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Abstract
The use of analytical methods in association football is an acknowledged, but not fully

explored, field of study. In this paper, the passing ability of football players is determined
by building three generalised additive mixed models that each explains a different aspect of a
pass’ success: accuracy, game overview and effectiveness. The models are built on data from
the 2014-2016 seasons of the Norwegian top division Eliteserien, and their predictive power is
tested on the 2017 season. The results provide insight into the factors affecting the success of
a pass in Eliteserien, and the key pass makers in the league are identified.
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1 Introduction
Association football, referred to as football in this paper, attracts more than 4 billion followers
worldwide and is the most popular sport measured by participation, media coverage and key
economic figures (Total Sportek, 2007). Enormous amounts of money are circulating in the world
of football and the three teams generating the highest revenue earned a combined sum of €2
billion in the 2016/2017 season (Boor et al., 2018). Considering these numbers, there is no doubt
that success in football is valuable and football teams are therefore constantly seeking new ways
of improving their performance, with the aim of winning more titles and thereby receiving prize
money and increased attention.

Decisions in sport have traditionally been made qualitatively by humans, being based on gut
feelings or adherence to previous choices (Steinberg, 2015). Recently, the use of statistics in sports
has gained popularity and this emerging field of research is known as sport analytics. By making
use of data material to assist in decision-making, players’ and teams’ strengths and weaknesses can
be evaluated and accordingly, changes can be made to training sessions with the aim of increasing
performance.

This paper is focused on performance analysis of football players’ passing ability. Passing is
the most frequent event happening during a football match, and by successfully passing the ball
forward on the pitch, the chance of creating goal-scoring opportunities increases. Although the
passing ability of players has been studied in the past, the focus has mainly been on the accuracy of
passes. In this paper, three generalised additive mixed models (GAMMs) are developed and each
model looks into a different aspect of a pass’ success: accuracy, game overview and effectiveness.
A pass is accurate if it successfully reaches its target, while a player being able to make tactically
good passes that the pass recipient is able to follow up has a good game overview. Effective passes
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are more likely to lead to shot attempts. The objective is to determine the factors influencing
the success of a pass in the league and to identify the key passers according to each model. This
will enable coaches to get an indication of a player’s ability to transfer performances on training
sessions to match situations, and thus help them to make better-informed choices.

Several studies have been conducted to analyse passing behaviour in football. Szczepański
and McHale (2016) evaluated football players’ passing ability by building a GAMM to estimate
the probability of a pass’ success. Proxies were developed to account for the overall difficulty of
the pass, and random effects of players, the players’ team and opponent teams were included to
investigate individual passing skill and teams’ abilities to facilitate and hamper passes. A similar
GAMM was developed by Tovar et al. (2017), and the model’s ability to predict the performance
of any player transferring from the Colombian to the Spanish league was demonstrated. McHale
and Relton (2018) elaborated on the work by Szczepański and McHale (2016) and developed a
GAMM using player tracking data to estimate the likelihood of a pass’ success with the purpose
of identifying the key passers in a team through a network analysis.

Whereas Szczepański and McHale (2016) considered only the difficulty of a pass, Power et
al. (2017) covered both the difficulty and the effectiveness of passes by estimating their risk and
reward through the use of a supervised learning approach. Effective passes were also explored by
Brooks et al. (2016) who used machine learning techniques to measure the importance of a pass
by examining the relationship between pass location in a ball possession and shot opportunities.
Other studies related to pass effectiveness include Rein et al. (2017), Gyarmati and Stanojevic
(2016) and Mackay (2017). In the latter paper, ridge logistic regression with a sliding window
approach is used to find the probability of different actions on the field resulting in a goal.

In this paper, the passing ability of football players in the Norwegian top division, Eliteserien,
is evaluated through the development of three GAMMs referred to as Model 1, Model 2 and Model
3. The first model considers the traditional approach taken to passing: pass accuracy, and it is
similar to the model suggested by Szczepański and McHale (2016). However, two more sources of
data are used, several new binary variables are proposed, and some new smooth terms are added.
The second model is seemingly unique in the way the dependent variable is defined, and handles
the tactical aspect of a pass by examining the probability that a pass can be followed up, i.e.
the play can easily be continued. The final model investigates pass effectiveness, which has been
considered by many researchers in the past. However, the regression model produced is far more
extensive.

The remainder of the paper is structured as follows. In Section 2, the data and the methodo-
logy used are introduced. Then, the results are presented and discussed in Section 3, before the
concluding remarks are given in Section 4.

2 Experimental Set-up
Data from three different sources are obtained to build detailed regression models. The models are
developed to rate football players’ passing abilities.

2.1 Data
For the analysis, event-data is obtained from Opta Sports’s Opta24Feed (Opta Sports, 2018). The
event-data covers all matches in the 2014-2017 seasons of Eliteserien, with all events happening in
a match being logged with their characteristics and time stamp. As the data delivered by Opta
Sports for Eliteserien only follows the movement of the ball, the whereabouts of the players not
in possession of the ball are unknown. This is a major limitation considering the types of models
which are examined in this paper, as the positioning of the opponents would be of importance.
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Opta Sports is a credible provider of sports data; they have three analysts collecting data in
each match (Greig, 2017). In the data processing however, some errors were identified, and as far
as possible, these were dealt with in order to be able to use the observations that were faulty. The
measures taken involve calculating the angle of the ball movement or length of a pass when it is
wrongly set to zero, switching the order of shot events and out-of-play events when they occur in
the wrong order, manually inserting player positions in cases where they are wrong or incomplete,
and limiting the ball possession of a single player to be less than 30 seconds.

Supplementing the event-data, Elo ratings (ClubElo, 2018), measuring the strength of teams
at the time of play, were collected together with information about the ground surface types on
football pitches used in Eliteserien (Eliteserien, 2018) during the given seasons. In total, 960
matches and 749,859 passes performed by 831 different players are included in the data set. Passes
include passes from open play, headed passes, long passes and crosses and exclude free kicks, corners
and throw-ins.

