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We derive the entropy production for transport of multi-phase fluids in a non-deformable,

porous medium exposed to differences in pressure, temperature, and chemical

potentials. Thermodynamic extensive variables on the macro-scale are obtained by

integrating over a representative elementary volume (REV). Contributions come from

porous media specific properties, phase volumes, surface areas, and contact lines.

Curvature effects are neglected. Using Euler homogeneity of the first order, we obtain the

Gibbs equation for the REV. From this we define the intensive variables, the temperature,

pressure, and chemical potentials, and, using the balance equations, we derive the

entropy production for the REV. The entropy production defines sets of independent

conjugate thermodynamic fluxes and forces in the standard way. The transport of

two-phase flow of immiscible components is used to give a first illustration of the

equations.

Keywords: porous media, energy dissipation, two-phase flow, excess surface- and line-energies, pore-scale,

representative elementary volume, macro-scale, non-equilibrium thermodynamics

1. INTRODUCTION

The aim of this article is to develop the basis for a macro-scale description of multi-phase flow in
porous media in terms of non-equilibrium thermodynamics. The system consists of several fluid
phases in a medium of constant porosity. The aim is to describe the transport of these on the scale
of measurements; i.e., on the macro-scale, using properties defined on this scale, which represent
the underlying structure on the micro-scale. The effort is not new; it was pioneered more than 30
years ago [1–4], and we shall build heavily on these results, in particular those of Hassanizadeh and
Gray [2, 3] and Gray and Miller [5].

The aim is also still the original one; to obtain a systematic description, which can avoid
arbitrariness and capture the essential properties of multi-component multi-phase flow-systems.
Not only bulk energies need be taken into account to achieve this for porous media. Also excess
surface- and line-energies must be considered, see e.g., [6]. But, unlike what has been done before,
we shall seek to reduce drastically the number of variables needed for the description, allowing us
still to make use of the systematic theory of non-equilibrium thermodynamics. While the entropy
production in the porous medium so far has been written as a combination of contributions
from each phase, interface and contact line, we shall write the property for a more limited set of
macro-scale variables. In this sense, we deviate widely from the Thermodynamically Constrained
Averaging Theory [5]. Nevertheless, we will be able to describe experiments and connect variables
within the classical scheme of non-equilibrium thermodynamics. The reduction of variables is
possible as long as the system is Euler homogeneous of the first kind.
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The theory of non-equilibrium thermodynamics was set up
by Onsager [7, 8] and further developed for homogeneous
systems during the middle of the last century [9]. It was the
favored thermodynamic basis of Hassanizadeh and Gray for their
description of porous media. These authors [2, 3] discussed also
other approaches, e.g., the theory of mixtures in macroscopic
continuum mechanics, cf. [1, 4]. Gray and Miller [5] argued that
it is the simplest of the many approaches in non-equilibrium
thermodynamics.

The theory of classical non-equilibrium thermodynamics
has been extended to deal with a particular case of flow
in heterogeneous systems, namely transport along [10] and
perpendicular [11] to layered interfaces. A derivation of the
entropy production for heterogeneous systems on themacro-scale
has not been given, however, even if one can find several uses of
this property [6]. Transport in porous media takes place, not only
under pressure gradients. Temperature gradients will frequently
follow from transport of mass, for instance in heterogeneous
catalysis [12], in polymer electrolyte fuel cells, in batteries [11,
13], or in capillaries in frozen soils during frost heave [14]. The
number of this type of phenomena is enormous. We have chosen
to consider first the vectorial driving forces related to changes in
pressure, chemical composition, and temperature, staying away
for the time being from deformations, chemical reactions, or
forces leading to stress [15]. Themulti-phase flow problem is thus
in focus.

The development of a general thermodynamic basis for multi-
phase flow started by introduction of thermodynamic properties
for each component in each phase, interface, and three-phase
contact line [2, 3]. A representative volume element (REV) was
introduced, consisting of bulk phases, interfaces, and three-phase
contact lines. Balance equations were formulated for each phase
in the REV, and the total REV entropy production was the sum of
the separate contributions from each phase.

Hansen et al. [16] recognized recently that the motion of
fluids at the coarse-grained level could be described by extensive
variables. The properties of Euler homogeneous functions could
then be used to create relations between the flow rates at this
level of description. This work, however, did not address the
coarse-graining problem itself. We shall take advantage of Euler
homogeneity also here and use it in the coarse-graining process
described above.

Like Gray et al. [2, 3, 5], we use the entropy production as
the governing property. But rather than dealing with the total
entropy production as a sum of several parts, we shall seek to
define the total entropy production directly from a basis set of a
few coarse-grained variables. This will be done here for the REV,
see [17] for a preliminary version. Once the entropy production
has been formulated, we shall set up the independent constitutive
equations. This will be done in subsequent work, see the
preliminary version [18]. There we highlight the consequences
of the model, and show that new experimental relations can
be found. We shall find that the description is able to add
insight in already published experimental results and design new
experiments.

The overall aim is thus to contribute toward solving the scaling
problem; i.e., how a macro-level description can be obtained

consistent with the micro-level one, by defining transport
equations on the macro-level. The aim of the present work,
seen in this context, is to present the basis for a description
of central transport phenomena, namely those due to thermal,
chemical, mechanical, and gravitational forces. We shall propose
a systematic, course-grained procedure that will be simple in
practical use.

2. SYSTEM

Consider a heterogeneous system as illustrated by the (white) box
in Figure 1. The system is a porous medium of fixed porosity
filled with several immiscible fluids. There is net transport in one
direction only, the x-direction. On the scale of measurement, the
system is without structure. By zooming in, we see the pore scale.
A collection of pores with two fluids is schematically shown in
Figure 2.

