pilnpqiq, (31)

where L is the cross-entropy loss function, i is the ith
class in class set C, pi is the probability that outcome
i occurs, made by the neural network, and qi is the actual
probability that outcome i occurs in the data. For example,
if the model predicts whether the freight rate moves up
(label 1), down (label 2) or remains unchanged (label 0),
there are thus three labels: y P t1, 2, 0u. Furthermore, lets
say that some input xt is fed into the model and that the
actual outcome for this input is the positive movement of
the freight rate, so the true label is “1”. Using the popular
machine learning term and approach “one hot encoding”,
the actual probability distribution can be described as
follows:

P py “ 1q “ 1, P py “ 2q “ 0, P py “ 0q “ 0 (32)

The network's job is to produce the probability distribu-
tion of the labels. If the results are

P p1q “ 0.63, P p2q “ 0.12, P p0q “ 0.25, (33)

it means the model guesses that the correct label is “1”,
but only with about 63% confidence. Further, the cross-
entropy loss for this outcome is

L “ ´p1 ¨ lnp0.63q` 0 ¨ lnp0.12q` 0 ¨ lnp.25qq “ 0.46, (34)

which is what the network will try to minimise during
training. The weights are then adjusted by sending the
information by the back-propagation algorithm through
time. The training occurs in cycles, where data is sent
trough the network in batches. Each batch is sent trough
the network and then the value of the loss function is
propagated backwards in order to adjust the weights.
When all the batches are sent trough the network, one
training epoch is finished. One can choose how many times
to repeat this in order to tune the network, referred to as
the number of training epochs.
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8.5

Regularisation

Overfitting occurs when a function or model has an overly
good fit with one (training) data set, and therefore is not
able to learn generally on other (test) data sets. This is
a problem that may occur when using neural networks to
perform some given task. Overfitting can be detected by
plotting the model's accuracy and loss on both the training
and test sets. Simply put, if the accuracy and loss are much
better on the training set compared to the test set, the
model is said to be overfitted on the training set. To avoid
this, certain regularisation techniques can be applied.
Goodfellow et al. (2016) lists several useful regularisation
techniques (in Chapter 7), such as L2 regularisation and
dropout regularisation.

L2 regularisation, also known as Tikhonov regularisation,
is a method that adds a regularisation term to the loss
function, L. The new loss function, L1, is expressed by
(35). Here, a penalty is given, which is proportional to the
sum of the square of the weights in the network.

L1 “ L` 0.5 ¨ λ ¨ ||w||2 (35)

Here, λ is a coefficient that determines how much the
weights should penalise the regularised loss function L1.
If λ is zero, there is no weight regularisation. Moreover,
if λ has a value, this regularisation technique prevents the
network from tuning the weights during training too finely
on the training set, due to the penalty on the weights.

Dropout is a regularisation technique that, simply put,
randomly drops units in the network during training.
This means that at random occurrences, information-
flow from a unit is multiplied by zero. This will prevent
the network from overfitting, because the units will be
less prone to a phenomenon called co-adapting (for more
details, see Srivastava et al. (2014)). In this thesis, dropout
regularisation is the selected technique that will be used on
the LSTM layers to prevent overfitting. In accordance with
the paper by Baldi and Sadowski (2013), a 50% probability
of dropping units is applied.
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9

Results and Discussion

This chapter presents the research findings of the current
thesis. Several experiments are carried out to answer
the research problems presented in Section 1.2. The first
section of this chapter describes the experimental setups.
The second section follows up with a presentation and a
brief discussion of the experimental results. Finally, the
last section summarises and analyses the aforementioned
results.

As thoroughly described in Chapter 8, the model's task is
to predict the interval (class) in which the future rate of
return of the freight rate will belong to, over a specified
forecasting time-horizon. This rate of return, denoted Rf ,
over some time span t “ f ´ i, is defined as

Rf “
Ff ´ Fi
Fi

, (36)

where Ff is the final value of the freight rate over the
time span and Fi is the initial value of the freight rate.
The model's task can thus be defined as follows: to find
the probability distribution of the discrete outcomes yof ,

in outcome O P ro1, o2, ..., ons of Rf at time i, given some
historical input data, x. As mentioned in Chapter 8, the
model should for example be able to predict whether the
future rate of return of the freight rate is positive, negative
or zero, when using three classes.

9.1

Experimental Setups

Figure 7 in Chapter 8 displays the possible solution space,
with model complexity constituting one of the three di-
mensions. Model complexity is simply the number of
classes used in the experiments. Furthermore, the experi-
mental setup is defined by the three axes in Figure 7: the
forecast time-horizon, number of variables used, and the
model complexity as defined above.

Forecasting Time-horizon The LSTM NN model will
predict future freight rate movements (rate of return) over
different time horizons, within the following discrete space:

T P r1 day, 5 days , 10 dayss. (37)

Model Complexity As mentioned, the model complex-
ity will vary. This means that the number of labels the
model must predict will vary correspondingly. Moreover,
the model will produce a discrete probability distribution
for n outcomes and the label with the highest probability
attached, will be the model's prediction. Given the dis-
tribution of the rate of return of the freight rate, intervals

(classes) that the model must predict the label to be within
are defined. These intervals or classes are measured in
standard deviations of the rates of return of the freight rate
in the training set (as defined in Section 8.1), e.g. between
zero and one standard deviation, between zero and minus
one standard deviation, and so on. Furthermore, the two
different difficulty levels or model complexities used in this
study are listed below.

