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Sammendrag

Det regionale helseforetaket, Helse Midt-Norge (HMN) tilbyr sykehustjenester til
fylkene Trøndelag og Møre og Romsdal. Prognoser estimerer at antallet innbyg-
gere i de to fylkene som er eldre enn 67 år vil øke med 42 % innen 2030, noe som
vil medføre en betraktelig økt etterspørsel etter sykehustjenester de neste årene
(Helse-midt.no, 2016). St. Olavs Hospital er det største sykehuset i HMN, og i
denne oppgaven vil vi ta utgangspunkt i operasjonsstueplanlegging ved klinikk for
ortopedi, revmatologi og hudsykdommer (videre kalt klinikk for ortopedi) ved St.
Olavs Hospital. Klinikk for ortopedi er ansvarlig for å behandle alle ortopediske
pasienter, b̊ade akutte og elektive. Å tilby behandling til ortopediske akuttpasien-
ter innen sykehusets interne tidsfrister har vært en utfordring for klinikken i flere
år. Lang ventetid er uheldig for akuttpasientene, men det p̊avirker i tillegg flyten
av elektive pasienter. I perioder n̊ar køen av akuttpasienter bygger seg opp s̊a vil
flere av akuttpasientene m̊atte tilbys operasjonsstuekapasitet i elektive operasjon-
sstuer, hvilket betyr at elektive operasjoner m̊a strykes, og den elektive pasienten
m̊a tildeles et nytt operasjonstidspunkt. De fleste akuttpasienter opptar senger p̊a
sengepostene mens de venter p̊a operasjon. I perioder hvor mange akuttpasienter
venter p̊a operasjon vil derfor mange senger være opptatt. Dette kan medføre at
man m̊a stryke elektive pasienter som behøver en seng etter operasjon. Den grup-
pen av akuttpasienter som det haster minst å operere, de grønne akuttpasientene,
er de første som overflyttes fra akuttstuene til elektive operasjonsstuer i perioder
med stort press av akuttpasienter. I tillegg er det slik at m̊aloppn̊aelsen, alts̊a
andelen av pasienter som opereres innen de interne tidsfristene, ligger p̊a omlag 70
% for de grønne pasientene. Vi ønsker derfor å undersøke effektene av å dedikere
mer operasjonsstuekapasitet for de grønne akuttpasientene.

Hovedproblemet som vi ønsker å løse i denne oppgaven er det overordnede op-
erasjonsplanleggingsproblemet (OPP) som g̊ar ut p̊a å lage en syklisk masterplan
for bruken av operasjonsstuene, hvor de ulike kirurgiske undergruppene er tidsplan-
lagt til de ulike operasjonsstuene gjennom uken. De fleste akademiske bidragene
som tar for seg dette problemet har valgt å se bort fra akuttpasientene, og argu-
menterer for at disse tas h̊and om av dedikerte ressurser. Selv om noen akademiske
bidrag inkluderer usikkerhet relatert til for eksempel usikker liggetid etter operasjon
eller varierende etterspørsel etter operasjoner, s̊a er de aller fleste formuleringene
deterministiske. Som et bidrag til den eksisterende litteraturen p̊a omr̊adet s̊a
foresl̊ar vi en stokastisk tostegsmodell for å modellere den usikre tilstrømningen av
akuttpasienter.

I optimeringsmodellens første steg bestemmer vi hvilke operasjonsstuetidsluker som
skal være fleksible og hvilke som skal være dedikerte for elektive pasienter, og
vi planlegger elektive operasjoner til de elektive tidslukene. I tillegg bestemmer
vi antallet senger som skal være tilgjengelige p̊a de aktuelle sengepostene hver
dag gjennom uken. De usikre parameterne som blir tilgjengelige mellom de to
stegene er antallet grønne pasienter som m̊a opereres i løpet av uken, samt antallet
akuttpasienter som opptar en seng p̊a de ulike sengepostene hver dag gjennom
uken. Den fleksible operasjonsstuekapasiteten som vi fastsatte i første steg brukes
til å operere alle de grønne pasientene som tilkommer. Dersom vi har planlagt
alle de grønne pasientene til en fleksibel operasjonsstuetidsluke og det fremdeles er
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mer fleksibel stuetid igjen, vil den ekstra operasjonsstuekapasiteten bli brukt til å
operere gule akuttpasienter (akuttpasienter som det haster mer med enn de grønne).
Dersom det i første steg er satt av for lite fleksibel kapasitet vil dette medføre at
grønne pasienter m̊a planlegges til elektive operasjonsstuetidsluker, som igjen kan
medføre strykninger av elektive operasjoner. I tillegg vil vi f̊a elektive strykninger
dersom det er fult p̊a sengepostene og vi har planlagt flere elektive pasienter som
trenger et sengeopphold etter operasjon.

Ved å kjøre optimeringsmodellen med virkelighetsnære instanser, finner vi at denne
modellen gir ekstra verdi kontra den deterministiske formuleringen for samme prob-
lem. Videre utarbeider vi noen generelle retningslinjer for planlegging av fleksibel
operasjonsstuekapasitet til elektive operasjonsstuer. Dersom operasjonsstuekapa-
siteten er ansett som bedre enn sengepostkapasiteten anbefales det å anvende en
relativt stor andel fleksibel kapasitet. Dersom operasjonsstuekapasiteten derimot
anses som knappere enn sengepostkapasiteten er r̊adet å anvende relativt lite flek-
sibel operasjonsstuekapasitet.

Da vi anvender en tostegs formulering for å modellere usikkerheten i problemet
gjøres dette basert p̊a en forenklet antagelse om at vi mottar all nødvendig infor-
masjon vedrørende usikkerheten p̊a et gitt tidspunkt (like før hver syklus). Dette,
samt at vi genererer en syklisk plan for å h̊andtere en varierende etterspørsel, gjør
at vi bør teste planen i et virkelighetsnært miljø for å undersøke hvor godt den fun-
gerer. For å gjøre dette s̊a utvikler vi en diskret hendelsesbasert simuleringsmodell
for å representere driften ved en virkelig operasjonsklinikk. Entitetene som inklud-
eres i modellen er de elektive og de akutte pasientene, sengepostene samt b̊ade de
akutte og de elektive operasjonsstuene. Det er enda en grunn for å anvende en
simuleringsmodell i denne oppgaven: Vi behøver en m̊ate å generere scenarier for
å representere usikkerheten i optimeringsmodellen. Ved å trekke scenarier fra den
simulerte virkeligheten vil vi kunne generere scenarier med utgangspunkt i ulike
planleggingsregimer som implementeres i simuleringsmodellen.

Hovedhensikten med oppgaven er å gi taktisk beslutningsstøtte, vedrørende op-
erasjonsstueplanlegging, til ledelsen ved klinikk for ortopedi ved St. Olavs Hospital.
For å gjøre dette, anvender vi modellene for å generere alternative masterplaner
for klinikken. Det viser seg at ved å dedikere seks fleksible operasjonsstuetidsluker
til de elektive operasjonsstuene, vil man klare å operere b̊ade de grønne og de gule
akuttpasientene raskere enn i dag. Videre vil tilføring av fleksibel operasjonsstueka-
pasitet gjøre klinikken i stand til å bedre h̊andtere perioder med stor etterspørsel
etter akutte operasjoner. Som et resultat av dette vil det være mye mindre behov
for replanlegging av elektive pasienter. En innføring av fleksible tidsvinduer til en
viss grad redusere antallet elektive operasjoner som planlegges hver uke. Det vil
derfor være en balansegang mellom antallet elektive pasienter man planlegger å
operere hver uke og antallet elektive operasjoner som m̊a replanlegges.

Tema for videre forskning vil være å videreutvikle modellen med fokus p̊a mer effek-
tive formuleringer. Dersom vi finner m̊ater å løse problemet raskere p̊a vil vi kunne
anvende flere steg i formuleringen og slik kunne f̊a en mer realistisk modell.
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Summary

The regional health authority, Helse Midt-Norge (HMN), provides hospital services
to the two counties Trøndelag and Møre og Romsdal. Forecasting estimates that
the number of people living in these two counties that exceed 67 years old will
increase by 42 % within 2030, yielding a massive increase of the demand for health
care in the years to come (Helse-midt.no, 2016). St. Olav’s Hospital is the largest
hospital in HMN, and in this thesis we will consider the surgery scheduling at the
orthopaedic department at St. Olav’s Hospital. The orthopaedic department is re-
sponsible for treating all orthopaedic patients entering the hospital, both electives
and emergencies. Treating the orthopaedic emergency patients within the dead
lines proposed by the hospital has been an issue for many years. In addition to
being unfortunate for the emergencies, delaying the emergencies also affects the
elective patients. As the queue of emergencies grows, more emergency patients are
scheduled for the elective ORs implying elective rescheduling. In addition, most
of the emergency patients cover beds at the wards while waiting for surgery. In
periods of many emergencies waiting for surgery, the bed capacity may become
scarse, yielding rescheduling of elective inpatients. The least urgent of the emer-
gency patients, the green emergencies, are the first ones to be displaced from the
emergency ORs in periods of excessive emergency demand. In addition, only about
70 % of these patients receive surgery within the dead line, and dedicating more
OR capacity for the green emergency patients should be considered.

The main problem faced in this report is the Master Surgery Scheduling Problem
(MSSP). This problem consists of developing a cyclic Master Surgery Schedule
(MSS), linking the surgical subspecialties to the different ORs through the cycle,
which is typically set to one week. The majority of authors on the field focus
exclusively on the elective patients, arguing that the emergencies are treated by
dedicated resources. Although some authors address uncertain aspects relevant
to surgery scheduling, the majority of optimization models provided on the field
are deterministic. As a contribution to the existing literature, we propose a two-
stage stochastic recourse formulation to address the stochastic arrival of emergency
patients when solving the MSSP.

In the first stage of the optimization model, we schedule the OR capacity available
as either flexible or dedicated for electives, and we schedule elective patients for
surgery in the elective OR slots. In addition, we schedule the amount of beds to
be available at the wards on each day of the cycle. The stochastic parameters in
the problem are the number of green emergencies that need to be scheduled in the
cycle, and the daily number of emergency patients covering beds at the wards. The
flexible OR capacity is dedicated to handle the weekly demand of green patients,
and we require that all green patients should be scheduled for surgery in the second
stage. If all the green emergency patients are scheduled and we still have excess
capacity of flexible slots, more urgent emergencies are scheduled for these slots.
If there are too few flexible slots available to treat all green emergencies present
in the cycle, these patients need to be scheduled for the elective ORs, which may
imply elective cancellations. In addition, if the bed capacity is reached and there
are still elective inpatients left to be treated, these surgeries are cancelled.
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From running the optimization model on realistic size instances we find that apply-
ing a stochastic formulation provides additional value compared to the deterministic
counterpart. Furthermore, we develop some general advises regarding the schedul-
ing of flexible slots to elective ORs. If the OR capacity is regarded as better than
the ward capacity, a relatively high share of the ORs should be made flexible. If
however the bed capacity is good, and the OR capacity is scarse, less OR capacity
should be scheduled as flexible.

Applying a two-stage formulation to model the uncertainty means that we assume
that all necessary information regarding the uncertainty will be made available to
us at one specific point in time (before each cycle). This assumption, together
with the fact that we generate a cyclical schedule to handle real life fluctuations
over time calls for some way to test the robustness of the schedules proposed.
To do this, we develop a discrete event simulation model that represents a real
life hospital department. The entities considered in the system are the elective
patients, the emergency patients, the wards, the elective ORs and the emergency
ORs. There is yet another reason for developing the simulation model: We require
a way of generating scenarios representing the stochastic parameters applied in
the optimization model. The scenarios are generated from the simulation model,
allowing us to generate scenarios that are dependent on the scheduling regime
implemented in the simulation model.

The main purpose of this thesis is to provide tactical decision support for the man-
agement at the orthopaedic department at St. Olav’s Hospital, and we perform a
case study of the department, applying both the models in a loop. By scheduling
six flexible slots of four hours to the elective ORs we show that both the green and
yellow emergencies receive surgery faster compared to the historical data. In addi-
tion, the flexible slot capacity makes the department better prepared for handling
fluctuations in the demand for emergency surgeries. Because this, far less elective
rescheduling is needed. However, scheduling flexible slots yields a decrease in the
number of electives scheduled, and there exist a trade-off between the number of
electives scheduled versus the amount of elective rescheduling that need to be made
when the system is exposed to emergency patients.

Topics for further research include issues regarding symmetry in the optimization
model formulation. If we can provide more efficient formulations, we may have the
opportunity to impose more stages in the stochastic formulation.
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1 Introduction

The regional health authority, Helse Midt-Norge (HMN), provides hospital services
to the two counties Trøndelag and Møre og Romsdal. By the end of 2015, there
were a total of 710,000 inhabitants living in these two counties, and forecasting
estimates that the number will increase by 93,000 people by the year of 2030. In
the same period, the amount of people living in the area who are older than 67
years old will increase by 42 % (Helse-midt.no, 2016).

Numbers from the two counties covered by HMN reveal that 10 % of the population
consume 70 % of the health care services. The main part of these 10 % consist of
people spanning the age from 65-79 years (Helse-midt.no, 2016). As the popula-
tion grows and the inhabitants get older, the demand for health care services will
increase in the years to come. Numbers from HMN suggest that by the year of
2030, there will be an increase of hospital health care demand corresponding to a
25 % increase of full time equivalents in the hospital sector. Having such a large
part of the society working within health care will not be sustainable, so to cope
with the demographic changes the hospitals need to treat more patients per full
time equivalent.

One of the major activities at a hospital, is providing surgery to patients. Freeman
et al. (2017) state that 60-70 % of all patients admitted to a hospital require some
surgical intervention, while van Essen et al. (2012) state that surgical costs account
for approximately 40 % of the total hospital costs and that surgeries generate
around 67 % of hospital revenues. Developing ways of efficient surgery scheduling
will therefore be positive in terms of economy, but also necessary to treat more
patients in the years to come.

In this thesis we will consider the surgery scheduling at the orthopaedic department
at the biggest hospital in HMN, St. Olav’s Hospital. The orthopaedic department
is responsible for handling all orthopaedic patients entering the hospital, both elec-
tives and emergencies. In order to treat both electives and emergencies, the flow of
patients is separated. The emergencies are mainly treated in three of the operating
rooms (ORs), while eight ORs are dedicated for electives. In contrast to the elective
patients that may wait for months to have their surgery, the emergency patients
require surgery within some hours or a few days. Treating the emergencies within
time has been an issue at the orthopaedic department ever since the hospital was
built in the early 2000s. Failing to provide surgery for emergency patients within
a short time will also affect the scheduling of elective patients. In periods of high
emergency demand, the emergency OR capacity is not sufficient to handle the work
load, implying that emergencies need to be scheduled for the elective ORs. As a
consequence of this, elective surgeries need to be rescheduled in order to provide
OR capacity for the emergency patients. When waiting for surgery, most of the
emergency patients cover beds at the wards. Having many emergencies waiting for
surgery may therefore lead to elective rescheduling as no beds are available to host
the electives following surgery. Finding ways of handling the emergency patients
more efficiently will therefore yield less elective rescheduling in addition to avoid
excessive waiting time for the emergencies.

There is much literature available on the topic of surgery scheduling within op-
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erations research. The main problem faced in this report is the so called Master
Surgery Scheduling Problem (MSSP) which is about scheduling the different sur-
gical specialties (or subspecialties) to the different operating rooms in order to
provide surgery to as many patients as possible. The schedule is normally made
for one cyclic week, and this weekly schedule is typically applied for a period of
six to twelve months. In addition to including the surgical specialties and the
operating rooms, some authors like for example Adan et al. (2011) and Testi and
Tànfani (2008) include other resources like the wards and the intensive care unit
as they may impose bottlenecks for an efficient flow of patients. Most of the lit-
erature provided on the MSSP consider only the elective patients, arguing that
the emergencies are taken care of by dedicated resources. There are however some
contributions, like Adan et al. (2011) that consider the emergencies by estimating
their arrivals based on a Poisson process and reserve capacity for the patients based
on this.

The main purpose of this report is to provide tactical decision support for the
management at the orthopaedic department when developing the Master Surgery
Schedule (MSS). To do this, we develop a planing tool consisting of both an opti-
mization model and a simulation model. These two models are set up in a loop,
where the optimization model generates a MSS, while the simulation model runs
this MSS in a real life environment in order to investigate how the schedule per-
forms at an operational level. The simulation is also providing information back
to the optimization model in order to alter the MSS based on the operational out-
comes. Our main contribution to the department is the presentation and analysis
of three MSSs that are proposed by the model.

We also provide contributions of academic interest. In order to deal with the uncer-
tain arrival of emergency patients, a stochastic two-stage formulation is proposed.
Bruni et al. (2014) propose a stochastic two-stage model for an operational-level
surgery scheduling problem, but to our knowledge, such a model framework has
not been provided by any authors on the MSSP before. The stochastic parame-
ters applied in our stochastic two-stage formulation is the amount of emergencies
covering beds at the wards each day of the cycle, and the amount of sub-urgent
emergencies (referred to as the green emergencies) that need to be scheduled for
surgery within the cycle. These parameters are generated by the simulation model,
and by applying different scheduling regimes in the simulation model we may alter
the scenarios that are fed to the optimization model.

The rest of the thesis is structured as follows. In Section 2, background on St.
Olav’s Hospital and the orthopaedic department is provided and we introduce rel-
evant methods for modelling uncertainty. Then, in Section 3 the MSSP is intro-
duced, and in Section 4 we provide related literature. The mathematical two-stage
formulation is presented in Section 5, while the simulation model is introduced
in Section 6. Then, in Section 7 we describe how the simulation model and the
optimization model are connected, and the scenario generation procedure is pre-
sented. Following this, in Section 8 a computational study is performed, including
both technical studies of the optimization model, and managerial studies relevant
to hospital departments that perform surgeries and in particular the orthopaedic
department at St. Olav’s Hospital. Finally, in Section 9, we wrap up the thesis
with concluding remarks and proposals for further research.
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Figure 1: The organization of governmental-owned health care in Norway

2 Background

In this section we introduce St. Olav’s Hospital, and the orthopaedic department
which is the case department in this thesis. We also provide relevant hospital termi-
nology, and finally we introduce relevant methods for modelling uncertainty.

2.1 Introducing St. Olav’s Hospital

Figure 1 illustrates the organization of the governmental-owned hospitals in Nor-
way. The highest level of health care management belongs to the ministry of
health care, Helse- og omsorgsdepartementet. The ministry of health care man-
ages the four regional health care authorities, that again are responsible for the
governmental-owned hospitals throughout the country. Helse Midt-Norge is one of
these regional health care authorities, and they own St.Olav’s Hospital which is a
university hospital and the largest hospital in its region.

St. Olav’s Hospital is a health authority situated at several locations in the county
of Trøndelag, including Trondheim, Røros, and Orkdal. The largest hospital unit is
situated at Øya in Trondheim. St. Olav’s Hospital consists of 20 departments, that
are listed in Table 1, and it is considered a large hospital by Norwegian standards.
In 2017 there were 10,483 employees at the hospital performing a full-time equiva-
lent of 8,063. The same year there were roughly 670,000 outpatient consultations
undertaken, yielding a decrease of 3 % compared to 2016 (Stolav.no, 2017). Table
2 includes additional key numbers for St. Olav’s Hospital.
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Table 1: The different departments at St. Olav’s Hospital

Departments

Department of mental health care

Department of operations service St. Olav’s

Department of children and youth

Surgical department

Emergency department

Department of anesthesia and intensive medicine

Department of imaging diagnostics

Department of physical medicine and rehabilitation

Department of heart medicine

Department of clinical service operations

Department of lunge and occupational medicine

Department of orthopedics, rheumatology and skin diseases

Department of intoxication and addiction medicine

Department of thoracic surgery

Department of ear nose and throat, jaw, and eye diseases

Cancer department

Women department

Department of laboratory medicine

Department of medicine

Neurological department

Table 2: Key numbers for St. Olav’s Hospital, 2017

Outpatient consultations 669,427

Consultations (somatic) 453,059

Consultations (psychiatry (adults)) 138,550

Consultations (psychiatry (children)) 55,770

Intoxication 22,048

Mean waiting time 56 days

Mean length of stay (somatic patients) 4.25 days

Maximum beds available 983

Beds available (somatic patients) 983

Employees 10,483

Full-time equivalent 8,063
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2.2 Relevant hospital terminology

In this subsection all hospital terminology relevant for the thesis is provided. Where
it comes naturally, the terminology is related to the orthopaedic department and
the orthopaedic patients.

2.2.1 The diagnosis related groups system

In order to measure the activities at a hospital, and to compare hospitals, a com-
mon system based on diagnosis related groups (DRG) has been developed. The
DRG is a patient classification system where all patient-related interventions at a
somatic hospital is categorized. The classification is based on diagnostic similar-
ity, and the amount of resources required in the treatment of different patients,
and all patients and interventions give rise to an amount of DRG points. The
main variables that influence the DRG points are: The diagnosis, the procedure
performed, the sex of the patient, the age of the patient, and the state of the pa-
tient when leaving the hospital. By using DRG points as a measure of activity,
one is able to compare hospitals independent of which patients are treated at the
hospital (Helsedirektoratet.no, 2017). Since the DRG system is a quantitative mea-
sure reflecting both quality and quantity of hospital services it is commonly used
when developing annual budgets both at the hospital as a whole, and also for the
individual departments.

2.2.2 The dividing of patients

The most fundamental dividing of patients, from a planning point of view, is the
separation of patients into elective and emergency patients. The elective patients
suffer from some slow-developing or chronic disease, and will typically require
surgery in some months. As there is no urgency to provide surgery for these pa-
tients, the scheduling of the elective patients is quite predictable. The emergency
patients typically suffer from some trauma or fast-developing condition and require
more or less immediate intervention. It is common to further divide these patients
into subgroups based on the degree of urgency for treatment. Due to the acute
nature of the conditions harming these patients, they arrive at the hospital ran-
domly. This, together with the fact that they require immediate treatment makes
the scheduling of the emergencies hard.

At a hospital it is crucial to know for how long a patient will stay to recover after
surgery. This gives birth to another classification of patients into either inpatients
or outpatients. The inpatients require some time, typically some days, to recover in
a bed following the surgery. This recovery is done at a ward within the department.
The outpatients enter and leave the hospital at the day of surgery, making these
patients less demanding in terms of resources.
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2.2.3 The staff required for surgeries

In order to perform surgeries, a surgical team is needed. A surgical team typically
consists of two surgeons, three to four nurses and an anesthesiologist.

The surgeons are the surgical staff actually performing the surgery, and these are
often divided into subspecialties. For instance there may be some orthopaedic
surgeons specialized on performing knee surgeries, while others are experts at per-
forming shoulder surgeries. The surgeons are not only performing surgeries, they
also need to serve the wards in order to discharge those patients that have recovered
from surgery, and to follow up on patients who are still recovering. In addition,
these doctors need to serve the outpatient clinic in order to examine patients en-
tering the hospital and decide on who should receive surgery.

The anesthesiologists are the doctors responsible for providing anesthesia to the
patients that are to receive surgery. The number of operations starting at the same
time may therefore be limited by the amount of anesthesiologists available. Some
patients require only local anesthesia, while others need full narcosis, making the
demand for anesthesiologists fluctuating. At St. Olav’s Hospital the anesthesiolo-
gists belong to the department of anesthesiology and intensive medicine, but they
are serving the other departments and should therefore be regarded as a shared
capacity.

The nurses are central in all processes regarding the flow of patients through the
hospital system. They are managing the wards and they are the only personnel
usually present through the entire surgery.

2.2.4 The operating theatre

At some departments, like the orthopaedic and the surgical department, surgeries
are among the main activities. These departments usually have an operating the-
atre which is the place where all the operating rooms (ORs) are located. An op-
erating theatre may consist of several ORs, preparation rooms and storage rooms
for surgical equipment. The preparation room is a room used to prepare patients
for surgery by cleaning the patient and providing anesthesia. If utilized in a proper
manner, this room can be of great importance in order to attain an efficient flow of
patients: By doing all preparations in the preparation room, rather than inside the
OR, one is able to start surgery of the next patient as soon at the OR is cleaned
after the former patient.

The ORs within an operating theatre are often used for different surgeries based on
properties related to the room or the location of the room. If an OR is to be used
for infected patients there should for example be a decontaminator for sterilizing
equipment close by. In addition, there should be a small room in between of these
ORs and the rest of the operating theatre to provide isolation. Some ORs are
carefully equipped in order to perform certain kinds of surgery. On example is a
back-table used for certain types of back surgeries.
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2.2.5 The surgery and the postoperative recovery

The surgery consists of three phases: pre-surgery time, knife time, and post-surgery
time. In Figure 2 the three phases are illustrated along a time line. In the first
phase there is typically one anesthesiologist providing the anesthesia, and three
to four nurses preparing the equipment needed and positioning the patient for the
surgery to come. These nurses are present throughout the surgery. When the
anesthesia has started working and the patient is ready for surgery, the surgeon
enters the OR, and the anesthesiologist leaves. When the surgeon is done she also
leaves the room, and the nurses are responsible for monitoring the patient (if the
patient has received a lot of anesthesia, an anesthesiologist is responsible for the
monitoring) before he is transported out. Following the surgery, the OR should be
cleaned before the next patient enters.

Following surgery the patient is transported to the post anesthesia care unit (PACU)
in order to be monitored for some time. If the patient is medically unstable and
needs to be closely monitored for some prolonged period, he is sent to the intensive
care unit (ICU). After the initial monitoring, the inpatients are sent to the wards
for further recovering. Different patients go to different wards, and different wards
have different capacities in terms of beds available. The length of stay of inpatients
at the wards has been a hot topic at hospitals around the world for some years
now, and the mean length of stay has significantly decreased in order to treat more
patients. In 2017, the mean length of stay of patients at St. Olav’s Hospital was
4.25 days (Stolav.no, 2017).