A temperature, pressure, and/or chemical potential difference
is applied between the inlet and the outlet, and these differences
can be measured. The pressure difference 1p between the outlet
and the inlet was defined for steady state conditions by Tallakstad
et al. [19], as the time average of the fluctuating difference 1p(t):

1p =
1

te − tb

∫ te

tb

1p(t)dt. (1)

Here t is the time. Subscript “b” denotes beginning and
“e” denotes the end of the measurement. We adopt similar
definitions for 1T and 1µi. It is possible, through application
of separate inlet channels, to control the flow into and out of the
system and find the flow of each component, to define the flow
situation in Figure 1. In the presence of two immiscible phases, it
is only possible to define the pressure difference between the inlet
and the outlet for the phases, 1pw and 1pn, if there is continuity
in the respective phases.

We will repeatedly use two-phase flow of single components
as an example, where w indicates the most wetting and n the
least wetting phase. We refer to them simply as the wetting
and the non-wetting phase. In most of the paper we consider
a multi-phase fluid. In the system pictured in Figure 2, there is
flow within the REV in the direction of the pore. This is not
necessarily the direction given by the overall pressure gradient.
The flow on the macro-scale, however, is always in the direction
of the pressure gradient. Net flow in other directions are zero
due to isolation of the system in these directions. By flow on the
macro-scale, wemean flow in the direction of the overall pressure
gradient along the x-coordinate in Figure 1. The value of this
average flow is of interest.

The representative volume element, REV, is constructed from
a collection of pores like those contained in the red square
in Figure 2. In Figure 1, three REVs are indicated (magenta
structured squares). In a homogeneous system, statistical
mechanical distributions of molecular properties lead to the
macroscopic properties of a volume element. In a heterogeneous
system like here, the statistical distributions are over the states
within the REV. The collection of pores in the REV, cf. Figure 2,
should be of a size that is large enough to provide meaningful
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FIGURE 1 | Schematic illustration of a heterogeneous system (white box, length L) exposed to a difference in temperature, 1T, pressure, 1p, or chemical

potential 1µi . The system is isolated in the y, z−directions. Net flows take place in the x−direction. Three representative elementary volumes, REVs (magenta

squares, length l) are indicated. The REVs may overlap. Each is represented by a set of variables (p,T,µi ) which defines a state (blue dot). Such states can be defined

anywhere on the x-axis.

FIGURE 2 | A schematic collection of pores filled with two immiscible liquids.

In order to compute the system properties, we define a REV. A REV is

indicated in the figure by the red square. Courtesy of M. Vassvik.

values for the extensive variables, and therefore well defined
intensive variables (see below, Equations 19 and 20), cf. section
3.2 below. Thermodynamic relations can be written for each
REV.

State variables characterize the REV. They are represented by
the (blue) dots in Figure 1. The size of the REV depends on its
composition and other conditions. Typically, the extension of a
REV, l, is large compared to the pore size of the medium, and

small compared to the full system length L. This construction of
a REV is similar to the procedure followed in smoothed particle
hydrodynamics [20], cf. the discussion at the end of the work.

The REVs so constructed, can be used to make a path of states,
over which we can integrate across the system. Each REV in the
series of states, is characterized by variables T, p,µi, as indicated
by the blue dots in Figure 1. Vice versa, each point in a porous
medium can be seen as a center in a REV. The states are difficult
to access directly, but can be accessed via systems in equilibrium
with the states, as is normal in thermodynamics. This is discussed
at the end of the work. We proceed to define the REV-variables.

3. PROPERTIES OF THE REV

3.1. Porosity and Saturation
Consider a solid matrix of constant porosity φ. We are dealing
with a class of systems that are homogeneous in the sense that
the typical pore diameter and pore surface area, on the average,
are the same everywhere. There are m phases in the system. The
pores are filled with a mixture of m − 1 fluid phases; the solid
matrix is phase number m. Properties will depend on the time,
but this will not be indicated explicitly in the equations.

In a simple case, the phases are immiscible single components.
The chemical constituents are then synonymous with a phase,
and the number of phases is the number of components. The
state of the REV can be characterized by the volumes of the fluid
phases Vα,REV, α = 1, ..,m− 1 and of the solid medium Vm,REV.
The total volume of the pores is

Vp,REV ≡

m−1
∑

α=1

Vα,REV. (2)
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while the volume of the REV is

VREV ≡ Vm,REV + Vp,REV +

m
∑

α>β>δ=1

Vαβδ,REV. (3)

Superscript REV is used to indicate a property of the REV. The
last term is the sum of the excess volumes of the three-phase
contact lines. While the excess volume of the surfaces is zero
by definition, this is not the case for the three-phase contact
lines. The reason is that the dividing surfaces may cross each
other at three lines which have a slightly different location. The
corresponding excess volume is in general very small, and will
from now on be neglected. This gives the simpler expression

VREV ≡ Vm,REV + Vp,REV. (4)

All these volumes can be measured.
The porosity, φ, and the saturation, Ŝ, are given by

φ ≡
Vp,REV

VREV
and Ŝα ≡

Vα,REV

Vp,REV
=

Vα,REV

φVREV
. (5)

The porosity and the saturation are intensive variables. They
do not depend on the size of the REV. They have therefore no
superscript. It follows from these definitions that

m−1
∑

α=1

Ŝα = 1 and Vm,REV = (1− φ)VREV (6)

In addition to the volumes of the different bulk phases (they are
fluids or solids) m ≥ α ≥ 1, there are interfacial areas, �,
between each two phases in the REV: �αβ ,REV, m ≥ α > β ≥ 1.
The total surface area of the pores is measurable. It can be split
between various contributions

�p,REV =

m−1
∑

α=1

�mα,REV (7)

When the surface is not completely wetted, we can estimate
the surface area between the solid m and the fluid phase α, from
the total pore area available and the saturation of the component.

�mα,REV = Ŝα�p,REV (8)

This estimate is not correct for strongly wetting components
or dispersions. In those cases, films can form at the walls, and
�mα,REV is not proportional to Ŝα . In the class of systems we
consider, all fluids touch the wall, and there are no films of one
fluid between the wall and another fluid.

