
A Stochastic Dynamic Programming
Approach to the Bidding Problem in the
Intraday Electricity Market

Sunniva Reiten Bovim
Hilde Rollefsen Næss

Industrial Economics and Technology Management

Supervisor: Asgeir Tomasgard, IØT
Co-supervisor: Stein-Erik Fleten, IØT

Ellen Krohn Aasgård, IØT
Gunnar Aronsen, TrønderEnergi

Department of Industrial Economics and Technology Management

Submission date: June 2018

Norwegian University of Science and Technology



 



Preface

This thesis concludes our Master of Science at the Norwegian University of Science and Tech-

nology (NTNU) with specialization in Applied Economics and Optimization under the depart-

ment of Industrial Economics and Technology Management. It is a continuation of the prelimi-

nary project Bidding in Elbas, by Bovim and Næss (2017).

We would like to thank our supervisor Professor and Director of CenSES Asgeir Tomasgard

as well as co-supervisors Professor Stein-Erik Fleten and PhD Candidate Ellen Krohn Aasgård
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Abstract

The purpose of this thesis is to provide flexible market participants decision support in Elbas, in

such a manner that they can take advantage of energy surpluses or deficits in the market after the

spot clearing. A mathematical optimization model is constructed, integrating market dynamics

and optimal scheduling into a multisequential resource allocation problem. Variable production

costs and unit commitment costs are included, while market prices are modelled as stochastic

processes with the Markov property. The objective is to maximize expected profits in Elbas,

determining the optimal timing and volumes of bids.

Stochastic Dynamic Programming (SDP) is utilized due to its strength in solving sequential de-

cision problems. The continuous double auction in Elbas is modelled as discretized time steps,

where new bids can be made at the beginning of each period. The real world problem consists

of 24 hours of production, each regarded as individual products subject to trade in each time

step of the auction. The horizon of the model corresponds to the time period where at least one

product is available for trade in Elbas, namely 34 hours. The products have individual produc-

tion commitments from the spot clearing, resulting in different remaining production capacities

available for trade. Hence, the state space is given by 24 variable production capacities and 24

variable market prices. The state space is discretized, and the resulting state space increases

exponentially with the number of products.

To handle the dimensional challenge of the state space, an approximated version of the prob-

lem is implemented applying aggregation of 6 products into a product block. The size of the

state space is consequently reduced from 17× 1031 to 16× 104. The discretized time steps in

the auction are chosen to correspond to the length of a product block of 6 hours. The time

period for trade extends over a longer time horizon than the time period of production, so the

problem is implemented with 4 products subject to trade in 6 time steps. Optimal sequential

decisions are found for the approximated problem by a backward recursion algorithm, evalu-

ating the expected value (EV) of each decision. A time dependent policy for decision making

is constructed, mapping all possible states of the approximated problem to a unique bidding

decision in each time step. The policy is applied as a heuristic on the real world problem.

All parameters necessary to initialize the model are considered constant throughout the auction

period, while market prices and remaining production capacities are variables described by
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the model state space. The model is run only once a day, even though stochastic, exogenous

market prices arrive sequentially. During the day, the model collects the true market prices, and

translates them into the corresponding state representation. Prices taking on any continuous

value can can be understood and interpreted by the model - even spikes. At the arrival of new

information the policy serves as a contingency plan over the modelling horizon without further

computations needed.

In order to evaluate the constructed model, both the value function and policy are investigated.

To evaluate how well the model solves the real world problem, a procedure to find statistical

upper bound (UB) and lower bound (LB) of the optimal solution is presented. An adjustment

heuristic to apply on the policy is found. This is to ensure a feasible lower bound to the maxi-

mization problem. To observe how policies respond to fluctuating market prices, policies for a

number of days within selected test instances are constructed utilizing SDP. The main finding

from the policy analysis is that the SDP model finds incentives for arbitrage trading, before

it stabilizes production volumes according to production costs and market prices before the

close.

The opportunities for a market participant to increase profits by strategic bidding in Elbas, are

increasing as the volumes and frequencies of trades increase. This development is expected

to continue by the introduction of an integrated market with most of Europe (XBID). As the

frequency of trades increases, quick reactions to the market is essential. Utilizing software as

decision support for trading, serves as a first step to automatic trading.
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Sammendrag

Hensikten med denne masteroppgaven er å tilby fleksible markedsdeltakere beslutningsstøtte i

Elbas, på en slik måte at de kan dra nytte av energioverskudd og -underskudd i markedet etter

spotklarering. En matematisk optimeringsmodell er utviklet, og integrerer markedsdynamikk

og optimal produksjonsplanlegging til et multisekvensielt ressursallokeringsproblem. Variable

produksjonskostnader og oppstartskostnader er inkluderet, mens markedspriser er modellert

som stokastiske prosesser med Markovegenskapen. Formålet er å maksimere forventet profitt i

Elbas ved å bestemme optimale budtidspunkt og budvolum.

Stokastisk dynamisk programmering (SDP) er undersøkt ettersom metoden ofte fungerer godt

på sekvensielle problemer. Den kontinuerlige doble auksjonen i Elbas er modellert med diskre-

tiserte tidssteg, der nye bud gjøres i begynnelsen av hver tidsperiode. Det realistiske problemet

består av 24 produksjonstimer, der alle er ansett som individuelle produkter tilgjengelige for

handel i alle tidssteg i auksjonen. Horisonten til modellen korresponderer til tidsperioden der

minst ett produkt er tilgjengelig for handel i Elbas, det vil si 34 timer. Produktene har indi-

viduelle produksjonsforpliktelser fra spotklareringen, som resulterer i ulike gjenværende pro-

duksjonskapasiteter tilgjengelig for handel. Dermed er tilstandsrommet gitt av 24 variable pro-

duksjonskapasiteter og 24 variable markedspriser. Diskretisering av tilstandsrommet resulterer

i et tilstandsrom som vokser eksponentielt med antallet produkter tilgjengelig for handel.

For å håndtere dimensjonsutfordringer ved tilstandsrommet er en approksimert versjon av prob-

lemet implementert ved å aggregere 6 produkter i produktblokker. Størrelsen på tilstandsrom-

met er redusert fra 17×31 til 16× 104. De diskretiserte stegene i auksjonen er valgt slik at de

korresponderer til lengden på en produktblokk på 6 timer. Tidsperioden for handel går over

en lengre tidshorisont enn tidsperioden for produksjon, og problemet er dermed implementert

med 4 produkter tilgjengelige for handel i 6 tidssteg. Optimale sekvensielle beslutninger er fun-

net for det approksimerte problemet ved hjelp av en algoritme som benytter bakoverrekursjon,

som evaluerer forventningsverdien knyttet til hver beslutning. En tidsavhengig beslutningsregel

er laget. Den knytter alle mulige tilstander i det approksimerte problemet til en unik beslut-

ning i hvert tidssteg. Beslutningsregelen er benyttet som en heuristikk på det realistiske prob-

lemet.

Alle parametere nødvendig for å initialisere modellen, er antatt konstante gjennom auksjonspe-
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rioden, mens markedspriser og gjenværende produksjonskapasiteter er variable beskrevet av til-

standsrommet til modellen. Modellen er kjørt en gang om dagen, selvom stokastiske, eksogene

markedspriser ankommer sekvensielt. Utover dagen samler modellen inn sanne markedspriser

og oversetter disse til korresponderende tilstandsvariable. Alle mulige kontinuerlige priser kan

bli forstått og håndtert av modellen - til og med ekstremverdier. Når ny informasjon ankommer

fungerer beslutningsregelen som et oppslagsverk uten at flere beregninger er nødvendig.

For å kunne evaluere modellen er både verdifunksjonen og beslutningsregelen undersøkt nærmere.

For å si noe om hvor godt modellen løser det realisetiske problemet er en fremgangsmåte for

å bestemme øvre og nedre grense til den optimale løsningen presentert. En justeringsheuris-

tikk for å bruke sammen med beslutningsregelen er funnet. Dette sikrer en lovlig nedre grense

på maksimeringsproblemet. For å observere hvordan beslutningsreglene responderer til sv-

ingninger i markedspriser er beslutningsregler for dager innen hver testinstanse funnet ved bruk

av SDP. Hovedfunnet fra analysen av beslutningsregelen er at SDP-modellen finner insentiver

til å arbitrasjehandle, før den stabiliserer produksjonsvolumet med tanke på produksjonskost-

nader og markedspriser innen stengingen av Elbas.

Mulighetene for en markedsdeltaker til å øke profitt gjennom strategisk budgivning i Elbas øker

når volumet og hyppigheten av handler øker. Denne utviklingen er forventet å fortsette når det

integrerte markedet med mesteparten av Europa (XBID) introduseres. Ettersom at hyppigheten

av handler øker, er det behov for raske reaksjoner i markedet. Bruken av software som beslut-

ningsstøtte for budgivning inngår som et første steg mot automatisert handel.
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Glossary

area price The spot price in a market area.

available area Market area connected with sufficient available transmission capacity for the

trade in question.

balance agreement Formal agreement with Statnett to gain trading access in the Norwegian

wholesale electricity markets.

bid matrix Matrix containing each participant’s required price for buying or selling different

amounts of energy.

bid period The point in time when a commitment in the power market is made.

close Bid deadline prior to a production period.

continuous double auction Auction with immediate execution where both buyers and sellers

submit offers.

Elbas Intraday market facilitated by Nord Pool.

market area Area with a common spot price set by the area’s demand and supply.

natural filtration Time resolution of information arrival under realistic circumstances.

Nord Pool Market operator.

periodic double auction Auction with institutional trade determination and both buyers and

sellers submit offers over some finite time horizon.

policy Maps state St to a unique decision Xt .

production period Period of physical delivery of power.

system price Power price after spot clearing if unlimited transfer capacities and no congestion.

the regulating power market Final balance settlement.

the spot market A day-ahead market facilitated by Nord Pool.
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Abbreviations

AC average cost

ADDP Approximate Dual Dynamic Programming

ADP Approximate Dynamic Programming

CI confidence interval

DP Dynamic Programming

EV expected value

HPP hydro power plant

LB lower bound

MC marginal cost

MDP Markov Decision Process

NAC non-anticipativity constraint

SDDP Stochastic Dual Dynamic Programming

SDP Stochastic Dynamic Programming

SO system operator

SRMC short-run marginal cost

TE TrønderEnergi

TSO transmission system operator

UB upper bound
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1 Introduction

Over the last few decades, the Nordic and Baltic countries have coupled their energy markets

into a common, deregulated market operated by Nord Pool. Their objective is to obtain a free

market between market areas to increase efficiency and liquidity, as well as to create a more

secure power supply. Energy production and consumption have resulted in increased concen-

tration of greenhouse gases in the atmosphere, while energy demand is still increasing. Hence,

renewable energy sources are introduced, continuously reducing the carbon footprint from the

energy mix.

Belsnes et al. (2016) states that: “The behaviour of the market is expected to become much more

volatile due to the transition toward more renewable power production in the energy systems.”

An increasing amount of renewable energy sources, specifically the increasing share of wind

and solar power, makes actual production hard to predict, while the power system requires

predictability and stability to ensure power balance and frequency control at all times. The

result is an increasing amount of power trades in the balancing markets closer to the time of

production, as the actual production capacities become more certain. While the largest volumes

are still traded the day ahead of production, the frequency of trades and the volumes traded in

the intraday market, Elbas, are steadily increasing. The opportunity to profit from Elbas trades

are therefore more present now than before, and is assumed to be even more essential in the

future as the share of renewables continues to increase.

Due to the lack of interest in the intraday market in the industry, existing research within math-

ematical optimization have so far focused more on technical aspects related to production and

optimal scheduling rather than accurate modelling of the intraday market dynamics (Selasinsky,

2014). Löhndorf et al. (2013) consider the opportunity to profit in the intraday market as small,

and that the market is only a way for a power producer to improve the production schedule from

the initial spot commitment. Jiang and Powell (2015) do emphasize the opportunity to profit

in the intraday market only, by buying energy at a low cost time, storing it in a battery and

selling it at a higher price. However, Jiang and Powell (2015) only consider the opportunity to

profit related to the times of charging and discharging, and do not cover the continuous double

auction mechanism that is present in the intraday market. This introduces an additional timing

dimension to the bidding problem in Elbas, of which this thesis contributes to cover.
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Power producers with predictable production do normally not have a need to balance their

commitments from the spot clearing, as all information relevant for optimal scheduling is avail-

able at the spot deadline. However, as long as there exists market participants with uncertain

production, e.g. wind or solar energy producers, forecast errors will create energy deficits or

surpluses in the market after the spot clearing. This creates opportunities for power producers

with flexibility in production, as they can earn profits by offering their flexibility in the market.

The industry already has well established mathematical optimization models and strategies for

longer term planning and spot market bidding, but is starting to realize that increased volumes

traded intraday introduce a potential to increase profits if modelled correctly. Today, bidding

in the intraday market is motivated by a cost-minimization perspective and mainly based on in-

dividual operators’ experiences (appendix B). Having access to optimization tools that ensures

an expected profit will make it more attractive to participate in Elbas. The industry requests

research on the topic of accurate intraday trading, as a measure of being proactive to changes

and better positioned to maximize profits in the future (appendix B).

The purpose of this thesis is to provide flexible market participants decision support in Elbas,

in such a manner that they can take advantage of energy surpluses or deficits in the market.

The objective is to construct a stochastic optimization model for a sequential bidding problem,

according to the market structure of continuous double auctions in Elbas. The study also strive

to achieve an integrated model for accurate market dynamics and technical aspects related to

production costs. Important aspects of the study include to gain in-depth insight of the problem

structure and further to evaluate and handle the problem size.

This study contributes to the field of power production and trading in general, and Elbas par-

ticipation specifically. The thesis provides increased insight to the opportunities to profit in the

intraday market, when an increasing proportion of the energy mix originates from unpredictable

energy sources. It is essential for power producers to adhere to these changes to remain com-

petitive. Comparing to trivial bidding strategies applied today, the mathematical optimization

model developed in this thesis provides decision support to gain an extra profit above marginal

cost whenever the market allows to. Consequently, the model in this thesis contributes to change

the cost-minimizing perspective of today, to a profit-maximization in the future.

The main contribution to literature from this study, is how the mathematical optimization model

developed in this thesis emphasizes the stochastic price process of the continuous auctions.
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This introduces a second dimension of time in the Elbas bidding problem, as an addition to

the traditional scheduling problem. This study makes out a base for future research, shedding

light on the potential to profit in Elbas, in addition to present modelling challenges that must be

handled to accurately model the problem.

Energy production and trading is a complex industry, so the basic information necessary to read

this thesis is included in chapter 2. Both market structure and operational aspects are covered. In

chapter 3, related literature is presented, emphasizing the gap that this study contributes to fill.

Some optimization theory is also presented, as to better understand the methods utilized in this

thesis. Chapter 4 presents the modelling choices and the resulting mathematical optimization

model constructed in this study, while chapter 5 present how the optimization model is utilized

in practice and what value the model can provide a power producer. Finally, chapter 6 concludes

the study, followed by interesting aspects subject for future research.
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2 The Power Market and Power Production

As any other commodity, electricity may be sold and bought, but in distinction to other goods,

electricity cannot easily be stored. The power market is complex in its structure to ensure exact

balance between supply and demand, and power to be delivered at a certain point in time may

be traded several times in several markets prior to its production. Hence, the power that is

transmitted and utilized on different levels in the electricity grid - including the central, regional

and distributional levels - has often gone through a process of being traded on the wholesale

market, i.e. between producers and suppliers, brokers, large industrial companies and other large

market agents. There are multiple power markets a power producer can choose to participate

in. The scope of this thesis concerns the intraday market Elbas, making a few aspects from the

day-ahead market and balancing market relevant to discuss.

The spot market is a market for selling and buying power the day before the actual production

hour, while the intraday market Elbas (Electricity Balance Adjustment System) provides an op-

portunity to regulate ones commitments up until one hour prior to production (close). A market

participant can choose to up-regulate the generator by producing more power, and selling it.

Oppositely, one can down-regulate the generator and produce less in cases where it is more

beneficial to buy power from other participants. All imbalance remaining between demand and

supply in the grid are then settled at the actual time of production in the regulating power mar-

ket. An overview of this is shown in fig. 1, as a time line up until the hour of production.

For the scope of this thesis, production is considered constant within an hour, and is referred

to as a production hour. A more general term is production period, not restricting the length of

production. All hours are given by standard time, which is the Central European Time (CET),

utilizing a 24 hour clock. The production hour h in fig. 1 represents all production hours during

day 1 from hour 1 to 24.

12

Spot bid

Day d−1

deadline

12 : 42

Spot market

Day d−1

clears

14

Elbas capacities

Day d−1

clears

h−1

Elbas
closes

h

Production

Day d

hour

Figure 1: Time line overview of day-ahead and intraday power markets

Section 2.1 introduces the overall regulations affecting participants in the power markets, and
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their resulting opportunities and responsibilities. A brief introduction to how the spot clearing

and the final balance settlement is done is described in section 2.2 and section 2.4 respectively.

A more comprehensive review of Elbas is provided in section 2.3. Finally, section 2.5 addresses

the physical aspects concerning power production, and introduces the main factors relevant for

optimal scheduling and power trade.

2.1 Deregulated Markets and Market Coupling

In deregulated electricity markets, the power price is determined by demand and supply. The

objective is to obtain something close to a perfect market, which will maximize social surplus.

With free flow of power between countries, the dispatch of power production at facilities with

different associated costs will assure that the best price for society is obtained, across country

borders. Areas with energy surplus will be able to sell power to areas with deficits. If there are

no transmission and distribution constraints, the power price will be equal for all participants

according to basic economic theory, which is the objective of coupled markets (Wangensteen,

2012).

Integrating markets across country borders, assures a diversity in the power sources supplying

the grid, which assures a better security of supply. Relying too much on a single or too few

energy sources, the supply will be highly sensitive to changes in weather conditions, fuel prices

or other factors essential for that specific energy source. With a combination of energy sources

and geographical placements, the total supply is less affected by single variations. Power pro-

ducers with flexible production can offer their flexibility in the market to power producers with

unpredictable production. An increased number of market participants makes the market closer

to a perfect one as the market clearing gets more efficient.

The Nordic and Baltic countries have deregulated power markets, and coupled them into a com-

mon market facilitated by Nord Pool (Wangensteen, 2012). 380 companies from 20 different

countries trade under Nord Pool’s operation (NordPool, 2016b), where market clearing, settle-

ment and services in day-ahead and intraday markets are some of their responsibilities. The

liquidity is still considered low in the intraday market, due to few participants and low frequen-

cies of trades. However, the development over the last years has shown increased production

volumes and transmission capacities, and even more diverse energy sources supplying the grid

(NordPool, 2017a). Continuously introducing more renewable energy sources to the energy mix
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indicates that this development will continue the years to come.

2.1.1 Market Areas and Power Prices

Even though the market is coupled between the Nordic and Baltic countries, available trans-

mission capacities (ATC) restricts the volumes traded and results in congestion. In practice, it

means that bottlenecks in the transmission system creates market imperfections. When free flow

between producers and consumers is not possible, the result is loss of social surplus. Hence,

market areas are constructed such that each area functions as a market place with a common

power price, whereas power trades between the market areas may be affected by congestion.

The market areas in the Nordic and Baltic power market are illustrated in fig. 2.

Figure 2: Market areas and related spot prices and power flows. Snapshot from Statnett (2017a),

illustrating the 15th of November 2017, at 23:59.

The system price refers to the power price that would have been the result after a spot clearing

if there were unlimited transfer capacities and no congestion. The area price is lower than the

6



system price if there is a power surplus in the area, while it is higher than the system price in

market areas with deficits. As long as there is available transmission capacity, power will flow

from a low price area to a high price area.

In theory, all market areas in Nord Pool are connected. The Nord Pool power markets are

constructed such that the net amount of energy exported/imported is correct according to the

commitment of each market area. In order to trade with market participants in other areas, there

must be available transmission capacity between the areas. This is referred to as available areas

in this thesis.

2.1.2 Roles and Responsibilities

To better understand how the different types of power markets works, it is useful to know what

roles and responsibilities the participants in the power market have.