2.2 Methodology
A total of three GAMMs looking into the three different aspects of a pass’ success defined earlier are
estimated through binary logistic regression to analyse football players’ passing ability. GAMMs
originate from Lin and Zhang (1999), and are advantageous as random effects can be incorporated
and continuous variables can be modelled as smooth terms in addition to other fixed-effect variables.
A GAMM can be written as (Wood, 2006):

ηi = Xiβ +Ziα+ f1(x1) + · · ·+ fj(xj), (1)

α ∼ N (0,Σσ), (2)
where Xi is a vector of fixed effects, β is a vector of fixed-effect coefficients, Zi is a vector of
random effects, α is a vector of random-effect coefficients, and fj are smooth functions of variables
xj . The random effects are assumed to be normally distributed with Σ denoting the covariance
matrix, parameterised by the coefficient vector σ.

Variables

The dependent variables vary across the models. For Model 1 the dependent variable, Y1, indicates
whether the pass successfully reached a player on the same team, while the dependent variable in
Model 2, Y2, tells whether the next event after a pass was successful or not. A player shows an
ability to keep an overview of the game if he is able to make passes that are more easily followed
up. Considering Model 3, the dependent variable Y3 takes the value of one if a pass was part of
a passing sequence leading to a shot. If the passing sequence is interrupted by events that do not
initiate a new sequence, success will also be indicated if a shot is made by the same team within
15 seconds of the last pass in the sequence. Own goals made by the opponent team are seen as
shots by the team awarded with the goal.

The explanatory variables are presented in Table 1, and they are initially the same for all
models, chosen based on their presumed influence on the dependent variable of Model 1. Some of
the variables are based on the model produced by Szczepański and McHale (2016), especially the
chosen smooth terms, while several new fixed-effect variables are introduced. A preliminary test,
based on the AIC criterion, was performed to assess whether smooth terms or categorical fixed
effects are the most suitable form for the variables.

For many situations in which the ball is recovered in open play, opponents of the passer are
nearby. In the case of tackles, aerial duels and interceptions, binary variables X2, X3 and X4
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Table 1: Summary of explanatory variables initially used in the models. Fixed-effect variables are denoted
by X, random-effects variables by Z, and smooth terms by f (·). The types of variables of fixed and random
effects are continuous (C), categorical/factor (F), binary (B) and interaction (I).

Variable Description Type
X1.s Pass number category s in the current sequence of passes (s = 1, 2, 3, 4) F
X2 Tackle in the previous event B
X3 Aerial duel in the previous event B
X4 Interception in the previous event B
X5.i The same player who took part in a tackle (i = 1)/aerial duel (i = 2)/interception

(i = 3) also made the pass
B

X6 Ball recovery due to a loose ball in the previous event B
X7 Previous pass was a header B
X8 Current pass is a header B
X9 Player performing the pass plays for the home team B
X10 Previous event was a free kick B
X11 Previous event was a throw-in B
X12 Corner taken within the past five events B
X13.i The same team executing a corner (i = 1)/ free kick (i = 2)/ throw-in (i = 3)

attempted the pass
B

X14 The match is played on artificial grass B
X1.2*X10 Pass sequence number 2 interacting with free kick in previous event I
X1.2*X11 Pass sequence number 2 interacting with throw-in in previous event I
Z 1.k Player k passing the ball (k = 1, . . . , 689) F
Z 2.t Team t the player is representing (t = 1, . . . , 19) F
Z 3.o Opponent team o to the player passing the ball (o = 1, . . . , 19) F
f1(x0, y0, x1, y1) 4-D smooth handling the start (x0, y0) and end coordinates (x1, y1) of a pass C
f2(x̄2, ȳ2) 2-D smooth representing the average position of the player given by coordinates

(x̄2, ȳ2)
C

f3(x3) 1-D smooth representing game time, x3, in minutes C
f4(x4) 1-D smooth handling time played, x4, by player passing the ball C
f5(x5) 1-D smooth representing the goal difference, x5 C
f6(x3, x5) 2-D smooth representing the interaction between game time and goal difference I
f7(x7) 1-D smooth handling the time passed, x7, since last occurred event C
f8(x8) 1-D smooth representing the absolute Elo rating, x8, of the opponent team C
f9(x9)*X14 1-D smooth functions representing month of play, x9, interacting with type of grass I
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are respectively created to indicate what type of ball recovery that happened in the event prior
to a pass. An extra dummy variable, X5.i , is added for each of the three situations to indicate
whether the player attempting the pass also was involved in the specific prior event. If the same
player is involved, it is reasonable to assume for certain that opponents are close, especially for the
cases of tackles or aerial duels. All other ball recoveries in the data are assumed to be loose balls,
and X6 is an indicator of whether this occurred in the previous event. There is no indication of
opponent pressure in the case of loose balls. These explanatory variables are an adjustment to the
model developed by Szczepański and McHale (2016), where interceptions and loose balls were not
considered and only one variable was used to determine the involvement of a player in both the
previous tackle and aerial duel.

Pass difficulty is incorporated in the models by having binary variables telling whether the
previous pass (X7) or the current pass (X8) is a header. Moreover, the smooth functions f7 and
f8 are proxies for the difficulty in terms of the pressure from opponents to expedite passing and
the strength of the opponent team.

During set plays, players cluster together, and opponents surround the team in possession of
the ball. Three variables are suggested to function as proxies of opponent pressure. Binary variable
X10 is used to indicate whether there was a free kick in the previous event, and binary variable
X11 is used to indicate whether the previous event was a throw-in. The variable X12 indicates
whether or not a corner was taken within the previous five events. This variable is given a longer
time frame due to the effect of a corner usually lasting longer. A new variable, X13.i , indicates
whether the team that made the set play action also attempted the pass.

A categorical variable, X1, is included to investigate whether the initiating pass in a sequence
is more difficult to make due to opponent pressure. The variable can take on four possible values
depending upon whether the pass is the: 1) first, 2) second, 3) third, fourth or fifth or 4) of a higher
sequence number in the sequence. The first category is chosen to be the reference. Both open play
ball recoveries and set play actions are allowed to be starting points of sequences. To investigate
the impact of the first pass after a set play, two interaction terms are added to separate this pass
from other passes with a sequence number of two: the interaction between X1.2 and the binary
variable telling whether the previous event was a free kick (X10), and the interaction between X1.2
and the indicator telling whether the previous event was a throw-in (X11).

The position of the players passing and receiving the ball should have an impact on the success
of the pass as the whereabouts could imply something about the pressure from opponents on both
players. To account for this, the 4-D smooth function f1 handles the start and ending coordinates
of the pass.

