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Abstract 8 

This paper presents model-based fault detection, fault isolation, and fault-tolerant control schemes 9 

focused on blade pitch systems in floating wind turbines. Fault detection, isolation, and 10 

accommodation techniques are required to achieve high power capture efficiency and structural 11 

reliability in floating wind turbines. Faults in blade pitch systems should be detected at an early stage 12 

to prevent catastrophic failures. To detect faults of the blade pitch systems, a Kalman filter is designed 13 

to estimate the blade pitch angle of the system. The fault isolation algorithm is based on inference 14 

methods and capable of determining the fault type, location, magnitude and time. The fault-tolerant 15 

controller based on a reconfiguration block with a virtual sensor and shutdown mode controls the 16 

floating wind turbine to avoid unexpected external loads. The proposed methods are demonstrated in 17 

case studies with stochastic wind and wave conditions that considering different types of faults, such 18 

as biases and fixed outputs in pitch sensors and stuck pitch actuators. The simulation results show that 19 

the proposed methods can detect and isolate multiple faults effectively at an early stage. Additionally, 20 

the effectiveness of the fault-tolerant control systems for different load cases for single and multiple 21 

fault conditions is verified by numerical simulations. 22 
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FTC fault-tolerant control 29 
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NC nominal PI control 33 

NREL National Renewable Energy Laboratory 34 
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TFI time of fault isolation 42 

TFTC time of fault-tolerant control 43 

1. Introduction 44 

The wind energy industry has experienced rapid growth because of environmental issues and the 45 

demand for sustainable solutions. Offshore wind technology in particular has experienced rapid 46 

development in recent years, with an annual cumulative global installed capacity of 12.105 GW by the 47 

end of 2015 [1]. Historically, most wind turbines were installed in shallow water on bottom-fixed 48 

substructures. Currently, offshore wind farms are moving further into deeper water at an average 49 

distance of 43.3 km [2] from the shore to capture the high wind energy density. In deeper water, 50 

floating wind turbines are more cost effective than bottom-fixed wind turbines. Development projects 51 

for floating wind turbines are emerging, including the Hywind 2 project in Scotland and the 52 

WindFloat Atlantic and Pacific project in the USA. 53 

Floating wind turbines operate in stochastic ocean environments, such as turbulent winds, irregular 54 

waves, and significant disturbances, and they might experience unexpected failures that could lead to 55 

system interruptions and cause huge economic losses. Therefore, maintenance and optimal operations 56 

of floating wind turbines become critical issues because of limited access. The reliability of an 57 

offshore wind turbine is even more important because maintenance costs account for 30% of the 58 

overall cost of energy [3]. Faults in wind turbines occur in the sensors, actuators, and system 59 

components, and faults with the potential to propagate to turbine failures change the system behavior, 60 

the operational safety, and the power production efficiency of the wind turbines. Consequently, wind 61 

turbine failure rates should be reduced to ensure reliability and decrease downtime. 62 

A nominal controller may be inefficient and unstable under fault conditions. To supervise potential 63 

faults in sensors, actuators or other components, different control techniques are needed. These 64 

methods are called fault detection and isolation (FDI) and fault-tolerant control (FTC) techniques. The 65 

FDI technique can provide the operator with valuable information on the type, location, and 66 

magnitude of the fault. The FTC is a dynamic system that can compensate for sensor and actuator 67 

faults by interacting with any pre-existing nominal controllers to cancel the fault effects on the system. 68 

The FTC consists of reconfiguration blocks that are linked to the nominal controller in fault 69 

conditions. The FDI and FTC techniques use real-time sensor data to clearly detect, isolate and 70 

accommodate the wind turbine faults to improve their reliability and reduce the cost of repairs. 71 

The FDI and FTC of wind turbines have been subjected to intensive research. FDI techniques are 72 

based on model-based methods and signal-processing methods. For the model-based methods, the 73 

system model could be mathematical or knowledge-based. Faults are detected based on residual 74 

generation by state variables or parameter estimations. Chen et al. [4] and Wei et al. [5] proposed 75 

model-based FDI schemes using a diagnostic observer for the pitch system and drive train faults to the 76 

benchmark model. A diagnostic technique for imbalance fault identification based on a probabilistic 77 

neural network was presented by Malik et al. [6]. For signal-processing-based fault detection, 78 

mathematical or statistical operations are performed on the measurements. Fault detection and 79 

isolation schemes applying data-driven design methods to avoid difficult modeling were used by 80 

Dong et al. [7]. Santos et al. [8] presented a multi-sensory system combined with a data-mining 81 

solution for fault diagnosis and classification using support vector machines in wind turbines. Ghane 82 

et al. [9] and Feng et al. [10] demonstrated statistical change detection for a gearbox model of a wind 83 

turbine using frequency analysis. 84 
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Fault-tolerant control methods can be divided into two categories: passive and active FTC methods 85 

[11]. In passive FTC systems, the controllers are fixed control systems predetermined to be robust 86 

against faults and uncertainties throughout the entire system. Passive FTC methods are optimized 87 

while satisfying a specific fault scenario, which implies that it has limited fault-tolerant capabilities 88 

for various faults. Additionally, this approach does not need FDI schemes and controller 89 

reconfiguration. Active FTC methods react to system component failures by reconfiguring control 90 

references so that acceptable performance and stability of the system can be maintained. An active 91 