3.2. Thermodynamic Properties of the REV
We proceed to define the thermodynamic properties of the REV
within the volume VREV described above. In addition to the
volume, there are other additive variables. They are the masses,
the energy, and the entropy. We label the components (the
chemical constituents) using italic subscripts. There are in total

n components distributed over the phases, surfaces, and contact
lines. The mass of component i, MREV

i , in the REV is the sum of

bulk masses, Mα,REV
i , m ≥ α ≥ 1, the excess interfacial masses,

M
αβ ,REV
i ,m ≥ α > β ≥ 1, and the excess line masses,M

αβδ,REV
i ,

m ≥ α > β > δ ≥ 1.

MREV
i =

m
∑

α=1

Mα,REV
i +

m
∑

α>β=1

M
αβ ,REV
i +

m
∑

α>β>δ=1

M
αβδ,REV
i (9)

There is some freedom in how we allocate the mass to the various
phases and interfaces [11, 21]. We are e.g., free to choose a

dividing surface such that oneM
αβ ,REV
i equals zero. A zero excess

mass will simplify the description, but will introduce a reference.

The dividing surface with zero M
αβ ,REV
i is the equimolar surface

of component i. The total mass of a component in the REV is,
however, independent of the location of the dividing surfaces.
From the masses, we compute the various mass densities

ρi ≡
MREV

i

VREV
, ρα

i ≡
Mα,REV

i

Vα,REV
,

ρ
αβ
i ≡

M
αβ ,REV
i

�αβ ,REV
, ρ

αβδ
i ≡

M
αβδ,REV
i

3αβδ,REV
(10)

where ρi and ρα
i have dimension kg.m−3, ρ

αβ
i has dimension

kg.m−2 and ρ
αβδ
i has dimension kg.m−1.

All densities are for the REV. If we increase the size of
the REV, by for instance doubling its size, VREV, MREV

i and
other extensive variables will all double. They will double, by
doubling all contributions to these quantities. But this is not
the case for the density ρi or the other densities. They remain
the same, independent of the size of the REV. This is true also
for the densities of the bulk phases, surfaces, and contact lines.
Superscript REV is therefore not used for the densities.

Within one REV there are natural fluctuations in the densities.
But the densities make it possible to give a description on the
macro-scale independent of the precise size of the REV. The
densities will thus be used in the balance equations on the macro-
scale. The density ρα

i may vary somewhat in Vα . We can then
find Mα

i as the integral of ρα
i over Vα . Equation (10) then gives

the volume-averaged densities.
The internal energy of the REV, UREV, is the sum of bulk

internal energies, Uα,REV, m ≥ α ≥ 1, the excess interfacial
internal energies, Uαβ ,REV, m ≥ α > β ≥ 1, and the excess
line internal energies, Uαβδ,REV,m ≥ α > β > δ ≥ 1:

UREV =

m
∑

α=1

Uα,REV+

m
∑

α>β=1

Uαβ ,REV+

m
∑

α>β>δ=1

Uαβδ,REV (11)

The summation is taken over all phases, interfaces, and contact
lines (if non-negligible). We shall see in a subsequent paper how
these contributions may give specific contributions to the driving
force. The internal energy densities are defined by

u ≡
UREV

VREV
, uα ≡

Uα,REV

Vα,REV
,
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uαβ ≡
Uαβ ,REV

�αβ ,REV
, uαβδ ≡

Uαβδ,REV

3αβδ,REV
(12)

Their dimensions are J.m−3 (u, uα), J.m−2 (uαβ ), and J.m−1

(uαβδ), respectively.
The entropy in the REV, SREV, is the sum of the bulk entropies,

Sα,REV, m ≥ α ≥ 1, the excess entropies, Sαβ ,REV, m ≥ α > β ≥

1, the excess line entropies, Sαβδ,REV, m ≥ α > β > δ ≥ 1,
and a configurational contribution, SREV

conf
, from the geometrical

distribution of the fluid phases within the pores:

SREV =

m
∑

α=1

Sα,REV +

m
∑

α>β=1

Sαβ ,REV +

m
∑

α>β>δ=1

Sαβδ,REV + SREVconf

(13)
The entropy densities are defined by

s ≡
SREV

VREV
, sα ≡

Sα,REV

Vα,REV
, sαβ ≡

Sαβ ,REV

�αβ ,REV
,

sαβδ ≡
Sαβδ,REV

3αβδ,REV
, sconf ≡

SREV
conf

VREV
(14)

and have the dimensions J.K−1.m−3 (s, sα , sconf), J.K−1.m−2

(sαβ ), and J.K−1.m−1 (sαβδ), respectively. To explain the
configurational contribution inmore detail; consider the example
of stationary two-phase flow in a single tube of varying diameter
described by Sinha et al. [22]. The tube contains one bubble of
one fluid in the other. The bubble touches the wall; it can not form
a film between the tube wall and the other fluid. The probability
per unit of length of the tube to find the center of mass of the
bubble at position xb, was 5(xb) [22]. Knowing this probability
distribution, we can compute the entropy of an ensemble of single
tubes (in this case a very long tube composed of the single ones).
It is equal to

SREVconf = kB

∫ ℓ

0
5(xb) ln ℓ5(xb)dxb (15)

For a network of pores it is more appropriate to give the
probability distribution for the fluid-fluid interfaces. This has not
yet been done explicitly.

For the volume, Equations (2) and (4) apply when the contact
lines give a negligible contribution. The dividing surfaces have
by definition no excess volume. For all the other extensive
thermodynamic variables, like the enthalpy, Helmholtz energy,
Gibbs energy, and the grand potential, relations similar to
Equations (11) and (13) apply. We shall later show how this
affects the driving forces [18].