Production companies are responsible for selling active power to the market, while the grid

companies operates, maintains and invest in the electricity network. Both of these may act as

a supplier to the end user. While these market participants have certain responsibilities, the

end users are independent in the sense that they control their own consumption pattern. While

they may be affected through pricing of power, there is no direct control of their consumption

behavior.

This leads to an important responsibility of balancing production and demand at any point in

time. The security of supply is maintained by a system operator (SO). All participants in the

wholesale market of electrical power in Norway are obliged to sign a balance agreement with

Statnett, Norway’s transmission system operator (TSO). The agreement’s objective is to ensure

that any unbalance subject to regulation in the regulating market is a result of forecast errors

only. The power exchange is facilitated by a market operator. In the Nordic power market,

Nord Pool is responsible for both financial and physical trade in the day-ahead and intraday

markets.
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2.2 The Spot Market

Most of the power traded in Nord Pool is traded the day ahead of production, in the spot marked.

In 2016, the total volume traded in the spot market was 391 TWh, which amounts to more than

77% of the total volume traded by Nord Pool and exceeds 98% of the total volume if excluding

the UK day-ahead market (NordPool, 2016b).

The day ahead of production, the deadline for submitting bids in the spot market is at CET

12. The market is organized as a sealed bid periodic double auction (Selasinsky, 2014) where

each participant in the spot market delivers a bid matrix to the market operator Nord Pool,

containing what amount of energy they are willing to sell and buy given specific prices. Nord

Pool matches all bids concerning the same production hour, evaluating the intersection between

willingness to buy and sell in the market throughout the following day (NordPool, 2017c). This

is a complex, non-trivial problem, solved by a mixed integer optimization algorithm aiming to

maximize social welfare. They create 24 market crosses, simplistically illustrated in fig. 3, one

for each production hour. Short-term contracts of purchases and sales for each production hour

the following day is committed.

Figure 3: An illustration of how the spot hourly prices are set by where the accumulated bid

curves for buy price and sell price meet. Snapshot from NordPool (2017c)

Revenues are calculated as volume dispatched to a market participant times the market price

in the given hour (Boomsma et al., 2014). When the spot market clears at some point after

12:42, the hourly spot prices and trades for the following day are announced simultaneously

to the market. Due to congestion in the grid, these prices will differ between market areas

(Wangensteen, 2012).
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2.3 Elbas - The Intraday Market

In general, both volumes and frequency of trades in Elbas are characterized by the tradition

of Elbas being a platform to create balance in the grid. Three market makers have a joint re-

sponsibility of providing fundamental liquidity in Elbas (NordPool, 2018), required to quote a

maximum bid-ask spread, but liquidity is still considered low. However, over the period from

2013 to 2015, it is observed a power increment of almost 60% and almost 50% more trades in

Elbas (Scharff and Amelin, 2015). This is related to the increasing share of renewable energy

sources in the energy mix. The Cross-Border Intraday Initiative (XBID project) creates a inte-

grated intraday market across Europe (XBID, 2018), to increase market liquidity and efficiency

as a measure to improve balancing opportunities for producers with intermittent energy sources.

Hence, the volumes traded in Elbas are expected to increase over the years as further renewable

development continues (Deloitte, 2015), and moreover, a larger market will be available for

trade.

To ease the reading of this report, a specification of terms should be done concerning time in the

intraday market. As already described, a production period refers to the point in time where the

physical delivery of power is to happen. However, in Elbas, this commitment may be performed

at any point in time prior to delivery. For the scope of this thesis, the term bid period refers to

the time when the commitment is made, hence when the financial trade takes place.

2.3.1 The Market Structure

Unlike the spot market, Elbas does not have a market clearing. New trades happen continuously

up until the close of the production hour. It is a first-come, first-served market, organized as a

continuous double auction (Selasinsky, 2014). Market participants submit their bids to an open

order book, where offers to sell and buy energy are separated into two columns. One can only

see offers from participants located in an available area.

A segment of the market information screen in Nord Pool’s trading client is shown in figure 4.

Each production hour is listed in different rows, with the corresponding close and present best

bid/ask offers in the market. Notice that the observer is set to be located in market area SE3,

hence only offers from available areas for SE3 will show on the screen.

The highest offer to buy energy is referred to as the best bid, while the lowest offer to sell is
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Figure 4: Example of the market information screen from Nord Pool’s web based trading client.

Snapshot from NordPool (2016a).

referred to as the best ask. These will be located at the top in the order book, as the offers are

sorted in descending and ascending order, respectively. As this section (2.3.1) covers double

auction theory, it is natural to use the correct terminology concerning bid and ask offers. Note,

however, for the remainder of this thesis, a bid refers to any offer in the power market, both for

buying and selling energy.

As long as there exists a bid-ask spread, there will be no trade. Once there exists a bid price

higher than - or equal to - the ask price, a trade is carried out between the two, at the price that

occurred first in the order book. Hence, the price in the offers are limit prices, and only the first

occurring participant pay as bid (Selasinsky, 2014). The counterpart gets either the limit price
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or a better price for the trade.

In addition to a limit price, the offers in Elbas contain information about what quantity the

participant is willing to trade, and which production hour the trade is subject to. The offer may

concern one single production hour, or several consecutive production hours (block offer). A fill

order will accept trades not fulfilling the whole commitment, while the left out quantity often

remains in the order book. An all or nothing order requires the counterpart to accept the full

quantity.

2.3.2 Bidding Strategies

Market participants in Elbas have different objectives for their participation. Intermittent energy

producers often seek to obtain balance, as a measure to avoid a more expensive balance settle-

ment in the regulating power market (section 2.4). Others may seek to improve their production

schedule from the spot clearing, to reduce production costs. Traditionally, these have been the

main objectives of participants in Elbas.

However, flexible power producers may also participate regardless of their initial spot clearing,

offering to be the counterpart of any trade covering their own marginal cost for up- or down

regulation. Indications from the industry (TrønderEnergi, section 2.5.2) is that this strategy is

regarded as non-trivial to implement, and that the expected profits have been considered too

small to cover the initial investments required to construct optimal bidding strategies. A rule

of thumb could be to offer flexibility at a limit price corresponding to a fixed premium above

marginal cost. The main draw back of such a strategy is argued that market dynamics are not

considered, and potential profits not maximized.

As liquidity in Elbas increases, the potential profits from offering flexibility in the market be-

come more attractive, introducing the need for stochastic models accurately describing market

prices throughout the continuous auction in Elbas. Mathematical optimization software will

provide decision support to implement non-trivial bidding strategies, and introduce a potential

to fully automate trades in the future.

11



2.4 The Regulating Power Market

All market participants are obliged to plan and provide hourly balance, so one cannot plan to

be unbalanced as a mean of financial gain (Statnett, 2017b). However, participating in Elbas

is not required, so participants may choose to settle any imbalance due to forecast errors in

the regulating market. In that case, they choose passive participation in the regulating market,

rather than participating in the intraday market.

Tariffs for up-regulation and down-regulation are set by the TSO, where a two-price mecha-

nism works as an incentive to ensure balance up front. The objective is that participants should

always be worse off settling their balance in the regulating power market rather than plan their

production and consumption sufficiently ahead. The two-price mechanism is presented in ta-

ble 1.

Table 1: The two-price mechanism (Engmark and Sandven, 2017)

Upward regulation Downward regulation

Production deficit Pay BM price Pay spot price

Production surplus Receive spot price Receive BM price

2.5 Power Production and Resource Management

Electricity cannot be stored in large quantities after it is produced, and in fact not even all energy

sources can be stored. Wind, for instance, must be utilized at the same time as it appears. Water

in reservoirs, coal or gas may be stored, but have costs related to start-ups. There are different

factors that affect the production costs, uncertainties and alternative gain when evaluating power

production from different technologies and energy sources.

In general however, power producers face some sort of costs related to production and facilities,

which may include:

• Fixed costs concerning e.g basic storage and maintenance, minimum staff etc.

• Semi fixed costs e.g extra units must start or stop, extra staff requirements etc.

• Marginal costs appearing as a direct effect of each unit of increased production, e.g re-

source consumption, efficiency of power production plant etc.
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In a power trade situation, variable costs are evaluated to what volumes are profitable to trade.

Short term production costs reflects the area under the marginal cost (MC) curve in fig. 5, or by

multiplying average cost (AC) with the production level. In addition, semi-fixed costs apply if

the volume produced exceeds some specific level.

Figure 5: Marginal and average costs as a function of production

For the scope of this thesis, a hydro power producer is basis of analysis, hence evaluating

costs in this study will be according to hydro power production. A brief introduction to hydro

power production is therefore presented to ease the reading of the following analysis. However,

any power producer with costs associated to the production as described above, should find an

equivalent analysis applicable.

2.5.1 Hydro Power Production

Hydro power is a well established and renewable energy source. According to Statkraft (2017),

hydro power amounts to 99% of the total power production in Norway, while the same number

in the world is approximately 17%. An important advantage of hydro power is the flexibility

of time of production (Statkraft, 2009). A reservoir acts as a natural storage of energy, where

water can be used for production now or stored to satisfy demand later on.

There are no direct costs associated with hydro power production. However, one normally

refer to the opportunity cost of water, since it is a scarce resource. Utilizing it today, may

be at the expense of future opportunities. Moreover, the opportunity cost is referred to as the
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MC of hydro power production, affected by the water value and production efficiency. As

a hydro power producer, knowing the value of the water in a reservoir is important in order

to perform optimal scheduling. One can obtain the water value from long-term optimization

models, aiming to allocate the water in an optimal manner. If a reservoir is likely to overflow,

the water value will be close to zero, while if the reservoir is about to run empty, the water value

will increase rapidly. The water value is two-faceted, as it depends on both the operation of a

hydro power plant, and market prices (Faanes et al., 2016).

2.5.2 TrønderEnergi and the Industrial Case

The industrial partner of this study is TrønderEnergi (TE), who is a power producer located

in the market area NO3. They produce about 2.1 TWh per year, most of it from hydro power

production and about 200 GWh from wind power (TrønderEnergi, 2017). This is only a fraction

of the power traded in Nord Pool in 2016: 505 TWh (NordPool, 2017b). Today, TE have

models that consider their whole portfolio of power production plants, evaluating production

plans according to uncertain factors such as water inflow and power prices. However, these

models are concerned with long-term scheduling, and do not model the intraday market.

The industrial case as base for the analysis in this thesis is TEs hydro power plant Søa. The

power plant consists of one single turbine and generator. The reservoir receives water from

two natural lakes: Vasslivatnet and Søvatnet, but for all modelling purposes, it is treated by

TrønderEnergi as a single water source. Technical specifications of the power plant is listed in

table 2.

Table 2: Technical specifications of the hydro power plant Søa (TrønderEnergi, 2018).

Yearly Production 195 GWh

Installed Capacity 37 MW

Turbine Francis

Head 260,00-279,83 m.o.h

Maximum production does not equal the installed capacity of the generator. The capacity limit

of the machinery at Søa is a variable given by hydraulic head, Lhead , in [m.o.h.].

Imax = f (Lhead). (1)
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The hydraulic head refers to the height of the water, i.e. the water level in the reservoir relative

to the generator. The lower the head, the lower is the maximum obtainable power, due to less

pressure forces. Figure 6 shows how the maximum power increases linearly with changes in

head from lower to higher values.

Figure 6: Maximum power for different heads

This is a result of the fact that production efficiencies decrease with lower head. In addition,

a lower head also reflects less water in the reservoir. This increases the water value. Both

increased inefficiencies and higher water values cause an upward shift in the MC of produc-

tion.
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3 Literature Review

The purpose of this chapter is to introduce literature relevant for the context of this study, to shed

light on how this thesis differentiates from existing literature. In section 3.1, an overview of

established literature within the field of energy production and trading is presented, to establish

the gap in existing literature. In addition, the bidding problem in Elbas has relations to inventory

theory, where demand or prices may be uncertain at the time a decision affecting the inventory

level is to be made. Inventory problems with similar structure as the bidding problem at hand

are presented in section 3.2, while section 3.3 and section 3.4 covers literature that emphasizes

exogenous information and uncertainties. Benefits and challenges of mathematical optimization

methods are discussed in section 3.5, while section 3.6 present how bounds are utilized to

evaluate how accurate a model solves a problem.

3.1 Power Production and Trading

A variety of studies have been conducted within the field of energy production and energy

trading. There often exists a way to store energy, either as electricity in a battery (Salas and

Powell, 2018; Zhou et al., 2017; Jiang and Powell, 2015) or to hold back energy resources

such as fuel or water (Mo et al., 2001; Séguin et al., 2017; Tandberg and Vefring, 2012; Quan

et al., 2014; Brelin and Lien, 2017; Bertsimas et al., 2017). Storability introduce flexibility

concerning timing and volume of production. This thesis is concerned with flexibility related to

timing and volumes of trades, as the intraday market in reality is 24 continuous auctions rather

than a simultaneous market clearing as in the spot market.

While Boomsma et al. (2014) and Barth et al. (2006) discuss sequential bidding strategies across

multiple power markets, most literature like Aasgård et al. (2018) and Anderson and Philpott

(2002) focus on participation in the spot market only. Löhndorf et al. (2013) do consider in-

traday decisions for hydro storage systems, integrating bidding and storage decisions in the

formulation. Also Jiang and Powell (2015) present a model for intraday bidding, though this

model does not include production costs. What neither of the aforementioned models include

is how the intraday market have continuously changing prices within a day. Löhndorf et al.

(2013) assume there are little incetives for the power producer to trade in the intraday market,

hence all bids in the intraday market are determined simultaneously once the spot clearing is
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announced. Additionally, Jiang and Powell (2015) focus on optimal bidding rather than produc-

tion, as there are no production opportunities in the storage system they consider. The model in

this thesis aims at integrating operational aspects with detailed bidding strategies in the intraday

market.

Multiple studies discuss decisions that are made sequentially in time, where each decision af-

fects both present and future opportunities to profit. However, there is a significant difference in

the time horizon considered in the power planning literature, and consequently a difference in

the level of detail included. A longer time horizon typically requires a coarser time resolution

to ensure a manageable complexity of the problem in question. Tandberg and Vefring (2012)

present a generation planning problem with a 60 week planning period and a weekly time resolu-

tion, while Séguin et al. (2017) manages daily time resolution as their planning horizon extends

to 31 days only. Zhou et al. (2017), whom solve their problem over a weekly time horizon, are

able to introduce a five minute time resolution where new considerations are made. In general,

only a few models aim at optimizing profits with only one day as the modelling horizon, eval-

uating continuously changing prices with the opportunity to time bids to the optimal execution

time.

The time horizon and time resolution are modelling choices that present a trade-off between

tractability and accuracy. A way to handle this, which is well known within hydro power

scheduling (Gjelsvik et al., 2010), is to have supplementary models with different horizons.

In that way, long-term models include long term parameters and the resulting actions affects

the medium-term models, which output again serves as input to a short term model. The long

term model concerns aspects relevant for multiple years at a time, but does not aim at solving

the day-to-day, or hour-to-hour, production scheduling problem. In addition, there are multiple

uncertain factors that depend on future, exogenous information. Short term models can include

detailed and (now) deterministic information that was not available or known when long or

medium term models were run. Water inflow is typically an important factor, but difficult to

predict exactly with small time resolutions far ahead in the future. Parameters from the medium

term model ensures that decisions today adhere to the optimal long term scheduling.

Short-term models, both hydro power scheduling and other scheduling problems, usually con-

cerns a horizon of up to two weeks. However, these models mostly cover trading opportunities

in the spot market (Salas and Powell, 2018; Nadarajah and Secomandi, 2017), and a possible
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balance settlement in the regulating market. In addition, several studies focus on optimal pro-

duction rather than optimal bidding, so power prices are estimated on a daily or longer basis

(Tandberg and Vefring, 2012; Séguin et al., 2017). Few existing studies concerns the possibility

to gain profits by accurately modelling of the continuous double auction in the intraday mar-

ket (Selasinsky, 2014), as most studies emphasize technical aspects of power systems or power

plants. The main assumption seems to be what Löhndorf et al. (2013) state, that it exists little

incentives for a power producer to participate in the intraday market. However, an increasing in-

terest in the market is developing as the need of flexible energy reserves arises. As the volumes

become larger, potential profits also increase.

Jiang and Powell (2015) present a problem of grid-level storage with the opportunity to buy,

store and sell energy, where bids are submitted until an hour prior to production. Their strategy

is referred to as energy arbitrage, exploiting variations in energy prices. The main distinction

from the model in this thesis, is that the arbitrage opportunity exists due to the possibility to

buy and store energy at one point in time, while selling it at a better price later. This is due

to the lack of production in the problem. However, this thesis aims at modelling the intraday

market with continuously changing prices, which both increases the dimensions and complexity

of the bidding problem, but also introduces an additional opportunity for arbitrage trading.

Short term contracts may be bought and sold multiple times prior to the time of production or

consumption.

Jiang and Powell (2015) do not have to include start-up and shut-down effects, which is an

important aspect conserning power production. Typically, there is a certain cost related to these

activities (Nilsson and Sjelvgren, 1997), which affects the optimal schedule. Hence, obtaining

an optimal generation dispatch and production schedule requires to solve both a loading prob-

lem and a unit commitment problem. Nilsson and Sjelvgren (1997) states the importance of

including startup costs of hydro power units, but also sheds light on the increased complexity

it causes. Séguin et al. (2017) and Hjelmeland et al. (2018) suggest different methods to model

the unit commitment problem for hydro power scheduling, both utilizing heuristics. Barth et al.

(2006) present a model with sequential clearing of both the day-ahead and the intraday market,

where start-up and shut-down effects are included in the spot clearing. A redispath is then per-

formed in the intraday market. Due to how the value function computation is implemented for

the problem in this thesis, startup and shutdown effects are modelled precisely.
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3.2 Resource Allocation

Resource allocation concerns the problem of distributing scarce resources on competitive alter-

natives, often to maximize profit or production, or to minimize costs. Bertsimas et al. (2017)

states that: “Dynamic resource allocation (DRA) problems are problems where one must as-

sign resources to tasks over some finite time horizon.” While it may not be intuitive that the

bidding problem is related to resource allocation problems, it has similarities. As long as there

is either a restricted resource, or restricted production or storage capacity, the trades committed

in Elbas must be allocated to competitive hours of production, and be submitted at competitive

times. This is referred to as the double time dimension of the Elbas bidding problem in this

thesis.

Salas and Powell (2018) present an algorithm based on resource allocation, for stochastic con-

trol of complex energy storage networks co-located with a wind farm. A similar problem is

studied by Zhou et al. (2017) and Jiang and Powell (2015). As storages have limited capacity,

the energy available for trade is scarce and must be traded at the hours most profitable. In ad-

dition, since transmission lines have a restricted capacity, the accumulated commitment for a

specific hour of delivery must be within specified limits. Hence, bids should only be done at the

times prior to production where it is most profitable.

The main objective of Jiang and Powell (2015)’s study is to obtain an optimal bidding strategy

in the hour-ahead electricity market, where a trade decision at one point in time affects both

current profits and opportunities to profit from trades in the future. The energy in the battery is

a scarce resource that is allocated to different hours of delivery. Water reservoirs of HPPs are

considered natural storages of energy, also subject to optimal allocation. However, this thesis

assumes constant reservoir levels throughout the modelling horizon, due to relatively small

production volumes comparing to the reservoir volume. This is due to machinery capacities,

which are considered the scarce resource in this thesis, also introducing a dynamic resource

allocation problem.

3.3 Uncertainties

The bidding problem in Elbas is affected by several uncertain factors. Depending on the time

horizon and main objective of the model, different factors are considered uncertain.
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Zhou et al. (2017) develop two heuristics for electricity generation and storage management, one

deterministic model and one with stochastic wind and electricity prices. Though the stochas-

tic model contains a more accurate description of the problem and solves to optimality on all

considered instances, the deterministic heuristic solves to a near optimal solution and is sig-

nificantly faster. Another way of solving a similar problem is presented by Salas and Powell

(2018). Demand is included as a stochastic variable, and the outcome space is decreased using

simulation. The problem is solved deterministically at first, as a way to benchmark the approx-

imate algorithm. This thesis constructs a model that can be solved to optimallity. However, the

modelled problem is a heuristic version of the original problem, partly due to aggregation of the

outcome space of the stochastic prices.

