


5.4 Bounds

This section aims at evaluating the gap between bounds of the optimal expected value in the

original problem. The procedures to find both an LB (section 5.4.1) and an UB (section 5.4.2)

are presented. In addition, it is elaborated on how solutions in the aggregated problem can

be infeasible in the original problem. Along comes an explanation of an adjustment heuristic

that can be applied to ensure feasibility when determining the LB (section 5.4.3). The optimal

expected objective value depends on the set of input parameters, which are used to initialize the

model. Hence, it makes little sense to discuss an overall LB and UB. The bounds corresponding

to the different test instances are calculated and discussed in section 5.4.4.

It is desirable to look for reasons to why the optimality gap differs for different test instances.

However, even with a limited set of input parameters that are more or less correlated, it is

non-trivial to extract general conclusions.

5.4.1 Lower Bound

The procedure to determine the LB is presented in this section, and fig. 25 emphasizes the

steps. Numerous simulations are run using Monte Carlo simulation, in order to develop the

Figure 25: Approach to determine statistical lower bound.

statistical LB. In each simulation the aggregated SDP is applied. The SDP is the same for all

simulations, and hence the policy is only developed once. When applying the SDP, information

is collected, aggregated and the policy is applied. In order to ensure that the solution is feasible,

the solution must be disaggregated and evaluated under the realistic constraints. Moreover, this

entails modifying the solution by applying a heuristic, if the solution is infeasible.

The model is applied in a manner that it could have been applied in reality to solve the origi-

nal problem. Prices are simulated in accordance with natural filtration, i.e. hourly resolution.
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The model collects and interprets information between bid periods, t,in order to determine the

average price that makes up the aggregated market price state, Pt . Similarly, capacity infor-

mation is aggregated. By solving the original problem utilizing the heuristic policy multiple

times under stochastic prices, a set of feasible objective values can be found. By weighting all

scenarios equally and taking the expectation of the objective values, the statistical LB is found.

It is a lower bound because all the solutions are feasible and potentially sub-optimal in their

associated scenarios.

The formula is shown in eq. (48), where Ψ here refers to the number of realized scenarios. Each

scenario is denoted ψ ∈Ψ. The objective value V0 is as defined in eq. (39). Note that since this

solution is potentially sub-optimal, the star is removed. The subscript ψ denote what scenario

V corresponds to.

LB =
1
Ψ

Ψ

∑
ψ=1

V0,ψ (48)

5.4.2 Upper Bound

When determining the upper bound (see fig. 26), the method of relaxing all non-anticipativity

constraints (NACs), (see section 3.6) is utilized.

Figure 26: Approach to determine statistical upper bound.

In practice, the effect is that all price information is revealed immediately and simultaneously.

When all stochasticity is removed the problem becomes deterministic. This implies that a new

policy must be found for each simulation. Note the additional step in the orange circle in fig. 26.

However, it is easier to solve the deterministic than the stochastic dynamic program. Note that
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the functions in the deterministic program shown below are similar to those of the stochastic

dynamic program, only without stochasticity. In the deterministic program the state space is

reduced to

St = It (49)

With the state St = It . The decision is still Xt , but there is no exogenous information Wt . The

transition function is

St+1 = SM(St ,Xt). (50)

Since prices were certain for the stochastic dynamic program within a step, the contribution

function is the same, hence Ct(St ,Xt)(eq. (37)). However, the Bellman’s equation differs, since

the stochasticity is removed:

Vt(St) = max
Xt∈X

(
Ct(St ,Xt)+Vt+1(St+1|St ,Xt)

)
(51)

and

V ∗0 = max
π∈Π

{
∑

t∈T
Cπ

t (St ,Xπ
t (St))|S0

}
(52)

Moreover, the method of finding the UB entails using Monte Carlo simulation of exogenous

price information with resolution in accordance with the original problem. As for determin-

ing the LB, the information regarding state variables is aggregated. Based on the aggregated

simulated price path a deterministic program can be solved using backward recursion. For the

given capacity level, an optimal solution in found by applying the optimal relaxed policy. This

provides an optimistic upper bound, because it optimizes over a deterministic horizon by mak-

ing use of information that is unavailable under realistic circumstances, without penalizing it.

Applying the same argument to each scenario, weighing all scenarios equally and calculating

the expected value result in the statistical UB given by

UB =
1
Ψ

Ψ

∑
ψ=1

V ∗0,ψ. (53)

Ψ is the total number of scenarios ψ. The objective value V0 is as defined in eq. (52). The

subscript ψ denote what scenario V corresponds to.

5.4.3 Adjustment Heuristic

An important point to make, is that in order to know by certainty that the lower bound is valid,

the solution must be feasible. In this case it would entail that the capacity constraint on the

75



Figure 27: Capacity levels associated with block of 6 products. Illustrates the impact of making

decision based on aggregation.

generator is not violated in any production hour and that the price one assume to get acceptance

at is not too optimistic.

The aggregated SDP suggests the up- or down-regulation in step t that is evaluated to be the op-

timal solution in the aggregated problem. However, this solution may be sub-optimal and even

infeasible in the realistic problem. To obtain a feasible solution, an adjustment heuristic that

can capture when constraints are violated, is used. Moreover, it is used to modify or penalize

the objective function according to the deviation from feasibility. There are different ways to

develop such a heuristic. One method is described.

In the aggregated problem, the capacity of the generator is an average of remaining capacities

of the generator for 6 products within a product period. Figure 27 illustrates a block of 6

periods.