FTC relies on an FDI scheme, which should feed real-time information to accommodate the faults by 92 

reconfiguring control references in the system. Shi and Patton [12] proposed an active fault-tolerant 93 

control approach based on an extended state observer to an offshore wind turbine model. By using a 94 

bank of virtual sensors and actuators, Seron et al. [13] suggested a FTC scheme that manages sensor 95 

and actuator faults. Fan et al. [14] proposed an FTC scheme that is a combination of model reference 96 

adaptive control with neural network compensation. Vidal et al. [15] presented a disturbance 97 

compensator for controllers to estimate actuator faults and design fault-tolerant controllers. 98 

Fault occurrence rates and their effects are an important factor in the design of wind turbines. Carroll 99 

et al. [16] showed the results of an analysis determining the failure rates for the repair of modern 100 

offshore wind turbines and their sub-assemblies. According to this study, the blade pitch systems have 101 

the highest failure rates among the components and account for 13.3% of the total failures of wind 102 

turbines. The blade pitch system is critical for pitch-regulated variable-speed wind turbines, and the 103 

relevant faults change the aerodynamic load and power output immediately and thus affect the 104 

response of the tower and support structures. The main faults of the blade pitch system occur in the 105 

blade pitch sensors and actuators. These faults influence the control feedback and result in imbalanced 106 

loads on the rotor, shaft, and main bearings. The detection of faults allows for fast accommodation to 107 

avoid catastrophic long-term damage to the wind turbines. The effect of pitch system faults on turbine 108 

performance and platform motion in wind turbine components has been studied in recent years for 109 

specific fault scenarios [17]-[19]. 110 

This paper focuses on model-based FDI and FTC methods in the blade pitch sensors and actuators of 111 

a floating wind turbine model. Faults generated in blade pitch sensors and actuators can be detected 112 

by a Kalman filter based on residual generation and an appropriate evaluation method. The simple 113 

cases of faults, such as bias (PSB) and fixed values in pitch sensors (PSF) and stuck in pitch actuators 114 

(PAS), are predetermined by the fault magnitude, type and occurrence time to verify the feasibility of 115 

the FDI method. The FTC for the fault scenarios considered in this paper provides a complete solution 116 

for immediately accommodating faults. The objectives of this work are as follows: 117 

- Present detection and isolation strategies for different types of faults that might occur in the blade 118 

pitch system; 119 

- Design an active fault-tolerant controller to achieve satisfactory performance when all control 120 

components are back to functioning normally after a fault occurs; and 121 

- Verify the effectiveness of the proposed FDI and FTC schemes under blade pitch system faults by 122 

comparing the structural load, response, and safety of floating wind turbines and considering different 123 

wind and wave conditions. 124 

This paper is organized as follows. Section 2 describes the floating wind turbine model, baseline 125 

controller, blade pitch system and faults. Section 3 introduces the fault detection, fault isolation, and 126 

fault-tolerant control schemes for the blade pitch system. Section 4 describes environmental load 127 

cases, such as waves and aerodynamic loads, acting on the floating wind turbine. Section 5 presents 128 
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the simulation results for the fault detection and isolation technique according to a residual method 129 

and fault decision and accommodation according to a fault detection criterion. Section 6 provides the 130 

conclusions. 131 

2. Methodology 132 

2.1. Floating wind turbine concept 133 

A floating wind turbine is modeled as a rotor, nacelle, tower, floater, and mooring system. The model 134 

in this paper is based on the variable-speed pitch-regulated NREL 5 MW offshore wind turbine model 135 

[20] supported by the spar buoy floater (OC3-Hywind) [21] and three catenary mooring lines as 136 

shown in Figure 1. The specifications of the NREL 5 MW reference wind turbine are provided in 137 

Table 1. Additionally, properties for the OC3-Hywind floater are listed in Table 2. 138 

2.2 Fully coupled numerical model 139 

The dynamic behavior of the floating wind turbine model is simulated with the Simo-Riflex-Aerodyn 140 

software (SRA) [22], which is an aero-hydro-servo-elastic code for fully coupled nonlinear time-141 

domain numerical simulations of offshore wind turbines while simultaneously considering the 142 

aerodynamics, hydrodynamics, structural dynamics and mooring line dynamics with an control code 143 

for a proportional-integral (PI) pitch and a torque controller under various operational conditions. 144 

Models coded by JAVA are added to the SRA to account for the pitch actuator and sensor. Fault data 145 

in the blade pitch system are provided in the input file of the SRA to test the feasibility of the fault 146 

detection. 147 

2.3. Baseline controller 148 

The baseline control system includes two separate controllers for regulating blade pitch angles and 149 

generator torque. The operational region is divided into below-rated and above-rated regions of wind 150 

speed. Below the rated wind speed within low wind speeds, the control strategy is to capture the 151 

maximum power by adjusting the generator torque and maintaining the optimal tip speed of the blades 152 

[20]. Within this region, the blade pitch controller is not active and maximum power is achieved by 153 

adjusting the generator torque and then the rotation speed. 154 

Above the rated wind speed, the blade pitch system controls the blade pitch angle to keep 155 

aerodynamic loads within specified limits by producing a rated power output at a constant rotor speed. 156 