Multiple studies include simulation of water inflow to hydro power production systems (Pereira

and Pinto, 1985; Quan et al., 2014; Séguin et al., 2017; Hjelmeland et al., 2018). A distinction

between the problem presented in this thesis and the studies treating water inflow as a stochastic

variable, is the time horizon of the models. Evaluating short term horizons, such as a few hours

or days, the water inflow is more predictable and considered deterministic.

An influential uncertainty in the intraday bidding problem, and the primary focus in this thesis,

is the intraday price fluctuations. This is the scope of the next section.

3.4 Price Modelling

This thesis is concerned with optimization in an electricity market. As mentioned in the Pref-

ace, this thesis is a continuation of a project (Bovim and Næss, 2017), where the scope is to

understand and model the market.

This section revisits the main findings on the topic of price modelling, because when evaluating

the value of the program it is important to be aware of all assumptions and simplifications made

and evaluate the effect of them. Therefore some of the most important findings of Bovim and

Næss (2017) are repeated here for convenience.

Jiang and Powell (2015) concider intraday trading as an opportunity to profit from price changes

in the hour-ahead market. They argue that the price process is better described by historical

data, where one should not assume any specific distribution of the price process. This is in

contrast to Bertsimas et al. (2017) and Nadarajah and Secomandi (2017) whom assume a normal
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distribution and a Markov Decision Process (MDP), respectively. The exogenous price process

in this thesis is assumed to have the Markov property, with a transition matrix constructed from

historical data.

Jiang and Powell (2015) include in their model that not all bids are accepted in the intraday

market, which deviates from the model in this thesis. This thesis assumes a representation of

the market willingness to trade from the stochastic price process developed by Bovim and Næss

(2017), hence any bid placed in the market in accordance with the price model is assumed

accepted by a counterpart.

Correlation with Spot Prices

The price model in Bovim and Næss (2017) models the stochastic process of Elbas prices by

investigating spot prices. This is based on an assumption of correlation between spot prices

and Elbas trade levels. Faria and Fleten (2011) found a high correlation between spot prices

and the average Elbas prices from historical data. The relationship between the spot and Elbas

prices have been investigated in multiple studies (Olsson and Söder, 2008; Skytte, 1999), and

an interesting question is to what degree Elbas prices the following day may be extrapolated by

the spot market clearing. Jaehnert et al. (2009) indicate no correlation between the spot and the

balancing prices.

To build the price model (Bovim and Næss, 2017), an empirical approach that differs from the

standard parametric approach (Pflug and Pichler, 2016), is used. This is done due to relatively

good availability of historical data, which supports the decision of using empirical data as a

robust basis. Pflug and Pichler (2016) describe this as the non-parametric approach to scenario

generation.

One of the analytic results found from time series analysis (Bovim and Næss, 2017), was that

autocorrealtion with time lag 1 is observed to be significant, in contrast to points in time of

higher lags. Moreover, under the assumption that spot prices in one hour are strongly corre-

lated with that of the previous hour, the Markov property becomes suitable for price modelling.

Literature regarding the Markov Decision Process (MDP) is described below.
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The Markov Property

A common factor for many of the methods utilized for spot price modelling is that they utilize a

crucial property, namely the Markov property. If a process is Markovian, with a known process

distribution and known current state, one is able to predict the probability of the system ending

up in all any state in the next step.

Investigating the opportunity to model energy prices under the assumption of the Markov prop-

erty is for instance performed by Olsson and Söder (2008) to describe discontinuous behaviour

of the balancing market prices. They propose a method based on seasonal autoregressive inte-

grating moving average (SARIMA). Kongelf and Overrein (2017) model the regulating markets

using quantile autoregression to provide probabilistic forecasts for the market prices. More-

over, Barlow (2007) and Bakke et al. (2016) make use of multi-state Markov chains in a regime

switching model. In the first, a continuous-time Markov chain entails an arrival density based

on a Poisson process. In the latter, each different state is associated with a price process utilized

within the regime.

3.5 Optimization Models

What distinguishes this thesis from most studies on the field of power production and trading,

is that the optimization model in this thesis evaluates intraday bidding as a sequential deci-

sion problem in itself, investigating potential economic incentives to participate in Elbas for a

power producer with flexible power production. Both prices and operational costs are included,

where the prices are considered stochastic and continuously changing throughout the modelling

horizon.

Traditional scenario tree generation, such as the method presented by Séguin et al. (2017), is

not as suitable for a continuous auction market. The reason is illustrated in fig. 7, where one can

observe how the number of scenarios, i.e. the size of the scenario tree, increases exponentially

with the number of sequential decisions where stochastic parameters affect the outcome. Barth

et al. (2006) manages to model three sequential decisions only, which are related to wind uncer-

tainties rather than price fluctuations. The bidding problem in Elbas potentially has more than

30 sequential stochastic events. The number of scenarios becomes potentially too large to han-

dle in a single optimization. The number of sequential decisions, each affecting the current and
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Figure 7: Scenario Tree

future possibility to profit, makes Dynamic Programming (DP) attractive for the bidding prob-

lem in Elbas. In addition, assuming a Markov Decision Process (MDP) where the probability

of a future event is solely described from the present state attained from the previous event, in-

dicates that the problem structure fits into the dynamic programming framework. Section 3.5.1

present the basic elements of DP, where the main challenges on the approach are elaborated on

in section 3.5.2. Then, section 3.5.3 addresses how DP is utilized in literature.

3.5.1 Dynamic Programming

According to Dixit and Pindyck (1994), DP is a powerful tool when treating multistage prob-

lems with uncertainty, and decision variables at each stage. It breaks the problem down so that

each decision xt involves only two components, with the objective to obtain the optimal policy

for decision making. This is stated by Bellman’s principle of optimality (Bellman, 1957): “An

optimal policy has the property that whatever the initial state and initial decision are, the re-

maining decisions must constitute an optimal policy with regard to the state resulting from the

first decision.”

In this case, the direct value obtained from a decision at a time t represents the first component,

and the expected value of all future states and corresponding decisions, represents the second

component of consideration. The time steps t corresponds to the stages in a dynamic program,

the state St of the system in each stage is given by price developments, and the probability, P,

that St+1 = s′ given the current state is given by P(St+1 = s′|St ,xt).
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The value recursion of a state is then given by Equation 2, which is also referred to as the

Bellman equation.

Vt(St) = min
(
Ct(St ,xt)+ ∑

s′∈S
P(St+1 = s′|St ,xt)Vt+1(s′)

)
(2)

3.5.2 The Curses of Dimensionality

Though dynamic programming is suitable when there is a multistage sequential decision prob-

lem, Powell (2011a) explains three common reasons why dynamic programming cannot be

used. The sizes of the state space, outcome space and the action space all contribute to in-

creased complexity of DP, and are subject to the curse of dimensionality. In this thesis, the

state, action and outcome spaces are handled as discrete levels, divided into a finite number of

that is sufficient to describe the problem in question.

Notice how the number of stages is not included in the curses of dimensionality in dynamic

programming. This is a great advantage compared to other stochastic optimization methods, at

least as long as it is possible to contain the other dimensions within reasonable limits (Dixit and

Pindyck, 1994).

Another advantage is that the output is in the form of a policy, suited to construct a contingency

plan. It is easier to simulate when a policy is obtained, thus evaluation of the output from a

dynamic program is easier to evaluate than output from scenario tree formulations. Even if the

structure of the problem has limited flexibility, and an optimal policy is hard to compute, there

exist heuristic approaches to obtain a policy.

3.5.3 Dynamic Programming Approaches

Most real world problems have uncertainties, introducing stochastic processes to the modelling

framework. Stochastic Dynamic Programming (SDP) utilizes transition probabilities and ex-

pected future values to solve the dynamic program and find optimal decisions. Zhou et al.

(2017) develops a stage and state-dependent policy, utilizing a heuristic SDP approach on an

electricity generation and storage problem. What makes the Elbas bidding problem in this the-

sis more complex is that a continuous auction is evaluated, i.e. continuously changing prices,

introducing a question of timing of bids in addition to optimal production scheduling.
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Séguin et al. (2017) present a short-term hydro power planning model, solving the loading

problem and the unit commitment problem in two separate phases. The multistage first phase

problem is solved utilizing SDP to estimate future value of the water in the end of the horizon,

where the stochastic variable is water inflow. This thesis aims at modelling a problem horizon

so short that the reservoir level is assumed constant, while the prices are continuously changing

as a stochastic process. As there is a price for each product, the dimensions of the exogenous

process in this thesis become extremely large. However, by aggregating dimensions, this thesis

is able to solve an approximated version of the bidding problem in Elbas utilizing SDP.

Other studies handle the curses of dimensionalities by simulating the stochastic processes rather

than spanning the whole outcome space in the state space. Salas and Powell (2018), Jiang

and Powell (2015) and Nadarajah and Secomandi (2017) solves problems related to energy

trading and storage utilizing methods referred to as Approximate Dynamic Programming (ADP)

algorithms. While each of the studies develops distinct heuristics, they are all based on the same

iterative simulation algorithm known as ADP, where only one state in each time step is visited

for a specific sample realization.

Both SDP and ADP algorithms require discretization of the state space, while a third method

avoids this. Pereira and Pinto (1985), and Zou et al. (2018) utilizes a Stochastic Dual Dynamic

Programming (SDDP) algorithm, also based on simulation of stochastic processes. It is a com-

mon method to handle stochastic water inflow in long term hydro power scheduling models (Mo

et al., 2001), but is established as ineffective when solving multistage stochastic integer prob-

lems which is essential to include effects of starts and stops of a HPP. Zou et al. (2018) present

an extension of the SDDP algorithm, which is able to solve this problem utilizing Lagrangian

cuts, but the algorithm is considered too time consuming to solve to optimality (Hjelmeland

et al., 2018). In addition, Pereira and Pinto (1991) states that the SDDP approach require stage-

wise independence of the stochastic process. Löhndorf et al. (2013) solve a multistage problem

for hydro storage systems with a model they refer to as Approximate Dual Dynamic Program-

ming (ADDP). The method utilizes an approach similar to SDDP, but with some ideas from

ADP so that the model does not require stagewise independence of the stochastic process to

obtain convergence of the algorithm.

Application of DP requires discretization of the state space. If possible, in the sence that the

curses of dimensionality can be overcome, it is desirable to solve problems using exact methods,
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such as SDP. If it is necessary to compromise on discretization accuracy in order to apply the

exact method, one would typically proceed with heuristic methods, such as ADP or SDDP. An

SDP model is developed to solve the Elbas bidding problem in this thesis, as a first step towards

a fully representative model of the bidding problem in Elbas.

3.6 Value Function and Bounds

Developing a mathematical formulation of a real world problem and solving it heuristically,

does not automatically result in an optimal solution for the original problem. There is a trade-

off between tractability and accuracy when problems are computationally difficult to solve ex-

actly. A sub-optimal solution might be considered good enough if it is of importance to obtain

solutions quickly, rather than precisely for instance. The challenge is to determine how far from

optimality a sub-optimal solution is, i.e. how big is the sub-optimality gap (fig. 8), of a heuristic

model.

Bounds hold information about what size the optimal expected value can take. Figure 8 shows

how the optimal expected value lies between the upper and lower bound. One typically do not

know exactly where. If the difference between the lower bound (LB) and upper bound (UB) - i.e.

the optimality gap - is sufficiently small, Brown et al. (2010) state that the candidate policy used

to determine the LB is ”good enough” - and one can stop searching for better policies.

Figure 8: Upper and lower bound relative to optimal value
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The lower bound (LB) represents a feasible and potentially sub-optimal solution to the original

problem. The feasible policies in the DP cannot depend on information that is unavailable under

the natural filtration at the time of decision making. Balseiro and Brown (2016) states that

the feasible policies must be non-anticipative, which for the problem in this thesis means that

all future stochastic parameters must be considered unknown at the time of decision making.

The upper bound (UB) is an optimal or infeasible value. It is either equal to, or greater than

(maximum problem) the optimal value (see fig. 8).

Brown et al. (2010) describe a general technique to determine UB on optimal expected value

values in SDPs. They utilize the dual approach where the first step is to relax some or all

the NACs. One type of relaxation discussed by Brown et al. (2010),Brown and Smith (2011)

and Balseiro and Brown (2016) is information relaxation. The upper bound obtained from full

information relaxation is often weak, and hence Brown et al. (2010) impose a penalty, as the

second step of the dual approach. A penalty can be introduced with the purpose of lowering

the UB, by compensating for the benefit of the extra information (Balseiro and Brown, 2016).

The penalty is dual feasible if “... it does not penalize any policy that is non-anticipative; the

penalties may however, punish policies that do not satisfy the NAC.” (Brown et al., 2010).

The dual approach is applied by Nadarajah and Secomandi (2017), with a dual penalty corre-

sponding to the extra gain of the information relaxation. An ideal penalty would penalize all

gain and the optimal solution is found, but this is computationally difficult to obtain.

Brown et al. (2010) discusses three different types of information relaxation, where the differ-

ence is to what degree information is known before originally revealed by . In the most extreme

case of perfect information relaxation it is assumed that the market participant knows all states,

and that there is no stochastics. All NACs are removed under full information relaxation. This

relaxation simplifies the problem greatly, as it becomes deterministic. The problem is solved in

hindsight, optimizing over a case where the price path scenario is known from the beginning.

Balseiro and Brown (2016) work exclusively with this form of relaxation. In accordance with

Balseiro and Brown (2016), perfect information bounds are often called “hindsight bounds” and

have been successfully used to analyze heuristic policies in several applications in operations

research.

The two latter relaxation procedures investigated by Brown et al. (2010), are moderations of the

first, where only some NACs are relaxed rather than all. The perfect information case provides a
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weaker bound than the two latter. Moreover, the smallest relaxation provides the tightest bound.

In conclusion, the UB is often weak and it can be tightened both by moderating the relaxation

and by penalizing the benefit of additional information.

Brown et al. (2010) state that Monte Carlo simulation is a method commonly used to evaluate

dynamic programming models, since it is easy to simulate realizations of complex dynamic

systems with one ore more stochastic state spaces. Monte Carlo simulation can be used to

simulate feasible solutions, which will provide a LB on the expected optimal value. Later in

the same study, Brown et al. (2010) also point out that the upper bound is of a format that

is convenient for Monte Carlo simulation. In this thesis Monte Carlo simulation of stochastic

information is applied both when determining UB and LB (see section 5.4). The UB is solved

deterministically for each sample path.

When using simulation to investigate bounds, numerous simulations are performed. Since the

absolute optimal value in each scenario is found when investigating UBs, it means that taking

the expected value over the results, with equal weighting, represents an upper bound estimate

(Brown and Smith, 2011).

Similarly, one can determine the statistical LB by weighing the objective values associated with

feasible solutions over numerous scenarios.
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4 Problem formulation

This chapter introduces the mathematical optimization model developed in this study to solve

the bidding problem in Elbas. Initially, notation is presented in section 4.1. It is based on that

of Powell (2011a), with some exceptions. In section 4.2 the problem is described. Following,

a set of modelling assumptions are presented in section 4.3. Moreover, the light is shed on the

physical aspects of the problem in section 4.4, where complexity is evaluated and modelling as-

sumptions discussed. The mathematical model is formulated in section 4.5. Finally, section 4.6

focuses on how the problem is solved under the modeled framework and algorithms emphasize

how the optimization program is implemented.

4.1 Notation

Indices

t Time step

h Production period

s State

k Discretized price level

l Price vector

m Discretized capacity level

n Capacity vector

o Discretized decision level

g Decision vector

Sets

T Set of time steps t in the planning horizon.

Ht Set of production periods h available for trade in time step t ∈ T .

St Set of states St

S It
t Set of states St containing capacity vector It ∈ It . S It

t ⊂ St
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SPt
t Set of states s containing price vector Pt ∈ Pt . SPt

t ⊂ St

SX
t Set of post-decision states SXt .

P ′ Set of discretized price levels Pk, k ∈ {1, · · · ,P′}.

Pt Set of price vector states Pl , l ∈ {1, · · · ,Pt}, in time step t ∈ T

I ′ Set of discretized capacity levels Im, m ∈ {1, · · · , I′}

It Set of capacity vector states In, n ∈ {1, · · · , It} in time step t ∈ T

C MC
n Set of marginal costs of production for capacities In ∈ It

C AC
n Set of average costs of production for capacities In ∈ It

X ′ Set of discretized decision levels Xo, o ∈ {1, · · · ,X ′}.

Xt Set of decision vectors Xg, g ∈ {1, · · · ,X t} in time step t ∈ T .

Ωt Set of possible exogenous information realizations Wt .

Π Set of policies π.

State Variables

St State in time step t ∈ T .

SXt Post-decision state, transitioning from state St by decision Xt .

Pt Vector of prices in time step t ∈ T

PS
t Vector of sell prices in time step t ∈ T . Derived from Pt .

PB
t Vector of buy prices in time step t ∈ T . Derived from Pt .

pt,h Price level for production period h ∈Ht .

It Vector of capacities in time step t ∈ T .

it,h Capacity level for production period h ∈Ht .

Decision Variables

π Policy for decision making, mapping state St to a decision Xπ
t

Xπ
t (St) Decision given by policy π ∈Π, given state St ∈ St in time step t ∈ T .
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XS
t Vector of volumes sold in time step t. Derived from Xπ

t (St).

XB
t Vector of volumes bought in time step t. Derived from Xπ

t (St).

xS
t,h Volume sold in time step t ∈ T , for product period h ∈Ht .

xB
t,h Volume bought in time step t ∈ T , for product period h ∈Ht .

CMC
n Marginal cost of production for production capacity In ∈ It

CAC
n Average cost of production for production capacity In ∈ It

βt Number of start-ups and shut-downs of generator in production plan, in time

step t ∈ T .

αt,t+1 Difference in number of starts and stops from step t to step t +1

Stochastic Parameters and Variables

Wt Exogenous information vector arriving between time steps t−1 and t ∈ T

M Transition matrix for stochastic price process

Parameters

T Number of time steps t ∈ T .

Ht Number of production periods h ∈Ht .

St Number of states St ∈ St .

Pt Number of price vectors Pl ∈ Pt

It Number of capacity vectors In ∈ It

X t Number of decision vectors Xg ∈ Xt

P′ Number of price levels Pk ∈ P ′

I′ Number of capacity levels Im ∈ I ′

X ′ Number of decision levels Xo ∈ X ′

LWV Water value.

Lhead Head in reservoir.

LEURtoNOK Currency exchange rate from EUR to NOK.
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D Date of production

CSRMC Short run marginal cost of coal.

Lspot
I Initial spot commitment

Lspot
P Initial spot prices

Css Semi fixed start-up and shut-down cost.

τ Time elapsed from the first date within the data set investigated to determine

the price model, until date of production, D.

pLM
k Mean price

[
EUR/MWh

]
, of price level k,k ∈ P ′

4.2 Problem Description

The purpose of this thesis is to develop a stochastic optimization model as a tool for decision

support when bidding in the intraday market, Elbas. To maximize profit, a market participant

in the energy markets must bid strategically. Strategic bidding entail allocating resources in a

cost-effective manner, whilst considering the potential to take advantage of good market op-

portunities. Situations where there is a deficit or surplus of production occurring after the spot

deadline, have an impact on the market prices and create opportunities to profit from premiums,

or excess returns, beyond covering the marginal cost of production.

The profit from trading in Elbas is determined by the market prices, the volumes traded and the

resulting change in production costs. The market price is regarded as a stochastic process from

the spot market clears and up until the time of production, with individual processes for each

production hour. Production costs are related to total power production and unit commitment,

and will differ between the production hours according to the initial production allocation from

the spot clearing. Hence, optimal bidding must consider the production hours as individual

products.

