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Figure 44: The cumulative distribution of the weekly number of green patients to receive
surgery in elective slots at BVS in the real life and in the simulated reality.

In Figure 47 we illustrate the mean ward loading through the week. The peaks
indicate that elective inpatients enter in the morning, while other inpatients leave
from about 12.00. For the historical data we see that only OTS seem to have
patients entering during the evening and night, even though ORS and OES also host
emergency patients. In the simulation model we have distributed the emergency
patients to the different wards according to a key that is not changing during the
day, resulting in patients entering all three wards through the entire day. We may
also see that OFT closes on Friday in the real life, while patients are still resting
at the ward on Saturday morning in the simulation model. In the real life, the
prosthesis patients that need to stay beyond Friday are moved to OES. The most
prominent difference in the two cases are the number of patients leaving through the
weekend. Only a few patients leave the wards during the weekend in the historical
data, while in the simulation model we do not alter the length of stay depending on
the day of the week. As a result, the mean ward loading is much less on Monday
morning in the simulated outcomes compared to the historical data.

The total cumulative ward loading at 12.00 may be seen in Figure 48. We see
that the simulated outcomes are similar to those from the historical data, but the
tail is longer towards many beds. We see that we exceed 67 beds in about 15% of
the days, indicating the need for rescheduling to handle the scars bed capacity in
periods of many emergencies present.

C.4 Conclusion of the comparison

From running the model 20 times, we see that the model schedules the red patients
faster compared to the historical data. This indicates that there are times in the real
life when less urgent emergencies are prioritized before the red patients, or that less
red patients receive surgery during the night than what we have implemented in the
model. For the red and yellow emergencies, the number of patients scheduled within
the deadline is similar when comparing the simulated results to the historical data.
By analyzing the outcomes from one run we see that there are some differences
between the model and the real world. The queue of green emergencies are longer
in the simulated reality, but these patients receive surgery equally fast as in the
real world. This indicates that the model performs more green surgeries every
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Figure 45: The OR utilization of the elective ORs in the simulation model
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Figure 46: The cumulative distribution
and in the simulated reality. Zero on the

of the working hours in the ORs in the real life

x-axis indicates 16.00.
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Figure 47: The average ward loading every hour through the week for
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Figure 48: The cumulative distribution of the total ward loading at 12.00 for both the
real life and the simulated reality

day despite the fact that less green emergencies are sent to BVS compared to for
the real world. One explanation for this is the increased emergency OR. capacity
implemented in the model compared to the historical data gathered before 2017.
Furthermore, scheduling based on expected surgery duration yield more overtime
work at the ORs compared to the historical data. Regarding the ward loading,
the simulation model sends more inpatients home during the weekend, resulting
in less patients being present on Monday morning compared to for the real world.
Furthermore, as no rescheduling is done in the model to avoid exceeding the total
bed capacity, we and up with the total bed capacity being exceeded more often in
the simulated results compared to the historical data.

Despite the weaknesses of the simulation model, it provides an impression of the
performance of the orthopaedic department, and it should be sufficient to provide
insight when testing the schedules produced by the optimization model.
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