To summarize this section; we have defined a basis set of
variables for a class of systems, where these variables are additive
in the manner shown. From the set of REV-variables we obtain
the densities, u, s, or ρi to describe the heterogeneous system
on the macro-scale. A series of REVs of this type, is needed for
integration across the system, see section 5.

3.3. REV Size Considerations
As an illustration of the REV construction, consider the internal
energy of two isothermal, immiscible and incompressible fluids

TABLE 1 | Fluid properties used to compute the candidate REV internal energy,

for a network containing water (n) and decane (w) within silica glass beads (p) at

atmospheric pressure and 293 K.

Parameter Value Unit References

ηw 9.2 × 10−4 Pa.s [25]

ηn 1.0 × 10−3 Pa.s [25]

γwp 2.4 × 10−2 N.m−1 [26]

γ np 7.3 × 10−2 N.m−1 [26]

γwn 5.2 × 10−2 N.m−1 [27]

−uw 2.8 × 108 J.m−3 [25]

−un 3.4 × 108 J.m−3 [25]

(water and decane) flowing in a Hele-Shaw type cell composed
of silicone glass beads. The relevant properties of the fluids can
be found in Table 1 The porous medium is a hexagonal network
of 3,600 links, as illustrated in Figure 3. The network is periodic
in the longitudinal and the transverse directions and a pressure
difference of 1.8 × 104 Pa drives the flow in the longitudinal
direction. The overall saturation of water is 0.4. The network
flows were simulated using the method of Aker et al. [23], see
[24] for details.

The internal energy of the REV is, according to section 3.2,
a sum over the two fluid bulk contributions and three interface
contributions,

UREV = Um,REV +
∑

i∈{w,n}

{

U i,REV
}

+ Uwn,REV + Unp,REV

+Uwp,REV (16)

= Um,REV + Vp,REV
∑

i∈{w,n}

{

Ŝiui
}

+uwn�wn,REV + unp�np,REV + uwp�wp,REV. (17)

where, ui is the internal energy density of phase i and uij is the
excess internal energy per interfacial area between phase i and
phase j. We assume ui and uij to be constant. For simplicity, uij

is approximated by interfacial tension, denoted γ ij. The internal
energy of the porous matrix is constant in this example and is
therefore set to zero.

Candidate REVs are of different sizes, see Table 2. The 5.4 ×

6 mm (green), and 10.4 × 12 mm (blue) candidate REVs are
shown in Figure 3. For all candidate REVs, UREV is calculated
according to Equation (17) at each time step. Since the measured
saturations and interfacial areas are fluctuating in time, so is the
internal energy. A time-step weighted histogram of the internal
energy presents the probability distribution.

The probability distributions of UREV are shown in Figure 4

for the 5.2 × 6 mm (green) and 10.4 × 12 mm (blue) candidate
REVs. In both plots, the vertical lines represent the internal
energy the REVwould have if it were occupied by one of the fluids
alone. We denote the difference in internal energy between these
two single-phase states by 1UREV.

The mean value of the UREV for all candidate REVs are given
in Table 2, along with mean density u = UREV/VREV and
the standard deviation of UREV divided by 1UREV. The latter
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FIGURE 3 | Illustration of the link network and two of the candidate REVs under consideration. The left candidate REV (green) is 5.2 × 6 mm and the right candidate

REV (blue) is 10.4 × 12 mm.

TABLE 2 | Mean values of UREV and u for candidate REVs of different sizes, along

with the standard deviation of UREV divided by 1UREV. The latter quantity

represents a measure of the relative size of the fluctuations in UREV.

Candidate REV Mean
(

UREV
)

±

(

UREV
)

Mean (u)

Size /J /1UREV / 107 J m−3

5.2 × 6.0 mm −2.82 0.069 −6.04

7.8 × 9.0 mm −5.46 0.047 −5.19

10.4 × 12.0 mm −9.60 0.037 −5.13

13.0 × 15.0 mm −15.4 0.028 −5.25

15.6 × 18.0 mm −22.2 0.024 −5.27

18.3 × 21.0 mm −29.9 0.021 −5.22

20.8 × 24.0mm −39.1 0.017 −5.23

quantity is a measure of the relative size of the fluctuations in
UREV. Due to the additivity of UREV, the mean values of UREV

increases roughly proportional to the candidate REV size. But
this happens only after the REV has reached a minimum size,
here 7.8× 9.0mm. For the larger candidate REVs, themean value
of u changes little as the size increases. The relative size of the
fluctuations in UREV decreases in proportion to the linear size of
the candidate REVs.

This example indicates that it makes sense to characterize
the internal energy of a porous medium in terms of an internal
energy density as defined by Equation (11), given that the size
of the REV is appropriately large. About 100 links seem to be
enough in this case. This will vary with the type of porous
medium, cf. the 2D square network model of Savani et al. [28].

4. HOMOGENEITY ON THE MACRO-SCALE

Before we address any transport problems, consider again the
system pictured in Figure 1 (the white box). All REVs have

variables and densities as explained above. By integrating to a
somewhat larger volumeV , using the densities defined, we obtain
the set of basis variables, (U, S,Mi), in V . The internal energy U
of the system is an Euler homogeneous function of first order in
S,V ,Mi:

U (λS, λV , λMi) = λU (S,V ,Mi) (18)

where λ is a multiplication factor. The internal energy U, volume
V , entropy S, and component massMi, obey therefore the Gibbs
equation;

dU =

(

∂U

∂S

)

V ,Mi

dS+

(

∂U

∂V

)

S,Mi

dV +

n
∑

i=1

(

∂U

∂Mi

)

S,V ,Mj

dMi

(19)
No special notation is used here to indicate that U, S,V ,Mi are
properties on the macro-scale. Given the heterogeneous nature
on the micro-scale, the internal energy has contributions from
all parts of the volume V , including from the excess surface
and line energies. By writing Equation (18) we find that the
normal thermodynamic relations apply for the heterogeneous
system at equilibrium, for the additive properties U, S,V ,Mi,
obtained from sums of the bulk-, excess surface-, and excess
line-contributions.