This means that each day, there are 24 different production hours, which can be regarded as 24

products subject to trade in Elbas. Any participant can bid on these products in a continuous

double auction. The time horizon of the auctions differs between the products. The market

opens at the spot clearing the day ahead of production, but has a individual bid deadline at

the close for each production hour. The market prices are considered stochastic for this time
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horizon. Participants have the option to place bids at any time they want, and as many times

they want. Each bid contains information about what volume [MWh] of the individual product

the bidder is willing to buy or sell for a specified price
[ EUR

MWh

]
. If no counterpart accepts the bid,

there will be no trade.

Another factor affecting the optimal bidding strategy, is related to resource allocation. Each

time a product is traded, the traded volume affects the available production capacity level on the

machinery for the corresponding production hour. One cannot commit to produce more power

than the specified maximum output of the generator, or commit to reduce production more than

turning off the generator. Consequently, all trades affect future opportunities to trade in the

continuous market, and expected future prices must be considered as alternatives to the market

prices available at the time.

Considering the resource allocation problem, optimal bidding must regard trade volumes and

resulting production costs of 24 different products, all of them with an individual stochastic

price process affecting the optimal timing to place bids for each product. This is referred to as

the double time dimension of the bidding problem in Elbas.

4.3 Assumptions

1. The stochastic price model built on results from Bovim and Næss (2017) is a representa-

tive model of the willingness to trade in Elbas.

2. Spot prices and Elbas prices are correlated.

3. Spot prices have the Markov property.

4. Bids are placed once in the beginning of a bidding period.

5. Constant water value, reservoir head and currency exchange rate over the modelling hori-

zon.

6. Bids placed in accordance with the SDP model presented in this thesis will be accepted

in the market.

7. One can only sell or buy power - not both - associated with a specific product in a specific

bid period.
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8. Due to the two-price mechanism (section 2.4), market participants will always be worse

off settling their balance in the regulating market

4.4 Modelling

This section focuses on presenting the physical aspects of the problem. The problem is con-

cerned with how a market participant in Elbas can allocate resources optimally when consid-

ering price uncertainties. The problem differs from comparable ones in the literature, since it

deals with a double time dimension. This aspect increases complexity and is presented ini-

tially (section 4.4.1) to shed light on the problem structure. Moreover, a discussion involves

how to model the scarce resource (section 4.4.2), in such a manner that redundant constraints

are left out. Finally, the stochastic model, applied to describe market prices, is included in

section 4.4.3.

4.4.1 The Double Time Dimension

A difference between periodic auctions, such as the Nordic spot market, and continuous auc-

tions such as Elbas, is the flexibility in timing of bid placing and acceptance. In this study, a

continuous clearing is modelled with a double time dimension, where timing of bids are dis-

cretized into bid periods t while timing of production are related to production period h. As

introduced in section 4.2, each production period can be regarded as products subject to trade

in the beginning of each bid period.

Recall the time line presented in fig. 1, section 2. One cannot trade a product after the associated

production period’s close. Hence, the set of available products Ht decreases when moving

forward through the bid periods t ∈ T . This is illustrated i fig. 9, where available products are

white. The total, initial number of products, when all products are available, is H. The last

production period is denoted H.

Figure 9: Generalized overview of valid production periods, h∈Ht , to optimize over bid period

t ∈ T . Note that T correspond to the notation T .
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By discretizing time into bid periods of lengths equal to production periods, all products are

available for trade in the beginning. Hence, Ht = H until the bid period passes the first produc-

tion period’s close. Ht keeps decreaseing, until only the last product H is available for trade in

the last bid period T . Note that the effect of having a continuous auction modelled by multiple

discretized bid periods, is that the bids cannot be placed at any moment in time, but the model

still allows multiple sequential bids.

Mathematically, the number of available products Ht is given by:

Ht =

(T − t)+1 if t ≥ (T −H)+1

H otherwise
(3)

Figure 10 illustrates how the two time dimensions are linked, illustrated with a case of 6 bid

periods and 4 production periods. It emphasizes that as time t proceeds, the number of available

products decreases. Note that the indices h are linked to specific products throughout this prob-

lem. Hence, low numbers are phased out as time proceeds. This is done to ease the discussion

about production periods.

Figure 10: The double time dimension

Figure 10 illustrates the increased complexity the introduction of the continuous double auction

introduces, as decisions regarding all products are done multiple times in sequence. In the Elbas

bidding problem approached in this thesis, all 24 products are subject to trade for a duration of

between 10 to 34 hours, which implies that the overall dimensions are large.

35



4.4.2 The Resource Allocation Problem

Two important aspects restricting production opportunities in a power plant, hence also power

producers’ trade opportunities in Elbas, are evaluated in this thesis. The first is capacity of

machinery, related to the maximum power output the power plant is able to produce. The

second is the availability of an energy source, related to the maximum energy the power plant

can produce within a given time horizon. Both of these are related to resource allocation,

making the bidding problem in Elbas a multi-stage resource allocation problem, where decisions

made in one stage possibly have an impact on future opportunities to trade. This section aims

at discussing the effect from machinery capacities and scarce energy sources on the bidding

problem in Elbas.

Machinery Capacities

The generator capacity has a finite maximum and minimum limit given by eq. (4)

Imin ≤ it,h ≤ Imax (4)

The remaining capacity It on the generator is a scarce resource, with elements it,h associated

with each production period h. The remaining capacity it,h of the generator in each production

period h, restricts trade volumes of that product, as final production Qh cannot exceed capacity

limits on the generator. This is shown in eq. (5) and eq. (6), where Qh is given by the sum

of trades and initial spot commitment for production period h, directly affecting the remaining

capacity on the generator.

Qh = ∑
t∈T

(
xS

t,h− xB
t,h
)
+Lspot

h (5)

it,h = Imax−Qh (6)

The remaining capacities for all products in bid period t + 1, are affected by the remaining

capacities and volumes traded in bid period t. Remaining capacities can both decrease and

increase, according to whether the trades in bid period t are up- or down-regulations of pro-

duction. Equation (7) summarizes the power balance, while fig. 11 illustrates it as an inventory

balance.

It+1 = It−XS
t +XB

t (7)
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Figure 11: Power balance for trades, with remaining machinery capacity It illustrated as inven-

tory

The bidding problem in Elbas is based on a initial production plan from the spot commitment,

namely I1 = Lspot
I . Changes in power production, i.e. rescheduling, are determined for all

production periods h ∈ Ht in each bid period t ∈ T . The market participant decide what time

the machinery is run and to what degree. For illustration purposes, fig. 12 shows the problem

for a given bid period t ′ where 4 products are available for trade. The y-axis describes the

Figure 12: Production plan in bid period t ′

remaining capacities of the generator as percentage of Imax. The columns marked h=1, ..., h=4

are associated to products h ∈Ht . Product h = 1, has a remaining capacity of 70% of maximum

capacity. The remaining capacity is 40%,5% and 70%, respectively for the products h=2, h=3

and h=4.
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Two unavailable products are also included in fig. 12, illustrated by more transparent colors.

Though the market participant cannot bid on unavailable products, they affect optimal bids for

available products due to semi-fixed costs related to start-up and shut-down effects. As can be

seen of the example in fig. 12, the generator is running in all consecutive production periods.

This implies that there are no costs related to start-up or shut-down of the machinery in the

current production plan in bid period t ′.

Note that the unavailable product to the right in fig. 12 represents the first production period

outside of the modelling horizon, namely in day D+1. There is no way of knowing the actual

production plan for this product at the beginning of the modelling horizon for day D, as the spot

clearing for day D+1 happens one day later on. Hence, the unavailable product is assumed to

get a spot commitment equal to the corresponding period in day D, i.e. production period 1 in

day D. This is due to seasonality effects of demand within a day, assuming similar effects the

day to come.

This thesis consider discretized levels of production, hence also discretized levels it,h ∈ I ′ of

remaining capacity. The levels are generalized to consider 4 percentage values of the maximum

capacity, Imax.

I ′ = {0.05,0.40,0.70,1.00} · Imax. (8)

Where maximum capacity is initialized at the beginning of the planning horizon, by hydraulic

head in the reservoir, denoted Lhead .

Imax = f (Lhead). (9)

Reservoir Level

Most literature within the field of hydro power production, consider the amount of water in

the reservoir as a variable affected by production and stochastic water inflow. However, when

the planning horizon concerns only one day of production, only a negligible amount of water

is utilized even at maximum production, due to strict capacity constraints on the machinery.

Inflow is also limited over such a short time period.

Consider fig. 13, illustrating three different reservoir levels. The red lines show maximum

(Lhead) and minimum (Lhead) regulated limits of the reservoir. Unless the reservoir is already

almost full or empty at the beginning of the planning horizon, the reservoir cannot overflow
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Figure 13: Illustrates the relationship between water level in reservoir and maximum changes

due to production.

or run empty. If the reservoir is almost full or empty at the beginning of the horizon, the

corresponding water value will be extremely low or high, respectively. This ensures the correct

incentives for trading the following day. Hence, it is considered redundant to model the reservoir

level as an inventory constraint in addition to machinery capacities. By keeping the tightest

constraint and leaving the redundant one out, a smaller dimensioned problem with the same

properties is obtained.

Referring to the change in reservoir level within the modelling horizon as ∆Lhead(q), eq. (10)

shows the mathematical relation between reservoir level, water consumption q, inflow U and

the ground surface G of the reservoir.

U−q
G

= |∆Lhead(q)| �
(
Lhead−Lhead) (10)

If the net water consumption is sufficiently small and the ground surface is large, production

has little impact on the reservoir level. As long as the reservoir level and water volumes are

included in the initialization of the mathematical optimization model, any changes happening

during the planning horizon are considered negligible (see item 5, section 4.3).

4.4.3 Market Prices

The decisions made in Elbas introduce a change in revenues and costs from the initial spot

commitment. Calculating profits in Elbas must therefore be with a perspective of alternative

costs. The intuitive way to gain a profit, is to sell power at a price higher than the marginal cost

of production, including any semi-fixed start/stop cost that may occur. However, if it is cheaper

to buy power than to produce the committed volumes from the spot clearing, an additional way

to profit is to buy power in Elbas and decrease production costs accordingly.
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Production costs related to power plants in general, and Søa specifically, is described in sec-

tion 2.5. This section aims at introducing market aspects. It makes also the basis for some of

the assumptions of this study, including items 1 to 3 and items 6 to 7 in section 4.3.

This thesis is a continuation of a preliminary project performed by Bovim and Næss (2017),

where the project scope is to analyze the intraday market and model a stochastic price process

describing the willingness to trade. First, a summary of how the price process is found in the

preliminary project is presented, followed by adjustments made in this thesis to obtain a more

compact price process formulation.

Price Process from Preliminary Study

Spot price data and data regarding capacity of transmission lines for different products make up

the basis for the price model. The purpose of the latter is to account for existing bottlenecks on

transmission lines. Spot prices, rather than Elbas prices, are modelled due to availability of data

and the assumed correlation to Elbas prices (section 3.4).

Based on data from numerous days, two time series are obtained. One for sell prices and one

for buy prices. The time series are built by mapping hourly historical spot data together with

corresponding historical capacities to determine a pattern, or a process, of prices in available

areas over time. The price associated with the maximum available price area is referred to as a

sell price, whilst the lowest is referred to as a buy price. Time series analysis shows that there is

correlation between data points. For instance, there is a significant auto correlation with a time

lag of one hour. The correlation with the previous data point supports what literature suggests:

namely that the Markov property holds for energy prices. Hence, a Markov process is chosen

to represent the stochastic prices.

Adjustment of the time series is performed in three steps. The purpose is to isolate the process

and remove externalities, in order to formulate a general process. The first step is to normalize

the data set with respect to short-run marginal cost (SRMC) of coal, because coal prices have a

great impact on spot prices. Secondly, a linear trend is observed in the data set, and de-trending

is performed in order to extract it. Finally, a probability integral transformation is performed.

The latter transformation requires finding a distribution that fits the data set well, and hence the

price data is transformed into numbers between zero and one. A Kernel distribution is found
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to be a good fit to the data set. The good availability of data motivates building the Markov

transition matrix utilizing empirical methods based on the data. In order to count transitions,

the continuous data set is discretized into levels. Hence, the matrix represents the probability of

moving from a price level in time step t to any other price level in time step t +1.

Numerous process representations are found and evaluated. The differences between the models

concern three areas: Firstly, what in sample data they are based on. Secondly, what step-

dependency to model. Finally, it is a matter of how many levels to discretize prices into.

The evaluation and comparison of the models is performed using Monte Carlo simulation and

analysis of long-term behaviour. The chosen model is found by weighing desirable properties

(Bovim and Næss, 2017). The chosen in sample data is data from Jan 2013-Dec 2016. The step-

dependency is one, due to analysis of auto-correlation. Hence, it is a typical Markov processes.

The chosen number of discretization is 5 levels, where each level contains equally many data

points; i.e. there is an equal probability of being in each level. The five price levels form a price

grid. Note that the entire process is performed for both sell and buy prices separately, resulting

in two different transition matrices with different discretization. The 5 price levels make up the

set of discretized prices. One set for sell and one for buy prices.

To reduce the number of variables, it is desired to investigate the possibility to model these

prices as one variable only. This is what is done in the compact price process formulation.

Compact Price Process Formulation

Figure 14 shows the two time series associated with the historical maximum and minimum

prices representing the willingness to sell (yellow line) and buy (blue line) as observed from

TE’s perspective in an arbitrarily chosen period in 2014.

It can easily be seen that the two time series are correlated. They are functions of common ex-

ternal factors, but differ due to bottlenecks on transmission lines. One common price, Pavg(red

line in fig. 14), is defined in order to represent the market price level, and hence it can be used

as a benchmark to determine both sell and buy prices. The dashed lines in fig. 14 describe the

mean values of the time series. The notation PS,PB and Pavg is used in this section to represent

the mean value of sell, buy and average prices, respectively.

In order to utilize Pavg to map prices back to sell and buy price, one must know how they are

41



Figure 14: Time series of sell, buy and middle price over time as seen from NO3. Average

values are found to determine the average deviations from the middle price level.

.

related. An analysis is performed to determine the percentage wise deviation from average

price, Pavg relative the two remaining mean prices, PS and PB. The percentage wise deviation

is symmetric, and referred to as x. The x is found as a parameter describing the whole period

2013-2016. To calculate an appropriate percentage, x, that describes the deviation from the

average price, Pavg
t , eqs. (11) to (15) describe the procedure. If

Pavg =
PS +PB

2
(11)

and

PS = Pavg · (1+ x) (12)

PB = Pavg · (1− x) (13)

then,

x =
PS

Pavg −1 (14)

x = 1− PB

Pavg (15)

Under the modelling assumption that the average price describes the general price level, a new

transition matrix is developed. Only this time, the average time series make up the basis. The
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number of discretizations is held equal to five, but now there is one common set rather than

two.

The associated transition matrix describing the stochastic, exogenous price process, Pavg, is

given by

Msmall =



1 2 3 4 5

1 0.6638 0.1831 0.0753 0.0419 0.0359

2 0.2217 0.4135 0.1858 0.0985 0.0805

3 0.0701 0.2643 0.3276 0.1796 0.1583

4 0.0359 0.0094 0.3216 0.3653 0.1625

5 0.0077 0.1146 0.0899 0.3151 0.5625


(16)

, with the equilibrium (Kirkwood, 2015):

Π̂ = [Π̂1 Π̂2 Π̂3 Π̂4 Π̂5] = [0.2 0.2 0.2 0.2 0.2] (17)

This equation is the only place where the Π is related to long-term behaviour, and is utilized

mostly because it is a commonly used symbol on this measure. Note that the long-term be-

haviour imply equal probability of the system being in all states after a long time, which is in

accordance with the modelling objective of discretization. Note that the probabilities making

up the transition matrix, Msmall , are independent of time and date. The exact same matrix can

be utilized at different points in time. On the contrary, the discretized price grid of 5 levels

may be shifted, even though the transition probabilities remain the same. What values the grid

consists of depend on time and date, and have to be calibrated according to the SRMC of coal,

CSRMC, and time elapsed, τ, since since the date of the first point in the data set. For this thesis

that date is the 1st of January 2013 00:00:00. τ describes the time elapsed between that date and

the investigated day of production, D.

Note that even though the transition matrix Msmall remains unchanged within a period of time,

it may become outdated eventually. One would typically not update the transition matrix de-

pending on the day, but as time evolves, the model might not be as representative, and it is

desirable to recalculate the matrix.

After introducing the average price representation, it is sufficient to model price as one variable,

Pt , in the model. The sell and buy prices can be derived from Pt in the following manner:

PS
t = Pt · (1+ x) (18)
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and

PB
t = Pt · (1− x). (19)

Where x is the deviation (eq. (15)) from the average price level Pavg and now from the variable

Pt , that represents the general price level in the market. Equation (20) shows that the 5 levels

in the grid associated with the average price, Pavg, are functions of τ and CSRMC. Moreover,

pLM
k [ EUR

MWh ] represents the mean of price level k in the grid.

P ′ = {pLM
1 (τ,CSRMC), pLM

2 (τ,CSRMC), pLM
3 (τ,CSRMC), pLM

4 (τ,CSRMC), pLM
5 (τ,CSRMC)} (20)

Market Stochasticity

Another perspective to consider is how the model accounts for power deficit and surplus, i.e.

the power status in the market. If there is power surplus, demand is low and participants see

a market that is willing to sell power at relatively low prices. Oppositely, if there is a power

deficit, participants are likely to be willing to pay relatively high prices to obtain power. One say

that the market will be either short or long, meaning that the market will have a power deficit

or surplus, respectively. If the market is in balance and there is no excess or deficit of power

the market is neutral. The model assumes that the user is able to pick side to a trade, in order to

optimize production plan and maximize profits. It is assumed that the price model is a correct

representation of market price levels, and that if placing bids at the given level, one will have

the bid accepted. It is further modeled that one cannot alternate between selling and buying

within a bid period, whilst expecting to get a premium for each trade. It would allow arbitrage

opportunities creating incentives for infinite amounts of trades within each bid period t. It is

modelled that one can only sell or buy at a certain point in time. However, the model opens

for fluctuations in trade from one bid period to another, which can be motivated by arbitrage

opportunities.

4.5 Mathematical Model

In this section, a dynamic program is built from scratch, with a main objective to handle dy-

namics of a continuous auction. The problem structure is such that the number of variables may

introduce a challenge, but DP makes out an attractive approach due to its strength in sequential

decision making. Hence, the mathematical model implemented in this thesis utilizes Stochastic
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Dynamic Programming (SDP). The model consists of a state space with states and post-decision

states, decision variables, an exogenous information process, a transition function, and a con-

tribution and objective function. These are described in a general manner at first (sections 4.5.1

to 4.5.5). Afterwards, the light is shed on a well-known challenge of dynamic programming:

the curses of dimensionality (section 4.5.6), followed by measures to handle an exponentially

increasing number of variables (section 4.5.7).

Following this section, the algorithm applied to solve the mathematical formulation is described

in section 4.6. A more compact formulation of the mathematical model is presented in Ap-

pendix A

4.5.1 State Space

To describe the mathematical state of a dynamic system, a set of state variables are utilized. As

stated by Powell (2011b), “A state variable is the minimally dimensioned function of history

that is necessary and sufficient to compute the decision function, the transition function, and the

contribution function.”

Different representations of the state spaces have been investigated, with an overlying objective

of keeping the number of states low in order to avoid the curses of dimensionality.

The state space is defined by eq. (21):

St : Pt× It (21)

, where Pt represents the prices in the market and It represents the remaining capacity of the

generator, for all available production periods h ∈ Ht . The state variables are therefore de-

scribed as vectors containing information about price and remaining capacities in all available

production periods, as shown in eq. (22) and eq. (23).

Pt = [pt,1, ..., pt,Ht ] (22)

It = [it,1, ..., it,H ] (23)

Making up the state

St = (Pt ,It). (24)
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The discretized levels to describe price and capacity state variables, are part of sets as described

in eqs. (25) to (26). The specific levels were presented in eq. (8) in section 4.4.2 and eq. (20) in

section 4.4.3.

pt,h ∈ P ′ (25)

it,h ∈ I ′ (26)

Where, Pt and It belong to the sets as described in eq. (27) and eq. (28).