A constant-torque variable pitch controller is used for floating wind turbines to improve the dynamic 157 

response of the system and reduce the motion of the floater response to stability issues [23] by 158 

modifying the gains of the controller [21]. A blade pitch reference is calculated based on the gain-159 

scheduled PI controller as a function of the generator torque error based on a constant-torque strategy 160 

[21] for floating wind turbines. 161 

2.4. Blade pitch system 162 

A commonly used blade pitch system consists of three identical independent pitch actuators and 163 

sensors with PI controllers. Regulating each blade pitch angle individually, a 2nd-order pitch actuator 164 

is modeled for the 5 MW wind turbine. Consider the blade pitch system that describes a blade pitch 165 

reference from the PI controller and the pitch angle measurement: 166 

Cninini  222   , i = 1, 2 and 3 (the blade number)                          (1) 167 
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where ζ is the damping ratio, ωn is the natural frequency of the actuator, and (˙) represents the time 168 

derivatives. The parameters are ωn = 11.11 rad/s and ζ = 0.6 [24]. Additionally, βi is the ith blade pitch 169 

angle, and βC is the blade pitch command. 170 

The recorded measurements must be accurate and reliable because the turbine monitoring and control 171 

are based on sensor data during wind turbine operations. A discretized control system that includes 172 

process and measurement noises are used in this paper. Process and measurement noises in a state-173 

space model of the blade pitch system described by Eq. (2) are zero-mean Gaussian white noises. 174 
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where x(t), u(t) and y(t) are the state vector, input vector and measurement vector by the blade pitch 178 

angle, respectively; and A, B and C are system matrices representing the state transition, input and 179 

measurement matrices, respectively. Uncertain disturbances are given, including the process noise 180 

vector w(t) and measurement noise vector v(t). This blade pitch system is observable, controllable and 181 

stable according to the observability matrix, controllability matrix, pole and Nyquist diagram from 182 

Chen [25]. 183 

2.5. Fault description 184 

According to the wind turbine reliability analyses [16], the most common faults occur in the blade 185 

pitch system. A fault occurring in the blade pitch system can influence the closed-loop control system 186 

and the dynamics of a wind turbine. The incorrect pitch of a blade resulting from faults causes 187 

asymmetrical forces on the blades and lead to unbalanced rotation in the rotor. Therefore, a fault 188 

occurring in the sensors and actuators can affect the system characteristics or lead to inoperable 189 

conditions that have resulted in hydraulic leakage, valve blockage or pump blockage [24]. There is a 190 

high possibility that a blade pitch system under multiple fault conditions in blades cannot perform a 191 

role of an aerodynamic brake properly while large wind loads are acting on the rotor. 192 

Faults of the blade pitch system are mainly categorized by the pitch sensor and actuator fault. To 193 

model the faults, the pitch actuator and sensor equations are updated. In this paper, three types of 194 

faults in the pitch sensor and actuator of the blade system can be considered: bias value (PSB), fixed 195 

output (PSF) in the pitch sensor and stuck actuator (PAS) as shown in Cho et al. [26]. PSB can be 196 

represented by a constant offset value that is added to the measurement from the sensor. PSF of the 197 

sensor retains the last measurement after fault occurrence. PAS is mainly caused by valve blockage 198 

which is mainly due to debris that could clog the valve in the flow in the hydraulic pitch actuator and 199 

represents one of the hazards announced by the fault analysis with a level of occurrence and severity 200 

by Esbensen and Sloth [24]. 201 

Faults to the blade pitch sensor and actuator frequently occur and result in the structural loading of the 202 



6 

 

turbine because of rotor imbalance, and they affect the stability of the floating platform. Other faults, 203 

such as hydraulic leakage and high air content in oil, can occur only by changing the natural 204 

frequency and damping ratio in the actuator. Therefore, these uncritical topics are not evaluated in this 205 

paper. 206 

3. Fault detection, fault isolation and fault-tolerant control methods 207 

Figure 2 shows the control procedure for a pitch-regulated wind turbine. The baseline controller 208 

regulates the wind turbine power production through blade pitch and generator torque control under 209 

normal operational conditions. The condition monitoring system with sensors measures the blade 210 

pitch angle, tower acceleration, and rotor speed. By using a fault detection and isolation algorithm, the 211 

system can detect, isolate, and accommodate faults at an early stage. Upon fault detection, the fault-212 

tolerant controller selects a remedial action based on the protection strategy. If the fault is tolerable, 213 

then it can be accommodated by a signal correction in the case of sensor faults. If the situation is 214 

intolerable and the wind turbine is not in a safe state, then the controller brings the turbine to a 215 

shutdown mode. 216 

3.1 Fault detection 217 

In fault detection, faults in a system and their detection time are determined. Model-based approaches 218 

detect faults by comparing the generated residual from the measured pitch angle and threshold. The 219 

basic methods for establishing and evaluating the residual are described in this section. Currently, 220 

observer methods are the main model-based approaches for detecting faults. In this paper, a Kalman 221 

filter, which is a classical method used in fault detection and other fields, is used. Figure 3 shows the 222 

basic structure of model-based fault detection. Based on the input command u(k) and measured output 223 

y(k), the states and measurements are estimated by an observer. By comparing the measured and 224 

estimated values, changes of a state are identified by a threshold. 225 

3.1.1 Observer design based on the discrete-time space model 226 

The discrete system is more suitable for numerical computing and employing an observer than the 227 

continuous system. The discrete-time state-space model of the blade pitch system with disturbance 228 

and faults in the pitch actuator and sensor can be transferred from the proposed system (2) where the 229 