We can then move one more step and use Gibbs equation to
define the temperature, the pressure, and chemical potentials on
the macro-scale as partial derivatives of U:

T ≡

(

∂U

∂S

)

V ,Mi

, p ≡ −

(

∂U

∂V

)

S,Mi

, µi ≡

(

∂U

∂Mi

)

S,V ,Mj

(20)
The temperature, pressure, and chemical potentials on the
macro-scale are, with these formulas, defined as partial
derivatives of the internal energy. This is normal in
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FIGURE 4 | Probability distributions of internal energy in two the candidate REVs. The left candidate REV (green) is 5.2 ×6 mm and the right candidate REV (blue) is

10.4 ×12 mm. In each plot, the left dashed line represents the internal energy the candidate REV would have if it contained non-wetting fluid only and the right dashed

line represents the internal energy the candidate REV would have if it contained wetting fluid only.

thermodynamics, but the meaning is now extended. In a
normal homogeneous, isotropic system at equilibrium, the
temperature, pressure, and chemical equilibrium refer to a
homogeneous volume element. The temperature of the REV
is a temperature representing all phases, interfaces and lines
combined, and the chemical potential of i is similarly obtained
from the internal energy of all phases. Therefore, there are only
one T, p, and µi for the REV. The state can be represented by the
(blue) dots in Figure 1.

On the single pore level, the pressure and temperature in
the REV will have a distribution. In the two immiscible-fluid-
example the pressure, for instance, will vary between a wetting
and a non-wetting phase because of the capillary pressure. One
may also envision that small phase changes in one component
(e.g., water) leads to temperature variations due to condensation
or evaporation. Variations in temperature will follow changes in
composition.

The intensive properties are not averages of the corresponding
entities on the pore-scale over the REV. This was pointed
out already by Gray and Hassanizadeh [3]. The definitions are
derived from the total internal energy only, and this makes them
uniquely defined. It is interesting that the intensive variables do
not depend on how we split the energy into into bulk and surface
terms inside the REV.

By substituting Equation (20) into Equation (19) we obtain
the Gibbs equation for a change in total internal energy on the
macro-scale

dU = TdS− pdV +

n
∑

i=1

µidMi (21)

As a consequence of the condition of homogeneity of the first
order, we also have

U = TS− pV +

n
∑

i=1

µiMi (22)

The partial derivatives T, p and µi are homogeneous
functions of the zeroth order. This implies that

T(λS, λV , λMi) = T(S,V ,Mi) (23)

Choosing λ = 1/V it follows that

T(S,V ,Mi) = T(s, 1, ρi) = T(s, ρi) (24)

The temperature therefore depends only on the subset of
variables s ≡ S/V , ρi ≡ Mi/V and not on the complete set of
variables S,V ,Mi. The same is true for the pressure, p, and the
chemical potentials, µi. This implies that T, p and µi are not
independent. We proceed to repeat the standard derivation of
the Gibbs-Duhem equation which makes their interdependency
explicit.

The Gibbs equation on the macro-scale in terms of the
densities follows using Equations (21) and (22)

du = Tds+

n
∑

i=1

µidρi (25)

which can alternatively be written as

ds =
1

T
du−

1

T

n
∑

i=1

µidρi (26)

The Euler equation implies

u = Ts− p+

n
∑

i=1

µiρi (27)

By differentiating Equation (27) and subtracting the Gibbs
equation (25), we obtain in the usual way the Gibbs-Duhem
equation:

dp = sdT +

n
∑

i=1

ρidµi
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This equation makes it possible to calculate p as a function of T
and µi and shows how these quantities depend on one another.

We have now described the heterogeneous porous medium by
a limited set of coarse-grained thermodynamic variables. These
average variables and their corresponding temperature, pressure,
and chemical potentials, describe a coarse-grained homogeneous
mixture with variables which reflect the properties of the class of
porous media. In standard equilibrium thermodynamics, Gibbs’
equation applies to a homogeneous phase. We have extended
this use to be applicable for heterogeneous systems at the macro-
scale. On this scale, the heterogeneous system (the REV) is then
regarded as being in local equilibrium.Whether or not the chosen
procedure is viable, remains to be tested. We refer to the section
7 of this paper for more discussion and to a paper to follow [18]
for an experimental program.

5. ENTROPY PRODUCTION IN POROUS
MEDIA

Gradients in mass- and energy densities produce changes in the
variables on the macro-scale. These lead to transport of heat and
mass. Our aim is to find the equations that govern this transport
across the REV. We therefore expose the system to driving forces
and return to Figure 1.

The balance equations formasses and internal energy of a REV
are

∂ρi

∂t
= −

∂

∂x
Ji (28)

∂u

∂t
= −

∂

∂x
Ju = −

∂

∂x

[

J
′

q +

n
∑

i=1

JiHi

]

(29)

The transport on this scale is in the x−direction only. The mass
fluxes, Ji, and the flux of internal energy, Ju, are all macro-scale
fluxes. The internal energy flux is the sum of the measurable

(or sensible) heat flux, J
′

q and the partial specific enthalpy (latent

heat), Hi (in J.kg−1) times the component fluxes, Ji, see [3, 9, 11]
for further explanations. Component m (the porous medium)
is not moving and is the convenient frame of reference for the
fluxes.

The entropy balance on the macro-scale is

∂s

∂t
= −

∂

∂x
Js + σ (30)

Here Js is the entropy flux, and σ is the entropy production which
is positive definite, σ ≥ 0 (the second law of thermodynamics).
We can now derive the expression for σ in the standard way
[9, 11], by combining the balance equations with Gibbs’ equation.
The entropy production is the sum of all contributions within the
REV.