Pt ∈ Pt (27)

It ∈ It (28)

Note that the set, Pt and It depend on t, whilst the sets P ′ and I ′ do not. The sets Pt and

It decreases with t, because the number of production periods available for trade decreases.

The set of discretized capacity levels on the machinery I ′, and discretized price levels for the

stochastic price model P ′, are the same through the entire time horizon.

Post-Decision State Space

Due to the structure of this problem, it is convenient to introduce a post-decision state. It is the

state that the system exist in immediately after a decision is made, but before exogenous infor-

mation has arrived, and the system has evolved to the next state. The post-decision state contain

information about the level of remaining capacity, see eq. (29). Figure 15 illustrates the timing

of decisions relative to the arrival time of exogenous information (see section 4.5.3).

SX
t : It+1 (29)

Note that the symbols Xt , It ,Pt and Wt in fig. 15 correspond to the vectors Xt ,It ,Pt and Wt ,

Figure 15: Timing of events
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respectively. The circle containing It+1 corresponds to the post-decision state SXt , while the

square boxes correspond to states St and St+1.

4.5.2 Decision Variables

The problem specific decisions are part of a set:

Xt ∈ Xt . (30)

The decision variables are the part of the problem that are possible to control, in contrast to the

market price level. The set of actions, Xt , contains all possible inventory changes that corre-

spond to the changes in the state variables, It to It+1. The decision variables are represented by

the bid volumes Xt = [XS
t ,XB

t ] for selling and buying power respectively. The decisions concern

when to trade, what type of trade (sell or buy) and what volumes to trade for a set of different

products.

The decision Xt is determined by a policy π ∈Π. The optimal policy maps all states St ∈ St to

a specific decision Xπ
t (St) ∈ Xt . The policy is time dependent, which is illustrated by the time

step index t at the decision Xπ
t .

Note that Π is not related to the equilibrium Π̂ presented in section 4.4.3. Only the policy

notation Π is utilized for the rest of this thesis.

4.5.3 Exogenous Information Process

The exogenous information, Wt , contain a description of applied processes that are out of the

market participants control.

Wt ∈Ωt (31)

, where Ωt is the most general description of the set of exogenous information.

The notation convention utilized is similar to that of Powell (2011b) in the way that any variable

indexed by t is known at time t. Immediately after a decision is made, but before new exogenous

information becomes available, the system is in a post-decision state which is written as SXt . The

process sequence is described by that of Powell (2011b) as follows:

(S0,X0,SX0 ,W1,S1,X1,SX1 ,W2, ...,St ,Xt ,SXt ,Wt+1, ...ST ).

47



In the modelled case, eq. (32) holds.

Wt = Pt (32)

Where Pt represents state variable of the exogenous stochastic price process. In step t, the price

Pt is known, and all Pt+1,Pt+2,Pt+3, ... are unknown.

4.5.4 Transition Function

The transition function, SM, describes how the system evolves through time from one state St to

state St+1.

St+1 = SM(St ,Xt ,Wt+1) (33)

The system state will evolve from time step t to the next time step t +1 as seen from eqs. (34)

to (36):

St = [Pt ,It ] (34)

SXt = [It+1] (35)

St+1 = [Pt+1,It+1] (36)

It+1 is a controllable state variable uniquely given by the decision Xt made in step t. However,

the price Pt+1 is given by the exogenous information Wt+1, and is not known at time t when

the decision Xt is made. Hence, the decision determines the post-decision state SXt ∈ SX
t , while

the exogenous information determines the state St+1 ∈ S It+1 .

4.5.5 The Contribution and Objective Function

The contribution function is the direct contribution to the objective value by making a decision

Xπ
t when in state St . Recall that volumes sold XS

t and volumes bought XB
t are derived from

Xπ
t .

Ct(St ,Xt) = PS
t •XS

t −PB
t •XB

t −
(
CAC(Qt+1(Xt)

)
•Qt+1(Xt)−CAC(Qt

)
•Qt

)
−Css ·αt,t+1

(37)

The contribution in time step t is given by the changes in revenues and costs provided within the

step. The constituents in eq. (37) are the revenues or cost of selling or buying power, subtracted

the change in average cost (AC) of production as a function of - and multiplied by - production,
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and in addition changes in semi fixed start and stop costs, Css, from one step to the next. Note

that all constituents in eq. (37), except the last term, are vectors containing elements for each

available production period.

Since the contribution for any time step t is dependent on decisions made at every time step

t ∈ T , a backward recourse function is calculated at each time step, estimating the value Vt of

being in state St by eq. (38). The last term is associated with future expected value (EV) of

making decision Xt .

Vt(St) = max
Xt∈Xt

(
Ct(St ,Xt)+EWt+1[Vt+1(St+1|St ,Xt ,Wt+1)]

)
(38)

A challenge is that the AC introduces non-linearities in the contribution function (eq. (37)),

making eq. (38) non-convex and hard to solve. Hence, it is solved by a inner problem, which is

a simple look-up algorithm breaking the problem up into smaller problems with fixed variables.

The decision Xt is fixated for each Xt ∈ Xt , which correspondingly fixates Qt+1, solving all

possible values of the objective function in eq. (38). The optimization is concerned with picking

the solution that results in the greatest value. It is of great importance that the inner problem

solves quickly, as it is computed once for each possible state St ∈ St in all time steps t ∈ T .

The associated objective function should find the optimal policy π so that the EV of all time

steps t ∈ T is maximized.

V ∗0 = max
π∈Π

Eπ
{

∑
t∈T

Cπ
t (St ,Xπ

t (St))|S0
}

(39)

4.5.6 The Three Curses of Dimensionality

1. State Space Size

In dynamic programming one loop over equation eq. (38) St times to compute the Vt(St) for

all possible values of St . This is referred to as the dimensional curse. This section will shed

light on the dimensional challenge and the size of the problem. The set of discretized price

levels, P ′, is modelled to have the size P′ = 5 (section 4.4.3). There are 4 discretization levels

of capacities on the generator, hence I′ = 4 (section 4.4.2). The number of levels is a trade-off

between being large enough to represent the state space precisely and low enough to avoid the

curses of dimensionality.
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The size of the state space depends on the dimensions of its constituents. The dimensions of

the price and capacity state spaces are given by eq. (40) and (41). When creating the stochastic

dynamic program, the minimally dimensioned state variables are sought.

Pt = P′
Ht (40)

It =

I′
Ht if t ≤ (T −H)+1

I′
Ht · rh=t−(T−H)−1 = I′

Ht ·2 otherwise.
(41)

The size of the price state, Pt , decreases when t grows, in the same manner as the production

periods, h ∈ Ht . For instance, in the last bidding period, only prices associated with the last

product make up the price state. This is because it makes little sense to assign prices regarding

products in the past. In the price vector, there is one element assigned to all available production

periods, and as time passes the number of elements in the vector decreases.

The size of the capacity state, It , decreases in a similar manner for increasing t. However,

note that when making decisions concerning unit commitment, one must consider the running

status of neighbouring product periods. It is sufficient to know whether or not the machinery

is running, and not necessary to know the exact capacity level associated with it. The factor,

rh(t), and the corresponding size rh is introduced to account for the binary running property

and can be derived from the capacity state, It−1. When rh is 1, it indicates that the machinery is

committed to run for product h. The motivation to introduce rh is that it holds sufficient amount

of information and has smaller dimensions than the capacity state. Hence, calculation of state

space It has a term that includes effects of the previous product period. In the steps t where all

products h are available, one utilize information that is certain regarding the spot commitment.

The running status of the spot commitment is an input to the model. The state space for capacity

decreases slower than the price state space due to the binary dependency of the neighbouring

product period.

The size of the entire state space depends on the dimensions of its constituents. Moreover, the

dimension of St , is given by

St = Pt · It . (42)

When considering the problem described, there are H = 24 products and the number of time

periods is T = 34. The states of the problem are illustrated in fig. 16.

50



Figure 16: State vector St
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Each element st,h = pt,h · it,h in the vector St can take combinations of values from the sets P ′

and I ′. The size of the state space in the first steps where all product periods are available, is as

given by

S1 = P′
H1
1 · I′

H1
1 = 524 ·424 = 1.678 ·1031. (43)

The decreasing size of Ht has an impact on the size of the state space both with regards to the

price state, Pt , and the capacity state, It .

Table 12 in appendix C summarizes the state space size, St , for all steps t from 1 to 34.

Note that the size of one step is extremely large, but also note that the increment from one to

multiple steps does not does not grow as quickly.

2. Action Space Size

In addition to the state space, the action space is a dimension to consider. (Powell, 2011a)

refer to the action space as the feasible region. The action space takes the size of the decision

space in this model, which coincide with the size of the capacity state variable. It builds on the

assumption (item 7 in section 4.3) is that one either sell or buy a product at a given bidding

step in time (though one may fluctuate between selling and buying from one bidding step to the

next). This results in a one to one relationship between the capacity state and the decision or

action space.

The size of the action space in the first step is therefore

X1 = I1 = I′H1 = 424 = 2.815 ·1014. (44)

Table 12 in appendix C also summarizes the action space size, X t = It , for all steps t from 1 to

34.

3. Outcome Space Size

The outcome space has a direct link to the state variable Pt . The possible price states origin

from the outcome space and hence the outcome space in the first step t = 1, has the size

W 1 = P1 = P′H1 = 524 = 5.960 ·1016 (45)
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Table 12 in appendix C also summarizes the outcome space size, W t = Pt , for all steps t from 1

to 34.

4.5.7 Aggregation

Note that the state space of the problem is large, and hence computationally difficult to solve.

It is also worth noticing that the dimension of the problem increases exponentially with Ht and

proportional with T . This illustrates the well known curses of dimensionality in DP models, but

also the strength in handling sequential decisions well.

The curses of dimensionality have been addressed by researchers by using aggregation to reduce

the size of the state space (Powell, 2011a). The idea is to take the full problem, then aggregate

it and solve it exactly before disaggregating it.

The problem described under section 4.2 is referred to as the original problem, and is summa-

rized on the first line in table 3.

Table 3: Description of problem versions

Problem, time resolution Number of bid periods Number of product periods

Original 34 24

Aggregated 6 4

A model of aggregated dimensions, hereafter referred to as the aggregated or the approximated

version of the problem (line 2 in table 3), is defined due to the curses of dimensionality as-

sociated with the original problem. The mathematical model is generic and can, in theory, be

applied to both problem versions. In practice, one would need very strong software to be able

to model an SDP of the original problem.

Hence, modelling the aggregated problem is the scope of this section. A discussion about how

the aggregated model contributes in reality and in the original problem framework is found in

section 5.

Hours are clustered into blocks, and in stead of having 24 products there are 4, and in stead

of having 34 bidding hours, there are 6 of them. Figure 17 illustrates how products become

53



Figure 17: Problem specific overview of valid production periods, h ∈ Ht , to optimize over

given bid periods t ∈ T .

unavailable for the chosen approximated modelling parameters. Recall fig. 10, which also de-

scribes the double time dimension for an approximated problem. The timing blocks start to

run first, leaving the last 4 in parallel to the production blocks. Since neighbouring hours are

characterized by the same parameters and see a similar market (due to the Markov property),

clustering hours into blocks make sense. Placing block-bids is not unusual behaviour for market

participants.

The two first periods are prior to production in the considered horizon, and hence trades can

be placed for all products. The same goes for bidding hour 3, since the bid is placed in the

beginning of the block. For bidding times t=4 to t=6 it is only possible to trade in the production

hours h = t-2 up to h = 6.

Aggregated Space Size

The aggregated problem is easier to approach using DP, than the full problem. The approxima-

tion greatly decreases the computation time.

With the size specified in table 3, the aggregated state vector, St with elements st,h = pt,h · it,h
take the form illustrated in fig. 18. The elements pt,h and it,h are still elements from the sets

P ′ and I ′, respectively. The difference from the original problem is the number of bid and

production periods. For the aggregated problem, the size of the state space in step t = 1 is

S1 = P′
H
1 · I′

H
1 = 54 ·44 = 160000. (46)

For the aggregated problem, where both bidding hours and production hours are aggregated,

the state space per step decreases as shown in table 4. The column on the far right is found

by applying eq. (42). The second column shows the change in number of available products

for changes in t. Column three describes the number of discretized capacity levels in step t.
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Figure 18: Aggregated state vectors, St

Column four describes the values the running status used to calculate the capacity state as given

by eq. (41). Column 6 describes the capacity space size, It , which for this thesis corresponds

to the action space size X t . Column 7 describes the price space size, Pt , which for this thesis

corresponds to the outcome space size W t . The last column shows the full state space size St ,

for all steps t.

Table 4: State space calculation

Bid block [t] Ht I′t rh=t−(T−H) P′t It Pt St

1 4 4 - 5 256 625 160000

2 4 4 - 5 256 625 160000

3 4 4 - 5 256 625 160000

4 3 4 2 5 128 125 16000

5 2 4 2 5 32 25 800

6 1 4 2 5 8 5 40

For comparison, the state space of the original problem in step t = 1 is 1.049 ·1026 times larger

than that of the aggregated problem.

Aggregated Price

In order to determine the transition probabilities for the aggregated problem, some additional

steps are performed in the process of constructing the transition matrix (see section 4.4.3).

The The raw data in the time series for Pavg is originally in an hour-by-hour format. When
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aggregating, the data points in the time series are grouped into blocks of 6 and 6 hours, where

the new price is an average. The price grid is calibrated according to the day of production, D,

and the associated time elapsed τ. In addition, it is adjusted for the existing downward sloping

trend and the SRMC of coal, CSRMC, corresponding to the input.

Hence, a new transition matrix Msmall for the aggregated time series is found. In order to apply

the process to vector transitions, a larger matrix M with dimensions Pt ×Pt is derived from

Msmall .
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4.6 Solution Method

This section aims at describing how the mathematical formulation in section 4.5 is implemented.

Algorithms used to solve the problem are illustrated. It connects Stochastic Dynamic Program-

ming (SDP) with backward recursion, solving Bellmann’s equation in the inner problem, and

the resulting construction of a contingency plan applicable for the day in question.

When utilizing dynamic programming, the important structure to exploit is that all relevant

information to make a decision is present in the state of the system. In a specific time step one

does not require information about the past to make an optimal decision. However, Bellman’s

equation (section 3.5.1) regards both the present and the expected future value of any decision.

Hence, a backward recursion algorithm is utilized, starting to calculate at the end of horizon at

time step T . It is possible to solve this problem as no future decision exists, and the expected

value of any decision is given by that decision alone. Note that all possible states are evaluated

to make sure there exists a specific decision Xπ
t (St) for all St ∈ St . As the stochastic dynamic

program is solved for each time step, the future values Vt+1 are included in the objective function

as an expected value with respect to the transition probabilities in M from the prices Pt to the

prices Pt+1.

The model only needs to run once a day, and is still capable of considering exogenous price

information that occurs between time steps. Algorithm 1 shows SDP approach; how the state

space and related production costs are initialized by daily input parameters, how all time steps

are computed in backward recursion, and that the objective function in each state is solved by

the inner problem. See the algorithm for the inner problem in algorithm 2.

The output from algorithm 2 is sent back to algorithm 1, and stored as the optimal policy for

the state computed.
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Algorithm 1: Stochastic Dynamic Programming with Backward Recursion
Input : Date of production, D

Spot commitments, Lspot
I

Spot prices, Lspot
P

Water value, LWV

Reservoir head, Lhead

Currency exchange rate, LEURtoNOK

SRMC coal, CSRMC

Transition matrix, M

Output : Optimal policy π : Xπ
t ∀ t ∈ T

. Initializations t = T

Xt ← Calculates set of decision vectors Xg ∀ t ∈ T

Pt ← Calculates set of valid price vectors Pl ∀ t ∈ T

It ← Calculates set of valid capacity vectors In ∀ t ∈ T

St : Pt × It ∀ t ∈ T

C AC
n ← Calculates set of average costs CAC

n corresponding to ∀ In ∈ It

Initialize expected value at end of horizon: E(VT+1) = 0

for t ∈ T by −1 do . Backward recursion

for St ∈ St do . The Inner Problem

Vt(St) = max
Xt∈X

(
Ct(St ,Xt)+EWt+1 [Vt+1(St+1|St ,Xt ,Wt+1)]

)
X∗t (St) = argmax

Xt∈Xt

(Vt(St))

Xπ
t (St)← X∗t (St)

end

if t > 1 then . Expected value calculation

for It ∈ It do . For each post-decision state in t−1

for Pt−1 ∈ Pt−1 do . For each price vector in t−1

EWt
t−1
[
Vt(St ∈ S It

t |St−1 ∈ SPt−1
t−1 )

]
= ∑

St∈SPt
t

(
Vt(St)×MPt−1,Pt

)
end

end

end

end

58



Some additional notation is introduced to ease the reading of algorithm 2 for the inner prob-

lem.

Indices and Sets

i Current node, state St

j Future node, post-decision state SXt

Ni Set of available nodes j transitioning from node i. Ni ⊆ SX
t

The time step index t is omitted, and instead of speaking of current and future time steps, we

use the notation of current and future nodes. Note that while the current node holds information

about both Pt and It , the future node contains information about It+1 and expected future value

only. Hence, it represent the post-decision state SXt for each respective decision X. The loop for

evaluating all nodes i, is initiated in algorithm 1 and computed in algorithm 2.
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Algorithm 2: Inner Problem in DP
Input : Current node i corresponding to state St = (Pt ,It) from SDP algorithm

Vector of future expected value elements EW[Vj] ∀ j ∈Ni

Output : Optimal Decision, X∗i
Value of making optimal decision, Vi

βi . Count the number of start and stops in node i

∆I j = Ii− I j . Find the change in remaining capacity from node i to j

XS
logical = logical(∆I j ≥ 0) . Determine trade type associated with transition to node j.

XB
logical = logical(∆I j ≤ 0)

for j ∈Ni do . Iterative node search through valid future nodes
β j . Count the number of starts and stops in node j

αi, j = β j−βi . Compare the number of starts and stops in node i and j.

for h ∈H j do . Investigate production blocks

if XS
logical(h) == 1 then . Sell product h
XS(h) = |(∆I j(h))|

end

if XB
logical(h) ==−1 then . Buy product h
XB(h) = |(∆I j(h))|

end

end

Vi, j =C j( j,X)+EW[Vj] . Determine value of transition to node j

Vi( j) =Vi, j . Put objective value into vector

end

Vi = max(Vi) . Determine the maximum and hence optimal value

X∗i = argmaxX∈X (Vi) . Determine associated decision value

All future nodes j ∈ Ni are looped through, where the EV of going to each node j ∈Ni is evalu-

ated in relation to the corresponding contribution function at node i. This evaluation correspond

to the value function in eq. (38). A great advantage of this method is given by the fact that for

a given transition from node i to node j, all variables are fixed. In a market where one can only

sell or buy at a given time (see section 4.4) the trade must correspond to the change in capacity

and hence a decision is uniquely given by a transition between states.
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As there are a limited amount of possible transitions in the model, there are a limited amount of

possible decisions X j. This is due to the fact that Ni ⊆ SX
t , so that the maximum size of Ni is

given by the number of capacity combinations It+1, rather than the full state space.

The expected value increases throughout the backward recursion. It describes the future uncer-

tainties, but since they are included as an expected value, the inner problem becomes a set of

deterministic problems for each j ∈Ni, where the optimization involves selecting the node j -

or equivalently a policy π - providing the greatest value V (Xπ
t ).

Figure 19 illustrates what the problem structure looks like. The symbols X , I and P correspond

to the vectors Xt ,It and Pt , respectively. The time steps in SDP are related to the square boxes

Figure 19: Decision tree

in fig. 19, containing information about what state St = (It ,Pt) the system is in, i.e what the

machinery capacities and prices associated to each production block are. The backward recur-

sion algorithm (algorithm 1) assigns each box with an optimal decision Xπ
t (St) through solving

Bellman’s equation for that state in the inner problem (algorithm 2). The decision determines

what the future state variable It+1 will be, but has no effect on the future state variable Pt+1.