Euler discretization approach is applied. 230 
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where Φ = I + AT , Ψ = BT and H = C. Here, Φ, Ψ, H, Γd, Γf, Ξd, and Ξf are known constant matrices 232 

in a discretized system. In addition, T is sampling time and fA(k) and fS(k) are the actuator and sensor 233 

fault vectors described in Cho et al. [26], respectively. 234 

The observer with a healthy case based on the Kalman filter method is designed as follows:  235 
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where )(ˆ),(ˆ kk yx  and K are the estimated state vector, estimated output vector, and Kalman gain 237 

matrix, respectively. 238 

3.1.2 Residual generation and evaluation 239 
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A residual r(k) is the difference between the measured and estimated values described as follows: 240 

)(ˆ)()( kykykr                                                                 (5) 241 

A residual energy J(k) is defined by the L2 norm [27], which is described by the root-mean-square 242 

(RMS) of the residual as follows: 243 
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Because the residual energy in fault cases includes fault information, the generated residual energy 245 

should be evaluated by fault detection logic. The residual determines the fault status by applying fault 246 

detection logic with threshold Jth. 247 

fault,)(

freefault,)(
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                                                            (7) 248 

The threshold is generated with bounded uncertainty. Hence, when the residual energy is less than this 249 

threshold, the fault-free state is indicated. Otherwise, the fault can be detected. The threshold design 250 

procedure using H∞ optimization and linear matrix inequality (LMI) was described in Cho et al. [26] 251 

with more details for the derivation. 252 

If the system is a fault-free state, the residual energy is expressed as 253 

drdd vzkrkJ min22
)()()( 


G                                              (8) 254 

where rd  (k) is a disturbance residual, Grd (z) is a disturbance transfer function, γmin is a minimum design 255 

parameter for a performance bound and δd is a measurement noise boundary. Grd (z) is defined in 256 

frequency domain and γmin is calculated according to LMI in a discrete-time system described in Cho 257 

et al. [26]. In addition, δd is defined by sensor resolution. 258 

Therefore, the threshold is set as follows: 259 

dthJ min
.
                                                                    (9) 260 

3.2 Fault isolation 261 

After a successful fault detection, the main challenge is fault isolation. Fault isolation means 262 

determining the type, location, and magnitude of a fault following detection. The fault isolation 263 

decision can be made after the residual generator has generated a detection alarm that indicates the 264 

occurrence of a fault as presented in Figure 3. This paper suggests a fault isolation algorithm based on 265 

a Kalman filter using inference methods [4][28]. 266 

Most wind turbines have a single pitch sensor in each blade. As shown in Figure 4 (a), PSF faults 267 

cannot be easily distinguished from PAS faults solely by measurements of the pitch angle. However, 268 

the nacelle yaw motions are completely different between the two faults illustrated in Figure 4 (b). 269 

The reason why nacelle yaw motions are different under PSF and PAS faults depends on whether the 270 

pitch actuators are still working or not. The blade is seized in the PAS case and cannot respond to the 271 

pitch command (control value). However, the blade can still pitch in the PSF case, but the pitch sensor 272 

gives a fixed value and the pitch command is affected by faults, which results in an oscillating 273 

irregular pitch angle with a large amplitude than PAS. This leads to a larger yaw motion under PSF, as 274 

shown in Figure 4. The pitch command from the pitch controller can be influenced by the difference 275 

between reference and measurement values that makes a pitch angle oscillate and consequently a 276 

wind turbine unstable that results in the unbalanced rotor. Alternatively, fault isolation can be 277 

conducted using measurements of nacelle yaw motions. 278 
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Figure 5 shows an algorithm for fault isolation using the single blade pitch angle and nacelle yaw 279 

angle measurements. Initially, the trend of the pitch measurement βi,k must be determined. If the faulty 280 

sensor keeps outputting βi,k+1 - βi,k = 0, then the algorithm decides that the fault is PSF or PAS. Then, 281 

by comparing the standard deviation of the nacelle yaw angle in normal σYaw,n and fault conditions 282 

σYaw,f, the two faults can be differentiated. Once σYaw,f is greater than σYaw,n, then the algorithm makes a 283 

decision of PSF in the pitch system. Otherwise, the algorithm indicates that there is PAS in the pitch 284 

system. To identify PSB, the estimation error should be determined, which can be performed by the 285 

residual of the pitch angle from the residual generator. If the fault estimation errors are bounded in a 286 

certain range δ, then the algorithm makes a decision that the fault is a PSB. 287 

In the verification procedure, 300 simulations of each fault case were conducted with a duration of 288 

300 s to evaluate the algorithm of fault isolation. The location, magnitude and time of the faults were 289 

randomly generated. Once a fault alarm occurred, this algorithm isolated 99% of these faults after 290 

11.5 s. Then, the algorithm makes a fault isolation decision regarding the faults generated from Figure 291 