In the derivations, we assume that the Gibbs equation is valid
for the REV also when transport takes place. Droplets can form
at high flow rates, while ganglia may occur at low rates. We have
seen above that there is a minimum size of the REV, for which
the Gibbs equation can be written. When we assume that the
Gibbs equation applies, we implicitly assume that there exists a

uniquely defined state. The existence of such an ergodic state
was postulated by Hansen and Ramstad [29]. Valavanides and
Daras used it in their DeProF model for two-phase flow in pore
networks [30]. Experimental evidence for the assumption was
documented by Erpelding [31].

Under the conditions that we demand valid for the REV, the
Gibbs Equation (26) keeps its form during a time interval dt,
giving

∂s

∂t
=

1

T

∂u

∂t
−

1

T

n
∑

i=1

µi
∂ρi

∂t
(31)

We can now introduce the balance equations for mass and energy
into this equation, see [11] for details. By comparing the result
with the entropy balance, Equation (30), we identify first the
entropy flux, Js,

Js =
1

T
J′q +

n
∑

i=1

JiSi (32)

The entropy flux is composed of the sensible heat flux over the
temperature plus the sum of the specific entropies carried by the
components. The form of the entropy production, σ , depends
on our choice of the energy flux, Ju or J′q. The choice of form is
normally motivated by practical wishes; what is measurable or
computable. We have

σ = Ju
∂

∂x
(
1

T
)−

n
∑

i=1

Ji
∂

∂x
(
µi

T
)

= J′q
∂

∂x
(
1

T
)−

1

T

n
∑

i=1

Ji
∂

∂x
µi,T (33)

These expressions are equivalent formulations of the same
physical phenomena. When we choose Ju as variable with
the conjugate force ∂(1/T)/∂x, the mass fluxes are driven by
minus the gradient in the Planck potential µi/T. When, on
the other hand we choose J′q as a variable with the conjugate
force ∂(1/T)/∂x, the mass fluxes are driven by minus the
gradient in the chemical potential at constant temperature
over this temperature. The entropy production defines the
independent thermodynamic driving forces and their conjugate
fluxes. We have given two possible choices above to demonstrate
the flexibility. The last expression is preferred for analysis of
experiments.

In order to find the last line in Equation (33) from the first,
we used the thermodynamic identities µi = Hi − TSi and
∂(µi/T)/∂(1/T) = Hi as well as the expression for the energy
flux given in Equation (29). Here Si is the partial specific entropy
(in J.kg−1.K−1).

5.1. The Chemical Potential at Constant
Temperature
The derivative of the chemical potential at constant temperature
is needed in the driving forces in the second line for σ in Equation
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(33). For convenience we repeat its relation to the full chemical
potential [9]. The differential of the full chemical potential is:

dµi = −SidT + Vidp+

n
∑

j=1

(

∂µi

∂Mj

)

p,T,Mi

dMj (34)

where Si,Vi, and (∂µi/∂Mj)p,T,Mi are partial specific quantities.
The partial specific entropy and volume are equal to:

Si = −

(

∂µi

∂T

)

p,Mj

, Vi =

(

∂µi

∂p

)

T,Mj

(35)

and the last term of Equation (33) is denoted by

dµc
i =

n
∑

j=1

(

∂µi

∂Mj

)

p,T,Mi

dMj (36)

By reshuffling, we have the quantity of interest as the differential
of the full chemical potential plus an entropic term;

dµi,T ≡ dµi + SidT = Vidp+ dµc
i (37)

The differential of the chemical potential at constant temperature
is

dµi,T

dx
=

dµc
i

dx
+ Vi

dp

dx
(38)

With equilibrium in the gravitational field, the pressure
gradient is dp/dx = −ρg, where ρ is the total mass density and g
is the acceleration of free fall [32]. The well known separation of
components in the gravitational field is obtained, with dµi,T = 0
and

dµc
i

dx
=

RT

Wi

d ln(Ŝiyi)

dx
= Viρg (39)

whereWi is the molar mass (in kg.mol−1), Ŝi the saturation, and
yi the activity coefficient of component i. The gas constant, R,
has dimension J.K−1.mol−1. The gradient of the mole fraction of
methane and decane in the geothermal gradient of the fractured
carbonaceous Ekofisk oil field, was estimated to 5 × 10−4m−1

[33], in qualitative agreement with observations. We replace
dµi,T below using these expressions.

It follows fromEuler homogeneity that the chemical potentials
in a (quasi-homogeneous) mixture are related by 0 = SdT −

Vdp +
∑n

j=1 ρjdµj, which is Gibbs-Duhem’s equation. By

introducing Equation 37 into this equation we obtain an
equivalent expression, to be used below:

0 =

n
∑

j=1

ρjdµ
c
j (40)

6. TRANSPORT OF HEAT AND
TWO-PHASE FLUIDS

Consider again the case of two immiscible fluids of single
components, one more wetting (w) and one more non-wetting
(n). The entropy production in Equation (33) gives,

σ = J′q
∂

∂x
(
1

T
)−

1

T

(

Jw
∂µw,T

∂x
+ Jn

∂µn,T

∂x

)

(41)

The solid matrix is the frame of reference for transport, Jr = 0
and does not contribute to the entropy production. The volume
flux is frequently measured, and we wish to introduce this as new
variable

JV = JnVn + JwVw (42)

Here JV has dimension (m3.m−2.s−1 = m.s−1), and the partial
specific volumes have dimension m3.kg−1. The volume flows
used by Hansen et al. [16] are related to ours by Jnυn = Ŝnυn,
Jwυw = Ŝwυw and JV = υ = Ŝnυn + Ŝwυw.