Hence, post-decision states SXt are illustrated by circles containing information about capacity

It+1 only. They are each connected to Pt+1 square boxes referred to as the set S It+1 ⊂ St+1 of all

states containing the same capacity vector It+1. Recall that the number Pt refers to the number

of stochastic outcomes of the price vector Pt in time step t. Hence, by backward recursion,
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value of the post-decision state represents the expected value of the decision Xt , determined by

the probabilities and already calculated values of being in states connected to the post-decision

state. Each square box represents a node i, while the circles represent the nodes j ∈Ni.

When making decisions in a node i, the production plan and associated production costs are

affected. Even though AC values are used several times, they are only calculated once - during

the SDP initialization in algorithm 1). Using this precalculation makes it possible to utilize

an exact function to determine AC, rather than using an approximated linearization to decrease

computation time. Therefore, each node j can be assigned an AC in the initialization. The value

of going to node j is given by the EV of the post-decision state calculated in algorithm 1.

Determining the amount to trade implicates determining when to run the machinery and not.

The semi fixed costs are associated with these changes. It is not necessary to dedicate a new

state variable to represent the running state of the system, because it is implicitly given by the

level of capacity of the generator, It . If there is production in an hour, i.e. the level of capacity

of the machinery is different from Imax, the machinery runs.

Notice how the inner problem does not include any information about other states in the same

time step. A great advantage of this structure is that the inner problems can be computed

in parallel instead of traditional sequential looping, decreasing running time significantly (see

section 5.1).
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5 Computational Study

The SDP model developed in this thesis solves the aggregated problem (see table 3) to opti-

mality, under a set of assumptions (section 4.3). The policy to the aggregated problem can be

applied to solve the original problem, with some adjustments. This policy is not guaranteed be-

ing the optimal one for the original problem. However, the possibly sub-optimal policy makes

up a heuristic candidate SDP policy to the original problem.

The purpose of this chapter is to present an overview of how the stochastic dynamic program

is utilized in practice, what characterizes the decisions provided by the policies and what value

the model can provide a user. The lack of comparable historical data of TrønerEnergi’s Elbas

trades, introduces a challenge to retrieve a benchmark for analysis. Hence, bound analysis of

the mathematical optimization program is more of interest, with an underlying assumption of

few or no trades today. This applies to analysis of policies as well, where the reference point of

analysis is how optimal behaviour is in a deterministic case.

Even though the problem is aggregated, the problem is quite complex, and therefore the need

to utilize a high performance computing (HPC) cluster emerges. A description of the utilized

software is presented in section 5.1, including running times of the model. Following, a set

of instances is presented in section 5.2. Section 5.3 explains how the contingency plan is uti-

lized. Afterwards, (section 5.4), a bound analysis is performed by Monte Carlo simulation of

exogenous information on the set of instances. Lastly, a comparison of the stochastic and the

deterministic model is presented in section 5.5.

5.1 Software Description

All test instances of the mathematical programming models are solved using MATLAB R2017a. MAT-

LAB is run through the high performance computing cluster Solstorm to handle the large number

of computations required due to the size of the state space of the problem (section 4.5.1). Sol-

storm is developed for the Department of Industrial Economics and Technology Management

(IØT) at NTNU, to handle computing algorithms in large scale optimization models (Ganglia,

2018). The computing cluster is accessed on a remote server through an SSH client.

In theory, all nodes in a time step can be computed in parallel to decrease running time (sec-
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tion 4.6). While most computers support parallel computing by more than one worker , the

number of parallel processes is restricted by technical specifications of the computers’ central

processing unit (CPU). Solstorm consists of multiple computing nodes with different CPUs

(Solstorm, 2018). Note that a computing node must not be confused with a node in the SDP.

The SDP model in this thesis is solved through a HP dl160 G5 server, with two Intel Quad

Core E5472 (3.0 GHz, 16Gb RAM, 72Gb SAS 15000rpm) processors. The number of workers

utilized to compute parallel processes is 30. Some extra overhead computation time is added

due to the number of workers, but it is highly rewarded by the decreased time of solving each

time step. See table 5 for detailed running time results, for sequential and parallel computing

respectively.

Table 5: Model Running Time

Modelling Phase Running Time HPC Running Time

Initialization 12.42 sec 16.53 sec

Starting Parallel Pool - 38.55 sec

Stage t = 6 5.02 sec 5.43 sec

Stage t = 5 7.97 sec 6.97 sec

Stage t = 4 184.38 sec 25.46 sec

Stage t = 3 574.23 sec 75.62 sec

Stage t = 2 669.99 sec 89.12 sec

Stage t = 1 683.24 sec 89.13 sec

Total 2,137.25 sec 346.81 sec

In addition, utilizing a CPU cluster is of great advantage for testing purposes, as multiple test

instances can run simultaneously.

5.2 Test Instances

The large amount of data resulting from computing each day, makes general and representative

testing of the model less straight forward. Each day has its own input parameters affecting the

outputs, and different combinations of input will affect the model outputs in different ways. To

present the results of the model and analyze general trends, a number of instances is selected
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based on a classification of the data set. The assumption is that due to modelling choices (sec-

tion 4.4), days within the same classification should produce similar, or comparable, outputs.

Our set of historical data is from the period January 2013 to August 2017.

Outputs of the stochastic dynamic program refers to both objective values and the policies

extracted from computations.

5.2.1 The Effect of Spot Prices and Water Values

As stated in section 2.5.1, the water value of a reservoir is a result of a complex optimization

algorithm, regarding the alternative value of saving the water for later production. While the

future market price for energy highly affects the water values, Søa is a relatively small reservoir

with less flexibility, resulting in volatile water values mostly affected by the reservoir inflow at

all times. Hence the marginal cost of production is volatile and not always as correlated with

the spot price as a bigger reservoir would be. This is observed in fig. 20. The same figure

show plots of the difference, or delta ∆, between the average spot price of each day (Lspot
P,D ) and

the corresponding water value (LWV
D ), both as a function of time and in a sorted, increasing

order.

∆ = Lspot
P,D −LWV

D (47)

Figure 21 shows a close up version of fig. 20. Since the profit of the stochastic dynamic program

Figure 20: Spot prices and water values, and the corresponding difference

65



Figure 21: Close-up of spot prices and water values, and the corresponding difference

is strongly related to the difference in Elbas prices and the marginal cost of production, and the

Elbas prices are discretized by a grid related to spot prices (Bovim and Næss, 2017), the output

of the model will be affected by large differences between spot prices and water values as input

parameters.

To represent days with different delta values, the sorted data set is split into three parts as listed

in table 6, each containing an equal number of days. The test instances ensure that days within

all three delta intervals are included in the analysis.

Table 6: ∆ intervals

- ∆min ∆max

∆1 −973.255 0.323

∆2 0.324 4.189

∆3 4.200 66.103

5.2.2 The Effect of Initial Spot commitment

Another important aspect of the input parameters is the production volumes initially committed

from the spot clearing. As the machinery has a limited production capacity, the initial com-

mitment restricts what volumes are available for trade in Elbas. As stated in section 4.5.6, the
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number, It , of possible capacity vectors is large. To keep the analysis as general as possible, but

still representative for the real problem, the days in the data set is categorized by the initial spot

unit commitment R, rather than remaining capacities Lspot
I . R is a vector of binary variables,

that denotes whether or not machinery is committed in the spot market.

By including the block before and after the modelling horizon, it is possible to categorize the

data set into 26 = 64 parts, each representing a combination of 6 production blocks and the

associated unit commitments ([0,1]). The following list illustrates by a few examples how the

unit commitment changes from 1 to 64.

Some Unit Commitment Categories

1 : [0 0 0 0 0 0]

2 : [1 0 0 0 0 0]

30 : [1 0 1 1 1 0]

63 : [0 1 1 1 1 1]

64 : [1 1 1 1 1 1]

The number of days with each initial unit commitment is illustrated in fig. 22. There is also a bar

graph of how many days within each ∆ interval that have the different unit commitments. Notice

how the most common unit commitments are related to production for either all (64) or none

(1) of the production blocks. In addition, unit commitment 30 is common, where the production

blocks representing night time are the only ones without a spot commitment. Note that the days

within the interval with largest ∆ are almost all from the category of unit commitment 64, which

indicates that the generator is running for all production blocks. This is natural, as a large ∆

indicates a higher spot price than the water value, so a power producer is likely to get dispatched

in the spot clearing.

To evaluate a representative selection of days, the model is tested on the parameters most often

occurring. Hence, a selection of days with unit commitment categories R1 = 1, R2 = 30 and

R3 = 64 will be further investigated.
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Figure 22: Number of days with each unit commitment category (1-64)

Table 7: Unit Commitments investigated

- Unit Commitment

R1 [0,0,0,0,0,0]

R2 [1,0,1,1,1,0]

R3 [1,1,1,1,1,1]

5.2.3 The Resulting Test Instances

Combining the two categories of ∆ and R, each divided into three instances, the resulting in-

stances for testing are summarized in table 8.
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Table 8: Test instances

- [−973.25,0.323) [0.323,4.189) [4.189,66.103)

[0,0,0,0,0,0] R1∆1 R1∆2 R1∆3

[1,0,1,1,1,1] R2∆1 R2∆2 R2∆3

[1,1,1,1,1,1] R3∆1 R3∆2 R3∆3

As the stochastic price model is constructed utilizing data from the year 2013 to 2016, it is

preferable to not test the model on these years. Hence, only days for 2017 can be tested. It is

beneficial to test on days of the same year, so that the results will be comparable. This section

avoids comparing general results related to the policy on days in different seasons, as that may

affect the result and make it less observable how ∆ and R really affects the policy computed.

The objective is to select test instances comparable to each other.

To avoid random results, preferably several days within each test instance should be computed.

However, some instances does not have any days with that specific instance, or only a few. As

can be seen in table 9, this is the case for intersections between either a large ∆ and a unit

commitment with few production blocks with initial production commitment, or a low ∆ and a

unit commitment for most production blocks. As stated in section 5.2.2, the few occurrences of

these intersections are natural due to the demand/supply clearing i the spot market.

The dates listed in table 9 makes out the test instances for analysis in this thesis.

In a world of perfect information and no uncertainties, a market participant would choose to

place bids similar to a trivial knapsack problem, first choosing the trade with the best price,

then the second best, and so on, until production capacities restricts further trade. However,

prices are considered stochastic in a realistic scenario, so one cannot know for sure what future

opportunities to trade will be. SDP accounts for not knowing the future outcomes, comparing

the gain of a certain decision up against the expected value (EV) of future opportunities.

This section focuses on the EV of participating in Elbas utilizing the SDP model constructed in

this study on the original problem.
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Table 9: Dates within each test instance, selected for evaluation

- ∆1 ∆2 ∆3

R1 17-Jun-2017 27-Jun-2017 -

25-Jun-2017 28-Jun-2017 -

13-Jul-2017 - -

16-Jul-2017 - -

R2 18-Jul-2017 05-Jun-2017 14-Jun-2017

- 10-Jun-2017 -

- 26-Jul-2017 -

- 31-Jul-2017 -

R3 20-Jul-2017 17-May-2017 18-May-2017

- 25-May-2017 26-May-2017

- 21-Jun-2017 02-Jun-2017

- 10-Jul-2017 22-Jun-2017

5.3 The Contingency Plan

Figure 19 in section 4.6 describes how the SDP looks and is followed by a description of how

it is constructed. This section aim at describing how the model output, the policy, is utilized.

Figure 24 show utilization of a policy and emphasizes how the uncertainty in the prices result

in a growing tree of realizations.

As the policy maps an optimal decision to each state of the system in all time steps, the policy

works as a look-up table, or a contingency plan. When the user inserts necessary information for

decision making, the policy is constructed by SDP, and provides decision support as a contin-

gency plan throughout the day. The model must be rerun, only if the input parameters changes.

This is the strength of SDP and construction of a policy, the contingency plan has an optimal

decision regardless of the exogenous information arriving, not known at the time of policy con-

struction. Figure 23 illustrates how the model is initialized with input parameters and constructs

a contingency plan utilizing the SDP framework (algorithm 1), only once at the beginning of the

modelling horizon. See section 4.4 for an explanation of the input parameters and their effect on

the stochastic dynamic program. After the construction phase, the decisions throughout the day

are retrieved from the contingency plan in accordance to the state the system is in at all times,
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as illustrated in fig. 23. Figure 24 is suitable to describe how the contingency plan is utilized

Figure 23: Float chart illustrating the steps in the approach from the construction of an SDP

policy to the application including determination of associated optimal decisions.

in practice. The symbols I and P correspond to the vectors I and P, respectively. A step-wise

description is presented below. By the symbols and notation used regarding decision trees by

Powell (2011a), a decision node has square shape and circle nodes represent outcome nodes

where new information arrives. The circle nodes contain the post-decision state information,

but price information is still unknown. Hence, a key take away is that the user can decide how

to evolve from a squared node to a circular node, but from there, the outcome is unknown until

the time of information revelation. For the aggregated problem, the time resolution is 6 hours

per time step. Decisions are made in the beginning of the time block. The utilization description

is as follows:

First, the spot price is revealed the user, along with spot commitment in the planning period.

In addition, it is of interest to know the production plan to product blocks adjacent to the first

and last blocks, but outside of the planning horizon (see: fig. 12). Based on this knowledge, the

initial state, S1, is determined and the corresponding optimal decision can be made by checking

the associated node in the look-up table. The square node on the far left in fig. 24 represent the

initial state. Based on the decision, one transit to the corresponding post-decision state, the node

marked: I∗(P′). I∗ describes the optimal level of capacity to evolve to from the previous step.
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Figure 24: DP set up

During the 6-hour period, market price data becomes knowledge to market participants. Based

on prices of realized trades between the points of decisions, i.e. before the beginning of the time

block t+1, the new price state is found as the average price. The price information is exogenous,

and forces transition to a new state along with the chosen I∗ and the price occurrence. After this,

the procedure repeats itself until end of horizon is reached. Figure 24 illustrates the three first

steps, but in testing 6 steps have been utilized.

As mentioned in the introduction to this section, the aggregated policy does not necessarily

provide a valid solution in the original problem. To handle this, an adjustment heuristic can be

applied when disaggregating state variables for price and capacity.
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5.4 Bounds

This section aims at evaluating the gap between bounds of the optimal expected value in the

original problem. The procedures to find both an LB (section 5.4.1) and an UB (section 5.4.2)

are presented. In addition, it is elaborated on how solutions in the aggregated problem can

be infeasible in the original problem. Along comes an explanation of an adjustment heuristic

that can be applied to ensure feasibility when determining the LB (section 5.4.3). The optimal

expected objective value depends on the set of input parameters, which are used to initialize the

model. Hence, it makes little sense to discuss an overall LB and UB. The bounds corresponding

to the different test instances are calculated and discussed in section 5.4.4.

It is desirable to look for reasons to why the optimality gap differs for different test instances.

However, even with a limited set of input parameters that are more or less correlated, it is

non-trivial to extract general conclusions.

5.4.1 Lower Bound

The procedure to determine the LB is presented in this section, and fig. 25 emphasizes the

steps. Numerous simulations are run using Monte Carlo simulation, in order to develop the

Figure 25: Approach to determine statistical lower bound.

statistical LB. In each simulation the aggregated SDP is applied. The SDP is the same for all

simulations, and hence the policy is only developed once. When applying the SDP, information

is collected, aggregated and the policy is applied. In order to ensure that the solution is feasible,

the solution must be disaggregated and evaluated under the realistic constraints. Moreover, this

entails modifying the solution by applying a heuristic, if the solution is infeasible.

The model is applied in a manner that it could have been applied in reality to solve the origi-

nal problem. Prices are simulated in accordance with natural filtration, i.e. hourly resolution.
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The model collects and interprets information between bid periods, t,in order to determine the

average price that makes up the aggregated market price state, Pt . Similarly, capacity infor-

mation is aggregated. By solving the original problem utilizing the heuristic policy multiple

times under stochastic prices, a set of feasible objective values can be found. By weighting all

scenarios equally and taking the expectation of the objective values, the statistical LB is found.

It is a lower bound because all the solutions are feasible and potentially sub-optimal in their

associated scenarios.

The formula is shown in eq. (48), where Ψ here refers to the number of realized scenarios. Each

scenario is denoted ψ ∈Ψ. The objective value V0 is as defined in eq. (39). Note that since this

solution is potentially sub-optimal, the star is removed. The subscript ψ denote what scenario

V corresponds to.

LB =
1
Ψ

Ψ

∑
ψ=1

V0,ψ (48)

5.4.2 Upper Bound

When determining the upper bound (see fig. 26), the method of relaxing all non-anticipativity

constraints (NACs), (see section 3.6) is utilized.

Figure 26: Approach to determine statistical upper bound.

In practice, the effect is that all price information is revealed immediately and simultaneously.

When all stochasticity is removed the problem becomes deterministic. This implies that a new

policy must be found for each simulation. Note the additional step in the orange circle in fig. 26.

However, it is easier to solve the deterministic than the stochastic dynamic program. Note that
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the functions in the deterministic program shown below are similar to those of the stochastic

dynamic program, only without stochasticity. In the deterministic program the state space is

reduced to

St = It (49)

With the state St = It . The decision is still Xt , but there is no exogenous information Wt . The

transition function is

St+1 = SM(St ,Xt). (50)

Since prices were certain for the stochastic dynamic program within a step, the contribution

function is the same, hence Ct(St ,Xt)(eq. (37)). However, the Bellman’s equation differs, since

the stochasticity is removed:

Vt(St) = max
Xt∈X

(
Ct(St ,Xt)+Vt+1(St+1|St ,Xt)

)
(51)

and

V ∗0 = max
π∈Π

{
∑

t∈T
Cπ

t (St ,Xπ
t (St))|S0

}
(52)

Moreover, the method of finding the UB entails using Monte Carlo simulation of exogenous

price information with resolution in accordance with the original problem. As for determin-

ing the LB, the information regarding state variables is aggregated. Based on the aggregated

simulated price path a deterministic program can be solved using backward recursion. For the

given capacity level, an optimal solution in found by applying the optimal relaxed policy. This

provides an optimistic upper bound, because it optimizes over a deterministic horizon by mak-

ing use of information that is unavailable under realistic circumstances, without penalizing it.

Applying the same argument to each scenario, weighing all scenarios equally and calculating

the expected value result in the statistical UB given by

UB =
1
Ψ

Ψ

∑
ψ=1

V ∗0,ψ. (53)

Ψ is the total number of scenarios ψ. The objective value V0 is as defined in eq. (52). The

subscript ψ denote what scenario V corresponds to.

5.4.3 Adjustment Heuristic

An important point to make, is that in order to know by certainty that the lower bound is valid,

the solution must be feasible. In this case it would entail that the capacity constraint on the
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Figure 27: Capacity levels associated with block of 6 products. Illustrates the impact of making

decision based on aggregation.

generator is not violated in any production hour and that the price one assume to get acceptance

at is not too optimistic.

The aggregated SDP suggests the up- or down-regulation in step t that is evaluated to be the op-

timal solution in the aggregated problem. However, this solution may be sub-optimal and even

infeasible in the realistic problem. To obtain a feasible solution, an adjustment heuristic that

can capture when constraints are violated, is used. Moreover, it is used to modify or penalize

the objective function according to the deviation from feasibility. There are different ways to

develop such a heuristic. One method is described.

In the aggregated problem, the capacity of the generator is an average of remaining capacities

of the generator for 6 products within a product period. Figure 27 illustrates a block of 6

periods.

One product block, havg, in time step, t, in the aggregated problem takes the value iavg′
t,h , which

correspond to the closest capacity discretization level to the actual mean

iavg
t,h =

1
6

h=6

∑
h=1

it,h. (54)

Note that h is the general symbol for a product period in this thesis. havg is only introduced here

to emphasize that products in the aggregated model are really derived from its constituents in
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the disaggregated problem.

Figure 27 represents an example situation. Note that for illustration purposes the capacity levels

vary a lot between hours. Normally, products within the same block tend to have similar pro-

duction commitments, due to seasonality effects within a day. All the purple bars correspond to

the remaining capacity level for a product h. The aggregated capacity level is the average value:

iavg
t,h = 59.2%. Hence iavg′

t,h = 70% since it is the closest level of remaining capacity. Moreover,

it is found from applying the policy that the next optimal decision is to buy X∗ = Xt amount

of power. The SDP will interpret that the system moves from a capacity level of I = It = 70%

to I∗ = I∗t+1 = 40%. In this disaggregated version, that is obviously not the case, and in fact

this trade would lead to a violation of the capacity constraint for the generator corresponding to

product h = 2. Notice the red arrow in fig. 27.