2.2.6 Uncertainty related to surgery scheduling

There are several aspects regarding surgery scheduling that are prone to uncer-
tainty. The arrival of emergency patients may vary much from one period to the
next, affecting both the activity at the ORs, but also at down-stream activities at
the PACU, the ICU and the wards. Furthermore, the surgery duration of patients
will vary depending on the diagnosis, the age of the patient, the level of experience
obtained by the surgeon and unforeseen complications during the surgery. The
length of stay of patients following surgery may also vary depending on the diagno-
sis and the age of the patient. In addition, aspects of a more social character may
influence on the length of stay: If the patient has no one at home that may look
after him, he may need some more time at the hospital, also if the patient is not
supposed to go home, but rather to an municipal care-institution, the patient has
to wait at the hospital until there is room for him at the care-institution.

Dealing with parts of the uncertainty is very important when solving real life prob-
lems. Including all aspects of uncertainty is seldom expedient or necessary, but
failing to include uncertainty that is relevant to the problem will lead to solutions
that tend to be irrelevant and overly optimistic.
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2.3 The orthopaedic department

The case department considered in this thesis is the orthopaedic department at
St. Olav’s Hospital, Øya. The orthopaedic department is responsible for treat-
ing the orthopaedic patients entering St. Olav’s Hospital, and it is located in a
building called Bevegelsessenteret (BVS). In addition, they have access to ORs in
two other buildings, named Akutten- og hjerte-lunge-senteret (AHL) and Kvinne-
og barnsenteret (KBS). Figure 3 illustrates the hospital buildings at Øya, and the
three buildings where the orthopaedic department disposes ORs can be seen.

The surgeons working at the orthopaedic department are divided into subspecialties
making them able to perform a wide variety of surgeries. The subspecialties are as
follows: Elective foot, plastics, reconstructive, elective trauma, hand, arthroscopic,
back, prosthesis and children. The surgeons representing the plastic subspecialty
are actually not part of the orthopaedic department, but the surgical department.
However, some of the ORs at BVS are partly dedicated to the plastic patients,
and so are some of the beds at the wards belonging to the orthopaedic depart-
ment.

Figure 3: Map of St. Olav’s Hospital, Øya.

2.3.1 Operating rooms available

There are a total of eleven ORs available to the orthopaedic department, and eight
of these are located at BVS. In addition, there are two ORs located at AHL, and
yet another one located at KBS. Seven of the ORs located in BVS (OR-2 - OR-
8), and the one located in KBS, are dedicated for elective surgeries, while the
rest are dedicated for emergencies. In Figure 4 the regular opening hours for the
ORs at disposal for the orthopaedic department are illustrated. All the ORs are
open between 07.45-15.30 during the weekdays, except of the two rooms at AHL.
At AHL, one of the rooms is dedicated for the orthopaedic department between
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07.45-22.00 from Monday to Thursday, while the other one is dedicated for the
orthopaedic department between 07.45-15.30. From 15.30-22.00 this room serves
as a shared capacity accessible to all departments with emergency patients. From
22.00-07.45 there is one room available at AHL to perform surgeries to the most
urgent patients who can’t wait till the next day. In the weekends the ORs at BVS
and KBS are closed, but there is one OR available at AHL in order to perform
surgeries on emergencies entering in the weekend. This room is a shared capacity
with the rest of the hospital.

Figure 4: The opening hours of the ORs as BVS, KBS and AHL from Monday to Friday.

2.3.2 The wards available

There are a total of six wards wards available to the inpatients at the orthopaedic
department. The wards host different patient categories, and part of the capacity
is shut down during weekends and holidays (see Table 3). Note that the capacities
provided in Table 3 are not the total number of beds available, but the staffed beds.
The total bed capacity available to the orthopaedic department is about 90 beds,
but not all of these are staffed, leaving about 20 beds unused during the weekdays.
Since there is a decrease of staffed beds during the weekend, there is a policy at the
department that no elective inpatients should receive surgery on Friday as these
patients consume beds following surgery. There may be times when some of the
patients resting at the wards that close down during the weekends need one or two
additional nights at the hospital. These patients are then moved to some other
ward for the weekend. If the surgeons covering the weekend shift do not know
the patients that are left at the wards, they may not feel confident in sending
the patient home during the weekend. As a consequence of this, there may be
patients covering beds on Monday morning that were meant to leave during the
weekend.
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Table 3: The wards at the orthopaedic department

Name Floor Capacity
weekday

Capacity
weekend

Patient categories

Fast-track hip
and knee

4th (west) 16 0 Hip and knee pros-
thesis

Hotel-day 5th (north) 5 0 Prepare electives be-
fore surgery, buffer
capacity

Elective 5th (north) 10 12 Infected hip/knee,
back, arthroscopics

Plastic 5th (west) 3 3 Large plastic surg-
eries

Reconstructive 5th (west) 13 13 Amputations, fire,
skin- and muscle

Trauma 6th (north
and west)

20 16 Fractures and
trauma

The dynamic at the wards is crucial to understand when developing tools for ef-
ficient flow of patients. There are basically three elements that are challenging
when dealing with the wards at the orthopaedic department: Emergencies occupy-
ing beds while waiting for surgery, emergencies waiting to be dismissed following
surgery, and the fluctuating inflow of emergencies. If the OR capacity at AHL is
insufficient (which may be the case in periods of many emergencies entering the
hospital), the emergency inpatients will occupy beds while waiting for surgery. If
the municipal health-care institutions are struggling to provide beds to host the
emergencies following the hospital stay, these patients have to wait at the wards
in the hospital. Finally, the inflow of emergencies to the orthopaedic department
fluctuates from one day to the next. Because of these three factors, the number of
beds covered at a ward each day is both fluctuating and unpredictable.

At the orthopaedic department they take different actions as the loading of beds
approaches the limiting capacity, which may be seen in Figure 5. First, they re-
organize the patients at the different wards to better utilize the capacity at hand.
This may result in patients belonging to one ward staying a night or two at some
other ward. They also increase the bed capacity during weekends by not lowering
the capacity as much as usual. Then, elective inpatients are rescheduled or can-
celled, and elective outpatients are prioritized as they do not require any stay at
the wards following surgery. The last patient categories to be cancelled are the
fast-track patients, as these generate the most DRG-points. Finally, if there is still
a chance of capacity limitations, extra staff is called in to increase the number of
beds available.
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Figure 5: Strategies to deal with increased bed loading.

2.3.3 The orthopaedic patients

The orthopaedic patients are divided into five different groups based on the medical
urgency of their condition, and the different groups may be seen in Figure 6. The
emergency patients are divided into three groups, where the most urgent ones
should receive treatment within six hours, the intermediate ones within 24 hours,
and the least urgent group should receive surgery within five days. The three
groups are divided from each other by referring to a traffic light system: Red for
the most urgent ones, then yellow and green. This system, and the limits proposed,
are decided on by St. Olav’s Hospital and are serving as guidelines rather than
absolute limits.
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Figure 6: Medical urgency of the orthopaedic patients

The orthopedic elective patients typically suffer from slow-developing diseases like
osteoarthritis or other chronic diseases harming the mobility and potentially the
quality of life of these patients. These patients are in need of surgery to regain
their daily function, but the need of surgery is not as urgent as for the emergency
patients. As a rule of thumb these patients should be scheduled for surgery about
three months ahead.

The last group of patients, the sub-urgent trauma patients, should receive surgery
within four weeks. These patients typically suffer from pain and dysfunction due
to some complication following their last surgery. The limit of four weeks is not
an absolute medical limit, but it indicates that these patients, because of the pain
condition they are in, should not have to wait several months for surgery. However,
the four week limit has another very important meaning: It represents the minimum
amount of time required to schedule elective patients to the ORs at BVS. If the
limit is set to four weeks or below, these patients are, from a scheduling perspective,
categorized as emergency patients, implying that they are scheduled to OR-1 at
BVS or to the ORs at AHL instead of to the elective ORs at BVS.

In Table 4 the distribution of the orthopaedic patients receiving surgery in the
period 01.01.15-27.04.17 may be seen. We were not able to identify the sub-urgent
trauma patients from the data provided. Note that almost half of the patients are
emergency patients.
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Table 4: The distribution of orthopaedic patients that received surgery in the period
from 01.01.15-27.04.17

Urgency Inpatient Outpatient

Elective 3424 4885

Green 1172 1380

Yellow 3284 204

Red 1351 35

2.3.4 The flow of orthopaedic patients

The flow of patients at the orthopaedic department may be split into six: the
elective inpatients, the elective outpatients, the sub-urgent trauma patients, the
emergency inpatients, the emergency outpatients and the emergency outpatients
that require a bed following surgery. However, for the purpose of this thesis we may
aggregate the flows into the four following: the inpatient and outpatient flows of
both elective and emergency patients. Next, these four flows are presented.

The flow of the elective patients

The flow of elective patients is illustrated in Figure 7. All elective orthopaedic
patients enter the hospital through the orthopaedic outpatient clinic. Here, they
are assessed by an orthopaedic surgeon who decides whether surgery is necessary,
and if so, by when surgery is needed. The surgeon also decides whether the patient
should be an inpatient or an outpatient. Regardless of this, the patient is sent
back home. The surgeon puts the patient on a list for surgery, and delivers this to
the scheduling coordinators sitting at the patient intake office, who schedule the
patient for surgery. When a date for surgery is set, the patient receives a message
about this.

If the patient is an inpatient, he is summoned to a preoperative assessment some
days prior to the surgery. Here, the patient meets the surgeon who will be per-
forming the surgery, he is assessed by an anesthesiologist and he is provided with
information from both a physiotherapist and a nurse about the process following
the surgery. After the preoperative assessment the patient is sent back home before
reentering the hospital at the day of surgery. On the day of surgery the patient
enters through the hotel-day ward where a general preoperative preparation is per-
formed. Afterwards, the patient is transported to the operating theatre where the
final preparations, such as providing anesthesia, are made. Then, the surgery is
performed, and afterwards the patient is sent to the recovery area to recover form
the anesthesia. When the patient is medically stable he is sent to one of the wards
to rest for some days.

The elective outpatients are not summoned for a preoperative assessment before
surgery as these patients are generally in a better condition than the inpatients,
and the surgeries are often less comprehensive. On the day of surgery these patients
enter through the outpatient recovery area, where they are prepared for surgery.
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Following surgery they are recovering from the anesthesia in the recovery area,
before they are sent back home.

The flow of emergency patients

The flow of emergency patients is illustrated in Figure 8. Almost all yellow and red
patients, and a little less than half of the green patients, are inpatients, and they
enter the hospital mainly through the emergency department. After arrival, the
patient is first assessed by a nurse, and later by an orthopaedic surgeon deciding the
degree of urgency according to the traffic-light system. When the degree of urgency
is decided on, the patient is sent to a ward to wait for surgery, and an electronic
note is sent to a scheduling administrator at OTS who schedules the patient for
surgery, either at AHL or to OR-1 at BVS. Almost all red and yellow patients are
scheduled for AHL, while a fair part of the green patients are scheduled for OR-1 at
BVS. Following surgery the patient stays for some time in the recovery area before
being sent to the wards at BVS for further recovery. Because the recovery area at
AHL is a shared capacity for all emergency patients receiving surgery at AHL, this
recovery tend to be crowded. Therefor, a fair part of the orthopaedic patients who
have received surgery at AHL are sent to the recovery area at BVS.

Almost all emergency outpatients are green patients. The emergency outpatients
mainly enter through the trauma outpatient clinic, where they are assessed by an
orthopaedic surgeon. If surgery is needed, an electronic note is sent to OTS, and
here the patient is scheduled for surgery at either AHL or BVS. On the day of
surgery the patient enters the hospital through OTS, before being transported to
the operating theatre at either BVS or AHL. If the patient is scheduled for AHL he
may be displaced by more urgent patients, and if no OR is idle through the day, he
is sent back home and need to be rescheduled for some later day. Following surgery,
the patient recovers at the recovery area before leaving the hospital.

2.3.5 The surgery scheduling

An illustration of the scheduling process at the orthopaedic department may be
seen in figure 9. The hospital has an economical budget to fulfill every year,
and the management of the hospital decide on an annually target DRG that each
department should fulfill in order to deliver on budget. Besides fulfilling the DRG
target, the orthopaedic department also need to cope with the fluctuating patient
demand for surgery. In periods this means treating a fair part of patients that are
not very attractive in terms of DRG, but that have to have their surgery. However,
these short-term fluctuations in patient demand tend to equal out over the horizon
of one year, meaning that the department is usually delivering on budget at the
end of the year.

In order to run the ORs effectively, a Master surgery schedule (MSS) (see Figure
10) is developed. The MSS is a schedule that links the different subspecialties to
the different ORs through the week. For each OR there is at most one subspecialty
scheduled on a given day. The MSS developed is a cyclic schedule, where the weekly
schedule is repeated throughout the planning horizon. The planning horizon is set
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Figure 9: The scheduling process at the orthopaedic department
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to be half a year in order to, if necessary, reallocate resources in order to cover the
patient demand for surgery.

Figure 10: The master surgery schedule at the orthopaedic department

In order to decide on the MSS, the management of the department sit down for
a whole day, trying to allocate OR capacity to the different subspecialties based
on the current situation regarding patient demand, and thoughts regarding the
months to come. Another important aspect of this meeting is to go through every
week of the following period to detect days where the capacity will be less due to
staff being at conferences or other arrangements. The planning of holiday periods
is also an issue at this meeting as this will affect the production of surgeries in that
period.

The operational planning of surgeries is done by allocating the patients waiting for
surgery to the different ORs, and surgeons. For elective patients, this is typically
done two to three months before the actual surgery is scheduled, and the schedul-
ing is performed by scheduling coordinators at the intake office. The scheduling
of emergency patients is performed by a scheduling coordinator at OTS, and this
scheduling is performed soon after the patients have entered the emergency depart-
ment or the trauma outpatient clinic.

Occasionally, rescheduling the surgeries on the day of surgery is necessary. Reasons
may be that the patient was unable to show up on the day intended, or the fact
that many emergencies are occupying beds at the wards, leaving no beds available
for the elective inpatients. The daily rescheduling of patients is performed in a
collaboration between the scheduling coordinators and the surgeons on shift.
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2.4 Modeling of uncertainty: An introduction

In this thesis we aim to develop tactical surgery schedules for a hospital depart-
ment. As described above, there are several sources of uncertainty that may be
relevant to include when developing such schedules. As we aim to deal with parts
of the uncertain aspects, we should apply methods that are well suited for mod-
elling of uncertainty. In the following we introduce the methods we have chosen to
apply.

2.4.1 Introduction to stochastic recourse models

Stochastic programming is the part of mathematical programming and operations
research that studies how to incorporate uncertainty into decision problems (King
and Wallace, 2010), and stochastic recourse models are one of the major frameworks
within stochastic programming (Sahinidis, 2004). The term ”recourse” refers to the
opportunity to adapt a solution to a specific outcome observed, and these problems
are always presented as problems in which there are two or more decision stages
(Higle, 2005). According to King and Wallace (2010), stochastic models apply well
in problems where decisions must be made at some point in time, but important
information will not be available until after the decisions are made.

Components of a recourse problem

Each recourse problem can be characterized by its scenario tree, its scenario prob-
lems, and its nonanticipativity constraints. A scenario is one specific, complete
realization of the stochastic parameters that might appear during the course of
the problem, while a scenario tree is a structured representation of the stochastic
parameters and the manner in which they may evolve over time. Depending on
the manner in which the problem is formulated, it may be necessary to include
specific conditions to ensure that the decision sequence honors the information
structure associated with the scenario tree. These conditions are known as the
nonanticipativity constraints, and impose the condition that scenarios that share
the same history until a particular decision should also make the same decisions
(Higle, 2005).

Two-stage recourse models

A two-stage recourse model consists of a first stage problem and a second stage, or a
recourse, problem. The first stage decisions are determined before any information
regarding the stochastic parameters has been obtained, while the second stage
decisions are decided on after observing the stochastic parameters. The goal of a
two-stage model is to identify a first stage solution that is well positioned against
all possible outcomes of the stochastic parameters (Higle, 2005). The second-stage
problem may often be an operational-level decision problem following a first-stage
plan and the uncertainty realization (Sahinidis, 2004).
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As an example of a two stage recourse problem, we may regard a simplified nurse
scheduling problem. Let us assume that a department want to make a schedule for
the nurses covering a ward for the coming period, but, due to the uncertain arrival
of emergency patients, they do not know exactly how many nurses they will need
on the different days. Here, a typical first stage decision will be to decide on a
schedule that distributes the nurses to different shifts through the period, and that
is robust against fluctuations in emergency demand for beds. The second stage
decision may be to call in extra staff in periods of many emergencies arriving, or
to send the patients to other wards.

A recourse model is said to have fixed recourse if the constraint matrix in the re-
course problem is not subject to uncertainty (Higle, 2005). For the nurse scheduling
problem, this imply that the cost of calling in an extra nurse, or sending a patient
to another ward is the same no matter what happens. Complete recourse is another
property that may be obtained by a recourse problem. If there exist a second-stage
solution to all, possible and impossible, outcomes of the first-stage variables, the
problem is said to have complete recourse. Another, more restrictive property is
relative complete recourse. A problem is said to have relative complete recourse
if there exist a second-stage solution to all possible outcomes of the first-stage
variables.

For the nurse scheduling example, having relative complete recourse means that
there exist ways in the problem formulation to handle all possible amounts of
emergencies arriving. If there is a maximum of beds available that may be staffed
by additional staff and the number of beds at other wards are restricted by an
upper limit, and no other mechanisms are present in the problem formulation to
deal with extreme arrival cases, the problem do not have relative complete recourse
(and certainly not complete recourse).

The value of the stochastic solution

Kall and Wallace (1994) state that stochastic programs are much more compli-
cated, technically, than the corresponding deterministic programs. Hence, from a
practical point of view, there must be good reasons for turning to the stochastic
models.

Birge (1982) introduces the value of the stochastic solution (VSS) in linear programs
with fixed recourse. This value may be found by calculating the difference between
the objective function value obtained by solving the stochastic model and the one
obtained by solving the mean value (deterministic) problem (MVP). In the MVP we
fix all the uncertain parameters to their expected value, and solve the deterministic
problem. This yields a set of first stage variables corresponding to the optimal
solution to the deterministic problem. Now, we fix the first stage variables in the
stochastic model to the values obtained in the deterministic model and solve this
(only the second stage variables are free to change now) for each scenario, obtaining
one objective value for each scenario. Finally we weight the different solutions with
the probability of the corresponding scenario taking place, yielding the mean value
solution (MVS). In order to find the VSS, we calculate the difference between the
solution obtained from solving the two-stage stochastic program (the stochastic
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solution (SS)) and the MVS. Note that the SS is always equal to, or better than
the MVS.

Evaluating the scenario generation procedure

In order to apply a two-stage stochastic model, the distribution of the stochastic
parameters are assumed to be known. Based on the distribution, a scenario-tree
should be generated in order to represent the distribution. Note that if there are 10
stochastic parameters, and if each of these may have three different outcomes, we
end up with a total of 310 = 59, 049 separate data scenarios (Higle, 2005).

According to King and Wallace (2010), the goal of the scenario generation proce-
dure should be to produce a subset of scenarios that well represent the true distri-
bution of the stochastic parameters. Two problems regarding scenario generation
are mentioned by the authors: Numerical problems and representation problems.
Numerical problems arise if too many scenarios are needed in order to well rep-
resent the original distribution. This may lead to the optimization model being
very time inefficient, or even unsolvable. A representation problem arises if the
scenarios generated are not able to mimic the original distribution. This may lead
to the conclusion that we need more scenarios, which may again leave us with a
numerical problem.

When solving our two-stage stochastic model we need to make sure that we are
not just testing the scenario generation procedure, but that the solutions are in
fact a result of the algebraic model. To do this, we should perform in-sample and
out-of-sample stability tests. The first represents a test of the internal consistency
of the model (including the scenario tree generation procedure), while the second
is related also to model quality (King and Wallace, 2010).

To test for in-sample stability, King and Wallace (2010) state that we have to
generate several scenario trees, where each of these trees are named Ωi. Afterwards,
we run the optimization model equally many times, one for each scenario tree, and
obtain one optimal solution x̂i for each run. If the optimal objective function,
f(x̂i; Ωi) is about the same for all runs, that is if

f(x̂i; Ωi) ≈ f(x̂j ; Ωj) (1)

we have in-sample stability.

Having in-sample stability, we are confident that if we run our model with the same
data several times, we will produce more or less the same objective function value
each time, implying that our model is internally consistent.

Stochastic programs tend to have flat objective functions, meaning that several
different solutions may provide approximately the same objective function value.
To achieve stability in terms of solutions is very hard for problems with very flat
objective functions. As ending up with different solutions that all serve us equally
well is not a problem, the objective function value is used to measure similarity
(King and Wallace, 2010).
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Out-of-sample stability means that if we calculate the true objective function value
corresponding to the solutions coming from the different scenario trees, we get
about the same value (King and Wallace, 2010). Let Ψ denote the original proba-
bility distribution. To have out-of-sample stability we require that:

f(x̂i; Ψ) ≈ f(x̂j ; Ψ) (2)

This test aims to detect whether the scenario generation procedure has generated
a stability that is not really there. This may happen if the scenario generation
procedure consequently avoids difficult tails of the distribution, so that the in-
sample stability observed is just over a part of the support of the random variables.
This may be revealed through out-of-sample stability testing, as the true objective
function value will be significantly different for the different solutions generated by
the model.

Even though we are fixing the fist stage variables when testing for out-of-sample
stability, there may be far too many scenarios to solve all the second-stage problems
available. If this is the case, we should approximate the distribution by generating
a large scenario tree and let this serve as the true distribution(King and Wallace,
2010).

According to King and Wallace (2010), the correct way to calculate the out-of
sample value may often be to construct a simulation model of the problem. This will
not only take care of the fact that the scenario tree generated is an approximation
of the real distribution, but also the fact that the objective function most likely
only approximates the true problem as well.

2.4.2 Introduction to simulation

According to J. Banks (1996), a simulation is the imitation of the operation of a
real-world process or system over time. The behaviour of a system as it evolves
over time is studied by developing a simulation model. This model usually takes
the form of a set of assumptions concerning the operation of the system, and these
assumptions are expressed in mathematical, logical, and symbolic relationships
between the objects of interest in the system. Once developed and validated, a
model can be used to investigate a wide variety of ”what if” questions about the
real-world system. Potential changes to the system can first be simulated in order
to predict their impact on the system performance.

Components of a system

In order to understand and analyze a system, a number of terms should be defined
(J. Banks, 1996). An entity is an object of interest in the system, and an attribute
is a property of an entity. An activity represents a time period of specified length.
At a hospital department, the patients may be an entity, the diagnose may be an
attribute, and performing a surgery may be an activity.
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The state of a system is defined as the collection of variables necessary to describe
the system at any time. An event is defined as an instantaneous occurrence that
may change the state of the system. Events are divided into endogenous and
exogenous events, where the former are events occurring within the system, while
the latter are events in the environment that affect the system. At a hospital
department, a state may be the number of emergency patients waiting to receive
surgery, an endogenous event may be the completion of a surgery, and an exogenous
event may be an emergency patient arriving to the system (J. Banks, 1996).

Discrete and continuous systems

Systems can be categorized as either discrete or continuous. A discrete system is
one in which the state variables change only at a discrete set of points in time.
The orthopaedic department is an example of a discrete system, as all events such
as patients arriving, patients entering the OR or patients leaving the OR, are
happening at discrete points in time. A continuous system is one in which the
state variables change continuously over time. An example of such a system may
be the water-level behind a dam. The level may raise due to rain and the melting
of snow, and it may decrease due to evaporation and draining of water to power
production (J. Banks, 1996).

Verification and validation

Verification deals with whether the computer program performs properly. For com-
plex models this involves debugging and carefully testing of the applied algorithms.
If the input parameters and logical structure of the model are correctly represented
in the computer, verification has been completed. Validation is the determination
that a model is an accurate representation of the real system. Validation is usually
achieved through the calibration of the model, an iterative process of comparing
the model to actual system behaviour and using the discrepancies between the two,
and the insights gained, to improve the model. This process is repeated until model
accuracy is judged acceptable (J. Banks, 1996).

The use of discrete-event simulation in health care planning

Günal and Pidd (2010) review the use of discrete-event simulation for performance
modelling in health care. The use of simulation within health care has a long
history, and the first models were developed in the 1960s. However, few studies
from the 1960s and 1970s report any successful use of models, due to the lack of
economic incentives, no vested authority, non-quantifiable data and no commitment
to follow up. The authors of the review state that we today have access to large
electronic data sets, but that the other issues remain.

Accident and emergency departments units are the most popular area for simulation
modelling in health care. The authors state that this is probably due to the fact that
these departments are relatively self-contained and have easily observable processes
that cover relatively short periods of a few hours. The modelling of inpatient care
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has also been an active research area for many years, and discrete-event simulation
models are primarily used for testing mathematical models developed. Patient
flow to hospital beds, bed occupancy and length of stay are commonly investigated
within inpatient care.

Outpatient clinics are also commonly modelled using discrete-event simulation as
they have some common characteristics with the accident and emergency depart-
ments. Most of the studies on outpatient clinics include scheduling and capacity
planning, focusing on micro waiting; that is the waiting time from the patient ar-
rives till he is summoned for treatment. Other units are also frequently modelled
by discrete-even simulation, and especially popular are ORs and critical care units.
When applying discrete-event simulation to ORs, macro waiting is commonly in-
vestigated. Here, macro waiting refers to the time interval between the point when
it is decided that a patient should receive surgery, and the time when the surgery
takes place.

When it comes to implementation of simulation models, the authors state that
choosing the right level of detail and client involvement are crucial for success.
Choosing the right level of detail is especially important for saving time in the
model development phase, and also for convincing stakeholders on the use of the
model. Two barriers to successful implementation is mentioned. First, a simulation
project is often initiated by decision-makers who seek urgent solutions to their
problems. As a result, the simulation analysts are expected to generate quick
solutions, which they fail to do due to the time spent in collecting and analyzing
data. Second, when quick solutions are expected, modellers tend to oversimplify
the models, which may cause decision makers lack of confidence.

The authors also mention another issue related to health care simulation. Modelling
a single unit, may imply missing the big picture. At a hospital there are often
many factors that have impact on the operations of different units, and excluding
too much of these factors in the modelling may cause unrealistic results. However,
there have been very few attempts on modelling a hospital as a whole system.