One product block, havg, in time step, t, in the aggregated problem takes the value iavg′
t,h , which

correspond to the closest capacity discretization level to the actual mean

iavg
t,h =

1
6

h=6

∑
h=1

it,h. (54)

Note that h is the general symbol for a product period in this thesis. havg is only introduced here

to emphasize that products in the aggregated model are really derived from its constituents in
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the disaggregated problem.

Figure 27 represents an example situation. Note that for illustration purposes the capacity levels

vary a lot between hours. Normally, products within the same block tend to have similar pro-

duction commitments, due to seasonality effects within a day. All the purple bars correspond to

the remaining capacity level for a product h. The aggregated capacity level is the average value:

iavg
t,h = 59.2%. Hence iavg′

t,h = 70% since it is the closest level of remaining capacity. Moreover,

it is found from applying the policy that the next optimal decision is to buy X∗ = Xt amount

of power. The SDP will interpret that the system moves from a capacity level of I = It = 70%

to I∗ = I∗t+1 = 40%. In this disaggregated version, that is obviously not the case, and in fact

this trade would lead to a violation of the capacity constraint for the generator corresponding to

product h = 2. Notice the red arrow in fig. 27.

In general, the model suggests an optimal decision of up- or down-regulation of the generator

for all 6 products. One or more of the products may violate the capacity constraint, and hence

the suggested solution is infeasible. A way to handle it is to only reward the feasible actions in

the objective function, by performing an if-then-check within the optimization algorithm.

When applying the aggregated SDP, prices are also aggregated and the average price is found.

Based on this aggregation, the model provides a candidate solution, before an adjustment heuris-

tic is applied to find decisions that do not violate the capacity constraint. To determine the

contribution function eq. (37), the prices are disaggregated and multiplied by the trade, Xt , as-

sociated with the corresponding product, h. This way, the contribution function only rewards

feasible trades under realistic prices.

5.4.4 Analyzing the Properties of the Bounds

The analysis is performed on the set of instances as described in section 5.2, table 9. Among all

the simulated scenarios, there is a spread in the set of optimal values. Figure 28 illustrates how

upper and lower bounds differs between days in different test instances, while the numerical

results are summarized in table 10.

Note, however, that due to time constraints the adjustment heuristic have not been applied to

adjust the disaggregated variables nor the contribution function. However, with the purpose of

illustrating and explaining how a further analysis would be carried out, the invalid results from
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a lower bound that may be too optimistic are shown. In the case where the adjustment heuristic

is applied, one would expect the gap to increase. This is due to a the fact that the lower bound

is expected to be lower, when not rewarding infeasible trades.

Figure 28: Plot of bounds within different group instances

In fig. 28 the points come in pairs of an UB(blue) and a LB(red) illustrated as points along

the same vertical line. The expected optimal value is measured in euros on the y-axis. Note

that the scale of the y-axis varies with different spot commitment running plans, denoted R. On

days when there is initially no spot commitment, and all machinery is turned off, the expected

optimal value is typically lower at the end of the planning horizon. In the opposite case, the

expected optimal value is generally higher. Note however that some days’ expected objective

values stand out from the remaining days within the group. Note for instance test instance

number 4 within the R = 3,∆ = 2.

The variations within group instances imply that these factors alone (R and ∆) are not sufficient

to describe the properties of the objective value.

The output’s fit to the normal distribution is investigated by utilizing a Q-Q (quantile-quantile)
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Table 10: Bound analysis

Instance UB +/- CI [EUR] LB +/- CI [EUR] Gap absolute[EUR] Gap [%]

R1,∆1: 17-Jun-2017 5689.017+/-15.068 4328.694+/-19.203 1360.323 23.911

R1,∆1: 13-Jul-2017 6010.473+/-16.028 4474.299+/-20.264 1536.174 25.558

R1,∆1: 25-Jun-2017 6318.896+/-16.028 5220.507+/-21.218 1098.389 17.383

R1,∆1: 16-Jul-2017 6581.512+/-18.478 5112.873+/-20.635 1468.639 22.315

R1,∆2: 27-Jun-2017 6182.804+/-16.395 4935.521+/-19.779 1247.283 20.173

R1,∆2: 28-Jun-2017 6435.204+/-16.143 5145.572+/-19.945 1289.632 20.040

R2,∆1: 18-Jul-2017 11630.794+/-16.927 10012.799+/-19.834 1617.996 13.911

R2,∆2: 05-Jun-2017 5617.297+/-15.907 4005.604+/-21.394 1611.694 28.692

R2,∆2: 26-Jul-2017 14134.334+/-17.711 12365.418+/-21.467 1768.916 12.515

R2,∆2: 10-Jun-2017 6385.155+/-19.253 4618.464+/-23.107 1766.691 27.669

R2,∆2: 31-Jul-2017 11775.906+/-16.3456 10244.461+/-21.706 1531.444 13.004

R2,∆3: 14-Jun-2017 10612.381+/-14.727 8486.146+/-21.359 2126.234 20.035

R3,∆1: 20-Jul-2017 8803.935+/-16.263 6802.303+/-22.235 2001.633 22.736

R3,∆2: 25-May-2017 12699.704+/-14.735 11183.343+/-19.511 1516.362 11.940

R3,∆2: 21-Jun-2017 13314.389+/-16.393 11755.589+/-18.785 1558.800 11.708

R3,∆2: 17-May-2017 15435.951+/-15.121 14103.131+/-21.466 1332.820 8.635

R3,∆2: 10-Jul-2017 6178.693+/-17.366 4265.507+/-19.893 1913.186 30.964

R3,∆3: 26-May-2017 15411.265+/-15.988 14028.760+/-21.575 1382.505 8.971

R3,∆3: 22-Jun-2017 14147.053+/-15.172 12594.976+/-20.271 1552.077 10.971

R3,∆3: 18-May-2017 12231.042+/-14.189 10595.073+/-21.468 1635.970 13.376

R3,∆3: 02-Jun-2017 13578.567+/-15.460 10991.603+/-21.432 2586.964 19.052

plot, in order to describe the properties of the statistical bounds, such as confidence interval (CI).