6. PSF and PAS can be distinguished by the standard deviation values of the nacelle yaw angle σYaw. 292 

3.3 Fault-tolerant control 293 

If the sensors and actuators experience faults or are no longer available, then the controller cannot 294 

provide the correct control actions for the system. To minimize the potential risks of unexpected faults, 295 

new control techniques are needed to manage the faulty system before maintenance is conducted. In 296 

this paper, a fault-tolerant control (FTC) scheme is suggested that includes a reconfiguration block 297 

and a nominal PI controller after successful fault isolation. The main concept underlying this FTC 298 

scheme is to reconstruct the system output yc to replace the faulty measurement yf. Because faulty 299 

measurement yf cannot be used with the existing controller, a configuration block must be found that 300 

generates a suitable signal yc from yf and uf. Figure 7 shows the block diagram of the control 301 

reconfiguration scheme for sensor and actuator faults. 302 

In the scheme, virtual sensors [11] are used to represent the main part of the reconfiguration block for 303 

the FTC to conduct signal corrections. The virtual sensor can be used to calculate state vectors by 304 

replacing the measurements from the faulty system. The virtual sensor is defined by the state-space 305 

model as follows: 306 
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where P is a design parameter, and for P = 0, only observed values are used; and (v) represents values 308 

in the virtual sensors. The matrix of Hv is set as equal to measurement matrix H in Eq. (3). If the fault 309 

detection scheme detects any faults in the pitch sensor of the ith blade, the value in Hv allocated by the 310 

faulted sensor has been replaced by 0 in Hf which means that this sensor is no longer available 311 

anymore. 312 

Figure 8 shows the reconfiguration with the virtual sensor after faults. The sensor faults are reflected 313 

by the matrix Hf. The virtual sensor estimates the state of the faulty system fx̂  and replaces the 314 

faulty system output. This system output yc is improved by using the available sensor values and 315 

observing only the difference between the nominal and the faulty output. If this virtual sensor works 316 

well, then the state of the virtual sensor xv is equivalent to the state of the nominal system x. Hence, 317 
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the controller recognizes the same system and reacts in the same way as before.  318 

Actuator faults are critical to the safety of wind turbines when leaving the pitch actuator inoperable 319 

regardless of the controller command as shown in Esbensen et al. [24]. Then, the blade cannot be 320 

pitched effectively at the large aerodynamic torque above the nominal value. Therefore, pitch actuator 321 

faults require a rapid shutdown of the wind turbine as a standard from Jonkman et al. [20]. Once PAS 322 

faults are isolated, a safe and fast shutdown of the turbine could be reconfigured to continue power 323 

production in response to other faults. 324 

4. Load cases 325 

Floating wind turbines are exposed to a variety of loads in their lifetime. Critical environmental 326 

conditions, such as waves, wind gusts, turbulence, and sudden wind direction shifts, are another 327 

source of transient loading. For floating wind turbines, appropriate wave conditions must be combined 328 

with the wind conditions. 329 

The floating wind turbine operates under variable wind conditions, such as a stochastic wind model 330 

that present realistic wind and wave loads. The wind model is based on the IEC 61400-3 design code 331 

[31]. A turbulent wind field Uw (x, y, z, t) is commonly modelled by a mean wind and a fluctuating 332 

component as described by 333 

Uw (t) = Um + Uf (t)                                                              (11) 334 

where Um is the mean wind speed represented as the normal wind profile model (NWP) and Uf is the 335 

fluctuating wind for the normal turbulence model (NTM). The turbulent wind Uw is modeled using 336 

Turbsim [29] to generate realistic turbulent wind fields according to the Kaimal turbulence model 337 

including the turbulence intensity with IEC Class C. The turbulence intensity is a function of the wind 338 

speed at the hub height [30][31]. The wave condition is modeled by the JONSWAP wave spectrum. 339 

The significant wave height (Hs) and peak period (Tp) are set based on their correlation with wind 340 

speed for the Statfjord site in the northern North Sea. 341 

The load cases used to study the dynamic response of the floating wind turbine are given in Table 3. 342 

Four independent simulations for turbulent wind and irregular waves were conducted by representing 343 

the mean value and standard deviation of the dynamic response for one-hour ensembles. 344 

5. Simulation results and discussion 345 

In this section, a series of simulation results are presented to investigate the performance of the 346 

proposed FDI and FTC schemes. Simulations of the wind turbine subjected to a stochastic wind speed 347 

are conducted under three different fault conditions: PSB, PSF, and PAS on a single blade and 348 

multiple blades. 349 

5.1 Fault detection, fault isolation, and fault-tolerant control with a single fault 350 

5.1.1 Fault detection and isolation results 351 

Faults in the blade pitch system influence the structural dynamics of the wind turbine. Faults in 352 

actuators and sensors can be detected effectively by the residual energy and the threshold. When the 353 

residual energy exceeds the threshold, a fault alarm is set to 1, which means that a fault is detected. 354 

The residual energy should be normalized to adjust the scale factor from the data. The normalized 355 
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residual energy JN is described as follows: 356 

thN JkJkJ /)()(                                                                  (12) 357 

Figure 9 shows simulation results in connection with the blade pitch angle, normalized residual energy, 358 

a fault detection alarm and fault isolation under LC4. In Figure 9 (a), a PSB occurs abruptly after 250 359 

s in the wind turbine corresponding to a sensor bias of -3° on blade 3. Concurrently, an offset value (-360 