The 2-D smooth function f2 is a function of the average position of the player in the current
match. For each match, the average position occupied by a player is calculated by averaging the
x- and y-coordinates of all events a player is involved with. This is different from Szczepański and
McHale (2016), where the anticipated player position based on the previously played matches with
exponential weighting is considered to avoid endogeneity. As players change their player positions
both within matches and between matches, and due to the same player position being occupied
differently depending upon the team’s strategy, the approach used in this paper seems to be more
appropriate. The y-coordinates are calculated as absolute distances from the centre of the axis to
avoid cancellation of terms for players playing on both sides of the pitch.

Several situational variables are added to the models. The game time in minutes is a stressing
factor for the players and is treated as a smooth function, f3, while the actual time a player has
spent on the pitch when the player passes the ball is handled by f4. Players’ time spent on the
pitch accounts for the exhaustion effect of players as not all players play the entire match. Whether
game time turns out to be a stressing factor tends to depend upon the scores at the moment of play.
The goal difference, relative to the team in possession of the ball, is therefore modelled through
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smooth term f5, and to test the interaction with game time, the 2-D smooth term f6 is added to
the models.

Other variables describing the external circumstances of a football match which may influence
the outcome of a pass include home team advantage (X9), ground surface type (X14) and month
of play (f9). The ground surface type is either natural or artificial grass, and the condition on the
fields may vary a lot throughout a season. Hence, the interaction between type of grass and month
of play is included. As the month of play is treated as a smooth function, this interaction is directly
included in the smooth term, and two separate smooths are used in the regression, one for each
type of grass. The month of play represents a seasonal effect, affecting both ground conditions and
the shape of the players. There should be a fatigue effect when the season is close to an end, while
the performance of players is expected to increase in the beginning of the season as their match
shape is improved.

The random effects Z 1.k , Z 2.t and Z 3.o are incorporated to assess players’ individual passing
ability and teams’ ability to facilitate and hinder passes. It is expected that players getting high
estimated coefficients are among those players with best passing skill in the league. Similarly, teams
achieving high scores of facilitation and hampering are perceived to be good at these specific
abilities. By assuming normally distributed random effects, noise in the models resulting from
players exhibiting exceptionally good or bad passing skills can be reduced as the coefficients will
shrink towards the mean.

Model Selection and Validation

The fixed-effect variables to be included in each final model are separately determined through
Wald tests. Although stepwise regression may cause some problems in identifying the best fitted
model (Goodenough et al., 2012; Judd et al., 2011), it is used due to its effectiveness and low
computational burden. Additionally, with a data set consisting of a high number of observations,
the problem of having highly correlated variables is believed to be minimal.

Validation of the models is performed through methods used for binary classifier systems.
The area under the receiver operating characteristic curve (AUC-ROC) and the area under the
precision-recall curve (AUC-PR) (Fawcett, 2006) are considered.

The logistic regressions were run using the bam function from the mgcv package in RStudio
(Wood, 2011), an open-source integrated development environment for the statistical programming
language R (R Core Team, 2017). For all 1-D smooths, the cubic regression spline is chosen as basis
function. This is due to the computational gain implied by this choice rather than using the default
thin plate regression splines. Tensor product smooths are chosen for all the multidimensional
smooths.

Predictions and Player Ratings

The three models are estimated based on data covering the 2014-2016 seasons of Eliteserien, and
their predictive capability is tested for the 2017 season. To test the predictive power of the models,
full predictions are utilised as in Szczepański and McHale (2016). Hence, all random effects are
considered. Players and teams that are new to the 2017 season are given a corresponding coefficient
of zero, the equivalent of being average. The predicted success rate for each player is compared to
the actually observed rate for each model. This gives an indication for how well the models are
able to predict the players’ performance.

As the random coefficients obtained for players’ passing ability are given for a total of three
seasons, players are rated differently in this paper compared to Szczepański and McHale (2016),
and the notion of average players is used to rate players per season instead. Consequently, all
random effects are excluded from the predicted outcomes of each pass. Szczepański and McHale
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(2016) suggest only setting the player random effects to zero when considering the average player.
This is however perceived to be less accurate as specific teams are considered. Players are rated
by calculating the ratio between the actual observed success rate for the player over the models’
expected success rate.

3 Results and Discussion
The final models were decided after performing Wald tests. Refer to Appendix A for the full
regression results of the fixed-effect variables and smooth terms. A significance level of 10 % is
used. Other than the intercepts, no coefficients are appearing to be very high or low in terms of
magnitude. Model 1 is built on a total of 565,720 passes. In Model 2, three passes are omitted
due to these having no defined next event in the game, while one observation is missing from the
building of Model 3. This single pass is the last event of the last match to be processed in the data
set, which seems to be the reason why it is not recorded properly. However, it is unlikely that the
omission has had any influence on the regression result.

3.1 Model Validation
The areas under the ROC and PR curve are used to validate the models. Additionally, the models’
fit are tested by evaluating a sequence of passes from a match in the data set.

ROC and PR Curves

In Figure 1, the ROC and PR curves for each model are shown with their resulting AUC values.
Considering the guidelines for the AUC-ROC as suggested by Hosmer Jr et al. (2013), Model
1 exhibits an excellent discrimination ability, while Model 2 and Model 3 have an acceptable
discrimination ability.

For the PR curves, the first plotted point after the zero recall region has a precision value equal
to the highest estimated probability of success given by the model, and the last plotted point has
a precision value equal to the percentage of observed successes in the data. Hence, for Model 3,
the AUC-PR is low due to a skewed distribution for both the observed outcomes and estimated
probabilities for the model’s dependent variable. The points in which the curve has to start and
stop have quite low precision values, meaning that the curve itself must be concave and extremely
curved to produce a high AUC-PR, which is very unlikely given the set of data. The PR curve is
in fact convex, but the curvature is not very extreme, and the AUC-PR could thus plausibly be
considered as acceptable, actually indicating a good model fit. For Model 1 and Model 2, the good
fit as indicated by the AUC-ROCs is supported by the relatively high AUC-PRs.

Sequence of Passes

A sequence of ten passes obtained from a match between Rosenborg and Stabæk is analysed to test
the validity of the models. The course of the sequence, which is performed by Rosenborg players,
is tabulated in Table 2 and a graphical representation is shown in Figure 2. A failed attempted
tackle by an opponent player initiates the sequence, and the sequence is ended with a shot.