2.4.3 Introducing queueing models

Simulation is often used in the analysis of queueing models (J. Banks, 1996). In
a typical queueing model customers arrive from time to time and join a queue,
are eventually served, and finally leave the system. The term ”customer” refers
to any type of entity that can be viewed as requesting ”service” from a system.
When regarding health care systems, the patients are typical the customers that
arrive at the hospital to receive some kind of treatment or service, like for example
surgery.

Typical measures of system performance include server utilization, length of waiting
line, and delays of customers. Often, when attempting to improve the queueing
system, the analyst is involved in trade-offs between server utilization and customer
satisfaction in terms of line length and delays. Queueing theory and simulation
analysis are used to predict measures of system performance as a function of the
input parameters. The input parameters include the arrival rate of customers, the
service demands of customers, the rate at which a server works, and the number and
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arrangements of servers. For relatively simple systems, the performance measures
can be computed mathematically at great savings in time and expense compared
to the use of a simulation model. But for realistic models of complex systems,
simulation is usually required(J. Banks, 1996).

Characteristics of queueing systems

The key elements of a queueing system are the customers and the servers. The
population of potential customers may be assumed to be finite or infinite. In
systems with a large population of potential customers, such as hospitals, the
population is usually assumed to be infinite. The main difference between finite and
infinite population model is how the arrival rate is defined. In an infinite population
model, the arrival rate is not affected by the number of customers who have left the
population and joined the queueing system. In many queueing systems there is a
limit to the number of customers that may be in the waiting line or system, while
other systems are considered as having unlimited capacity(J. Banks, 1996).

The arrival process for infinite-population models is usually characterized in terms
of interval times of successive customers. The most important model for random ar-
rivals is the Poisson arrival process. If An represents the inter arrival time between
customer n-1 and customer n, then for a Poisson arrival process, An is exponen-
tially distributed with mean 1/λ time units. The arrival rate is λ customers per
time unit(J. Banks, 1996).

The queue behaviour refers to the customer actions while in a queue waiting for
service to begin. In some situations, there is a possibility that incoming customers
may see the line and decide not to enter if the queue is too long. Also, there may
be situations when customers may leave the queue when they see that the line is
moving too slow, or the customers may move from one queue to another. Queue
discipline refers to the logical ordering of customers in a queue and determines
which customer will be chosen for service when a server becomes free. Common
queue disciplines include first-in-first-out (FIFO), last-in-first-out (LIFO), service
in random order (SIRO), and service according to priority (PR)(J. Banks, 1996).
Regarding patient queues, emergency patients typically have prioritization over
electives, so that these patients move to the head of the line upon arrival.

The service times my be either constant or random. For random service times, the
exponential, Weibull, gamma, lognormal and truncated normal distributions have
all been successfully as models of service times in different situations. Sometimes
the service duration may be identically distributed for all customers of a given type
or class, while customers of different types may have completely different service
time distributions(J. Banks, 1996). Patients may be characterized by the diagnosis,
and service times (such as surgery duration) are typically identically distributed
for patients of a given diagnosis.

A queueing system consists of a number of service centers and interconnecting
queues. Each service center consists of some number of servers working in parallel,
that is, upon getting to the head of the line, a customer takes the first avail-
able server. Parallel service mechanisms are either single server, multiple server
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or unlimited servers(J. Banks, 1996). At a hospital department, the service cen-
ter may be the operating theatre, consisting of several ORs working as parallel
servers.
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3 The Master Surgery Scheduling Problem

The overall goal when taking on the Master Surgery Scheduling Problem (MSSP)
is to produce a cyclic schedule where each orthopaedic subspecialty is scheduled to
surgery slots in one or several of the ORs through the cycle in order to perform
surgeries efficiently. By efficiently we mean scheduling many elective patients for
surgery, and at the same time be able to handle a fluctuating demand of emergency
patients without having to cancel the elective surgeries. The cycle is usually set to
one week, and this weekly schedule repeats itself for a prolonged period of typically
six to twelve months.

To avoid cancellations of elective patients in periods of high emergency demand
for surgery, we want to devote surgery slots for the green emergency patients in
the elective ORs. The green patients included in the problem are the ones that
are scheduled for the elective ORs due to the limiting capacity at the emergency
ORs. We call these patients the excess demand of green patients. The OR slots
scheduled for the green patients are referred to as the flexible slots, as these may
be used for yellow emergency patients in periods of low demand for green surgeries.
The resources considered in the MSSP are the ORs, the wards, the surgeons and
the anesthesia staff.

3.1 The patients

The patients included in the problem are the electives, and the green and yel-
low emergencies. The red emergencies are implicitly included as they may cover
beds at the wards, but these patients are not scheduled for surgery as they are
normally treated at the emergency ORs which are not considered a part of this
problem. Both the electives and the green emergencies are sub divided into pa-
tient categories based on diagnostic similarities, and each of these categories are
either inpatients or outpatients. The yellow patients are treated as one aggregated
patient category.

We assume that the target throughput of elective patients to be scheduled within
each patient category for the cycle is known, and we aim to schedule as many of
these patients as possible. In addition, we demand that all the excess demand of
green patients that enter in a cycle should be scheduled for surgery within the cycle.
As the emergencies enter the hospital in a random manner, the excess demand of
green patients may change from one cycle to the next, providing uncertainty into the
problem. Another uncertain aspect caused by the random entrance of emergencies
is the bed loading at the wards, providing uncertainty regarding the number of
beds available for elective patients during each cycle.

There are two properties related to each patient category: The expected surgery
duration, and the expected length of stay at a ward following surgery. The total
number of patients that might be scheduled to the same OR on a given day is
restricted by the expected surgery duration of the different patient categories. Fur-
thermore, we may not schedule an inpatient for surgery if there is not capacity at
the wards to host the patient following surgery. The expected length of stay may
vary depending on the day of surgery. A patient receiving surgery on a Friday may
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be offered a bed to Monday morning because of poor guidelines for dismissing the
patient makes the surgeon covering the weekend shift insecure on whether to let
the patient go or not. If the same patient receives surgery on another weekday, say
Tuesday, there will be a trained surgeon available to dismiss the patient as soon as
he is regarded medically prepared.

In order to facilitate a scheduling regime where some patients from each elective
patient category are scheduled, rather than all patients from some categories and
none from others, we demand that a given share of each elective patient category
should be scheduled for surgery. As some patient categories may provide more
DRG-points to the department than others, we may give different values of both
scheduling and cancelling patients from the different patient categories.

3.2 The operating rooms

There is a set of available ORs, and each of these rooms may be used for different
surgeries depending on their characteristics. The available time at an OR is divided
into time slots, and the surgery teams from the different subspecialties are scheduled
to the slots available. There is usually one or two slots available at each OR during
a day. The number of patients belonging to a specific subspecialty that may be
scheduled for surgery on a given day is restricted by the slot-time scheduled for that
surgical subspecialty on that day. Scheduling green patients to the elective surgery
slots may lead to elective cancellations, but note that cancellation may be avoided.
This is if there is excess capacity exceeding the expected surgery duration of a green
patient at an elective surgery slot, after having treated all electives scheduled to the
slot. If no excess capacity is available at the elective slots, and we need to schedule
more green patients, there will be cancellations of elective surgeries.

3.3 The wards

There is a set of wards available, and at each ward there is a given number of
staffed beds available each day. In addition, there may be additional beds at the
wards that are not staffed. The wards are heterogeneous, and may host different
patient categories. There is a bed assigned to each inpatient entering the hospital
at the day of arrival, and this bed will be occupied by that patient throughout the
stay. In periods with shortage of beds at some of the wards, there is a possibility to
let patients rest at some of the other wards available. However, this is not optimal
as the nursing staff covering the different wards have some patient categories that
they are more trained to handle than others. If the total bed capacity is utilized
one day, and more elective inpatients that demand a bed on that day are scheduled,
these surgeries will be cancelled.
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3.4 The surgeons and the anesthesia staff

The surgeons represent different subspecialties who are trained to perform surgeries
to some of the patient categories. In reality, the surgeons may be able to perform
surgeries to patients outside of their subspecialty, but this will not be the case in
this problem. A surgeon of a particular subspecialty may have the opportunity
to perform surgery to different patient categories, but each category may only
receive surgery from surgeons of one subspecialty. The amount of surgeon resources
available are restricted by the total work load (number of slots) allowed to schedule
for a subspecialty on a given day, and also the total work load (number of slots)
allowed to schedule for a subspecialty within a cycle. Furthermore, a surgeon
can only be assigned to a time slot in an OR meant for the subspecialty which
the surgeon represents. Note that we do not include the individual surgeons, but
rather the surgeon capacity available to each subspecialty. The anesthesia staff
may cover a number of ORs each day. The number of surgeries undertaken within
each OR is irrelevant as long as the room is covered by the anesthesia staff. An
OR that is not covered by the anesthesia staff may not be used for surgery.

3.5 The objectives in the problem

There are multiple objectives relevant to the MSSP. The first is to maximize the
number of elective patients scheduled for surgery. Furthermore, we aim to minimize
both the number of elective cancellations, the number of green patients to receive
surgery in the elective slots, and the number of patients not resting at the ward
meant for them. Finally, we want to maximize the number of yellow patients to
receive surgery in the slots scheduled for green emergency patients.
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Figure 11: Illustration of the taxonomy provided by Hulshof et al. (2012).

4 Related literature

The literature presented in this section is related to surgery scheduling in operations
research. First, a theoretical framework is provided, and then we introduce some
literature covering trade-offs related to OR scheduling regimes. Finally, we inves-
tigate some of the literature available on the Master Surgery Scheduling Problem
(MSSP).

4.1 A theoretical framework

To classify the literature within the field, we refer to the work of Hulshof et al.
(2012). The authors present a bi-axial, taxonomic classification of planning deci-
sions in health care. The vertical axis reflects the hierarchical nature of decision
making in resource capacity planning and control, and builds upon the work of
Hans et al. (2012). On the horizontal axis, the different services within health
care are positioned. See Figure 11 for an illustration of the taxonomy provided by
Hulshof et al. (2012).

There are four decision levels to consider: Strategic, tactical, offline operational,
and online operational. Strategic planning involves defining the organization’s
mission, and the decision making to translate this into design, dimension and de-
velopment of the health care delivery process. Inherently, strategic planning has a
long planning horizon and is based on highly aggregated information and forecasts.
An example of strategic planning can be deciding on the number of ORs to build
in order to serve a population with surgeries in the years to come.

Tactical planning translates strategic planning decisions to guidelines that facil-
itate operational planning decisions. As a first step in tactical planning, patient
categories are characterized based on diagnosis, urgency and resource requirements.
As a second step, the available resource capacities, settled at the strategic level,
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are divided among these categories. The MSSP is a classic problem within tactical
surgery planning.

Operational planning involves the short-term decision making related to the exe-
cution of the health care delivery process. At this level, elective demand is entirely
known but the demand for emergency treatment still must be forecasted. Examples
of decisions made at this level can be the explicit planning of an elective patient
to an OR, and the rescheduling of elective patients due to incoming emergencies.
The operational decision level is further divided into offline and online decisions.
The offline decisions are all operational decisions made up until the day of surgery.
Online decisions, on the other hand, are all decisions made on the day of surgery.
An example of an offline decision is the rescheduling of a surgery due to a patient
calling in and saying that he is prohibited from coming on the day he was scheduled
for. If this patient did not call in some days prior to the surgery, but did not show
up at the day of surgery without any notice, the rescheduling performed on this
day would have been an online rescheduling process.

The services presented in the taxonomy are as follows: Ambulatory care services,
emergency care services, surgical care services, inpatient care services, home care
services and residential care services. The service category most relevant to this
report is the surgical care services which cover all literature relevant to surgery
scheduling, from the strategical case mix planning problem to the online surgical
case rescheduling problem.

Samudra et al. (2016) argue that the decision levels described by Hulshof et al.
(2012) vary considerably for different settings and hence are often perceived as
vague and interrelated. They propose a structure that is based on descriptive fields
in order to categorize the literature. These fields include the patient types included,
the different performance measures used, the decisions that must be made, the
integration of up-and downstream units of the OR, the incorporation of uncertainty,
the operations research methodology and the testing phase and application. Next,
a brief introduction to some of these topics are provided.

Two major patient classes are considered in the literature: elective patients and
emergency patients (Samudra et al., 2016). Another classification used by some
authors is the dividing of patients into inpatients and outpatients. At the hospitals,
there is an ongoing shift of services going from inpatient towards outpatient care.
However, Samudra et al. (2016) show that the literature considering outpatients is
not increasing, but so is the literature on inpatients.

The performance measures used will favor the interests of some stakeholders over
others. The management at the hospital could be interested in high profits, while
medical staff care less about cost factors and rather aim to achieve low overtime.
The patients may care little of the aforementioned aspects, and rather care about
short waiting times and little chances of cancellation. Samudra et al. (2016) distin-
guish between the following major performance measures: waiting time, utilization,
leveling, idle time, throughput, preferences, financial measures, make-span and pa-
tient deferral. The authors find that the most used performance measure is overtime
followed by waiting time. Overtime in the OR may result in dissatisfaction of the
surgical staff, in excessive costs for the hospital and in disruption of the schedule
in downstream departments. Waiting time mostly refers to the waiting time for
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patients (on the day of operation and the size of the waiting list), but some authors
have also developed models to minimize the waiting time for the surgeons.

As OR scheduling is not made in isolation of other departments at the hospital,
it may be wise to include both upstream and downstream facilities to produce
realistic schedules and to improve their combined performance. Facilities often
included is the post anesthesia care unit (PACU), the intensive care unit (ICU)
and the wards. The upstream facilities, such as the preoperative assessment, are
not usually included in the literature.

One of the major problems associated with OR scheduling is the uncertainty in-
herent to surgical services. The two primary areas where uncertainty is considered
in the literature is the arrival of emergency patients and the surgery duration. Out
of all papers investigated by Samudra et al. (2016), 44 % take surgery duration
uncertainty into account, while 28 % consider arrival uncertainty. Other areas
where uncertainty may be considered is the length of stay of an inpatient following
surgery. Although some papers include aspect of uncertainty to their model, there
are only a limited number of authors who apply stochastic programming to solve
real-life problems.

Many researchers obtain real life data when solving their problems. However,
Samudra et al. (2016) report that less than 7 % of the methods are applied in
practice. Unfortunately, simply testing of procedures or tools on real data does not
imply that the methods get implemented in practice. Lagergren (1998) indicates
that the lack of implementation in the health care service seems to have improved
considerably, but this cannot be stated within the field of OR planning.

4.2 Scheduling policies in surgery scheduling

One of the major issues within surgery scheduling is how to best balance efficiency
and responsiveness when conducting surgeries for scheduled electives and high-
priority emergencies. If the OR capacity is shared between electives and emer-
gencies, emergencies can create disruptions to the handling of scheduled surgeries,
implying higher elective waiting time and costly resource overtime and reschedul-
ing. Meanwhile, if some of the OR capacity is dedicated to respond to emergencies
and avoid disruptions of electives, there will be times when the dedicated capac-
ity is not utilized as no emergencies are present (Ferrand et al., 2014b). These
trade-offs are very relevant to our thesis, as we aim to provide a mix of elective
OR capacity and flexible slot capacity. In the following we present some literature
considering OR scheduling policies and relevant trade-offs faced when deciding on
the scheduling policy.

Ferrand et al. (2014b) provide a literature survey, investigating literature related
to scheduling policies in surgery scheduling. The authors find that there is mixed
opinions on whether the ORs should be dedicated with a subset focusing on elec-
tive surgeries and a subset focusing on emergency surgeries, or whether the ORs
should be made flexible and shared between emergency and elective surgeries. Fur-
thermore, they state that almost all literature focus on either the dedicated or the
flexible policy, and only a few papers investigate a mixed policy.
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The authors find that three broad categories of approaches have been proposed to
handle the mix of elective and emergency surgeries:

• Decide how many elective surgeries to schedule so that a fraction of OR time
is reserved for emergencies.

• Schedule elective surgeries and insert a short fraction of OR time (slack)
between them.

• Do not allocate time for emergency surgeries but schedule elective surgeries
with the goal of limiting the waiting time of emergency surgeries or limiting
the perturbations to schedule when inserting emergency surgeries.

The first scheduling approach is well suited for a dedicated OR policy, while the
two latter are typically adopted for the flexible OR policy. If applying a mixed OR
policy, all three approaches may be used.

Ferrand et al. (2014b) propose the following topics for future research:

• Study what kinds of changes that can be made to the OR schedule in order
to respond to elective cancellations, and highlight the interactions between
elective cancellations and access to OR emergency.

• Study the distribution, the magnitude and frequency of emergency waiting
time as a result of the scheduling regime applied.

Ferrand et al. (2014a) develop a discrete event simulation tool to investigate the
use of the mixed policy. They simulate the flow of patients through 20 ORs for one
8-hour shift, allowing for overtime work. 75 elective patients arrive through the
day in batches of 15, and the batches arrive with 90 minutes in between. The goal
is to spread the workload of the 75 elective cases evenly throughout the day. In
addition, they include emergencies that arrive according to a Poisson process with
an arrival rate of 1.5 patients per hour.

To investigate the mixed policy, the authors vary the amount of ORs that are flex-
ible, how many that are dedicated for electives, and how many that are dedicated
for emergencies. Upon an emergency arrival, if an emergency OR is available, the
patient is sent to the dedicated OR with the lowest number. If no emergency ORs
are available, the patient is sent to the flexible OR with the lowest number. If no
emergency OR and no flexible OR are available, the patient has to wait in a single
queue for the first available OR.

To schedule the elective patients a simple heuristic is applied:

• If the number of elective ORs are less than the batch size, all elective ORs are
scheduled, and then the remaining elective patients are assigned cyclically to
the flexible ORs.

• If the number of elective ORs are larger than the batch size for elective ar-
rivals, then the electives are assigned cyclically to both the flexible and the
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elective ORs.

The authors conclude that the mixed policy outperforms both the completely flex-
ible and completely dedicated policy in terms of patient waiting time and staff
overtime. Furthermore, they find that when dedicating a few ORs, the rooms
should be dedicated for emergencies, and if a few ORs are to be made flexible,
these ORs should be taken from the set of elective ORs.

Zonderland et al. (2010) propose a model for planning and scheduling of semi-urgent
surgeries, aiming to investigate the trade-offs between cancellations of elective surg-
eries due to semi-urgent surgeries, and unused OR time due to excessive reservation
of OR time for semi-urgent surgeries. By semi-urgent the authors refer to surgeries
that should be performed either within one or two weeks. The patients are further
categorized according to the surgery duration, given as the a number of surgery
slots required.

The authors propose a three-stage model for the scheduling of semi-urgent emer-
gencies. Firstly, using a queuing theory framework, they evaluate the OR capacity
needed to accommodate every incoming semi-urgent surgery. Secondly, they in-
troduce another queuing model that enables a trade-off between the cancellation
rate of elective surgeries and unused OR time. Finally, based on Markov decision
theory, they develop a decision support tool that assists the scheduling process of
elective and semi-urgent surgeries. In the first two models the semi-urgent surgeries
are treated as one group according to the degree of urgency.

Based on the the first model, the authors argue that the minimum number of slots
needed to handle the emergencies should equal the expected number of emergency
slots arriving each week. In the next model they assign costs, both for leaving
one semi-urgent OR slot empty, and for the cancellation of one elective slot. Fur-
thermore, they derive expressions for the expected amount of empty semi-urgent
OR slots and for the expected amount of elective slots cancelled, and then min-
imize the total cost by varying the amount of scheduled semi-urgent slots above
the minimum level decided on in the first model. To develop the third model the
authors develop scheduling rules for the semi-urgent surgeries. At the beginning of
the week, the one-week-emergencies are scheduled for the emergency slots decided
on in the second model. If the emergency OR capacity is insufficient, electives
are cancelled to provide more capacity. If all the ORs are utilized, and there are
still one-week-emergencies left to schedule, these are performed in overtime. If
there is emergency OR capacity left after treating all one-week-emergencies, the
two-week-emergencies are scheduled to these slots. If all emergency OR capacity
is used, and there are still two-week-emergencies left to schedule, we may wither
cancel electives, or we may postpone the two-week-emergencies to next week (they
will then become one-week-emergencies the next week). All electives that are can-
celled become two-week-emergencies the next week. In the third model, the authors
aim to minimize the total expected costs of cancelling electives, leaving emergency
OR-capacity unused and adding overtime work.

The authors present the results from applying the model on a real life hospital
department, and they highlight the trade-offs by altering the values of the objective
function coefficients. However, they do not compare the results to the real world
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scheduling regime obtained at the case department.

4.3 The Master Surgery Scheduling Problem

Next, literature on the MSSP is presented. Inspired by Samudra et al. (2016) we
report on the following aspects for all the papers: The patient types considered,
the objective function, the clinical restrictions including the ORs, the handling
of patients, and the inclusion of up- and downstream facilities, the inclusion of
uncertainty, and the real-life applications. Note that three of the papers included
(Freeman et al. (2017), Ma and Demeulemeester (2013) and Testi et al. (2007))
provide models that perform surgery scheduling at both a strategic, a tactical and
an operational level. Here, developing a MSS is done at the tactical level. In Table
5 we provide a summary of the papers investigated on the MSSP.

4.3.1 The patient classes included

Most of the literature on the MSSP include only elective patients, and the authors
give different reasons for excluding the emergencies. van Oostrum et al. (2008)
include only elective patients in their model, but argue that capacity should be
reserved for emergencies. However, they are not stating whether it should be done
according to a flexible, a dedicated or a mixed policy. Testi and Tànfani (2008) also
disregard emergencies, assuming that these patients go to dedicated ORs, accord-
ing to the dedicated policy. Santibáñez et al. (2007) exclude emergencies, assuming
that these patients are treated after the time designated for elective surgeries. The
authors argue that because of the highly unpredictable arrival of emergencies, it
would make little sense to fit probability distributions for these. Mannino et al.
(2012) schedule for electives only, and do not mention the emergency patients.
Adan et al. (2011), on the other hand, include both elective and emergency pa-
tients, and they make estimates of emergency arrivals based on a Poisson process.
Freeman et al. (2017) estimate, using discrete event simulation, the number of
emergencies entering, and based on this they reserve capacity for these patient in
the ORs.

4.3.2 The objective function

There are numerous objective functions presented in the literature on the MSSP.
Common examples may be objective functions focusing on the bed capacity at
the ward, objective functions maximizing the stakeholders preferences, or multiple
criteria objective functions.

Both Testi and Tànfani (2008), Testi et al. (2007) and Penn et al. (2017) include
aspects of welfare into their objective functions. In the two latter, the surgeons
preferences are maximized. In Testi et al. (2007) these preferences are assumed
to depend on two parts: Exclusion of particular days due to other engagements
(like teaching activities), and the expected length of stay of patients on the waiting
list. If patients with an expected length of stay less than or equal to five days are
admitted on the first days of the week, they can be discharged before the weekend,
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allowing for the short stay area to be closed during the weekends. In order to
achieve this, the surgeon preference for a given ward and a given day is increasing
in the number of short-stay patients on the waiting list, and decreasing in the
number of days counting from Monday.

Testi and Tànfani (2008) propose an objective function that minimizes loss of
welfare among the patients. To accomplish this, the authors introduce urgency
coefficients for each diagnostic category, and then a priority is given to each patient
as the product of time waited computed at a day and the urgency coefficient.
According to this system, the priority is increasing in both days from referral
and in the urgency coefficient. In the objective function the authors minimize the
priority among both the patients who will have their surgery and those still waiting
at the end of the period.

A variety of objective functions regarding the bed capacity is proposed in the
literature. The objective function developed by van Oostrum et al. (2008) aims
to minimize both the number of ORs used and the maximum demand for hospital
beds during the planning cycle. The beds are divided into categories, representing
for example beds at the wards and at the intensive care department, and a priority
parameter is introduced for each category. They also state that different patients
require different lengths of stay in each of the bed types, according to the procedure
performed. Ma and Demeulemeester (2013) also consider the beds at the wards in
their objective function. The authors aim to minimize the total bed deficit, the
maximum daily spare bed volume and the maximum variance of the bed occupancy.
They use weights in order to prioritize between the different wards and the different
measures.

In order to capture several aspects, the inclusion of multiple criteria objective func-
tions seem to be very popular. By including several measures into the objective
function the authors aim to satisfy several stakeholders. The challenge by including
several criteria is how the different parts are to be inter-prioritized. Most of the au-
thors impose weighting parameters obtained for example by interviewing different
stakeholders, while one of the papers (Li et al., 2017) propose a goal programming
approach.

In Beliën et al. (2008) the objective function contains three parts: minimization
of the total peak mean and variance bed occupancy, minimization of surgeons of
the same specialty performing surgery in different rooms, and minimization of sur-
geons not being scheduled to the same room on the same day every week of the
planning horizon. In order to give prioritization to the three parts, weighting pa-
rameters are provided. The authors make no attempt to explain how these should
be weighted. Li et al. (2017) include four parts in the objective function: minimiz-
ing the number of patients not being scheduled, minimizing the under utilization
of OR time, minimizing the maximum expected number of patients in the recovery
unit and minimizing the expected range of patients in the recovery unit. Then,
two approaches are suggested, one applying lexicographic prioritization, and one
including weights.

Some authors propose several individual objective functions instead of one single
objective function consisting of many parts. Santibáñez et al. (2007) propose five
individual objective functions, within two categories: minimizing the sum of maxi-
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mum usage of post-surgical beds at the hospitals included (1) and maximizing total
throughput of patients (4). In order to minimize the usage of post-surgical beds,
the authors include the expected days of stay in different beds following surgery
for the different surgical categories. For each day the consumption of different
beds is measured, and the aim is to minimize the consumption of beds on the day
where most beds are used. Mannino et al. (2012) propose two quite similar model
formulations with two different objective functions. In the first model they aim to
minimize the patient queues, and they develop a piece wise linear objective func-
tion to penalize harder if the queue is above some predefined thresholds. In the
other model they demand the queue of the different patient categories to be below
a predefined threshold, while minimizing the overtime work for the staff.