‚ Easy model complexity : The model will classify the
rate of return of the freight rate (Rif ) at the future
day f , predicted at day i, thus over the time span
t “ f ´ i, as one of three possible outcomes (up,
down or unchanged); mathematically described as the
model's guess on whether Rif ą 0, Rif ă 0 or Rif “ 0.

‚ Hard model complexity : The model will classify the
predicted rate of return of the freight rate (Rif ) as
one of five possible outcomes, over the time span t
as defined above; mathematically described as the
model's guess on whether Rif P r0, σRs, Rif P

r0,´σRs, R
i
f P rσR,8s, R

i
f P r´σR,´8s or Rif = 0.

The standard deviation of the rate of return of the freight
rate (σR), is calculated on the freight rate in the training
set, using a standard method (for explanation and method,
see Chapter 8).

Input Variables Finally, the number and type of input
variables will be varied using different subsets of the
selected explanatory variables (for an overview of the
selected freight rate variables, or determinants, see Table
11). Thus, the performance of the network using the
complete data set, will be compared to its performance
using various subsets of the selected explanatory variables.

Experiments Table 17 displays all the performed exper-
iments, and describes their setups. All experiments are
carried out using the LSTM NN model and the benchmark
model (multivariate linear regression), both presented in
Chapter 8. The results obtained using the LSTM NN
model are presented in the forthcoming section, while a
summary of these results and the results obtained using
the benchmark model are gathered and discussed in Sec-
tion 9.3.
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Table 17. Experimental setups.

Experiment Forecast horizon Model complexity Input variables

Complete data set:

A1 1 day Easy All 17 variables in Table 11
A2 5 days Easy All 17 variables in Table 11
A3 10 days Easy All 17 variables in Table 11
B1 1 day Hard All 17 variables in Table 11
B2 5 days Hard All 17 variables in Table 11
B3 10 days Hard All 17 variables in Table 11

Subsets:

C1 1 day Easy All six non-AIS variables in Table 11
C2 5 days Easy All six non-AIS variables in Table 11
C3 10 days Easy All six non-AIS variables in Table 11
D1 1 day Easy Speed local, BDTI
D2 5 days Easy Speed local, BDTI
D3 10 days Easy Speed local, BDTI
E1 1 day Easy Speed local, N tankers heading op, N tankers heading dp

E2 5 days Easy Speed local, N tankers heading op, N tankers heading dp

E3 10 days Easy Speed local, N tankers heading op, N tankers heading dp

F1 1 day Easy FX USD SD, Bunker price, BDTI
F2 5 days Easy FX USD SD, Bunker price, BDTI
F3 10 days Easy FX USD SD, Bunker price, BDTI
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9.1.1

LSTM Model Configuration and -Parameters

The network parameters, also called hyperparameters, and
other important features of the LSTM NN model are
gathered in Table 18. The parameters are tuned by trial
and error to obtain results that do not fluctuate too much
between each run 26 and the Adam optimiser parameters
are chosen as the default values recommended by Kingma
and Ba (2014). The selected number of training epochs,
500, makes sure the model trains long enough to give
stable predictions on the test set. When it comes to the
capacity of the model, it increases with the number of
hidden units. At the same time, the run time shortens,
but the memory cost increases. The number of hidden
units is therefore chosen to somewhat balance the trade-off
between high memory cost and short run time. Moreover,
the learning rate is not listed in Table 18, because it
is tuned automatically for all parameters by the Adam
optimiser. Finally, the time it takes to train the network is
about two minutes per run (for each experiment). There
are some variances in the results: the model provides
slightly different results for each run, due to the random
initialisation of the weights. Therefore, to get reliable
results, each experiment is run ten times and these ten
results are then averaged.

26A grid search could have been performed to optimise the param-
eters (or hyperparameters) of the LSTM NN model. This will be
further discussed in Chapter 10.
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Table 18. Definition and description of LSTM NN model parameters.

Parameter Description Value Role and importance

α Step size 0.01 The step size in the Adam optimiser.
β1 1st moment decay rate 0.9 Controls the exponential decay rate of the

exponential moving-average of the gradient
in the Adam optimiser. The moving averages
are estimates of the 1st moment (mean) of
the gradient (Kingma and Ba, 2014).

β2 2nd moment decay rate 0.999 Controls the exponential decay rate of the
exponential moving-average of the gradient
in the Adam optimiser. The moving averages
are estimates of the 2nd moment (variance)
of the gradient (Kingma and Ba, 2014).

σ Nonlinear activation function Sigmoid in LSTM layers, sigmoid in
input layer, softmax in output layer.

Determines how the units in each layer is
activated.

Nhidden Hidden units 10 Number of sequential LSTM units in each
LSTM layer.

NTraining Training epochs 500 Number of times the entire input data-set
is sent trough the network to adjust the
weights.

b Mini-batch size 64 The number of data points (training exam-
ples) sent trough the network at each training
iteration. The network does not receive the
entire data set each time, only subsets, called
batches.

τwindow Rolling-window size 21 days The size of each data point or training ex-
ample. 21 days means that each training ex-
ample looks at 21 days of past data as input,
for all explanatory variables in the input data
set.