For Model 1, all but the last pass in the sequence are predicted to be accurate with a probability
of over 80 %, with the probabilities being highest for passes directed backwards. As most of the
passes are made on the sides or through Rosenborg’s own half, these values seem to be reasonable.
Surprisingly, pass number nine has a quite high predicted probability of success although this pass
is made relatively close to Stabæk’s goal post, which could be due to the fact that there was a

7



Figure 1: ROC and PR curves for each model

8



Table 2: A sequence of passes made by Rosenborg is used for validation. Rosenborg played against
Stabæk in October 2017 on their own home ground covered with natural grass. The score was draw, and
Stabæk’s Elo rating at the time of play was 1284.13. Refer to Figure 2 for a graphical representation of
the starting and ending coordinates. All other variables do not change between events, and are thus not
tabulated below. There are no headed passes, and the sequence is initiated right after a tackle in which
the first passer is not partaking.

Failed tackle by Stabæk player Ronald Hernández
No. Player Pos Ŷ 1 Ŷ 2 Ŷ 3 X1 x̄2 ȳ2 x3 x4 x7
1 Samuel Adegbenro WI 0.871 0.658 0.086 1 63 36 67 67 3
2 Morten Konradsen CM 0.989 0.895 0.094 2 48 39 67 6 2
3 Tore Reginiussen CD 0.998 0.894 0.084 3 33 19 67 67 3
4 Vegar Hedenstad FB 0.854 0.558 0.091 3 43 39 68 68 4
5 Nicklas Bendtner ST 0.851 0.625 0.104 3 64 26 68 68 4
6 Vegar Hedenstad FB 0.899 0.549 0.115 4 43 39 68 68 3
7 P̊al André Helland WI 0.984 0.818 0.094 4 77 35 68 68 4
8 Nicklas Bendtner ST 0.980 0.839 0.132 4 64 26 68 68 2
9 Tore Reginiussen CD 0.833 0.635 0.192 4 33 19 68 68 8
10 Mike Jensen CM 0.576 0.315 0.260 4 59 26 68 68 1
Missed shot by P̊al André Helland

Figure 2: A graphical representation of the sequence of passes used for validation. The start and end of
the sequence are represented by filled squares, and a hollow square illustrates where the preceding tackle
occurred. Dotted lines are either ball touches or ball carries.
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time gap of eight seconds between the pass and the previous event. The last pass in the sequence
is directed forwards and the ball moves into the penalty area of Stabæk, which intuitively makes
this pass more difficult to attempt. This perceived difficulty is captured by the model as seen from
the lower predicted probability.

Intuitive results are also given by Model 2 and Model 3. The last pass in the sequence has the
lowest predicted probability of being tactically good, while the probability in terms of effectiveness
is increasing closer to the opponent’s goal post. Both are reasonable, as the pressure from the
opponents is usually higher on their own half, and as shots are usually attempted close to the goal.

3.2 Regression Results
Fixed Effects

The coefficients of all significant fixed-effect variables included in the final models are presented
in Table 3. Positive signs on the coefficients correspond to an increased probability of success. It
is apparent that the first pass in a sequence is the most difficult pass to make. If the first pass
is initiated after a tackle and if it is by an involved player, the probability of success increases,
while it is opposite in the case of an aerial duel. For tackles, the result is counter-intuitive at
first, but different types of tackles are not considered, and some of them, such as a sliding tackle,
leaves the opponent down, meaning that the pressure is not very high. The effect of interceptions
differs between the models. However, it is throughout positive when the same player involved with

Table 3: Fixed-effect coefficients of the estimated GAMMs. Significance level is indicated by *.

Variable Short description Model 1 Model 2 Model 3
X1.2 Pass no. 2 0.351∗∗∗ 0.311∗∗∗ 0.240∗∗∗

X1.3 Pass no. 3, 4 or 5 0.498∗∗∗ 0.471∗∗∗ 0.223∗∗∗

X1.4 Pass no. 6+ 0.580∗∗∗ 0.515∗∗∗ 0.223∗∗∗

X2 Tackle 0.343∗∗∗ 0.189∗∗∗ 0.325∗∗∗

X3 Aerial duel −0.100∗∗∗ −0.596∗∗∗ −0.134∗∗

X4 Interception −0.327∗∗∗ −0.148∗∗∗ 0.091∗

X5.1 Same player: tackle 0.154∗∗ 0.097∗

X5.2 Same player: aerial duel 0.532∗∗∗

X5.3 Same player: interception 0.757∗∗∗ 0.387∗∗∗ 0.338∗∗∗

X6 Loose ball 0.515∗∗∗ 0.277∗∗∗ 0.289∗∗∗

X7 Previous pass was header −0.311∗∗∗ −0.294∗∗∗ −0.110∗∗∗

X8 Headed pass −1.227∗∗∗ −0.968∗∗∗ −0.785∗∗∗

X9 Home team advantage 0.138∗∗∗ 0.117∗∗∗ 0.092∗∗∗

X10 Free kick −0.181∗∗

X11 Throw-in 0.184∗∗∗ −0.106∗∗∗

X12 Corner −0.172∗∗∗ 0.363∗∗∗

X13.1 Same team: corner 0.226∗∗∗ 0.120∗ −0.156.
X13.3 Same team: throw-in −0.215. −0.367∗∗∗

X14 Ground surface type 0.123∗∗∗ 0.187∗∗∗ 0.127∗∗∗

X1.2*X10 Interaction 0.306∗∗∗ 0.543∗∗∗ −0.093∗

X1.2*X11 Interaction 0.225. 0.447∗∗∗

Intercept 1.299∗∗∗ −0.517∗∗∗ −3.248∗∗∗

Note: .p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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the interception also passes the ball, which is not surprising as interceptions may happen far from
opponents.

As expected, aerial duels in the previous event complicate the task of executing a successful
pass. This negative effect is further increased when including the contribution from headed passes.
A headed pass will always be the outcome of an aerial duel, and it will always be made by one
of the players involved in the duel. Thus, it makes sense that the variable indicating whether the
same player is involved becomes insignificant for some of the models. Additionally, the positive
effect it has in Model 2 is offset by the more negative effect of the header variable for the same
model. In general, headed passes, both in current and previous event, have a negative influence on
the success rate. Loose balls in the previous event contribute to a higher probability for the player
to successfully execute a pass, which is reasonable as opponents are assumed to not necessarily be
nearby during these actions.