In general, all instances tested by utilizing a Q-Q plot to evaluate fit to the normal distribution.

They are found to be sufficient fits to the normal distribution. In all cases, the LB is a better

fit than the UB. Figure 29 show an example plot of the Q-Q plots. If the points fall close to

the linear line, it indicates that the points are close to normally distributed. Since it is quite

representative, the remaining plots are left out of the report.

The bounds are estimated by evaluation of Ψ = 10,000 simulations, by the formulas given in

eq. (48) and eq. (53). Since the bounds are statistical it is of interest to know how spread out the

different constituents are within the sampled scenarios. Confidence intervals of the bounds are
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Figure 29: Q-Q plot for the 5th of June 2017.

found under the assumption of a normal distribution. They are used to measure the spread of the

expected objective values making up the statistical bound. For a certain test instance, the CIs is

quite tight based on the set of Ψ simulations. Hence, input parameters are of great importance

for the output.

A 95% CI is calculated on both upper and lower bounds (see table 10). The CI is small relative

to the gap between upper and lower bound. The CI is plotted in the fig. 28, but due to its

relatively small size it cannot be observed. Figure 30 shows the CI for an UB. The test instance

is the 18th of July when the statistical UB is 11630.794[EUR] + /− the CI of 16.927[EUR].

Note that since the normal distribution is found to be a good fit, the CI is symmetric around the

bound.

Figure 30: Confidence interval

The percentage-wise gaps are calculated as a percentage of the UB. An interesting observation

is that both the maximum and minimum percentage gap lies within the group R3,∆2. Moreover,

the gaps are quite large. Different methods can be applied to tighten the upper bound or modify
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the heuristic in order to find feasible policies that in a manner closer to the optimal. This is

future discussed under section 6.3.

5.5 Policy Trends

The policy constructed from the SDP algorithm on an instance, consists of large amounts of

data difficult to summarize or illustrate precisely. However, trading trends may be observed

by evaluating the average behaviour over time. As the objective of this thesis is to develop a

model optimizing expected profits for a market participant, the scope of interest is to observe

how the policy makes a market participant behave over numerous scenarios of exogenous infor-

mation. In this section, policies constructed with SDP is compared to the case of deterministic

prices.

An important aspect to remember is the number of input parameters inserted for each day tested.

Though the test instances of this analysis are constructed in such a way that there is some control

of the parameters, each parameter affects the policy in different ways. Each of them alone may

pull the results in one direction, while combined with another parameter, the opposite effect

might occur. A too detailed analysis of the differences in policies are therefor not conducted,

but trends for the overall model are emphasized. The main results from this analysis are related

to how the model tends to behave in a stochastic world in comparison with a deterministic

world, and how average trade volumes evolves during the modelling horizon.

A stochastic solution will be either worse off or equal to a deterministic solution. This applies

to the policy by observing how a stochastic policy reacts to fluctuating market prices. While

a deterministic model knows for sure what future exogenous information will be, a stochastic

model must consider EVs of the future. Hence, stochastic solutions tend to be have lower

variance than a deterministic one, depending on how sensitive the stochastic model is to varying

stochastic information.

To ease the reading of the following analysis, a simple representation of the results is shown

in fig. 31, illustrated by two dummy results of the same day with different simulated price

paths. The purpose of showing these figures is to illustrate how the policy may differ in each

simulation, according to how sensitive the model is to price fluctuations. Input parameters are

held constant, only stochastic exogenous information is simulated.
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There are 6 bid blocks, each with a capacity state given by the 4 production blocks’ capacity

levels at the time. The seventh block indicates the final capacities at the time of production.

The capacity levels correspond to the discretization of state space (section 4.5.6), of which

the capacity levels are discretized into 4 levels. Remember that capacity level 1 represent full

production, while capacity level 4 represents that the machinery is not running. Moreover, the

change in capacity from one bid block to the next uniquely corresponds to the volume traded in

the previous bid block.

(a) Example simulation 1

(b) Example simulation 2

Figure 31: Illustration result from a specific simulation. Capacities for all production blocks in

each bid block.

Simulating 10,000 price paths, the result is 10,000 different trades and capacities, for each

product in each bid block. Only the first bid block will always have the same state, as this

represents the initial spot commitment before any trade have been carried out. To determine

expected results, a counting of occurrences across all simulations is computed. Using the two

dummy examples in fig. 31, the result for bid block t = 3 is presented in table 11.