Noutcome Outcome size Noutcome P r3, 5s Number of outcomes (or classes) the model
must predict: 3, using easy model complexity,
and 5, using hard model complexity.

T Forecasting time-horizon T P r1 day, 5 days, 10 dayss One of the dimensions investigated in the 3-
dimensional solution space (see Figure 11).

λ L2 regularisation parameter 0.001 The penalty coefficient used in weight de-
cay. 0 gives no regularisation, which is un-
favourable, because it increases the chance of
overfitting. At the same time, a large regular-
isation value may lead to underfitting, which
also is undesirable. Thus, there is a trade-off.
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9.2

Experimental Results

This section provides the results of the performed experi-
ments, which were described in Table 17. As mentioned in
Section 9.1, each experiment is performed ten times and
the average is presented. Additionally, Figure 13 displays
the freight rate plotted over the entire sample period,
which includes both the training set and test set periods.

Fig. 13. Time-series plot of the freight rate in the sample
period.

9.2.1

A Experiments

In the A experiments (A1, A2 and A3), the easy model
complexity with three classes is used. For each experiment,
the model thus predicts, for each time step (each day),
whether the freight rate movement is positive, negative or
zero, from the day of prediction to the end of the time
horizon specified in Table 17. Additionally, as listed in
Table 17, all explanatory variables in Table 11 are included
in these experiments.

For illustration purposes, Figure 14 displays the freight
rate in the top window, the forecasts made by the LSTM
NN model in the middle window, and the test set's actual
outcomes in the bottom window, over the test set period.
The values on the vertical axis of the two latter plots
represent the labels of the forecasts and actual outcomes,
respectively. “2” means that the freight rate moves down
the following day, “1” means it moves up and “0” means it
remains unchanged. The plots indicate that the forecasts
are not particularly good.

Moreover, Table 19 presents the LSTM NN model's ability
to forecast over different time horizons, given the experi-
mental setup defined in Table 17. Here, the performance
is measured by the accuracy and loss on the training
set and test set, i.e. by how many correct guesses the
model makes and by the cross-entropy loss, respectively.

Fig. 14. Time series of the freight rate in the test set (blue
line), along with a comparison of the model's predicted
outcome (orange line) and the actual outcome in the
test set (green line) over the entire test set period.

Again, for illustration purposes, the model's accuracy on
the training set (blue line), versus the model's accuracy
on the test set (green line), is presented in Figure 15. As
explained in Section 8.2, accuracy is measured as the total
number of correct predictions divided by the total number
of predictions. At the end of each training epoch, the model
makes one prediction for each day in the training and
testing sample. As Figure 15 shows, the training accuracy
is better than the test accuracy, which means that the
model is able to tune its weights to give good results in-
sample, but not as well out-of-sample. Furthermore, Figure
16 shows that the model is not able to bring the test loss
down along with the training loss.

Fig. 15. Training accuracy (blue line) versus test accuracy
(green line).

As revealed by Figure 14 and Table 19, the model does
not produce good forecasts using this experimental setup.
Table 19 shows that the model is not able to produce
forecasts with accuracy better than 50% for one-day-ahead
and five-days-ahead forecasts, and only slightly better
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Fig. 16. Training loss (red line) versus test loss (green
line).

than 50% for ten-days-ahead forecasts. The model thus
produces slightly better results at the forecasting horizon
of ten days, compared to horizons of one day and five
days. This is a trend of the easy model complexity, as
later results will show.

In conclusion, when using the complete data set (including
all variables in Table 11), it seems difficult for the network
to find a pattern.

9.2.2

B Experiments

In the B experiments (B1, B2 and B3), the difficulty
level of the forecasting is raised. Now, the hard model
complexity (five classes) is used, on the same input data
applied in the A experiments. In other words, the model
does not only predict whether the freight rate movement is
positive, negative or zero, but also by how much it moves
up or down, as explained in Section 9.1.

As Table 20 reveals, the forecasts are once again not very
accurate. However, it was expected that the classification
accuracy would drop when raising the difficulty level of
the forecast (using more classes). Furthermore, Table 20
shows that the best forecast, using this experimental setup,
is done on the one-day-ahead horizon. Compared to the
accuracy of pure guessing, which would be 20% as there are
five possible outcomes (after a large number of guesses),
the results of the B experiments are not too bad.

Similar to the A experiments, the model is able to tune
the weights to the training set, but not the test set. This
can be seen in Appendix F, Figure F.2, by comparing the
test accuracy and test loss with the training accuracy and
training loss, respectively. One can see that the test loss
goes upwards when the training loss goes downwards. This
means that the model is able to learn a pattern in the
training data, but not in the test data. One could thus
argue that the model is overfitted on the training set.

Furthermore, in the A and B experiments, the complete
data set (all 17 explanatory variables listed in Table 11,

Chapter 6) was used. By reducing the number of input
variables, the model may find it easier to discover a
pattern in the data. This issue will be addressed in the
next experiments, where the model will be fed subsets
containing only a few of the explanatory variables listed
in Table 11.

9.2.3

C Experiments

In the C experiments (C1, C2 and C3), all AIS variables
are removed from the model's input data, but the six non-
AIS variables listed in Table 11 remains. The intention of
these experiments is twofold: Firstly, to investigate the
effect of using (or not using) AIS data as input, with
respect to test accuracy. Secondly, to see if the model
better can find a pattern in the input data when reducing
the number of variables.