The objective function provided by Adan et al. (2011) aims to minimize the ab-
solute deviation of resource consumption compared to a predefined target. The
model is a further development of the models provided by Adan and Vissers (2002)
and Adan et al. (2008), but unlike the objective functions provided there, the
authors now allow for the consumption of resources to go beyond the maximum
capacity available. However, this is penalized in the objective function. Also here,
weighting parameters are used in order to give prioritization to the resources con-
sidered.

4.3.3 The operating rooms

The OR capacity is central in every MSSP. The rooms usually have a given amount
of available opening hours, often provided as a number of slots available, which can
be booked by the different subspecialties. Some authors, like Mannino et al. (2012)
include surgery blocks of different lengths, and allow for several subspecialties to
book slots on the same OR on a given day. However, the most common approach
is to consider surgery slots of a given time interval, and only allow for one subspe-
cialty to book a room on a given day. When a subspecialty has booked an OR,
the surgeons belonging to this category are allowed to perform surgeries to their
patients within the time interval that they are scheduled to. Some authors, like
Testi and Tànfani (2008), Adan et al. (2011) and Mannino et al. (2012) allow for
some overtime work at the ORs. While most of the papers include the ORs by
means of restrictions, some contributions, like van Oostrum et al. (2008) include
the ORs in the decision variables, aiming to minimize the rooms that have to be
opened.

It is quite surprising to see that almost all the papers investigated on the MSSP
include homogeneous ORs. Of the contributions presented here, only Testi et al.
(2007) and Penn et al. (2017) explicitly regard the ORs as heterogeneous. Penn
et al. (2017) are also the only contribution to include constraints on surgery equip-
ment.

4.3.4 Handling of the patients

Many authors, like Adan et al. (2011), van Oostrum et al. (2008), and Ma and De-
meulemeester (2013) demand that the total amount of patients waiting are sched-
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uled for surgery (hard constraints). Others, like Santibáñez et al. (2007) use soft
restrictions to provide an interval for the number of operations required for each
subspecialty. Beliën et al. (2008) and Penn et al. (2017) does not explicitly include
the number of patients to receive surgery, but require that all surgeons receive a
given number of slots during the time horizon in order to fulfill the number of
operations required.

In their second model formulation, Mannino et al. (2012) introduce a robust for-
mulation in order to deal with the uncertain patient demand. They propose a
two-stage model where they first minimize the amount of overtime needed in order
to keep the queue of patients under a certain predefined threshold when the patient
demand is taking the mean value. In the second stage they let the patient queue
increase to some maximum level, and then they aim to cope with this the best way
as possible by imposing a restriction that requires the overtime cost in the second
stage not to deviate from the solution obtained in the first stage by more than a
predefined level.

4.3.5 The intensive care unit, the wards and the staff

Including the ICU is not very common in the MSSP, but some authors like Li et al.
(2017) and Adan et al. (2011) consider this unit in their model. The latter are
also the only one to explicitly include the nurses, by imposing restrictions on the
amount of nursing hours available at the ICU.

The wards, on the other side, are very commonly included. Of the papers in-
vestigated on the MSSP, only Testi et al. (2007), Li et al. (2017) and Mannino
et al. (2012) completely exclude handling of the wards in their model under the
assumption that this resource is not imposing any bottleneck to the efficient flow of
patients. Testi and Tànfani (2008) include the wards and the length of stay of pa-
tients, in a simplified way. The authors assume that no beds are available through
the weekends, and to deal with this they prohibit scheduling of patients on days
that will imply that the patients have to stay at the hospital in the weekends (based
on the expected length of stay). They also include restrictions stating that there
cannot be performed more surgeries on a given day than there are beds available on
that day. These restrictions are sufficient to handle the ward restrictions without
having to count days.

All the rest of the papers explicitly handle the wards (either as a common pool,
or as heterogeneous wards) in more sophisticated ways. Most of the contributions
include the expected length of stay for the different patient categories, and use
counting mechanisms in order to count the total bed occupancy at the wards on
given days. Beliën et al. (2008) impose an alternative way of doing this. They
state that scheduling different surgeons to an OR will impose a given contribution
to the mean and variance of the bed occupancy (derived from historical data), and
aim to minimize this in the objective function.

Few of the papers include explicitly the surgeon capacity as restrictions. Santibáñez
et al. (2007) restrict the number of ORs scheduled to a subspecialty to the number
of surgeons available for that subspecialty. Similarly, Testi et al. (2007) restrict the
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number of ORs dedicated to one ward to the number of surgeon teams available to
serve patients from the given ward.

4.3.6 The uncertainty included

None of the papers investigated include stochastic optimization. However, some of
the authors include probabilities when calculating the lengths of stay at the wards
and the surgery duration. Including probabilities makes the model more realistic
as it provides a more accurate estimates of these values, but it do not add any
stochastic value.

van Oostrum et al. (2008) deals with the uncertainty of surgery duration by pro-
viding probability distributions for running into over time at an OR as a function
of the number of surgeries scheduled to that room. In Adan et al. (2011) the au-
thors provide probability distributions for the lengths of stay in both the intensive
care unit and in the wards. They also aim to decide on the number of emergencies
entering each day by multiplying the arrival rate of emergencies times the proba-
bility that an emergency patients enters during day time. Ma and Demeulemeester
(2013) and Li et al. (2017) calculate the lengths of stay for the different patients
by using the probability that a patient is still at the ward a certain number of days
after the surgery.

Both Freeman et al. (2017), Ma and Demeulemeester (2013) and Testi et al. (2007)
develop models containing several stages of decision making, going from the strate-
gic Case-Mix Planning Problem, via the MSSP, and ending up at the operational
level represented by a discrete event simulation model. Although the optimiza-
tion models included are deterministic, the simulation model allows for testing the
model in a stochastic framework. The model developed by Testi et al. (2007) is not
set up in a loop, so the information gained by the simulation model is not used to
alter the optimization models. Both Ma and Demeulemeester (2013) and Freeman
et al. (2017) apply a loop setting to their models. Ma and Demeulemeester (2013)
state that after performing simulations at the operational level, the obtained valu-
able information is fed back to the upper stages to further affect the case mix and
capacity decision and to further influence the operational performance. However,
they do not explicitly state what information that is fed back to the upper stages.
Freeman et al. (2017) are not altering the input to the optimization models based
on the solutions obtained in the simulation model. However, they utilize the loop
setting to run their model several times to obtain different solutions which they
perform statistical measures on. Freeman et al. (2017) are also the only ones to
use simulation when generating the waiting list of elective patients and use this as
input to their optimization models.

4.3.7 The real-life applications

Although all of the papers included in this section report on receiving data from real
life hospitals none of them report on their model being implemented at the collabo-
rating hospitals.van Oostrum et al. (2008) seem to be closest to actually implement
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their model at a hospital. The authors test their model on data from the Eras-
mus Medical Center in Rotterdam, and they state that the hospital management
is pleased with the outcomes of the model, and that they want to initiate further
research into practical implementation of the MSS-approach proposed.

4.4 Our contribution related to the literature

The simulation model proposed by Ferrand et al. (2014a) is fairly simple, which
makes it appropriate for comparing different scheduling policies. However, the
elective scheduling heuristic seem quite far from a real life scheduling procedure. In
our problem formulation we include a more realistic scheduling of elective patients,
as we develop a MSS relating the scheduling of electives to different resources
available. Furthermore, as Ferrand et al. (2014a) only simulate one day, the long
term effect of the scheduling regimes are not investigated. The work presented by
Zonderland et al. (2010) is very theoretical, and the strict scheduling rules essential
for formulating the third model may be to simplistic. However, used as a tactical
decision tool, the model may be appropriate to provide the number of ORs to
dedicate for the semi-urgent emergencies. Also this contribution includes only the
ORs, neglecting the ward capacity and the proper scheduling of elective patients,
making it less attractive to real-life applications.

Our main contribution to the present literature is the inclusion of emergency pa-
tients and the development of a two-stage linear stochastic model in order to handle
both the uncertain demand of semi-urgent emergencies (the green emergencies) and
the uncertain bed loading imposed by the emergency patients when developing a
MSS. The only papers detected to include emergencies for the MSSP is Adan et al.
(2011) and Freeman et al. (2017). However, their optimization models are de-
terministic implying that there is no flexibility embedded in the model to handle
deviations from the expected surgery demand for the emergencies. We also aim to
close the gap between the literature focusing on OR scheduling regimes and the
literature concerning the MSSP.
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5 Modelling approach and model description

This section is twofold: First we present the two-stage modeling approach used to
handle the uncertainty related to emergency patients, and afterwards the mathe-
matical model for solving the problem is provided.

5.1 A two-stage modeling approach

As stated in the problem description, we have to decide on the surgery slot schedul-
ing, and the scheduling of elective patients, before knowing the excess demand of
green emergency patients or the amount of emergencies resting at the wards in
each cycle. When we receive this information, we need to schedule all the green
patients for surgery, and cancel elective surgeries if necessary. Including the emer-
gencies in the MSSP yields a problem that is suitable for a stochastic two-stage
formulation.

The first stage decision in the model are as follows:

• On each day of the cycle we need to decide which of the ORs that should be
available, by scheduling anesthesia resources for those ORs

• Decide which of the OR slots that should be scheduled as flexible, and sched-
ule the subspecialties for these slots

• Schedule the subspecialties for elective slots

• Schedule the elective patients for surgery in the elective slots

• Decide on the number of beds to staff at each ward on every day through the
cycle

The second stage decisions are the following:

• Schedule the excess demand of green patients to the flexible slots

• Schedule the excess demand of green patients to elective slots (if no more
flexible slots are available)

• Cancel elective surgeries if necessary

• Send inpatients to the wards and let patients rest at wards not meant for
them if necessary due to short bed capacity

• Perform surgeries to yellow patients in elective slots if excess flxible capacity

Choosing a two-stage model to represent the reality has some simplifying aspects
in the way we treat the uncertainty in the problem. The first stage decisions are
made without knowing the actual excess demand of green patients or the number
of emergencies that will be resting at the different wards, and applies well to the
real world problem. However, we assume that we receive all the information related
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to the amount of emergencies present during the cycle at one specific point in time
(just before the cycle starts). This is a simplification of the reality, where we will
receive new information every day. For an illustration of this simplified world, see
Figure 12 where we provide an example where the cycle length is set to one week
and the information regarding the excess demand of green patients is aggregated
to the Sunday prior to the planning cycle. We want to stress the fact that this
is a model for generating a MSS, and not a tool for the day to day scheduling of
patients, so allowing for some more aggregated view of the uncertainty involved
may be acceptable.

Figure 12: Illustration of the aggregated two-stage approach.

Note that in the optimization model we send yellow patients to the flexible slots if
all green patients are scheduled and there still is flexible capacity left. Scheduling
yellow patients to the flexible slots represent an arbitrary alternative use of the
flexible slots. However, this is just one alternative way of utilizing the flexible slots,
and different departments may have different ways of filling the spare capacity.
One alternative use of the flexible slots may be to reschedule electives that were
previously cancelled to these slots.

5.2 The mathematical formulation

Next, the mathematical formulation of the problem is provided. See Tables 6, 7,
8, and 9 for all the notation used in the formulation.
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Table 6: Indices used in the mathematical formulation

Letter Description

d Days

i Patient categories

j Surgical subspecialties

k Operating rooms

s Scenarios

w Wards

w
′

Wards

Table 7: Sets used in the mathematical formulation

Letter Description

D Set of days in a cycle d ∈ D
I Set of patient categories i ∈ I
J Set of surgical subspecialties j ∈ J
K Set of operating rooms k ∈ K
W Set of wards w ∈ W
S Set of scenarios s ∈ S
IEL Set of elective patient categories i ∈ IEL ⊆ I
IIN Set of elective inpatients i ∈ IIN ⊆ IEL

IJj Set of elective patient categories that can be treated by
subspecialty j

i ∈ IJj ⊆ IEL

IKk Set of elective patient categories that can be scheduled
to operating room k

i ∈ IKk ⊆ I
EL

IWw Set of elective patient categories meant for ward w i ∈ IWw ⊆ IEL

IGR Set of green emergency patient categories i ∈ IGR ⊆ I
IGRJj Set of green emergency patient categories that can be

treated by subspecialty j
i ∈ IGRJj ⊆ IGR

IGRKk Set of green emergency patient categories that can be
scheduled to operating room k

i ∈ IGRKk ⊆ IGR

IGRWw Set of green emergency patient categories meant for ward
w

i ∈ IGRWw ⊆ IGR

Kj Set of operating rooms that can be managed by surgeons
with subspecialty j

k ∈ Kj ⊆ K
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Table 8: Parameters used in the mathematical formulation

Letter Description

AMAX
w Maximum amount of beds available on ward w

Awd Amount of staffed beds available at ward w on day d

Bkd Time (hours) available for surgery in one slot in operation room k at day d

CCi Penalty for cancelling an elective patient of category i

CGR Penalty for scheduling a green patient to an elective surgery slot

CW
ww

′ Penalty for putting a patient belonging to ward w in ward w
′

Eid Expected length of stay (days) of patient category i scheduled for surgery
on day d

EGRid Expected length of stay for green emergency patient of category i scheduled
on day d

Hd Number of elective inpatients allowed to schedule for surgery on day d

MOR
kd Maximum number of slots that can be reserved at an operating room k on

day d within the opening hours of the operating room

MA
d Number of operating rooms covered by anesthesia staff on day d

MCY CLE Total amount of slots available through one cycle

Nj Maximum surgeon capacity (slots) of subspecialty j in one cycle

ND
jd Maximum surgeon capacity (slots) of subspecialty j at day d

Pi Reward for scheduling more patients from patient category i than the lower
limit

PSs The probability of ending up in scenario s

PY Reward for scheduling a yellow emergency patient to a flexible slot

Ri Parameter used to define the number of elective patient category i that have
to be scheduled for surgery

Si Expected surgery duration of elective patient category i

SGRi Expected surgery duration of green emergency patient category i

SY Expected surgery duration of yellow patients

Ti Target throughput of elective patients belonging to patient category i

TGRis Excess demand of green emergency patient category i

UEMwds Amount of emergencies resting at ward w on day d in scenario s

X̄ikd Maximum number of patients of category i that can be scheduled to oper-
ating room k on day d

X̄GR
ikd Maximum number of green emergency patients of category i that can be

scheduled to operating room k on day d

X̄Y
kd Maximum number of yellow patients that can be scheduled to operating

room k on day d
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Table 9: Variables used in the mathematical formulation

Letter Description

awd Number of staffed beds available at ward w on day d

njkd Number of slots scheduled as flexible for subspecialty j in operating room k
on day d

vi Number of elective patients from patient category i scheduled beyond the
lower limit

xikd Number of elective patients of patient category i scheduled to an elective
slot in operating room k on day d

yjkd Number of elective slots scheduled for subspecialty j in operating room k on
day d

αAkd Indicates whether operating room k is covered by anesthesia staff on day d
or not

qkd Total sum of elective patients, or surgery duration, scheduled to operating
room k on day d (related to symmetry)

b
ww

′
ds

Number of beds occupied at ward w
′

by patients belonging to ward w on
day d and scenario s

eijkds Number of green emergency patients of category i scheduled to subspecialty
j in a flexible surgery slot in operating room k on day d in scenario s

eELijkds Number of green emergency patients of category i scheduled to subspecialty
j in an elective surgery slot in operating room k on day d in scenario s

eYjkds Number of yellow emergency patients scheduled to subspecialty j in a flexible
surgery slot within operating room k on day d in scenario s

uiwds Number of elective patients of patient category i resting at ward w on day
d in scenario s

uGRiwds Number of green emergency patients from category i resting at ward w on
day d in scenario s

xCikds Number of elective patients of patient category i scheduled to an elective
slot within operating room k on day d that are cancelled
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max
∑
i∈IEL

Pivi −
∑
s∈S

PSs

 ∑
i∈IEL

∑
k∈K

∑
d∈D

CCi x
C
ikds +

∑
w∈W

∑
w′∈W

∑
d∈D

CW
ww′ bww′ds+

∑
i∈IGR

∑
j∈J

∑
k∈K

∑
d∈D

CGReELijkds −
∑
j∈J

∑
k∈K

∑
d∈D

PY eYjkds


(3)

subject to:

∑
j∈J

∑
k∈Kj

∑
d∈D

(njkd + yjkd) ≤MCY CLE (4)

∑
k∈K

αAkd ≤MA
d d ∈ D (5)

∑
k∈K

∑
d∈D

αAkd ≤
∑
d∈D

MA
d (6)

∑
j∈J

(njkd + yjkd) ≤MOR
kd αAkd k ∈ K, d ∈ D (7)

∑
k∈Kj

Bkd(njkd + yjkd) ≤ ND
jd j ∈ J , d ∈ D (8)

∑
k∈Kj

∑
d∈D

Bkd(njkd + yjkd) ≤ Nj j ∈ J (9)

∑
k∈K

∑
d∈D

xikd ≥
⌈
Ti
Ri

⌉
i ∈ IEL (10)

∑
k∈K

∑
d∈D

xikd ≤ Ti i ∈ IEL (11)

∑
k∈K

∑
d∈D

xikd − vi =

⌈
Ti
Ri

⌉
i ∈ IEL (12)

∑
i∈IJj

Sixikd ≤ Bkdyjkd j ∈ J , k ∈ Kj , d ∈ D (13)

∑
i∈IIN

∑
k∈K

xikd ≤ Hd d = Friday (14)
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awd ≤ AMAX
w d ∈ D, w ∈ W (15)

∑
w∈W

awd ≤
∑
w∈W

Awd d ∈ D (16)

∑
j∈J

∑
k∈K

∑
d∈D

(eijkds + eELijkds) = TGRis i ∈ IGR, s ∈ S (17)

∑
i∈IJj

Si(xikd − xCikds) +
∑

i∈IGRJ
j

SGRi eELijkds ≤ Bkdyjkd

j ∈ J , k ∈ Kj , d ∈ D, s ∈ S
(18)

∑
i∈IGRJ

j

Sieijkds + SY eYjkds ≤ Bkdnjkd

j ∈ J , k ∈ Kj , d ∈ D, s ∈ S
(19)

xCikds ≤ xikd i ∈ IEL, k ∈ K, d ∈ D, s ∈ S (20)

∑
k∈K

Eid∑
d′=1

(xik(d−d′+1) − xCik(d−d′+1)s) ≤ uiwds

w ∈ W, i ∈ IWw , d ∈ D, s ∈ S

(21)

∑
j∈J

∑
k∈K

EGR
id∑

d′=1

(eijk(d−d′+1)s + eELijk(d−d′+1)s) ≤ u
GR
iwds

w ∈ W, i ∈ IGRWw , d ∈ D, s ∈ S

(22)

∑
i∈IWw

uiwds +
∑

i∈IGRW
w

uGRiwds +
∑

w′∈W|w′ 6=w

bw′wds −
∑

w′∈W|w′ 6=w

bww′ds ≤ awd − U
EM
wds

w ∈ W, d ∈ D, s ∈ S
(23)

yjkd ∈ {0, 1, ...,MOR
kd } j ∈ J , k ∈ Kj , d ∈ D (24)

njkd ∈ {0, 1, ...,MOR
kd } j ∈ J , k ∈ Kj , d ∈ D (25)
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xikd ∈ {0, 1, ..., X̄ikd} k ∈ K, i ∈ IKk , d ∈ D (26)

awd ∈ {0, 1, ...AMAX
w } w ∈ W, d ∈ D (27)

αAkd ∈ {0, 1} k ∈ K, d ∈ D (28)

xCikds ∈ {0, 1, ..., X̄ikd} k ∈ K, i ∈ IKk , d ∈ D, s ∈ S (29)

eijkds ∈ {0, 1, ..., X̄GR
ikd } j ∈ J , k ∈ K|, i ∈ IGRWw , d ∈ D, s ∈ S

(30)

eELijkds ∈ {0, 1, ..., X̄GR
ikd } j ∈ J , k ∈ K|, i ∈ IGRWw , d ∈ D, s ∈ S

(31)

eYjkds ∈ {0, 1, ..., X̄Y
kd} j ∈ J , k ∈ Kj , d ∈ D, s ∈ S (32)

vi ∈ {0, 1, ..., Ti −
⌈
Ti
Ri

⌉
} i ∈ IEL (33)

uiwds ∈ {0, 1, ..., Awd} i ∈ IEL, w ∈ W, d ∈ D, s ∈ S (34)

uGRiwds ∈ {0, 1, ..., Awd} i ∈ IGR, w ∈ W, d ∈ D, s ∈ S (35)

bww′ds ∈ {0, 1, ..., Aw′d} w ∈ W, w
′
∈ W|w

′
6= w, d ∈ D, s ∈ S (36)

The objective function

The objective function maximizes the gains from scheduling more elective patients
than the lower limit in the first stage. In the second stage, we minimize the penalty
of cancelling electives, providing beds for patients at wards not originally intended
for them, and scheduling green patients to elective slots. In addition, we maximize
the amount of yellow patients scheduled for surgery in the second stage.
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The first stage decisions

Constraint (4) requires that the sum of all slots scheduled through the cycle,
both elective slots and flexible slots, may not exceed the slots available in the
cycle.

The anesthesia constraints are given by constraints (5) to (7), where the former
require that we can not schedule surgeries to more operating rooms during a day
than there are rooms covered by anesthesia staff on that day. The second constraint
demands that the total number of operating rooms used for scheduling patients
through the week have to be less than or equal to the total number of operating
rooms covered by the anesthesia staff throughout the week. Note that constraints
(5) are more restricting than constraint (6), and that constraint (6) will not be
interesting as long as constraints (5) are present. The reason for providing both
is that it may be interesting to investigate whether there may be other ways of
distributing the total anesthesia resource throughout the cycle. The third set of
anesthesia constraints state that there may be no more slots scheduled for each
operating room on a given day than there are slots available in that operating
room on that day, and that an operating room has to be covered by anesthesia
staff in order to schedule surgeries there.

Constraints (8) state that the surgeons of a given subspecialty may not be scheduled
to more slots during a day than the amount of slots available to that subspecialty on
that day, while (9) require that for the whole cycle, the surgeons of one subspecialty
may not be scheduled to more slots than than there are slots available to that
subspecialty during a cycle.

Constraints (10) define the minimum number of elective patients from each category
that have to be scheduled for surgery. Constraints (11) state that for each elective
patient category, there can not be scheduled more patients for surgery than the
target throughput of that category. Constraints (12) state that the sum of all
elective patients scheduled through the cycle for one patient category, minus the
amount of patients scheduled above the lower limit for the same patient category,
has to equal the lower limit of patients scheduled for that patient category.

Constraints (13) limit the total expected surgery duration scheduled to elective
slots within an operating room to not exceed the elective slot time available in that
operating room. They also require that a trained subspecialty has to be scheduled
to the room in order to schedule patients there.

The constraints given by (14), demand the number of elective inpatients scheduled
for Friday to be less than or equal to a given limit in order to provide less loading
on the wards during the weekend.

Constraints (15) and (16) are the first stage bed restrictions. Through these, we
aim to distribute the existing bed capacity in an optimal manner. Constraints (15)
restrict the number of staffed beds at a ward on a given day to be less than or equal
to the maximum of beds available on that ward, while constraints (16) restrict the
total number of staffed beds on a given day to be less than or equal to the amount
of staffed beds available on all wards on that day.
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The second stage decisions

The second stage constraints have to hold for all scenarios, and has the first-stage
decision variables as input parameters.

Constraints (17) state that for a given scenario, and a given green emergency
patient category, the sum of patients scheduled to both the flexible slots and the
elective slots have to equal the weekly excess demand of that category. Constraints
(19) require that the expected surgery duration of elective patients scheduled for
all elective slots in an operating room, minus the surgery duration of electives
cancelled, plus the surgery duration of green emergencies scheduled to the same
slots have to be less than or equal to the elective slot time scheduled in that
operating room. Constraints (19) state that the expected surgery duration of both
green and yellow patients scheduled for flexible slots in an operating room, have to
be less than or equal to the flexible slot time scheduled in that operating room. We
may not cancel surgeries that are not scheduled, which is formulated in constraints
(20).

Constraints (21) to (23) are the second stage bed constraints. The former sum all
elective patients resting at a ward each day, while the second does the same for
the green emergencies. The last set of constraints sum all patients resting at a
ward on a day, plus the beds provided from the ward to host patients belonging
to other wards, minus the beds obtained at other wards to host patients belonging
to the ward, and demand that the sum should be less than the beds available for
the ward on that day minus the beds covered by emergencies on the ward on that
day.

Constraints (24) to (36) give the domains for the different variables.

5.3 Symmetry in the model formulations

An integer linear problem is symmetric if its variables can be permuted without
changing the structure of the problem. When symmetry is present, even relatively
modestly sized problems may become difficult to solve using traditional branch-and-
bound or branch-and-cut algorithms (Jünger et al., 2010). If we apply homogeneous
beds in our problem formulation, symmetry will be present.

Jünger et al. (2010) present several methods to avoid symmetry in mathematical
formulations, such as perturbation of coefficients, fixing variables and symmetry
breaking inequalities. To handle the symmetry related to homogeneous beds, we
propose the following symmetry breaking inequalities:

∑
i∈IEL

xikd − qkd = 0 k ∈ K, d ∈ D (37)

∑
i∈IEL

Sixikd − qkd = 0 k ∈ K, d ∈ D (38)

qkd − qk+1,d ≥ 0 k ∈ K|k ≤ |K|, d ∈ D (39)
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In constraints 37 we require that qkd have to equal the number of elective patients
scheduled for operating room k on day d, while in constraints 38 we require that
qkd have to equal the total surgery duration scheduled for operating room k on
day d. In constraints 39 we state that the total amount of workload scheduled for
surgery in operating room k on day d has to be at least as big as for operating
rooms k+ 1 on the same day. Note that constraints 37 and 38 should generally not
be used together, as this may cut away feasible solutions. Furthermore, constraints
39 should be applied when either equations 37 or 38 are used.
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6 Simulation

In the MSSP we aim to deal with both the uncertain bed loading at the wards and
the fluctuating demand of green emergency surgeries. However, the optimization
model neglects other important issues regarding uncertainty, such as the uncertain
surgery duration and length of stay within a patient category. Furthermore, as we
aim to develop a cyclic MSS we should verify how well this cyclic schedule handles
real life fluctuations over time. In order to include more uncertainty into the
modelling, and to analyze the performance of the MSS in a real life environment,
we develop a simulation model.