All simulations result in a capacity level 2 for production block 3, and capacity level 3 for

production block 4. 50% of the simulations results in capacity level 1 for production block 1

and 2, and the other 50% result in capacity level 2 for the same production blocks. Notice how

the sum in each column is the same as the number of simulations. Over 10,000 simulations of
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Table 11: Bid Block 3 - Counting intersections of production block h and discretized capacity

level Im ∈ I ′ over two simulations.

h = 1 h = 2 h = 3 h = 4

m = 1 1 1 0 0

m = 2 1 0 2 0

m = 3 0 1 0 2

m = 4 0 0 0 0

exogenous information, some of these intersections may have 7,000 occurrences, resulting in a

share of 70% of simulations with the same result for that specific intersection. These shares are

plotted and analyzed below.

All instances are tested, where the days in table 9 are run with their respective input param-

eters from historical data. Price paths are simulated and the model is solved as described in

sections 5.4.1 and 5.4.2, to obtain stochastic and deterministic solutions, respectively. Overall

trends differentiating the stochastic and deterministic solutions are retrieved, similar within all

test instances. Hence, the discussion will be based on results from one day only, for illustration

purposes.

The stochastic case and the deterministic case for 17-Jun-2017 are presented in figs. 32 and 33

respectively, the difference illustrates how perfect information affects the policy. Similar as

fig. 31, there are 6 bid blocks plus one for final production, and a bar for each of the 4 production

blocks in each bid block. The difference is what the bar sizes indicate. Each color belongs to

a specific capacity level, and the y-axis indicates how large share of the 10,000 simulations

resulted in each respective capacity level - for that specific production block in that specific bid

block. Hence, the y-axis in figs. 32 and 33 is a result of counting of intersections in the policies,

as illustrated in table 11. The maximum share is 100%.

17-Jun-2017 has an initial spot commitment associated to the highest capacity level, namely

no production and full capacity for all production blocks h ∈ {1,2,3,4}. For the stochastic

case (fig. 32), notice how all production blocks changes to a 100% share of the lowest capacity

level in bid block t = 2, then a 100% share of the highest capacity level in bid block t = 3.

This is solely arbitrage trading, taking advantage of market opportunities. This indicates that

all simulations result in selling maximum production the first bid hour, then buying it all back
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Figure 32: Solving a stochastic dynamic program for the 17th of June 2017. Share of simula-

tions resulting in capacity levels 1-4. Illustration of all production blocks in each bid block.

the next. The policy for these bid blocks is not affected by different price realizations. As all

simulations have the same initialization P1, given by historical spot prices 17-Jun-2017 Lspot
P ,

the model will always expect the same outcome in bid hour t = 2, though the realized prices P2

will differ.

This is in contrast to the deterministic case in fig. 33, where the initialization of the model

includes the full price path Wt ∀ t ∈ {1,2,3,4,5,6}. Hence, in a significant share of the

simulations, the policy suggest to wait for a better opportunity later. This is observed in the

figure, as the share of capacity levels in bid hour t = 2 is not 100% on either of the the levels.

Most simulations trigger trades to sell full production at first, and then buying it back, but a

significant share of the simulations does not trade anything of products h = [1,3,4] the first

bid block. Similar results are seen for bid block t = 3, indicating that eventual bids held back

the first bid hour, were put in the market in bid hour t = 2 instead. This indicates how the

deterministic model is able to catch nuances in the price scenarios that the stochastic model

cannot do.

Later bid blocks have more varying results from the simulations, applicable to the stochastic

case as well as the deterministic. The last opportunity to trade product h = 1 is in bid block

t = 3, and the last opportunities to trade products h = [2,3,4] are in bid blocks t = [4,5,6],
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Figure 33: Solving a deterministic dynamic program for the 17th of June 2017. Share of simu-

lations resulting in capacity levels 1-4. Illustration of all production blocks in each bid block.

respectively. Hence, new commitments will be binding, which seems to have an impact on the

resulting capacity levels. While the deterministic model easily can trade at the most profitable

times without any risk, this indicates that also the stochastic model expects to be able to up-

or down regulate production to optimal levels within the close, in addition to make arbitrage

profits up front.

An interesting result is that, in general, it is not necessarily a relation between initial spot com-

mitment and final production. This indicates that the market prices tend to be higher than

marginal cost of production, until production reaches certain levels. At final production, the

remaining capacities are all at the three upper levels, and never at capacity level 1. This indi-

cates that utilizing full capacity of the generator is expensive, and that market prices in general

do not cover the production costs associated to maximum production. This corresponds well to

the marginal cost curve, rapidly increasing for high production levels. Note that final produc-

tion results are similar in the stochastic case and the deterministic case. Though future market

prices are stochastic, the market participant is always guaranteed acceptance in the market at the

current price level. Hence, both the deterministic and the stochastic model have equal informa-

tion about production block h′ the last bid block before the close of h′, and equal opportunities

of up- or down regulation before the close. The fact that final production varies in different
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simulations, indicates how market prices determine which production level is optimal.

To illustrate the policy and the resulting trades, fig. 34 shows average trade volumes over the

simulations. Each bar color represents a production block, and the size of it the volume traded

for the respective bid block. A positive volume refers to selling power, while a negative volume

refers to buying power. Each of these are calculated separately when computing the average

trade volumes. To the left (a), simulations where no trade took place is not included in calculat-

ing the average. Hence, it represents the average volume traded, if there is a trade. This means

that even if there is only 1 simulation resulting in selling power for a specific production block

in a specific bid block, the volume illustrated will be equal to that trade. To the right (b) is a

total average over all 10,000 simulations, and the same case would be negligible.