Table 21 displays the results of the C experiments. Com-
pared to the A experiments, one can see that the test
accuracy of the C experiments has improved slightly for
the two shortest forecasting horizons (one day and five
days ahead), but unchanged for ten days ahead. Surpris-
ingly, it appears that removing the AIS variables as input
to the model slightly improves the forecasts. However,
it still seems that the model struggles to find a pattern
among this many variables (six variables), based on the
plots in Appendix F, Figure F.3. Regarding the second
intention of the C experiments, the reduction from 17 to
six input variables did not improve the model's forecasting
performance in terms of test accuracy.

9.2.4

D Experiments

Only two variables and the easy model complexity are used
in the D experiments (D1, D2 and D3): Speed local, the
AIS variable with the highest correlation to the freight
rate, and BDTI, the non-AIS variable with the highest
correlation to the freight rate (for correlation matrices,
see Table 13 and 15 in Chapter 6).

Table 22 displays the results of the D experiments, which
reveal that the model performs best when forecasting ten
days ahead, with about 63% test accuracy. Moreover, this
result is the best one across all experiments (A - F).
Further, Figure F.4 in Appendix F indicates that this
result is stable after about 100 training epochs, because
the test accuracy does not tend to move up or down with
higher numbers of training epochs. However, the loss is
increasing, which is an indication of model overfitting on
the training data.

By comparing the results in Table 19 with the results in
Table 21 and Table 22, it seems that the model performs
better when using fewer explanatory variables. Especially
the five-days-ahead and ten-days-ahead forecasts achieve
higher test accuracy with fewer input variables. In addi-
tion, the loss results are better on all forecasting horizons.
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9.2.5

E Experiments

Similar to the C experiments, the E experiments (E1,
E2 and E3) try to answer the second research prob-
lem: whether the use of AIS-derived input data provides
additional value in terms of classification test accuracy
when forecasting freight rate movements. In these ex-
periments, as opposed to the C experiments, solely AIS-
derived input data is used. Based on the results from the
D experiments, the amount of input variables should be
limited to only a few. Thus, only three AIS variables,
the ones with the strongest correlation to the freight
rate, are selected: Speed local, N tankers heading op
and N tankers heading dp.

Table 23 shows that the test accuracy is about 50% for
all forecasting horizons. Compared to the C experiments,
the model performs marginally worse in terms of test
accuracy on five-days-ahead and ten-days-ahead forecasts,
and exactly the same when forecasting ten days ahead.
With respect to test loss, the E experiments perform
worse on all horizons. Moreover, in line with previous
experiments, revealed by Figure F.5 in Appendix F, the
loss is increasing with the number of training epochs. As
mentioned, this could be a sign of overfitting. Regarding
the second research problem, these results may indicate
that AIS-derived input data, applied in this thesis, does
not add extra value when forecasting freight rates in the
tanker market. This hypothesis will be investigated further
in the next and final experiments.

9.2.6

F Experiments

In the F experiments (F1, F2 and F3), the opposite
approach to the approach used in the E experiments is
attempted to try to answer the second research problem.
Here, none AIS-variables are included, only financial vari-
ables; the ones with the highest correlation to the freight
rate are selected: FX USD SD, Bunker price and BDTI.

Table 24 shows that the test accuracy in the F experiments
is about 50% for the one-day-ahead and five-days-ahead
forecasts, while the ten-days-ahead forecasts achieve about
60% accuracy. Compared to the E experiments, the model
performs better on test loss for all forecasting horizons
and better on test accuracy when forecasting ten days
ahead. Compared to the D experiments, the results are
about the same. Thus, the results are slightly better in
the F experiments, which indicates that the hypothesis
presented in sub-section 9.2.5 may be correct. However,
there are numerous potential sources of error, particularly
related to the AIS data used in this thesis. This will be
further discussed in Section 9.3.
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Table 19. Results of the A experiments: A1 (1 day), A2 (5 days), A3 (10 days).

Forecasting horizon Test accuracy Test loss Train accuracy Train loss

1 day 0.47 1.39 0.83 0.42
5 days 0.46 3.23 0.96 0.22
10 days 0.54 2.47 0.97 0.18

Table 20. Results of the B experiments: B1 (1 day), B2 (5 days), B3 (10 days).

Forecasting horizon Test accuracy Test loss Train accuracy Train loss

1 day 0.34 2.27 0.80 0.60
5 days 0.29 5.30 0.94 0.26
10 days 0.26 4.71 0.96 0.20

Table 21. Results of the C experiments: C1 (1 day), C2 (5 days), C3 (10 days).

Forecasting horizon Test accuracy Test loss Train accuracy Train loss

1 day 0.52 1.58 0.80 0.48
5 days 0.52 3.31 0.94 0.16
10 days 0.54 3.39 0.97 0.10

Table 22. Results of the D experiments: D1 (1 day), D2 (5 days), D3 (10 days).

Forecasting horizon Test accuracy Test loss Train accuracy Train loss

1 day 0.46 1.41 0.76 0.57
5 days 0.52 2.35 0.92 0.21
10 days 0.63 1.77 0.93 0.18

Table 23. Results of the E experiments: E1 (1 day), E2 (5 days), E3 (10 days).