3°) occurs between the reference and measurement corresponding to pitch bias. The normalized 361 

residual exceeds the threshold, and then the observer detects the blade pitch bias fault immediately by 362 

setting to the fault alarm in Figure 9 (b). As shown in Figure 9 (c), the PSB fault can be isolated by the 363 

fault isolation algorithm after successful detection. 364 

In the case of PSF and PAS, the pitch angle measurement shows a constant value that is the same as 365 

the last measurement value before the faults. The difference between the reference and measurement 366 

values makes the pitch angle oscillate irregularly at a large amplitude and the pitch angle difference 367 

between fault-free (blades 1, 2) and faulty blade (blade 3) occur as unbalanced rotation. The PSF and 368 

PAS simulation results show the same pattern in Figures 10 and 11, respectively, which indicate that 369 

faults on blade 3 can be detected based on the fault detection and isolation algorithm. 370 

Cho et al. [26] studied a series of simulations for the reliability of this fault detection algorithm that 371 

can detect sensor and actuator faults within a reasonable time after a fault is generated. Therefore, this 372 

method can guarantee fault detection at an early stage in the blade pitch system. 373 

5.1.2 Structural response of the floating wind turbine under fault conditions 374 

In this section, numerical results for the fault effects in pitch sensors and actuators are presented. The 375 

main objective of the FDI and FTC systems is to avoid unexpected mechanical loads and maximize 376 

energy capture. The simulations are conducted to evaluate the proposed FDI and FTC schemes against 377 

different fault scenarios. Each simulation has a 1-h duration to reduce the stochastic uncertainty for 378 

each load case. 379 

Ocean environmental loads, such as wave and wind loads, excite the structural dynamics of the 380 

floating wind turbine. The responses are normalized to adjust the scale factor according to the 381 

corresponding values from the fault-free case as described 382 

6,5,4,3,2,1


i
RV

RV
RV

freef

i
norm                                                (13) 383 

where RVnorm is the response value normalized by the means and standard deviations of the fault-free 384 

case RVf-free , and RVi is the ith response value (1: NC under PSB, 2: FTC under PSB, 3: NC under PSF, 385 

4: FTC under PSF, 5: NC under PAS, and 6: shutdown under PAS). 386 

In particular, the mean and standard deviation (STD) values are calculated for the structural dynamics. 387 

Figure 12 shows the effects of a series of fault cases on the normalized mean and STD of the surge, 388 

roll, pitch, and yaw motions of a floating wind turbine. The results show that faults affect a significant 389 

amount of platform yaw motions compared with the surge, roll and pitch motions because the incident 390 

variations in an aerodynamic thrust caused by an unbalanced rotor speed directly affect the instability 391 

of platform motion, especially the yaw motion as described by Cho et al. [26]. 392 
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In the case of PAS, the actuator fault cannot tolerate the reconfiguration block. In cases of platform 393 

yaw motion of the FTC in a pitch actuator fault, the fault accommodation is a shutdown to stop wind 394 

turbine operations. In this procedure, the standard deviation should be reduced significantly. However, 395 

the mean value has been changed because of the unbalanced pitch arrangement even if a wind turbine 396 

has undergone shutdown states. As shown in Figure 13, the yaw motion with shutdown presents a 397 

positive stable condition. However, the rotor has undergone an unbalanced state because the faulted 398 

blade has been seized and the other blades are feathered. Although the results of the nominal and 399 

fault-tolerant controllers are similar, changing the dimensionless value generates more considerable 400 

differences as described in Table 4. The motions and structural loads of wind turbines can decay to 401 

zero by the emergency shutdown. Jiang et al. [18] showed that the dynamic response of wind turbines 402 

from the beginning of the shutdown can be unstable but ultimately decay over time. 403 

The PSF fault has a greater effect on dynamic behavior than the PSB and PAS faults. In fault 404 

accommodation, the mean and STD results demonstrate that the proposed FTC schemes with signal 405 

correction for sensor faults have good performance. The platform motions with FTC schemes in PSB 406 

and PSF faults have nearly equivalent values as the fault-free case, which are close to 1. The signal 407 

correction brings the floating wind turbine back to normal operational conditions, which means that 408 

the FTC scheme with FDI is apparently able to accommodate the fault effects on the pitch system. 409 

Figure 14 shows the platform roll and yaw motions in sensor fault cases for LC4 to check the 410 

effectiveness of the FTC for sensor faults. After 250 s, the FDI and FTC algorithms can detect and 411 

isolate the faults precisely and conduct signal correction as fault accommodation for faulty sensors, 412 

which means that the fault accommodation successfully eliminates unbalanced rotation in the rotor 413 

during the PSB and PSF faults. However, unbalanced rotation still occurs in the rotor when a nominal 414 

PI controller is used during the faults and leads to instability in the floating wind turbine. 415 