There is yet another reason for developing a simulation model. The historical data
we have access to reflect the scheduling policy that was present at the time when
the data was generated and stored. As we want to investigate a scheduling policy
with flexible slots, the historical data available may not provide suitable scenarios
for the optimization model. We therefore want to use the simulation model to
generate the data used in the scenarios fed to the optimization model.

6.1 System description

The system under consideration is a hospital department, and the flow of both elec-
tive and emergency patients from arrival at the wards to being sent home following
surgery. The flow of both elective and emergency patients are based on the descrip-
tions provided in Section 2.3.4. For the elective patients we exclude all activities
prior to entering the hospital at the day of surgery, and for the emergency patients
we exclude all activities before, and including the triage-process. The system may
be described as a queueing network where the patients are the customers, and the
ORs and the wards are the servers.

6.1.1 The components of the system

The entities considered in the system are the following:

• The elective patients

• The emergency patients

• The wards

• The elective ORs

• The emergency ORs

For the elective patients, the category is the attribute which is governing both the
surgery duration and the length of stay following surgery. The attribute relevant
for the emergency patients is the level of urgency, as this governs the prioritization
in the queue, the surgery duration and the length of stay of these patients. The
attributes linked to the wards are whether or not the specific ward may host patients
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of a certain category, and the number of beds available at each ward on each day
of the cycle. For the ORs, the attributes are the opening hours, and the slots
scheduled for each elective OR.

There are five activities to consider in the system:

• The preoperative stay at the wards for the emergency inpatients

• The preoperative stay at home for the emergency outpatients

• The transportation of emergency patients from the ward to the OR

• The surgery (including cleaning)

• The postoperative stay at the wards for the inpatients

The preoperative stay at the wards, or at home, for emergencies represent the
queue, while the three other activities are performed by the servers. Due to shortage
of capacity at the post anesthesia care unit (PACU) some patients may have to
wait in the OR before being transported out and receive a bed in the wake up area.
Because of this, there may also be a queue of patients waiting for a bed at the
PACU.

There states of the system are as follows:

• The number of emergency inpatients resting at each ward, preoperative

• The number of emergency outpatients waiting at home, preoperative

• The number of patients resting at each ward, postoperative

• Whether an OR is busy or idle

The events of the model are the following:

• The arrival of emergency patients

• The completion of a surgery (including cleaning)

• An inpatient leaving the ward after receiving surgery

6.2 Modelling the system

To model the system, we develop a discrete-event simulation program in MATLAB.
In Figure 13, a simplified illustration of the flow of patients in the model is provided.
The fundamental flow of all emergencies is starting with the arrival to the hospital
and the preoperative ward. When a suitable OR is ready, the most prioritized
patient is admitted for surgery, and afterwards the patient is either sent to a ward
for rest, or he is sent home. Note that the PACU is not included in the model.
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The flow of elective patients starts at the OR, as these patients are not going to
the ward prior to surgery. Following surgery, also these patients are either going to
the ward or home. To govern the flow of patients in the system, some scheduling
rules (queue disciplines) are applied.

6.2.1 Assumptions made in the model

The wards are assumed to have infinite capacity, implying that no rescheduling
are done as a result of the wards being overloaded. This assumption also means
that all patients may leave the OR immediately following surgery, implying that
no queue is formed between the OR and the ward. Furthermore, all emergency
inpatients return to the same ward that they were resting at prior to surgery. For
the elective patients, all patients go to the ward they were meant to according to
the schedule provided by the optimization model.

We schedule the patients based on expected surgery duration. We may not schedule
for overtime, but overtime may occur as a result of the realized surgery duration.
Following each surgery, the OR should be cleaned, implying that the room is un-
available for some time following surgery. For the urgent emergency patients that
are not scheduled ahead, we assume that there will be some delay between two
surgeries (in addition to the cleaning of the OR), due to transportation and logisti-
cal issues. The surgery of elective patients are performed according to the schedule
provided by the first stage decisions in the optimization model. Furthermore, no
electives are delayed or prevented from showing up on the day of surgery. We
assume that all weeks have the same input of elective patients, implying that all
vacations and similar activities are excluded.

When scheduling green emergencies to the flexible slots, we schedule the ORs in
increasing order. This means that the flexible slots available in OR-1 need to be
fully booked before scheduling the green patients for the flexible slots in OR-2 and
so on. If elective OR capacity is necessary to have all green emergencies scheduled
for surgery, we need to choose both a day and an OR where the green patient may
be scheduled. To choose the day of rescheduling, we pick the first day available
where there are elective patients scheduled. Then, to find a patient to reschedule,
we iterate over the elective patient categories, choosing the first patient available
for the chosen day.

The red patients are the only group of patients that may receive surgery after 22:00.
Outside the opening hours of the ORs, the red patients have to compete for the
OR with other urgent emergencies from other departments. Furthermore, no green
emergencies are scheduled for surgery during the weekend.

6.2.2 Scheduling rules and the flow of patients

The process of prioritizing patients for surgery is a very sophisticated process de-
pending on many factors such as the staff present, the number and types of patients
waiting, the situation at the different wards, and the situation at the hospital as
a whole, which make the process impossible to model exact. Here, we provide
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the scheduling rules applied in the model in order to mimic these processes at
orthopaedic department. We also provide a more detailed description of the flow
related to the orthopaedic department.

Within all emergency categories, the patients are scheduled according to a first-
come-first-serve rule (FCFS). Furthermore, the red patients will always have pri-
oritization over the yellow and green patients if all are present at the same time.
If no red patients are present, there are some basic rules for prioritization between
the yellow and green patients. If none of the candidates have waited beyond the
limits proposed by the traffic light system, the yellow patient will go first. If only
one of the patients has waited beyond the limit, this patient will go first. If both
patients have waited beyond the limits, the one that has exceeded the limit the
most will go first. There is however cases where the yellow patient should go first
independent of the rules.

For a detailed illustration of the flow of patients in the simulation model, see Figure
39 in Appendix C. All yellow and red patients may be summoned for surgery
immediately after arrival to the ward, while the scheduling of green patients is
done on the morning after arrival. The green inpatients are primarily put in line
for surgery at the emergency ORs, but to keep the waiting time down for these
patients, there is a limit on the amount of green inpatients that may wait in this
line. If the limit is reached, the green inpatients are scheduled for the flexible slots.
If no flexible slots are available within a given number of days, elective patients
need to be rescheduled in order to provide OR capacity for the green patients. All
elective patients that are displaced will be rescheduled to a flexible slot some days
ahead. There is a lower limit on the number of days that we are inhibited from
rescheduling elective patients, as rescheduling a patient just before surgery is not
preferable. There is also a lower limit on the number of days ahead that we may
not reschedule the elective patients after having been displaced.

The scheduling of the green outpatients is quite similar to the one for the green
inpatients. However, we would not like to have these patients waiting in line for
surgery in the emergency ORs, as this will imply uncertainty around the exact
time for surgery for the green outpatients. To achieve this, we first try to find
an idle flexible slot available within a limited number of days. If no flexible slot is
available, we have to send the green outpatients in line for surgery at the emergency
ORs. If the maximum limit of green outpatients in queue for the emergency ORs
is reached, we have to reschedule elective patients to provide OR capacity for the
green outpatients.

For each scheduling day, we limit the number of elective patients that may be
rescheduled. If this limit is reached, we have to put the green patients in queue for
the emergency ORs, even though the maximum limit of emergencies in line for the
emergency ORs is reached.

In Appendix C we report on the validation of the simulation model, comparing
the simulated outcomes to the historic data obtained from the orthopaedic depart-
ment.
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6.3 Output parameters of interest

There are several output parameters that are of interest when analyzing the out-
comes of the simulation model, and next, a short description of these parameters
are provided.

Gaining information about the number of emergencies waiting for surgery at a
given time of the day through the week is of great interest. Having a large amount
of emergency patients resting at the wards prior to surgery may result in over
crowded wards and the cancellation of elective surgeries as there may not be room
for them following surgery. To analyze the queue of emergencies at a given point
of time, we sum all emergencies waiting for surgery at all wards, plus the amount
of green outpatients waiting at home at that time.

The total number of patients resting at the wards is interesting to analyze because
the wards are assumed to have infinite capacities in the model, and no rescheduling
is done in order to keep the number of inpatients below a certain limit. Having peri-
ods in the simulated reality where the total bed capacity is exceeded will represent
a point of time where some rescheduling/cancellation of electives would have been
made in order to keep the bed loading under the maximum level. If a MSS yields
repeatedly periods where the amount of inpatients exceed the total bed capacity
available at the orthopaedic department, the schedule is probably to optimistic
regarding the number of elective patients scheduled, and a lot of rescheduling will
be necessary in order to cope with the limited bed capacity.

We are not only interested in whether the emergency patients receive surgery within
the limits proposed by the traffic-light system. It is even more interesting to know
the distribution of waiting times the different emergency patients. The waiting
time for surgeries are counted in days for the green patients, and in minutes for the
red and yellow patients. The waiting time is measured as the time from arrival to
the system, and to entering the OR.

The OR utilization at a given day is measured as the time used for all surgery
related activities at the OR, including the postoperative cleaning of the OR, divided
by the opening hours available at the OR on that day. A high OR utilization
indicates that the OR is being used most of the time, and that the resource is
well utilized. However, increasing the OR utilization will often imply increasing
the chances of overtime work at the OR, and reduce the flexibility to treat more
patients in busy periods.
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7 Implementation

To generate good MSSs we arrange the optimization model and the simulation
model in a loop, as may be seen in Figure 14. Each iteration in the loop begins
with running a MSS in the simulation model to generate scenarios that are fed
into the optimization model. Then, the optimization model produces a new MSS
that may again be run in the simulation model. For each iteration a new MSS is
generated. The optimization model is implemented in the Mosel language and it
is solved in Xpress IVE 8.3. The computer used to solve the model is an HP Intel
(R) Core (TM) i7-7700 CPU, 3.6 GHz, 32 GB RAM.

Figure 14: The loop set-up including both the optimization model and the simulation
model.

As the simulation model starts out as an empty system, a warm-up period should be
implemented in order to reach steady state before recording data. The simulation
model includes many stochastic variables, and the outcomes of each run may differ
a lot. To generate scenarios that are representative of the simulated reality, and
such provide stable scenario trees, we should run the simulation model for several
times in each iteration of the loop.

The scenarios are gathered from the data produced by the simulation model. One
scenario represent one week, and to keep the scenarios independent of each other we
draw the weeks with one month in between. When drawing a scenario, we exclude
the postoperative length of stay for the green inpatients, as these will be added
by the simulation model. Note that we exclude the postoperative length of stay of
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the green inpatients based on the day when they received surgery in the simulation
model. This may not be the same day as they are scheduled for surgery in the
optimization model. We may for example remove the patient from covering beds
on Wednesday and Thursday, while the patient may be scheduled for surgery on
Monday in the optimization model, meaning that we add the postoperative days
to Monday and Tuesday instead of to Wednesday and Thursday. An alternative
way of doing this may be to remove all the length of stay of the green patients,
both before and after surgery, and then add both in the simulation model when
scheduling the patients for surgery. The positive about this approach is that it
provides a continuous length of stay for the green patients, where we know that
the postoperative days are joint to the preoperative days for the same patient.
However, when removing only the postoperative days we introduce some random-
ness regarding the length of stay of the green patients as we do not know whether
the postoperative days are joint with the preoperative days from the simulation
model. This may represent a reality where the length of stay is not the same for
all patients. In this approach we get the same amount of days added in total, but
we add some randomness that may provide some value.

For the yellow patients we do not remove either the preoperative or the postoper-
ative length of stay as these patients are only scheduled for surgery in the flexible
slots in periods of low excess demand of green patients. Therefore, when these
patients are scheduled for surgery in the optimization model, we do not add any
postoperative length of stay as these days are already accounted for in the sce-
narios. Note that this approach may also be applied for the green patients, and
it might provide a good alternative. As most of the green inpatients cover a bed
prior to surgery, performing surgery to a green inpatient do not mean that more
beds are covered after surgery than before.

Because the simulation model treats the wards as having unlimited capacity, we
may end up drawing scenarios that exceed the total bed capacity defined in the
optimization model. To overcome this challenge, we introduce some new variables
in the optimization model, βwds. These variables represent additional beds at ward
w, on day d, in scenario s, so that we are able to solve the model without altering
the scenarios. Since these new variables represent beds that are not available, we
need to punish these beds hard in the objective function. The objective function
applied to handle all scenarios may be seen in equation (40), where the parameter
Cβ is the cost of adding new beds to the wards. An altered version of equations
(23) are provided in equations (41).

max
∑
i∈IEL

Pivi −
∑
s∈S

PSs

 ∑
i∈IEL

∑
k∈K

∑
d∈D

CCi x
C
ikds +

∑
w∈W

∑
w′∈W

∑
d∈D

CW
ww′ bww′ds+

∑
i∈IGR

∑
j∈J

∑
k∈K

∑
d∈D

CGReELijkds −
∑
j∈J

∑
k∈K

∑
d∈D

PY eYjkds +
∑
w∈W

∑
d∈D

Cββwds


(40)
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∑
i∈IWw

uiwds +
∑

i∈IGRW
w

uGRiwds +
∑

w′∈W|w′ 6=w

bw′wds −
∑

w′∈W|w′ 6=w

bww′ds

≤ awd + βwds − UEMwds w ∈ W, d ∈ D, s ∈ S
(41)

When applying the models to provide a MSS for a real life department, we should
first alter the simulation model to mimic the department of interest. Running the
simulation model should then provide us with scenarios that are representative for
the department. Based on these scenarios we may now obtain a new MSS from
running the optimization model. From iteration two we may want to alter the
simulation model again. Imposing flexible slots at the elective ORs may require
that the scheduling rules are changed, and these changes should be implemented
in the simulation model. When the new scheduling regime is implemented we may
run the loop for some iterations, aiming to generate a good MSS.

67



68



8 Computational study

In this section we firstly provide the input data for the models. Then, we perform a
technical study of the optimization model, including stability testing and the value
of the stochastic solution. Afterwards, we aim to provide some general managerial
insight from running the optimization model on small instances, and finally we
perform a case study on the orthopaedic department at St. Olav’s Hospital.

8.1 Input data for the optimization model

In this subsection we present the input data applied when solving the optimization
model for the orthopaedic department at St. Olav’s Hospital. The values obtained
for the different parameters are not provided here, but these may be found in
Appendix A.2. The values applied for the orthopaedic department will form the
basis for all the instances presented in this Section, and when changes are made
to the input data, this will be noted. The data are obtained from two databases,
OPPLAN and Nimes, and a short introduction of these are given in Appendix
A.1.

8.1.1 The patients

The properties related to the patients are the different patient categories, the target
throughput of electives, the expected surgery duration and the expected length of
stay of inpatients at the wards. The data gathered for each patient category can
be seen in Table 26 in Appendix A.2.

In order for the model to yield realistic results, we need to find a reasonable level of
aggregation when sorting the patients. The sorting is based on the subspecialties
that are present at the orthopaedic department today, and we aim to fit the patients
into these. To divide the patients into groups that fit to the subspecialties, both
the procedure codes and a one-line description of the recorded surgeries are used.
Some of the subspecialties are hard to sort out from the data, and are therefore left
out. In order to provide some more granularity to the data, we further divide many
of the patient groups belonging to a subspecialty into smaller groups according to
diagnostic similarities (referred to as the patient categories in the models). The
emergency patients are treated more aggregated. For the green patients we have
two categories, the green inpatients and the green outpatients, while for the yellow
patients we only use one category for each.

Figure 15 illustrates the amount of orthopaedic surgeries that are performed each
week. The mean number of elective surgeries performed each week is 68, while
the emergency counterpart is 61. In some periods there are less elective surgeries
performed. These periods are for example the summer vacations, where the de-
partment plan for less elective production. Excluding the weeks where production
is low, the mean number of elective surgeries performed each week increases to
78, representing a normal, high-production week. This number is interesting, as it
provides us with a reasonable number for the target throughput of elective patients
for the model.
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Figure 15: The number of orthopaedic surgeries performed every week at the orthopaedic
department

The surgery duration used for input in the optimization model is calculated as the
mean surgery duration for each patient category. As not all patients are inpatients,
only a fraction of the patients belonging to each patient category need a bed fol-
lowing surgery. To obtain the average length of stay for each patient category, we
therefore multiply the expected length of stay of all inpatients belonging to a pa-
tient category with the fraction of the patients from the given patient category that
are inpatients. For the yellow patients present in the optimization model we set
the length of stay equal to zero. This is because the length of stay of these patients
are covered by the scenarios that provide the number of emergencies resting at the
wards each day of the week. For the green inpatients we exclude the preoperative
length of stay as these are covered by the scenarios. We estimate the postoperative
length of stay of the green inpatients to be two days. Note that in the optimization
model we allow for the expected length of stay of a patient to vary depending on
the day of surgery, however, in the implementation we do not include any variation
depending on day of surgery.

8.1.2 The operating rooms and the wards

Parameters relevant for the ORs in the optimization model are the opening hours,
the number of slots available in each OR through the day, and what subspecialty
that may be scheduled for the individual rooms. In Table 27, in Appendix A.2,
the information regarding the seven elective ORs is provided. The ORs are not
homogeneous, and we assume that the rooms can only be scheduled for the same
subspecialties that they are today. We assume that there are two slots available at
all ORs every weekday, and that the rooms are closed during the weekends.

Both the number of ORs that may be covered by the anesthesiologists each day,
and the number of OR slots available to each subspecialty each day and through
the week are set equal to the present situation at the orthopaedic department.
Tables 28 and 29 available in Appendix A.2 provide the values chosen for these
parameters.

There are five wards available in the optimization model, and each ward may
host different patient categories and have different capacities. Three of the wards
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are available through all days of the week, while the others are closed during the
weekends. Table 30 in Appendix A.2, presents an overview of the five wards and
the beds available.

8.1.3 The objective function parameters and other parameters

The objective function parameters related to the elective patients may be seen
in Table 31, while the rest of the objective function parameters are provided in
Table 32, both available in Appendix A.2. When it comes to the scheduling of
elective patients we do not value some diagnostic groups over others, but we value
the scheduling of inpatients some more then the scheduling of outpatients as the
inpatients consume more resources and provide more DRG points. The cost of
cancelling elective patients are the same for all patient categories, except for the
prosthesis patients that are more expensive to cancel as these generate much DRG
points.

The cost of sending patients to other wards than intended should be positive, to
prevent it from happening if it is unnecessary. However, this is something they
often do, and should not be penalized hard. The gains from providing surgery to
yellow patients in flexible slots should be positive such that the yellow patients are
sent to flexible slots if no green patients are present. However, the gains should
be low so that we do not provide excessive slot capacity for emergencies at the
elective ORs. The parameter Cβ is the cost added in the objective function if
we exceed the total bed capacity available, which may happen as a result of the
scenario generation procedure.

The parameters not yet covered in the text above may be found in Table 33 in
Appendix A.2. Note that we have set the parameter H5 to zero, indicating that no
inpatients may be scheduled for Friday. We do not include Hd for any other days
than Friday.

8.2 Input data for the simulation model

As the MSS generated by the optimization model is fed into the simulation model,
the parameters presented above are also relevant for the simulation model. How-
ever, in the simulation model we treat both the arrival of emergencies, the surgery
duration and the length of stay of the patients as stochastic variables.

To model the arrival of emergency patients, we sort all emergencies according to
the degree of urgency based on the traffic-light system. We divide each day into
three time intervals, 00.00-08.00, 08.00-16.00 and 16.00-24.00, and for each day of
the week, and for each time interval we find the expected inter-arrival time of each
urgency category. Note that many of the emergencies have been registered to arrive
at 00.00 as a default value. For these patients we draw a random time for arrival
between 08.00 and 22.00.

For the surgery duration we have much data for each patient category, so we let
these serve as an empirical distribution. For each patient we draw random, indepen-
dent realizations from the distribution belonging to the respective patient category.
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As we apply relatively aggregated patient categories we have a large variation in
the surgery duration for each patient category. When scheduling electives in the
real life, the scheduling personnel work with more fine-grained patient categories,
and they have a good feeling for the surgery duration of different patients. This
enables them to schedule patients more precise than based the mean surgery du-
ration of aggregated patient categories. To avoid unrealistic overtime peaks at the
ORs we exclude the upper 1/6 of the distributions for surgery duration of elective
patients. Also, to avoid drawing realizations that on average are much lower than
the expected surgery duration, we exclude the lower 1/10 of the distributions for
the electives. This is not done for the emergency patients because these are harder
to schedule efficiently for the scheduling personnel.

For the simulation model we use a Kernel density estimator available in MATLAB
to create an approximation of the empirical distribution of the length of stay for
each elective patient category, and then we draw realizations from this distribu-
tion to decide on the length of stay of each inpatient following surgery. For the
emergency inpatients we create one common Kernel-distribution for all the urgency
categories. When drawing a realization from this distribution we subtract the pre-
operative length of stay, making sure that we do not end up with a postoperative
length of stay of less than one day.

In addition to the seven elective ORs included in the optimization model, we also
include OR-1 at BVS and the two emergency ORs at AHL. OR-1 is assumed to be a
flexible OR. We apply the opening hours given in 2.3.1, but the ORs open at 08.00
(instead of 07.45), and the elective ORs close at 16.00 (instead of 15.30). Note
that we do not include the OR at KBS, and that one emergency OR is available
to the red and yellow emergencies through the weekend. This OR is a shared
capacity with all emergencies at the hospital, and may not always be available to
the orthopaedic emergencies.

To govern the scheduling rules and the flow of patients through the ORs, some
additional parameters are needed. These parameters, and the values applied both
when trying to mimic the real world, and when developing the three MSSs in
Section 8.5, may be found in Table 36 in Appendix A.2. Note that the values
of the parameters are the same for all the four cases, except for the parameters
deciding on the maximum number of green inpatients and green outpatients that
may wait in the queue for the emergency ORs before we start sending these patients
to the elective ORs. When we aim to mimic the real life, we allow for three green
inpatients and one green outpatient to wait in this queue. For the three other
cases, we allow for no green outpatients and less green inpatients to wait in the
queue.
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8.3 Technical study of the optimization model

To perform the technical study of the optimization model we apply much of the
input data described above. However, all subspecialties are given a maximum of
16 OR slots available through the week, and the target throughput of electives is
increased to 105 in total. In addition, we do not imply restrictions regarding the
amount of inpatients to be scheduled for Friday. As for the case study in Section
8.5, we do not allow for flexible slots to be scheduled for OR-7 and OR-8.

An illustration of the set-up used in this subsection may be found in Figure 16.
Firstly, run the simulation model once to provide input scenarios for the optimiza-
tion model. Then, the optimization model is run once, and a MSS is produced.
For this MSS, we run the simulation model four times, to get four different sce-
nario trees based on the same MSS. Then, for each of these four scenario trees, the
optimization model is run twice. In the second run (these runs are indicated with
a B), we add more beds to avoid the big penalty when the total bed capacity is
exceeded because of the scenario generation procedure.

Figure 16: The set-up for testing the optimization model. A ”B” at the end represents
runs where the bed capacity has been increased to avoid the big penalty associated with
the number of patients resting at the wards exceeding the total number of beds available.

A technical summary from running the optimization model is presented in Table
10. Each instance is run for 3 hours, and the *-sign indicates that the time limit is
reached before the optimal solution is found. Xpress uses the Branch-and-Bound (B
& B) algorithm for solving Mixed Integer Programs (MIP). The B & B algorithm
is an exact method that guarantees optimality. However, if the model to be solved
has a large number of integer variables, the running time with this method may
be lengthy. We may not always have time to wait for the algorithm to provide the
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optimal solution, but we are still left with useful information. As the algorithm
evolves it provides an upper and a lower bound yielding an interval where the
optimal solution is found. This bound is referred to as the LP-gap as it provides
us with the difference between the best active solution to the linear relaxation of
the problem (LP-solution), and the best integer solution (IP-solution) obtained so
far. For a maximization problem, as we are facing in our model, the lower bound is
provided by the best IP-solution found so far, and the upper bound is represented
by the best, active, LP-solution. To calculate the LP-gap, we subtract the objective
value of the IP-solution from the objective value of the LP-solution, and divide this
on the objective value of the IP-solution. The rows equal the number of constraints
for the given instance, while the columns equal the number of variables present.
We see that the number of B & B- nodes visited differ a lot for the same running
time. This may be due to the fact that we run two-and-two instances in parallel
on the computer.

Table 10: Technical summary of the optimization model

Run Obj.
val.

Time to
solution

LP-Gap
[%]

Rows Columns B&B-nodes Int. sol.
found

2.1 -68.97 10,800* 0.46 117,777 72,935 50,186 40

2.2 52.68 10,800* 1.03 117,777 72,935 34,617 65

2.3 71.46 10,800* 0.51 117,777 72,935 23,318 69

2.4 -243.91 10,800* 0.12 117,777 72,935 45,196 45

2.1B 89.84 10,800* 0.37 117,777 72,935 73,545 77

2.2B 90.68 10,800* 0.43 117,777 72,935 76,564 64

2.3B 89.45 10,800* 0.60 117,777 72,935 107,778 59

2.4B 85.58 10,800* 0.30 117,777 72,935 77,703 99

The model formulation is prone to symmetry, especially when the ORs are treated
as homogeneous. As only the prosthesis subspecialty has access to OR-7 and OR-
8, these ORs are homogeneous. To avoid symmetric solutions for these ORs, we
add restrictions demanding that the number of slots scheduled for OR-8 has to
be at least as high as the number of slots scheduled for OR-7. We also demand
that the number of patients scheduled for the slots at OR-8 is at least as high as
the number of patients scheduled for the sots at OR-7. These restrictions may be
added simultaneously since both the hip and knee prosthesis patients require the
same amount of bed capacity following surgery, and the surgery duration of the two
categories allow for a maximum of one patient scheduled per slot, and a maximum
of two patients scheduled for two slots.