Forecasting horizon Test accuracy Test loss Train accuracy Train loss

1 day 0.51 1.46 0.78 0.55
5 days 0.50 3.12 0.93 0.21
10 day 0.54 2.34 0.95 0.16

Table 24. Results of the F experiments: F1 (1 day), F2 (5 days), F3 (10 days).

Forecasting horizon Test accuracy Test loss Train accuracy Train loss

1 day 0.51 1.24 0.78 0.53
5 days 0.51 2.89 0.91 0.26
10 days 0.61 1.99 0.96 0.14
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9.3

Benchmarking and Discussion

9.3.1

Benchmarking

Table 25 presents a comparison between the results ob-
tained using the LSTM NN model and the benchmark
model (the multivariate linear regression model described
in Section 8.1), in terms of classification test accuracy (for
the definition of classification accuracy, see Section 8.2).

For the A experiments, the results reveal that the bench-
mark model outperforms the LSTM NN model on one-day-
ahead and five-days-ahead forecasts. The opposite occurs
when forecasting ten days ahead. Additionally, neither of
the two models achieves better than 60% accuracy on any
forecasting horizon in the A experiments. Regarding the B
experiments, where the hard model complexity is applied,
the LSTM NN model outperforms the benchmark model
on one-day-ahead and ten-days-ahead forecasts. When
forecasting five days ahead, both models perform at about
30% accuracy. This latter result is not necessarily poor,
considering that five classes are used. Further, in the C
experiments, the benchmark model again outperforms the
LSTM NN model on the shortest horizon, but opposite
is true for five days ahead and ten days ahead. When it
comes to the D experiments, the results are similar to the
C experiments, except for the magnitude of the results
on the longest forecasting horizon; the LSTM NN model
achieves accuracy above 60%. The benchmark model gets
below 60% accuracy on all horizons. Further, both models
perform quite similarly in the E experiments: around 50%
accuracy on all horizons. Lastly, the LSTM model out-
performs the benchmark model on all horizons in the F
experiments, particularly on the ten-days-ahead forecasts.
Here, again, the model achieves higher than 60% accuracy
on the longest horizon, ten days ahead, which is promising.

In fact, the LSTM NN model outperforms the benchmark
model on the longest forecasting horizon, ten days ahead,
in all experiments. On the two shorter horizons, the
benchmark model generally competes well with the LSTM
NN model, and actually outperforms the LSTM NN model
on all one-day-ahead forecasts except for the B and F
experiments. With respect to the first research problem
presented in Section 1.2, the ten-day-ahead forecasting
results are promising. In further work, it would thus be
interesting to investigate longer forecasting horizons.

9.3.2

Findings in the Three-dimensional Solution Space

As described in the beginning of Chapter 8 and illustrated
in Figure 11, a three-dimensional solution space has been
investigated in this thesis. With respect to the time-
horizon dimension, the discussion above reveals that the
LSTM NN model achieves the best results on the longest
forecasting horizon investigated (ten days ahead), while
opposite is true for the benchmark model.

Model complexity constitutes another dimension. The
experimental results presented in Section 9.2 show that the
LSTM NN model generally produces forecasts with better
but not significantly better test accuracy than random
guessing 27 , neither with easy nor hard model complexity.
Exceptions are the D and F experiments when forecasting
ten days ahead, where the test accuracy for both D and F
is above 60%. Furthermore, the test accuracy generally
dropped, as expected, when moving from easy model
complexity in the A experiments to hard model complexity
in the B experiments, i.e. when using five instead of three
classes. However, the test results are still better than the
guessing approach would provide.

Further, the input variables applied in the experiments
constitute the third and last dimension in the investigated
solution space. The results show that the use of only
AIS input variables produces forecasts with test accuracy
comparable to what the guessing approach would provide.
Moreover, not using AIS input variables actually gives
better results when forecasting ten days ahead, using the
LSTM NN model. For the benchmark model it is the other
way around. Furthermore, reducing the number of input
variables seems to improve the forecasting results, as long
as the applied input variables are somewhat correlated
with the freight rate. A hypothesis is that too many
variables makes it difficult for the LSTM NN model to
learn a general pattern for both the training and test data.

9.3.3

Limiting Factors

There are many factors that could have led the LSTM NN
model to not produce forecasts with better accuracy than
about 60% in this thesis. Firstly, neither the quantity nor
the quality of the data applied in this study is optimal.
Regarding data quantity, only four years of data have
been used, resulting in a total of 913 data points after
cleaning the data. Neural networks are known to perform
well on large data samples. For example, the MNIST data
sample popularly used for handwriting recognition has
60,000 images for training and 10,000 images for testing.
Furthermore, another issue is the quality of the AIS data
applied in this thesis, which contains several gaps where
data is missing. As mentioned in Section 2.3 and 6.4, these
gaps may be a result of interference of the AIS messages,
or simply a consequence of the AIS satellites not being
able to cover all ocean areas simultaneously in the sample
period. In this study, this missing data problem has been
handled by removal of some data and interpolation, an
assumption which is questionable, because it is not certain
that ships have moved in straight lines or with constant
speed. An additional issue concerning the quality of the
AIS data is the reported destination for each ship, in the