For Model 1 and Model 2, the degree of difficulty decreases with the pass number in the
sequence, while for Model 3, all passes with pass number higher than one are almost equally
difficult to make compared to the first pass in the sequence. When including contributions from
the interaction terms between pass number and free kick, the likelihood of success for the second
pass in a sequence is increased for Model 1 and Model 2, while it is decreased for Model 3. Whether
a pass is attempted by the same team performing a free kick in the prior event is insignificant for
all models. This implies that none of the teams have an advantage over the other team when
attempting the pass. For throw-ins, the probabilities of making accurate and tactically good
passes increase when adding the interaction term, as opposed to an unchanged negative effect on
pass effectiveness. The positive effect in the first two models is reduced when the same team takes
the throw-in and attempts the subsequent pass. Apparently, the team is under high pressure from
opponents during such set pieces.

Corners within the five previous events have differing impact on the models. While the accuracy
of a pass is not affected by the corner variable itself, it is positively affected when a corner is made
by the attacking team, which intuitively is opposite of what is expected. The attacking team is
subject to a more confined space with opponents surrounding them, which should have made the
attempted pass more difficult to make. Tactically good passes are more difficult for the defending
team, while the influence on the success rate for the attacking team is minimal. This is counter-
intuitive in the same way as for the pass accuracy. One might expect that the corner effect on pass
effectiveness would be more pronounced for the attacking team as they are closer to the opponent’s
goal post. However, the results suggest otherwise. The defending team has a higher likelihood
of success, possibly due to counter-attack possibilities in the open areas ahead after the corner is
taken.

All models indicate that teams tend to benefit from playing on their own home ground when
passing the ball, as seen from the positive coefficients. Also, the models developed suggest that
players have an advantage from playing on artificial grass.

Random Effects

The random-effect coefficients of the teams playing in Eliteserien during the 2014-2016 seasons are
shown in Figure 3 for all models. In the figure, the teams’ skills of facilitation and hampering,
with respect to the aspects of success, are plotted on the vertical and horizontal axis respectively.
The higher the coefficient, the better a team is on the specific skill.

For all models, Sogndal, Mjøndalen and Tromsø are placed in the third quadrant, indicating
both low facilitation and hampering skills. Interestingly, these three teams have been in the lower
half of the table and some have also been relegated from Eliteserien during the seasons considered.
Surprisingly, teams such as Rosenborg, Molde and Strømsgodset, all of which always are seen as
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Figure 3: Random effect coefficients of teams for all models. The coefficients are based on data from the
2014-2016 seasons. The overall team skill of hampering passes is given on the x-axis while the overall team
skill of facilitation is given on the y-axis, both skills with respect to the pass aspects considered. Team
abbreviations are explained in Table 10.
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favourites by the beginning of the seasons, and have performed well during the seasons considered,
have negative scores of hampering in all models.

Considering facilitation scores, Odd and Rosenborg are the teams achieving highest scores in
terms of pass accuracy and game overview, while Rosenborg, followed by Sarpsborg 08, seem to
have the highest pass effectiveness scores. Statistics from WhoScored.com (2018) state that the top
five teams in terms of pass accuracy in Eliteserien 2016 were, listed in descending order, Rosenborg,
Odd, Strømsgodset, V̊alerenga and Molde. Moreover, the teams with highest number of shots per
game in the season were Rosenborg, Molde, Sarpsborg 08, Lillestrøm and Strømsgodset. Although
being valid only for the 2016 season, the statistics support the findings in terms of the facilitation
scores.

The random effect coefficients of the top ten players during the 2014-2016 seasons in Eliteserien
are shown in Table 4 for each model. Central defenders top the list in all models, and only strikers
are represented in the bottom rankings for Model 1 and Model 2. While central defenders and
central midfielders dominate the top lists for Model 1 and Model 2, more offensive players are
included in the top list for Model 3. This is intuitive as shots are usually attempted by offensive
players on the opponent’s half, and due to many passing sequences being terminated fairly quickly.

To test whether the magnitude of a player’s coefficient is influenced by the magnitude of the
coefficients of the team the player plays for, the models were run with the team coefficients excluded.
The resulting models had higher AICs and were thus not investigated further. However, one should
bear in mind a potential correlation between team and player scores.

Smooth Terms

The 1-D smooth functions are illustrated in Figure 4. Panel A illustrates the effect of time passed
since the last occurred event measured in seconds. For the accuracy and game overview models,
the probability of success is increasing with increased time passed, which is intuitive as more time
usually means less pressure. In Model 3, the trend is that effective passes are more difficult to
execute with increasing time passed. This is not intuitive, but could be explained as an effect
from counter-attacks. With faster ball movement in the forward direction, the likelihood for a
counter-attack to be successful could be increased. The negative slope present for the variable in
Model 1 and Model 3 after about 18 seconds is probably due to few observations having long time
gaps between events.

The effect of game time in minutes is shown in Panel B. For Model 2 and Model 3, the pattern
is quite similar. Players have an increasing probability of making tactically good or effective passes
in the first period of each half of the match, while it is more difficult, especially in Model 2, to
make these passes at the end of the halves, including overtime. Seemingly, the stressing effect of
time is captured by these models. For the accuracy model however, a straight line for the function
is estimated, giving a linear predictor with a counter-intuitive positive slope. This linear shape is
probably due to the newly added variable of player-specific game time which is highly correlated
to game time (r = 0.83) as most players play the entire match.

Panel C illustrates the effect of playing time, measured in minutes, for the player passing the
ball. For all models, the likelihood of success is highest when a player has been on the pitch between
15 and 85 minutes when attempting the pass, while players having played the entire match seem
to have their performance drop in the last minutes of the game. Thus, the anticipated exhaustion
effect seem to be captured by the models, with the effect being more prominent for the game
overview and effectiveness models.