8.3.1 Effects of symmetry breaking inequalities for homogeneous oper-
ating rooms

In Table 11 we present the results when having homogeneous ORs for the run
2.1. Note that when we have homogeneous ORs, the number of rows and columns
increase a lot. Since we have the opportunity to send all subspecialties and all
patients to each OR, we now generate more variables and more constraints for
each OR. In 2.1C we apply no symmetry breaking inequalities. In 2.1D we add
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constraints 37 and 39 presented in Section 5. Finally, in run 2.1E we add constraints
38 and 39 provided in Section 5. The fact that the problem increases in size, and
that more symmetry is introduced in the formulation, makes the problem harder
to solve. However, we see that introducing symmetry breaking inequalities do not
provide better IP- or LP-solutions after 24 hours of running. We do not make any
further attempts to make more efficient formulations.

Table 11: Technical summary when applying homogeneous ORs

Run Obj.
val.

Time to
solution

Upper
bound

Rows Columns B&B-nodes Int. sol.
found

2.1C -81.43 86,400* -63.68 258,557 206,105 27,358 39

2.1D -91.12 86,400* -63.89 258,622 206,200 13,010 72

2.1E -112.83 86,400* -63.95 258,622 206,200 23,305 72

8.3.2 Stability testing

When performing the stability testing of the optimization model we, need to gen-
erate scenarios from one specific scheduling regime and one MSS in the simulation
model. As each scenario contains 37 different stochastic parameters that may take
on values in a relatively wide range, the total support of the random variables is
very large. However, only a relatively narrow part of the parameter values are rel-
evant for each scheduling regime and each MSS. As an example there will typically
be more patients resting at the wards for a MSS with no flexible slots compared to
a MSS with many flexible slots, given that everything else is equal. The reason for
this is that many flexible slots provide the opportunity to perform more emergency
surgeries in periods of high emergency demand, yielding less emergencies covering
beds while waiting for surgery compared to if no flexible capacity is added. As a
consequence of this we, we will not have stability when the scenarios are generated
based on different MSSs and different scheduling regimes. However, we would like
to have a piece-wise stability, where we have stable solutions if the scenarios are
generated based on the the same MSS and the same scheduling regime. If the
objective function is steep, or have breaking points, similar solutions may give very
different objective function values making it hard to test for in-sample stability
based on the objective function value as described in Section 2.4.1. Remember
that we penalize hard if we exceed the total bed capacity in a scenario. This gives
rise to breaking points in the objective function. To avoid these breaking points,
we use the runs 2.1B-2.4B from Table 10 when testing for stability.

We see from Table 10 that the objective values of the best integer solutions found in
the three first runs (2.1B-2.3B) are very similar, while the fourth optimal objective
value is less than the others. However, the difference between the largest and
the smallest objective value is only 6.0 % (when divided by the smallest value),
so judging from these four runs we have in-sample stability. Note that for the
runs 2.1-2.4 the optimal objective values differ a lot more, illustrating in-sample
instability due to the big penalty added when exceeding the bed capacity in some
scenarios.

To test for out-of-sample stability we would like to have a scenario tree representing
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the total support of the random parameters. For this problem, such a tree is way
too big to generate and test, so we need to generate an approximation. We use the
simulation model to generate a tree consisting of 500 scenarios to approximate the
total scenario tree. This is still a relatively small tree, but it should provide insight
to whether the model is out-of sample stable. The objective function value from
solving the four second-stage problems with the big scenario tree may be found in
Table 12. We see that the objective values are very similar, providing confidence
that the model is out-of-sample stable.

Table 12: Out-of-sample stability results. The objective values are obtained from solving
the second-stage problem with 500 scenarios using the first-stage variables obtained from
run 2.1B-2.4B as input parameters

Run Obj val.

2.1B 90.19

2.2B 90.04

2.3B 89.95

2.4B 90.18

8.3.3 The value of the stochastic solution

To explore the value of the stochastic solution (VSS), we use all the eight runs
provided in Table 10. In the mean value problem (MVP), the stochastic parameters
take their expected values. The expected values of these parameters are typically
not integer values, so we round the expected values to the nearest integer. None
of the MVPs are solved to optimality within 3 hours, but the gaps are small.
As none of the stochastic problems are solved to optimality either, we may not
calculate the true VSS. However, we may provide intervals for the VSS. The upper
limit is calculated as the difference between the objective value of the upper bound
obtained from the stochastic solution (SS) and the objective value of the mean
value solution (MVS), while the lower limit is calculated as the difference between
the objective value of the IP-solution from the SS and the objective value of the
MVS. Since the MVS is based on the solution obtained from the MVP that was
not proven to be optimal, the lower bound of the VSS is only the lower bound
available after three hours of running the model, and it may be less (but never
below zero).

In Table 13 we list the SS, the MVS and the VSS. For the instances 2.1-2.4 we see
that the VSS is large. Remember that in the MVP the problem is deterministic,
so it is meaningless to schedule bed capacity that we know will be left unused. As
a consequence of this, there are some days where we do not schedule the maximum
amount of beds available. When exposed to the scenarios, the solution obtained
from solving the MVP has to add additional beds at a high cost in order to deal with
the excessive loading of beds in some scenarios. Adding restrictions to the MVP
stating that we should schedule the total capacity of beds each day would provide
a smaller VSS. In the instances 2.1B-2.4B we have access to more beds during
the weekend, yielding the chance to schedule more electives for surgery in the first
stage. Scheduling more electives for surgery provide incentives for scheduling more
beds every day. As a result, the total bed capacity is scheduled almost every day,
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making the solution more robust to tolerate fluctuations in the bed loading. As a
result, the VSS is much lower for these instances.

Despite the relatively small VSSs in instances 2.1B-2.4B we see that the SSs provide
less cancellations and more elective surgeries than the MVSs. The VSS is highly
dependent on the values of the objective function parameters. To show this, we
have solved instance 2.1 over again. This time we have excluded the opportunity
of scheduling the beds in the first stage, but we have set the cost of cancelling
electives to ten times the values just used. The SS and the MVS from solving
this instance may be seen in Table 13 as instance 2.1F. When setting the cost of
cancelling electives high, we obtain solutions that are more risk averse towards the
scheduling of electives. In this setting, avoiding elective cancellations is important,
and we see that the SS has far less cancellations compared to the MVS, and we
obtain a large VSS.

Table 13: The value of the stochastic solution. For both the stochastic solution (SS) and the
mean value solution (MVS) we provide the number of flexible slots scheduled, the number of
cancellations made in the second stage for all 100 scenarios, and the number of elective patients
(out of 10500) to receive surgery in the second stage for all 100 scenarios.

Run Flex
slots
(SS)

Flex
sots

(MVS)

Canc.
(SS)

Canc.
(MVS)

El.
sched.

(SS)

El.
sched.

(MVS)

SS MVS VSS

2.1 6 5 461 577 9239 9223 [-68.97, -68.66] -613.27 [544.3, 544.61]

2.2 5 5 466 686 9334 9114 [52.68, 53.22] -364.83 [417.51, 418.05]

2.3 6 5 446 652 9254 9148 [71.46, 71.82] 36.86 [34.6, 34.96]

2.4 5 5 629 696 9171 9104 [-243.91, -243.61] -346.35 [102.44, 102.74]

2.1B 5 5 260 453 9540 9347 [89.84, 90.17] 84.28 [5.56, 5.89]

2.2B 5 5 244 455 9556 9345 [90.68, 91.08] 84.28 [6.40, 6.80]

2.3B 5 5 273 498 9527 9302 [89.45, 89.99] 82.65 [6.80, 7.34]

2.4B 5 5 403 619 9397 9181 [85.58, 85.84] 79.20 [6.38, 6.64]

2.1F 10 5 85 525 8315 8675 [-115.67, -115.30] -237.30 [121.63, 122]

8.4 General insight

In this subsection we want to provide some general insight regarding the scheduling
of flexible slots for the elective ORs. To do this, we run the model for some
smaller instances, covering several topics of interest. We regard a small hospital
department with a total of 8 ORs, two wards, three surgery subspecialties and five
elective subspecialties. In addition, we include the emergency patients, and these
are again divided into three urgency categories. Three of the ORs are dedicated
for emergency patients and are only included in the simulation model. The rest
are elective ORs and they are included in both the simulation model and the
optimization model. We treat the five elective ORs as homogeneous, and on Friday
we only have access to four of these ORs due to less anesthesia resources. The
five elective patient categories have the same properties as the five first patient
categories presented in Section 8.1, and the emergency patients are treated as
before. Note that we allow for inpatients to be scheduled on Friday.

In Table 34 in Appendix A.2, we list the five elective patient categories and include
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the two target-levels that we want to apply. Three levels of emergency patient
loading are applied. The normal emergency loading level level is generated based
on the same arrival rate as we have at the orthopaedic department today. For the
high loading case, the expected inter-arrival time is multiplied with 0.94, and for the
low loading case, the expected inter-arrival time is multiplied with 1.1. For each
of the emergency loading cases we want to apply two sets of target throughput
of electives, and for each of these targets we want to test three bed capacities,
resulting in 18 different instances. The 18 instances are listed in Table 14. We
apply four different bed capacities to provide three levels of bed capacity for each
of the three emergency loading cases. The bed capacities may be seen in Table 35
in Appendix A.2. For the low emergency loading we apply the bed configurations
W1, W2 and W3, and for the medium- and high emergency loading we apply W2,
W3 and W4.

Table 14: The small instances applied to provide general insight

Instance Description

LE-LT-W1 Low emergency, low target, few beds

LE-LT-W2 Low emergency, low target, normal beds

LE-LT-W3 Low emergency, low target, many beds

LE-HT-W1 Low emergency, high target, few beds

LE-HT-W2 Low emergency, high target, normal beds

LE-HT-W3 Low emergency, high target, many beds

NE-LT-W2 Normal emergency, low target, few beds

NE-LT-W3 Normal emergency, low target, normal beds

NE-LT-W4 Normal emergency, low target, many beds

NE-HT-W2 Normal emergency, high target, few beds

NE-HT-W3 Normal emergency, high target, normal beds

NE-HT-W4 Normal emergency, high target, many beds

HE-LT-W2 High emergency, low target, few beds

HE-LT-W3 High emergency, low target, normal beds

HE-LT-W4 High emergency, low target, many beds

HE-HT-W2 High emergency, high target, few beds

HE-HT-W3 High emergency, high target, normal beds

HE-HT-W4 High emergency, high target, many beds

In Table 15 we provide the outcomes from running the 18 instances, and in the
the Figures 18 - 20 we provide graphical views of some central outcomes. In these
Figures, the three first pairs of bars indicate the three low emergency loading cases,
the three following pairs of bars represent the three normal emergency loading
cases, while the last three pairs of bars indicate the three high emergency loading
cases.
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Table 15: Output from solving the stochastic problem for the 18 instances. We include
the number of flexible slots and the number of elective patients scheduled in the first stage.
For the second stage we include the number of green patients scheduled for flexible slots,
the number of elective cancellations, the number of electives treated and the number of beds
moved for all 100 scenarios.

Instance Flex.
slots

El.
sched-

uled

Green
pat. in

flex.
slots

El.
can-

celled

Tot. el.
treated

Beds
moved

Obj. val.
of best

int. sol.

Best
bound

LE-LT-W1 9 91/91 236/240 508 8592/9100 576 20.35 22.37

LE-LT-W2 9 91/91 240/240 27 9073/9100 141 114.62 116.38

LE-LT-W3 9 91/91 240/240 0 9100/9100 0 115.51 117.11

LE-HT-W1 2 111/115 120/240 989 10111/11500 631 17.78 22.09

LE-HT-W2 1 112/115 60/240 318 10882/11500 273 117.26 125.52

LE-HT-W3 0 114/115 0/240 262 11138/11500 5 123.89 127.25

NE-LT-W2 9 91/91 480/524 452 8648/9100 605 -250.47 -247.12

NE-LT-W3 9 91/91 483/524 36 9064/9100 49 -18.26 -15.34

NE-LT-W4 9 91/91 482/524 47 9053/9100 21 111.49 114.76

NE-HT-W2 2 111/115 183/524 932 10168/11500 1015 -255.84 -249.66

NE-HT-W3 3 109/115 240/524 392 10508/11500 43 -22.41 -16.06

NE-HT-W4 2 111/115 182/524 468 10632/11500 20 108.28 114.34

HE-LT-W2 10 90/91 886/988 1165 7835/9100 937 -6676.65 -6672.26

HE-LT-W3 10 87/91 903/988 106 8594/9100 62 -704.54 -689.19

HE-LT-W4 10 89/91 902/988 101 8799/9100 57 -697.67 -689.21

HE-HT-W2 5 104/115 515/988 1605 8795/11500 929 -6697.12 -6687.24

HE-HT-W3 7 98/115 705/988 447 9353/11500 251 -1778.81 -1764.44

HE-HT-W4 7 101/115 712/988 398 9702/11500 70 -710.72 -702.62

As a general tendency we may see that the number of flexible slots increases, and
the share of electives scheduled for surgery decreases as the emergency loading
increases. Despite a shift towards scheduling more emergency patients when the
loading of these increases, the total amount of patients to receive surgery, which
may be seen in Figure 17, is quite stable for the two first emergency loading levels,
with a slight increase when the bed capacity increases. For the high emergency
loading level, we see that the total number of patients scheduled for surgery de-
creases for the high target instances and increases a bit for the low target instances
compared to the two other emergency loading levels. For the low target instances
the OR capacity is relatively good allowing us to schedule many flexible slots and
at the same time schedule almost all electives for surgery. In instance HE-LT-W2
this yields excessive cancellations due to the scarse bed capacity, but for the two
following instances we see that far less patients are cancelled yielding many pa-
tients treated. For the high emergency loading and high target instances, the OR
capacity is scarse, but we schedule relatively many flexible slots compared to the
high target instances for the two other emergency loading levels, to avoid excessive
elective cancellations. Scheduling many flexible slots will allow us to treat a large
share of the green patients in the flexible slots, but having much flexible slot capac-
ity, increases the chances of having idle slot capacity in weeks of less emergencies
arriving. This is not a big problem for the low target instances, but for the high
target instances the idle OR capacity is expensive in terms of the lost opportunity
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to perform elective surgeries.

Figure 17: The total number of patients scheduled for surgery. The first three pairs of
bars represent the low emergency loading level, the three following pairs of bars represent
the normal emergency loading level, while the final three pairs of bars represent the
high emergency loading level. Within each emergency loading level, the lowest number
represents the lowest ward capacity and the highest number represents the highest ward
capacity.

We see from Figure 18 that the number of green patients scheduled per flexible
slot increases as the emergency loading increases, implying that each flexible slot
is more valuable as the number of emergencies increases. We may also see that less
green emergencies are scheduled for each flexible slot in the low target instances
compared to the high target instances. This indicates that when the OR capacity
is relatively good we may schedule excessive flexible slot capacity as this will not
harm the scheduling of electives. The shares of green emergencies scheduled for
flexible slots are seen in Figure 19. Since we may schedule excessive flexible slot
capacity in the low target instances, we see that the shares of green patients treated
in flexible slots are both stable and steady over 90 % for these instances. For the
high target instances we see that the shares of green patients treated in flexible
slots are far less as more OR capacity is dedicated for the electives. Note that
when going from the instances NE-HT-W2 and HE-HT-W2 to the instances NE-
HT-W3 and HE-HT-W3 we are able to treat a greater share of the green patients
in the flexible slots as the bed capacity increases. This seems strange as increasing
the bed capacity should yield more electives scheduled, as we may see examples
of for all other high elective targets where we move towards more beds. The logic
supporting that increasing the bed capacity should yield more electives scheduled
and less flexible slots may be argued for in the following three ways. Firstly, the
flexible slots may be utilized for either green outpatients or yellow patients if the
bed capacity is scarse, while the green inpatients may be moved to elective slots
where they may be treated without exceeding the bed capacity (this is done in
instance LE-LT-W1, and will be discussed later in this subsection). Secondly, in
periods of low emergency loading, the flexible slots will have idle capacity, which is
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positive if we isolate the effect on a ward that is fully loaded: We avoid excessive
cancellation of elective patients that would have been scheduled for surgery if the
flexible slot was scheduled as an elective slot. Finally, scheduling flexible slots will
reduce the amount of electives scheduled, implying less demand for beds.

Figure 18: Total number of green patients scheduled per flexible slot. The first three
pairs of bars represent the low emergency loading level, the three following pairs of bars
represent the normal emergency loading level, while the final three pairs of bars represent
the high emergency loading level. Within each emergency loading level, the lowest number
represents the lowest ward capacity and the highest number represents the highest ward
capacity.

Figure 19: The share of green emergencies scheduled for flexible slots. The first three
pairs of bars represent the low emergency loading level, the three following pairs of bars
represent the normal emergency loading level, while the final three pairs of bars represent
the high emergency loading level. Within each emergency loading level, the lowest number
represents the lowest ward capacity and the highest number represents the highest ward
capacity.

We now want to explain why less elective slot capacity is scheduled in the instances
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NE-HT-W2 and HE-HT-W2 compared to the instances NE-HT-W3 and HE-HT-
W3. In the instances NE-HT-W2 and HE-HT-W2, the bed capacity is very scarse
resulting in many elective cancellations. Cancelling elective inpatients because of
the scarse bed capacity will provide much spare elective OR capacity. This idle OR
capacity may be used to schedule green outpatients or green inpatients (if they are
less demanding in terms of beds than the electives that were cancelled) without
having to make additional cancellations, decreasing the need for flexible slots and
such allowing for scheduling many electives in the first stage. This mechanism
represents the real life process where inpatients are cancelled, and outpatients and
emergencies are prioritized, in periods of short bed capacity. However, choosing
not to schedule flexible slots because we know there will be elective cancellations
due to short bed capacity is not a good way of scheduling as this will result in
excessive cancellations of electives.

The reason why the model allows for this mechanism to take place is that we have
set the cost of cancelling elective patients very low. Next, we want to show that
if we increase the penalty of cancelling electives from three to 10 for the instances
NE-LT-W2 - NE-HT-W4, the solutions will behave according to the logic presented
above. In addition we increase the maximum of beds available at the wards to 40
and 35, 50 and 50, and 65 and 65 for the wards W2, W3 and W4 respectively. The
results from running the model for three hours may be found in Table 16. Here, we
may see that the amount of flexible slots scheduled is steady or falling when the
bed capacity increases.

Comparing the outcomes when increasing the penalty of cancelling electives to the
outcomes presented in Table 15, we see that there are more flexible slots scheduled
and less cancellations made when increasing the cost of cancelling patients. How-
ever, less elective patients receive surgery because the schedule made in the first
stage is more risk averse when the cost of cancellations is high. The differences
in the outcomes highlight one of the main issues faced by the management at a
surgery department: Scheduling more capacity for electives and less for emergen-
cies will result in more elective cancellations. However, having many flexible slots
may result in excessive idle time at the ORs and lost opportunities to perform
elective surgeries.

Table 16: Output from solving the stochastic problem when increasing the cost of
cancelling electives. We include the number of flexible slots and the number of elective
patients scheduled in the first stage. For the second stage we include the number of green
patients scheduled for flexible slots, the number of elective cancellations, the number of
electives treated and the number of beds moved for all 100 scenarios.

Instance Flex.
slots

El.
sched-

uled

Green
pat. in

flex.
slots

Cancel.
of elec-

tives

Tot. el.
treated

Beds
moved

Obj. val.
of best

int. sol.

Best
bound

NE-LT-W2 11 89/91 510/524 378 8522/9100 487 -278.29 -275.87

NE-LT-W3 9 90/91 481/524 35 8965/9100 36 -22.53 -15.87

NE-LT-W4 9 91/91 482/524 30 9070/9100 21 109.87 114.14

NE-HT-W2 7 99/115 424/524 418 9482/11500 426 -298.18 -289.21

NE-HT-W3 6 103/115 411/524 172 10128/11500 43 -38.82 -27.70

NE-HT-W4 3 109/115 254/524 404 10496/11500 27 107.45 114.32
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For instance LE-LT-W1 we may note that four of the green patients are treated
in elective ORs even though there are excess capacity in the flexible slots. Here,
the green patients have been scheduled to elective ORs on other days to avoid
exceeding the total bed capacity, as this yields a big penalty. In the real life, this
situation will seldom happen. Most of the emergency inpatients are covering a bed
prior to surgery, so performing surgery to these patients do not yield a higher bed
consumption. As a matter of fact we would like to perform surgeries to emergency
inpatients in such situations, as this means that we may send these patients home
faster, releasing bed capacity for elective patients. We may avoid this situation in
the optimization model if we do not exclude the postoperative bed loading of green
patients in the scenarios, but rather give the green inpatients a length of stay equal
to zero like we do for the yellow patients.

We see from Figure 20 that the number of patients resting at wards not meant for
them (beds moved) increases much when the bed capacity decreases. This indicates
that applying a shared bed capacity where the staff and equipment at all wards
are more or less homogeneous should be considered if the bed capacity is scarse as
this allows for a better utilization of the beds. If differentiated wards are applied,
having some beds at each ward that are reserved as a shared capacity among the
different wards will be valuable if the total bed capacity is scarse.

Figure 20: Total number of inpatients resting at wards not meant for them. The first
three pairs of bars represent the low emergency loading level, the three following pairs
of bars represent the normal emergency loading level, while the final three pairs of bars
represent the high emergency loading level. Within each emergency loading level, the
lowest number represents the lowest ward capacity and the highest number represents the
highest ward capacity.

Based on the discussions above we propose the following statements regarding the
scheduling of flexible slots to the elective ORs:

• The system has a given capacity of surgeries it may provide, and to reach this
capacity we aim to have the right balance of electives scheduled and electives
cancelled through the cycle
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• Having excess capacity of flexible slots will yield less elective cancellations,
but too few electives scheduled for surgery

• Having scarse capacity of flexible slots will yield many electives scheduled for
surgery, but many elective cancellations

• If the OR capacity is regarded as better than the ward capacity, a relatively
high share of the ORs should be made flexible

• If the ward capacity is regarded as better than the OR capacity, a relatively
low share of the ORs should be made flexible

• Having a scarse bed capacity calls for the use of more homogeneous wards

8.5 Case study: The orthopaedic department at St. Olav’s
Hospital

In this subsection we aim to provide decision support for the management at the
orthopaedic department. Firstly, we develop two MSSs (MSS 1 and MSS 2), rep-
resenting two different scheduling regimes. In the first scheduling regime, we allow
for two green inpatients to wait in line for the emergency ORs at AHL before we
start buffering these patients to the flexible slots at BVS. All green outpatients are
sent straight to the flexible slots. In the second scheduling regime, we aim to send
all green emergencies to the flexible slots, leaving the emergency ORs exclusively
for the red and yellow emergencies. An illustration of the generation procedure to
develop the two MSSs may be seen in Figure 21. We start out with one simulation,
representing the system as it is today. Then, we run the optimization model to
generate an optimal MSS based on the scenarios provided by the first simulation.
From the second simulation the generation procedures are separated, in order to
implement the two scheduling regimes.

Figure 21: Procedure for generating MSS 1 and MSS 2

After developing and analyzing the two MSSs, we aim to produce one final MSS
that may be more realistic to implement at the orthopaedic department.
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8.5.1 Analyzing the outcomes of the optimization model for MSS 1 and
MSS 2

When running the loop, the optimization model is run for three hours in each
iteration. Two alterations are made to the optimization model exclusively for the
case study. First, we have excluded the opportunity to distribute the bed capacity
in the first stage, implying that we stick to the distribution of beds that are present
at the department today. Furthermore, on request from the management at the
department, we demand that the prosthesis subspecialty has access to as many
surgery slots as it has today (14 slots). In the simulation model we do not allow
for cancellations of the prosthesis patients, because these cancellations result in
much DRG points lost. In order to generate the two MSSs, we run the loop for
six iterations. In Tables 17 and 18, we report on the outcomes of the optimization
model for each iteration.

Table 17: Outcomes form the optimization model when generating MSS 1

It. 1 It. 2 It. 3 It. 4 It. 5 It. 6

Obj. func. val. of best int. sol. -3157.83 -45.90 23.95 25.37 64.33 23.59

Upper bound -3154.76 -43.78 25.67 27.23 66.07 25.31

Gap 0.11 % 4.62 % 6.68 % 6.84 % 2.62 % 6.80 %

Number of flexible slots 13 12 12 12 12 12

Electives scheduled each week 71/80 74/80 74/80 74/80 74/80 74/80

Green patients to flexible slots 1109/1171 673/687 615/625 584/590 660/667 702/704

Electives cancelled 679 103 114 100 113 117

Yellow pat. to receive surgery 526 871 946 993 852 856

Table 18: Outcomes form the optimization model when generating MSS 2

It. 1 It. 2 It. 3 It. 4 It. 5 It. 6

Obj. func. val. of best int. sol. -3157.83 38.89 -2.50 59.44 9.57 60.27

Upper bound -3154.76 43.03 1.86 63.92 13.12 63.72

Gap 0.11 % 9.62 % 234.4 % 7.91 % 27.06 % 5.42 %

Number of flexible slots 13 12 12 12 12 12

Electives scheduled each week 71/80 74/80 74/80 74/80 74/80 74/80

Green patients to flexible slots 1109/1171 1168/1250 1260/1335 1204/1300 1209/1265 1219/1284

Electives cancelled 679 119 138 106 112 86

Yellow pat. to receive surgery 526 337 219 332 300 298

In the first simulation we obtain the scheduling regime present at the orthopaedic
department today, resulting in a high number of emergencies resting at the wards.
This is reflected in the scenarios fed to the optimization model, yielding many
elective cancellations due to the scarse bed capacity. To handle the situation, the
MSS provided in the first iteration has 13 flexible slots, one more than the rest of
the MSSs produced, yielding less electives scheduled for surgery.

In the second scheduling regime we send all green patients to the ORs at BVS,
resulting in twice the load of green emergencies to be scheduled in this scheduling
regime compared to for the first. As 12 flexible slots are scheduled for both cases
indicates that the OR-capacity is relatively good, and that the bed capacity is
scarse, limiting the scheduling of elective inpatients. The number of yellow patients
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to receive surgery at the flexible slots are almost three times as high for the first
scheduling regime compared to the second, indicating that the flexible slot capacity
is excessive for most scenarios in the first scheduling regime.