27With three classes, the probability of randomly guessing the
correct outcome is 1/3 (three possible outcomes). Likewise, with five
classes, this probability is 1/5 (five possible outcomes). However, it
could be argued that, in reality, shipping domain experts would guess
future freight rate movements to be positive or negative more often
than unchanged (due to the high volatility in shipping markets).
Thus, closer to 1/2 and 1/4 guess accuracy with three and five classes,
respectively, are more realistic.
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AIS messages. Such static data is reported by the ships'
crew manually, thus it could be subject to human error
such as wrong-typing or the crew forgetting to report the
information. Therefore, the reliability of this data is also
questionable. A final uncertainty related to AIS data in
this study is the AIS-derived input variables that depend
on the load factor. Tankers commonly carry ballast water
when not carrying crude oil or oil products (when sailing
ballast legs). The reported draughts used to calculate the
load factor in this study could thus falsely imply too high
dwt capacity utilisation for the VLCCs, if the VLCCs sail
ballast legs, and thus overestimate tonne-mile demand. In
conclusion, not regarding the latter issue, the LSTM NN
model could perhaps obtain better results after sampling
more recent AIS data with higher quality.

Furthermore, the LSTM NN model results could perhaps
be improved by adjusting the model configuration and
optimise the tuning of the hyperparameters through a grid
search (see Goodfellow et al. (2016), page 420). It is pos-
sible that some of the parameter values make the LSTM
NN network unable to learn from the input data. Further,
the applied regularisation technique may not be sufficient.
Other techniques that might be applied are the early
stopping technique and the L1 regularisation, explained
by Goodfellow et al. (2016). Adding other regularisation
techniques could reduce the overfitting problem, which in
turn could result in better forecasting accuracy.

Moreover, maybe other input variables should have been
included in the study. Some of the variables listed in Table
11 in Chapter 6 do not correlate strongly with the freight
rate. To investigate this potential issue, experiments with
only a few input variables, the ones with the highest
correlation to the freight rate, were performed. These
experiments achieved in general slightly better results.
Finally, it is not certain that ship traffic data is suitable
for the prediction of future freight rate movements. It
could for instance be the other way around, that freight
rate movements are better suited to predict future ship
movements and behaviour of shipping operators.
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Table 25. Comparison of classification accuracy in the test set between the LSTM NN model and the
benchmark model (a multivariate linear regression model).

Comparison of test set classification-accuracy between the LSTM NN model and the benchmark model:

Forecasting time-horizon: 1: 1 day ahead 2: 5 days ahead 3: 10 days ahead Model complexity:

Benchmark model:

Experiment A 0.58 0.54 0.46 Easy
Experiment B 0.29 0.30 0.21 Hard
Experiment C 0.57 0.51 0.45 Easy
Experiment D 0.57 0.51 0.53 Easy
Experiment E 0.53 0.51 0.54 Easy
Experiment F 0.49 0.48 0.39 Easy

LSTM NN model:

Experiment A 0.47 0.46 0.54 Easy
Experiment B 0.34 0.29 0.26 Hard
Experiment C 0.52 0.52 0.53 Easy
Experiment D 0.46 0.52 0.63 Easy
Experiment E 0.51 0.50 0.54 Easy
Experiment F 0.51 0.51 0.61 Easy
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10

Concluding Remarks

and Further Work

The final chapter of this thesis concludes our results and
findings, as well as outlines a plan for further work, which
encourages more research on the topics discussed.

10.1

Conclusions

The aim of this thesis was to examine the ability of ma-
chine learning algorithms, specifically neural networks, to
predict future shipping freight rates. Additionally, whether
the inclusion of AIS-derived explanatory variables en-
hances the forecasting performance of the applied network
(the LSTM NN model), has been investigated. The use of
the tanker market has been motivated by the fact that it is
highly liquid, and therefore provides sufficient amounts of
data. Furthermore, using a recurrent neural network with
long short-term memory (LSTM) cells, and various subsets
of explanatory variables, an attempt has been made to
predict the tanker freight rate on the major tanker route
between Ras Tanura (Saudi Arabia) and Singapore, over
the following short-term horizons: one day ahead, five days
ahead and ten days ahead. The performance of the LSTM
NN model has been measured based on whether the model
was able to classify (predict) the correct movement of the
freight rate over the specified forecasting horizon.

In this thesis, the LSTM NN model provides promising
results on the forecasting horizon of ten days ahead; the
LSTM NN model outperforms the benchmark model on
all experiments carried out on this forecasting horizon.
However, on shorter horizons (one day ahead and five
days ahead), the benchmark model competes well with
the LSTM NN model. Further, it is expected that the
performance of the LSTM NN model can be improved,
which is discussed in Section 10.2. Thus, regarding the
first research problem listed in Section 1.2, whether neural
networks are suited to forecast freight rate movements in
shipping markets, the findings of this thesis show that
LSTM neural networks have potential.

When it comes to the second research problem listed in
Section 1.2, the results presented and discussed in Chapter
9 indicate that the applied AIS-derived input data did
not provide a significant additional value when forecasting
freight rates in the tanker market. For reasons discussed
in Section 9.3 it is expected that the LSTM NN model
can obtain better results if new and more recent AIS data,
with higher quality, is sampled and fed the model.

10.2

Further Work

Based on the discussions in Section 9.3 and the conclusions
in Section 10.1, further studies should focus on the topics
listed below.