(a) Only simulations where a trade occur is weighted. (b) Each simulation equally weighted.

Figure 34: Average trade volumes, selling and buying considered separately.

Notice that average volumes traded if there is a trade, are quite similar in the stochastic and

deterministic case. The exception is that there are no selling trades occurring in bid block 2

for the stochastic case, while the volumes are almost symmetrical for selling and buying in the

deterministic case. This confirms the results from figs. 32 and 33, that the stochastic case will do

the same decision the first two bid blocks, regardless of simulation outcomes. The deterministic

model rather customizes its trade pattern for each specific simulated price path. Both cases have

the largest volumes traded early, while the volumes decrease as a production block’s close is

getting nearer. This is related to the effect observed in figs. 32 and 33, where remaining capacity

typically alternates between the upper and lower capacity levels, but stabilizes somewhere in

between for final production volumes.
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The picture changes somewhat when observing the illustration to the right (b), of the total

average volumes. Notice how in the stochastic case, the bars are almost of the same size as in (a)

the first three bid blocks, though only for either buying or selling power. This distinguishes from

the deterministic case, where apparently the trades are more equally likely to happen as a selling

trade or a buying trade, and the average volumes decreases. This is what we observed in figs. 32

and 33, that the stochastic case is less sensitive to price fluctuations than the deterministic case,

so that all simulations results in the same capacity level, or volume traded, for the first few bid

blocks.

Though 17-Jun-2017 is utilized as a day for illustration in this thesis, the days do not all have

the same policy. However, the main result from analyzing the policies is how they all have the

same dynamic when comparing the deterministic and the stochastic case, of which is a result

in itself. The variance of decisions in a deterministic world is more volatile and sensitive to

price variations than in a stochastic world, as a stochastic model will remove random sampling

effects to a greater extent as it optimizes depending on EVs.

Decisions made by deterministic DP varies more than that of SDP. This is because SDP removes

random sampling effects to a greater extent as it optimizes depending on EVs.
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6 Concluding Remarks

6.1 Discussion

This section aims to briefly discuss some qualitative aspects of how the model provides deci-

sion support to increase expected profits for a market participant, and sheds light on the model

result’s validity for the real world problem.

Implementation of New Software

A concern from the industry is that potential profits in Elbas are not large enough to cover the

resulting costs from implementing new strategies of intraday bidding. In order for an optimiza-

tion model to add value to a market participant, the cost-benefit relationship for participating in

Elbas must be taken into consideration. Initial investments in software and user training increase

the threshold to enter, in addition to potential continuous costs such as increased need of human

resources. This study contributes to reduce the threshold concerning software development, but

the software interface must be designed in such a way that the user can utilize it in the intended

way. The user must be able to gather and feed the correct input parameters, and interpret the

output - hence willingness to learn is an important aspect. The benefit of a output in the format

of a contingency plan is that it is easy to interpret. The plan contains information about what

bids the user should place at given points in time, determining both price and volume for each

trade. The most desirable case would still be to couple the model with the folders containing

the correct market information, excluding the risk of human error.

In addition, there are also some long-term opportunities that an optimization model contributes

to. As the traded volumes in Elbas increases, with a higher frequency of trades, it becomes more

of a challenge to keep trading by experience as operators do today, as the decisions become less

trivial due to increased complexity and large amounts of data to interpret. In such a case, having

already implemented an optimization model with limited need of human interaction, the next

step into developing a trading robot is not far away. As this seems to be necessary in the future,

a market participant should rather be proactive and position one self beneficially. In that case,

the continuous costs related to Elbas participation will even decrease from today’s situation, as

less human interaction is needed.

88



How the Model Adresses the Real World Problem

As today’s participation in Elbas is at a minimum, and with a cost minimizing objective, any

increased profit above marginal cost contributes to extra gain respective of today. The model

developed in this thesis is a heuristic approach to the original problem, creating possible sub-

optimal policies as both bid blocks and production blocks are aggregated, and all dimensions

discretized. Though this restricts the action space, i.e. the theoretically optimal decisions, the

model provides decision support improving today’s situation significantly. Moreover, trades

often concern several consecutive hours of production to cover start and stop costs of the gener-

ator, so aggregating production blocks into 6 hour blocks is not far from what is actually done

in the original problem.

The model in this thesis has an incentive for purely arbitrage trading up until the close of each

production hour. This clearly distinguishes from how trading in Elbas is done today. Though

this model might over-estimate the arbitrage opportunities with respect to what volumes are

possible to trade at the price paths simulated, the fact that the model suggest to trade at all

indicates that the prices exceeds marginal cost, i.e. is profitable to carry out. A premium above

marginal cost should be possible to obtain, of which increases today’s profits.

While this model is developed based on the hydro power plant (HPP) Søa in TEs portfolio, the

same modelling procedure can be generalized for similar power plants. This model considers

only a part of a portfolio, but with the objective of being a first step towards holistic perspective.

In order to account for the entire portfolio, a similar model must be built for all its constituents

separately. This will provide a heuristic solution to the portfolio.

6.2 Conclusion

Traditionally, Elbas has been a market with low frequencies of trade, and the volumes traded

have not been considered attractive for a market participant with low volatility in production

capacities. Though there exists an opportunity to profit, even from small volumes, the initial

investment in time and human resources to develop tools for optimal bidding strategies, has

made the threshold to enter the Elbas market too high for many market participants with flexible

energy sources (appendix B).