In Panel D, the influence of the goal difference variable is illustrated. Effects from goal differ-
ences higher than four in absolute value should be interpreted with care due to few occurrences
in the data set. Considering Model 1 and Model 2, it seems like players have a higher likelihood
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jó
lfs

so
n

R
BK

C
D

0.
23

7
Er

le
nd

H
an

st
ve

it
BR

A
FB

0.
09

8

14



Panel A: Time passed since last event, f7(x7)

Panel B: Game time in minutes, f3(x3)

Panel C: Time played by player, f4(x4)

Panel D: Goal difference, f5(x5)

Figure 4: The resulting 1-D smooth functions. The dotted lines indicate the 95 % confidence intervals of
the functions. Depicted are panels A-D.
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Panel E: Elo rating of opponent team, f8(x8)

Panel F: Month of play and natural grass, f9(x9)*X14

Panel G: Month of play and artificial grass, f9(x9)*X14

Panel H: Artificial versus natural grass

Figure 4 (Continued): The resulting 1-D smooth functions. The dotted lines indicate the 95 % confid-
ence intervals of the functions. Depicted are panels E-H.
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of success when the goal difference is big, that is, when the match outcome seems to be definite,
which is intuitive. In terms of effectiveness, the teams chasing a goal to even the score are less
likely to succeed with their passing sequences, possibly due to a stressing factor of being in need
of a goal.

For Model 1 and Model 2, higher Elo rating of the opponent team makes it harder for a player
to achieve success, as seen in Panel E. The same pattern is partly true for the effectiveness model,
but when playing against teams with a very high Elo rating, the chance of success is increased.
Although this is counter-intuitive, it could be an effect from counter-attacks. Playing against very
good teams with high ball possessions could more often create opportunities for counter-attacks.

Panel F and Panel G display the interaction between month of play with natural grass and
month of play with artificial grass respectively. The expected behaviour of the month of play
variable in regards to fatigue effects is supported by all models when playing on natural grass.
Although no clear pattern is seen when the ground surface type is artificial grass, players seem
to have a higher probability of success in the middle of the season. Comparing the two smooth
functions for month of play in Panel H, it is not apparent that artificial grass is more beneficial
throughout the year. However, when also considering the positive fixed-effect variable for artificial
grass, the grey line would be shifted upwards, revealing a clear advantage of playing on artificial
grass in all models, especially in the months of March and April when the maintenance of natural
grass is more challenging.

For the multidimensional smooth functions in Figure 5, the resulting contribution is varying
between the models. The differing contribution given by the average position of a player is shown
in Panel A. When using absolute values for the y-coordinates, the y-axis only ranges from zero to
50, meaning that low y-coordinates correspond to players both on the left and the right side of the
pitch. All models indicate that the average position of being in the bottom left corner, where the
full backs usually are situated, is the easiest. The bottom right corner, the flanks, and the area in
front of the opponent’s goal post are most difficult to succeed in for Model 1, Model 2 and Model
3 respectively.

For all models, the probability of success in the end minutes is higher for the teams falling
behind than the teams being in the lead as seen in Panel B. Thus, the team leading actually has
a harder task even if they have a comfortable lead. However, with fewer observations of leads, or
defeats, of four or more goals, some of the most extreme contributions must be interpreted more
carefully.

Panel C and Panel D both show results from the 4-D smooth function, covering the starting
and ending coordinates of a pass. Given a pair of starting coordinates, the contour lines give the
contribution for all end-coordinate possibilities. When passing from the defensive half, Panel C,
the likelihood of success is higher when passing backwards compared to passing forward according
to the accuracy and game overview models. This is intuitive as the opposition is situated in front
of the passer at most times. For the effectiveness model, there is little variation in the magnitude
of the contribution, but passing the ball forward gives a higher probability of succeeding in terms
of creating chances. This is also intuitive as the ball is moving closer to the opponent’s goal post
where shots are more likely to happen. The same intuitive results are present in the case of a pass
made from the offensive half in Panel D as well.

3.3 Predictions and Player Ratings
In Figure 6, the predicted success rate, based on full predictions, is plotted against the observed
success rate for each model and each player in the 2017 season. Only players attempting a minimum
of 100 passes are plotted. The different shades of grey represent groups of player positions, and
different symbols are used to tell whether a player is new to the 2017 season compared to the
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Panel A: Average position of player, f2(x̄2, ȳ2)

Panel B: Interaction between game time and goal difference, f6(x3, x5)

Panel C: The 4-D smooth with given start coordinates, f1(25, 50, x1, y1)

Panel D: The 4-D smooth with given start coordinates, f1(75, 50, x1, y1)

Figure 5: The resulting multidimensional smooth functions are depicted in panel A-D.
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Figure 6: The predicted versus observed success rate for each model and each player in the 2017 season.
The different shades of grey represent groups of player positions, and different symbols are used to tell
whether the player is new to the 2017 season compared to the 2014-2016 seasons (N) or not (•). A new
player is treated as an average player with no random effect player coefficient. Shades: - goalkeepers,
- defenders, - central and defensive midfielders, - wingers and attacking midfielders, - strikers. Only
players with more than 100 passes are considered.
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2014-2016 seasons.
For Model 1 and Model 2, there are more strikers on the left side of the diagonal compared

to the right side, indicating that the models predict a higher likelihood of success than what is
actually observed. The same pattern can be seen for wingers and attacking midfielders, although
not as clear. Considering the magnitude of the success rates, defenders, defensive midfielders and
central midfielders tend to achieve higher success rates than goalkeepers and more offensive players.
It is also interesting that the discrepancy between the predicted and observed success rates tend
to be smallest for the case of high success rates. Overall, the largest discrepancy between the rates
seems to be present for strikers, as seen from their larger deviance from the diagonal.

Considering Model 3, it is clear that the different groups of player positions cluster together.
Moreover, the magnitude of the success rates are increasing in the forward playing direction, which
is intuitive due to the nature of the model. In all models, the tendency is that the majority of the
players lies on the left side of the diagonal, indicating a higher predicted success rate than what is
actually observed. However, the distribution of offensive players in the effectiveness model seems
to be more even.

The top ten outfield players in the 2017 season for each model are presented in Table 5. Note
that only players attempting more than 209 passes are considered for the analysis. This is the
equivalent of having attempted an average number of passes in 20 % of the matches, i.e. six
matches, that season.

Defensive players dominate the top list for the accuracy model, while the proportion of offensive
players in the lists for the two other models is higher. However, there are still five defensive players
in the list for Model 3. As there are many passes made by defenders on their team’s own half that
are not effective, the model might not be able to give realistic expected values for the defenders who
tend to be more active in the offensive play. Hence, offensive defenders are singled out compared to
other defenders, although this does not mean that their ratings are fair compared to other player
positions.