Additionally, the effect of faults on the tower during fault accommodation with the proposed FTC 416 

schemes should be presented. Figure 15 shows a comparison of the normalized mean and STD for the 417 

tower torsional, fore-aft, and side-to-side bending moments. The bending moments are calculated by 418 

the local coordinate system for each component. The results show that the torsional moment is more 419 

affected by faults than the fore-aft and side-to-side bending moments. The torsional moment under 420 

fault conditions is significant because of the unbalanced aerodynamic loads on the rotor. The PSF 421 

fault has a much greater effect on the vibration (STD) than the two other fault cases because of the 422 

large oscillation. In fault accommodation, the mean and STD results of the FTC schemes using signal 423 

correction from the redundancy sensor demonstrates better performance than the nominal PI 424 

controller as shown in Figure 15. The bending moments present nearly equivalent values for both the 425 

fault-free case and FTC schemes. In the case of PAS, the bending moments decay to zero with the 426 

shutdown. 427 

Figure 16 illustrates the torsional moment and side-to-side bending moment on the tower base in 428 

sensor fault cases for LC4 to validate the pitch FTC scheme from 230 to 330 s. After 250 s the FDI 429 

and FTC algorithms can detect and isolate the fault precisely and conduct successful signal correction 430 

to eliminate the unbalanced rotation during the PSB and PSF faults. The bending moments when a 431 

nominal PI controller without the FTC is used increase in the two PSB and PSF cases because of the 432 

rotor imbalance and the growth in the aerodynamic thrust force. 433 

5.2 Fault detection, fault isolation, and fault-tolerant control with multiple faults 434 
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In this section, the performance of the FDI and FTC schemes is demonstrated for cases with multiple 435 

fault scenarios. Simulations for the floating wind turbine subjected to various load cases are 436 

conducted considering simultaneous PSB and PSF faults in multiple blades. Faults in actuators and 437 

sensors can be detected effectively by the residual energy and the threshold. 438 

Figure 17 shows simulation results in connection with the normalized residual energy, fault alarm, and 439 

fault isolation. A PSB corresponding to a sensor bias of -3° abruptly occurs on blade 3 after 100 s, and 440 

then a PSF occurs on blade 2 after 200 s. Concurrently, the normalized residual is greater than the 441 

threshold, and then the observer detects the PSB and PSF faults immediately by setting to fault alarm 442 

as shown in Figure 17 (a) and (b), respectively. Based on the fault isolation algorithm described in 443 

Section 3.2, the faults are isolated as shown in Figure 17(c). These results indicate that the presented 444 

method can guarantee the FDI at an early stage in the blade pitch system. 445 

Figures 18 and 19 show the platform yaw motion and torsional moment in the tower base for LC4 in 446 

PSB and PSF faults at 100 s and 200 s, respectively. The FDI algorithm can detect and isolate faults 447 

precisely within 11.5 s. After a successful FDI, the FTC controller with virtual sensors conducts signal 448 

correction after 111.5 s. The results indicate that yaw motion with the FTC controller converges to 449 

fault-free yaw motion when the FDI is complete. In PSB faults without the FTC controller and only a 450 

nominal PI controller, the imbalanced loads act on the rotor representing the unstable values of 451 

platform yaw. 452 

Moreover, the occurrence of a PSF fault in blade 2 after 200 s decreases of the stability of the wind 453 

turbine. More precisely, the FTC scheme with the FDI demonstrates a highly effective fault 454 

accommodation. After the FDI, the FTC controller is well activated in 211.5 s and control is gradually 455 

restored as evidenced by the convergence of the platform yaw in the FTC (red line) case with the line 456 

of the fault-free case. However, without the FTC, two faults are observed in the rotor in blades 2 and 3; 457 

therefore, the platform yaw with a nominal PI controller is magnified over time to a greater degree 458 

than that observed with fault-free yaw motion. The torsional moment in the tower base in Figure 19 459 

presents similar behavior in Figure 18. Those figures represent the effectiveness of the FTC, which 460 

means that the system can return to a normal state. 461 

6. Conclusions 462 

Fault detection and isolation techniques should be applied to floating wind turbines for the detection 463 

and isolation of unexpected faults at an early stage to prevent catastrophic failures. Here, a fault 464 

detection method is suggested based on a Kalman filter with focus on blade pitch actuator and sensor 465 

faults. In fault detection, a Kalman filter is used for residual generation and a threshold is used for 466 

detecting fault conditions in the blade pitch actuators and sensors. In fault isolation, a single blade 467 

pitch angle and nacelle yaw angle measurement are employed to isolate faults in the blade pitch 468 

system by the inference method. Based on fault isolation logic, the fault isolation decision can be 469 

made by comparing the measurement values of the blade pitch and nacelle yaw motion. 470 

Two fault-tolerant control schemes are suggested for reconfigurations using a virtual sensor for sensor 471 

faults and shutdown for actuator faults. The FTC controller accommodates the PSB and PSF faults by 472 

correcting the system output yc with the virtual sensor. These FTC schemes can accommodate single 473 

and multiple sensor faults. If the FTC controller works well, then the system recognizes the nominal 474 

system and reacts in the same way as before. However, faults in the pitch actuator that are intolerable 475 

require another wind turbine FTC method. Once the PAS faults are isolated, an emergency shutdown 476 
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of the wind turbine should be conducted to prevent other failures. 477 

The results of the numerical simulations clearly indicate the effectiveness of the proposed FDI and 478 