In general, the model suggests an optimal decision of up- or down-regulation of the generator

for all 6 products. One or more of the products may violate the capacity constraint, and hence

the suggested solution is infeasible. A way to handle it is to only reward the feasible actions in

the objective function, by performing an if-then-check within the optimization algorithm.

When applying the aggregated SDP, prices are also aggregated and the average price is found.

Based on this aggregation, the model provides a candidate solution, before an adjustment heuris-

tic is applied to find decisions that do not violate the capacity constraint. To determine the

contribution function eq. (37), the prices are disaggregated and multiplied by the trade, Xt , as-

sociated with the corresponding product, h. This way, the contribution function only rewards

feasible trades under realistic prices.

5.4.4 Analyzing the Properties of the Bounds

The analysis is performed on the set of instances as described in section 5.2, table 9. Among all

the simulated scenarios, there is a spread in the set of optimal values. Figure 28 illustrates how

upper and lower bounds differs between days in different test instances, while the numerical

results are summarized in table 10.

Note, however, that due to time constraints the adjustment heuristic have not been applied to

adjust the disaggregated variables nor the contribution function. However, with the purpose of

illustrating and explaining how a further analysis would be carried out, the invalid results from
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a lower bound that may be too optimistic are shown. In the case where the adjustment heuristic

is applied, one would expect the gap to increase. This is due to a the fact that the lower bound

is expected to be lower, when not rewarding infeasible trades.

Figure 28: Plot of bounds within different group instances

In fig. 28 the points come in pairs of an UB(blue) and a LB(red) illustrated as points along

the same vertical line. The expected optimal value is measured in euros on the y-axis. Note

that the scale of the y-axis varies with different spot commitment running plans, denoted R. On

days when there is initially no spot commitment, and all machinery is turned off, the expected

optimal value is typically lower at the end of the planning horizon. In the opposite case, the

expected optimal value is generally higher. Note however that some days’ expected objective

values stand out from the remaining days within the group. Note for instance test instance

number 4 within the R = 3,∆ = 2.

The variations within group instances imply that these factors alone (R and ∆) are not sufficient

to describe the properties of the objective value.

The output’s fit to the normal distribution is investigated by utilizing a Q-Q (quantile-quantile)
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Table 10: Bound analysis

Instance UB +/- CI [EUR] LB +/- CI [EUR] Gap absolute[EUR] Gap [%]

R1,∆1: 17-Jun-2017 5689.017+/-15.068 4328.694+/-19.203 1360.323 23.911

R1,∆1: 13-Jul-2017 6010.473+/-16.028 4474.299+/-20.264 1536.174 25.558

R1,∆1: 25-Jun-2017 6318.896+/-16.028 5220.507+/-21.218 1098.389 17.383

R1,∆1: 16-Jul-2017 6581.512+/-18.478 5112.873+/-20.635 1468.639 22.315

R1,∆2: 27-Jun-2017 6182.804+/-16.395 4935.521+/-19.779 1247.283 20.173

R1,∆2: 28-Jun-2017 6435.204+/-16.143 5145.572+/-19.945 1289.632 20.040

R2,∆1: 18-Jul-2017 11630.794+/-16.927 10012.799+/-19.834 1617.996 13.911

R2,∆2: 05-Jun-2017 5617.297+/-15.907 4005.604+/-21.394 1611.694 28.692

R2,∆2: 26-Jul-2017 14134.334+/-17.711 12365.418+/-21.467 1768.916 12.515

R2,∆2: 10-Jun-2017 6385.155+/-19.253 4618.464+/-23.107 1766.691 27.669

R2,∆2: 31-Jul-2017 11775.906+/-16.3456 10244.461+/-21.706 1531.444 13.004

R2,∆3: 14-Jun-2017 10612.381+/-14.727 8486.146+/-21.359 2126.234 20.035

R3,∆1: 20-Jul-2017 8803.935+/-16.263 6802.303+/-22.235 2001.633 22.736

R3,∆2: 25-May-2017 12699.704+/-14.735 11183.343+/-19.511 1516.362 11.940

R3,∆2: 21-Jun-2017 13314.389+/-16.393 11755.589+/-18.785 1558.800 11.708

R3,∆2: 17-May-2017 15435.951+/-15.121 14103.131+/-21.466 1332.820 8.635

R3,∆2: 10-Jul-2017 6178.693+/-17.366 4265.507+/-19.893 1913.186 30.964

R3,∆3: 26-May-2017 15411.265+/-15.988 14028.760+/-21.575 1382.505 8.971

R3,∆3: 22-Jun-2017 14147.053+/-15.172 12594.976+/-20.271 1552.077 10.971

R3,∆3: 18-May-2017 12231.042+/-14.189 10595.073+/-21.468 1635.970 13.376

R3,∆3: 02-Jun-2017 13578.567+/-15.460 10991.603+/-21.432 2586.964 19.052

plot, in order to describe the properties of the statistical bounds, such as confidence interval (CI).

In general, all instances tested by utilizing a Q-Q plot to evaluate fit to the normal distribution.

They are found to be sufficient fits to the normal distribution. In all cases, the LB is a better

fit than the UB. Figure 29 show an example plot of the Q-Q plots. If the points fall close to

the linear line, it indicates that the points are close to normally distributed. Since it is quite

representative, the remaining plots are left out of the report.

The bounds are estimated by evaluation of Ψ = 10,000 simulations, by the formulas given in

eq. (48) and eq. (53). Since the bounds are statistical it is of interest to know how spread out the

different constituents are within the sampled scenarios. Confidence intervals of the bounds are
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Figure 29: Q-Q plot for the 5th of June 2017.

found under the assumption of a normal distribution. They are used to measure the spread of the

expected objective values making up the statistical bound. For a certain test instance, the CIs is

quite tight based on the set of Ψ simulations. Hence, input parameters are of great importance

for the output.

A 95% CI is calculated on both upper and lower bounds (see table 10). The CI is small relative

to the gap between upper and lower bound. The CI is plotted in the fig. 28, but due to its

relatively small size it cannot be observed. Figure 30 shows the CI for an UB. The test instance

is the 18th of July when the statistical UB is 11630.794[EUR] + /− the CI of 16.927[EUR].

Note that since the normal distribution is found to be a good fit, the CI is symmetric around the

bound.

Figure 30: Confidence interval

The percentage-wise gaps are calculated as a percentage of the UB. An interesting observation

is that both the maximum and minimum percentage gap lies within the group R3,∆2. Moreover,

the gaps are quite large. Different methods can be applied to tighten the upper bound or modify
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the heuristic in order to find feasible policies that in a manner closer to the optimal. This is

future discussed under section 6.3.

5.5 Policy Trends

The policy constructed from the SDP algorithm on an instance, consists of large amounts of

data difficult to summarize or illustrate precisely. However, trading trends may be observed

by evaluating the average behaviour over time. As the objective of this thesis is to develop a

model optimizing expected profits for a market participant, the scope of interest is to observe

how the policy makes a market participant behave over numerous scenarios of exogenous infor-

mation. In this section, policies constructed with SDP is compared to the case of deterministic

prices.

An important aspect to remember is the number of input parameters inserted for each day tested.

Though the test instances of this analysis are constructed in such a way that there is some control

of the parameters, each parameter affects the policy in different ways. Each of them alone may

pull the results in one direction, while combined with another parameter, the opposite effect

might occur. A too detailed analysis of the differences in policies are therefor not conducted,

but trends for the overall model are emphasized. The main results from this analysis are related

to how the model tends to behave in a stochastic world in comparison with a deterministic

world, and how average trade volumes evolves during the modelling horizon.

A stochastic solution will be either worse off or equal to a deterministic solution. This applies

to the policy by observing how a stochastic policy reacts to fluctuating market prices. While

a deterministic model knows for sure what future exogenous information will be, a stochastic

model must consider EVs of the future. Hence, stochastic solutions tend to be have lower

variance than a deterministic one, depending on how sensitive the stochastic model is to varying

stochastic information.

To ease the reading of the following analysis, a simple representation of the results is shown

in fig. 31, illustrated by two dummy results of the same day with different simulated price

paths. The purpose of showing these figures is to illustrate how the policy may differ in each

simulation, according to how sensitive the model is to price fluctuations. Input parameters are

held constant, only stochastic exogenous information is simulated.

81



There are 6 bid blocks, each with a capacity state given by the 4 production blocks’ capacity

levels at the time. The seventh block indicates the final capacities at the time of production.

The capacity levels correspond to the discretization of state space (section 4.5.6), of which

the capacity levels are discretized into 4 levels. Remember that capacity level 1 represent full

production, while capacity level 4 represents that the machinery is not running. Moreover, the

change in capacity from one bid block to the next uniquely corresponds to the volume traded in

the previous bid block.

(a) Example simulation 1

(b) Example simulation 2

Figure 31: Illustration result from a specific simulation. Capacities for all production blocks in

each bid block.

Simulating 10,000 price paths, the result is 10,000 different trades and capacities, for each

product in each bid block. Only the first bid block will always have the same state, as this

represents the initial spot commitment before any trade have been carried out. To determine

expected results, a counting of occurrences across all simulations is computed. Using the two

dummy examples in fig. 31, the result for bid block t = 3 is presented in table 11.

All simulations result in a capacity level 2 for production block 3, and capacity level 3 for

production block 4. 50% of the simulations results in capacity level 1 for production block 1

and 2, and the other 50% result in capacity level 2 for the same production blocks. Notice how

the sum in each column is the same as the number of simulations. Over 10,000 simulations of
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Table 11: Bid Block 3 - Counting intersections of production block h and discretized capacity

level Im ∈ I ′ over two simulations.

h = 1 h = 2 h = 3 h = 4

m = 1 1 1 0 0

m = 2 1 0 2 0

m = 3 0 1 0 2

m = 4 0 0 0 0

exogenous information, some of these intersections may have 7,000 occurrences, resulting in a

share of 70% of simulations with the same result for that specific intersection. These shares are

plotted and analyzed below.

All instances are tested, where the days in table 9 are run with their respective input param-

eters from historical data. Price paths are simulated and the model is solved as described in

sections 5.4.1 and 5.4.2, to obtain stochastic and deterministic solutions, respectively. Overall

trends differentiating the stochastic and deterministic solutions are retrieved, similar within all

test instances. Hence, the discussion will be based on results from one day only, for illustration

purposes.

The stochastic case and the deterministic case for 17-Jun-2017 are presented in figs. 32 and 33

respectively, the difference illustrates how perfect information affects the policy. Similar as

fig. 31, there are 6 bid blocks plus one for final production, and a bar for each of the 4 production

blocks in each bid block. The difference is what the bar sizes indicate. Each color belongs to

a specific capacity level, and the y-axis indicates how large share of the 10,000 simulations

resulted in each respective capacity level - for that specific production block in that specific bid

block. Hence, the y-axis in figs. 32 and 33 is a result of counting of intersections in the policies,

as illustrated in table 11. The maximum share is 100%.

17-Jun-2017 has an initial spot commitment associated to the highest capacity level, namely

no production and full capacity for all production blocks h ∈ {1,2,3,4}. For the stochastic

case (fig. 32), notice how all production blocks changes to a 100% share of the lowest capacity

level in bid block t = 2, then a 100% share of the highest capacity level in bid block t = 3.

This is solely arbitrage trading, taking advantage of market opportunities. This indicates that

all simulations result in selling maximum production the first bid hour, then buying it all back
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Figure 32: Solving a stochastic dynamic program for the 17th of June 2017. Share of simula-

tions resulting in capacity levels 1-4. Illustration of all production blocks in each bid block.

the next. The policy for these bid blocks is not affected by different price realizations. As all

simulations have the same initialization P1, given by historical spot prices 17-Jun-2017 Lspot
P ,

the model will always expect the same outcome in bid hour t = 2, though the realized prices P2

will differ.

This is in contrast to the deterministic case in fig. 33, where the initialization of the model

includes the full price path Wt ∀ t ∈ {1,2,3,4,5,6}. Hence, in a significant share of the

simulations, the policy suggest to wait for a better opportunity later. This is observed in the

figure, as the share of capacity levels in bid hour t = 2 is not 100% on either of the the levels.

Most simulations trigger trades to sell full production at first, and then buying it back, but a

significant share of the simulations does not trade anything of products h = [1,3,4] the first

bid block. Similar results are seen for bid block t = 3, indicating that eventual bids held back

the first bid hour, were put in the market in bid hour t = 2 instead. This indicates how the

deterministic model is able to catch nuances in the price scenarios that the stochastic model

cannot do.

Later bid blocks have more varying results from the simulations, applicable to the stochastic

case as well as the deterministic. The last opportunity to trade product h = 1 is in bid block

t = 3, and the last opportunities to trade products h = [2,3,4] are in bid blocks t = [4,5,6],

84



Figure 33: Solving a deterministic dynamic program for the 17th of June 2017. Share of simu-

lations resulting in capacity levels 1-4. Illustration of all production blocks in each bid block.

respectively. Hence, new commitments will be binding, which seems to have an impact on the

resulting capacity levels. While the deterministic model easily can trade at the most profitable

times without any risk, this indicates that also the stochastic model expects to be able to up-

or down regulate production to optimal levels within the close, in addition to make arbitrage

profits up front.

An interesting result is that, in general, it is not necessarily a relation between initial spot com-

mitment and final production. This indicates that the market prices tend to be higher than

marginal cost of production, until production reaches certain levels. At final production, the

remaining capacities are all at the three upper levels, and never at capacity level 1. This indi-

cates that utilizing full capacity of the generator is expensive, and that market prices in general

do not cover the production costs associated to maximum production. This corresponds well to

the marginal cost curve, rapidly increasing for high production levels. Note that final produc-

tion results are similar in the stochastic case and the deterministic case. Though future market

prices are stochastic, the market participant is always guaranteed acceptance in the market at the

current price level. Hence, both the deterministic and the stochastic model have equal informa-

tion about production block h′ the last bid block before the close of h′, and equal opportunities

of up- or down regulation before the close. The fact that final production varies in different
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simulations, indicates how market prices determine which production level is optimal.

To illustrate the policy and the resulting trades, fig. 34 shows average trade volumes over the

simulations. Each bar color represents a production block, and the size of it the volume traded

for the respective bid block. A positive volume refers to selling power, while a negative volume

refers to buying power. Each of these are calculated separately when computing the average

trade volumes. To the left (a), simulations where no trade took place is not included in calculat-

ing the average. Hence, it represents the average volume traded, if there is a trade. This means

that even if there is only 1 simulation resulting in selling power for a specific production block

in a specific bid block, the volume illustrated will be equal to that trade. To the right (b) is a

total average over all 10,000 simulations, and the same case would be negligible.

(a) Only simulations where a trade occur is weighted. (b) Each simulation equally weighted.

Figure 34: Average trade volumes, selling and buying considered separately.

Notice that average volumes traded if there is a trade, are quite similar in the stochastic and

deterministic case. The exception is that there are no selling trades occurring in bid block 2

for the stochastic case, while the volumes are almost symmetrical for selling and buying in the

deterministic case. This confirms the results from figs. 32 and 33, that the stochastic case will do

the same decision the first two bid blocks, regardless of simulation outcomes. The deterministic

model rather customizes its trade pattern for each specific simulated price path. Both cases have

the largest volumes traded early, while the volumes decrease as a production block’s close is

getting nearer. This is related to the effect observed in figs. 32 and 33, where remaining capacity

typically alternates between the upper and lower capacity levels, but stabilizes somewhere in

between for final production volumes.
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The picture changes somewhat when observing the illustration to the right (b), of the total

average volumes. Notice how in the stochastic case, the bars are almost of the same size as in (a)

the first three bid blocks, though only for either buying or selling power. This distinguishes from

the deterministic case, where apparently the trades are more equally likely to happen as a selling

trade or a buying trade, and the average volumes decreases. This is what we observed in figs. 32

and 33, that the stochastic case is less sensitive to price fluctuations than the deterministic case,

so that all simulations results in the same capacity level, or volume traded, for the first few bid

blocks.

Though 17-Jun-2017 is utilized as a day for illustration in this thesis, the days do not all have

the same policy. However, the main result from analyzing the policies is how they all have the

same dynamic when comparing the deterministic and the stochastic case, of which is a result

in itself. The variance of decisions in a deterministic world is more volatile and sensitive to

price variations than in a stochastic world, as a stochastic model will remove random sampling

effects to a greater extent as it optimizes depending on EVs.

Decisions made by deterministic DP varies more than that of SDP. This is because SDP removes

random sampling effects to a greater extent as it optimizes depending on EVs.
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6 Concluding Remarks

6.1 Discussion

This section aims to briefly discuss some qualitative aspects of how the model provides deci-

sion support to increase expected profits for a market participant, and sheds light on the model

result’s validity for the real world problem.

Implementation of New Software

A concern from the industry is that potential profits in Elbas are not large enough to cover the

resulting costs from implementing new strategies of intraday bidding. In order for an optimiza-

tion model to add value to a market participant, the cost-benefit relationship for participating in

Elbas must be taken into consideration. Initial investments in software and user training increase

the threshold to enter, in addition to potential continuous costs such as increased need of human

resources. This study contributes to reduce the threshold concerning software development, but

the software interface must be designed in such a way that the user can utilize it in the intended

way. The user must be able to gather and feed the correct input parameters, and interpret the

output - hence willingness to learn is an important aspect. The benefit of a output in the format

of a contingency plan is that it is easy to interpret. The plan contains information about what

bids the user should place at given points in time, determining both price and volume for each

trade. The most desirable case would still be to couple the model with the folders containing

the correct market information, excluding the risk of human error.

In addition, there are also some long-term opportunities that an optimization model contributes

to. As the traded volumes in Elbas increases, with a higher frequency of trades, it becomes more

of a challenge to keep trading by experience as operators do today, as the decisions become less

trivial due to increased complexity and large amounts of data to interpret. In such a case, having

already implemented an optimization model with limited need of human interaction, the next

step into developing a trading robot is not far away. As this seems to be necessary in the future,

a market participant should rather be proactive and position one self beneficially. In that case,

the continuous costs related to Elbas participation will even decrease from today’s situation, as

less human interaction is needed.
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How the Model Adresses the Real World Problem

As today’s participation in Elbas is at a minimum, and with a cost minimizing objective, any

increased profit above marginal cost contributes to extra gain respective of today. The model

developed in this thesis is a heuristic approach to the original problem, creating possible sub-

optimal policies as both bid blocks and production blocks are aggregated, and all dimensions

discretized. Though this restricts the action space, i.e. the theoretically optimal decisions, the

model provides decision support improving today’s situation significantly. Moreover, trades

often concern several consecutive hours of production to cover start and stop costs of the gener-

ator, so aggregating production blocks into 6 hour blocks is not far from what is actually done

in the original problem.

The model in this thesis has an incentive for purely arbitrage trading up until the close of each

production hour. This clearly distinguishes from how trading in Elbas is done today. Though

this model might over-estimate the arbitrage opportunities with respect to what volumes are

possible to trade at the price paths simulated, the fact that the model suggest to trade at all

indicates that the prices exceeds marginal cost, i.e. is profitable to carry out. A premium above

marginal cost should be possible to obtain, of which increases today’s profits.

While this model is developed based on the hydro power plant (HPP) Søa in TEs portfolio, the

same modelling procedure can be generalized for similar power plants. This model considers

only a part of a portfolio, but with the objective of being a first step towards holistic perspective.

In order to account for the entire portfolio, a similar model must be built for all its constituents

separately. This will provide a heuristic solution to the portfolio.

6.2 Conclusion

Traditionally, Elbas has been a market with low frequencies of trade, and the volumes traded

have not been considered attractive for a market participant with low volatility in production

capacities. Though there exists an opportunity to profit, even from small volumes, the initial

investment in time and human resources to develop tools for optimal bidding strategies, has

made the threshold to enter the Elbas market too high for many market participants with flexible

energy sources (appendix B).