This thesis is a contribution to the field of power production and trading, investigating the
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opportunities to model the intraday market as a multisequential decision problem. The market

today is quite different from what is expected in the future, but early research makes it possible

for participants to be proactive. At the time of completion of this study, a joint initiative to

integrate large parts of Europe into a joint intraday market, is about to go live. The objective

is to ensure better liquidity, market efficiency and a more secure power supply. By introducing

high price areas to the market, flexible power producers with low marginal costs of production

face an opportunity to gain, an opportunity this thesis investigates.

This study develops a mathematical optimization model for the bidding problem in Elbas, treat-

ing each of the 24 production periods as products subject for trade in continuous double auc-

tions. Aggregation of 6 production hours into a production block is utilized to handle the di-

mension sizes of state, action and outcome spaces. The model also considers production costs

associated with the power plant. The problem is modeled as a MDP, applying SDP to construct

an exact solution to the aggregated version of the original problem.

Ideally, the model developed in this study would have been able to solve the original problem

to optimality. However, modelling choices are made as a trade-off between tractability and

accuracy. The study discovers how the number of production hours makes the dimensions of

the bidding problem in Elbas grow exponentially, which confirms DP theory. Aggregation of

production hours is done, so that the number of products the model evaluates decreases from

24 production hours to 4 production blocks. It is argued that this not necessarily is a too coarse

time resolution, due to the common use of block bid. However, evaluating valid upper and

lower bounds of the model must be conducted before one can conclude. The main challenge

of aggregation is discussed in section 5.4.3, which concludes that aggregated production blocks

introduce the possibility of infeasible decisions for certain production hours within a production

block. An adjustment heuristic must be implemented to ensure that operators do not conduct

infeasable trades.

The stochastic price process utilized in this study is assumed to be correct, hence all bids placed

according to the price model will be accepted. The stochastic model does not face any uncer-

tainties related to being accepted in the market, and will always have the opportunity of up-

or down regulation before the close. The only uncertainty is related to what market prices the

model expects for future trades, which overcomes the risk of high production costs. This is

evident from policy analysis, where the model tends to carry out arbitrage trading, before it
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suggest a final production at the close that is in relation to production costs.

This study presents a first step to provide decision support for bidding in Elbas, where more ac-

curate market dynamics are in focus. It is natural to question whether DP is a suitable optimiza-

tion approach for the bidding problem in Elbas, as the curses of dimensionality is a challenge

when developing the model within that framework. However, the main objective of this thesis

is to emphasize that Elbas is a continuous auction, not having to make all decisions at only one

or two points in time. As traditional scenario trees will explode when increasing the number of

time steps, the benefit of DP becomes more evident. Section 6.3 elaborates on extensions to the

model presented here, which still are within the DP framework.
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6.3 Future Research

The master thesis opens new doors into different directions of research. Some suggestions for

continuations of the study are presented below. Some limitations have already been pointed

out in the thesis. This section aims at pointing out limitations and challenges and suggests the

first steps to consider in a research continuation. It suggests how the optimization model can

account for infeasibility when disaggregating, as an alternative to the adjustment heuristic found

in this thesis. In the case of bound analysis, methods are suggested to tighten the upper bound.

Moreover, modelling different levels of discretization and aggregation, and handling curses of

dimensionality, are discussed. At last, the handling of stochasticity is discussed.

Heuristics

The challenge introduced by the utilization of average capacity states, is that the model may

suggest infeasible decisions. There are several ways one could approach this issue. Firstly,

one could develop a robust heuristic that optimizes while accounting for the bottlenecks in

the original problem. Namely, a model that never exceeds any of the capacity constraints after

disaggregating the block. For instance, the two products within the block with the least potential

to up- and down-regulate make up the two new capacity states, rather than the average capacity

level utilized here. This would implicate introduction of an additional state variable, and hence

increase the state space and conflict with the curses of dimensionality.

Since the number of states is already a challenge in the stochastic dynamic program, introduc-

ing more would incentivice the investigation of other optimization techniques. Two heuristic

approaches that are less sensitive than the SDP to increasing state space are ADP or SDDP(see

section 3.5). These methods are not exact, but utilizes simulation to investigate a desirably rep-

resentative set of scenarios through multiple simulations. With a robust, but valid, method of

this kind, there is a great chance that both the upper and lower bounds are weak.

A difference between this method of an additional state variable and the one where the infeasible

solution is modified by an adjustment heuristic, is that this model provides feasible solutions

straight away. There is a direct link between suggested actions and the performed actions, and

hence future opportunities are weighted more realistically. The latter is a desired property.

However, the robust modelling may create weak bounds due to the conservative utilization of

resources.
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Penalty and Moderate Relaxation

It can be tough to find a tight gap. In general, one strives towards finding a method that is com-

putationally manageable. One can find a tighter UB by moderating the information relaxation

(see section 3.6). For instance, a method of revealing information regarding only one or a few

steps ahead may provide a smaller violation of constraints. A method utilized by Nadarajah and

Secomandi (2017) can be investigated. Namely, a method allowing a one step look-ahead, re-

vealing information one step- before it is known. After relaxing constraints, a method to tighten

the bound is to penalize the benefit of additional information.