The chemical potential of the solid matrix may not vary much
if the composition of the solid is constant across the system. We
assume that this is the case (dµc

m ≈ 0), and use Equation (40) to
obtain

0 = ρndµ
c
n + ρwdµ

c
w (43)

The entropy production is invariant to the choice of variables.We
can introduce the relations above and the explicit expression for
dµi,T into Equation (41), and find the practical expression:

σ = J′q
∂

∂x

(

1

T

)

− JV
1

T

∂p

∂x
− vD

ρw

T

∂µc
w

∂x
(44)

In the last line, the difference velocity vD is

vD =
Jw

ρw
−

Jn

ρn
(45)

This velocity (in m/s) describes the relative movement of the
two components within the porous matrix on the macro-scale.
In other words, it describes the ability of the medium to
separate components. The main driving force for separation
is the chemical driving force, related to the gradient of the
saturation. The equation implies that also temperature and
pressure gradients may play a role for the separation.

The entropy production has again three terms, one for each
independent driving force. With a single fluid, the number of
terms is two. The force conjugate to the heat flux is again the
gradient of the inverse temperature. The entropy production,
in the form we can obtain, Equations (41) or (44), dictates the
constitutive equations of the system.

6.1. A Path of Sister Systems
As pointed out above, through the construction of the REV
we were able to create a continuous path through the system,
defined by the thermodynamic variables of the REVs. The path
was illustrated by a sequence of dots in Figure 1. Such a path
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FIGURE 5 | A one-dimensional heterogeneous system cut into slices. Each cut is brought in equilibrium with a homogeneous (pink) mixture at the same temperature

and pressure as the REV.

must exist, tomake integration possible. Also continuummixture
theory hypothesizes such a path [4]: Hilfer introduced a series
of mixture states, to define an integration path across the porous
system, see e.g., [4].

The path created in section 2 is sufficient as a path of
integration across the medium. The access to and measurement
of properties in the REVs is another issue. It is difficult,
if not impossible, to measure in situ as stated upfront. The
measurement probe has a minimum extension (of some mm),
and the measurement will represent an average over the surface
of the probe. For a phase with constant density, the average is
well-defined andmeasurable. A link between the state of the REV
and a state where measurements are possible, is therefore needed.
We call the state that provides this link a sister state.

Consider again the path of REVs in the direction of transport.
To create the link between the REV and its sister state, consider
the system divided into slices, see Figure 5. The slice (the sister
system) contains homogeneous (pink) phases in equilibriumwith
the REV at the chosen location.

We hypothesize that we can find such sister states; in the form
of a multi-component mixture with temperature, pressure, and
composition such that equilibrium can be obtainedwith the REV-
variables at any slice position. The variables of the sister state
can then be measured the normal way. The chemical potential
of a component in the sister state can, for instance, be found
by introducing a vapor phase above this state and measure the
partial vapor pressure. We postulate thus that a sister state can be
found, that obey the conditions

T = Ts (46)

p = ps (47)

µi = µs
i (48)

Here i = 1, ..., n are the components in the REV, and superscript s
denotes the sister state. With the sister states available, we obtain

an experimental handle on the variables of the porous medium.
The hypothesis must be checked, of course.

The series of sister states have the same boundary conditions
as the REV-states, by construction, and the overall driving forces
will be the same. Between the end states, we envision the non-
equilibrium system as a staircase. Each step in the stair made
up of a REV is in equilibrium with a step of the sister-state-
stair. Unlike the states inside the porous medium, the sister states
are accessible for measurements, or determination of T, p, and
µi. The driving forces of transport can then be described by the
sequence of the sister states.

7. DISCUSSION

We have shown in this work how it is possible to extend the
method of classical non-equilibrium thermodynamics [9] to
describe transport in porous media. This was possible by

• constructing a REV in terms of a basis set of additive variables
• assuming that the REV is Euler homogeneous of degree one

in the basis set.

The method is developed in the same manner as the classical
theory is, but it extends the classical theory through the variable
choice. The assumption about Euler homogeneity is the same
for homogeneous (classical) as well as the heterogeneous porous
media. The new variable set is necessary in order to account for
the presence of the porous medium, i.e., the contributions from
interfaces and contact line energies. Film formation in the pore
is excluded. The properties of the porous medium will therefore
enter in the definition of the variable set. The consequences of the
choice will be elaborated in an article to come [18].

The classical equations have been written for single-phase
systems, as these can be regarded as homogeneous on the
molecular scale [34]. Equations (41) and (44), for instance, are
well-established in theory of transport for polymer membranes,
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see e.g., [34]. The idea of the sister states to define the state of
a porous media with larger pores and immiscible phases was
inspired by this. The way of dealing with lack of knowledge of
variables inside the system was for instance used in polymer
membrane transport long ago, see [35, 36]. The procedure, to
introduce a series of equilibrium states, each state in equilibrium
with the membrane at some location between the external
boundaries, was first used by Scatchard [35], and experimentally
verified much later [36, 37].

With the condition of Euler homogeneity we can set up the
Gibbs equation, which is essential in the derivation of the entropy
production. The total entropy production follows directly from
the new set of variables and Euler homogeneity. This procedure
is new, when compared to the literature where focus was set on
the single phases, interfaces and contact lines [2, 3, 5].

The REV obeys local equilibrium in the sense that it obeys
Gibbs equation. Some support for this can be found in the
literature. Prigogine and Mazur [38] investigated a mixture of
two fluids using non-equilibrium thermodynamics. Their system
consisted of superfluid - and normal helium. Two pressures were
defined, one for each of the two fluids. The interaction between
the two fluids was small, meaning that one phase flowed as if the
other one (aside from a small frictional force) was not there. The
situation here is similar, as we may have different liquid pressures
inside the REV. But the interaction between the two immiscible
components in our porous medium is large, not negligible as in
the helium case.

We are adding the contributions from each phase, interface,
and line to overall variables for the REV. But unlike Gray
and Miller [5] and others [39], we do not need to require
that thermodynamic equilibrium relations are obeyed within
the REV. This may seem to be drastic, but the Gibbs-Duhem
equation follows from Euler homogeneity alone, cf. section 5.
The assumption of Euler homogeneity is sufficient to obtain the
Gibbs-Duhem equation. In this aspect, we agree with those who
use that equation for porous media, see e.g., [6].