This thesis is a contribution to the field of power production and trading, investigating the
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opportunities to model the intraday market as a multisequential decision problem. The market

today is quite different from what is expected in the future, but early research makes it possible

for participants to be proactive. At the time of completion of this study, a joint initiative to

integrate large parts of Europe into a joint intraday market, is about to go live. The objective

is to ensure better liquidity, market efficiency and a more secure power supply. By introducing

high price areas to the market, flexible power producers with low marginal costs of production

face an opportunity to gain, an opportunity this thesis investigates.

This study develops a mathematical optimization model for the bidding problem in Elbas, treat-

ing each of the 24 production periods as products subject for trade in continuous double auc-

tions. Aggregation of 6 production hours into a production block is utilized to handle the di-

mension sizes of state, action and outcome spaces. The model also considers production costs

associated with the power plant. The problem is modeled as a MDP, applying SDP to construct

an exact solution to the aggregated version of the original problem.

Ideally, the model developed in this study would have been able to solve the original problem

to optimality. However, modelling choices are made as a trade-off between tractability and

accuracy. The study discovers how the number of production hours makes the dimensions of

the bidding problem in Elbas grow exponentially, which confirms DP theory. Aggregation of

production hours is done, so that the number of products the model evaluates decreases from

24 production hours to 4 production blocks. It is argued that this not necessarily is a too coarse

time resolution, due to the common use of block bid. However, evaluating valid upper and

lower bounds of the model must be conducted before one can conclude. The main challenge

of aggregation is discussed in section 5.4.3, which concludes that aggregated production blocks

introduce the possibility of infeasible decisions for certain production hours within a production

block. An adjustment heuristic must be implemented to ensure that operators do not conduct

infeasable trades.

The stochastic price process utilized in this study is assumed to be correct, hence all bids placed

according to the price model will be accepted. The stochastic model does not face any uncer-

tainties related to being accepted in the market, and will always have the opportunity of up-

or down regulation before the close. The only uncertainty is related to what market prices the

model expects for future trades, which overcomes the risk of high production costs. This is

evident from policy analysis, where the model tends to carry out arbitrage trading, before it
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suggest a final production at the close that is in relation to production costs.

This study presents a first step to provide decision support for bidding in Elbas, where more ac-

curate market dynamics are in focus. It is natural to question whether DP is a suitable optimiza-

tion approach for the bidding problem in Elbas, as the curses of dimensionality is a challenge

when developing the model within that framework. However, the main objective of this thesis

is to emphasize that Elbas is a continuous auction, not having to make all decisions at only one

or two points in time. As traditional scenario trees will explode when increasing the number of

time steps, the benefit of DP becomes more evident. Section 6.3 elaborates on extensions to the

model presented here, which still are within the DP framework.

91



6.3 Future Research

The master thesis opens new doors into different directions of research. Some suggestions for

continuations of the study are presented below. Some limitations have already been pointed

out in the thesis. This section aims at pointing out limitations and challenges and suggests the

first steps to consider in a research continuation. It suggests how the optimization model can

account for infeasibility when disaggregating, as an alternative to the adjustment heuristic found

in this thesis. In the case of bound analysis, methods are suggested to tighten the upper bound.

Moreover, modelling different levels of discretization and aggregation, and handling curses of

dimensionality, are discussed. At last, the handling of stochasticity is discussed.

Heuristics

The challenge introduced by the utilization of average capacity states, is that the model may

suggest infeasible decisions. There are several ways one could approach this issue. Firstly,

one could develop a robust heuristic that optimizes while accounting for the bottlenecks in

the original problem. Namely, a model that never exceeds any of the capacity constraints after

disaggregating the block. For instance, the two products within the block with the least potential

to up- and down-regulate make up the two new capacity states, rather than the average capacity

level utilized here. This would implicate introduction of an additional state variable, and hence

increase the state space and conflict with the curses of dimensionality.

Since the number of states is already a challenge in the stochastic dynamic program, introduc-

ing more would incentivice the investigation of other optimization techniques. Two heuristic

approaches that are less sensitive than the SDP to increasing state space are ADP or SDDP(see

section 3.5). These methods are not exact, but utilizes simulation to investigate a desirably rep-

resentative set of scenarios through multiple simulations. With a robust, but valid, method of

this kind, there is a great chance that both the upper and lower bounds are weak.

A difference between this method of an additional state variable and the one where the infeasible

solution is modified by an adjustment heuristic, is that this model provides feasible solutions

straight away. There is a direct link between suggested actions and the performed actions, and

hence future opportunities are weighted more realistically. The latter is a desired property.

However, the robust modelling may create weak bounds due to the conservative utilization of

resources.
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Penalty and Moderate Relaxation

It can be tough to find a tight gap. In general, one strives towards finding a method that is com-

putationally manageable. One can find a tighter UB by moderating the information relaxation

(see section 3.6). For instance, a method of revealing information regarding only one or a few

steps ahead may provide a smaller violation of constraints. A method utilized by Nadarajah and

Secomandi (2017) can be investigated. Namely, a method allowing a one step look-ahead, re-

vealing information one step- before it is known. After relaxing constraints, a method to tighten

the bound is to penalize the benefit of additional information.

Impact of Time Resolution

Moreover, an interesting direction for future research can be to analyze how to solve the prob-

lem with a different time resolution. In order to extract benefits from periods that deviate from

the average value, one would need a model with more fine-meshed time resolution. It could

entail a higher frequency of decision making or product blocks containing less products. The

latter is more difficult, due to the exponential growth in state space associated with it. It could

be interesting to analyze if ADP or SDDP are suitable under this moderated aggregation. It

may be an important part of the future research to analyze the trade-off between tractability

and accuracy when developing models. One of the positive sides that comes from finer resolu-

tion is that the infeasibility associated with average state values decreases, and hence smaller

adjustments must be made.

6.3.1 Stochasticity

The stochastic price model found by Bovim and Næss (2017) is assumed to be a good repre-

sentation of the willingness to pay in the market. It is built from a set of assumptions of which

some, but far from all, literature agree upon. For instance, the correlation between Spot and

Elbas prices. If there are weaknesses in the price model, it will constrain the possible gain from

utilizing the optimization tool. In future research, one should strive towards a more comprehen-

sive study of the underlying market price process.

Moreover, an interesting point to investigate is the potential to discretize the state variables of

capacity and price differently. Are the four levels of capacity the most suitable ones? What is

the gain from having one or several more levels, compared to the downside? How does it apply

to prices?
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Market Depth

A limitation of the model is that is does not differentiate what volumes one can trade at a

given price. One can choose what volume to trade, at the given market price level. Under the

assumption of high liquidity this holds, but otherwise, unrealistic trades may be initiated by the

model. In a continuation of this model one could wish to specify how the price changes with

different volumes.

Market Demand and Bid Acceptance

The price model is developed to model the actual willingness to pay. Without information about

whether the market is short or long, it must, somehow, be accounted for what type of market it

is. It is modelled here that the participant can place bids according to the price level and have

them accepted. In order to model the market demand in a future research, a binary state variable

based on a stochastic process could be utilized.

The price model serves the purpose of modelling the price level in the market. As modelled in

this thesis, there is a spread between the sell and buy prices. Moreover, the participant could

choose whether to up- or down-regulate the generator, depending on what is found to be more

profitable, in expectation. When uncertainties of bid acceptance are introduced, the main dif-

ference from the existing model is that the participant does not fully control what new capacity

level, It+1, to proceed to. The direction of change in remaining capacity, ∆I, is then forced by

external factors, even though the volume is still a matter of choice to be optimized.

This matter of choice could be replaced by a state variable containing information about what

bids the market participant is likely to get accepted. It could model whether the market is

short or long. It would introduce a lower level of controllability from the user side, and hence

also be a more realistic model. The state variable could either be a stochastic process, or a

process evolving as a function of other states and parameters in the system. Introduction of this

additional market stochastic would lead to an increasing state space, and the dimensional curse

is again an issue to work around.

The process modelling probability of bid acceptance could be modelled as another stochastic

process, independent of the rest of the system. Otherwise, it could be modelled as a function of

other factors, if one analyzed tendencies in the market. These factors are likely to be linked to

price, water value etc. In a case where additional exogenous information arrive, the eq. (32) is
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extended to

Wt = (Pt ,WM
t−1) (55)

Where Pt still represents the exogenously given price process, whilst WM
t describes the market

status (long, short) associated with the probabilities of bid acceptances.

The market status either indicates that the market is short or long. In practice it can also be

neutral, but this is omitted here for simplicity.

WM
t = [δM,Sell

t ,δ
M,Buy
t ] (56)

Where the market is long, short or neutral:

δ
M,Sell
t +δ

M,Buy
t ≤ 1 (57)

given that δ
M,i
t is a vector of Ht elements where each element δ

M,i
t,h ∈ {0,1}. Thus,

δ
M,Sell
t,h =

1 if marked is short (power deficit) in product hour h ∈Ht as seen from time t ∈ T

0 otherwise

(58)

δ
M,Buy
t,h =

1 if marked is long (power surplus) in product hour h ∈Ht as seen from time t ∈ T

0 otherwise

(59)

Recall from fig. 15 that the exogenous information arrives after making the decision Xt , and

before arriving at the new state. The information in this case regards both the new market price

levels for step t +1 and the market demand status regarding the current step t. A difference is

that the exogenous information would also have an impact on what post-decision state one end

up in, as it is no longer purely a choice.

The model is based on the assumption that the participant can optimize over its own production

plan and disregard uncertainties about having their bids accepted, as long as it corresponds with

the price levels given by the price model. This point of view can be argued based on the origin

of the price model, namely that it represents the willingness to trade. The difference between

these two is mainly the ability to profit purely from trades, regardless of production capacity. In

the last perspective the possibility of the optimal bids not being accepted is present.

In conclusion, there are numerous interesting directions that a future research can proceed in.

A natural first step would be to implement the adjustment heuristic in order to get a feasible

LB.
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Appendices

A Compact Mathematical Model

State space:

Pt ∈ Pt (60)

It ∈ It (61)

St : Pt× It (62)

Post-decision state:

SX
t : It (63)

Decisions:

Xt ∈ Xt (64)

Exogenous information:

Wt ∈Ωt (65)

Transition function:

St+1 = SM(St ,Xt ,Wt+1) (66)

Contribution function:

Ct(St ,Xt) = PS
t •XS

t −PB
t •XB

t −
(
CAC(Qt+1(Xt)

)
•Qt+1(Xt)−CAC(Qt

)
•Qt

)
−Css ·αt,t+1

(67)

Value function:

Vt(St) = max
Xt∈X

(
Ct(St ,Xt)+EWt+1[Vt+1(St+1|St ,Xt ,Wt+1)]

)
(68)

Bellman’s equation:

V ∗0 = max
π∈Π

Eπ
{

∑
t∈T

Cπ
t (St ,Xπ

t (St))|S0
}

(69)
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B From the Industrial Partner, TrønderEnergi

TrønderEnergi Kraft AS har i lengre tid hatt et tett samarbeid med NTNU og dette er ett samar-

beid som er valgt og nedfelt i strategien til morselskapet TrønderEnergi AS.

Nærheten til NTNU og andre undervisningsinstitusjoner forenkler denne type samarbeid mel-

lom vår bedrift og dette tilfellet NTNU, ved institutt for Industriell Økonomi og Teknologi

ledelse.

I dette tilfellet har veiledningen vært gjort av undertegnede som jobber innenfor gruppen som

har ansvaret for operativ kjøring av langtidsmodeller for produksjonsplanlegging, det vil si pris-

ing(fastsettelse av vannverdi) i TrønderEnergi Kraft AS.

Oppgaven som det har blitt jobbet med er �Budgivning i Elbas-markedet�. Til nå har bud-

givingen i dette markedet vært gjort på en enkel måte internt og formålet med oppgaven var

å undersøk om denne oppgaven kan løses ved bruk av stokastiske optimeringsmodeller som

bruker markedsdata og interne data fra oss. Hensikten med dette er å øke egen inntjening på

egen agering i Elbas-markedet, samt forberede oss for en mer volatil framtid som vi tror kom-

mer med ytterligere økning i kapasiteten på fornybar produksjon.

En av hensiktene bak det strategiske valget som TrønderEnergi AS har gjort er å gi studen-

ter relevant og bransjespesifikke problemstillinger knyttet til kraftbransjen. Oppgaven det har

blitt jobbet med representerer en helt annen retning knyttet til budgivning i Elbas enn den som

benyttes i dag. Innsatsen som blir lagt ned av studentene, sammen med veiledningen som de får

fra sine respektive ressurspersoner innenfor NTNU og SINTEF miljøet gir oss verdifull innsikt i

problemet. Problemet er ganske komplekst og den kombinerte prosjektet/master i dette tilfellet

kan betraktes som en grundig og vel gjennomført jobb med den hensikt å lage en metodikk på

budgivning i Elbas med stokastiske optimeringsmetoder. Oppgaven kan også betraktes som en

mulighetsstudie som kvalitet og omfang med god margin overgår det som ville vært muligheten

å gjøre innenfor rammen av de ressursene vi har tilgjengelig internt.

Kompleksiteten i både prosjekt- og masteroppgaven har også vært av en slik art, at studentene på

ett tidspunkt oppnår ett kunnskapsnivå hvor de gir opplæring av undertegnede. Kort sagt er det å

veilede studentoppgaver enn vinn-vinn situasjon for TrønderEnergi AS, men som krever innsats

og dedikasjon fra alle parter involvert i prosessen for å kunne høste denne gevinsten.
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Med hilsen

Gunnar Aronsen

Senior kraftanalytiker

Trønder Energi Kraft AS

Avd. handel

C Space Size of Original Problem

Table 12 show the size of the original problem. The first row describes bid blocks t ∈ T . The

last row for the three columns on the right is the full size of the respective state spaces, and is

a sum of the state spaces in steps t. The third column describes rh=t−(T−H), and is written as r′

to save space in the table. The size of rh=t−(T−H) is explained in section 4.5.1.
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Table 12: State space calculation

t Ht I′t r′ P′t It Pt St

1 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

2 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

3 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

4 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

5 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

6 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

7 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

8 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

9 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

10 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

11 24 4 - 5 2.81475 ·1014 5.96046 ·1016 1.67772 ·1031

12 23 4 2 5 1.40737 ·1014 1.19209 ·1016 1.67772 ·1030

13 22 4 2 5 3.51844 ·1013 2.38419 ·1015 8.38861 ·1028

14 21 4 2 5 8.79609 ·1012 4.76837 ·1014 4.1943 ·1027

15 20 4 2 5 2.19902 ·1012 9.53674 ·1013 2.09715 ·1026

16 19 4 2 5 5.49856 ·1011 1.907355 ·1013 1.0458 ·1025

17 18 4 2 5 1.37439 ·1011 3.8147 ·1012 5.24288 ·1023

18 17 4 2 5 34359738368 7.62939 ·1011 2.62144 ·1022

19 16 4 2 5 8589934592 1.52588 ·1011 1.31072 ·1021

20 15 4 2 5 2147483648 30517578125 6.5536 ·1019

21 14 4 2 5 536870912 6103515625 3.2768 ·1018

22 13 4 2 5 134217728 1220703125 1.6384 ·1017

23 12 4 2 5 33554432 244140625 8.192 ·1015

24 11 4 2 5 8388608 48828125 4.096 ·1014

25 10 4 2 5 2097152 9765625 2.048 ·1013

26 9 4 2 5 524288 1953125 1.024 ·1012

27 8 4 2 5 131072 390625 51200000000

28 7 4 2 5 32768 78125 2560000000

29 6 4 2 5 8192 15625 128000000

30 5 4 2 5 2048 3125 6400000

31 4 4 2 5 512 625 320000

32 3 4 2 5 128 125 16000

33 2 4 2 5 32 25 800

34 1 4 2 5 8 5 40

- - - - - 3.28387 ·1015 6.70552 ·1017 1.86315 ·1032
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Håkon Kongelf and Kristoffer Overrein. Coordinated multimarket bidding for a hydropower

producer using stochastic programming. Master’s thesis, Norwegian University of Science

and Technology, 2017.
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Sara Séguin, Stein-Erik Fleten, Pascal Côté, Alois Pichler, and Charles Audet. Stochastic short-

term hydropower planning with inflow scenario trees. European Journal of Operational

Research, 259:1156–1168, 2017.

Caroline Tandberg and Signy Elde Vefring. The linear decision rule approach applied to the

hydrothermal generation planning problem. Masters thesis, Norwegian University of Science

and Technology, June 2012.

TrønderEnergi. Om trønderenergi, 2017. URL https://tronderenergi.no/om-tronderenergi/fakta-

om-tronderenergi. Last visited 2017-11-12.

TrønderEnergi. Søa, 2018. URL https://tronderenergi.no/produksjon/kraftverk/soa. Last visited

2018-05-04.

Ivar Wangensteen. Power System Economics - the Nordic Electricity Market. Fagbokforlaget,

second edition edition, 2012. p. 80-85.

XBID. Cross-border intraday: Questions & answers, March 2018. URL https://

www.nordpoolspot.com/globalassets/download-center/xbid/xbid-qa final.pdf. Last visited

08.06.2018.

Yangfang H. Zhou, Akan Scheller-Wolf, Nicola Secomandi, and Stephen Smith. Man-

aging wind-based electricity generation in the presence of storage and transmis-

sion capacity, March 2017. Available at SSRN: https://ssrn.com/abstract=1962414 or

http://dx.doi.org/10.2139/ssrn.1962414.

Jikai Zou, Shabbir Ahmed, and Xu Andy Sun. Stochastic dual dynamic integer programming.

Mathematical Programming, Mar 2018. URL https://doi.org/10.1007/s10107-018-1249-5.

105

http://www.statnett.no/en/Market-and-operations/the-power-market/Elspot-areas--historical/
http://www.statnett.no/en/Market-and-operations/the-power-market/Elspot-areas--historical/
http://www.statnett.no/en/Market-and-operations/the-power-market/Balance-settlement/
http://www.statnett.no/en/Market-and-operations/the-power-market/Balance-settlement/
https://tronderenergi.no/om-tronderenergi/fakta-om-tronderenergi
https://tronderenergi.no/om-tronderenergi/fakta-om-tronderenergi
https://tronderenergi.no/produksjon/kraftverk/soa
https://www.nordpoolspot.com/globalassets/download-center/xbid/xbid-qa_final.pdf
https://www.nordpoolspot.com/globalassets/download-center/xbid/xbid-qa_final.pdf
https://doi.org/10.1007/s10107-018-1249-5

	Glossary
	Abbreviations
	Introduction
	The Power Market and Power Production
	Deregulated Markets and Market Coupling
	Market Areas and Power Prices
	Roles and Responsibilities

	The Spot Market
	Elbas - The Intraday Market
	The Market Structure
	Bidding Strategies

	The Regulating Power Market
	Power Production and Resource Management
	Hydro Power Production
	TrønderEnergi and the Industrial Case


	Literature Review
	Power Production and Trading
	Resource Allocation
	Uncertainties
	Price Modelling
	Optimization Models
	Dynamic Programming
	The Curses of Dimensionality
	Dynamic Programming Approaches

	Value Function and Bounds

	Problem formulation
	Notation
	Problem Description
	Assumptions
	Modelling
	The Double Time Dimension
	The Resource Allocation Problem
	Market Prices

	Mathematical Model
	State Space
	Decision Variables
	Exogenous Information Process
	Transition Function
	The Contribution and Objective Function
	The Three Curses of Dimensionality
	Aggregation

	Solution Method

	Computational Study
	Software Description
	Test Instances
	The Effect of Spot Prices and Water Values
	The Effect of Initial Spot commitment
	The Resulting Test Instances

	The Contingency Plan
	Bounds
	Lower Bound
	Upper Bound
	Adjustment Heuristic
	Analyzing the Properties of the Bounds

	Policy Trends

	Concluding Remarks
	Discussion
	Conclusion
	Future Research
	Stochasticity


	Appendices
	Compact Mathematical Model
	From the Industrial Partner, TrønderEnergi
	Space Size of Original Problem
	References