The number of electives scheduled and cancelled from running the optimization
model in each iteration may be seen in Tables 37 and 38 in Appendix B.1. In all
iterations, only 2/4 of the back patients are scheduled for surgery, as these are
the most bed demanding patient category. Furthermore, there are never scheduled
more than 14/18 prosthesis patients, because the OR-capacity of 14 slots do not
allow for more than 14 prosthesis patients to be scheduled.

Table 19: MSS 1

OR Day of week

Monday Tuesday Wednesday Thursday Friday

2 Plastic El. foot/ Plastic El. foot Plastic El. foot

3 Plastic Plastic/- Plastic Plastic Plastic/-

4 Hand Hand/ Arthroscopic Plastic/ Arthroscopic Hand Hand

5 Arthroscopic Arthroscopic Arthroscopic Arthroscopic Arthroscopic

6 Tumor/Tumor Back Back Back -

7 Prosthesis Prosthesis Prosthesis Prosthesis/- -

8 Prosthesis Prosthesis Prosthesis Prosthesis/- -

Table 20: MSS 2

OR Day of week

Monday Tuesday Wednesday Thursday Friday

2 Plastic El. foot/ Plastic El. foot Plastic El. foot

3 Plastic Plastic Plastic Plastic/Plastic Plastic/-

4 Hand Hand/ Arthroscopic Hand/- Hand/ Arthroscopic Hand

5 Arthroscopic Arthroscopic Arthroscopic Arthroscopic Arthroscopic

6 Tumor/Tumor Back Back Back -

7 Prosthesis Prosthesis Prosthesis - -

8 Prosthesis Prosthesis Prosthesis Prosthesis -

The MSSs generated in the last iteration may be seen in Tables 19 and 20. Here,
the green letters indicate the flexible slots. Note that the two schedules are very
similar, and that the flexible slots are scheduled to the same subspecialties in both
schedules. We also see that Friday is a popular day to schedule flexible slots.
Since we only allow for elective outpatients to be scheduled for Friday, there is less
competition for the OR capacity on this day. Furthermore, the flexible slots serve
as an option in terms of the bed capacity: If the bed capacity is fully utilized on
the day that the flexible slot is scheduled, or the next, we may schedule yellow
patients (or green outpatients if there are any) for this slot as these patients have
a length of stay of zero days. If however beds are available, we may utilize this by
scheduling green inpatients for the flexible slot.

In Table 21 we provide the sum of elective patients that are scheduled for surgery
each day of the week in the two MSSs. A more detailed overview may be found
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in Tables 40 and 41 provided in Appendix B.1. We see that Monday is the day
with most elective patients scheduled for surgery, while only a few electives are
scheduled for Friday. However, as may be seen from Figure 22, the number of beds
covered by elective patients peaks on Thursday for both the schedules.

Table 21: Total amount of electives scheduled each day for MSS1 and MSS2

Mon Tue Wed Thu Fri

MSS 1 24 14 14 17 5

MSS 2 24 17 14 16 3

Figure 22: The expected number of beds covered by elective patients every day for MSS
1 and MSS 2

8.5.2 Evaluating MSS 1 and MSS 2

Outcomes form running the two MSSs for six months (following the warm-up pe-
riod), 20 times in the simulation model may be found in Tables 43 and 44 in
Appendix B.2. For MSS 1, no elective patients are cancelled in any of the 20 runs,
and all green patients receive surgery within time in each run. Furthermore, 71 %
of the yellow and 80 % of the red patients receive surgery within time. For MSS 2,
there are two runs where a few elective cancellations are made. On average, 96 %
of the green patients receive surgery within the dead line, and for the yellow and
red patients there are 84 % and 81 % that receive surgery within time respectively.
For the green patients, the expected waiting time to receive surgery is almost one
day longer for the second MSS compared to the first one. However, for the yellow
patients, the expected waiting time is more than five hours less for MSS 2. In
the following, we compare the two MSSs on several areas of interest based on the
outcomes from one run in the simulation model.

The impact on the emergency patients

In Figure 23, we illustrate the cumulative waiting time to receive surgery for the
yellow and green emergencies for MSS 1 and MSS 2, and the outcomes are compared
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to the historical data. We do not include the red patients as the scheduling of these
are independent of the MSS because they are always prioritized over the other
emergencies. For both the MSSs we see that the outcomes regarding waiting time
to surgery clearly outperform the historical data. For MSS 1, almost 60% of the
green patients receive surgery the day following referral, and no green patients are
delayed beyond five days. For MSS 2, almost 25 % of the green patients receive
surgery the day after referral, and all green patients receive surgery within five
days. For the yellow patients, we see that the waiting time is slightly less for the
second MSS.

Figure 23: The cumulative distribution of waiting time to receive surgery for the yellow
and green emergency patients, MSS 1 (top) and MSS 2 (bottom)

Figure 24 illustrates the mean number of emergencies waiting for surgery through
the week for the two MSSs. As a general tendency we see that the queues of yellow
and green emergencies reach a minimum on Friday afternoon, before increasing
through the weekend when the OR capacity is low. For MSS 1, we see that the
queue of green emergencies decreases steadily from Tuesday to Friday, and on
average there are four green patients waiting for surgery when entering the weekend.
For MSS 2, we see that the queue of green patients is more stable through the week
as no green emergencies are allowed to go the the emergency ORs. Recall that there
are only one more flexible slot scheduled for Friday in MSS 2 compared to for MSS
1. However, the average number of patients waiting for surgery falls much more on
Friday in MSS 2, indicating that the flexible slots are better utilized on this day in
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MSS 2. Because so many green emergencies receive surgery on Friday in MSS 2,
there are four green patients waiting for surgery when entering the weekend also
here. As the emergency ORs are reserved for the red and yellow patients in MSS
2, we see that the queue of yellow patients is less when entering the weekend in
this MSS compared to the first.

Figure 24: The mean number of emergency patients waiting for surgery through the
week, MSS 1 (top) and MSS 2 (bottom)

In Figure 25 we illustrate the cumulative number of green and yellow patients
waiting for surgery at 08.00 for the two MSSs, and compare the results to those
from the historical data. Again, we see that the queue is less for both emergency
categories in both MSS 1 and MSS 2 compared to the historical data. Note also
that there is far less variation in the number of emergencies waiting for surgery,
indicating that when scheduling flexible slots we are well prepared to handle a
fluctuating emergency demand for surgery.
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Figure 25: The cumulative distribution of the number of yellow and green emergencies
waiting for surgery at 08.00, MSS 1 (top) and MSS 2 (bottom)

In Figure 26, we illustrate the number of green emergencies that receive surgery
in flexible slots at BVS each week for both the MSSs. We see that on average,
more green emergencies receive surgery in the flexible slots in MSS 2, which is
not surprising given that all green emergencies are sent to BVS in this scheduling
regime. Since the number of flexible slots are the same for both MSSs, the flexible
slot utilization is less for MSS 1. To avoid idle OR capacity in times of low demand
for green surgeries, strategies for utilizing idle flexible slots should be implemented.
Having a low OR utilization is undesirable from an economical perspective. How-
ever, having a low utilization in some of the ORs is positive if we want to handle
the queue of emergencies efficiently, as it provides buffer capacity to handle periods
when many emergencies are entering.
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Figure 26: The weekly number of green patients to receive surgery in the ORs at BVS,
MSS 1 and MSS 2

In Figure 27, the daily average number of green patients to receive surgery in each
OR at BVS is illustrated for both MSSs. Recall that we load the ORs in increasing
order, explaining why OR-1 is more loaded than the other ORs on the same day.
We see that the average number of green patients to receive surgery in the flexible
slots are quite similar for all days except from Friday, where MSS 2 have a much
higher utilization of the available slot capacity. This was also noted in Figure
24, and the weak OR utilization on Friday for MSS 1 indicates that there is too
much slot capacity dedicated for the green emergencies here. If we did allow for
scheduling of green emergencies on the day of arrival, these slots would be better
utilized in MSS 1, and the number of green emergencies waiting for surgery would
be less towards the weekend.
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Figure 27: The average number of green surgeries performed in the ORs at BVS every
week, MSS 1 (top) and MSS 2 (bottom).

OR utilization and ward loading

In Figures 28 and 29 the cumulative distribution of the working hours at the elective
ORs are illustrated for the two MSSs, and we compare the results to the historical
data. We see that scheduling based on the expected surgery duration yields much
overtime at some of the ORs, even after removing the tails of the distributions for
surgery duration. For OR-1 - OR-6 we see that the graphs are steeper for the real
life distributions, meaning that the ORs close at approximately the same time on
most of the days. As we draw independent realizations of the surgery duration, and
use aggregated patient categories, we are not able to provide the same stability in
the simulation model, resulting in long tails towards both overtime and under time.
The vertical tails that may be seen for some of the simulated graphs are examples of
OR capacity being unused, as a result of excessive flexible slot capacity. Applying
another scheduling algorithm when scheduling green emergencies in the simulation
model, for example scheduling the patients in a cyclic manner or scheduling patients
to the flexible slot with most unused capacity, would yield less overtime work in

92



OR-1 and a better utilization of the other flexible slots.

The utilization of the emergency ORs at AHL for both MSS 1 and MSS 2 may be
seen in Table 22. Since no green emergencies are sent to the emergency ORs in
MSS 2, we have a lower utilization of these ORs in the second scheduling regime.
The first scheduling regime results in a high emergency OR utilization, and a
low utilization of the flexible slots, while the opposite is observed for the second
scheduling regime. This gives rise to two different buffering mechanisms in periods
of many green emergencies entering. In the first scheduling regime we will use the
flexible ORs as a buffer capacity, while in the second scheduling regime we may
use the emergency ORs to handle excessive demand for green surgeries. However,
the buffering capacity at the emergency ORs are less predictable than the capacity
offered in the flexible slots because the emergency slots are also used by the red
and yellow emergencies.
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Figure 28: The cumulative distribution of the working hours at the elective ORs for
MSS 1. Zero on the x-axis indicates 16.00
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Figure 29: The cumulative distribution of the working hours at the elective ORs for
MSS 2. Zero on the x-axis indicates 16.00
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Table 22: The utilization of the emergency ORs at AHL for MSS 1 and MSS 2

OR-9 OR-10

MSS 1 82 % 86 %

MSS 2 70 % 60 %

The cumulative bed loading at 12.00 for both the MSSs are illustrated in Figure 30,
and the outcomes are compared to the historical data. We see that the average bed
loading is higher for MSS 2 because less green inpatients are covering beds while
waiting for surgery in MSS 1. Both schedules provide a bed loading that very
seldom exceeds the total amount of scheduled beds available, and both outperform
the historical data in terms of beds needed at the wards. Remember however that
the simulation model sends more patients home during the weekend, which is not
accounted for in these graphs.

Figure 30: The cumulative distribution of the total ward loading at 12.00, MSS 1 (top)
and MSS 2 (bottom)
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8.5.3 A more realistic MSS

Because we schedule elective surgeries based on expected surgery duration, we seem
to underestimate the OR capacity needed to handle the elective patients scheduled,
resulting in much overtime work at the ORs. We now want to provide one MSS
that may be more realistic in terms of the work load at the ORs. We therefore
add 20 minutes of cleaning time to every surgery when scheduling the elective
patients in the optimization model, and we restrict the number of flexible slots to
six, providing more OR capacity to handle the electives. In addition, we require
that no more than three flexible slots may be scheduled for one day, and we demand
that at least two flexible slots should be scheduled for Monday and Tuesday as we
know that the queue of emergencies is long following the weekend. Again, we do
not allow for flexible slots at OR-7 and OR-8, and in addition we allow for the
prosthesis subspecialty to access more OR slot capacity such that more prosthesis
patients may possibly be scheduled for surgery.

When generating MSS 3, we use the same scenarios as we did for iteration 6 when
generating MMS 1, and in the simulation model we apply the first scheduling
regime. The results obtained from the optimization model may be found in Table
23. We see that when scheduling less flexible slots, we are able to schedule one more
elective patient compared to the two previous MSSs. However, less green patients
are scheduled to the flexible slots, resulting in more elective cancellations for this
MSS. In addition, scheduling less flexible slots yields less flexible OR capacity to
treat yellow emergencies. In Table 39 in Appendix B.1, we provide the number of
electives scheduled through the week, and the total number of elective cancellations
in the 100 scenarios.

Table 23: Outcomes form the optimization model when generating MSS 3

Objective function value of best integer solution 14.80

Upper bound 16.15

Gap 8.35%

Number of flexible slots 6

Electives scheduled each week 75/80

Green patients to flexible slots (for all 100 scenarios) 549/704

Electives cancelled (for all 100 scenarios) 220

Yellow patients to receive surgery (for all 100 scenarios) 117

The third MSS may be seen in Table 24. We see that the prosthesis subspecialty
have gained access to two more surgery slots compared to the two previous MSSs,
and we are now able to schedule 16/18 prosthesis patients. Furthermore, we may
notice that the subspecialties elective foot, hand, plastic and arthroscopic have one
more slot scheduled for elective patients, and one less as flexible. For all of these,
except for the plastic subspecialty, this additional elective OR capacity is enough
to schedule all the patients for these subspecialties. The back subspecialty is not
responsible for any flexible slots in the third MSS, but they have access to one more
elective slot compared to for the two previous MSSs, enabling us to schedule one
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more back patient in the third MSS.

Table 24: MSS 3

OR Day of week

Monday Tuesday Wednesday Thursday Friday

2 Arthroscopic Arthroscopic Plastic Arthroscopic Hand/ El. foot

3 Hand/Arthroscopic Arthroscopic/ Hand Hand Plastic/ Arthroscopic Arthroscopic/-

4 Plastic Plastic El. foot Plastic Hand/ Arthroscopic

5 Plastic Plastic El. foot Plastic/ Arthroscopic Hand/-

6 Tumor/Tumor Back Back Back -

7 Prosthesis Prosthesis Prosthesis Prosthesis -

8 Prosthesis Prosthesis Prosthesis Prosthesis -

In Table 25, we provide the total number of elective patients that are scheduled for
surgery every day. Again we may see that Monday is the day when most electives
are scheduled for surgery, while there are least electives scheduled on Friday. A
more detailed overview may be seen in Table 42 in Appendix B.1. In Figure 31 we
may see that the expected elective bed loading is higher for MSS 3 compared to
MSS 1 (and MSS 2), as more back patients and prosthesis patients are scheduled
in MSS 3. However, the shape of the graph is similar to the one for MSS 1.

Table 25: The total amount of electives scheduled each day for MSS3

Mon Tue Wed Thu Fri

20 17 16 14 8

Figure 31: The expected number of beds covered by elective patients every day for MSS
1 and MSS 3

Evaluating MSS 3

The statistics form running MSS 3 for six months (following the warm-up period),
20 times in the simulation model may be found in Table 45 in Appendix B.1.
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Compared to for MSS 1, the expected waiting time to receive surgery for the
yellow and green patients is about three and five hours longer, respectively in MSS
3. Furthermore, six patients are cancelled on average in each run. In the following,
we comment on areas of interest based on the outcomes from running MSS 3 once
in the simulation model, and where it comes naturally we compare the outcomes
to those obtained for MSS 1.

The cumulative waiting time to receive surgery for the green and yellow emergency
patients for MSS 1 and MSS 3 may be seen in Figure 32. Not surprisingly, MSS 1
performs better than MSS 3 in terms of the waiting time for emergency patients.
Still, 40 % of the green emergencies receive surgery the day after arrival in MSS 3,
and very few green patients have to wait for more than five days.

Figure 32: The cumulative waiting time to receive surgery for yellow and green emer-
gencies, MSS 1 (top) and MSS 3 (bottom)

The queue of emergencies through the week for MSS 1 and MSS 3 may be seen in
Figure 33. For MSS 3 we see that the length of the queue falls much on Thursday,
indicating that the flexible slot capacity is well utilized also on the day when we
have scheduled most flexible slots. Comparing to MSS 1 (and MSS 2), we see
that the average number of yellow and green emergencies waiting for surgery is
longer for MSS 3, and there are on average two more green emergencies waiting for
surgery when we enter the weekend. In Figure 34 we plot the weekly number of
green patients scheduled for BVS, and the queue of green patients at 08.00 for the
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same period. This plot is interesting as it illustrates how the flexible slots are used
as a buffer capacity in periods of high demand for green surgeries. We see that the
flexible slot capacity is often fully utilized, yielding a good OR utilization.

Figure 33: The mean number of emergency patients waiting for surgery through the
week, MSS 1 (top) and MSS 3 (bottom)
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Figure 34: The number of green patients to receive surgery at flexible and elective slots
at BVS for MSS 3. In the upper graph we include the queue of green emergencies for the
same period.

In Figure 35 we illustrate the cumulative amount of working hours at the elective
ORs and compare it to the historical data. We see that MSS 3 result in less
overtime work compared to MSS 1 and MSS 2, and comparing with the historical
data the simulated outcomes are quite similar for many of the ORs. In Figure 38 in
Appendix B.2, we provide the cumulative amount of working hours at the elective
ORs when removing only 5% of the tails for the distribution of surgery duration
for the elective patients. Removing less of the tails result in some more overtime
on average. For some of the ORs, like OR-3, the tail representing overtime work is
longer for the case where more of the tails are removed. This indicates that some
of the very long tails are caused by the scheduling of yellow and green emergencies
to the ORs at BVS.
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Figure 35: The cumulative distribution of the working hours at the elective ORs for
MSS 3. Zero on the x-axis indicates 16.00
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The cumulative ward loading at 12.00 for MSS 1 and MSS 3 may be seen in Figure
36. We see that the bed loading is higher for MSS 3 as more bed demanding
electives are scheduled for surgery. We may also note that the tail is longer for
MSS 3, indicating that there will be more times where rescheduling is necessary
due to scarse bed capacity compared to for MSS 1.

Figure 36: The cumulative distribution of the total ward loading at 12.00, MSS 1 (top)
and MSS 3 (bottom)

8.5.4 The stability of the three MSSs compared to the present MSS

It is interesting to compare the outcomes from the 20 runs performed with the
simulation model for each of the four MSSs (the three presented here, and the one
presented when validating the simulation model). These runs are found in Tables
43, 44, 45 and 46 in Appendices B.1 and C. If the 20 runs provide outcomes that
are similar to each other, we may say that the system is stable, and not dependent
on the outcomes of the stochastic variables (the arrival of emergencies, the surgery
duration of patients and the length of stay of inpatients). This is positive, as it
indicates that the system is able to handle fluctuations. If the model is unstable,
that is if the outcomes become dependent on the realizations of the stochastic
variables, this may indicate that the system struggles to handle the work load and
that small changes will result in very different outcomes. For each of the 20 runs
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we have computed the mean waiting time of emergencies to receive surgery. We
now compute the mean and standard deviation obtained for theses 20 values, and
plot the results for all four MSSs in Figure 37. From these plots we see that the
outcomes obtained for the MSS present at the orthopaedic department varies more
than for the others, especially when regarding the green emergencies. We know
from the discussions above that MSS 1 is the schedule most prepared to handle
the green emergencies, so it is not surprising that this model provides the most
stable outcomes regarding the waiting time for green emergencies. The same goes
for MSS 2 and the yellow patients.
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Figure 37: Comparing the waiting times for emergencies to receive surgery obtained
from the 20 runs for MSS 1, MSS 2, MSS 3 and the MSS present at the orthopaedic
department.

8.5.5 Summing up the case study

Scheduling flexible slots to the elective ORs yields less waiting time to receive
surgery for the yellow and green emergencies. The number of green emergencies
that may wait in line for the emergency ORs affects the waiting time for both the
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green and yellow emergencies, and there exist a trade-off concerning the waiting
time for the two categories. Allowing to schedule some green emergencies to AHL
results in less green emergencies waiting for surgery, and more yellow patients
waiting compared to if no green emergencies are sent to AHL. Furthermore, sending
some green emergencies to AHL will result in less flexible slots needed at BVS in
order to handle fluctuations in the demand. Scheduling six flexible slots for BVS,
while allowing for two green inpatients to wait in line at AHL results in about 40
% of the green inpatients receiving surgery the day following arrival, little elective
rescheduling due scars OR capacity and the ability to provide surgery for the yellow
emergency patients a bit faster than they do at the department today.
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9 Concluding remarks and future research

The main problem faced by the orthopaedic department at St. Olav’s Hospital
today is treating the emergency patients within the dead lines proposed by the
hospital. Having emergencies that wait too long for surgery is not only harming
these patients, it also affects the flow of elective patients. In periods when the
queue of emergency patients increases, the green emergencies are buffered to the
elective ORs at BVS to leave the emergency OR capacity for the red and yellow
emergency patients. As a consequence of this, elective patients may need to be
rescheduled to provide OR capacity for the green emergencies. Having a large
amount of emergencies waiting for surgery results in many beds being covered at
the wards, and in periods of peak emergency loading, the bed capacity may become
scarse. This may cause rescheduling of elective inpatients, as these inpatients need
a bed following surgery.

Related to the orthopaedic department, the main contribution of this thesis is
the development of a planning tool consisting of an optimization model and a
simulation model. By applying these models we aim to provide a MSS where more
OR capacity is devoted to green emergencies at the elective ORs, such that more
emergencies receive surgery within the deadline, and the flow of elective patients
is unharmed in periods of high emergency demand. The optimization model is
formulated as a two-stage stochastic program with recourse. In the first stage we
schedule the available OR slots as either elective or flexible, we schedule the elective
patients for the elective slots, and we decide on the number of beds that should be
available at the different wards on every day of the week. The uncertain parameters
of the problem formulation, are the amount of emergencies resting at each ward
on each day of the week, and the excess demand of green emergencies that require
surgery in the same period. In the second stage we aim to perform the elective
surgeries scheduled in the first stage, while scheduling all the excess demand of
green emergencies without having to cancel the elective surgeries.

Applying a two-stage formulation means that we aggregate the events that provide
new information about the stochastic parameters to one point in time (just before
every cycle). This simplification, together with the fact that we develop a cyclic
plan to handle real life fluctuations over time calls for some way to investigate how
well the MSS proposed by the optimization model behaves in a real life environ-
ment. To do this, we develop a simulation model to mimic a surgery department,
such as the orthopaedic department. Different scheduling regimes may be imple-
mented in the simulation model, providing the opportunity to explore trade-offs
between different scheduling strategies.

By applying the models on instances representing the orthopaedic department, we
propose a MSS with six flexible slots scheduled for the elective ORs each week. This
is enough to handle almost all green emergencies within the deadline, and it makes
the department much better prepared to handle periods of excessive emergency
demand. As a result, far less electives need to be rescheduled. Scheduling flexible
slots means transferring OR capacity from the electives to the emergencies, and
there exist a trade-off between the number of electives scheduled each week, and
the number of electives that need to be rescheduled due to short capacity of beds
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or ORs.

From running the optimization model on some smaller instances, we develop general
advises regarding the scheduling of flexible slots to elective ORs. As a rule of thumb
we suggest that if the OR capacity is more scarse than the bed capacity, only a
few flexible slots should be scheduled. Scheduling elective slots may yield weeks of
low OR utilization, especially if no strategy for the use of these lots in weeks of
low emergency demand are decided on. This low OR utilization is relatively more
expensive if the OR capacity is scarse. If however the bed capacity is regarded as
more scarse than the OR capacity, we suggest increasing the flexible slot capacity
to provide more beds for the elective patients at the wards.

From an academic point of view, the main contribution of this report is the two-
stage formulation applied to solve the MSSP. To our knowledge, this modeling
framework has not yet been applied to the MSSP by other authors, and we are
able to show practical value of applying a stochastic formulation compared to the
deterministic counterpart. If we set the cost of cancelling electives low, we are able
to perform more elective surgeries when applying the stochastic formulation. If
however we set the cost of cancellations high, we are able to provide schedules that
cancel far less electives compared to the deterministic counterpart.

Developing more efficient formulations for the MSSP is a topic for further research.
The model struggles to close the LP-gap within hours, also for small instances,
and the problems increase when treating the ORs as homogeneous. Developing
symmetry breaking inequalities and clever ways of searching in the B & B tree
should be considered to decrease the running time. If we are able to construct
a more efficient formulation, we may also be able to impose more complexity to
the model without increasing the running time too much. Applying more than
two stages may provide additional value. One alternative formulation can take
the queue of green patients on Monday morning as an input parameter (possibly
stochastic), and then apply five stages, one for each weekday. In each stage we
receive information about the number of green patients entering and the number
of red and yellow emergencies resting at the wards. The objective function in this
alternative formulation should include minimizing the number of green patients
waiting for surgery on Friday afternoon.

The simulation model may be further developed to provide more realistic outcomes.
Applying smaller time intervals when generating the arrival rates of emergencies
will yield more accurate arrival rates through the day. In addition, adding some
randomness to the prioritization rules for emergencies may provide a better fit to
the real life process where the rules are often overseen. Furthermore, the scheduling
of emergencies to flexible slots are made very simple, yielding an uneven loading
of the flexible slots. Applying more sophisticated algorithms for the scheduling
procedure may result in less overtime work and less idle time at the ORs. However,
the biggest weakness of the simulation model is that we assume the wards to have
infinite bed capacity. Implying rules for elective rescheduling based on the ward
loading should be considered if the model is to be further developed.

In addition to developing more efficient and realistic models, we should focus more
towards implementation of the models at hospital departments. As mentioned in
Section 4, very few of the models developed on surgery scheduling are implemented
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at a hospital department. Developing guidelines for successful implementation is
of great societal interest as it may play a central role when facing the challenges
within health care in the years to come.
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A The input data applied in the models

Here, we present the two databases used to collect data for the models, and we
provide tables with the values applied for the input data both for the optimization
and the simulation model.

A.1 The databases used

We have gained access to two databases in order to provide input data to our
models. The first, OPPLAN, stores all relevant data related to the surgery of
patients, the arrival of emergencies and the categorization of patients. The other
one, Nimes, provide historical data related to the length of stay of the inpatients
at the wards. As both the databases include a procedure code for the patients,
it is possible to link the data on patient category level. Both databases apply
identification codes for the patients registered. However, the code system applied
in the two databases are not similar, so we are not able to link the databases on
a patient level. We do not have access to the id-number of the patients, providing
anonymous data. The historical data used for this thesis cover the period from
01.01.2015 - 27.04.2017.