‚ AIS data quality: New, more recent AIS data should
be sampled. AIS data from 2012 to 2015 has been
used as LSTM NN model input. This data contains
gaps with missing data. As mentioned in Section 2.3,
more satellites being launched will lead to better
quality of AIS data. Therefore, by using new AIS
data, the number of these gaps could be reduced, as
the number of satellites receiving AIS messages has
increased since 2012. With higher quality AIS data, it
is expected that the LSTM NN model could perform
better, using the same input variables; the LSTM NN
model may find it easier to discover a general pattern
for the training set and the test set, and avoid or
reduce the overfitting issue discussed in Section 9.2.

‚ AIS data quantity : Sampling of more AIS data is
an option. In this thesis, four years of sample data
was used (from the beginning of 2012 to the end of
2015). This data amount is perhaps not sufficient for
the model to learn general patterns. As mentioned
in Section 9.3, it is not rare that neural networks
have to train on tens of thousands of data points to
obtain high accuracy on test sets. Thus, if the data is
available and its quality is good enough, the sample
data window should be increased.

‚ Hyperparameter optimisation: As discussed in sub-
section 9.3.3, optimisation of the model's hyperpa-
rameters, e.g. through a grid search, is a possibility.
Tuning the hyperparameters optimally can give bet-
ter forecasting accuracy. For example, as explained in
Chapter 7, using the wrong learning rate can make
training much slower. The same logic applies to all
the hyperparameters of the model.

‚ Apply other regularisation techniques: A possible so-
lution to the overfitting problem 28 , discussed in Sec-
tion 9.2, is to apply additional regularisation tech-
niques, or change the one already used. For example,
the λ2 parameter in the L2 regularisation could be
increased. Other regularisation techniques that could
be attempted is dropout regularisation, as described
in Chapter 8, or early stopping, described in Good-
fellow et al. (2016).

‚ Use a different neural network: The LSTM NN model
is based on the most basic form of LSTM neural net-
works. There are other methods that could have been
attempted as well, such as bidirectional networks or a
combination of recurrent and convolutional networks,
which could give better results.

28All the experiments showed that the test loss increased with
increasing training iterations, which is a sign of overfitting.
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‚ Different input variables/subsets of input variables:
The input variables (explanatory variables) and the
subset selections used in this thesis are perhaps not
the optimal ones with respect to the current research
problems. When it comes to the selection of explana-
tory variables, perhaps further studies should focus
on finding variables that are more strongly correlated
with the freight rate in question. Further, regarding
subset selections, mathematical and statistical meth-
ods could be applied to identify the best combinations
of variables. Additionally, as mentioned in Section 2.1,
Alizadeh and Talley (2011) criticised in their paper
the utilisation of aggregate and macroeconomic data
in maritime forecasting. They further suggested that
shipowners and charterers need micro-forecasts, e.g.
of freight rates for specific routes, for making oper-
ational decisions, cash flow analyses and budgeting.
Therefore, Alizadeh and Talley (2011) investigated
the use of micro economic determinants such as vessel
and contract specific factors, and e.g. found that the
duration of the laycan period is an important freight
rate determinant and vice versa. Thus, further studies
that perform maritime forecasts on very short hori-
zons, such as the ones attempted in this thesis, should
consider to include micro economic determinants, as
the ones mentioned above, if such data is accessible.

‚ Extend the forecasting horizon: The LSTM NN model
has shown potential when forecasting ten days ahead,
i.e. on the longest forecasting horizon attempted in
this study. As mentioned in Section 9.2, it would be
interesting to see if the LSTM NN model can perform
well on even longer forecasting horizons, e.g. several
weeks or months ahead.

‚ Compare the results with other benchmark models: In
this thesis, the LSTM NN model's performance is
only compared with the results of one benchmark
model, a multivariate linear regression model. In
further studies, other standard forecasting methods
should be attempted for bench marking purposes,
such as an Auto-regressive Integrated Moving Av-
erage (ARIMA) model or a Vector Autoregressive
(VaR) model.
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Appendix A The Shipping Market Model

The below figure is adapted from Jugović et al. (2015), and is a more detailed version of the classic maritime supply-
demand model, or shipping market model, presented in Chapter 4.
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Appendix B Overview of Tanker Shipping Routes

The tables below are adapted from Γoλας (2012), but the Baltic Exchange is the original source of information. The
tables present an overview of the Baltic Exchange tanker route definitions for the Baltic Clean Tanker Index (BCTI)
and the Baltic Dirty Tanker Index (BDTI), respectively:

Table B.1. Baltic Clean Tanker Index (BCTI) - Route Definitions.

Routes Vessel size (k.dwt) Route description Vessel type

TC1 75 Arabian (Middle East) Gulf to Japan: Ras Tanura to Yokohama Aframax
TC2 37 Continent to US coast: Rotterdam to New York Handysize
TC3 38 Carribean to US coast: Aruba to New York Handysize
TC5 55 Arabian Gulf to Japan: Ras Tanura to Yokohama Panamax
TC6 30 Algerie to Euromed: Skikda to Lavera Handysize
TC8 65 Arabian Gulf to UK-Cont.: Jubail to Rotterdam Panamax
TC9 22 Baltic to UK-Cont.: Ventspils to Le Havre Handysize

Table B.2. Baltic Dirty Tanker Index (BDTI) - Route Definitions.