Impact of Time Resolution

Moreover, an interesting direction for future research can be to analyze how to solve the prob-

lem with a different time resolution. In order to extract benefits from periods that deviate from

the average value, one would need a model with more fine-meshed time resolution. It could

entail a higher frequency of decision making or product blocks containing less products. The

latter is more difficult, due to the exponential growth in state space associated with it. It could

be interesting to analyze if ADP or SDDP are suitable under this moderated aggregation. It

may be an important part of the future research to analyze the trade-off between tractability

and accuracy when developing models. One of the positive sides that comes from finer resolu-

tion is that the infeasibility associated with average state values decreases, and hence smaller

adjustments must be made.

6.3.1 Stochasticity

The stochastic price model found by Bovim and Næss (2017) is assumed to be a good repre-

sentation of the willingness to pay in the market. It is built from a set of assumptions of which

some, but far from all, literature agree upon. For instance, the correlation between Spot and

Elbas prices. If there are weaknesses in the price model, it will constrain the possible gain from

utilizing the optimization tool. In future research, one should strive towards a more comprehen-

sive study of the underlying market price process.

Moreover, an interesting point to investigate is the potential to discretize the state variables of

capacity and price differently. Are the four levels of capacity the most suitable ones? What is

the gain from having one or several more levels, compared to the downside? How does it apply

to prices?
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Market Depth

A limitation of the model is that is does not differentiate what volumes one can trade at a

given price. One can choose what volume to trade, at the given market price level. Under the

assumption of high liquidity this holds, but otherwise, unrealistic trades may be initiated by the

model. In a continuation of this model one could wish to specify how the price changes with

different volumes.

Market Demand and Bid Acceptance

The price model is developed to model the actual willingness to pay. Without information about

whether the market is short or long, it must, somehow, be accounted for what type of market it

is. It is modelled here that the participant can place bids according to the price level and have

them accepted. In order to model the market demand in a future research, a binary state variable

based on a stochastic process could be utilized.

The price model serves the purpose of modelling the price level in the market. As modelled in

this thesis, there is a spread between the sell and buy prices. Moreover, the participant could

choose whether to up- or down-regulate the generator, depending on what is found to be more

profitable, in expectation. When uncertainties of bid acceptance are introduced, the main dif-

ference from the existing model is that the participant does not fully control what new capacity

level, It+1, to proceed to. The direction of change in remaining capacity, ∆I, is then forced by

external factors, even though the volume is still a matter of choice to be optimized.

This matter of choice could be replaced by a state variable containing information about what

bids the market participant is likely to get accepted. It could model whether the market is

short or long. It would introduce a lower level of controllability from the user side, and hence

also be a more realistic model. The state variable could either be a stochastic process, or a

process evolving as a function of other states and parameters in the system. Introduction of this

additional market stochastic would lead to an increasing state space, and the dimensional curse

is again an issue to work around.

The process modelling probability of bid acceptance could be modelled as another stochastic

process, independent of the rest of the system. Otherwise, it could be modelled as a function of

other factors, if one analyzed tendencies in the market. These factors are likely to be linked to

price, water value etc. In a case where additional exogenous information arrive, the eq. (32) is
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extended to

Wt = (Pt ,WM
t−1) (55)

Where Pt still represents the exogenously given price process, whilst WM
t describes the market

status (long, short) associated with the probabilities of bid acceptances.

The market status either indicates that the market is short or long. In practice it can also be

neutral, but this is omitted here for simplicity.

WM
t = [δM,Sell

t ,δ
M,Buy
t ] (56)

Where the market is long, short or neutral:

δ
M,Sell
t +δ

M,Buy
t ≤ 1 (57)

given that δ
M,i
t is a vector of Ht elements where each element δ

M,i
t,h ∈ {0,1}. Thus,

δ
M,Sell
t,h =

1 if marked is short (power deficit) in product hour h ∈Ht as seen from time t ∈ T

0 otherwise

(58)

δ
M,Buy
t,h =

1 if marked is long (power surplus) in product hour h ∈Ht as seen from time t ∈ T

0 otherwise

(59)

Recall from fig. 15 that the exogenous information arrives after making the decision Xt , and

before arriving at the new state. The information in this case regards both the new market price

levels for step t +1 and the market demand status regarding the current step t. A difference is

that the exogenous information would also have an impact on what post-decision state one end

up in, as it is no longer purely a choice.

The model is based on the assumption that the participant can optimize over its own production

plan and disregard uncertainties about having their bids accepted, as long as it corresponds with

the price levels given by the price model. This point of view can be argued based on the origin

of the price model, namely that it represents the willingness to trade. The difference between

these two is mainly the ability to profit purely from trades, regardless of production capacity. In

the last perspective the possibility of the optimal bids not being accepted is present.

In conclusion, there are numerous interesting directions that a future research can proceed in.

A natural first step would be to implement the adjustment heuristic in order to get a feasible

LB.
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Appendices

A Compact Mathematical Model

State space:

Pt ∈ Pt (60)

It ∈ It (61)

St : Pt× It (62)

Post-decision state:

SX
t : It (63)

Decisions:

Xt ∈ Xt (64)

Exogenous information:

Wt ∈Ωt (65)

Transition function:

St+1 = SM(St ,Xt ,Wt+1) (66)

Contribution function:

Ct(St ,Xt) = PS
t •XS

t −PB
t •XB

t −
(
CAC(Qt+1(Xt)

)
•Qt+1(Xt)−CAC(Qt

)
•Qt

)
−Css ·αt,t+1

(67)

Value function:

Vt(St) = max
Xt∈X

(
Ct(St ,Xt)+EWt+1[Vt+1(St+1|St ,Xt ,Wt+1)]

)
(68)

Bellman’s equation:

V ∗0 = max
π∈Π

Eπ
{

∑
t∈T

Cπ
t (St ,Xπ

t (St))|S0
}

(69)
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B From the Industrial Partner, TrønderEnergi

TrønderEnergi Kraft AS har i lengre tid hatt et tett samarbeid med NTNU og dette er ett samar-

beid som er valgt og nedfelt i strategien til morselskapet TrønderEnergi AS.