There are some issues regarding the data in Nimes. We are not able to tell how
many days of the total length of stay that were preoperative days, and how many
were postoperative. For the elective patients this is not an issue, as most of these
patients enter the hospital just before surgery. For the emergency patients this
is important to know, as most of these are waiting at the wards before surgery.
To estimate the preoperative days at the wards for the emergencies, we use the
expected waiting time for surgery. Another issue is that the green emergency
patients are not registered as an individual category in Nimes, making it hard to
estimate the length of stay of these patients.

A.2 The values obtained for the input parameters

In Tables 26 to 33, we present the values applied for the input parameters in the
large instances, and in Tables 34 and 35 the values applied for the small instances
are provided. Note that the five patient categories included in the small instances
have all the same properties as the five first patient categories in the large in-
stances. In Table 36, the input parameters relevant for the simulation model are
given.
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Table 26: Values obtained for the subspecialties and the patient categories in the op-
timization model. Ti is the target number of elective patient category i to be scheduled
each week, Si is the expected surgery duration of patient category i , while Eid is the
expected length of stay of patient category i that receive surgery on day d.

Subspecialty Ti Si Eid

Elective foot

Aggregated group 4 143 3

Hand

Aggregated group 8 94 0

Carpal tunnel syn-
drome

3 85 1

Plastic

Aggregated group 15 95 2

Plateepitelkarsinom 2 73 1

BCC 5 142 1

Malingt melanom 4 68 0

Cancer mammae 4 97 1

Arthroscopic

Aggregated group 6 123 2

ACL 2 186 2

Meniscus 3 173 0

Back

Aggregated group 4 295 6

Prostheses

Hip 7 177 4

Knee 11 174 4

Tumor

Aggregated group 2 76 1

Emergencies

Green inpatients - 192 2

Green outpatients - 131 0

Yellow patients - 165 0

Table 27: Values of the parameters related to the ORs in the optimization model. MOR
kd

represents the number of surgery slots available at OR k on day d.

OR MOR
kd Slot time [min] Patient category

1 2 240 Elective foot, plastics

2 2 240 Plastics

3 2 240 Plastics, hand, arthroscopic

4 2 240 Arthroscopic

5 2 240 Back, tumor

6 2 240 Prosthesis

7 2 240 Prosthesis
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Table 28: The OR slots available to each subspecialty each day and through the week
in the optimization model

Subspecialty ND
jd Nj

Elective foot 4 5

Hand 4 7

Plastic 4 14

Arthroscopic 4 12

Back 4 6

Prosthesis 4 14

Tumor 2 2

Table 29: Maximum number of ORs that may be covered by anesthesiologists each day
in the optimization model

MA
1 MA

2 MA
3 MA

4 MA
5 MA

6 MA
7

7 7 7 7 4 0 0

Table 30: The ward capacities obtained in the optimization model. Awd represents
the number of staffed beds available at ward w on day d, while AMAX

w is the maximum
number of beds available at ward w.

Ward Name c. Awd (week) Awd (weekend) AMAX
w Patient category

hosted

1 Trauma 20 16 32 Elective foot, Hand
and green inpatients

2 Reconstructive 16 16 16 Plastic, Tumor

3 Elective 10 12 12 Arthroscopic, Back

4 Fast-track 16 0 16 Prosthesis

5 Hotel-day 5 0 5 None, buffer capacity
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Table 31: The objective function parameters related to the elective patients in the
optimization model. Pi is the reward of scheduling more patients from the elective patient
category i than the lower limit, while CCi is the penalty of cancelling an elective patient
belonging to patient category i.

Elective patient category Pi CCi
Elective foot (aggregated) 3 3

Hand (aggregated) 2 3

Carpal tunnel syndrome 3 3

Plastic (aggregated) 3 3

Plateepitelkarsinom 3 3

BCC (aggregated) 3 3

Malingt melanom 2 3

Cancer mammae 3 3

Arthroscopic (aggregated) 3 3

ACL 3 3

Meniscus 2 3

Back (aggregated) 3 3

His prosthesis 3 6

Knee prosthesis 3 6

Tumor (aggregated) 3 3

Table 32: The values obtained the objective function parameters not relevant for the
elective patients in the optimization model. CWww′ is the penalty of putting a patient
meant for ward w in ward w′, CGR is the penalty of scheduling a green patient to an
elective slot, PY is the reward for scheduling a yellow patient to a flexible slot, and Cβ is
the penalty of having more patients resting at the wards than the total amount of staffed
beds available.

CW
ww′ CGR PY Cβ

1 2 0.5 1000

Table 33: The values obtained for the other parameters in the optimization model.
1/Ri is the share of patients belonging to the elective patient category i that need to be
scheduled for surgery, MCY CLE is the total amount of slots available through the cycle,
and H5 is the number of elective inpatients that may be scheduled for Friday.

Ri MCY CLE H5

2 70 0

Table 34: Values obtained for the target number of elective patients in the small instances

Patient category Low target High target Subspecialty

1 8 12 1

2 32 38 2

3 18 25 2

4 21 25 3

5 12 15 3
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Table 35: The four different ward capacities available for the small instances

Ward Number of scheduled beds available Max beds
available

Config.

Mon Tue Wed Thur Fri Sat Sun

1 25 25 25 25 25 20 20 32 W1

2 20 20 20 20 20 20 20 25 W1

1 30 30 30 30 30 25 25 32 W2

2 25 25 25 25 25 25 25 25 W2

1 45 45 45 45 45 25 25 45 W3

2 40 40 40 40 40 25 25 40 W3

1 60 60 60 60 60 30 30 60 W4

2 50 50 50 50 50 25 25 50 W4

Table 36: Values obtained for the parameters used in the simulation model when trying
to mimic the real life, and when developing the three MSSs in Section 8.5

Parameter Mimic
real
life

MSS
1

MSS
2

MSS
3

Prob. of accessing an OR outside the opening hours
(for red pat.)

0.55 0.55 0.55 0.55

Max gr. inpatients in queue for em. ORs 3 2 0 2

Max gr. outpatients in queue for em. ORs 1 0 0 0

Min time (days) ahead that we may not cancel electives 2 2 2 2

Min time (days) for a gr. pat. to wait before cancelling
en el. pat.

8 8 8 8

Min time (days) to wait to schedule an el. pat. that
was cancelled

10 10 10 10

Min time (min.) needed to initiate a new surgery at
the em. ORs (not applicable for red pat.)

70 70 70 70

Max number of el. pat. that may be cancelled on each
scheduling day to provide capacity for gr. inpatients

2 2 2 2

Max number of el. pat. that may be cancelled on each
scheduling day to provide capacity for gr. outpatients

1 1 1 1

Prob. that a slot is available for a yellow pat. if excess
capacity

0.25 0.25 0.25 0.25

Time (min.) used to clean the OR 20 20 20 20

Mean waiting time (min.) for the next em. pat. to be
ready for surgery following previous surgery

30 30 30 30

Std. dev. of waiting time (min.) for the next em. pat.
to be ready for surgery following the previous surgery

10 10 10 10
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B The case study

Here we provide additional Tables and Figures relevant to the case study.

B.1 Outcomes from the optimization model

The number of electives scheduled and cancelled in each iteration when generating
the two MSSs may be seen in Tables 37 and 38. Note that the cancellations
are the total cancellations from all 100 scenarios in each iteration. The model
only schedules 12 prosthesis patients in the first iteration compared to 14 for the
other iterations, even though 14 slots are scheduled for the prosthesis subspecialty
in all iterations. Scheduling more prosthesis patients in the first iteration will
yield excessive cancellations of these patients, due to the limited bed capacity.
Furthermore, one less plastic (aggregated) patient is scheduled for surgery in the
first iteration, as two of the flexible slots are scheduled to the plastic subspecialty
in this iteration, leaving restricted OR capacity for the plastic patients.

Table 37: Scheduling and cancelling of elective patients in the optimization model when
generating MSS 1. Ti is the target number of electives to be scheduled from patient
category i.

Scheduled Cancelled

Patient category Ti Iterations Iterations

1 2 3 4 5 6 1 2 3 4 5 6

El. foot (aggregated) 4 4 4 4 4 4 4 133 25 25 23 28 22

Hand (aggregated) 8 8 8 8 8 8 8 0 0 0 0 0 0

Carpal tunnel syndrome 3 3 3 3 3 3 3 5 0 0 0 0 0

Plastic (aggregated) 15 14 15 15 15 15 15 168 10 12 13 22 11

Plateepitelkarsinom 2 2 2 2 2 2 2 4 0 0 0 0 0

BCC 5 5 5 5 5 5 5 17 0 0 0 0 0

Malingt melanom 4 4 4 4 4 4 4 0 0 0 0 0 0

Cancer mammae 4 4 4 4 4 4 4 16 0 0 0 0 0

Arthroscopics (aggregated) 6 6 6 6 6 6 6 56 3 8 3 2 6

ACL 2 2 2 2 2 2 2 25 0 4 1 4 1

Meniscus 3 3 3 3 3 3 3 0 0 0 0 0 0

Back (aggregated) 4 2 2 2 2 2 2 102 35 39 31 37 42

Hip 7 6 4 4 7 4 4 101 1 11 13 0 12

Knee 11 6 10 10 7 10 10 46 29 15 16 20 23

Tumor (aggregated) 2 2 2 2 2 2 2 6 0 0 0 0 0
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Table 38: Scheduling and cancelling of elective patients in the optimization model when
generating MSS 2. Ti is the target number of electives to be scheduled from patient
category i.

Scheduled Cancelled

Patient category Ti Iterations Iterations

1 2 3 4 5 6 1 2 3 4 5 6

El. foot (aggregated) 4 4 4 4 4 4 4 133 23 35 21 26 20

Hand (aggregated) 8 8 8 8 8 8 8 0 1 0 1 0 0

Carpal tunnel syndrome 3 3 3 3 3 3 3 5 0 0 0 2 0

Plastic (aggregated) 15 14 15 15 15 15 15 168 17 21 9 17 5

Plateepitelkarsinom 2 2 2 2 2 2 2 4 0 0 1 0 3

BCC 5 5 5 5 5 5 5 17 1 0 4 1 1

Malingt melanom 4 4 4 4 4 4 4 0 0 0 0 0 0

Cancer mammae 4 4 4 4 4 4 4 16 0 0 0 0 0

Arthroscopics (aggregated) 6 6 6 6 6 6 6 56 5 4 5 5 5

ACL 2 2 2 2 2 2 2 25 2 3 2 4 3

Meniscus 3 3 3 3 3 3 3 0 2 0 1 1 1

Back (aggregated) 4 2 2 2 2 2 2 102 44 51 50 36 38

Hip 7 6 4 4 4 4 4 101 8 6 5 15 2

Knee 11 6 10 10 10 10 10 46 16 18 7 5 8

Tumor (aggregated) 2 2 2 2 2 2 2 6 0 0 0 0 0

The number of patients scheduled and cancelled for MSS 3 may be seen Table
39.

Table 39: Scheduling and cancelling of elective patients in the optimization model, MSS
3. Ti is the target number of electives to be scheduled from patient category i.

Patient category Ti Scheduled Cancelled

El. foot (aggregated) 4 4 26

Hand (aggregated) 8 8 0

Carpal tunnel syndrome 3 3 0

Plastic (aggregated) 15 15 15

Plateepitelkarsinom 2 2 0

BCC 5 4 0

Malingt melanom 4 3 0

Cancer mammae 4 4 0

Arthroscopics (aggregated) 6 6 9

ACL 2 2 5

Meniscus 3 3 3

Back (aggregated) 4 3 98

Hip 7 6 28

Knee 11 10 36

Tumor (aggregated) 2 2 0

In Tables 40, 41 and 42 we provide the number of patients from each patient
category that is scheduled for each day of the week in MSS 1, MSS 2 and MSS 3
respectively.
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Table 40: Scheduling of elective patients to the different days when generating MSS 1

Patient category Mon Tue Wed Thu Fri

El. foot (aggregated) 0 1 3 0 0

Hand (aggregated) 2 1 0 0 5

Carpal tunnel syndrome 3 0 0 0 0

Plastic (aggregated) 5 3 0 7 0

Plateepitelkarsinom 2 0 0 0 0

BCC 1 1 3 0 0

Malingt melanom 0 0 0 4 0

Cancer mammae 2 0 2 0 0

Arthroscopics (aggregated) 2 2 0 2 0

ACL 1 0 0 1 0

Meniscus 0 2 1 0 0

Back (aggregated) 0 0 1 1 0

Hip 0 2 2 0 0

Knee 4 2 2 2 0

Tumor (aggregated) 2 0 0 0 0

Sum 24 14 14 17 5

Table 41: Scheduling of elective patients to the different days when generating MSS 2

Patient category Mon Tue Wed Thu Fri

El. foot (aggregated) 0 1 3 0 0

Hand (aggregated) 2 2 2 2 0

Carpal tunnel syndrome 3 0 0 0 0

Plastic (aggregated) 6 3 0 6 0

Plateepitelkarsinom 2 0 0 0 0

BCC 0 2 2 1 0

Malingt melanom 0 1 0 0 3

Cancer mammae 2 0 2 0 0

Arthroscopics (aggregated) 2 2 0 2 0

ACL 1 1 0 0 0

Meniscus 0 1 0 2 0

Back (aggregated) 0 0 1 1 0

Hip 0 2 2 0 0

Knee 4 2 2 2 0

Tumor (aggregated) 2 0 0 0 0

Sum 24 17 14 16 3
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Table 42: Scheduling of elective patients to the different days when generating MSS 3

Patient category Mon Tue Wed Thu Fri

El. foot (aggregated) 0 0 4 0 0

Hand (aggregated) 0 0 2 0 6

Carpal tunnel syndrome 2 0 1 0 0

Plastic (aggregated) 3 4 0 8 0

Plateepitelkarsinom 0 0 2 0 0

BCC 1 2 1 0 0

Malingt melanom 1 2 0 0 0

Cancer mammae 3 0 1 0 0

Arthroscopics (aggregated) 3 2 0 1 0

ACL 1 1 0 0 0

Meniscus 0 1 0 0 2

Back (aggregated) 0 1 1 1 0

Hip 0 2 2 2 0

Knee 4 2 2 2 0

Tumor (aggregated) 2 0 0 0 0

Sum 20 17 16 14 8

B.2 Outcomes from the simulation model

The outcomes form running the three MSSs for six months (following the warm-up
period), 20 times in the simulation model may be found in Tables 43, 44 and 45.
Note that the waiting time for surgery is given in minutes for the red and yellow
emergencies, and in days for the green patients.

In Figure 38 we illustrate the cumulative amount of working hours at the ORs
for MSS 3 when removing only 5% of the upper and lower tail for the empirical
distribution of surgery duration for each elective patient categories.
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Figure 38: MSS 3: The cumulative amount of working hours at the elective ORs when
removing only 5% of the upper and lower tail for the empirical distribution of surgery
duration for each elective patient categories. We compare the outcomes to the historical
data.
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C Validating the simulation model

In order to use the simulation model as a testing tool, we need to make sure that
the outcomes from the model is able to mimic the historical data in a satisfying
way. To achieve this, the model is run several times while adjusting the input
parameters till the outcomes are similar to those obtained from the historical data.
In the following, we only report on the validated outcomes of the simulation model.
In Figure 39 we provide an illustration of the flow of patients through the system.
The flow is described in Section 6.2.2.

To represent a normal high production week, we simulate the MSS used at the
department today, and we schedule 78 elective patients for surgery. The patients
have been manually distributed, making sure that the expected surgery duration
scheduled to an OR do not exceed the opening hours of the OR. Furthermore,
only patients that have a high probability of being outpatients are scheduled to
Friday.

The outcomes form running the MSS for six months (following the warm-up pe-
riod), 20 times in the simulation model may be found in Table 46. Note that the 20
runs provide quite different outcomes for the waiting time and the number of emer-
gencies treated within time. The big variations from one run to the next indicates
that the system is unstable, and that the outcomes depend much on the emergency
arrival patterns realized in each run. Note that the scheduling rules applied in the
model are never changed. In the real life, these rules are fluctuating, and adapt
to the present situation. However, the large variation underlines the fact that the
present MSS is not well prepared to handle a fluctuating emergency demand, and
that there will be many periods where the scheduling rules need to be altered in
order to handle the queue of emergencies. There are, on average, 206 cancellations
of elective patients due to short OR capacity, implying that more than one elective
patient is cancelled each day on average.

In Table 47 we provide the average number of emergency patients arriving at the
orthopaedic department for a period of six months, and the average share of emer-
gencies to receive surgery within time. Regarding the average arrival rates of
emergencies, the model is quite accurate for both the red and yellow patients, and
the green inpatients. However, it overestimates the arrivals of green outpatients.
When it comes to the amount of emergencies treated within time, we see that the
model is able to provide surgery to more red patients within time compared to the
real world. For the two other categories the outcomes are, on average, quite close
to the real world.

The results presented next are representing one year (following a warm up period of
50 weeks) of running in the simulation model, and the outcomes are compared to the
historical data covering the period from 01.01.2015-27.04.2017. When comparing
one run from the simulation model to the historical data we may not expect to
have the exact same results for such a big and complex system. However, we are
able to get a feeling of how close we are to model the real world system. Note that
the simulation model represents the reality as it is at the orthopaedic department
today. This means having one OR at AHL running to 22.00 four days every week
(instead of to 16.00). Regarding the historical data, this situation was only present
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Table 47: The average number of emergency patients arriving on six months based on
the historical data, and the average share of emergencies treated within the dead line

Red Yellow Green

Number of patients 298 748 547

Inpatients 290 704 251

Outpatients 8 44 296

Within time [%] 72 60 70

after January 2017.

C.1 The emergency patients

To compare the arrival of emergencies from the model to that of the real world, we
regard the average number of patients to enter through the day. Note that for the
emergencies that are registered to arrive at 00.00, we draw a random arrival time
between 08.00 and 22.00, as we did when generating the arrivals in the simulation
model. We see from Figure 40 that the shapes of the two arrival processes are quite
similar. There are however some details that are missing in the simulated arrivals.
Firstly, we see that the arrivals of yellow patients are decreasing from hour zero to
hour six in the real world. This is not the case in the simulation. Furthermore,
we may see that the arrivals of green patients peaks at 10.00 in the reality, and
this is also missing in the simulated arrivals. Finally we see that the amount of
green emergencies arriving is a little higher for the simulated outcomes compared
to the real world. Dividing the day into more than three periods, and increasing
the expected inter-arrival time for the green outpatients would have given a better
fit to the real arrival process.

Figure 40: The hourly average number of emergencies arriving through the day in the
real life and in the simulated reality. Note that the blue lines indicate the yellow patients.

Figure 41 illustrates the cumulative waiting time to receive surgery for all emer-
gency categories in both realities. We see that the simulated waiting time is slightly
less for the red and yellow patients, while it is quite similar to the historical data for
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the green emergencies. Note that about 8% of the green patients receive surgery on
the same day as referral in the real life. This is not implemented in the simulation
model, where all green patients have to wait at least one day to receive surgery.
We may also note that both for the red and yellow patients the real life distribu-
tions have long tails, indicating that some patients have to wait for a long time to
have their surgery. These tails represent special cases that are hard to model when
applying rigid scheduling rules. One reason why the simulated results outperform
the historical data, may be due to the increased emergency OR capacity at AHL
implemented in the model.

The average queue of emergencies waiting for surgery every hour through the week
may be seen in Figure 42. We see that the amount of green patients waiting for
surgery is longer in the simulated outcomes compared to the historical data, while
it is the opposite for the yellow patients. There are two reasons why the queue
of green emergencies are longer in the simulated outcomes compared to for the
historical data: No green emergencies receive surgery on the day of arrival, and the
arrival rate is too high for the green outpatients in the simulation model. We see
that the number of green patients waiting for surgery decrease towards the weekend
in both cases, before it increases through the weekend when these patients are not
scheduled for surgery. For the simulated outcomes the queue starts decreasing
earlier in the week compared to the historical data. The small spikes seen in the
historical data for the green patients is the same spike that we may see in the
arrival rate at 10.00 in Figure 40. Finally, we may note that the average queue of
red patients is a bit longer for the historical data compared to for the red patients.
This may indicate that the red patients are not always prioritized over the other
emergency categories as we have implemented in the simulation model.

In Figure 43 we illustrate the cumulative distributions of the number of patients
from the different urgency categories waiting for surgery at 08.00. Also here we
see that the number of green patients waiting for surgery is longer for the simu-
lated outcomes compared to the historical data, and the opposite is observed for
the yellow and red patients. Note that despite that fact that we treat the green
emergencies equally fast in the model as we do in the real life, the queue of green
emergencies is longer in the simulated outcomes. This means that we are able
to treat more green emergencies every day in the model compared to in the real
world.

In Figure 44 we provide the cumulative distribution of the weekly amount of green
patients to receive surgery in elective slots. We see that the simulated outcomes
yield more days with no green emergencies scheduled for the elective slots compared
to the real life data.

C.2 OR utilization

The workload at the ORs is important because it provides insight in how ambitious
the optimization model is when scheduling electives based on the expected values
of the surgery duration. In Figure 45 we illustrate the utilization of six of the ORs
at BVS obtained from the simulation model. The blue line in the upper graph
illustrates the OR-utilization each day. The daily OR-utilization is calculated by
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Figure 42: The average number of emergencies waiting for surgery each hour during the
week in the real life and in the simulated reality

adding the surgery duration (including preparation and post time) and the cleaning
of the OR following surgery, and dividing this by the opening hours available at the
OR on that day. Note that surgery related time spent after the regular opening
hours of the OR is not included when calculating the utilization. If an OR has
not been in use on a day, the utilization is set to zero on that day. The red,
discontinuous line indicates the mean utilization through the period, excluding the
days when the OR is not in use. In the lower graph, the blue bars reach to the
point in time where the OR closes each day. The solid blue line illustrates the
scheduled opening hours each day, while the red discontinuous line provides the
mean closing time through the period, excluding the days when the OR is not
in use. We see that scheduling based on the mean surgery duration results in
some days with much overtime at the ORs even after removing the tails of the
distributions for the surgery duration for the elective patients. Note that we add
20 minutes of cleaning time between each surgery in the simulation model. This
is not done in the optimization model when scheduling the patients for surgery,
yielding an optimistic number of electives scheduled for each OR.

The cumulative distribution of the working hours at the eight elective ORs may be
seen in Figure 46. Negative time on the x-axis indicates that the last activity at
the OR on a day was done before the scheduled closing time of the OR. Compared
to the historical data, the simulated outcomes have long tails towards overtime and
are less steep, indicating that there is more variation in the working load from one
day to the next. As we draw independent realizations of the surgery duration, and
use aggregated patient categories, we are not able to provide the same stability for
the OR working load in the simulation model compared to the real world.

C.3 Ward loading

Since we model a high production week, we want to compare the simulated out-
comes regarding the ward loading to historical data from a high production period.
To do this, we regard historical data obtained between the summer vacations in
2016 and 2017, where there were very few low production periods.
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Figure 44: The cumulative distribution of the weekly number of green patients to receive
surgery in elective slots at BVS in the real life and in the simulated reality.

In Figure 47 we illustrate the mean ward loading through the week. The peaks
indicate that elective inpatients enter in the morning, while other inpatients leave
from about 12.00. For the historical data we see that only OTS seem to have
patients entering during the evening and night, even though ORS and OES also host
emergency patients. In the simulation model we have distributed the emergency
patients to the different wards according to a key that is not changing during the
day, resulting in patients entering all three wards through the entire day. We may
also see that OFT closes on Friday in the real life, while patients are still resting
at the ward on Saturday morning in the simulation model. In the real life, the
prosthesis patients that need to stay beyond Friday are moved to OES. The most
prominent difference in the two cases are the number of patients leaving through the
weekend. Only a few patients leave the wards during the weekend in the historical
data, while in the simulation model we do not alter the length of stay depending on
the day of the week. As a result, the mean ward loading is much less on Monday
morning in the simulated outcomes compared to the historical data.

The total cumulative ward loading at 12.00 may be seen in Figure 48. We see
that the simulated outcomes are similar to those from the historical data, but the
tail is longer towards many beds. We see that we exceed 67 beds in about 15% of
the days, indicating the need for rescheduling to handle the scars bed capacity in
periods of many emergencies present.

C.4 Conclusion of the comparison

From running the model 20 times, we see that the model schedules the red patients
faster compared to the historical data. This indicates that there are times in the real
life when less urgent emergencies are prioritized before the red patients, or that less
red patients receive surgery during the night than what we have implemented in the
model. For the red and yellow emergencies, the number of patients scheduled within
the deadline is similar when comparing the simulated results to the historical data.
By analyzing the outcomes from one run we see that there are some differences
between the model and the real world. The queue of green emergencies are longer
in the simulated reality, but these patients receive surgery equally fast as in the
real world. This indicates that the model performs more green surgeries every
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Figure 45: The OR utilization of the elective ORs in the simulation model
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Figure 46: The cumulative distribution of the working hours in the ORs in the real life
and in the simulated reality. Zero on the x-axis indicates 16.00.
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Figure 47: The average ward loading every hour through the week for both the real life
and for the simulated reality

135



Figure 48: The cumulative distribution of the total ward loading at 12.00 for both the
real life and the simulated reality

day despite the fact that less green emergencies are sent to BVS compared to for
the real world. One explanation for this is the increased emergency OR capacity
implemented in the model compared to the historical data gathered before 2017.
Furthermore, scheduling based on expected surgery duration yield more overtime
work at the ORs compared to the historical data. Regarding the ward loading,
the simulation model sends more inpatients home during the weekend, resulting
in less patients being present on Monday morning compared to for the real world.
Furthermore, as no rescheduling is done in the model to avoid exceeding the total
bed capacity, we and up with the total bed capacity being exceeded more often in
the simulated results compared to the historical data.

Despite the weaknesses of the simulation model, it provides an impression of the
performance of the orthopaedic department, and it should be sufficient to provide
insight when testing the schedules produced by the optimization model.
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