Routes Vessel size (k.dwt) Route description Vessel type

TD1 280 Arabian (Middle East) Gulf to US Gulf: Ras Tanura to Loop VLCC
TD2 260 Arabian Gulf to Singapore: Ras Tanura to Singapore VLCC
TD3 260 Arabian Gulf to Japan: Ras Tanura to Chiba VLCC
TD4 260 West Africa to US Gulf: Port of Bonny Offshore Terminal to Loop VLCC
TD5 130 West Africa to US coast: Port of Bonny Offshore Terminal to

Philadelphia
Suezmax

TD6 135 Black Sea to Mediterranean: Novorossiyk to Augusta Suezmax
TD7 80 North Sea to Continent: Sullom Voe to Wilhelmshaven Aframax
TD8 80 Kuwait to Singapore: Mena al Ahmadi to Singapore Aframax
TD9 70 Carribean to US Gulf: Puerta La Cruz to Corpus Christi Panamax
TD10 50 Carribean to US coast: Aruba to New York Panamax
TD11 80 Cross Mediterranean: Banias to Lavera Aframax
TD12 55 Amsterdam-Rotterdam-Antwerp range to US Gulf Panamax
TD14 80 SE Asia to EC Australia Aframax
TD15 260 West Africa to China VLCC
TD16 30 Black Sea to Mediterranean: Odessa to Augusta Handysize
TD17 100 Baltic to UK-Cont.: Primorsk to Wilhelmshaven Aframax
TD18 30 Baltic to UK-Cont.: Tallinn to Rotterdam Handysize
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Appendix C Time-series Plots

Fig. C.1 and C.2 show time-series plots of the AIS-derived data and Fig. C.3 presents time-series plots of the non-
AIS-derived data:

Fig. C.1. Time-series plots of the AIS-derived data.
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Fig. C.2. Time-series plots of the AIS-derived data.
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Fig. C.3. Time-series plots of the non-AIS-derived data.
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Appendix D Normality Plots

Fig. D.1 and D.2 show normality plots of the AIS-derived data and Fig. D.3 presents normality plots of the non-AIS-
derived data:

Fig. D.1. Normality plots of the AIS-derived data.
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Fig. D.2. Normality plots of the AIS-derived data.
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Fig. D.3. Normality plots of the non-AIS-derived data.
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Appendix F Accuracy Plots

A experiments: Fig. F.1 illustrates accuracy (the plots to the left) and loss (the plots to the right) for the training data
and the test data. Blue lines represent training accuracy, light green lines represent test accuracy, red lines represent
training loss and dark green lines represent test loss. Moreover, the top plots represent one-day-ahead forecasts, the
middle plots represent five-days-ahead forecasts and the bottom plots represent ten-days-ahead forecasts.

Fig. F.1. Plots displaying training accuracy, test accuracy, training loss and test loss for the A experiments.
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B experiments: Fig. F.2 illustrates accuracy (the plots to the left) and loss (the plots to the right) for the training data
and the test data. Blue lines represent training accuracy, light green lines represent test accuracy, red lines represent
training loss and dark green lines represent test loss. Moreover, the top plots represent one-day-ahead forecasts, the
middle plots represent five-days-ahead forecasts and the bottom plots represent ten-days-ahead forecasts.

Fig. F.2. Plots displaying training accuracy, test accuracy, training loss and test loss for the B experiments.
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C experiments: Fig. F.3 illustrates accuracy (the plots to the left) and loss (the plots to the right) for the training data
and the test data. Blue lines represent training accuracy, light green lines represent test accuracy, red lines represent
training loss and dark green lines represent test loss. Moreover, the top plots represent one-day-ahead forecasts, the
middle plots represent five-days-ahead forecasts and the bottom plots represent ten-days-ahead forecasts.

Fig. F.3. Plots displaying training accuracy, test accuracy, training loss and test loss for the C experiments.
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D experiments: Fig. F.4 illustrates accuracy (the plots to the left) and loss (the plots to the right) for the training data
and the test data. Blue lines represent training accuracy, light green lines represent test accuracy, red lines represent
training loss and dark green lines represent test loss. Moreover, the top plots represent one-day-ahead forecasts, the
middle plots represent five-days-ahead forecasts and the bottom plots represent ten-days-ahead forecasts.

Fig. F.4. Plots displaying training accuracy, test accuracy, training loss and test loss for the D experiments.

XII



E experiments: Fig. F.5 illustrates accuracy (the plots to the left) and loss (the plots to the right) for the training data
and the test data. Blue lines represent training accuracy, light green lines represent test accuracy, red lines represent
training loss and dark green lines represent test loss. Moreover, the top plots represent one-day-ahead forecasts, the
middle plots represent five-days-ahead forecasts and the bottom plots represent ten-days-ahead forecasts.

Fig. F.5. Plots displaying training accuracy, test accuracy, training loss and test loss for the E experiments.
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F experiments: Fig. F.6 illustrates accuracy (the plots to the left) and loss (the plots to the right) for the training data
and the test data. Blue lines represent training accuracy, light green lines represent test accuracy, red lines represent
training loss and dark green lines represent test loss. Moreover, the top plots represent one-day-ahead forecasts, the
middle plots represent five-days-ahead forecasts and the bottom plots represent ten-days-ahead forecasts.

Fig. F.6. Plots displaying training accuracy, test accuracy, training loss and test loss for the F experiments.
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