The surface areas and the contact line lengths are not
independent variables in our representation of the REV. These
variables have been included through the assumption that the
basic variables of the REV are additive. This means that a REV
of a double size has double the energy, entropy, and mass,
but also double the surface areas of various types and double
the line lengths. The contraction to the small set of variables
depend on this assumption. Otherwise, we need to expand the
variable set. This can be done, however. A promising route
seems to include Minkovski integrals [40]. Our approach can be
compared to the up-scaling method used in Smoothed Particle
Hydrodynamics [20]. Inspired by the idea behind smoothed
particle hydrodynamics, we can also define a normalized weight
function W(r), such that a microscopic variable a(r) may be
represented by its average, defined as

a(r) ≡

∫

dr′W(r− r′)a(r′). (49)

For example, if a(r′) is the local void fraction in a porous material
as determined from samples of the material, a(r) is the average
porosity of themedium. The average is assigned to the point r and

varies smoothly in space. The average porosity a(r) would then be
suitable for e.g., a reservoir simulation at the macro-scale.

In general, the system is subject to external forces and its
properties are non-uniform. The choice of W(r) is therefore
crucial in that it defines the extent of the coarse-graining and
the profile of the weighting. The illustration in Figure 1 alludes
to a weight function that is constant inside a cubic box and zero
outside, but other choices are possible. Popular choices used in
mesoscale simulations are the Gaussian and spline functions (see
[20] for details). A convenient feature of the coarse-graining is
that the average of a gradient of a property a is equal to the
gradient of the average.

∇a(r) = ∇a(r) (50)

Similarly the average of a divergence of a flux is equal to the
divergence of the average. This implies that balance equations,
which usually contain the divergence of a flux, remain valid after
averaging. Time averages can also be introduced along the same
lines.

Time scales relevant to porous media transport are usually
large (minutes, hours); and much larger than times relevant
for the molecular scale. Properties can change not only along
the coordinate axis, but also on the time scale. In the present
formulation, any change brought about in the REV must retain
the validity of the Gibbs equation. As long as that is true, we can
use the equations, also for transient phenomena.

The outcome of the derivations will enable us to deal with
a wide range of non-isothermal phenomena in a systematic
manner, from frost heave to heterogeneous catalysis, or multi-
phase flow in porous media. We will elaborate on what this
means in the next part of this work. In particular, we shall give
more details on the meaning of the additive variables and the
consequences for the REV pressure in a paper to come [18].
We will there return to the meaning of the REV variables and
how they will contribute and help define new driving forces of
transport.

8. CONCLUDING REMARKS

Wehave derived the entropy production for transport of heat and
immiscible, single components (phases) in a porous medium.
The derivations have followed standard non-equilibrium
thermodynamics for heterogeneous systems [11]. The only,
but essential, difference to current theories, has been the fact
that we write all these equations for a porous medium on the
macro-scale for the REV of a minimum size using its total
entropy, energy and mass. These equations are mostly written
for the separate contributions. Broadly speaking, we have been
zooming out our view on the porous medium to first define some
states that we take as thermodynamic states because they obey
Euler homogeneity. The states are those illustrated by the dots
in Figure 1. In order to define these states by experiments, we
constructed the sister states of Figure 5.

The advantage of the present formulations is this; it is
now possible to formulate the transport problem on the scale
of a flow experiment in accordance with the second law of
thermodynamics, with far less variables, see [18]. This opens up
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the possibility to test the thermodynamic models for consistency
and compatibility with the second law. Such tests will be explicitly
formulated together with the constitutive equations, in the next
part of this work [18].
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APPENDIX

Mathematical symbols, superscripts, subscripts.

Symbol Explanation

d differential

∂ partial derivative

1 change in a quantity or variable

6 sum

i subscript meaning component i

m number of phases

n subscript meaning non-wetting fluid

w subscript meaning wetting fluid

p superscript meaning pore

REV abbreviation meaning representative elementary volume

r superscript meaning solid matrix of porous medium

s superscript meaning interface

u superscripts meaning internal energy

αβ superscripts meaning contact area between phases αβ

αβδ superscripts meaning contact line between phases α,β, δ

x̄ average of x

Greek symbols

Symbol Dimension Explanation

α superscripts meaning a phase

β superscript meaning an interface

δ superscript meaning a contact line

φ porosity of porous medium

γ N.m−1 (N) surface tension (line tension)

3 m length of contact line

λ Euler scaling parameter

µi J.kg−1 chemical potential of i

ρi kg.m−3 density, ≡ Mi/V

σ J.s−1.K−1.m−3 entropy production in a homogeneous phase

σ s J.s−1.K−1.m−2 surface excess entropy production

σc J.s−1.K−1.m−1 line excess entropy production

� m2 surface or interface area

Latin symbols.

Symbol Dimension Explanation

G J Gibbs energy

M kg mass

m kg.mol−1

d m pore length

Hi J.kg−1 partial specific enthalpy of i

Ji kg.s−1.m−2 mass flux of i

Ju J.s−1.m−2 energy flux

J′q J.s−1.m−2 sensible heat flux

JV m3.s−1.m−2 volume flux

l m characteristic length of representative elementary

volume

L m characteristic length of experimental system

Lij , ℓij Onsager conductivity

p Pa pressure of REV

Q m3.s−1 volume flow

r̄ m avarage pore radius

S J.K−1 entropy

s J.K−1.m−3 entropy density

Si J.kg−1K−1 partial specific entropy of i

Ŝ degree of saturation, ≡ Vi/V

T K temperature

t s time

U J internal energy

u J.m−3 internal energy density

V m3 volume

Vi m3.kg−1 partial specific volume

vD m.s−1 difference velocity

x m coordinate axis

xi - mass fraction of i

Wi - kg.mol−1 molar mass of i
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