For comparisons of player ratings in the 2017 season, the developed models were rerun with data
from the 2017 season and the resulting random-effect coefficients of the top ten outfield players are
shown in Table 6. The idea is to see whether the model predictions can be used to rate players out
of sample instead of having to run the models over again for each new season to get new coefficient
estimates. When comparing the player ratings across the two approaches used, five, three and four
of the same players on the top ten lists are present on both lists according to Model 1, Model 2
and Model 3 respectively. Two of these players are new to the 2017 data set, but still manages to
be spotted by the models through predictions. Five more new players are present in Table 6, three
of which also plays for Kristiansund, the newly promoted team. In general, the player position
patterns are the same across the models for the two approaches.

4 Concluding Remarks
In this paper, the passing ability of football players in the Norwegian top division Eliteserien has
been evaluated through the development of three GAMMs. Three aspects of a pass has been
considered, all of which should be taken into account when evaluating the passing ability of a
football player. The accuracy model, Model 1, is inspired by the model considered in Szczepański
and McHale (2016), which is further examined by Tovar et al. (2017) and McHale and Relton
(2018). Model 3, which handles pass effectiveness, has a similar nature to what is examined in
Power et al. (2017), Brooks et al. (2016) and Mackay (2017), whereas Model 2 is seemingly unique
by incorporating a player’s ability to read the play through having a good game overview.

The coefficients of Model 1 correspond well with the findings in Szczepański and McHale (2016)
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Table 5: The top ten outfield players in the 2017 season. Explanation of the abbreviations used for the
teams and the player positions can be found in Appendix B. Only players with more than 209 passes, the
equivalent of playing six matches, are considered, and if a player has played for more than one team in the
season considered, the team for which the player has played more matches is given.

Panel A: Model 1

# Player Team Pos Expected Actual Obs Ratio
1 Daniel Braaten BRA ST 0.673 0.741 282 1.102
2 Vegar Hedenstad RBK FB 0.744 0.812 1348 1.090
3 Bonke Innocent LSK DM 0.757 0.823 294 1.087
4 Espen Ruud ODD FB 0.706 0.763 1504 1.081
5 Reiss Greenidge SOG CD 0.707 0.764 229 1.081
6 Thomas Grøgaard ODD FB 0.762 0.812 1219 1.067
7 Taijo Teniste SOG FB 0.681 0.727 673 1.067
8 Michael Hauk̊as VIK WI 0.659 0.702 242 1.065
9 Martin Ellingsen MOL CM 0.761 0.810 406 1.065
10 Birger Meling RBK FB 0.778 0.829 981 1.065

Panel B: Model 2

# Player Team Pos Expected Actual Obs Ratio
1 Daniel Braaten BRA ST 0.425 0.496 282 1.167
2 Anders Trondsen S08 CM 0.532 0.608 1152 1.142
3 Herman Stengel VIF CM 0.593 0.677 1007 1.142
4 Jacob Rasmussen RBK CD 0.673 0.767 675 1.140
5 Vegar Hedenstad RBK FB 0.532 0.605 1348 1.137
6 Kasper Skaanes BRA WI 0.482 0.545 297 1.133
7 Enar Jääger VIF FB 0.646 0.731 1281 1.132
8 Jonatan Nation VIF CD 0.605 0.685 1771 1.132
9 Birger Meling RBK FB 0.572 0.646 981 1.131
10 Mathias Normann MOL CM 0.531 0.600 255 1.130

Panel C: Model 3

# Player Team Pos Expected Actual Obs Ratio
1 Jostein Gundersen TIL CD 0.052 0.087 492 1.699
2 Lasse Nilsen TIL FB 0.097 0.149 444 1.535
3 Daniel Braaten BRA ST 0.120 0.152 282 1.388
4 Kim André Madsen SIF CD 0.055 0.076 476 1.373
5 Deyver Vega BRA WI 0.111 0.149 302 1.340
6 Gjermund Åsen TIL AM 0.117 0.156 867 1.333
7 Martin Broberg ODD WI 0.092 0.122 483 1.316
8 Vegard Bergan ODD CD 0.058 0.075 771 1.307
9 Vegard Forren MOL CD 0.064 0.084 392 1.307
10 Anthony Ikedi FKH CM 0.076 0.100 261 1.303
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ré

D
an

ie
lse

n
V

IK
C

M
0.

20
3

K
aj

R
am

st
ei

jn
A

aF
K

C
D

0.
08

3
4

H
en

ni
ng

H
au

ge
r

SI
F

D
M

0.
34

7
M

ik
ke

lK
irk

es
ko

v
A

aF
K

FB
0.

19
5

Li
rid

on
K

al
lu

dr
a

K
BK

W
I

0.
08

3
5

A
nd

ré
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in terms of both sign and magnitude. Considering the smooth functions, the time between events
provides similar results as the time between passes in Szczepański and McHale (2016), except
that the former function continues beyond the eight seconds cut-off used in previous research.
Furthermore, the effect of game time, the average player positions and the 4-D smooth function,
when passing from the defensive region, have similar patterns as found by Szczepański and McHale
(2016). The predictions made for pass accuracy in the consecutive season seem to be a bit more
accurate in Szczepański and McHale (2016). However, this may be explained by the fact that
we do not disregard players that do not appear in the training data, and that these players are
considered to be average players in the predictions. The home team advantage variable, indicating
that the home team has a higher probability of making an accurate pass compared to the away
team, supports the previous findings by McHale and Relton (2018) and Tovar et al. (2017).

Although the research previously done on pass effectiveness is not directly comparable to the
approach used for Model 3, both Power et al. (2017) and Brooks et al. (2016) support the finding
that passes made closer to the opponent’s goal post are more likely to lead to shots. In Mackay
(2017), where not only passes are considered as events in a possession, all variables concerning the
previous event of passes in Model 3, except for free kicks, are the same. Of these, all but one have
the same sign on the coefficients as Model 3. Also, similar negative effects are found for headed
passes in the current event. Offensive players tend to dominate the top ratings in Power et al.
(2017), Brooks et al. (2016) and Mackay (2017), which is different from the top list for Model
3 where more variation in player positions is present. This might indicate that Model 3 more
properly deals with differences in player positions.