FTC schemes for load cases with faults. The proposed FDI method can effectively detect and isolate 479 

all three faults (PSB, PSF, and PAS) at an early stage. With the proposed FTC strategy, the system 480 

response in simulations with single and multiple faults is close to the response of wind turbines in the 481 

fault-free condition, which means that the FTC scheme can identify and correct faults within a 482 

reasonable time. Finally, the proposed FDI and FTC schemes can be easily applied in practice. 483 
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Table 1. Properties for the NREL 5 MW wind turbine [20] 

Rated Power (MW) 5  

Rotor orientation, Configuration Upwind, 3 blades, horizontal axis 

Rotor diameter (m) 126 

Hub height from the mean water level (m) 90 

Cut-in, rated, cut-out wind speed (m/s) 3, 11.4, 25 

Cut-in, rated rotor speed (rpm) 6.9, 12.1 

Max pitch rate (°/s) 8 

Gearbox ratio 97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2. Properties for the OC3-Hywind floater [21] 

Water depth (m) 320 

Draft (m) 120 

Diameter above taper (m) 6.5 

Diameter below taper (m) 9.4 

Center of mass (m) (0, 0, -89.9115) 

Mass, including ballast (kg) 7.466 × 106 

Mass moment of inertia, Ixx and Iyy (kg·m2) 4.229 × 109 

Mass moment of inertia, Izz (kg·m2) 1.642 × 108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Wind and wave conditions 

Load case Uw (m/s) 
Turbulent 

model 
Hs (m) Tp (s) 

1 11.2  
IEC Class C 

3.2 10.0 

2 14 3.62 10.30 

3 17 4.2 10.50 

4 20 4.8 10.80 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 4. Mean and dimensionless values of platform yaw under LC4 

 
Yaw 

(Mean) 

Yaw 

(Dimensionless) 

Fault-free -0.1458 1 

NC in PAS fault -0.1303 0.8937 

Shutdown in PAS fault -0.8083 5.55439 

 



 

 

Figure 1. Schematic view of the floating wind turbines. 

 

 



 
 

 
 

Figure 2. Control procedure for a wind turbine with FDI and FTC. 

 

 

 

 



 

 

Figure 3. Scheme of observer-based fault detection in the blade pitch system. 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 4. Comparison of the effects of PSF and PAS faults on the blade pitch angle and nacelle yaw. 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 5. Algorithm of fault isolation with a single pitch sensor 

 

 

 

 

 

 

 

 

 



 

 

Figure 6. Successful rates of fault isolation at each number of steps. 

 

 

 

 

 

 

 

 



 

 

Figure 7. Control reconfiguration for sensor and actuator faults. 

 

 

 



 

 

Figure 8. Reconfiguration with a virtual sensor after sensor faults 

 

 

 

 

 

 



 

 

Figure 9. Simulation results of the PSB case corresponding to the blade pitch angle under LC4: (a) 

normalized residual energy, (b) fault detection alarm, and (c) fault isolation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 10. Simulation results of the PSF case corresponding to the blade pitch angle under LC4: (a) 

normalized residual energy, (b) fault detection alarm, and (c) fault isolation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 11. Simulation results of the PAS case corresponding to the blade pitch angle under LC4: (a) 

normalized residual energy, (b) fault detection alarm, and (c) fault isolation. 

 

 

 

 

 

 

 



 

 

Figure 12. Mean values and standard deviations (STDs) of the platform surge, roll, pitch, and yaw 

motions for the floating wind turbine under PSB, PSF and PAS fault conditions with nominal PI and 

fault-tolerant controllers (blue line: fault-free; dark blue bar: nominal PI controller with PSB; blue bar: 

FTC controller with PSB; cyan bar: nominal PI controller with PSF; yellow bar: FTC controller with 

PSF; orange bar: nominal PI controller with PAS; and brown bar: shutdown). 

 

 

 



 

 

Figure 13. Platform yaw motion after PAS fault (blue line: fault-free; green line: nominal controller 

with PAS; and red line: shutdown with PAS).  

 

 

 

 

 

 

 

 

 



 

 

Figure 14. Comparison of the platform pitch and yaw motions under PSB and PSF fault conditions 

with nominal PI and fault-tolerant controllers under LC4. 

 

 

 

 

 

 



 

 

Figure 15. Mean values and standard deviations (STDs) of the torsional, fore-aft and side-to-side 

bending moments for the floating wind turbine under PSB, PSF and PAS fault conditions with 

nominal PI and FTC controllers (blue line: fault-free; dark blue bar: nominal PI controller with PSB; 

blue bar: FTC controller with PSB; cyan bar: nominal PI controller with PSF; yellow bar: FTC 

controller with PSF; orange bar: nominal PI controller with PAS; and brown bar: shutdown). 

 

 

 



 

 

Figure 16. Comparison of the torsional and side-to-side bending moments under PSB and PSF fault 

conditions with nominal PI and fault-tolerant controllers under LC4. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 17. Simulation results of the PSB and PSF cases corresponding to the blade pitch angle: (a) 

normalized residual energy, (b) fault detection alarm and (c) fault isolation under LC4. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 18. Comparison of the platform yaw motion under PSB and PSF fault conditions with nominal 

PI and fault-tolerant controllers under LC4. 

 

 

 

 

 

 

 



 

Figure 19. Comparison of the tower base torsional moment under PSB and PSF fault conditions with 

nominal PI and fault-tolerant controllers under LC4. 
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