Nærheten til NTNU og andre undervisningsinstitusjoner forenkler denne type samarbeid mel-

lom vår bedrift og dette tilfellet NTNU, ved institutt for Industriell Økonomi og Teknologi

ledelse.

I dette tilfellet har veiledningen vært gjort av undertegnede som jobber innenfor gruppen som

har ansvaret for operativ kjøring av langtidsmodeller for produksjonsplanlegging, det vil si pris-

ing(fastsettelse av vannverdi) i TrønderEnergi Kraft AS.

Oppgaven som det har blitt jobbet med er �Budgivning i Elbas-markedet�. Til nå har bud-

givingen i dette markedet vært gjort på en enkel måte internt og formålet med oppgaven var

å undersøk om denne oppgaven kan løses ved bruk av stokastiske optimeringsmodeller som

bruker markedsdata og interne data fra oss. Hensikten med dette er å øke egen inntjening på

egen agering i Elbas-markedet, samt forberede oss for en mer volatil framtid som vi tror kom-

mer med ytterligere økning i kapasiteten på fornybar produksjon.

En av hensiktene bak det strategiske valget som TrønderEnergi AS har gjort er å gi studen-

ter relevant og bransjespesifikke problemstillinger knyttet til kraftbransjen. Oppgaven det har

blitt jobbet med representerer en helt annen retning knyttet til budgivning i Elbas enn den som

benyttes i dag. Innsatsen som blir lagt ned av studentene, sammen med veiledningen som de får

fra sine respektive ressurspersoner innenfor NTNU og SINTEF miljøet gir oss verdifull innsikt i

problemet. Problemet er ganske komplekst og den kombinerte prosjektet/master i dette tilfellet

kan betraktes som en grundig og vel gjennomført jobb med den hensikt å lage en metodikk på

budgivning i Elbas med stokastiske optimeringsmetoder. Oppgaven kan også betraktes som en

mulighetsstudie som kvalitet og omfang med god margin overgår det som ville vært muligheten

å gjøre innenfor rammen av de ressursene vi har tilgjengelig internt.

Kompleksiteten i både prosjekt- og masteroppgaven har også vært av en slik art, at studentene på

ett tidspunkt oppnår ett kunnskapsnivå hvor de gir opplæring av undertegnede. Kort sagt er det å

veilede studentoppgaver enn vinn-vinn situasjon for TrønderEnergi AS, men som krever innsats

og dedikasjon fra alle parter involvert i prosessen for å kunne høste denne gevinsten.

97



Med hilsen

Gunnar Aronsen

Senior kraftanalytiker

Trønder Energi Kraft AS

Avd. handel

C Space Size of Original Problem

Table 12 show the size of the original problem. The first row describes bid blocks t ∈ T . The

last row for the three columns on the right is the full size of the respective state spaces, and is

a sum of the state spaces in steps t. The third column describes rh=t−(T−H), and is written as r′

to save space in the table. The size of rh=t−(T−H) is explained in section 4.5.1.
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Table 12: State space calculation

t Ht I′t r′ P′t It Pt St

1 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

2 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

3 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

4 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

5 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

6 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

7 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

8 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

9 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

10 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

11 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

12 23 4 2 5 1.40737 ·1014 1.19209 ·1016 1.67772 ·1030

13 22 4 2 5 3.51844 ·1013 2.38419 ·1015 8.38861 ·1028

14 21 4 2 5 8.79609 ·1012 4.76837 ·1014 4.1943 ·1027

15 20 4 2 5 2.19902 ·1012 9.53674 ·1013 2.09715 ·1026

16 19 4 2 5 5.49856 ·1011 1.907355 ·1013 1.0458 ·1025

17 18 4 2 5 1.37439 ·1011 3.8147 ·1012 5.24288 ·1023

18 17 4 2 5 34359738368 7.62939 ·1011 2.62144 ·1022

19 16 4 2 5 8589934592 1.52588 ·1011 1.31072 ·1021

20 15 4 2 5 2147483648 30517578125 6.5536 ·1019

21 14 4 2 5 536870912 6103515625 3.2768 ·1018

22 13 4 2 5 134217728 1220703125 1.6384 ·1017

23 12 4 2 5 33554432 244140625 8.192 ·1015

24 11 4 2 5 8388608 48828125 4.096 ·1014

25 10 4 2 5 2097152 9765625 2.048 ·1013

26 9 4 2 5 524288 1953125 1.024 ·1012

27 8 4 2 5 131072 390625 51200000000

28 7 4 2 5 32768 78125 2560000000

29 6 4 2 5 8192 15625 128000000

30 5 4 2 5 2048 3125 6400000

31 4 4 2 5 512 625 320000

32 3 4 2 5 128 125 16000

33 2 4 2 5 32 25 800

34 1 4 2 5 8 5 40

- - - - - 3.28387 ·1015 6.70552 ·1017 1.86315 ·1032
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