The three developed models’ capabilities of assessing players upon their passing abilities have
been demonstrated in this paper. Furthermore, the top ten rated pass makers in Eliteserien,
and the teams’ skills of facilitating and hampering passes were identified. The developed models
and their applications can provide coaches and players with valuable information that can be
transferred to training sessions, with the aim of increasing performance. The same analysis can
easily be performed for any other league for which similar event-data is available, including all the
top leagues in Europe. Also, the analysis can be extended to other sports where passing between
players is essential.
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A Regression Results

Table 7: Model 1 regression result. The random effect coefficients are not given here, they are presented
in Table 4. Significance level is indicated by *.

Fixed effects
Variable Coefficient(SE)
X1.2 0.351∗∗∗(0.068)
X1.3 0.498∗∗∗(0.014)
X1.4 0.580∗∗∗(0.013)
X2 0.343∗∗∗(0.015)
X3 −0.100∗∗∗(0.024)
X4 −0.327∗∗∗(0.024)
X5.1 0.154∗∗(0.052)
X5.3 0.757∗∗∗(0.043)
X6 0.515∗∗∗(0.021)
X7 −0.311∗∗∗(0.016)
X8 −1.227∗∗∗(0.014)
X9 0.138∗∗∗(0.008)
X11 0.184∗∗∗(0.045)
X13.1 0.226∗∗∗(0.036)
X13.3 −0.215.(0.122)
X14 0.123∗∗∗(0.011)
X1.2*X10 0.306∗∗∗(0.036)
X1.2*X11 0.225.(0.122)
Intercept 1.299∗∗∗(0.068)

Smooth terms
Variable Sign.
f1(x0, y0, x1, y1) ∗∗∗

f2(x̄2, ȳ2) ∗∗∗

f3(x3)
f4(x4) ∗∗∗

f5(x5) ∗∗∗

f6(x3, x5) ∗∗∗

f7(x7) ∗∗∗

f8(x8) ∗∗∗

f9(x9) : Artificial ∗∗∗

f9(x9) : Natural ∗∗∗

Note: .p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table 8: Model 2 regression result. The random effect coefficients are not given here, they are presented
in Table 4. Significance level is indicated by *.

Fixed effects
Variable Coefficient (SE)
X1.2 0.311∗∗∗(0.012)
X1.3 0.471∗∗∗(0.011)
X1.4 0.515∗∗∗(0.012)
X2 0.189∗∗∗(0.029)
X3 −0.596∗∗∗(0.062)
X4 −0.148∗∗∗(0.021)
X5.1 0.097∗(0.042)
X5.2 0.532∗∗∗(0.066)
X5.3 0.387∗∗∗(0.036)
X6 0.277∗∗∗(0.017)
X7 −0.294∗∗∗(0.014)
X8 −0.968∗∗∗(0.014)
X9 0.117∗∗∗(0.006)
X10 −0.181∗∗(0.057)
X12 −0.172∗∗∗(0.050)
X13.1 0.120∗(0.060)
X13.3 −0.367∗∗∗(0.109)
X14 0.187∗∗∗(0.009)
X1.2*X10 0.543∗∗∗(0.063)
X1.2*X11 0.447∗∗∗(0.109)
Intercept −0.517∗∗∗(0.085)

Smooth terms
Variable Sign.
f1(x0, y0, x1, y1) ∗∗∗

f2(x̄2, ȳ2) ∗∗∗

f3(x3) ∗∗

f4(x4) ∗∗∗

f5(x5) ∗∗∗

f6(x3, x5) ∗∗∗

f7(x7) ∗∗∗

f8(x8) ∗∗∗

f9(x9) : Artificial ∗∗∗

f9(x9) : Natural ∗∗∗

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table 9: Model 3 regression result. The random effect coefficients are not given here, they are presented
in Table 4. Significance level is indicated by *.

Fixed effects
Variable Coefficient
X1.2 0.240∗∗∗(0.019)
X1.3 0.223∗∗∗(0.018)
X1.4 0.223∗∗∗(0.020)
X2 0.325∗∗∗(0.036)
X3 −0.134∗∗(0.050)
X4 0.091∗(0.036)
X5.3 0.338∗∗∗(0.059)
X6 0.289∗∗∗(0.029)
X7 −0.110∗∗∗(0.025)
X8 −0.785∗∗∗(0.026)
X9 0.092∗∗∗(0.010)
X11 −0.106∗∗∗(0.028)
X12 0.363∗∗∗(0.080)
X13.1 −0.156.(0.088)
X14 0.127∗∗∗(0.014)
X1.2*X10 −0.093∗(0.040)
Intercept −3.248∗∗∗(0.118)

Smooth terms
Variable Sign.
f1(x0, y0, x1, y1) ∗∗∗

f2(x̄2, ȳ2) ∗∗∗

f3(x3)
f4(x4) ∗∗∗

f5(x5) ∗∗∗

f6(x3, x5)
f7(x7) ∗∗∗

f8(x8) ∗∗∗

f9(x9) : Artificial ∗∗∗

f9(x9) : Natural ∗∗∗

Note: .p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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B Abbreviations

Table 10: Team name abbreviations and the seasons of 2014-2017 in which the teams have played in
Eliteserien.

Abbreviation Explanation Seasons
AaFK Aalesunds FK ’14,’15,’16,’17

B/G FK Bodø/Glimt ’14,’15,’16
BRA SK Brann ’14,’16,’17
FKH FK Haugesund ’14,’15,’16,’17
KBK Kristiansund BK ’17
LSK Lillestrøm SK ’14,’15,’16,’17
MJØ Mjøndalen IF ’15
MOL Molde FK ’14,’15,’16,’17
ODD ODDs BK ’14,’15,’16,’17
RBK Rosenborg BK ’14,’15,’16,’17

S08 Sarpsborg 08 FF ’14,’15,’16,’17
SAN Sandefjord Fotball ’15,’17
SIF Strømsgodset TF ’14,’15,’16,’17

SOG Sogndal Fotball ’14,’16,’17
STA IK Start ’14,’15,’16
STB Stabæk Fotball ’14,’15,’16,’17
TIL Tromsø IL ’15,’16,’17

ULF Sandnes Ulf ’14
VIF V̊alerenga Fotball ’14,’15,’16,’17
VIK Viking FK ’14,’15,’16,’17

Table 11: Player position abbreviations

Abbreviation Explanation
AM Attacking midfielder
CD Central defender
CM Central midfielder
DM Defensive midfielder
FB Full back
ST Striker

WB Wing back
WI Winger
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